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Abstract: The medicinal plant Artabotrys hexapetalus (synonyms: A. uncinatus and A. odoratissimus)
is known as yingzhao in Chinese. Extracts of the plant have long been used in Asian folk medicine to
treat various symptoms and diseases, including fevers, microbial infections, ulcers, hepatic disorders
and other health problems. In particular, extracts from the roots and fruits of the plant are used for
treating malaria. Numerous bioactive natural products have been isolated from the plant, mainly
aporphine (artabonatines, artacinatine) and benzylisoquinoline (hexapetalines) alkaloids, terpenoids
(artaboterpenoids), flavonoids (artabotrysides), butanolides (uncinine, artapetalins) and a small series
of endoperoxides known as yingzhaosu A-to-D. These natural products confer antioxidant, anti-
inflammatory and antiproliferative properties to the plant extracts. The lead compound yingzhaosu
A displays marked activities against the malaria parasites Plasmodium falciparum and P. berghei. Total
syntheses have been developed to access yingzhaosu compounds and analogues, such as the potent
compound C14-epi-yingzhaosu A and simpler molecules with a dioxane unit. The mechanism of
action of yingzhaosu A points to an iron(II)-induced degradation leading to the formation of two
alkylating species, an unsaturated ketone and a cyclohexyl radical, which can then react with vital
parasitic proteins. A bioreductive activation of yingzhaosu A endoperoxide can also occur with the
heme iron complex. The mechanism of action of yingzhaosu endoperoxides is discussed, to promote
further chemical and pharmacological studies of these neglected, but highly interesting bioactive
compounds. Yingzhaosu A/C represent useful templates for designing novel antimalarial drugs.
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1. Introduction

Despite new treatment modalities, malaria remains a major public health threat world-
wide, causing more than 400,000 deaths per year, predominantly in children in sub-Saharan
Africa and tropical regions [1]. Recently, the malaria vaccine RTS,S (Mosquirix™) has
received regulatory approval for the prevention of malaria infection. The launch of this
vaccine represents a major achievement in limiting the transmission of the parasite, but
it shows a modest efficacy against malaria illness [2]. New treatments are still needed to
combat the disease, notably the drug-resistant forms, which develop rapidly. There is a
significant need for efficient, affordable and well-tolerated antimalarial drugs [3].

The first-line treatment of Plasmodium falciparum mild malaria generally relies on com-
bination therapy, including artemisinin (ART) and/or chloroquine, whereas intravenous
artesunate is often preferred in cases of severe malaria, at least in developed countries [4].
The combination of artesunate and pyronaridine (Pyramax®) is also approved to treat
uncomplicated malaria [5,6]. ART and derivatives have been extensively studied as an-
timalarial drugs. The discovery of artemisinin was largely based on traditional Chinese
medicine (TCM), as recognized by Dr. Youyou Tu, who was awarded the Nobel Prize
in Physiology and Medicine in 2015 for her discovery of ART and its therapeutic effects
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on malaria [7]. Herbs of the Artemisia family (qinghao in Chinese) have been extensively
studied for their pharmacological properties and phytochemical content.

In contrast, the plant yingzhao (Artabotrys unciatus (L.) Meer.) has been considerably
less investigated. Moreover, the main phytochemical compounds found in yingzhao,
known as yingzhaosu, have been essentially neglected, at least from a pharmacological
viewpoint (Figure 1). The present review offers a survey of the current knowledge and
recent research about this plant and its bioactive constituents.
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Figure 1. Yingzhao plant and yingzhaosu compounds. (a) The plant yingzhao (Artabotrys uncinatus
(L.) Meer.) with a view of the young fruits, the leaves and the flower (drawing: Prof. J.-P. Hénichart).
The plant is largely distributed in Southeast Asia. The plant is native to countries such as India,
Thailand, Vietnam, and Sri Lanka (and other counties in green) and has been introduced in Indonesoia,
China, Japan (and other countries in purple) (https://powo.science.kew.org/taxon/urn:lsid:ipni.org:
names:72395-1, accessed on 14 September 2022). (b) Structure of the four yingzhaosu compounds, all
isolated from yingzhao.

Specifically, the review presents the origin and use of the plant yingzhao, with a
detailed analysis of the phytochemicals isolated from the different parts of the plant. Their
mechanisms of action are discussed, focusing on the yingzhaosu products to highlight the
reactivity of the endoperoxide compounds yingzhaosu A and C. The significance of the
work reported here is high considering the need for new drugs to treat malaria but also a
novel targeted approach to treating other parasitic diseases and cancers. Artemisinin-type
drugs are increasingly considered to treat hematological malignancies, viral infections and
other human diseases [8–10]. The importance of the reactive endoperoxide function in
chemistry is well recognized, and the use of naturally occurring endoperoxides to design
new drugs has often been underlined [11,12]. In this context, it is timely and essential to
promote yingzhaosu compounds.

2. The Plant Yingzhao

The Chinese medicine yingzhao is usually associated with the plant name Artabotrys
uncinatus (L.) Meer. (Annonaceae), from which yingzhaosu compounds have been isolated,
as discussed above (Figure 1). However, and in fact, A. unciatus is one of the synonyms for
the plant Artabotrys hexapetalus (L.f.) Bhandari, which is the accepted botanical name [13].
Other synonyms are used, such as A. odoratissimus R.Brown. (Table 1). This plant, commonly
called tail grape or climbing ylang-ylang, can be found in China, India, Malaysia, Indonesia,
Vietnam and other countries of Southeast Asia. It is native to Sri Lanka and Southern India

https://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:72395-1
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and can be grown in many places [14]. For example, two established plants of A. hexapetalus
(L.f.) Bhand. growing at the Fairchild Tropical Garden in Miami (US) have been used to
study plant architecture during growth [15]. It can also be found in some tropical African
countries, like Tanzania [16].

Table 1. The plant yingzhao, accepted botanical names and synonyms.

Accepted Name Synonyms * Common Names **

Artabotrys hexapetalus
(L.f.) Bhandari

Annona hexapetala L.f. Tail grape (English); Hari
champa, Kath champa,

Madanmast (Hindi);
Manoranidam (Tamil);

Kothali-champa (Assamese);
kenanga tanduk (Indonesian).

Ylang-Ylang grimpant
(French); Cay Móng rồng

(Vietnamese); karawek
(Thailand); iraniran noki,
tsuru iraniran (Japanese);

lanalana (Hawaiian); kathali
champa, kaanthaali
chaanpaa (Bengali).

Annona uncinata Lam.
Artabotrys hamatus (Dunal) Blume

Artabotrys intermedius Hassk.
Artabotrys odoratissimus R.Br.

Artabotrys odoratissimus Wight & Arn.
Artabotrys uncata (Lour.) Baill.

Artabotrys uncatus (Lour.) Baill.
Artabotrys uncinatus (Lam.) Merr.

Unona uncata (Lour.) Dunal
Unona uncinata (Lam.) Dunal

Uvaria esculenta Roxb. ex Rottler
Uvaria odoratissima Roxb.

Uvaria uncata Lour.
* https://indiabiodiversity.org/species/show/228796 (accessed on 14 September 2022); http://www.theplantlist.
org/tpl1.1/record/kew-2653287 (accessed on 14 September 2022). ** https://medplants.blogspot.com/2018/10/
artabotrys-hexapetalus-champa-ylang.html (accessed on 14 September 2022).

Yingzhao behaves as a woody climber, possibly growing up to 10 m in height. It should
not be confused with Cananga odorata (ylang-ylang) used in perfumery. A. hexapetalus is
a woody scandent climbing shrub. The leaves are oblong to broadly lanceolate in shape
and the flowers are fragrant, with yellow petals (Figure 1). The plant is recognizable from
the flower stalks, which are shaped like hooks. With beautiful and aromatic flowers, it is
an ornamental plant now cultivated and also used in the perfume industry. The seeds are
used for propagation, but the germination process is complex and long, taking as long as
238 days [17]. The plant is appreciated for its pleasant-smelling yellow flowers, from which
a delicate essential oil, rich in sesquiterpenoids (such as β-caryophyllene and caryophyllene
oxide), can be prepared [18]. Essential oils can also be obtained from the stem bark or
leaves of the plant to be used as a mosquito repellent [16].

3. Traditional Medicinal Uses of Yingzhao

For a long time, yingzhao-based preparations have been used to treat human diseases.
Different parts of the plant have been used. The symptoms and pathologies treated with
plant extracts vary from one country to another. In Malaysia, leaf decoctions were given for
curing cholera, whereas the roots and fruits have been used for the treatment of malaria
and scrofula (tuberculous lymphadenitis). There is also mention of the use of the plant to
treat fever, diarrhea, dysentery, cuts, sprains, ulcers, and asthma.

Recently, Kousalya and Doss [19] have inventoried the diverse ethnomedicinal uses of
A. hexapetalus extracts. These can range from antibacterial and antifungal effects to hepato-
protective and anti-ulcer activities (Table 2). In general, the pharmacological effects were
obtained with organic extracts prepared from the plant’s leaves, bark, or roots. For example,
methanolic leave extracts were found to display antifungal and antibacterial effects [20–22].
The essential oil of A. odoratissimus R.Br. (synonym) has shown a broad-spectrum activity
against 14 different storage fungi, and interestingly, it was reported to arrest aflatoxin B1
secretion by a toxic strain of Aspergillus flavus [23]. Flower extracts of A. hexapetalus also
revealed antifungal effects [24].

https://indiabiodiversity.org/species/show/228796
http://www.theplantlist.org/tpl1.1/record/kew-2653287
http://www.theplantlist.org/tpl1.1/record/kew-2653287
https://medplants.blogspot.com/2018/10/artabotrys-hexapetalus-champa-ylang.html
https://medplants.blogspot.com/2018/10/artabotrys-hexapetalus-champa-ylang.html
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Table 2. Pharmacological properties of A. hexapetalus extracts.

Pharmacological
Activities Comments References

Antiparasitic

Extracts of the roots and fruits are used to treat
malaria (Plasmodium falciparum infection) and

leishmania (Leishmania donovani infection).
Numerous antimalarial compounds characterized,

principally the yingzhaosu.

[25–28]

Antibacterial

Activities against Salmonella, Staphylococcus,
Pseudomonas and other bacteria reported with

hydroalcoholic extracts of the flowers and leaves.
Bactericidal effect of silver nanoparticles made

with an aqueous extract of A. hexapetalus.

[29,30]

Antifungal Activities against Candida albicans, Aspergillus niger
and other fungi reported with a methanolic extract. [21,24]

Antifertility

Reduction of sperm count and fertility with a
hydroalcoholic leave extract, and modulation of

the oestrus cycle. Regulation of steroidal
hormone levels.

[31–35]

Anticancer
A fruit extract of A. odoratissimus reduced

proliferation of MIA PaCa-2 pancreatic cancer cells
and induced their apoptotic cell death.

[36]

Anti-ulcer and
hepatoprotection

Protection against liver injuries and oxidative
stress with a hydroalcoholic extract.

Anti-inflammatory activity of an ethanolic extract
of aerial parts. Cytoprotection conferred by

antioxidant flavonoids and alkaloids.

[37–40]

Mosquito repellent

Essential oils made from leaves and stem bark
extracts obtained by hydro-distillation have

revealed mosquito repellency activity, attributed to
the presence of β-caryophyllene oxide.

[16]

Alcoholic leave extracts display cytoprotective effects in vitro and in vivo. An ethano-
lic extract orally administered (100–200 mg/k for seven days) to mice with drug-induced
liver injury was found to reduce the oxidative damages at least at the biochemical level and
to alleviate the sign of cellular degeneration and necrosis. The extract was well tolerated
in mice [40]. The observed effects were attributed to the presence of antioxidant natural
products, including flavonoids and alkaloids. Similar antioxidant and hepatoprotective
effects have been reported in other studies with A. hexapetalus extracts [29,37,38].

The hydroalcoholic leave extracts of A. hexapetalus have been found to reduce sperm
count and mobility in rats, reducing the diameter of seminiferous tubules. The extract
lowered the testosterone level and significantly reduced fertility in rats [33]. The obser-
vation was consistent with the reported antifertility activity of various leaf extracts of
A. odoratissimus Roxb. (synonym). In this case, the extracts (obtained with benzene, ethanol
and water) were found to disturb the oestrus cycle and reduce implantation and thus
fertility [31]. Antifertility activity has been confirmed in a recent study performed with
extracts from the leaves and stem of A. odoratissimus Roxb. in female rats. The extracts
altered the level of cholesterol and steroidal hormones (estradiol and progesterone) and
caused polycystic ovaries in rats [33,34]. In India, antifertility activity of A. odoratissimus
plant extracts is known for several decades [41,42] and remains considered today for the
regulation of fertility [35].

The main bioactivity of A. hexapetalus refers to antiparasitic effects. For a long time,
yingzhao (roots and fruits) has been used to combat parasites such as Plasmodium falci-
parum and Leishmania donovani. A petroleum ether extract of A. hexapetalus was shown
to moderately reduce the growth of the promastigote forms of cultured L. donovani. The
effect was attributed to the presence of flavonoids such as quercetin and apigenin [28].
Notwithstanding, there are many other flavonoids in the plant extracts, such as taxifolin,
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apigenin glycosides, glucoluteolin, arabotrysides A and B (Figure 2), and the flavonol gly-
cosides called arapetalosides A and B [43,44]. Hydroalcoholic leaf extracts of A. hexapetalus
display activities against Plasmodium and Leishmania, but not against the African earthworm
Eudrilus eugeniae (African nightcrawler) [27,28]. It should be noted that there is not many
published information about the antiplasmodial activity of A. hexapetalus. Solid data have
been reported with other species, such as A. crassifolius [45], but not for yingzhao extracts
despite the traditional use.
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Figure 2. Structure of selected natural products isolated from different parts of yingzhao. Detailed
botanical information on yingzhao can be found at http://www.instituteofayurveda.org/plants/
plants_detail.php?i=75&s=Local_name (accessed on 14 September 2022).

Occasionally, other pharmacological effects have been reported. For example, a recent
study underlined the antiproliferative activity of A. odoratissimus fruit extract against MIA
PaCa-2 pancreatic cancer cells. The organic (ethyl acetate) extract reduced cell growth,
revealed an antioxidant effect, and induced apoptotic cell death associated with DNA
damage [36]. The phytochemicals at the origin of the anticancer action were not specified,
but it could be linked to the presence of cytotoxic alkaloids. More than 25 alkaloids
have been isolated from A. uncinatus (synonym), including cytotoxic oxoaporphines and
other alkaloids endowed with cytotoxic effects such as atherospermidine and squamolone
(Figure 3) [46,47].

The multiple bioactive properties evidenced by extracts of the plants stimulate research
and the elaboration of novel bioinspired products. For example, silver nanoparticles have
been made using an aqueous extract of A. hexapetalus with the objective to propose new
bactericide products [30]. There are also non-medicinal usages of the plant extracts. For
example, the plant leaf extract has shown anticorrosion activity. It could be used as an
eco-friendly green inhibitor for acidic-induced corrosion of mild steel [48,49].

http://www.instituteofayurveda.org/plants/plants_detail.php?i=75&s=Local_name
http://www.instituteofayurveda.org/plants/plants_detail.php?i=75&s=Local_name
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4. Phytochemical Content of Yingzhao

Unsurprisingly, a large number of secondary metabolites have been isolated from
yingzhao, including terpenoids, alkaloids and steroids. Natural products have been iden-
tified from extracts of all parts of the plant, from roots to leaves, and from seeds to fruits.
Important products identified from each part are indicated in Figures 2 and 3.

4.1. Alkaloids from Yingzhao

The oxazoloaporphine alkaloids artabonatines A-F have been isolated from fresh un-
ripe fruits of A. uncinatus [46,47]. They are rare compounds, scarcely studied apart from the
chemical synthesis of some derivatives [50]. The structure (from anti to syn) of artabonatine
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A has been revised in 2018, based on the chemical synthesis of the two diastereomeric iso-
mers of (−)-artabonatine A (Figure 2). Their capacity to inhibit G-protein coupled receptors
(GPCR) and monoamine transporters were characterized. The anti-isomer was found to
function as a potent inhibitor of serotonergic 5-HT2C receptor (Ki = 1.6 µM) whereas the
syn-isomer inhibited dopamine transporter (Ki = 3.8 µM) [50]. These compounds have been
rarely identified in other plants. Artabonatine B has been found in the stems of Annona
cherimola Mill (cherimoya), which is also a tropical species of Annonaceae [51]. Another
aporphine alkaloid, 8-hydroxyartabonatine C, has been found in the leaves and twigs of
Pseuduvaria trimera and the compound was shown to exhibit mild cytotoxic properties
toward cancer cells in vitro [51]. However, apart from those two studies, the artabon-
atine compounds are poorly known. Two related benzylisoquinoline alkaloids named
hexapetalines A and B (Figure 2) have been isolated from the stem of A. hexapetalus. Hex-A
proved to be more cytotoxic toward cancer cells than Hex-B. Its antiproliferative action was
comparable to that of the reference anticancer drug cisplatin [52].

Known alkaloids have been isolated from A. uncinatus, such as liriodenine, anonaine,
norushinsunine, asimilobine and stepharine [47]. Anonaine (Figure 3) is also an aporphine
alkaloid (benzylisoquinoline) with a significant antiplasmodial effect (IC50 = 23.2 µg/mL
against P. falciparum) [53]. It can be found in several species of Magnoliaceae and An-
nonaceae, and has a large spectrum of bioactivities, including antiplasmodial, antibacterial,
antifungal, and anticancer effects [54]. Alkaloids such as liriodenine, anonaine, and stephar-
ine are relatively common in Annona species and contribute to the antiparasitic properties
of the plants [55].

In the case of the rare butanolide, the alkaloid uncinine from A. uncinatus is interesting
to underline because it has revealed marked cytotoxic properties, inhibiting the growth
of HepG2 liver cancer cells (IC50 = 6.1 µg/mL) [46]. This original product combines a γ-
alkylidene butenolide and pyrrolidinone fragments (Figure 3). Its total synthesis has been
achieved [56], but its pharmacological properties are essentially unknown. This product
should be studied further. In contrast, the alkaloid atherospermidine has been found in
diverse plants, including Artabotrys species, such as A. uncinatus and A. crassifolius [57,58].
This compound can contribute to DNA damages in cells [59]. A related series of aporphine
alkaloids also isolated from A. uncinatus has been named artacinatine [60]. The derivative
4,5-dioxoartacinatine has been isolated a few years later [61]. Artacinatine (Figure 2) can
be found in other species, notably from the roots of A. spinosus together with artacinatine
C [62], and from the stems and leaves of A. hongkongensis [63].

Lan and coworkers have identified more than 30 compounds from A. uncinatus,
including (i) the alkaloid asimilobine which has antibacterial properties, (ii) the cate-
cholic berberine alkaloid artavenustine, and (iii) a variety of classical sterol derivatives
such as β-sitosterol and stigmasterol [61]. They also identified the unique derivative
24-methylenelanosta-7,9(11)-diene-3-one (Figure 3) analogous to the lanostane triterpene
suberosol, which has antifungal and antiviral properties [64]. β-Sitosterol and related
antimicrobial lipidic compounds have been identified from the leaves of A. odoratissimus
(synonym) [65,66].

4.2. Terpenoids, Lignans and Flavonoids from Yingzhao

Lignans and flavonoids have been identified as well, including the dibenzylbutyrolac-
tone lignans (iso)americanin, the flavonol glycoside artabotrysides A and B, and diverse
flavonoids (taxifolin) and flavonoid glycosides such as quercetin/kaempferol/luetolin
glycosides [44,67]. Artabotrysides A and B bear the same diglycoside moiety (3-rhamnosyl-
(1→2)-alpha-L-arabinofuranoside) but a distinct flavonol core corresponding to quercetin
for kaempferol, respectively (Figure 3). Among these compounds, taxifolin can be under-
lined as it is a prominent anti-inflammatory and antimicrobial compound [68]. Diverse
antibacterial butyrolactone derivatives have been isolated also, such as tulipalin B and the
compounds called artapetalins A-C with a unique β-methoxy-γ-methylene-substituted,
α,β-unsaturated-γ-butyrolactone ring [69]. These compounds have been identified but
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not characterized from a pharmacological viewpoint. The semiterpenoid (R)-artabotriol
has also been identified, together with artabotrycinol [70]. Artabotriol (Figure 2) is a pre-
cursor to the synthesis of tulipalin B and other bioactive natural products [71]. The two
sesquiterpenoids artaboterpenoids A-B (Figure 2) have been isolated from the roots of the
plants. The isomer (+)-artaboterpenoid B was shown to exhibit marked cytotoxicity toward
several human tumor cell lines, with IC50 values in the range 1.38−8.19 µM [72]. This origi-
nal bisabolene-derived sesquiterpenoid has not been reported in any other plant species.
However, other sesquiterpenes have been identified from A. hexapetalus, including various
yingzhaosu derivatives endowed with antiviral effects. This is the case of the derivative
(8S,12R)-yingzhaosu C which revealed a noticeable antiviral effect against Coxsackie virus
B3 (TC50 = 23.11 µM) [73].

Various volatile compounds have been identified from the flowers of the plant, in-
cluding the abundant sesquiterpene called β-gurjunene (Figure 2) as a major component
contributing to the antioxidant effect of the extract [74]. The related sesquiterpenoid
globulol was also found, together with β-caryophyllene, well-known compounds with in-
secticidal activities (Figure 3). Sesquiterpene hydrocarbons and oxygenated sesquiterpene
are commonly found in Artabotrys species [18,75]. They contribute largely to the antioxi-
dant effects observed with essential oils from the plant [76]. Another interesting bioactive
compound found in A. uncinatus is quebrachitol, a cyclic polyol (or cyclitol) which displays
antidiabetic properties [77]. Other bioactive compounds found in yingzhao could be cited,
such as the antibacterial butyrolactone tulipalin B [70], but in general, these compounds
are trivial and are largely found in other species. In sharp contrast, there is a small group of
unique products of major interest owing to their antimalarial properties: the yingzhaosu
compounds detailed in the following section.

5. Yingzhaosu and Analogues
5.1. Discovery and Synthesis of Yingzhaosu A-D

The first two compounds in the series, yingzhaosu A and B (Figure 1), were isolated
from the roots of the yingzhao plant in 1979 and described in two publications in Chi-
nese [78,79]. The exact configuration of the compounds was not precisely known at that
time. It was not clear if they corresponded to natural products or to artefacts formed in the
root of A. uncinatus (synonym) during storage in the shade for two months, as mentioned
later in a report [80]. They are effectively natural products from the plant. The two other
compounds in the series, yingzhaosu C and D, were reported in 1989 by other Chinese
chemists, 10 years after the discovery of parent and lead product yingzhaosu A [81,82].
Yingzhaosu C is a sesquiterpene peroxide, whereas yingzhaosu D is a sesquiterpenol
(Figure 1). Since the discovery of the compounds, major efforts have been devoted to their
total synthesis, but their pharmacological study has been largely neglected.

The first total synthesis of yingzhaosu A was presented in 1991, starting from the
precursor R-(−)-carvone, a common monoterpene found in many plants [83]. R-(−)-
carvone is known for its hypolipidemic, cytoprotective and sedative effects [84–87]. The
total synthesis and X-ray diffraction analysis of synthetic yingzhaosu A provided key
information about the stereochemistry of the product, indicating the S-configuration of the
C-12 atom [83]. Subsequently, the synthesis of the diastereoisomeric yingzhaosu D was
reported, starting from S-(−)-limonene, providing thus information about the configuration
at positions C-4 and C-8 [88]. Then, the enantioselective synthesis of the four stereoisomers
of yingzhaosu C was proposed [89], as well as epi-yingzhaosu C [90]. Over the years,
significant efforts were deployed to optimize the total synthesis of these compounds and to
propose synthetic analogues. The different synthetic routes have been optimized [91]. For
example, a short and efficient synthesis of yingzhaosu C has been recently reported from
the sesquiterpenoid obtained in one step [92].

A remarkable effort led to the synthesis of yingzhaosu A in only 8 steps starting also
from S-(−)-limonene, with an overall yield of 7.3% [93] (Figure 4). Limonene is particularly
prone to addition of O2 and autoxidation [94,95]. Interestingly, this chemical work offered
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also the synthesis of the C(14)-epimer of yingzhaosu A, a compound characterized as a
potent cytotoxic agent against KB nasopharyngeal cancer cells (ED50 = 36.6 and 0.57 µg/mL
for yingzhaosu A and C(14)epi-yingzhaosu A, respectively). The epimer exhibited a
higher antiplasmodial activity than the parent product (IC50 = 115 and 56 nM, against the
chloroquine-resistant K1 strain of P. falciparum). The epimer was much more potent than the
parent product in vivo against the chloroquine-sensitive P. berghei NY strain (ED50 = 250
and 90 mg/Kg for yingzhaosu A and C(14)epi-yingzhaosu A, respectively). However,
the epimer remained much less active than the reference sodium artesunate in the same
in vivo test (ED50 = 4.2 mg/Kg) [93]. This major work opened the door to the design of
better analogues.
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compound presented a good cell selectivity, being weakly cytotoxic toward FM3A mouse 
mammary carcinoma cells (IC50 = 33 μM) [103]. Other potent compounds have been 
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Figure 4. An efficient synthesis of yingzhaosu A from (S)-limonene and the TMS-protected enol ether
in the presence of oxygen afforded the compound in 8 steps with an overall yield of 7.3% (a). The
intermediate product (trimethylsilyloxy-enone peroxide) was converted into yingzhaosu A and its
C14-epimer, via a chemoselective reduction [93] (b).

The synthesis of cyclic peroxide has attracted considerable interest in the chemistry
field for different reasons (green chemistry, oxidation processes, . . . ) [96,97]. The potent ac-
tivity and medical value of the artemisinin and derivatives raise major interest as well. New
artemisinin drug candidates are regularly proposed [98], and in the same vein, derivatives
of yingzhaosu A and C, both containing a 1,2-dioxane unit, have been presented [99–102].

5.2. Synthesis and Pharmacology of Yingzhaosu Analogues

Various cyclic peroxides structurally close to yingzhaosu A have been described,
such as compound 14b (Figure 5), which was found to be active against P. falciparum
(EC50 = 100 nM) but still less active than artemisinin (EC50 = 7.8 nM). Nevertheless, this
compound presented a good cell selectivity, being weakly cytotoxic toward FM3A mouse
mammary carcinoma cells (IC50 = 33 µM) [103]. Other potent compounds have been
designed, in particular the cyclic peroxide 2c (Figure 5), which was found to remarkably
inhibit the in vitro growth of P. falciparum (EC50 = 13 nM) with an efficacy comparable to
that of artemisinin and a very high cellular selectivity [25,26]. Other related compounds
active in vitro and in vivo were thus obtained, such as compound 25 (Figure 5) more potent
than artemisinin against the parasite in vitro (EC50 = 3 and 10 nM, respectively) [104]. These
chemical studies demonstrated that the endoperoxide scaffold of yingzhaosu A can be used
as a template to design more potent analogues.

Molecules 2022, 27, x FOR PEER REVIEW 10 of 17 
 

 

[104]. These chemical studies demonstrated that the endoperoxide scaffold of yingzhaosu 
A can be used as a template to design more potent analogues. 

One particular compound derived from yingzhaosu A has been developed, the 
synthetic endoperoxide arteflene (Ro 42-1611) with a 1,2-dioxane unit (Figure 5). This 
compound is bioactivated in cells to generate a stable iron(II)-mediated carbon-centered 
radical [105]. Intracellular iron is believed to play a significant role in the bioactivation of 
certain endoperoxides, notably in the case of artemisinin [106]. This bioactivation process, 
occurring in hepatocytes, can lead to acute toxicity in the case of arteflene at high 
concentrations [107]. In the late 1990s, arteflene was considered a promising compound 
to treat malaria [108–110], and clinical trials were initiated [111,112]. However, the results 
were unconvincing, and the drug development stopped. Nevertheless, the arteflene 
program showed that yingzhaosu A can be used as a template to design innovative 
molecules [113]. 

 
Figure 5. Synthetic derivatives of yingzhaosu A, such as arteflene (also known as Ro-42-1611) and 
the synthesized compounds 14b [103], 2c [25] and 25 [104]. 

6. Mechanism of Action of Yingzhaosu A 
6.1. Reactivity in the Presence of Iron(II) 

A better knowledge of the molecular target and pathways involved in the 
antiplasmodial action of yingzhaosu A would help the design of analogues, but thus far, 
no study has been specifically devoted to elucidating the mechanism of action of the 
natural product. However, two important elements point toward the implication of iron 
and iron complexes in the bioactivity process. On the one hand, it is known that 
yingzhaosu A can be activated by an iron(II) compound in a Fenton-type reaction [114]. 
Yingzhaosu A is believed to undergo an iron(II)-induced degradation leading to the 
formation of two alkylating species, an unsaturated ketone and a cyclohexyl radical, as 
represented in Figure 6. Evidence for the generation of a cyclohexyl radical has been 
provided by the use of electron spin resonance (ESR). The same process can occur with 
arteflene in the presence of oxygen and iron chloride [114,115]. The reactive species thus 
generated would be responsible for the antiparasitic effects. 

 

Figure 5. Synthetic derivatives of yingzhaosu A, such as arteflene (also known as Ro-42-1611) and
the synthesized compounds 14b [103], 2c [25] and 25 [104].



Molecules 2022, 27, 6192 10 of 17

One particular compound derived from yingzhaosu A has been developed, the syn-
thetic endoperoxide arteflene (Ro 42-1611) with a 1,2-dioxane unit (Figure 5). This com-
pound is bioactivated in cells to generate a stable iron(II)-mediated carbon-centered rad-
ical [105]. Intracellular iron is believed to play a significant role in the bioactivation of
certain endoperoxides, notably in the case of artemisinin [106]. This bioactivation process,
occurring in hepatocytes, can lead to acute toxicity in the case of arteflene at high concen-
trations [107]. In the late 1990s, arteflene was considered a promising compound to treat
malaria [108–110], and clinical trials were initiated [111,112]. However, the results were
unconvincing, and the drug development stopped. Nevertheless, the arteflene program
showed that yingzhaosu A can be used as a template to design innovative molecules [113].

6. Mechanism of Action of Yingzhaosu A
6.1. Reactivity in the Presence of Iron(II)

A better knowledge of the molecular target and pathways involved in the antiplas-
modial action of yingzhaosu A would help the design of analogues, but thus far, no study
has been specifically devoted to elucidating the mechanism of action of the natural product.
However, two important elements point toward the implication of iron and iron complexes
in the bioactivity process. On the one hand, it is known that yingzhaosu A can be activated
by an iron(II) compound in a Fenton-type reaction [114]. Yingzhaosu A is believed to
undergo an iron(II)-induced degradation leading to the formation of two alkylating species,
an unsaturated ketone and a cyclohexyl radical, as represented in Figure 6. Evidence
for the generation of a cyclohexyl radical has been provided by the use of electron spin
resonance (ESR). The same process can occur with arteflene in the presence of oxygen and
iron chloride [114,115]. The reactive species thus generated would be responsible for the
antiparasitic effects.
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from [114,115]).

6.2. Reaction with Iron-Complexed Heme

On the other hand, a recent study has pointed out the rearrangement and cleavage of
yingzhaosu A in the presence of iron-bound heme. The authors built a heme-activatable
probe based on the structure of yingzhaosu A to identify novel inhibitors of P. falciparum.
They showed that the compound was attacked by heme to break the endoperoxide bond,
thus generating sterically hindered tertiary oxygen-centered radicals. The yingzhaosu A
molecule was broken into two parts after a rearrangement to remove the side chain, as
represented in Figure 7 [116]. A similar endoperoxide reactivity-based FRET probe (with
a bioinspired endoperoxide linker between donor and acceptor fluorophores) had been
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previously reported using an ozonide scaffold based on the architecture of artemisinin [117].
The yingzhaosu A-based probe is useful for identifying new bioactive compounds, but it
is also informative on the reactivity of yingzhaosu A itself and its capacity to react with
heme [116]. It will be interesting to determine whether the natural product can react
similarly in cells. It is most likely that, as for artemisinin, the activation of yingzhaosu A
requires the cleavage of the endoperoxide bridge in the presence of an iron source.
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The role of the iron complex in the mechanism of action of endoperoxide drugs has
been largely debated [118,119]. The bioreductive activation of endoperoxides of iron com-
plexes, notably heme, leads to the generation of a radical species and then to alkylation
of key proteins vital for the parasite. Moreover, upon alkylation, heme endoperoxide
drugs can cause an imbalance in iron homeostasis, mitochondrial dysfunctions and toxic
effects contributing to the cytocidal activity [120,121]. The heme molecule is considered
a possible target (but probably not the sole target) of artemisinin-derived endoperox-
ides and analogous compounds [122]. Nevertheless, the role of heme is complex, and
a recent study revealed that too much heme is not good for the antimalarial action of
artemisinins [123]. The mechanism of action of artemisinin is pluri-factorial. It implicates a
carbon radical and heme, but also interaction and interference with plasmodial proteins
such as the sarcoplasmic endoplasmic calcium ATPase (SERCA), as well as an induced
immunoregulation [124–126]. A similar complexity can be anticipated with yingzhaosu A.

7. Discussion and Conclusions

The medicinal plant Artabotrys hexapetalus (L.f.) Bhandari, or yingzhao in Chinese,
has been known for decades and is extensively used in traditional medicine in Asia for
the treatment of malaria and associated fevers. The plant is well known, but the various
synonyms can result in confusion and complexity. The accepted name A. hexapetalus should
be used primarily, not the synonyms, such as. A. uncinatus and A. odoratissimus in scientific
communications. The plant has a large medicinal potential, well recognized in Asia, in
particular for the treatment of parasitic diseases [127].

The chemical diversity of bioactive natural products identified from the plant is large.
It is a rich source of secondary metabolites with diverse chemical classes (alkaloids, ter-
penoids, flavonoids, glycosides, . . . ), as is frequently the case with medicinal species. The
presence of many aporphine alkaloids is remarkable, notably in the oxazoloaporphine
series (e.g., artabonatine). These products could be useful to combat various metabolic
diseases, such as type 2 diabetes mellitus, endothelial dysfunction, hypertension and car-
diovascular diseases [128]. There are also interesting flavones (artabotrysides A-B) and
lactones (artapetalins A-C), not found or rarely in other plants, which would deserve
further studies. However, with no doubt, the most interesting natural products isolated
from the plant are the two endoperoxide-containing products yingzhaosu A and C and
their derivatives yingzhaosu B and D. Immediately after their discovery, a major interest in
these original compounds have sparkled amongst chemists towards the synthesis of these
compounds and analogues. Important chemistry efforts have been devoted to optimizing
total syntheses and to determine the exact stereoisomeric forms of the products. Ana-
logues have been proposed in the early 2000s, leading to promising compounds in some
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cases [25,93,102]. However, the interest moved toward other endoperoxide-containing
products analogous to artemisinin, probably because of the higher potency and clinical
success of this exceptional molecule. The yingzhaosu compounds have been neglected over
the past ten years. Their mechanism of action is not well defined, although it is likely as
complex as that of artemisinin. It is time to breathe a new life into the yingzhaosu series
with the design of new analogues and the application of modern technologies to better
comprehend their mechanisms of action via network pharmacology studies and other
multi-omic analyses (Figure 8).

Molecules 2022, 27, x FOR PEER REVIEW 12 of 17 
 

 

The chemical diversity of bioactive natural products identified from the plant is large. 
It is a rich source of secondary metabolites with diverse chemical classes (alkaloids, 
terpenoids, flavonoids, glycosides, …), as is frequently the case with medicinal species. 
The presence of many aporphine alkaloids is remarkable, notably in the oxazoloaporphine 
series (e.g., artabonatine). These products could be useful to combat various metabolic 
diseases, such as type 2 diabetes mellitus, endothelial dysfunction, hypertension and 
cardiovascular diseases [128]. There are also interesting flavones (artabotrysides A-B) and 
lactones (artapetalins A-C), not found or rarely in other plants, which would deserve 
further studies. However, with no doubt, the most interesting natural products isolated 
from the plant are the two endoperoxide-containing products yingzhaosu A and C and 
their derivatives yingzhaosu B and D. Immediately after their discovery, a major interest 
in these original compounds have sparkled amongst chemists towards the synthesis of 
these compounds and analogues. Important chemistry efforts have been devoted to 
optimizing total syntheses and to determine the exact stereoisomeric forms of the 
products. Analogues have been proposed in the early 2000s, leading to promising 
compounds in some cases [25,93,102]. However, the interest moved toward other 
endoperoxide-containing products analogous to artemisinin, probably because of the 
higher potency and clinical success of this exceptional molecule. The yingzhaosu 
compounds have been neglected over the past ten years. Their mechanism of action is not 
well defined, although it is likely as complex as that of artemisinin. It is time to breathe a 
new life into the yingzhaosu series with the design of new analogues and the application 
of modern technologies to better comprehend their mechanisms of action via network 
pharmacology studies and other multi-omic analyses (Figure 8). 

 
Figure 8. A schematic illustration of the pharmacological potential of yingzhaosu A, isolated from 
the plan yingzhao, for the treatment of parasitic diseases, viral diseases and cancer. 

The high potency of artemisinin and the recognized clinical efficacy of artemisinin 
combination therapy, which is recommended by the World Health Organization, 
contribute to promoting the design and development of novel compounds with a cyclic 
endoperoxide core. A huge diversity of compounds has been synthesized, including 
second and third generations of artemisinin derivatives (monomer, dimer, trimer), 
trioxolanes, tri- and tetra-oxanes, and a variety of non-artemisinin-derived synthetic 
endoperoxide-containing molecules [129–133]. Novel artemisinin derivatives are 
regularly proposed [134]. A large number of plant-derived endoperoxides, more than 200, 
have also been identified and studied, at least from the phytochemical aspect [135]. 
Among these efforts, there are opportunities to promote yingzhao and yingzhaosu 
compounds. The plant is readily available and even cultivated as an ornamental in the 
tropics. The products are affordable, with well-defined synthetic approaches. There is no 
reason not to promote the design of yingzhaosu A/C analogues. These endoperoxide 
compounds are important to combat parasitic diseases but also other diseases, such as 

Figure 8. A schematic illustration of the pharmacological potential of yingzhaosu A, isolated from
the plan yingzhao, for the treatment of parasitic diseases, viral diseases and cancer.

The high potency of artemisinin and the recognized clinical efficacy of artemisinin
combination therapy, which is recommended by the World Health Organization, contribute
to promoting the design and development of novel compounds with a cyclic endoperoxide
core. A huge diversity of compounds has been synthesized, including second and third
generations of artemisinin derivatives (monomer, dimer, trimer), trioxolanes, tri- and
tetra-oxanes, and a variety of non-artemisinin-derived synthetic endoperoxide-containing
molecules [129–133]. Novel artemisinin derivatives are regularly proposed [134]. A large
number of plant-derived endoperoxides, more than 200, have also been identified and
studied, at least from the phytochemical aspect [135]. Among these efforts, there are
opportunities to promote yingzhao and yingzhaosu compounds. The plant is readily
available and even cultivated as an ornamental in the tropics. The products are affordable,
with well-defined synthetic approaches. There is no reason not to promote the design of
yingzhaosu A/C analogues. These endoperoxide compounds are important to combat
parasitic diseases but also other diseases, such as respiratory diseases and cancers, as is
the case for artemisinin and artesunate [9,136]. Hopefully, this review will contribute to
restoring the prestige of yingzhaosu A and its analogues, whose compounds have been
neglected for too long by the pharmacology community.
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