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Abstract: Fruit rot caused by phytopathogenic fungi is one of the major diseases affecting water-
melons (Citrullus lanatus) around the world, which can result in unmarketable fruits and significant
economic losses. Fruit rot was observed on watermelons throughout the postharvest storage periods
in Phayao Province, northern Thailand in 2022. For the present study, a total of ten fungal isolates
were isolated from the rot lesions of watermelons. All obtained fungal isolates were then character-
ized in terms of their pathogenicity. The results indicated that only four fungal isolates caused rot
disease with similar symptoms during the postharvest storage period. Based on their morphological
characteristics, these four fungal isolates were identified as belonging to the genus Fusarium. Using
multi-gene phylogenetic analyses with a combination of the translation elongation factor 1-alpha
(tef-1), calmodulin (cam), and RNA polymerase second largest subunit (rpb2) genes, the fungal isolates
were subsequently identified as Fusarium compactum and F. paranaense. Taken together, the results
of this study indicate that F. compactum and F. paranaense cause fruit rot disease in watermelons. To
the best of our knowledge, this is the first study to report F. compactum and F. paranaense as novel
pathogens of watermelon fruit rot both in Thailand and elsewhere in the world.

Keywords: fruit rot; fungal disease; Fusarium; pathogen identification; watermelon disease

1. Introduction

Watermelon (Citrullus lanatus) is one of the most significant economic fruits within
the family Cucurbitaceae. It has successfully been planted and farmed in subtropical and
tropical regions throughout the world [1–3]. In 2022, the Food and Agriculture Organiza-
tion Statistical Database (FAOSTAT) [4] demonstrated that China was the world’s largest
producer of watermelons producing 60.25 million tonnes (with global production recorded
at 101.62 million tonnes), followed by Turkey, India, Iran, and Algeria. This increasing
trend in watermelon production is expected to continue into the future. In Southeast
Asia, watermelon production in the area is led by Vietnam followed by Indonesia, the Lao
People’s Democratic Republic, Thailand, and the Philippines [4]. Many scientific studies
have reported that watermelon fruits are a good source of nutrition for humans. They
contain a variety of important nutrients, including amino acids, carbohydrates, fiber, min-
erals, organic acids, proteins, sugars, and vitamins [5–7]. Furthermore, watermelon fruits
contain several beneficial chemical compounds, including alkaloids, flavonoids, glycosides,
phenols, tannins, terpenoids, saponins, and steroids, which possess advantageous pharma-
cological properties [8,9]. These compounds can be utilized in therapeutic approaches due
to their antimicrobial, anticancer, antiulcer, antioxidant, anti-inflammatory, antihyperten-
sive, analgesic, and antigiardial properties, which allow them to function against prosthetic
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hyperplasia and serve as atherosclerosis, gastroprotective, hepatoprotective, and laxative
agents [8–11].

In Thailand, watermelon is currently an economical crop, and the area of cultivation
for watermelons is continually increasing [12]. The majority of watermelon production
in the northern region is located in the Provinces of Chiang Mai, Phayao, Kamphaeng
Phet, Phichit, Sukhothai, and Phitsanulok [13]. Watermelon is cultivated and harvested
twice a year in Thailand (from January to May and from mid-October to December).
The damage to watermelons caused by fruit rot diseases can result in significant losses
for farms in terms of productivity and quality [14]. Watermelons can be affected by a
variety of diseases caused by bacteria, fungi, and viruses throughout the growing season,
harvest procedure, and postharvest storage period [13,15,16]. Fruit rot disease is known
to be the most common and widespread disease in watermelon fruits during the pre
and postharvest periods (e.g., storage and transportation) [17–19]. This disease can be
caused by a number of fungal pathogens within the genera Aspergillus, Alternaria, Fusarium,
Curvularia, Macrophomina, Phytophthora, Lasiodiplodia, Sclerotium, and Pythium [13,20–25].
The symptoms are characterized by the presence of spots, water-soaked lesions, and often
depressions. The lesions enlarge gradually, eventually covering most of the entire fruit.
Then, the insides of the infected fruit are completely decayed [19,26]. Due to the formation
of water-soaked lesions on the fruit surface, rot disease reduces the quality of the fruit and
causes them to appear unattractive to consumers, which significantly reduces their market
value [27].

Several synthetic fungicides are commonly used to prevent disease infections in water-
melons in order to safeguard crop yield and quality, as they are typically affordable, easy to
apply, and effective [28,29]; for example, copper hydroxide, cyazofamid, dimethomorph,
ethaboxam, fluopicolide, mandipropamid, mefenoaxam, oxathiapiprolin, phthalimide, and
potassium phosphite have been used to control fungi causing fruit rot disease in watermel-
ons by spraying [19,27,30]. However, it has been widely recognized that such synthetic
fungicides are hazardous to the environment, the health of farmers and consumers, and
may contribute to the development of fungicide-resistant strains [31,32].

The global demand for watermelon fruit continues to increase in accordance with
the rapid growth of the world’s population [6] resulting in a significant increase in the
cultivation area of watermelons. However, the practice of growing crops in unsuitable envi-
ronments has also increased the prevalence and severity of certain fungal diseases [33,34].
In the context of this study, fruit rot disease was observed in watermelons during the two
postharvest storage period phases in Phayao province, northern Thailand in the year 2022
(February to May and mid-October to December) with a percentage of affected fruits that
ranges between 15% and 20%. Consequently, a significant amount of that fruit crop became
unmarketable. Consequently, the aim of this investigation was to isolate the causative fungi
responsible for this disease. The obtained fungi were characterized and identified using
a combination of morphological features and molecular data. Pathogenicity tests were
performed, and Koch’s postulates were used to evaluate the asymptomatic watermelon
fruits with isolated fungi.

2. Results
2.1. Disease Symptoms

Ten samples of watermelon with fruit rot were collected from the markets in Phayao
Province, northern Thailand for each time period. The primary symptoms of disease
during the postharvest storage period appeared as green bruised spots on the watermelon
fruits (Figure 1a). These spots then grew into dark green bruised spots surrounded by
white mycelia (Figure 1b,c). One week after collection, the infected fruits exhibited mild
to moderate (22–40% of disease infection on fruit areas) infection by rot symptoms. The
lesions on the watermelon fruit gradually expand and combine to encompass the whole
fruit, providing the infected fruit with a bruised, decayed, and broken appearance. The
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internal area of decomposition seemed obviously degraded and the surrounding tissues
were soaked with water (Figure 1d,e).
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Figure 1. Naturally occurring symptoms of fruit rot in watermelon (a–c). A cross section of
the infected watermelon fruits shows the internal decaying areas (d,e). Scale bars: (a) = 30 mm;
(b,c) = 20 mm; (d,e) = 15 mm.

2.2. Fungal Isolation

Ten fungal isolates (FPY1 to FPY10) were isolated from the watermelons that were
collected and which exhibited the typical rot symptoms. Subsequently, all fungal isolates
were inoculated into asymptomatic commercial watermelons. The conidia collected from
two-week-old cultures on potato dextrose agar (PDA) of each fungal isolate were used as
the inoculum. A conidial suspension of each fungal isolate was individually dropped onto
the wounded fruits at the equator of each fruit. After three days of conidial inoculation,
only four fungal isolates—namely, FPY1, FPY4, FPY7, and FPY9—led to the development
of rot lesions. The disease symptoms of these four fungal isolates are provided below.
All four fungal causal agents—namely, FPY1, FPY7, FPY4, and FPY9—were stored in
20% glycerol and submitted to the culture collection of the Sustainable Development of
Biological Resources (SDBR-CMU), Faculty of Science, Chiang Mai University, Thailand,
with the numbers SDBR-CMU461, SDBR-CMU462, SDBR-CMU463, and SDBR-CMU464,
respectively. These four fungal isolates were selected for further species identification.

2.3. Morphological Observations

Four fungal isolates (SDBR-CMU461, SDBR-CMU462, SDBR-CMU463, and SDBR-
CMU464) were selected and used in this experiment. Fungal colonies of each isolate were
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observed on oatmeal agar (OA), PDA, and synthetic nutrient-poor agar (SNA) at 25 ◦C for
one week. According to the fungal colony characteristics, the isolate SDBR-CMU461 was
related to the isolate SDBR-CMU462, whereas the isolate SDBR-CMU463 was related to
the isolate SDBR-CMU464. All fungal isolates produced both macro- and micro-conidia, as
well as chlamydospores. Based on these morphological features, all the isolated fungi were
initially determined to be members of the genus Fusarium [35–38]. The identification of the
fungi was subsequently confirmed by multi-gene phylogenetic analyses.

2.4. Phylogenetic Analysis

The sequences derived from the four fungal isolates obtained in this investigation
were submitted to the GenBank database (Tables 1 and 2). Based on the BLAST results,
two fungal isolates—namely, SDBR-CMU461 and SDBR-CMU462—belonged to the F.
incarnatum-equiseti species complex, whereas the fungal isolates SDBR-CMU463 and SDBR-
CMU464 belonged to the F. solani species complex. Fungal identification was further
confirmed through subsequent multi-gene phylogenetic analyses. Two phylogenetic trees
(for F. incarnatum-equiseti and F. solani species complexes) were constructed in this study.
The results of both phylogenetic analyses revealed that the topological results of both the
maximum likelihood (ML) and Bayesian inference (BI) analyses employed in each analysis
were similar (data not shown). Consequently, the phylogenetic trees generated by the ML
analysis are presented.

Table 1. Details of the Fusarium incarnatum-equiseti species complex sequences used in the molecular
phylogenetic analysis.

Fungal Taxa Strain/Isolate
GenBank Accession Number

Reference
tef-1 cam rpb2

Fusarium aberrans CBS 131385 T MN170445 MN170311 MN170378 [37]

Fusarium arcuatisporum LC12147 T MK289584 MK289697 MK289739 [35]

Fusarium arcuatisporum LC11639 MK289586 MK289658 MK289736 [35]

Fusarium brevicaudatum NRRL 43638 T GQ505665 GQ505576 GQ505843 [39]

Fusarium bubalinum CBS 161.25 T MN170448 MN170314 MN170381 [37]

Fusarium caatingaense URM 6779 T LS398466 − LS398495 [40]

Fusarium cateniforme CBS 150.25 T MN170451 MN170317 MN170384 [37]

Fusarium citrullicola SDBR-CMU422 T OP020920 OP020924 OP020928 [13]

Fusarium clavum CBS 126202 T MN170456 MN170322 MN170389 [37]

Fusarium coffeatum CBS 635.76 T MN120755 MN120696 MN120736 [41]

Fusarium coffeatum CBS 430.81 MN120756 MN120697 MN120737 [41]

Fusarium compactum CBS 186.31 ET GQ505648 GQ505560 GQ505826 [39]

Fusarium compactum CBS 185.31 GQ505646 GQ505558 GQ505824 [39]

Fusarium compactum SDBR-CMU461 OQ108468 OQ108472 OQ108474 This study

Fusarium compactum SDBR-CMU462 OQ108469 OQ108473 OQ108475 This study

Fusarium duofalcatisporum CBS 384.94 T GQ505652 GQ505564 GQ505830 [39]

Fusarium duofalcatisporum CBS 264.50 GQ505651 GQ505563 GQ505829 [39]

Fusarium equiseti CBS 307.94 NT GQ505599 GQ505511 GQ505777 [39]

Fusarium flagelliforme CBS 162.57 T GQ505645 GQ505557 GQ505823 [39]

Fusarium flagelliforme CBS 259.54 GQ505650 GQ505562 GQ505828 [39]

Fusarium guilinense LC12160 T MK289594 MK289652 MK289747 [35]

Fusarium hainanense LC11638 T MK289581 MK289657 MK289735 [35]
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Table 1. Cont.

Fungal Taxa Strain/Isolate
GenBank Accession Number

Reference
tef-1 cam rpb2

Fusarium incarnatum CBS 132.73 NT MN170476 MN170342 MN170409 [37]

Fusarium incarnatum NRRL 32866 GQ505615 GQ505527 GQ505793 [39]

Fusarium ipomoeae LC12165 T MK289599 MK289704 MK289752 [35]

Fusarium ipomoeae LC12166 MK289600 MK289706 MK289753 [35]

Fusarium irregulare LC7188 T MK289629 MK289680 MK289783 [35]

Fusarium lacertarum NRRL 20423 T GQ505593 GQ505505 GQ505771 [39]

Fusarium lacertarum LC7942 MK289643 MK289696 MK289797 [35]

Fusarium longicaudatum CBS 123.73 T MN170481 MN170347 MN170414 [37]

Fusarium luffae LC12167 T MK289601 MK289698 MK289754 [35]

Fusarium melonis SDBR-CMU424 T OP020922 OP020926 OP020930 [13]

Fusarium multiceps CBS 130386 T GQ505666 GQ505577 GQ505844 [39]

Fusarium nanum LC12168 T MK289602 MK289651 MK289755 [35]

Fusarium neoscirpi CBS 610.95 T GQ505601 GQ505513 GQ505779 [39]

Fusarium pernambucanum URM 7559 T LS398489 − LS398519 [40]

Fusarium persicinum CBS 479.83 T MN170495 MN170361 MN170428 [37]

Fusarium scirpi CBS 447.84 NT GQ505654 GQ505566 GQ505832 [39]

Fusarium scirpi CBS 448.84 GQ505592 GQ505504 GQ505770 [39]

Fusarium serpentinum CBS 119880 T MN170499 MN170365 MN170432 [37]

Fusarium sulawesiense InaCC F940 T LS479443 LS479422 LS479855 [42]

Fusarium tanahbumbuense InaCC F965 T LS479448 LS479432 LS479863 [42]

Fusarium toxicum CBS 406.86 T MN170508 MN170374 MN170441 [37]

Fusarium camptoceras CBS 193.65 ET MN170450 MN170316 MN170383 [37]

Fusarium neosemitectum CBS 189.60 T MN170489 MN170355 MN170422 [37]

Ex-type, epi-type, and neotype species are indicated by the superscript letters as “T”, “ET,” and “NT,” respectively.
The symbol “−“ indicates the absence of sequencing information in GenBank.

Table 2. Details of the Fusarium solani species complex sequences used in the molecular phylogenetic
analysis.

Fungal Taxa Strain/Isolate
GenBank Accession Number

Reference
tef-1 rpb2

Fusarium azukicola NRRL 54364 T JQ670137 KJ511287 [43]

Fusarium bataticola NRRL 22402 T AF178344 FJ240381 [44]

Fusarium bataticola NRRL 22400 AF178343 EU329509 [44]

Fusarium bostrycoides CBS 144.25 NT LR583597 LR583818 [45]

Fusarium brasiliense NRRL 31757 T EF408409 EU329565 [44]

Fusarium breve CBS 144387 T LR583601 LR583822 [45]

Fusarium cuneirostrum NRRL 31157 T EF408414 FJ240389 [44]

Fusarium diminutum CBS 144390 T LR583607 LR583828 [45]

Fusarium diminutum LC13825 MW620164 MW474689 [36]

Fusarium falciforme CBS 475.67 T LT906669 LT960558 [45]
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Table 2. Cont.

Fungal Taxa Strain/Isolate
GenBank Accession Number

Reference
tef-1 rpb2

Fusarium falciforme NRRL 32778 DQ247088 EU329616 [44,46]

Fusarium helgardnirenbergiae NRRL 22387 T AF178339 EU329505 [44]

Fusarium hypothenemi NRRL 52782 T JF740850 JF741176 [47]

Fusarium keratoplasticum NRRL 22661 T JN235712 JN235897 [48]

Fusarium keratoplasticum NRRL 46437 GU170623 GU170588 [49]

Fusarium liriodendri NRRL 22389 T AF178340 EU329506 [44]

Fusarium metavorans CBS 135789 T LR583627 LR583849 [45]

Fusarium metavorans CBS 143219 LR583629 LR583851 [45]

Fusarium mori NRRL 22230 T AF178358 EU329499 [44]

Fusarium mori NRRL 22157 AF178359 EU329493 [44]

Fusarium paraeumartii NRRL 13997 T DQ247549 LR583855 [45,46]

Fusarium paraeumartii LC13835 MW620180 MW474705 [36]

Fusarium paranaense CML 1830 T KF597797 KF680011 [50]

Fusarium paranaense CML 1993 KF597800 KF680004 [50]

Fusarium paranaense SDBR-CMU463 OQ108470 OQ108476 This study

Fusarium paranaense SDBR-CMU464 OQ108471 OQ108477 This study

Fusarium parceramosum CBS 115695 T JX435149 JX435249 [51]

Fusarium perseae CBS 144142 T LT991902 LT991909 [45]

Fusarium pseudoradicicola NRRL 25137 T JF740757 JF741084 [47]

Fusarium pseudoradicicola NRRL 25138 JF740758 JF741085 [47]

Fusarium quercinum NRRL 22652 T DQ247634 LR583869 [38,46]

Fusarium regulare CBS 230.34 T LR583643 MW834029 [38,45]

Fusarium samuelsii CBS 114067 T LR583644 LR583874 [45]

Fusarium silvicola CBS 123846 T LR583646 LR583876 [45]

Fusarium solani NRRL 66304 ET KT313611 KT313623 [52]

Fusarium solani NRRL 43474 EF452945 EF469984 [53]

Fusarium vanettenii NRRL 45880 ET FJ240352 EU329640 [44]

Fusarium waltergamsii NRRL 32323 T DQ246951 EU329576 [44,46]

Fusarium yamamotoi NRRL 22277 ET AF178336 FJ240380 [44]

Fusarium decemcellulare LC13606 MW580428 MW474374 [36]

Fusarium setosum CBS 635.92 ET MW834294 JX171651 [38,54]

Ex-type, epi-type, and neotype species are indicated by the superscript letters as “T”, “ET”, and “NT”, respectively.
The symbol “−” indicates the absence of sequencing information in GenBank.

For phylogenetic analysis of the F. incarnatum-equiseti species complex, the combined
tef-1, cam, and rpb2 sequence data set was used, according to the identification techniques
used in previous studies [35–38]. The aligned data set contained 2181 bp including gaps
(tef-1: 1–704, cam: 705–1288, and 127 rpb2: 1289–2181) with 45 taxa. The outgroup consisted
of F. camptoceras and F. neosemitectum from the F. camptoceras species complex (FCAMSC).
A phylogenetic tree is represented in Figure 2. Our phylogenetic tree was constructed
with the aim of having similar outcomes to previous phylogenetic studies [13,35–38]. The
phylogenetic tree assigned the two fungal isolates (SDBR-CMU461 and SDBR-CMU462)
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assessed in this investigation within the same clade of F. compactum, which consisted of the
type species CBS 186.31 in the F. equiseti clade. This clade established a monophyletic clade
with high statistical support (100% BS and 1.0 PP). Fusarium compactum formed a species
that was phylogenetically related to F. lacertarum. Therefore, these two fungal isolates
(SDBR-CMU461 and SDBR-CMU462) were identified as F. compactum.
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The combined tef-1 and rpb2 sequence data set was used for phylogenetic analysis of
the F. solani species complex, following the identification techniques employed in earlier
studies [50,55]. This phylogenetic analysis included 41 taxa and the aligned data set
contained 1415 bp including gaps (tef-1: 1–603 and rpb2: 604–1415). The outgroup consisted
of F. decemcellulare and F. setosum from the F. decemcellulare species complex (FDSC). A
phylogenetic tree of the F. solani species complex is shown in Figure 3. Our phylogenetic
tree was constructed with the aim of being similar to those in previous phylogenetic
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studies [50,55,56]. The phylogenetic tree successfully assigned the two fungal isolates
(SDBR-CMU463 and SDBR-CMU464) assessed in this investigation within the same clade
of F. paranaense, which consisted of the type species CML 1830. This clade established a
monophyletic clade with high statistical support (99% BS and 1.0 PP). Fusarium paranaense
formed a sister taxon to F. falciforme with high statistical support (97% BS and 1.0 PP). Thus,
both fungal isolates (SDBR-CMU463 and SDBR-CMU464) were recognized as F. paranaense.
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values greater than or equal to 75% and 0.95, respectively, are shown at each branch. The scale bar
displays the expected number of nucleotide substitutions per site. The sequences of the fungal species
derived in this study are shown in red. Type species are shown in bold.

2.5. Morphological Descriptions
2.5.1. Fusarium compactum (Wollenw.) Raillo, Fungi of the Genus Fusarium: 180 (1950)
(Figure 4)

Colonies on OA, PDA, and SNA grew to >85.0, 25.0–3.25, and 32.0–36.0 mm in di-
ameter, respectively, at 25 ◦C in the dark for one week. Colonies on PDA were yellowish
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white in the center, white at the margins, and flat with undulated edges that were pale
yellow. Colonies on OA were greyish yellow in the center, white at the margins, had dense
aerial mycelia, and were flat with entire edges that were greyish orange. Colonies on SNA
were white and umbilicated with entire edges that were white. Pigment and odor were not
present. Sporodochia were not found in any agar media. Conidiophores were formed on
aerial mycelium, of a size of 12.5–100 × 2.8–4.2 µm, which appeared as branched, and bore
terminal or lateral phialides. Phialides were monophialidic, subulate to sub-cylindrical,
hyaline, smooth and thin-walled, and of a size of 13.1–31.6 × 2.6–4.3 µm. Chlamydospores
were abundant, globose, ellipsoid, intercalarily or terminal, hyaline to pale yellow with
age, smooth-walled, solitary, in chains or clusters, and of a size of 6.6–17.4 × 6.1–16.7 µm
(av. ± SD: 11.1 ± 2.5 × 11.0 ± 2.4 µm). Microconidia were abundant, hyaline, oval to ellip-
soidal, straight to slightly curved, aseptate, and of a size of 5.3–13.5 × 2.1–3.7 µm (av. ± SD:
9.6 ± 1.9 × 2.8 ± 0.3 µm). Macroconidia hyaline were thick-walled, strongly curved, had
1–7-septa, and were of a size of 13.3–72.5 × 3.3–6.4 µm (av. ± SD: 33.0 ± 13.1 × 4.6 ± 0.6 µm).
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Figure 4. Fusarium compactum (SDBR-CMU461). Colony on potato dextrose agar (a), oatmeal agar (b)
and synthetic nutrient-poor agar (c) (left, surface view and right, reverse view) after incubation at 25 ◦C
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macroconidia (h). Scale bars: (a–c) = 10 mm; (d–h) = 10 µm.

Note: Morphologically, the two isolates of F. compactum obtained in this study could
produce microconidia, which has not been recorded in previous studies [57,58]. However,
their other morphological characteristics agreed well with the previous descriptions of F.
compactum [57,58]. Phylogenetically, F. compactum forms a species that is phylogenetically
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related to F. lacertarum. However, F. lacertarum may be distinguished from F. compactum by
its shorter conidiophores (up to 7.0 µm long) and phialides (2.5–4.0 × 1.0–1.5 µm) [59].

2.5.2. Fusarium paranaense Costa, Matos & Pfenning, Fungal Biology 120: 55 (2015) (Figure 5)

Colonies on OA, PDA, and SNA grew to 80–83, 75.0–78.0, and 77.0–80.5 mm in
diameter, respectively, at 25 ◦C in the dark for one week. Colonies on PDA were orange–
white in the center, white at the margins, and flat with entire edges that were light yellow.
Colonies on OA were brownish orange in the center and white at the margins with aerial
mycelia that were dense and flat with entire edges that were brownish orange. Colonies
on SNA were white and raised with entire edges that were white. Pigment and odor
were not present. Sporodochia were not found in any agar media. Conidiophores were
formed on aerial mycelium, of a size of 12–105 × 2.5–4.1 µm, were verticillately branched,
and bore terminal or lateral phialides. Phialides were monophialidic, subulate to sub-
cylindrical, hyaline, smooth and thin-walled, and of a size of 10.8–38.9 × 2.3–5.4 µm.
Chlamydospores were abundant, hyaline, globose, intercalarily or terminal, ellipsoid,
smooth to rough-walled, solitary, or were present in pairs or formed chains, and of a size of
6.2–11.3 × 6.2–11.6 µm (av. ± SD: 9.2 ± 1.4 × 8.9 ± 1.3 µm). Microconidia were abundant,
hyaline, thin-walled, elongated to ellipsoidal, straight to slightly curved, aseptate, and
of a size of 5.3–20.1 × 2.3–5.2 µm (av. ± SD: 11.4 ± 3.4 × 4.0 ± 0.7 µm). Macroconidia
were hyaline, cylindrical to fusiform, 1–4-septate, and of a size of 16.0–40.6 × 3.5–5.4 µm
(av. ± SD: 29.1 ± 6.5 × 4.7 ± 0.4 µm).
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Note: The morphological characteristics of isolates SDBR-CMU463 and SDBR-CMU464
corresponded to descriptions of F. paranaense [50]. Phylogenetically, F. paranaense forms
a sister taxon to F. falciforme; however, the growth of F. paranaense appeared to be slower
than that of F. falciforme (85.0 mm) on PDA for one week at 25 ◦C [18]. In addition,
F. paranaense produces elongated to ellipsoidal microconidia, whereas F. falciforme produces
oval microconidia [18].

2.6. Pathogenicity Test

The disease symptoms of F. compactum (SDBR-CMU461 and SDBR-CMU462) and F.
paranaense (SDBR-CMU463 and SDBR-CMU464) are shown in Figures 6 and 7, respectively.
Primary symptoms appeared on the wounded fruits as small light-brown to brown spots
and developed into green bruises. After that, these spots developed into dark green bruised
spots that were covered with a dense white mycelia for F. compactum (Figure 6b,c) and a
thin white mycelia for F. paranaense (Figure 7b,c) surrounding each lesion. The inoculated
fruits displayed moderate infections, as characterized by rot symptoms after one week
of incubation. A cross section of a mature lesion indicated that the interior lesion area
seemed to be decomposing and was encircled by water-soaked tissue (Figures 6e,f and 7e,f).
Following a 14-day inoculation period, the lesions covered the entire fruit. The fruits
eventually became extremely rotten and squashy. The symptoms of the disease were
consistent with those observed during the postharvest storage period. Nevertheless, no
disease symptoms were observed on wounded fruits treated with sterile distilled water
(Figures 6a,d and 7a,d). Each fungal isolate was consistently re-isolated from all inoculated
tissues and re-identified using both morphological methods of characterization in order to
fulfill Koch’s postulates.
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fruits after seven days of inoculation. Control fruit inoculated with sterile water (a,d); and disease
symptoms after inoculation with isolate SDBR-CMU461 (b,e) and isolate SDBR-CMU462 (c,f). Scale
bars = 20 mm.
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3. Discussion

Fusarium is considered to be one of the most important genera of plant pathogens, as
it is known to cause serious diseases in several economic plants—including watermelons—
grown around the world [16,60,61]. Traditional approaches to the characterization and
identification of the Fusarium species are mainly based on morphological characteris-
tics [38,58,62]. Due to the wide variety of morphological differences, it is impossible to
distinguish between the closely related Fusarium species based on morphological charac-
teristics alone [38,58]. Therefore, molecular methods are essential to concretely identify
Fusarium at the species level. An effective method for identifying Fusarium species has
been designed using protein-coding (β-tubulin, cam, tef-1, and RNA polymerase largest sub-
unit) and ribosomal DNA (the internal transcribed spacer and the large sub-unit regions)
genes [35,38,42,63–66]. However, several previous studies have reported that species-level
identification of Fusarium cannot be achieved using only the ribosomal DNA gene [67,68].
Therefore, the accurate identification of Fusarium species is currently carried out using
a combination of morphological characteristic and multi-gene molecular phylogenetic
analyses [35–38,40,63,64,66]. In this study, two isolates of F. compactum (SDBR-CMU461
and SDBR-CMU462) and two isolates of F. paranaense (SDBR-CMU463 and SDBR-CMU464)
were isolated from fruit rot lesions on watermelons from northern Thailand. These four
fungal isolates were identified using a combination of their morphological features and
phylogenetic analysis of multiple genes, according to the identification techniques used in
previous studies [35–38,50,55,56]. Prior to this study, F. compactum and F. paranaense had
previously been identified as plant pathogens; for example, F. compactum was found to be
the cause of leaf spot on sweet cherry (Prunus avium L.) [69] and leaf blight on maize (Zea
mays L.) [70] in China, root rot of banana (Musa sp.) in Greece [71], and canker of Italian
cypress (Cupressus sempervirens) trees in Israel [72]. In Brazil, F. paranaense caused root rot in
soybeans [Glycine max (L.) Merr.] [50].
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The pathogenicity of all F. compactum and F. paranaense isolates in this study was exam-
ined in order to confirm Koch’s postulates. According to the results, both fungal species can
be regarded as causal agents of fruit rot disease in watermelons. Our results are supported
by previous studies that reported that Fusarium species are the cause of various disease
symptoms in watermelons in tropical and subtropical regions around the world [73–76].
Prior to this study, F. solani, F. oxysporum, F. verticillioides, and F. chlamydosporum were
considered to be the causal agents of fruit rot in watermelons in Nigeria [16,24,77]. In
particular, F. equiseti was found to cause fruit rot in watermelons cultivated in China [78],
Malaysia [26], and the United States [79]. Postharvest fruit rot found on watermelons
that was caused by F. falciforme and F. oxysporum has also been reported in Malaysia [18].
Furthermore, other Fusarium species have also been associated with the severity of several
watermelon diseases. For example, F. equiseti and F. oxysporum f. sp. niveum have been
observed to cause Fusarium wilt disease in fruits grown in Korea [76] and Malaysia [74],
respectively. On the other hand, Fusarium brachygibbosum and F. oxysporum have been
shown to lead to vine decline symptoms in the United States [73] and root rot in China [75],
respectively. Furthermore, other fungal species from the genera Alternaria, Aspergillus,
Curvularia, Fusarium, Macrophomina, Phytophthora, Lasiodiplodia, Sclerotium, and Pythium
have also been associated with fruit rot in watermelons. For example, Pythium aphanider-
matum and P. debaryanum caused fruit rot disease in watermelons collected in China [20];
Phytophthora capsici was found to cause fruit rot in watermelons in China [20] and the
United States [22]; Kwon and Park [21] found that Sclerotium rolfsii caused postharvest fruit
rot in watermelons in South Korea and, in Nigeria, Alternaria cucumeria, Aspergillus flavus,
Curvularia lunata, Lasiodiolodia theobromae, and Macrophomina phaseolina have been identified
as causal agents of postharvest fruit rot in watermelon [23,24].

In Thailand, the Fusarium species has been associated with symptoms of fruit rot
in a number of fruits. For example, fruit rot in cantaloupes and muskmelons has been
associated with F. equiseti [34], F. incarnatum [80], and F. melonis [13]. Fusarium fabicercianum
caused fruit rot disease in mangoes (Mangifera indica Linn.) [81]. Cases of fruit rot in lychee
(Litchi chinensis Sonn) [82] and durian (Durio zibethinus Murray) fruits [83] have been found
to be caused by F. solani. Prior to this study, only incidences of watermelon fruit rot caused
by F. citrullicola have been reported in Thailand [13]. The symptoms of fruit rot disease
caused by F. compactum and F. paranaense in watermelons are similar to those determined to
have been caused by known fungal pathogens [13,21,22,25]; however, to date, there have
been no reports of watermelon fruit rot caused by F. compactum and F. paranaense. Therefore,
we propose that F. compactum and F. paranaense should be identified as new pathogens of
watermelon fruit rot in Thailand and throughout the world. Follow-up study is required to
clarify the source of the disease inoculum and how weather conditions influence infection
and disease development with respect to these pathogens. Furthermore, determination
of the incidence of this disease in other areas of Thailand and throughout the world is a
necessary task.

4. Materials and Methods
4.1. Sample Collection

Ten watermelon fruits (Citrullus lanatus) with typical rot symptoms were collected
during the postharvest storage periods in Phayao Province, northern Thailand (19◦08′20′′

N, 99◦54′42′′ E) in 2022 (two periods: February to May and mid-October to December). All
symptomatic fruits were randomly selected and placed in sterile plastic boxes. After being
transported to the laboratory, the symptomatic fruits were described and assessed under a
stereomicroscope (Nikon H55OS, Tokyo, Japan).

4.2. Fungal Isolation

All symptomatic fruits were processed to isolate the fungal causal agents by stor-
ing them in a plastic container with moistened filter paper to stimulate fungal conidia
production. The single conidial isolation technique was used to isolate the causal fungi
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from rot lesions on 1.0% water agar supplemented with streptomycin (0.5 mg/L) under
a stereomicroscope, following the methods established by Choi et al. [84]. After 24–48 h
of incubation at 25 ◦C in the dark, individual germ conidia were selected and transferred
directly onto PDA (CONDA, Madrid, Spain) including streptomycin (0.5 mg/L). Pure
fungal isolates were kept in 20% glycerol and submitted to the culture collection of the
SDBR-CMU, Chiang Mai Province, Thailand.

4.3. Pathogenicity Tests

Conidia collected from two-week-old cultures on PDA of each fungal isolate were
used in this experiment. Asymptomatic commercial watermelons were thoroughly washed
and their surfaces were disinfected by immersion in sterile 1.5% (v/v) NaOCl solution
for 5 min. Subsequently, sterile distilled water was used to rinse them three times. Af-
ter being surface-disinfected, the fruits were air-dried for 10 min at room temperature
(25 ± 2 ◦C) [85]. The equator of each fruit received a uniform wound (5 pores, 1 mm width
and 1 cm depth) with an aseptic needle after being air-dried [13]. A conidial suspen-
sion (500 µL, 1 × 106 conidia/mL) of each fungal isolate was separately dropped onto the
wounded fruits. Subsequently, the wounded fruits were inoculated with a drop of sterile
distilled water as a control. The inoculated fruit was then kept under conditions of 80%
relative humidity in a separate sterile plastic container (26 × 35.5 × 20 cm). The plastic
containers were kept in a growth chamber at 25 ◦C during a 12 h light phase for a week.
All treatments were repeated twice with ten replicates of each treatment. The samples
were assessed according to the degree of disease infection on the damaged fruit areas,
with scores ranging from 1–25% (mild), 26–50% (moderate), 51–75% (severe), to 76–100%
(extremely severe) [86]. To confirm Koch’s postulates, the fungi were again isolated from
any lesions that appeared on the inoculated fruits using the single spore isolation technique
described above. The single spore isolation technique previously mentioned was employed
to re-isolate the fungi from any lesions that appeared on the inoculated fruits in order to
confirm Koch’s postulates.

4.4. Fungal Identification
4.4.1. Morphological Studies

Colony characteristics of the fungal isolates on OA (Difco, Le Pont de Claix, France),
PDA, and SNA were observed following incubation in darkness at 25 ◦C for a week, accord-
ing to the methods described in previous studies [35,36,38]. Micromorphological features
were assessed and photographed using a light microscope (Nikon Eclipse Ni-U, Tokyo,
Japan). The size information related to the anatomical properties (e.g., chlamydospores,
conidiogenous cells, conidiophores, phialides and conidia) were measured with at least
50 numbers of each structure using the Tarosoft (R) Image Frame Work program.

4.4.2. DNA Extraction, Amplification, and Sequencing

The genomic DNA of each week-old fungal isolate cultivated on PDA at 25 ◦C was
extracted using a DNA extraction kit (FAVORGEN, Ping-Tung, Taiwan). Polymerase chain
reaction (PCR) was employed to amplify the tef-1, cam, and rpb2 genes using the primer
pairs EF1/EF2 [87], CAL-228F/CAL-2Rd [88], and RPB2-5F2/RPB2-7cR [65], respectively.
The three genes’ amplification programs were carried out in independent PCR reactions,
consisting of an initial denaturation for 3 min at 95 ◦C, followed by 35 cycles of denaturation
for 30 s at 95 ◦C, annealing steps for 50 s at 60 ◦C (tef-1), 30 s at 59 ◦C (cam) or 1 min at
52 ◦C (rpb2), and a final extension step for 1 min at 72 ◦C on a peqSTAR thermal cycler
(PEQLAB Ltd., Fareham, U.K.). PCR products were checked and purified using a PCR
clean-up Gel Extraction NucleoSpin® Gel and a PCR Clean-up Kit (Macherey-Nagel, Düren,
Germany), according to the manufacturer’s instructions. Following final purification, the
PCR products were directly sequenced. Sequencing reactions were carried out and the
above-mentioned PCR primers were employed to automatically determine the sequences
in the Genetic Analyzer at the 1st Base Company (Kembangan, Malaysia).
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4.4.3. Sequence Alignment and Phylogenetic Analyses

The resulting tef-1, cam, and rpb2 sequences were assessed for similarity analysis via
the BLAST program available from the NCBI (http://blast.ncbi.nlm.nih.gov, accessed on
10 December 2022). Multiple sequence alignment was performed using MUSCLE [89], and
any necessary modifications were made using BioEdit version 6.0.7. [90]. The combined
data set of tef-1, cam, and rpb2 data was employed to conduct a multi-gene phylogenetic
analysis. Phylogenetic trees were constructed using the maximum likelihood (ML) and
Bayesian inference (BI) methods. The ML analysis was performed using 25 categories and
1000 bootstrap (BS) replicates with the GTRCAT model of nucleotide substitution [91] on
RAxML-HPC2 version 8.2.12 [92] at the CIPRES web portal [93]. The optimal model for
substitution of nucleotides was derived using the jModeltest v.2.3 [94] according to the
Akaike Information Criterion (AIC) method. BI analysis was performed using the MrBayes
v. 3.2.6 software [95]. For BI analysis, six simultaneous Markov chains with random starting
trees were run for a million generations, with 1000 generations of each chain being sampled.
The first 2000 trees were removed using a burn-in phase, and then the remaining trees
were utilized to construct a phylogenetic tree using the 50% majority rule consensus. The
Bayesian posterior probabilities (PPs) were subsequently calculated. The phylogenetic trees
were visualized using FigTree v1.4.0 [96].

5. Conclusions

Watermelon fruit rot caused by Fusarium species is typically spread either in the field
or during storage and is occurring in many countries around the world. In the present
study, we reported F. compactum and F. paranaense to be pathogens of watermelon fruit
rot for the first time, in Thailand and worldwide. These fungi were obtained from rot
lesions taken from watermelons and identified on the basis of morphological features
and multi-gene phylogenetic analyses. In pathogenicity tests under artificial inoculation
conditions, the same symptoms as those seen during the postharvest storage period were
observed. Therefore, F. compactum and F. paranaense were concluded to be novel pathogens
of fruit rot diseases in watermelons. Further investigation of the epidemiology of these
diseases in other areas of Thailand, as well as for the purposes of establishing effective
management practices, is required. Moreover, in the future, the development of efficient
monitoring and preventative strategies will be necessary in order to prevent the significant
financial losses introduced by fruit rot disease.
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