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Abstract: Among the key diseases affecting the asparagus crop (Asparagus officinalis L.), vascular
wilting of asparagus caused by Fusarium oxysporum f. sp. asparagi stands out worldwide. This
disease significantly shortens the longevity of the crop and limits economic production. Traditional
control measures have been largely ineffective, and chemical control methods are difficult to apply,
making biological control approaches, specifically the use of Trichoderma, an economical, effective,
and risk-free alternative. This study aimed to identify the main factors that affect the efficacy of
biopesticides studied as Biological Control Agents (BCAs) against Fusarium wilt in asparagus and to
assess the efficacy of Trichoderma-based biopesticides under greenhouse and semi-field conditions.
We evaluated the response of three Trichoderma spp. (T. atroviride, T. asperellum, and T. saturnisporum)
to environmental variables, such as temperature and water activity, and their antagonistic capacity
against Fusarium oxysporum f. sp. asparagi. All three Trichoderma species inhibited the growth of
the pathogen in vitro. A decrease in water activity led to a greater reduction in the growth rate.
The efficacy of the three biological control agents decreased with higher temperatures, resulting in
minimal inhibition, particularly under conditions of restricted available water in the environment.
The effect of the fungal inoculum density was also analyzed at two different temperatures. A direct
correlation between the amount of inoculum and the score on the Disease Severity Index (DSI)
was observed. A notable reduction in DSI was evident in treatments with high inoculum density
(106 conidium/mL) for all three species of Trichoderma tested at both temperatures. In greenhouse
and semi-field tests, we observed less disease control than expected, although T. asperellum and
T. atroviride showed lower disease severity indices and increased the dry weight of seedlings and
crowns, whereas T. saturnisporum resulted in the highest disease rate and lowest dry weight. This
work highlights that the efficacy of Trichoderma as BCAs is influenced by various factors, including
the quantity of soil inocula, and environmental conditions. The study findings have strong implica-
tions for selecting appropriate Trichoderma species for controlling specific pathogens under specific
environmental conditions.
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1. Introduction

Asparagus (Asparagus officinalis L.) is a leading outdoor horticultural crop worldwide,
with a gross production value of USD 12,655 annually [1]. In Europe, it is grown on over
62,000 ha, of which 60% is present in two countries: Germany and Spain. Spain is the
second-largest producer of asparagus in Europe, producing 65,000 tons across 14,020 ha [2].

Fusarium Vascular Wilt, caused by Fusarium oxysporum f. sp. asparagi, is one of the
primary diseases that affect asparagus crops. Diseased plants exhibit a gradual loss of
vigor [3–5], which is accompanied by a considerable decrease in yield. In the advanced
stages of the disease, plants exhibit premature yellowing, ultimately resulting in their death
by the end of the cycle [4,6].
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Cultivation practices considerably complicate disease control [4,5,7]. Throughout the
harvest months, all radiating shoots below ground level were cut using a knife. Wounds
sustained during harvesting provide a direct path for soil-borne pathogens to reach the
plant’s vascular system, thereby promoting fungal colonization [6,8].

Controlling this disease is challenging owing to the perennial nature of asparagus
crops and the fungus’s ability to survive for extended periods in both plant debris and
soil. The standard control measures used for horticultural crops are often ineffective
or challenging to apply to asparagus crops [9]. To date, no resistant plant material has
been identified for Fusarium Vascular Wilt in asparagus crops [10–15]. Chemical control
methods have also proven to be challenging to apply during the harvest period. They are
also ineffective when the soil has a high inoculum density [16].

Biological control approaches using several yeasts, fungi, and bacteria are effective, eco-
nomical, and risk-free alternatives to the use of chemical pesticides against plant diseases;
among them, Trichoderma, a mycoparasitic fungus, is noteworthy [17,18]. Bioantagonists
protect plants from phytopathogens by inhibiting or suppressing disease development
before or after infection [19].

Weindling [20] first identified Trichoderma as a biological control agent. While this genus
effectively inhibits the growth of many plant pathogenic fungi, such as Rhizoctonia, Fusarium,
Pythium, Sclerotium, and Phoma, this capacity varies genetically between species [17,21–24].

Trichoderma spp. colonize and grow on developing roots that promote normal plant
development [25]. They also compete with pathogenic fungi for space and nutrients
by colonizing the rhizosphere, thereby directly suppressing disease progression [26,27].
Additionally, it also induces systemic antioxidant enzyme activities, upregulating the
expression of class III plant peroxidase and catalase, as well as phenolics and proteins, such
as salicylic acid pathway-related genes and pathogenesis-related protein 5, or jasmonic
acid-related gene 12-oxo-phytodienoic acid reductase, which are associated with resistance
to Fusarium [28–30].

Trichoderma has a direct effect on pathogenic fungi through the production of antibiotics
and lytic enzymes such as cellulases, hemicellulases, xylases, and chitinases [31]. Many
bacteria directly act against enzymes produced by pathogens during the infection process.
For example, T. harzianum secretes Trichodermamine B, while T. virens produces viridin,
virone, and trichosetin, which act as potential inhibitors of the cell wall-degrading enzyme
polygalacturonase secreted by F. oxysporum f. sp. lycopersici [26,32–42]. Trichoderma has also
been reported to have the ability to degrade mycotoxins produced by Fusarium through the
upregulation of the UDP-glucuronosyltransferase gene.

Various Trichoderma species, including T. atroviride, T. asperellum, T. gamsii, T. harzianum,
T. afroharzianum, and T. atrobrunneum, have been registered as commercial biopesticides.
Many of these species have been studied in various pathosystems [43–46]. However,
different species respond differently to different pathogens and environmental conditions.
To achieve effective disease control, the choice of a biological control agent should consider
both the pathogen’s characteristics and the relevant climatic factors. Selecting appropriate
Trichoderma spp. as BCA is crucial in determining their response to different environmental
conditions. Although there are many studies on Trichoderma spp., some have focused
on soil fungi, and there are no data on their efficacy against Fusarium oxysporum f. sp.
asparagi. Furthermore, disease control effectiveness was not affected by either the amount
of inoculum from the pathogen or the dose of the commercial product.

This study aimed to identify the main factors that affect the efficacy of biopesticides
studied as BCAs against Fusarium wilt in asparagus. In vitro and plant bioassays were
conducted to (i) assess the antagonistic capacity of three Trichoderma species against the
mycelial growth of Fusarium oxysporum f. sp. asparagi and how this is affected by tem-
perature, water activity, and their interactions. (ii) analyze the impact of the amount of
inoculum on the efficacy of the three Trichoderma species on seedlings, and (iii) evaluate the
effectiveness of two commercial formulations registered in the EU under greenhouse and
semi-field conditions.
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2. Results
2.1. Effect of Different Environmental Variables on the Antagonistic Capacity In Vitro

The results showed an inhibitory effect on the mycelial growth of F. oxysporum f. sp.
asparagi against the three Trichoderma spp. analyzed. Different climatic variables consid-
erably affected the growth rate of the pathogen (Figure 1). Generally, a decrease in water
activity led to a greater reduction in the growth rate. The pathogen’s growth rate was
highest under less restrictive environmental conditions (20–25 ◦C with high water activ-
ity), but it was also more strongly inhibited under these conditions in dual cultures with
Trichoderma species. At 25 ◦C and aw = 0.99, dual cultures with T. atroviride showed the
greatest reduction in growth rate, up to 93.2%. The efficacy of the three biological control
agents decreased with higher temperatures, resulting in minimal inhibition, particularly
under conditions of restricted available water in the environment (Figure 1).

Figure 1. Daily fungal growth rate for Fusarium oxysporum f. sp. aspargi was calculated for each
fungal matrix and control.

We used the General Lineal Model method to estimate the repeatability and repro-
ducibility of mycelial growth of Fusarium oxysporum f. sp. asparagi and identified five effects:
temperature, days, water activity, and second- and third-order interactions. The model al-
lowed for mycelial growth of FOAS alone (R-Squared = 90.11%, adjusted R-Squared = 90.06%)
or in dual culture with different BCAs: T. saturnisporum (R-Squared = 67.57%, adjusted
R-Squared = 67.19%), T. asperellum (R-Squared = 82.92%, adjusted R-Squared = 82.73%),
and T. atroviride (R-Squared = 79.53%, adjusted R-Squared = 79.31%). All species exhibited
similar quality, where growth was evidently inhibited when the pathogenic isolate was
subjected to any of the three Trichoderma species, showing higher inhibition rates under
higher aw conditions and decreased inhibition with decreasing water activity.

Modeling a disease caused by a soil fungus is challenging, but contour plots are useful
for determining response values. The 3D surface contour plot depicted in Figure 2 aided
in comprehending the relationship between the key factors and mycelial growth response
values. The gray region showed the lowest mycelial growth, which decreased with increasing
temperature and water activity. T. atroviride displayed orange regions (indicating growth
of over 40 mm) under high temperature and water activity, while subtle differences were
observed between Trichoderma spp. under high water activity. However, such rates are only
observed at temperatures below 20 ◦C in dual cultures with T. asperellum. In contrast, the
model estimated a much lower growth rate at 12 d in dual cultures of T. saturnisporium.
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Figure 2. Surface contour plot of daily growth rate responses at varying temperatures and water
activities. Fusarium oxysporum f. sp. asparagi (Foa): (up–left); Foa vs. T. saturnisporum: (up–right); Foa
vs. T. asperellum: (down–left); Foa vs. T. atroviride: (down–right).

At the highest water activity (aw = 0.99), dual cultures were categorized into classes 1 and 2
using Bell’s scale, indicating the greatest inhibition rates. However, at the lowest water activity
(aw = 0.93), all plates were classified between classes 3 and 4 (Figure 2). T. saturnisporum and
T. atroviride exhibited lower levels on the Bell scale for the temperature and water activity
combinations analyzed, except at the lowest water activity. T. asperellum was less effective, with
Bell’s index values exceeding two in three out of four tested water activities (Table 1).

Table 1. Bell antagonism scale on the dual cultures with Fusarium oxysporum f. sp. asparagi and the
different Trichoderma spp., depending on the temperature and water activity, after 7 days.

Biocontrol Agents Temperature
Water Activity

0.99 0.97 0.95 0.93

T. saturnisporum 15 1 1.5 2.6 3
20 1.6 1 1.1 2
25 1 1.8 2 3

p-Value = 0.00 30 1 1 1 1.8

T. atroviride 15 1 1 2 3.8
20 1 1 1 3.5
25 1 1 2 4

p-Value = 0.00 30 3 3.6 2 4

T. asperellum 15 1.6 2.8 3.6 4
20 2 3 3 4
25 1 2.6 3 4

p-Value = 0.01 30 1 1 3 4
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2.2. Effect of the Fungal Inoculum Density on the Efficacy of Trichoderma spp.

We analyzed the impact of inoculum quantity in the substrate on disease symptom
manifestation during early development stages at two different temperatures. We observed
a direct correlation between the amount of inoculum and DSI, with high exponential corre-
lations at both temperatures (y = 0.569·e0.5543x, R-Squared = 0.941 at 25 ◦C; y = 0.828·e0.5413x,
R-Squared = 0.980 at 30 ◦C). Application of Trichoderma did not result in any statistically
significant differences (p < 0.001) compared to the untreated control or lower inoculum
density. Nonetheless, a notable reduction in the severity index was evident in treatments
with high inoculum density (106 conidium·mL−1) for all three species of Trichoderma tested
at both temperatures (Figure 3).

Figure 3. Disease severity index of seedlings pretreated with Trichoderma spp. and different inocula
density depending on the temperature: 25 ◦C (Left) and 30 ◦C (Right).

In the experiments conducted at 25 ◦C, applying three Trichoderma spp. resulted in
a decrease in DSI. T. asperellum showed the lowest DSI, achieving over a 50% reduction
compared to the inoculated control, followed by T. atroviride and T. saturnisporum. At
higher temperatures, reductions in severity index varied from 26.09 to 32.2% across all
three Trichoderma species.

2.3. Effectiveness of Trichoderma spp. on Commercial Products under Greenhouse and Semi-
Field Conditions

We analyzed two commercial products for controlling soil-borne diseases available in
Europe. Early-stage plants were evaluated in greenhouse trials, and fully developed plants
were evaluated under semi-field conditions. Neither of the analyzed products showed a
decrease in DSI in 8-week-old inoculated seedlings (Figure 4). No significant differences
were observed between the dry weights of the seedlings treated with the two commercial
products and those of the inoculated control plants.

Figure 4. Dry weight and Disease Severity Index (DSI) in pretreated asparagus plants after inoculation
with FOA in Greenhouse trials (Left) and Semi-field trials (Right).
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However, considerable differences were observed when the trial was extended to semi-
field conditions (in large outdoor pots) for 18 months compared to the inoculated plants.

Plants pretreated with Tusal® (T. asperellum and T. atroviride) at a dose of 1 kg/ha
showed lower disease severity indices than the inoculated controls to some extent. In
contrast, plants pretreated with Tribon® (T. saturnisporum) showed fewer symptoms of
the disease to a lesser extent, without significant differences from the inoculated controls,
although with lower mean DSI values.

Irrespective of dosage, the test results consistently showed that the pathogen affected
a higher percentage of secondary roots compared to reserve roots. However, using a higher
dose (3 kg·ha−1) decreased this effect, though the disease was never fully suppressed
and the recorded DSI remained above two. However, inoculation treatment consistently
resulted in a higher percentage of isolation for both types of rot (Figure 5).

Figure 5. Re-isolation percentages of F. oxysporum f. sp. asparagi and Disease Severity Index (DSI)
depending on the dose of the Trichoderma-based commercial product.

3. Discussion

Trichoderma is widely used as a biological control agent to mitigate pathogenic activity
and promote plant growth [47,48]. In many cases, it has proven to be an effective alternative
to fungicides [49]. However, its efficacy for many crops is under discussion [50–52], which
can be influenced by various factors, such as soil type, host crops, and climate.

Several studies evaluating the antagonistic activity of Trichoderma strains have reported
high inhibition rates against pathogenic fungi in vitro. However, when tested in vivo, the
results did not consistently demonstrate the same antagonistic effects [19].

We obtained promising results for mycelial growth inhibition in an in vitro study in
which different Trichoderma spp. inhibited the growth of the pathogen. In vitro inhibitory
effects have been demonstrated for the three Trichoderma species studied, although results
show how environmental factors such as water activity or temperature modify such efficacy.
These results indicate that the selection of the appropriate Trichoderma must be made based
on specific characteristics, with temperature acting as a key factor.

Greenhouse (seedlings and plants) and semi-field tests showed less disease control
than expected. In a study on asparagus seedlings, Trichoderma harzianum could not reduce
the severity of the vascular disease [16]. González et al. [53] found no considerable differ-
ences between asparagus plants treated with Trichoderma spp. and the untreated control
in terms of the effects of Fusarium oxysporum f. sp. asparagi and F. solani. However, these
authors reported that plants treated with T. atroviride and T. asperellum in interaction with



Plants 2023, 12, 2846 7 of 12

pathogenic fungi showed better results in the weight of the asparagus plants compared to
the uninoculated Trichoderma spp. treatments.

Arriola et al. [54] successfully suppressed the disease and increased dry weight by
combining T. harzianum with arbuscular mycorrhizae. In contrast, Rubio-Pérez et al. [55]
observed an increase in root and aerial development and a positive antagonistic effect on
F. oxysporum and F. proliferatum by using a combination of T. asperellum and T. harzianum
previously isolated from the asparagus rhizosphere.

Our study showed that all three Trichoderma BCAs reduced DSI, with T. asperellum at
25 ◦C achieving the highest reduction (50%). At higher temperatures, the DSI reduction
ranged from 26.09 to 32.2% for all three antagonistic Trichoderma species. Additionally,
application of T. asperellum and T. atroviride (Tusal®) increased the dry weight of seedlings
and crowns, as seen in Figure 5.

Trichoderma asperellum is effective against other soil-borne pathogens, such as Fusarium
oxysporum in tomatoes, while promoting plant growth [38]. Similarly, Rao et al. [56] consid-
ered the use of T. atroviride (strain LZ42) as an effective alternative for the integrated man-
agement of wilt disease caused by Fusarium spp. In the case of T. saturnisporum, few studies
have been conducted on its use in pepper plants. However, Diánez Martínez et al. [57]
found that applying this microorganism stimulated seedling growth and suppressed the
severity of soil-pathogenic fungi such as Phytophthora capsici and Phytophthora parasitica.
Pretreatment efficacy appears to be highly influenced by the virulence of the pathogen
and the quantity of soil inocula. Our results show that at the highest inoculum density of
the pathogenic fungus tested (106 conidium·mL−1), a substantial decrease in the DSI was
observed for the three Trichoderma spp. at the two temperatures studied.

4. Materials and Methods
4.1. Effect of Climatic Variables on the In Vitro Antagonism of Trichoderma spp. and Fusarium
oxysporum f. sp. asparagi (FOA)

The response of three Trichoderma spp. (T. atroviride, T. asperellum, and T. saturnisporum)
to environmental variables, such as temperature and water activity, and their antagonistic
capacity against Fusarium oxysporum f. sp. asparagi (isolate FOA01) were evaluated by
using dual in vitro cultures [58]. All isolates used were collected from the Plant Protection
Laboratory (ETSIAAB-UPM) [4]. A completely randomized factorial experimental design
(3 × 4 × 4 × 6) was employed, where the first factor was the BCAs and the second and
third factors were temperature (15, 20, 25, and 30 ◦C) and water activity (aw), respectively.

To modify the aw value of potato dextrose agar (PDA) (Merck, Darmstadt, Germany),
we added glycerol as a nonionic solute to obtain aw values of 0.97, 0.95, and 0.93. Glycerol
was not added to the control group (aw = 0.996). The aw of the medium was measured
using a hygrometer (AquaLab 3TE; Decagon Devices Inc., Pullman, WA, USA).

Six replicates of 90 mm Petri dishes with dual-cultures (Isolate FOA01—Trichoderma
spp.) were prepared for each combination of isolate, temperature, and water activity. After
incubation in a growth chamber (EQUITEC Brand; ERI 40405 3S LED model, Spain), with
a temperature and photoperiod regulated at 25/18 ◦C day/night, the radial growth of
the mycelium (mm) was measured every 24 h using a digital vernier. Growth inhibition
percentage was calculated based on the formula proposed by Royse and Ries [58] as follows:
PICR% = (R1 − R2)/R1 × 100, where PICR is the percentage inhibition of radial growth and
R1 is the radial growth (mm) of the pathogen without Trichoderma spp. R2 = radial growth
(mm) of pathogens with Trichoderma spp. The daily fungal growth rate was calculated for
each fungal matrix and expressed as mm·d−1 [59–61].

Dual cultures were rated on a scale of 1 to 5 according to the Bell scale based on the
plate surface colonized by Trichoderma and the pathogen [62].

4.2. Antagonistic Effect of BCAs on Asparagus Seedlings Inoculated with Fusarium oxysporum f.
sp. asparagi (FOA)

Three-week-old seedlings of cv. Grande sown in alveoli (138 cc) containing sterile
peat were pretreated with 5 mL of Trichoderma suspension (containing 1010 conidia·mL−1).
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Four weeks after sowing, six pretreated seedlings per treatment were inoculated with 5 mL
of the pathogenic fungus (isolate FOA01) and incubated in a growth chamber (EQUITEC
Brand; ERI 40405 3S LED model). Plants were fertilized for 15 days after sowing using a
water-soluble NPK 7-5-6 universal fertilizer (COMPO®) at a dose of 5 mL·L−1. Plants were
slightly watered every other day. The experiment included non-inoculated controls and
was repeated twice for each inoculum concentration tested (0, 103, and 106 conidia·mL−1)
and temperature (25 and 30 ◦C). Ten weeks after sowing, the weight and disease severity
indices were measured. The disease severity index (DSI) in asparagus plants was evaluated
according to the scale proposed by Stankovic et al. [63], where 0 = plants without disease
symptoms, 1 ≤ 10% root rot, 2 = 10–50% root rot, and 3 ≥ 50% root rot, 4 = roots completely
rotten. At the end of each experiment, the samples were dried in an oven (Digiheat 80 L;
Model 2001244, Fleurus, Belgium) at 60 ◦C for 48 h, and the dry weights of the roots and
aerial parts were recorded separately.

4.3. Efficacy of Commercial Biopesticides
4.3.1. Greenhouse Trials

Three-week-old seedlings of cv. Grande were transplanted into 530 cc pots and treated
with 20 mL of commercial biopesticides based on different species of Trichoderma. The
biopesticides used were Tusal® (consisting of T. asperellum (T25)—0.5% (108 CFU·g−1)
and T. atroviride (T11)—0.5% (108 CFU·g−1), Tribon® (T. saturnisporum strain TSMIP01
(1012 CFU·l−1), and Potassium 3.5% w/w), applied in doses of 4 g·dm−3 and 4 mL·dm−3,
respectively. The experimental unit contained two repetitions with five plants each. The
test was repeated. Five weeks after sowing, pots were inoculated with a 20 mL conidial sus-
pension of three isolates of Fusarium oxysporum f. sp. asparagi adjusted to 106 conidia·mL−1,
coded as FOA01, FOA11, and FOA28. The DSI and dry weight of the plants were analyzed.

4.3.2. Semi-Field Trials

The same commercial products (Tusal® and Tribon®) were tested in a semi-field trial.
Asparagus crowns (80–100 g) of cv. Grande were planted in outdoor fiber cement pots
(0.1 m3) at two doses: 1 kg·ha−1 (equivalent to 0.05 mg·m−2) and 3 kg·ha−1 (equivalent to
0.015 mg·m−2). Two weeks after sowing, Fusarium oxysporum f. sp. asparagi (FOA01 isolate)
was inoculated by irrigation, adding 100 mL of the inoculum per pot at a concentration
of 5 × 106 conidia·mL−1. Non-inoculated controls were included in the experiment, and
booster treatments were added with commercial biopesticides at the same dose every three
months. Aerial biomass dry weight and rot severity index were evaluated in crowns and
roots after 18 months. Analysis of isolates of F. oxysporum f. sp. asparagi from treated
plants involved superficial disinfection of secondary and stored roots with a 1.5% sodium
hypochlorite solution for 1 min, followed by two successive washes with sterile distilled
water. After drying, 1 cm pieces were sown in plates with potato dextrose agar (PDA)
culture medium supplemented with 0.5 g·L−1 streptomycin sulfate (Sigma-Aldrich, St.
Louis, MO, USA) and incubated for 5–7 days at laboratory temperature (25 ◦C) under
continuous fluorescent light. The procedures and taxonomic criteria described by Nelson
et al. [64], and Leslie and Summerell [65] were followed.

4.4. Statistical Analysis of Data

Analysis of variance was performed using Fisher’s least significant difference (LSD) test
with STATGRAPHICS Centurion XVIII statistical package software (StatPoint, Inc., Herndon,
VA, USA, https://www.statgraphics.com/centurion-xviii, accessed on 1 May 2023). Graphics
were analyzed using GraphPad Prism (version 9.0 for Windows, GraphPad Software, San
Diego, CA, USA, www.graphpad.com, accessed on 1 May 2023). To estimate the correlation
between the growth rate at any of the studied temperatures and the water activity, we adjusted
a simple regression analysis to the non-linear inverse-X model, as it showed the highest R2

value. The same statistical package software was used to construct a generalized linear model
of the growth rate (Yi = β0 + β1 × 1, i + β2 × 2, i + β3 × 3, i + . . . + βk × k, i + εi, where “Y”

https://www.statgraphics.com/centurion-xviii
www.graphpad.com
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is the response variable (growth rate), “β1Xk,i” the predictor variables (temperature and
water availability), and “i” the error). The linear regression of the increase in radius against
time (d) was used to obtain growth rates (mm·d−1). The Pearson correlation coefficient at
the 5% confidence level was used as the significance criterion.

5. Conclusions

The in vitro inhibitory effect on the mycelial growth of F. oxysporum f. sp. asparagi
against the three Trichoderma spp. has been proven. The efficacy of Trichoderma as BCAs
is influenced by various factors, including the quantity of soil inocula and environmental
conditions, which will have strong implications for selecting appropriate Trichoderma species
for controlling specific pathogens under specific environmental conditions.

However, when early-stage and fully developed plants were evaluated in greenhouse
and semi-field trials, the inhibitory effects of commercial products were not produced to
the same extent. Although, in some cases, positive effects on the crop have been observed
and a notable reduction in DSI has been evident, the disease was never fully suppressed.

Full control was not achieved at the tested doses; however, root rot caused by F. oxysporum
was alleviated to some extent. The efficacy of these treatments has been widely studied and
debated. However, the efficacy depends on the host-pathogen-BCA interaction. Finally,
to optimize the use of Trichoderma as a biocontrol agent, an appropriate integrated pest-
management approach is required. This includes tolerant varieties, the use of healthy plant
material, and soil disinfection before transplanting to reduce soil inocula. This study will
be the basis for a multi-year study carried out in an asparagus growing area under real
field conditions, where the scope and limitations of disease control will be determined.
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