
*

THE PHYSICAL LABORATORIES.
THE UNIVERSITY, MANCHESTER. ${ }^{3}$
for the use of $1^{\text {st }}$ Year Honsaphysics Lab only NOT to be taken away.
T A B L E O F
Preface 3
The same figure recurring in several additions 4
The same figure recurring in several subtractions 5
The same factor recurring in several multiplications:
In hand-operated multiplication with C1-13 6
In semi-automatic multiplication with CS1-13 7
In fully-automatic multiplication with CA1-13 8
The same divisor recurring in several divisions:
In calculations with $\mathrm{C} 1-13$ 9
In calculations with CS1-13 and CA1-13 10
Addition of the products of several multiplications 11
Negative multiplication 12
The rule of three 13
Rule of three in one operation 14
Payroll calculations 15
Payroll calculations (Monthly wages) 16
Payroll calculations (Piece rates) 17
Squaring and cubing numbers 18
Multiplication by a constant factor 19
Percent division (Increase and de- crease computed in percent only) 20
Percentage calculations (Mark-up in money and in percent of the sales price) 21
Percentage calculations (Mark-up in money and in percent of the cost price) 22
Percent division (Setting prices) 23
Practical short cuts in computing discounts 24
Percentage calculations (Raising and cutting prices) 25
Computing the equivalent of a series of discounts 26
Ordinary interest computations 27
Interest calculations using the inter- est divisor 28
Multiplication of a number by a very large factor:
In calculating with $\mathrm{C} 1-13$ and CS1-13 29
In calculating with CA1-13 30
Division by large numbers 31
Ordinary fractions converted to decimal fractions 32
Interpolation 33
Extracting square roots 34
English currency (Addition) 35
English currency (Subtraction) 36
English currency (Multiplication by the pence method) 37
English currency (Multiplication and division by the decimal method) 38
Currency conversion 39
Placing the decimal point in division 40
Tables 41-48

Preface

The red symbols at the top of each page refer to a trade or trades for which the following example is particularly applicable.

The Same Figure Recurring in Several Additions

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

EXAMPLE:

A bonus of 125.32 is to be added to each of the following wages:
989.89, 1,251.23 and 959.43.

What will the final wages be?
$125.32+989.89=$?
$125.32+1,251.23=$?
$125.32+959.43=$?
Set up the constant number 125.32 and transfer it to the product register.
Set up 989.89 and add. On the CS1-13 the addition is performed with the $\times \mathrm{key}$, on the CA1-13 with the + key, in both cases with the main control lever in its centre position.
The first wage is $1,115.21$.
For computing net wages, setting prices, and other calculations. In additions and subtractions of this kind, keeping the constant number in the product register saves time and makes for greater accuracy.

THE OPERATION IN FIGURES:

125.32
$+989.89$

Do not clear the registers.
Make a negative turn, which will subtract the last figure set up, 989.89.
The constant figure, 125.32 , will remain in the product register.
Now clear the setting register and set up the next number to be added, $1,251.23$, and add, in the same way as above.
The second wage is $1,376.55$.
-989.89

Do not clear the registers.
Subtract the figure last set up, $1,251.23$, leaving 125.32 again in the product register.
Clear the setting register, and add 959.43.
The third wage is $1,084.75$.
hith
ant
$-1,251.23$ $(=125.32)$
$+959.43$
$(=125.32)$
$+1,251.23$
HIEAR
\qquad
$=1,084.75$

PRINCIPLE: Set up the recurring number in the product register and add the first amount. Write down the sum, subtract the first amount and add the second, etc.

The Same Figure Recurring in Several Subtractions

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

THE OPERATION IN FIGURES:
$989.89-125.32=$?
$1,251.23-125.32=$?
$959.43-125.32=$?
$-125.32 \quad(=9999999987468)$
Set up the constant number 125.32 and make a negative turn.
The number appearing in the product register will be the complement of 125.32 .
Clear the setting register.
$+989.89$
-989.89
$+1,251.23$
$-1,251.23$
$+959.43$

Set up 989.89 and add. On the CS1-13 the addition is performed with the \times key, and on the CA1- 13 with the + key, in both cases with the main control lever in its centre position.
$(=864.57) \quad$ The first net weight is 864.57 kg .
Do not clear the registers. Make a negative turn, which will subtract the last figure set up, 989.89. The complement of the recurring subtrahend, 125.32, will again appear in the product register.
Clear the setting register.
Set up $1,251.23$ and add in the same manner as before. The second net weight is $1,125.91 \mathrm{~kg}$.

Do not clear the registers. Subtract the figure last set up, 1.251 .23 , leaving the complement of 125.32 again in the product register. Clear the setting register. Add the last figure, 959.43.
$=834.11$ The third net weight is 834.11 kg .

PRINCIPLE: Set up the complement of the recurring subtrahend in the product register, then add and subtract the various amounts as above.

The Same Factor Recurring in Several Multiplications

In hand-operated multiplication with $\mathrm{C} 1-13$

EXAMPLE:

Three workers with the same hourly pay, 4.18, were employed on a job 31.1, 40.3 and
52.1 hours respectively.

How much did each receive in wages?
$31.1 \times 4.18=$?
$40.3 \times 4.18=$?
$52.1 \times 4.18=$?
The constant factor is 4.18 . Set it up in the setting register, and multiply by 31.1.
The first worker's pay is 130.00 .
Do not clear the registers.
The constant factor, 4.18, must now be multiplied by 40.3. This can be done by changing the figure 31.1 in the multiplier register to 40.3 .
Make a positive turn in the 100 's-position, where the last multiplication ended. The figure in the multiplier register is now 41.1. Press the right-hand shift key and make a negative turn. Press once more on the righthand shift key and make two positive turns. The figure in the multiplier register is now 40.3.
The second worker's pay is 168.45 .
Do not clear the registers.
Now the 40.3 in the multiplier register is to be changed to 52.1 , by means of positive and negative turns and the left-hand shift key. Start with two negative turns, press the left-hand shift key, make two positive turns, press the left-hand shift key again and make one positive turn. The factor 52.1 now appears in the multiplier register.
The third worker's pay is 217.78 .

THE OPERATION IN FIGURES:
4.18×31.1
$(=129.998)$
4.18×41.1
4.18×40.1
4.18×40.3
$(=168.454)$
4.18×40.1
4.18×42.1
4.18×52.1

In semi-automatic multiplication with CS1-13

For computing wages, piece work, price increases, invoices, foreign exchange, etc.

THE OPERATION IN FIGURES:
04.18×31.1
04.18×40.3
04.18×52.1
$(=129.998) \quad$ The first worker's pay is 130.00 .
Clear the product and multiplier registers and press the tabulator again, transferring the constant factor to the left of the setting register.
Carry out the next multiplication by 40.3 as before, from left to right. After multiplying by 4, press the right-hand shift key once for an extra step, so that the constant factor will be in the correct position to multiply by 3 .
$(=168.454) \quad$ The second worker's pay is 168.45 .
Again clear the product and multiplier registers and press the tabulator key. Perform the multiplication by 52.1 as before.
The third worker's pay is 217.78 .

PRINCIPLE: Do the whole operation with the constant factor preceded by a nought in the left end of the setting register. The multiplications are carried out from left to right.

In fully automatic multiplication with CA1-13

EXAMPLE:

Three workers with the same hourly pay, 4.18, were employed on a job 31.4, 40.3 and
52.1 hours respectively.

How much did each receive in wages?
$31.1 \times 4.18=$?
$40.3 \times 4.18=$?
$52.1 \times 4.18=$?
Move the main control lever to the left. The constant factor is 4.18. Set it up and press the \times key.
Set up 31.1 and press the $=$ key.
The first worker's pay is 130.00 .
Clear registers I and II and press the \times key.
The constant factor, 4.18 , now remains in the invisible register.
Set up 40.3 and press the $=$ key.
The second worker's pay is 168.45 .
Clear registers I and II and press the \times key.
Set up 52.1 and press the $=$ key.
The third worker's pay is 217.78 .

For computing wages, piece work, price increases, invoices, foreign exchange, etc.

THE OPERATION IN FIGURES:

$$
=217.778
$$

PRINCIPLE: Do the whole operation with the constant factor in the invisible register. After each multiplication clear the setting register by pressing the \times key.

In calculating with $\mathrm{C} 1-13$

For calculating distributions and in various kinds of interest and exchange computations.

THE OPERATION IN FIGURES:

$$
\frac{1}{9150}=0.00001690617
$$

$$
\begin{aligned}
& 0.00169062 \times 5,676(=9.60) \\
& 0.00169062 \times 13,743(=23.23) \\
& 0.00169062 \times 2,944(=4.98) \\
& 0.00169062 \times 9,626(=16.27) \\
& 0.00169062 \times 1,245(=2.10) \\
& 0.00169062 \times 11,551(=19.53) \\
& 0.00169062 \times 14,365(=24.29)
\end{aligned}
$$

$9.60+23.23+4.98+16.27$
$+2.10+19.53+24.29$
(-100.00)

EXAMPLE:

Find the percentage distribution of the grand total, 59,150.00, over the following subtotals.

Castings	5,676.00	\%
Other raw materials	13,743.00	?
Purchased accessories	2,944.00	?
Production labour	9,626.00	?
Transportation costs	1,245.00	?
Assembly labour	11,551.00	?
Miscellancous expenses	14,365.00	?
	59,150.00	00

$$
\frac{5,676}{59,150}=\text { ? etc. }
$$

The total, 59,150 , is the constant number by which all the amounts should be divided. But it is easier to perform a series of divisions with a constant divisor by finding its reciprocal and multiplying.
Divide $\frac{1}{59150}$ in the usual manner.
The reciprocal value is 0.00001690617 (refer to page 40 for placing of decimal points). Another rule for placing the decimal point is that there must be as many noughts preceding the reciprocal value of a number as there are integers in the number. The first nought is called the integral nought. (Another method of computing the reciprocal value is as follows: Set up 59150. Press the tabulator key, moving the number to the left end of the setting register. Make positive turns until the bell rings, then make one negative turn, and move one step to the right. Continue in the same manner until the multiplier register is full of figures. An additional figure in the answer is obtained with this method.)
Since we are computing percentages, we can immediately multiply this figure by 100 , that is, move the decimal point two places to the right, making eight decimal places in the following multiplication. Now set up 169062 as the constant multiplicand, and perform the multiplications with the various amounts by the same method as in the example on page 6.
The correctness of the multiplications can be checked by adding the computed percentages, which should total 100.
The percentage distribution is thus $9.60 \%, 23.23 \%$, $4.98 \%, 16.27 \%, 2.10 \%, 19.53 \%$ and 24.29%.

PRINCIPLE: Find the reciprocal of the grand total. Multiply it by the various subtotals.

In calculating with CS1-13 and CA1-13

EXAMPLE:

Find the percentage distribution of the grand total, $59,150.00$, over the following subtotals.

Castings	5,676.00	?
Other raw materials	13,743.00	?
Purchased accessories	2,944.00	?
Production labour	9,626.00	?
Transportation costs	1,245.00	?
Assembly labour	11,551.00	?
Miscellaneous expenses	14,365.00	?
	59,150.00	100

$$
\frac{5,676}{59,150}=? \text { etc. }
$$

The total, 59,150 , is the constant number by which all the amounts should be divided. But it is easier to perform a series of divisions with a constant divisor by finding its reciprocal and multiplying.
Divide $\frac{1}{59150}$ in the usual manner.
The reciprocal value is 0.0000169017 (refer to page 40 for placing of decimal points). Another rule for placing the decimal point is that there must be as many noughts preceding the reciprocal value of a number as there are integers in the number. The first nought is called the integral nought. (Another method of computing the reciprocal value is as follows: Set the main control lever in its right-hand position. Press the NEG key; the direction indicator at the multiplier register will then show black. Set up 59150 and press the tabulator. Press the X key on the CS1-13, and the + key on the CA1-13. An additional figure in the answer is obtained with this method, but the last figure is always " 1 " too high.)
Since we are computing percentages, we can immediately multiply this figure by 100 , that is, move the decimal point two places to the right, making eight decimal places in the following multiplication. Now set up 169062 as the constant multiplicand and perform the multiplications with the various amounts by the same method as in the previous examples - on page 7 for CS1-13 and on page 8 for CA1-13.
The correctness of the multiplications can be checked by adding the computed percentages, which should total 100.
The percentage distribution is thus $9.60 \%, 23.23 \%$, $4.98 \%, 16.27 \%, 2.10 \%, 19.53 \%$ and 24.29%.

For calculating distributions and in various kinds of interest and exchange computations.

THE OPERATION IN FIGURES:

$$
\frac{1}{59150}=0.00001690617
$$

$$
0.00169062 \times 5,676(=9.60)
$$

$$
0.00169062 \times 13,743(=23.23)
$$

$$
0.00169062 \times 2,944(=4.98)
$$

$$
0.00169062 \times 9,626(=16.27)
$$

$$
0.00169062 \times 1,245(=2.10)
$$

$$
0.00169062 \times 11,551(=19.53)
$$

$$
0.00169062 \times 14,365(=24.29)
$$

$$
9.60+23.23+4.98+16.27+
$$

$$
2.10+19.53+24.29(=100.00)
$$

PRINCIPLE: Find the reciprocal of the grand total. Multiply it by the various subtotals.

Addition of the Products of Several Multiplications

In calculating with C1-13, CS1-13 and CA1-13

EXAMPLE:
For checking invoices and calculating different parts of areas.

THE OPERATION IN FIGURES:
87.14×4.23
$+27.16 \times 1.35$
$+31.19 \times 2.43$
$+32.87 \times 1.97$
$+18.13 \times 9.98$
$87.14 \times 4.23+27.16 \times 1.35$ etc. $=$?
In checking a computation of the above type, it is not necessary to check the individual products. Just the grand total.

Do the first multiplication, 87.14×4.23. Clear the setting and multiplier registers but leave the product in the product register. The results of the other multiplications will be added to it.
Multiply 27.16 by 1.35 . Clear only the setting and multiplier registers and continue with the remaining multiplications in the same manner.
When the last operation is completed the product register shows the sum of all the multiplications, 726.7512.
$=726.7512$ The sum is 726.75 .
Some time can be saved by not clearing the multiplier register between multiplications. However it then becomes impossible to check each multiplication.

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

EXAMPLE:

On a wall $8.25 \times 2.65 \mathrm{~m}$. there is a window $2.0 \times 1.4 \mathrm{~m}$. and a door $2.15 \times 0.9 \mathrm{~m}$.

How large is the wallpaper surface?

THE OPERATION IN FIGURES:
8.25×2.65
$(=21.8625)$
-2.00×1.40
$(=19.0625)$
-2.15×0.90

The product of the last multiplication, 2.15×0.90, is also to be subtracted from the number in the product register, so it should also be performed with the multiplier register set to count negative turns.
The wallpaper surface is $17.1275 \mathrm{~m}^{2}$.

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

For invoicing and statistical work and in certain kinds of interest computations.

EXAMPLE:

A firm sold 6 dozen pairs of stockings for 358.75, but 43 defective pairs were returned.

What amount should be credited to the customer?

$$
\frac{358.75 \times 43}{72}=?
$$

a) With $\mathrm{C} 1-13$.

Set up the bigger factor preceded by a nought. Press the tabulator key so that the product will appear in the left end of the product register. The following division can then be performed without clearing the product register.
b) With CS1- 13 semi-automatic multiplication.

Place the main control lever in the centre position and the secondary lever in the right-hand position. Set up the larger factor preceded by a nought. Press the tabulator, and perform the multiplication from left to right. The product now appears in the left end of the product register, in the correct position for the following division.
Clear the setting and the multiplier registers. Set up the divisor, 72, press the tabulator and place the main control lever in the right-hand position before performing division.
c) With CA1-13 fully automatic multiplication.

Place the main control lever in the left-hand position. Set up the smaller factor with a nought before it and press the tabulator, then the \times key. Set up the next factor and add noughts until the first digit reaches the vertical white line across the setting register. In this case it is only one nought. Press the $=$ key.
The product is now in the correct position for the subsequent division.
The amount is 214.25 .

PRINCIPLE: In the "rule of three" problems the multiplication is performed in the left end of the product register so that the product will be in the correct position for the division to follow.

In calculating with $\mathrm{C} 1-13$ and $\mathrm{CS} 1-13$

EXAMPLE:

A dozen glasses cost 3.75. What is the price of 1 , and what is the price of 7 ?

$$
\frac{3.75}{12}=?(\text { each }) \quad \frac{3.75 \times 7}{12}=?(\text { price of } 7)
$$

Both calculations can be performed at the same time in the following manner:
Set up both the 12 and the 7 in the setting register with six noughts between them, thus 120000007 . On CS1-13 set the main control lever in its centre position and the secondary lever in the left-hand position. Press the tabulator key and make positive turns, moving the set-up numerals from left to right, until the number 375 appears in the left end of the product register. The figure 3125 now appears in the multiplier register, and 375 on the left in the product register and 21875 on the right.
The dozen price, 3.75, has thus been divided by 12.
The price per piece 0.3125 .
At the same time, this unit price was multiplied by the 7 on the right end of the setting register.
After four decimals have been marked off, the answer to the second part of the problem is:

7 glasses cost 2.19.

(On CA1-13 this calculation is most easily done in two operations, calculating first the price of one glass and multiplying the result by 7 .)

In estimates or invoices requiring both the unit price and the cost of a given quantity, it often saves time to do both calculations in a single operation.

THE OPERATION IN FIGURES:

120000007×3125

$=375000021875$

Payroll Calculations

In calculating with $\mathrm{C} 1-13$ and $\mathrm{CS} 1-13$

When various additions and deductions have to be made, which require intermediate computations, you should find a way to carry out the operations as a single unit, that is, without clearing the product register.

THE OPERATION IN FIGURES: 4.75×7
$33.25+725.00$
$(160.00+30.00+2.50)$

$$
(=758.25)
$$

-192.50

Check the entries in the following pay statement:
Basic wage 725.00
Overtime, 7 hours at 4.75 per hour 33.25
Taxable income 758.25
Deductions:
Withholding tax 160.00
Tax arrears 30.00
Union dues $2.50 \quad 192.50$
565.75
$725.00+(7 \times 4.75-(160.00+30.00+2.50)=565.75$.
Set up 4.75 and multiply by 7 .
$(=33.25) \quad$ Overtime pay is 33.25 .
Clear the setting and multiplier registers.
Add 725.00.
Taxable income is 758.25 .
Clear setting and multiplier registers only.
The deductions can be added without clearing the product register. Perform the addition to the left of the figures that already appear in this register. Set up 160.00 , then subtract once (do not clear the machine), tabulate and add. Now subtract and add 30.00 and 2.50 in the same way. Make sure that all numbers have the same amount of decimals. This is necessary if the numbers are to come in the correct computing position.
Total deductions amount to 192.50
(the number appears to the left in the product register).
$=565.75$ The net wage is 565.75 (the number appears to the right in the product register).

PRINCIPLE: Let the computed gross wage remain in the product register and add the deductions separately to the left in the same register; the net wage appears simultaneously at the right in the product register.

In calculating with CA1-13
EXAMPLE:
Check the amounts in the following pay statement:
Basic wage $\quad 725.00$
Overtime, 7 hours at 4.75 per hour . . 33.25
Taxable income 758.25
Deductions
Withholding tax........... 160.00
Tax arrears 30.00
Union dues $2.50 \quad 192.50$
565.75
$725.00+(7 \times 4.75)-(160.00+30.00+2.50)=565.75$.
Set up 7 and multiply by 4.75 fully automatically. Overtime pay is 33.25 .

Clear the setting register.
Set up 725.00 and press the ADD key.
Taxable income is 758.25 .
Clear the multiplier register.
Addition and simultaneous subtraction of the deducted amounts can be performed without clearing the product register. Perform the addition to the left of the figures that already appear in this register. To do this, set up seven 9's and press the X key. Since we have two decimals in the product register, two decimals must also be pointed off in the deducted amounts. Set up 160.00 and depress the $=$ key. The amount is now subtracted from the gross wage and is automatically moved to the left in the product register. Clear the setting register with the X key. Set up 30.00 . Press the $=$ key first and then the X key. Lastly, set up 2.50 and proceed in the same manner. The product register now shows both:
Total deductions of 192.50 and
Net wage of 565.75 .

When various additions and deductions have to be made, which require intermediate computations, you should find a way to carry out the operations as a single unit, that is, without clearing the product register.

THE OPERATION IN FIGURES:
7×4.75

$$
(=33.25)
$$

$33.25+725.00$
$(=758.25)$
$160.00+30.00$
-192.50
$=565.75$

PRINCIPLE: Let the computed gross wage remain in the product register and with the help of seven 9's in the invisible mechanism perform simultaneous addition and subtraction of deducted amounts in the same register.

In calculating with CA1-13

This type of calculation is useful in the plumbing electrical and building trades, or wherever work is done on contract.

THE OPERATION IN FIGURES:

$$
\begin{aligned}
& 48 \times 4.75=228.00 \\
& 46.5 \times 4.05=188.33 \\
& 43 \times 3.98=171.14 \\
& 48 \times 4.11=197.28 \\
& 228.00+188.33+171.14+ \\
& \quad 197.28=784.75
\end{aligned}
$$

$1,200.00-784.75$

$$
(=415.25)
$$

$\frac{415.25}{784.75}=0.5291494$

EXAMPLE:

Four workers completed a job for which they received a total of $1,200.00$ in wages.
Check that the surplus pay is divided in proportion to the hours worked and the hourly wage of each worker.

	Number of hours	Hourly wages	Net wages	Gross wages	Surplus pay
A	48	4.75	228.00	348.65	120.65
B	46.5	4.05	188.33	287.98	99.65
C	43	3.98	171.14	261.70	90.56
D	48	4.11	197.28	301.67	104.39
			784.75	$1,200.00$	415.25

First check the net wages by multiplying the number of hours by the hourly wage. Add the net wages, which yields a sum of 784.75 .
The amount of surplus pay is arrived at by subtracting 784.75 from 1,200.00. This operation should be performed to the left in the product register: set up 1,200, tabulate and add. Set up 0784.75, tabulate and strike the \div key.
Now divide the difference, 415.25, by 784.75. Do not clear the machine, but set the main control lever at DIV and go right into the division. The quotient is 0.5291494 . This number is the constant by which each worker's net pay must be multiplied in order to determine surplus pay. Use five decimal places.
Set the main control lever at MULT. After setting up 0.52915 as your multiplication constant, multiply it first by the net wage, 228.00. The surplus is 120.65 .
To get the gross wage, 348.65 , press the \Rightarrow key once, then strike the + key. Clear with the \times key, I and II. Set up 188.33 and press the $=$ key. Surplus pay for the second worker is 99.65 . Press the \Rightarrow key once, then strike the + key. This man's gross wage is 287.98 . Proceed similarly with the wages of the other workers.
Total surplus pay is 415.25 .
Total gross wages is $1,200.00$.

PRINCIPLE: The surplus pay to be distributed must be divided by the sum of the net wages. Use the quotient as the constant factor and multiply by the various net wages. To obtain gross wages, multiply semi-automatically with a further one.

In calculating with CA1-13

EXAMPLE:

a) Compute the square of 179 .
b) Compute the cube of 472 .
a) Set up 179 and press the $=$ key. The answer is 32041 .
b) Set up 472 and press the $=$ key.

THE OPERATION IN FIGURES: 179×179 $(=32041)$
472×472
The answer is 222784.
Clear with the \times key. Set up 222784 , clear the product and multiplier registers, and press the $=$ key. The answer is 105154048 .

PRINCIPLE: In squaring numbers, the number has to be set up once only; in cubing numbers, first compute the square, which is then set up to produce the cube.

In calculating with CA1-13

Multiplication by a Constant Factor, interrupted by separate (a) Multiplication, (b) Division, or (c) Addition. (This method recommends itself for payroll calculations.)

EXAMPLE:

a) $1789 \times 6251=11183039$
$1789 \times 58=103762$
$245 \times 431=105595$
$1789 \times 657=1175373$
b) $1789 \times 913=1633357$
$755 \div 25=30.2$
$1789 \times 72=128808$
c) $1789 \times 418=747802$
$532+169=701$
$1789 \times 16=28624$
a) Set up 1789 and press the \times key. Set up 6251 and press the $=$ key. The answer is 11183039 .
Clear with X key, I and II. Set up 58 and press the = key.
$(=103762) \quad$ The answer is 103762.
245×431
1789×657
1789×913
$755 \div 25$
1789×72
1789×418
$532+169$
1789×16
$(=105595)$
$(=1175373)$
$(=1633357)$

$$
(=747802)
$$

$(\equiv 701)$
$(=28624)$
Clear with the \times key, I and II. Set up 245 and multiply semi-automatically by 431. The answer is 105595. Clear with the \times key, I and II. Set up 657 and press the $=$ key. The answer is 1175373 .
b) Clear with the \times key, I and II. Set up 913 and press the $=$ key. The answer is 1633357 . Clear with the X key, I and II. Set up 755, tabulate and press once on the + key. Clear with \times key and II. Set the main control lever at DIV. Set up 25, tabulate and begin division with the \div key. The
$(=30.2)$ answer is 30.2. (Do not break off division with the SUB-STOP.)
Set the main control lever at MULT and clear with the \times key, I and II. Set up 72 and press the $=$ key. The answer is 128808.
c) Clear with the X key, I and II. Set up 418 and press the $=$ key. The answer is 747802.
Clear with the \times key, I and II. Set up 532 and press the + key. Clear with the \times key. Set up 169 and repeat as above. The answer is 701 .
Clear with the \times key, I and II. Set up 16 and press the $=$ key. The answer is 28624 .

PRINCIPLE: The keys III, ADD and SUB-STOP automatically clear a constant factor.

EXAMPLE:

a) Company A now has total sales of 150,000 as compared with previous sales of 125,000 . What is the percent of increase?
b) Company B now has total sales of 90,000 as compared with previous sales of 125,000 . What is the percent of decrease?
a) $\frac{150,000}{125,000}-100=$?

Set the main control lever at DIV.
Move up 150,000 to the left in the product register. Multiply by 100 by moving the decimal point indicator two places to the right.
Divide by 125,000 in the usual manner. The quotient, 120.00 , shows the relation of 150,000 to 125,000 in percent. The percent sought is the difference between 120 and 100.
The increase is 20%.
b) $\frac{90,000}{125,000}=$?

If you're using an electric machine, set the multiplier register for plus operation before beginning. Move 090000 up to the left in the product register (the zero is needed in front of the number so that dividend and divisor will have the same amount of integers) and multiply by 100 by moving the decimal point indicator two places to the right. Clear the setting register but let the " 1 " remain in the multiplier register. Divide by 125,000 with the multiplier register set for plus. The sought-after percentage (100 minus the percent) will then appear directly.
The decrease is 28%.

In many cases only the percentage change is of interest in comparative statistics on sales, rumning costs, population, etc.

THE OPERATION IN FIGURES:

$\frac{150,000}{125,000}$
$100-\frac{90,000}{125,000}$
$(=120)$
$120-100$
$(=20)$
$(=28)$

PRINCIPLE: An increase in terms of percent is derived from the formula:

A decrease in terms of percent is derived from the formula:

100 - The lower number $\times 100$
The higher number

In calculating with C1-13, CS1-13 and CA1-13

THE OPERATION IN FIGURES:
-260
$+575$
$\div 575$
$(=315) \quad$ The mark-up is $\$ 315.00$.
$=54.7826$
$575-260=$? (mark-up in $\$$).
$\frac{100 \times(575-260)}{575}=$? (mark-up in percent)
Set up 260 , press the tabulator and make a negative turn. The complement of 260 , that is 740 , appears in the product register.
Always make sure that both numbers contain the same amount of integers. Any differences are made up by placing the required amount of noughts ahead of the smaller number.
Clear the setting register and set up 575. Press the tabulator and make a positive turn, and the answer to the first part of the problem will appear in the left end of the product register.

Do not clear the registers.
575 is still in the setting register from the last operation. The division can therefore be done directly, without setting up a new number.
The mark-up in percent is 54.78%.
(If only the mark-up in percent is needed, divide 260 by 575 with the multiplier register set to count positive turns and with the 1 remaining in it.)

PRINCIPLE: When computing percentages always divide by the number of which you want the percentage.

Percentage Calculations

(Mark-up in Money and in Percent of the Cost Price)

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and
CA1-13

EXAMPLE:

Goods costing \$ 630.45 were sold for $\$ 894.30$.
What is the mark-up in $\$$ and in percent over the cost price?
$894.30-630.45=$? (mark-up in \$).
$100 \times \frac{(894.30-630.45)}{630.45}=$? (mark-up in percent)
Set up 894.30, press the tabulator, and transfer it to the product register.
Clear the setting register and set up 630.45. Press the tabulator and make a negative turn.
The mark-up is $\$ 263.85$.
630.45 remains in the setting register, so the division $\div 630.45$
can be performed directly, without clearing the register or setting up a new figure. (On the $\mathrm{C} 1-13$ the multiplier register must be cleared, as it was set to count positive turns when 894.30 was registered.)
The mark-up is 41.85%.
(If the mark-up is to be worked out in percent only, divide 894.30 by 630.45 and reduce the quotient by 100. See example a) on page 20.)

PRINCIPLE: When computing percentages always divide by the number of which you want the percentage.

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

THE OPERATION IN FIGURES:

$\frac{7250}{7}=1,035.7142$
0.75×0.85

$$
=0.6375
$$

$550: 0.6375$

E X A M P L E:
a) At what price must an article costing 725.00 be sold to realize a mark-up of 30% on the selling price?
b) At what price must an article costing 550.00 be sold to realize a mark-up of 25% on the selling price, and at the same time permit a discount of up to 15% ?
a) $\frac{725 \times 100}{70}=$? (selling price)
30% of the selling price is to be mark-up; the remaining 70% represents the cost. Multiply 725 by 100 and divide by 70 in the usual way.
The selling price is $1,035.71$.
b) First work out a factor which will let you compute the price directly. Multiply 75% by 85%.
Divide the cost price by the factor obtained: 0.6375 .
The selling price is 862.75 .
A computation of this kind can be very useful if the same rates of percent occur regularly. In that case, it is best to work out the reciprocal of the constant divisor and multiply by this.

PRINCIPLE: To set prices based on a fixed mark-up of the selling price, use the following formula:
$\frac{100 \times \text { cost }}{100 \times \text { percentage of mark-up }}$

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and
CA1-13

EXAMPLE:

a) An article sells for 1,675 less 5% discount. Find the amount of discount and the net price.
b) An article sells for $125.25+$ an extra charge of 5%. Find the amount of extra charge and the final price.
c) An article sells for $1,002.25$ less 11% discount. Find the net price.
a) $\frac{1,675 \times 5}{100}=$? (discount)

$$
\frac{1,675 \times 95}{100}=\text { ? (net price) }
$$

(C1-13 and CS1-13) Multiply 1675 by 5.
(CA1-13) Set up 95 and press the \times key.
Then set up 1675 and multiply semi-automatically by 5.
The discount is 83.75 .
(C1-13 and CS1-13) Do not clear the registers. Continue to multiply until the number in the multiplier register changes to 95 . (CA1-13) Clear the product and multiplier registers. Press the $=$ key (the " 95 ", of course, has already been set up for multiplication).
The net price is $1,591.25$.
b) $\frac{5 \times 125.25}{100}=$?(extra charge)

$$
\frac{105 \times 125.25}{100}=\text { ? (final price) }
$$

Multiply 125.25 by 5 and divide by 100 .
The extra charge is 6.26 .
Do not clear the registers. Continue to multiply until the number in the multiplier register changes to 105. On CA1- 13 the first multiplication is performed automatically and the second semi-automatically, as in the above example.
The final price is 131.51 .
c) $\frac{89 \times 1,002.25}{100}=$? (net price)

If the net price is all that is needed, multiply the gross amount straightaway by the complement of the discount.
The net price is $\mathbf{8 9 2}$.

Virtually every kind of business is concerned with discounts and net prices. It is therefore good business to simplify this work as much as possible.

THE OPERATION IN FIGURES:
$\frac{1675 \times 5}{100}$
$(=83.75)$
$\frac{1675 \times 95}{100}$
100
$1,591.25$
$\frac{125.25 \times 5}{100}$
$\frac{125.25 \times 105}{100}$
$(=6.2625)$
$=131.5125$
$\frac{1,002.25 \times 89}{100}$
$=892.0025$

PRINCIPLE: To find both the amount of discount and the net price, multiply the gross amount by: (1) the rate of discount; (2) the complement of the discount.
To find both the amount of extra charge and the final price, multiply the net price by:
(1) the rate of extra charge; (2) this rate +100 .

If net price is all that is needed, multiply the gross price by the complement of the discount.

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and

CA1-13

EXAMPLE:

a) The following prices are to be increased 12% : 3.45, 5.75 and 4.60.

Compute the new prices.
b) The following prices are to be reduced $15 \%: 2.76,4.60$ and 5.75.

Compute the new prices.

THE OPERATION IN FIGURES:

112×3.45	$(=386.40)$
112×5.75	$(=644.00)$
112×4.60	$=515.20$

a) $\frac{112 \times 3.45}{100}=$? (new price) etc.

Raising the prices by 12% means that the new prices will be 112% of the old ones. Therefore use 112 as a constant number and multiply it by each of the old prices.
The new prices are 3.86, 6.44 and 5.15 .
85×2.76
$(=234.60)$
b) $(100-15) \times 2.76=$? (new price) etc.
$85 \times 4.60 \quad(=391.00)$
85×5.75
$=488.75$
Reducing the prices by 15% means that the new price will be 85% of the old. Use 85 as a constant number and multiply it by each of the old prices.
The new prices are 2.35, 3.91 and 4.89 .

Computing the Equivalent of a Series of Discounts

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and CA1-13

EXAMPLE:

Find the net amounts:

$$
\begin{array}{r}
1,150-25 \%+5 \%-2.5 \%=? \\
2,250-25 \%+5 \%-2.5 \%=? \\
5,300-25 \%+5 \%-2.5 \%=? \\
725-25 \%+5 \%-2.5 \%=?
\end{array}
$$

In practice there are sometimes a series of bonuses and discounts (so called chain-discount factors) applied to an amount. It saves time to compute a single factor equivalent to the whole series.

The chain-discount factor is found by the following method:

Subtract the discounts from 100.
Add the bonuses to 100 .
Multiply the new numbers by each other.
In the product mark off two decimal places for each factor, in addition to the decimals already contained in the factors.

Multiply: $75 \times 105 \times 97.5$.
The product is 767812.5. Mark off six more decimal places. The chain-discount factor is 0.7678125 .
Use this number as a constant factor and multiply it by each of the initial amounts.
The net amounts are: $882.98,1,727.58,4,069.41$ and 566.66.

Work can be simplified considerably by making out a table of the most usual chain-discount factors.

THE OPERATION IN FIGURES:

$0.75 \times 1.05 \times 0.975$
$(=0.7678125)$

Table of some common chain-discount factors:

	5	-6	-20	+5	+7	+20
$+10-20$	0.836	0.8272	0.704	0.924	0.9416	1.056
$+15-10$	0.98325	0.9729	0.828	0.08675	0.10745	1.242
$-3-20$	0.7372	0.72944	0.6208	0.8148	0.83032	0.9312
$-5-40$	0.5415	0.5358	0.456	0.5985	0.6099	0.684
$-13-17$	0.685995	0.678774	0.57768	0.758205	0.772647	0.86652
$-20-30$	0.532	0.5264	0.448	0.588	0.5992	0.672

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

EXAMPLE:

What is the interest on $2,784.45$ for 147 days at $31 / 2 \%$?

THE OPERATION IN FIGURES:
147×3.5
0514.5×2784.45
$(=1432599.525)$
$\div 36000$
$\frac{2,784.45 \times 147 \times 3.5}{360 \times 100}=$? (interest).
Multiply the two smaller figures, 147×3.5. The product is 514.5 . Clear the setting register.
The next multiplication is to be carried out at the left end of the product register. Set up the number preceded by a nought, 0514.5 , so as not to exceed the capacity of the machine. Clear the product and multiplier registers.
Move the number to the left with the tabulator. On C1-13 and CS1-13 the multiplication is performed from left to right, by the number 2784.45. On CA1-13 the multiplication is done by the fullyautomatic method. The product is 1432599.525 .
This figure appears at the left end of the product register, in the correct position for the division to follow. Clear the setting and multiplier registers and divide by 36000 .
The result appears in the multiplier register.
$=39.79443$ The interest is thus 39.79.

PRINCIPLE: When a multiplication is to be followed immediately by a division, use the tabulator and carry it out at the left end of the product register. The number to be multiplied must be set up with a nought in front of it, so that the capacity of the machine will not be exceeded.

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

EXAMPLE:

What is the interest on $4,735.00$ for 156 days at $31 / 4 \%$?
$\frac{4,735 \times 156 \times 3.25}{100 \times 360}=$? (interest).
In the table on page 46 the interest divisor for $31 / 4 \%$ appears as 11076.923. By using this divisor the computation is simplified to the following:

$$
\frac{4,735 \times 156}{11,076.923}
$$

THE OPERATION IN FIGURES:

$\frac{360 \times 100}{3.25}$
$=11076.923$
(found in table 8)
$4,735 \times 156$
$(=738,660)$
which is an ordinary rule-of-three problem.
Do the multiplication at the left end of the product register, and then divide.
The interest is 66.68 .

PRINCIPLE: Compute interest with the interest divisor by this formula:

$$
\frac{\text { capital } \times \text { days }}{\text { interest divisor }}
$$

Mutiplication of a Number by a Very Large Factor

In calculating with $\mathrm{C} 1-13$ and $\mathrm{CS} 1-13$

THE OPERATION IN FIGURES:
8002.16×105
$(=840226.80)$
$84+$
78365×105

EXAMPLE:

$105 \times 783,658,002.16$
$105 \times 783,658,002.16=$?
Set up the last six figures of the multiplicand, 8002.16, and multiply by 105. 840226.80 appears in the product register. Write down the last six of these figures (that is as many figures as there are in the multiplicand,) 0226.80.

Clear the setting register and set up the remaining figures, 84. Clear the product and multiplier registers.
Transfer 84 to the product register. Clear the setting and multiplier registers and set up the rest of the figures in the original multiplicand, 78365. Multiply again by 105. In the product register the figure 8228409 appears which is noted to the left of the six figures previously written down.
The product is $82,284,090,226.80$.

PRINCIPLE: In multiplying a number too large to fit into the setting register, the number can be multiplied in sections.

In calculating with CA1-13

EXAMPLE:
$105 \times 783,658,002.16$

$105 \times 783,658,002.16=$?
Set up 105 and multiply by the last six figures of the multiplicand, 8002.16. The number 840226.80 appears in the product register. Write down the last six of these figures (that is, as many as are in the multiplicand), 0226.80.
Clear the setting register with the \times key and set up the remaining figures, 84 . Clear the product and multiplier registers.
Press the + key. Clear the setting register with the \times key and set up the rest of the figures in the original multiplicand, 78365. Multiply by 105, which is still in the invisible register, by pressing the $=$ key.
The number in the product register is 8228409 , which is noted to the left of the six figures previously written down.

The product is $82,284,090,226.80$.

In physics, mathematics, astronomy, and other scientific fields, and in various kinds of statistics, such large numbers are sometimes used that a calculation has to be done in two or more operations.

THE OPERATION IN FIGURES:

$105 \times 8002.16 \quad(=840226.80)$
$84+$
105×78365
$=8228409$

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

In physics, mathematics, astronomy, and other scientific fields, and in various kinds of statistics, such large numbers are sometimes used that a calculation has to be done in two or more operations.

THE OPERATION IN FIGURES:

267536
712652
$\frac{253320}{7127}$
24.8916275
4.39732561
0.00276454740
$(=0.3754090)$
4.3973

EXAMPLE:

> a) $\frac{267536}{712652}=$?
> b) $\frac{24.8916275}{4.39732561}=$?
a) $\frac{267536}{712652}=$?

Do the division in the usual way, and write down the quotient 0.3754090. Leave the remainder, 253320, in the product register. Clear the multiplier and setting registers.
Set up the divisor shortened to four figures, that is, 7127. Move the number one step to the left so that it will be in the correct position for division into the number in the product register. This division adds two more decimals, 35, to the quotient above.
The quotient is 0.375409035 .
b) $\frac{24.8916275}{4.39732561}=$?

Do the division in the usual way. Write down the quotient, 5.660, and leave the remainder, 276454740, in the product register. Divide the remainder by a shortened divisor, as in the above example. If four more decimals are needed, the divisor must be reduced to five figures, or 4.3973 .
The quotient is $\mathbf{5 . 6 6 0 6 2 8 6}$.
If this method does not produce a large enough number of decimals, the longer method must be used. That is, do the first division in the same way and write down the quotient, and then set up the remainder in the left end of the product register and continue the division with the original divisor. This process can be repeated, adding further decimals, as long as there is a remainder.

PRINCIPLE: After dividing in the usual way, further decimals can be secured in the quotient by dividing the remainder by a shortened divisor. This only needs to have one figure more than the number of digits to be added in the quotient.

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and CA1-13

EXAMPLE:

a) What is the price of 7 pieces when a dozen cost 3.80?
b) Compute the following prices:

a) $\frac{7 \times 3.80}{12}=$? etc.

THE OPERATION IN FIGURES:

It is helpful to convert frequently recurring common fractions to decimals. The table of twelfths below contains the decimal values of $\frac{1}{12}$ multiplied by 1 to 11.

This shows the decimal value of $\frac{7}{12}$ to be 0.58333 . $\quad \frac{7}{12}=0.58333$ (see table) Multiply that number by 3.80 .
Seven pieces cost 2.22.
$0.58333 \times 3.80=2.216654$
b) $\frac{5 \times 4.65}{12}=$?

Do the computations by the same method as above, using the table.
The prices are $1.94,0.92,11.46$, and 0.70 .

```
0.41667\times4.65 = 1.9375155
0.66667\times1.38 = 0.9200046
0.91667\times12.50=11.458375
0.08333\times8.40}=0.69997
```

Table of twelfths converted to decimals

1	0.08333	5	0.41667	9	0.75
2	0.16667	6	0.5	10	0.83333
3	0.25	7	0.58333	11	0.91667
4	0.33333	8	0.66667		

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

In insurance mathematics, linear interpolation of a function given in the insurance tables for whole years is often necessary. This is required when seeking the value of the function for some arbitrary time between two whole-year ages reported in the table.

THE OPERATION IN FIGURES:

$81,903 \times 0.58333(=47,776.47699)$
$+80,897 \times 0.41667$
$=81,483.82998$

EXAMPLE:

The probable number of people still alive at 41 years of age out of a group of 100,000 live births (the known whole-year value of the function 141) is $81,903$.

The whole-year value of the function 142 is 80,897 . Find the value for 41 years and 5 months, that is, the function $1415 / 12$.
$7 / 12 \times 81,903+5 / 12 \times 80,897=$?
The rule is that the younger whole-year value is multiplied by the interval from the required age to the older whole-year age, and that the older whole-year value is multiplied by the interval from the younger whole-year age to the required age. The intervals must always be measured in fractions of the total interval between the two whole-year ages for which the functions are given. In this case it is fractions of one year.
Find the decimal values of $7 / 12$ and $5 / 12$ in the table on page 31.
Multiply 81,903 by 0.58333 , using the latter number as the multiplier.
Clear only the setting register.
Multiply 80,897 by 0.41667 , using the latter number as the multiplier.
The result appears in the product register.
The function $1415 / 12$ is thus $=81,484$.

PRINCIPLE: Using the decimal values for the intervals as the muitipliers provides a check in the multiplier register that their sum is 1.

Extracting Square Roots

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

EXAMPLE:

Compute $\sqrt{689.75}$ with 6 digits.

$\sqrt{689.75}=$?
First divide the number into two-digit groups, beginning at the decimal point: the integers from right to left, the decimal numbers from left to right. The groups thus obtained read 6-89-75.
Consult table 9 on page 47 to find a lower number whose square comes closest to the first two number groups, 6-89. This number is 686.4, which is the square of 26.2 .
Now divide 68975 by 262. 26326335 appears in the multiplier register. The first two figures, 26, correspond to the divisor, but the third figure is a " 3 " instead of a "2".
Since you divided by 262, you must get 262 in the answer. Divide the excess " 1 " and the following figures by 2, which is easiest to do mentally.
$(263263-262000=1263)$ divide 1263 by 2 , which gives you 631 preceded by 262, or 262631 (you want six digits in the answer).
As many integers are obtained in the root as there are groups of integers in the number, in this case 2.
The answer: 26.2631.

In extracting the square root of a number, first divide it into groups of two digits each. Start from the decimal point and divide the whole numbers from right to left and the decimal numbers from left to right.

THE OPERATION IN FIGURES:

$$
\frac{689,05}{26,25}
$$

$=26,249523$

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

Although the Facit machines work by the decimal system, it is possible to do all four arithmetic operations with English currency.

THE OPERATION IN FIGURES:
43.019 .011
7.009.010
8.010 .010
17.018 .009
16.015 .011
91.071 .051
$+\quad 988$
$+\quad 988$
$+\quad 988$
$+\quad 988$
+980000
$+\quad 980000$
$\begin{array}{r}980000 \\ \hline\end{array}$
$=94015003$

EXAMPLE:

Check the following addition:

$£$	s	d
43	19	11
+7	9	10
+8	10	10
+17	18	9
+16	15	11
$£ 94$	$15 s$	$3 d$

First divide the product register into three number groups, using the decimal indicators. The two groups on the right, of three digits each, are for shillings and pence; the remainder is for pounds.
In setting up the various figures, noughts must be placed before the shilling and pence amounts so they will fall in the correct position. Set up 43,019,011 and add the other amounts, setting them up in the same manner. The sum appears in the product register, 91,071,051.
This amount now has to be converted to its proper equivalent in pounds, shillings and pence.
There are twelve pence in a shilling; set up the complement of 12 preceded by 9, that is, 988. Make positive turns, observing that with each one the number of pence is reduced by 12 and the number of shillings increased by 1. Three pence will remain when the shilling value has been taken out of the pence column. Clear the setting register.
There are 20 shillings in a pound; set up the complement of 20 preceded by 9 , that is, 980 . Add three noughts so the number will fall in the shilling column, thus: 980000.
Make positive turns the same as before, until the number of shillings is less than 20. Finally 15 shillings will remain and the pound column be increased by 3 .
The final sum is $£ 9415 \mathrm{~s}$. 3 d .

PRINCIPLE: In adding English currency, divide the product register into three number groups, using the decimal indicators.

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and CA1-13

EXAMPLE:

The total cost of a shipment of tea is £94.15.3.
Freight and other costs amounted to $£ 12.17 .8$.
What is the net price?
£ 94 15s. 3d.

THE OPERATION IN FIGURES:
£ 1217 s .8 d.
£? ? ?
Divide the product register as in the previous example, using the decimal indicators. Then set up 94,015,003 in the product register.
Subtract $£ 12.17 .8$ set up in the same manner, that is, $12,017,008$. The product register contains $81,997,995$.
Set up the complements of 20 and 12 together, with a 9 before each, that is, 980,988 , and make a negative turn.
A negative turn must be made for each pound or shilling which has been borrowed. In repeated subtractions several negative turns may be required with one or both of the above complements set up.
The amount which then appears in the product register shows that
The net price is $£ 8117 \mathrm{~s} 7 \mathrm{~d}$.

PRINCIPLE: In subtracting English currency amounts, divide the product register into three number groups, using the decimal indicators.

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

Multiplication of English currency can be done in two ways: by the pence method and by the decimal method.

THE OPERATION IN FIGURES:

$$
\begin{array}{r}
5 \times 240 \\
+\quad 7 \times 12
\end{array}
$$

$+10$
$=1,294$
$3.75 \times 1,294$
$\div 240.0=20.2$ (remainder 4.50)

EXAMPLE:

An English firm delivered 3 lb .12 oz . of goods at a price of $£ 5.7 .10$ per lb .

What did the shipment cost?

Convert: 3 lbs. 12 ozs. to decimals $=3.75$ (see table 5, page 44).

$$
3.75 \times(5 \times 240+7 \times 12+10)=?
$$

Convert the amount to pence, performing the operation without clearing the product register between multiplications.
The result is 1,294 .
Multiply in the usual way by 3.75. The product, $4,852.50$, is to be converted to pounds and shillings by dividing.
One decimal is required in the quotient, and since there are two in the product register there must be one in the setting register.
There are 240 pence in a pound. Set up 240.0 and move the number two places to the left so the 2 will be under the first figure of the number in the product register.
After dividing in the usual way, 20.2 appears in the multiplier register and 4.50 remains in the product register.
This gives the answer, $£ 204 \mathrm{~s} .41 / 2 \mathrm{~d}$.
Note: The number of shillings is found by doubling the first decimal in the pound figure.
If the remainder in the product register is more than 12 , the shillings are increased by 1 and the pence are reduced by 12 .

PRINCIPLE: In the pence method the whole amount is converted to pence before carrying out the computation.

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and $\mathrm{CA} 1-13$

EXAMPLE:
a) Multiply: $3.75 \times £ 5.7 .10$.
b) A shipment of cotton valued at $£ 148.16 .5$ cost £17.10. 10 in freight charges.

What percent of the value are the freight charges?

a) $3.75 \times £ 5.7 .10=$?

The decimal value in pounds of 7 shillings and 10 pence may be found in table 2 on page 42. The total amount expressed in decimals is thus $£ 5.39167$. Multiply this by 3.75 in the usual way.
The product is 20.2187625 .
The number 20 is whole pounds. The decimals are to be converted to shillings and pence, again using the table. Find the value nearest to 0.2187625 . This is 0.21667 , corresponding to 4 shillings and 4 pence.

The answer is $£ 204$ s. 4 d .
A more accurate value can be secured by subtracting:

$$
0.2187625-0.21667=0.0020925
$$

The difference is compared with the decimals below the table which give parts of pence.
The more accurate value is thus $£ 204 \mathrm{~s} .4^{1 / 2 d}$.
b) $\frac{£ 17.10 .10 \times 100}{£ 148.16 .5}=$?

Use table 2 to convert the shillings and pence to decimals of pounds:

$$
\frac{17.54167 \times 100}{148.82083}
$$

1754.167 148.82083

Carry out the division as usual.
The percentage is 11.8%.

PRINCIPLE: Division with English currency amounts is done by the decimal method. Use table 2 to convert shillings and pence to decimals of a $£$ 。

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and CA1-13

E X A MPLE:

a) Convert $£ 27.3 .8$ to $\mathrm{Sw} . \mathrm{Cr}$. at the rate of 14.50.
b) Convert Sw. Cr. 1,286.75 to English currency at the rate of 14.50 .

THE OPERATION IN FIGURES:
27.18333×14.50
$=394.16$
$\frac{1,286.75}{14.50}$
a) $£ 27.3 .8 \times 14.50=$?

In table 2 on page 42 find the decimal value in pounds of 3 s .8 d . The total amount in decimals is thus 27.18333; multiply by 14.50 in the usual way.

The answer is Sw. Cr. 394.16.
$=88.74137$ Divide in the usual way; the quotient is $£ 88.74137$. Use table 2 on page 42 to convert the decimals to shillings and pence.
The answer is $£ 8814 \mathrm{~s} .10 \mathrm{~d}$.

PRINCIPLE: In converting foreign currency to your own money, multiply the amount by the exchange rate.
In converting your own money to foreign currency, divide the amount by the exchange rate.

In calculating with $\mathrm{C} 1-13, \mathrm{CS} 1-13$ and CA1-13

EXAMPLE:

a) $304.50: 15.4=19.772727$
b) $98.67: 1344.78=0.073372596$
c) $18.09: 0.003=6030$
d) $0.0009: 1.69=0.00053254437$
a) Set up 30450 and 154 for division in the usual way, i.e. with the dividend appearing at the extreme left in the product register. However, do not begin the division. Place a decimal point after 304, which leaves room for 10 decimals in the product register. The setting register shows 154000 , which leaves room for 4 decimals. Take the difference between 10 and 4 , and mark off 6 decimal places in the multiplier register.
The answer is 19.772727.
b) Set up the numbers. 11 decimals appear in the product register and 2 in the setting register, which means that the answer must have 9 decimals. One decimal is missing, however, since the multiplier register only has room for 8 . The missing decimals are always noughts, which are placed ahead of the decimals appearing in the multiplier register. Write down the missing noughts before starting the operation. (Do not forget the integer nought.)
The answer is 0.073372596 .
c) Set up 18.09 and the 3 alone without the preceding noughts. 11 decimals appear in the product register, while the setting register will show 6 decimals plus the 2 noughts which are also to the right of the decimal point but haven't been set up, making 8 decimals in all. Mark off 3 decimal places in the multiplier register.
The answer is 6030.
d) Set up the 9 alone without the preceding noughts, and set up 1.69. The register will show $13+3$ (the three noughts preceding 9) $=16$ decimals. 5 decimals will appear in the setting register. $16-5=11$ decimals in the multiplier register. Since this register only has room for 8 decimals, the answer will begin with 0.000 . The answer is 0.00053254437 .

THE OPERATION IN FIGURES: 304.50:15.4

$(=19.772727)$
98.67:1344.78
$(=0.073372596)$
$18.09: 0.003$
$(=6030)$
$0.0009: 1.69$
$(=0.00053254437)$

PRINCIPLE: Subtract the decimals in the setting register from the decimals in the product register to obtain the number of decimals in the multiplier register.

TABLES

$$
\begin{aligned}
& 1 \text { Conversion of pence (inches) to decimals } \\
& \text { of } 1 \text { shilling (1 foot) } 41
\end{aligned}
$$

2 Conversion of shillings and pence to decimals of £1 42
3 Conversion of hundredweights (cwts.), quarters (qrs.), and pounds (lbs.) to decimals of 1 long ton 43
4 Conversion of quarters (qrs.), and pounds (lbs.) to decimals of 1 hundred- weight (cwt.) 44
5 Conversion of ounces to decimals of 1 lb 44
6 Conversion of common fractions to decimal fractions 45
7 Table of Interest Factors 46
8 Table of Interest Divisors 46
9 Table of Squares 47

TABLE Conversion of pence (inches) to decimals of 1 shilling (1 foot)

1 pence (inch) $=0.083333$ shilling (foot)

pence (inches)	0	$1 / 8$	$1 / 4$	$3 / 8$	$1 / 2$	$5 / 8$	$3 / 4$	$7 / 8$
	0.	0.	0.	0.	0.	0.	0.	0.
0	00000	01042	02083	03125	04167	05208	06250	07292
1	08333	09375	10417	11458	12500	13542	14583	15625
2	16667	17708	18750	19792	20833	21875	22917	23958
3	25000	26042	27083	28125	29167	30208	31250	32292
4	33333	34375	35417	36458	37500	38542	39583	40625
5	41667	42708	43750	44792	45833	46875	47917	48958
6	50000	51042	52083	53125	54167	55208	56250	57292
7	58333	59375	60417	61458	62500	63542	64583	65625
8	66667	67708	68750	69792	70833	71875	72917	73958
9	75000	76042	77083	78125	79167	80208	81250	82292
10	83333	84375	85417	86458	87500	88542	89583	90625
11	91667	92708	93750	94792	95833	96875	97917	98958

$1 / 32$ penny $=0.00260$ shilling $\quad 1 / 16$ penny $=0.00521$ shilling $\quad 3 / 32$ penny $=0.00781$ shilling

TABLE Conversion of shillings and pence

to decimals of $£ 1$.

$£ 1=20 \mathrm{~s} ., 1 \mathrm{~s} .=12 \mathrm{~d}$.

d.	0	1	2	3	4	5	6	7	8	9.	10	11
s.												
0	0.00	0.00417	0.00833	0.01250	0.01667	0.02083	0.02500	0.02917	0.03333	0.03750	0.04167	0.04583
1	05	05417	05833	06250	06667	07083	07500	07917	08333	08750	09167	09583
2	10	10417	10833	11250	11667	12083	12500	12917	13333	13750	14167	14583
3	15	15417	15833	16250	16667	17083	17500	17917	18333	18750	19167	19583
4	20	2041	20833	21250	21667	22083	22500	229	23333	23750	24167	24583
5	25	25417	25833	26250	26667	27083	27500	27917	28333	28750	29167	29583
6	30	3041	30833	31250	31667	32083	32500	32917	33333	33750	34167	34583
7	35	35417	35833	36250	36667	37083	37500	37917	38333	38750	39167	39583
8	40	40417	40833	41250	41667	42083	42500	42917	43333	43750	44167	44583
9	45	45417	45833	46250	46667	47083	47500	479	48333	48750	49167	49583
10	50	50417	50833	51250	51667	52083	52500	52917	53333	53750	54167	54583
11	55	55417	55833	56250	56667	57083	57500	57917	58333	58750	59167	59583
12	60	60417	60833	61250	61667	62083	62500	62917	63333	63750	64167	64583
13	65	6541	65833	66250	66667	67083	67500	6791	68333	68750	69167	69583
14	70	70417	70833	71250	71667	72083	72500	72917	73333	73750	74167	74583
15	75	75417	75833	76250	76667	77083	77500	77917	78333	78750	79167	79583
16	80	80417	80833	81250	81667	82083	82500	82917	83333	83750	84167	84583
17	85	85417	85833	86250	86667	87083	87500	87917	88333	88750	89167	89583
18	90	90417	90833	91250	91667	92083	92500	92917	93333	93750	94167	94583
19	95	95417	95833	96250	96667	97083	97500	97917	98333	98750	99167	99583

$1 / 4$ penny $=£ 0.00104,1 / 2$ penny $=£ 0.00208,3 / 4$ penny $=£ 0.00312$

TABLE Conversion of cwts., qrs. and lbs.
3 to decimals of 1 long ton
$1 \mathrm{lb} .=0.000446429$ ton, $1 / 2 \mathrm{lb} .=0.000223$ tons
The table shows 6 decimal places.

	Cwts. Tons		$\begin{array}{cc} 2 & 4 \\ 0.1 & 0.2 \end{array}$	$\begin{array}{cc} 6 & 8 \\ 0.3 & 0.4 \end{array}$	$\begin{array}{ll} 10 & 12 \\ 0.5 & 0.6 \end{array}$	$\begin{array}{ll} 14 & 16 \\ 0.7 & 0.8 \end{array}$	$\begin{array}{r} 18 \\ 0.9 \end{array}$	
1 l.	0 cwt .				1 cwt .			
	0 qr .	1 qr .	2 qrs.	3 qrs.	0 qr.	1 qr .	2 qrs.	3 qrs.
0	0.000000	0.012500	0.025000	0.037500	0.050000	0.062500	0.075000	0.087500
1	00446	12946	25446	37946	50446	62946	75446	87946
2	00893	13393	25893	38393	50893	63393	75893	88393
3	01339	13839	26339	38839	51339	63839	76339	88839
4	01786	14286	26786	39286	51786	64286	76786	89286
5	02232	14732	27232	39732	52232	64732	77232	89732
6	02679	15179	27679	40179	52679	65179	77679	90179
7	03125	15625	28125	40625	53125	65625	78125	90625
8	03571	16071	28571	41071	53571	66071	78571	91071
9	04018	16518	29018	41518	54018	66518	79018	91518
10	04464	16964	29464	41964	54464	66964	79464	91964
11	04911	17411	29911	42411	54911	67411	79911	92411
12	05357	17857	30357	42857	55357	67857	80357	92857
13	05804	18304	30804	43304	55804	68304	80804	93304
14	06250	18750	31250	43750	56250	68750	81250	93750
15	06696	19196	31696	44196	56696	69196	81696	94196
16	07143	19643	32143	44643	57143	69643	82143	94643
17	07589	20089	32589	45089	57589	70089	82589	95089
18	08036	20536	33036	45536	58036	70536	83036	95536
19	08482	20982	33482	45982	58482	70982	83482	95982
20	08929	21429	33929	46429	58929	71429	83929	96429
21	09375	21875	34375	46875	59375	71875	84375	96875
22	09821	22321	34821	47321	59821	72321	84821	97321
23	10268	22768	35268	47768	60268	72768	85268	97768
24	10714	23214	35714	48214	60714	73214	85714	98214
25	11161	23661	36161	48661	61161	73661	86161	98661
26	11607	24107	36607	49107	61607	74107	86607	99107
27	12054	24554	37054	49554	62054	74554	87054	99554

TABLE Conversion of qrs. and lbs. to decimals of 1 cwt .
$1 \mathrm{lb} .=0.00892857 \mathrm{cwt}$.

Ib.	0 qr.	1 q qr.	2 qrs.	3 qrs.
0	0.00000	0.25000	0.50000	0.75000
1	00893	25893	50893	75893
2	01786	26786	51786	76786
3	02679	27679	52679	77679
4	03571	28571	53571	78571
5	04464	29464	54464	79464
6	05357	30357	55357	80357
7	06250	31250	56250	81250
8	07143	32143	57143	82143
9	08036	33036	58036	83036
10	08929	33929	58929	83929
11	09821	34821	59821	84821
12	10714	35714	60714	85714
13	11607	36607	61607	86607
14	12500	37500	62500	87500
15	13393	38393	63393	88393
16	14286	39286	64286	89286
17	15179	40179	65179	90179
18	16071	41071	66071	91071
19	16964	41964	66964	91964
20	17857	42857	67857	92857
21	18750	43750	68750	93750
22	19643	44643	69643	94643
23	20536	45536	70536	95536
24	21429	46429	71429	96429
25	22321	47321	72321	97321
26	23214	48214	73214	98214
27	24107	49107	74107	99107
	$1 / 2$ lb.	$=0.00446$ cwt.		

TABLE Conversion of ozs. 5 to decimals
$1 \mathrm{oz} .=0.062500 \mathrm{lb}$.

oz.	lb.	oz.	lb.
		8	0.500000
$1 / 4$	0.015625	$81 / 4$	515625
$1 / 2$	031250	81/2	531250
$3 / 4$	046875	$83 / 4$	546875
1	062500	9	562500
$11 / 4$	078125	91/4	578125
11/2	093750	91/2	593750
$13 / 4$	109375	93/4	609375
2	125000	10	625000
$21 / 4$	140625	101/4	640625
21/2	156250	101/2	656250
$2^{3 / 4}$	171875	103/4	671875
3	187500	11	687500
$31 / 4$	203125	111/4	703125
$31 / 2$	218750	111/2	718750
$33 / 4$	234375	113/4	734375
4	250000	12	750000
$41 / 4$	265625	121/4	765625
$41 / 2$	281250	121/2	781250
$4^{3 / 4}$	296875	123/4	796875
5	312500	13	812500
$51 / 4$	328125	$13^{1 / 4}$	828125
51/2	343750	$13^{1 / 2}$	843750
53/4	359375	133/4	859375
6	375000	14	875000
61/4	390625	141/4	890625
$61 / 2$	406250	141/2	906250
$6^{3 / 4}$	421875	143/4	921875
7	437500	15	937500
$71 / 4$	453125	151/4	953125
71/2	468750	151/2	968750
$73 / 4$	484375	153/4	984375

TABLE Conversion of common fractions 6 to decimal fractions
a) 4 ths, 8 ths, 16 ths, 32 nds

b) 6 ths, 12 ths

$1 / 6$	$1 / 12$	
	1	0.08333
1	2	16667
	3	25000
2	4	33333
	5	41667
3	6	50000
	7	58333
4	8	66667
	9	75000
5	10	83333
	11	91667

c) 30 th

$1 / 30$	
1	0.03333
2	6667
3	10000
4	3333
5	6667
6	20000
7	3333
8	6667
9	30000
10	3333
11	6667
12	40000
13	3333
14	6667
15	50000
16	3333
17	6667
18	60000
19	3333
20	6667
21	70000
22	3333
23	6667
24	80000
25	3333
26	6667
27	90000
28	3333
29	6667

1 year $=360$ days

$\%$	0	\mid		
$1 / 4$	$1 / 2$	$3 / 4$		
0	0.0000000000	0.0000069444	0.0000138889	0.0000208333
1	0277778	0347222	0416667	0486111
2	0555555	0625000	0694444	0763889
3	0833333	0902778	0972222	1041667
4	1111111	1180556	1250000	1319444
5	1388889	1458333	1527778	1597222
6	1666667	1736111	1805556	1875000
7	1944444	2013889	2083333	2152778
8	2222222	2291667	2361111	2430556
9	2500000	2569444	2638889	2708333
10	2777778	2847222	2916667	2986111
11	3055556	3125000	3194444	3263889
12	3333333	3402778	3472222	3541667
13	3611111	3680556	3750000	3819444
14	3888889	3958333	4027778	4097222
15	4166667	4236111	4305556	4375000

TABLE Table of Interest Divisors
1 year $=360$ days

$\%$	0	$1 / 4$	$1 / 2$	$3 / 4$
0		144000.000	72000.000	48000.000
1	36000.000	28800.000	24000.000	20571.429
2	18000.000	16000.000	14400.000	13090.909
3	12.000 .000	11076.923	10285.714	9600.000
4	9000.000	8470.588	8000.000	7578.947
5	7200.000	6857.143	6545.455	6260.870
6	6000.000	5760.000	5538.462	5333.333
7	5142.857	4965.517	4800.000	4645.161
8	4500.000	4363.636	4235.294	4114.286
9	4000.000	3891.892	3789.474	3692.308
10	3600.000	3512.195	3428.571	3348.837
11	3272.727	3200.000	3130.435	3063.830
12	3000.000	2938.776	2880.000	2823.529
13	2769.231	2716.981	2666.667	2618.182
14	2571.429	2526.316	2482.759	2440.678
15	2400.000	2360.656	2322.581	2285.714

TABLE Table of Squares, correct to the nearest fourth figure. The first three figures of the square root can be read from the table, and the fourth interpolated. Then by dividing, the desired root is secured in 7 or 8 figures.

$\sqrt{ }$. 0	. 1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	. 9
10	100.0	102.0	104.0	106.1	108.2	110.3	112.4	114.5	116.6	118.8
11	121.0	123.2	125.4	127.7	130.0	132.3	134.6	136.9	139.2	141.6
12	144.0	146.4	148.8	151.3	153.8	156.3	158.8	161.3	163.8	166.4
13	169.0	171.6	174.2	176.9	179.6	182.3	185.0	187.7	190.4	193.2
14	196.0	198.8	201.6	204.5	207.4	210.3	213.2	216.1	219.0	222.0
15	225.0	228.0	231.0	234.1	237.2	240.3	243.4	246.5	249.6	252.8
16	256.0	259.2	262.4	265.7	269.0	272.3	275.6	278.9	282.2	285.6
17	289.0	292.4	295.8	299.3	302.8	306.3	309.8	313.3	316.8	320.4
18	324.0	327.6	331.2	334.9	338.6	342.3	346.0	349.7	353.4	357.2
19	361.0	364.8	368.6	372.5	376.4	380.3	384.2	388.1	392.0	396.0
20	400.0	404.0	408.0	412.1	416.2	420.3	424.4	428.5	432.6	436.8
21	441.0	445.2	449.4	453.7	458.0	462.3	466.6	470.9	475.2	479.6
22	484.0	488.4	492.8	497.3	501.8	506.3	510.8	515.3	519.8	524.4
23	529.0	533.6	538.2	542.9	547.6	552.3	557.0	561.7	566.4	571.2
24	576.0	580.8	585.6	590.5	595.4	600.3	605.2	610.1	615.0	620.0
25	625.0	630.0	635.0	640.1	645.2	650.3	655.4	660.5	665.6	670.8
26	676.0	681.2	686.4	691.7	697.0	702.3	707.6	712.9	718.2	723.6
27	729.0	734.4	739.8	745.3	750.8	756.3	761.8	767.3	772.8	778.4
28	784.0	789.6	795.2	800.9	806.6	812.3	818.0	823.7	829.4	835.2
29	841.0	846.8	852.6	858.5	864.4	870.3	876.2	882.1	888.0	894.0
30	900.0	906.0	912.0	918.1	924.2	930.3	936.4	942.5	948.6	954.8
31	961.0	967.2	973.4	979.7	986.0	992.3	998.6	1005	1011	1018
32	1024	1030	1037	1043	1050	1056	1063	1069	1076	1082
33	1089	1096	1102	1109	1116	1122	1129	1136	1142	1149
34	1156	1163	1170	1176	1183	1190	1197	1204	1211	1218
35	1225	1232	1239	1246	1253	1260	1267	1274	1282	1289
36	1296	1303	1310	1318	1325	1332	1340	1347	1354	1362
37	1369	1376	1384	1391	1399	1406	1414	1421	1429	1436
38	1444	1452	1459	1467	1475	1482	1490	1498	1505	1513
39	1521	1529	1537	1544	1552	1560	1568	1576	1584	1592
40	1600	1608	1616	1624	1632	1640	1648	1656	1665	1673
41	1681	1689	1697	1706	1714	1722	1731	1739	1747	1756
42	1764	1772	1781	1789	1798	1806	1815	1823	1832	1840
43	1849	1858	1866	1875	1884	1892	1901	1910	1918	1927
44	1936	1945	1954	1962	1971	1980	1989	1998	2007	2016
45	2025	2034	2043	2052	2061	2070	2079	2088	2098	2107
46	2116	2125	2134	2144	2153	2162	2172	2181	2190	2200
47	2209	2218	2228	2237	2247	2256	2266	2275	2285	2294
48	2304	2314	2323	2333	2343	2352	2362	2372	2381	2391
49	2401	2411	2421	2430	2440	2450	2460	2470	2480	2490

Table of Squares (Continued from p. 47)

$\sqrt{ }$. 0	.1	. 2	. 3	. 4	. 5	. 6	. 7	. 8	9.
50	2500	2510	2520	2530	2540	2550	2560	2570	2581	2591
51	2601	2611	2621	2632	2642	2652	2663	2673	2683	2694
52	2704	2714	2725	2735	2746	2756	2767	2777	2788	2798
53	2809	2820	2830	2841	2852	2862	2873	2884	2894	2905
54	2916	2927	2938	2948	2959	2970	2981	2992	3003	3014
55	3025	3036	3047	3058	3069	3080	3091	3102	3114	3125
56	3136	3147	3158	3170	3181	3192	3204	3215	3226	3238
57	3249	3260	3272	3283	3295	3306	3318	3329	3341	3352
58	3364	3376	3387	3399	3411	3422	3434	3446	3457	3469
59	3481	3493	3505	3516	3528	3540	3552	3564	3576	3588
60	3600	3612	3624	3636	3648	3660	3672	3684	3697	3709
61	3721	3733	3745	3758	3770	3782	3795	3807	3819	3832
62	3844	3856	3869	3881	3894	3906	3919	3931	3944	3957
63	3969	3982	3994	4007	4020	4032	4045	4058	4070	4083
64	4096	4109	4122	4134	4147	4160	4173	4186	4199	4212
65	4225	4238	4251	4264	4277	4290	4303	4316	4330	4343
66	4356	4369	4382	4396	4409	4422	4436	4449	4462	4476
67	4489	4502	4516	4529	4543	4556	4570	4583	4597	4610
68	4624	4638	4651	4665	4679	4692	4706	4720	4733	4747
69	4761	4775	4789	4802	4816	4830	4844	4858	4872	4886
70	4900	49	4928	4942	4956	4970	4984	4998	5013	5027
71	5041	5055	5069	5084	5098	5112	5127	5141	5155	5170
72	5184	5198	5213	5227	5242	5256	5271	5285	5300	5314
73	5329	5344	5358	5373	5388	5402	5417	5432	5446	5461
74	5476	5491	5506	5520	5535	5550	5565	5580	5595	5610
75	5625	5640	5655	5670	5685	5700	5715	5730	5746	5761
76	5776	5791	5806	5822	5837	5852	5868	5883	5898	5914
77	5929	5944	5960	5975	5991	6006	6022	6037	6053	6068
78	6084	6100	6115	6131	6147	6162	6178	6194	6209	6225
79	6241	6257	6273	6288	6304	6320	6336	6352	6368	6384
80	6400	6416	6432	6448	6464	6480	6496	6512	6529	6545
81	6561	6577	6593	6610	6626	6642	6659	6675	6691	6708
82	6724	6740	6757	6773	6790	6806	6823	6839	6856	6872
83	6889	6906	6922	6939	6956	6972	6989	7006	7022	7039
84	7056	7073	7090	7106	7123	7140	7157	7174	7191	7208
85	7225	7242	7259	7276	7293	7310	7327	7344	7362	7379
86	7396	7413	7430	7448	7465	7482	7500	7517	7534	7552
87	7569	7586	7604	7621	7639	7656	7674	7691	7709	7726
88	7744	7762	7779	7797	7815	7832	7850	7868	7885	7903
89	7921	7939	7957	7974	7992	8010	8028	8046	8064	8082
90	8100	8118	8136	8154	8172	8190	8208	8226	8245	8263
91	8281	8299	8317	8336	8354	8372	8391	8409	8427	8446
92	8464	8482	8501	8519	8538	8556	8575	8593	8612	8630
93	8649	8668	8686	8705	8724	8742	8761	8780	8798	8817
94	8836	8855	8874	8892	8911	8930	8949	8968	8987	9006
95	9025	9044	9063	9082	9101	9120	9139	9158	9178	9197
96	9216	9235	9254	9274	9293	9312	9332	9351	9370	9390
97	9409	9428	9448	9467	9487	9506	9526	9545	9565	9584
98	9604	9624	9643	9663	9683	9702	9722	9742	9761	9781
99	9801	9821	9841	9860	9880	9900	9920	9940	9960	9980

TABLE FOR CONVERSION Metric system to British measures, and vice versa In each case multiply by the factor given			
LENGTH			
Millimetres to inches Centimetres to inches Metres to feet Metres to yards Kilometres to yards Kilometres to miles	$\begin{array}{r} 0.039370 \\ 0.393701 \\ 3.280399 \\ 1.093614 \\ 1093.614500 \\ 0.621372 \end{array}$	Inches to millimetres Inches to centimetres Feet to metres Yards to metres Yards to kilometres Miles to kilometres	25.39998 2.539998 0.304799 0.914399 0.00091 1.609342
AREA			
Square centimetres to square inches Square metres to square feet Square metres to square yards Square kilometres to square miles Hectares to acres $\begin{aligned} x= & \text { Ratio of circumfe } \\ & \text { diameter }=3.1415 \end{aligned}$	0.15500 10.76387 1.19599 0.38610 2.47104 erence to 593654	Square inches to square centimetres Square feet to square metres Square yards to square metres Square miles to square kilometres Acres to hectares $\begin{aligned} 1 / \pi= & \text { Ratio of diamet } \\ & \text { circumference }= \end{aligned}$	6.45159 0.09290 0.83613 2.58998 0.404684 to 0.318309886
VOLUME			
Cubic centimetres to cubic inches Cubic metres to cubic feet Cubic metres to cubic yards	$\begin{gathered} 0.06102 \\ 35.310735 \\ 1.30794 \end{gathered}$	Cubic inches to cubic centimetres Cubic feet to cubic metres Cubic yards to cubic metres	$\begin{array}{r} 16.38716 \\ 0.02832 \\ 0.76456 \end{array}$
CAPACITY (Liquid Measures)			
Litres to pints Litres to U.S. pints Litres to quarts Litres to U.S. quarts Litres to gallons Litres to U.S. gallons Hectolitres to gallons	$\begin{gathered} 1.760718 \\ 2.113628 \\ 0.880359 \\ 1.0567 \\ 0.220089 \\ 0.2642 \\ 22.007043 \end{gathered}$	Pints to litres U.S. pints to litres Quarts to litres U.S. quarts to litres Gallons to litres U.S. gallons to litres Gallons to hectolitres	$\begin{aligned} & 0.56795 \\ & 0.47312 \\ & 1.13590 \\ & 0.9463 \\ & 4.54360 \\ & 3.7850 \\ & 0.04544 \end{aligned}$
WEIGHT			
Grams to grains Grams to ounces Grams to pounds Kilograms to pounds Kilograms to cwts. Kilograms to long tons Kilograms to short tons	$\begin{array}{r} 15.432337 \\ 0.035274 \\ 0.002205 \\ 2.204624 \\ 0.019684 \\ \text { s } \\ \hline \end{array}$	Grains to grams Ounces to grams Pounds to grams Pounds to kilograms Cwts. to kilograms Long tons to kilograms Short tons to kilogram	$\begin{array}{r} 0.064799 \\ 28.349530 \\ 453.992430 \\ 0.453592 \\ 50.802350 \\ 1016.04700 \\ \mathrm{~s} 907.18400 \end{array}$

Even a champion

needs freshening up

sometimes!

You're right in expecting almost
the impossible in staying power from your Facit calculator.

Still, like all other machines,
it does need a drop of oil now and then. You ought to see that it gets
a regular looking over, too, by a Facit specialist.

Call us today . . . and arrange for regular servicing.

=ACIT

