Research Article
Print
Research Article
Taxonomy and phylogeny of Lopharia s.s., Dendrodontia, Dentocorticium and Fuscocerrena (Basidiomycota, Polyporales)
expand article infoShi-Liang Liu, Karen K. Nakasone§, Sheng-Hua Wu|, Shuang-Hui He, Yu-Cheng Dai
‡ Beijing Forestry University, Beijing, China
§ U.S. Forest Service, Madison, WI, United States of America
| National Museum of Natural Science, Taichung, Taiwan
Open Access

Abstract

Eleven taxa of Lopharia s.s., Dendrodontia, Dentocorticium and Fuscocerrena in Polyporales are included in the phylogenetic analyses of nuc rDNA ITS1-5.8S-ITS2 (ITS), D1-D2 domains of nuc 28S rDNA (28S) and RNA polymerase II second-largest subunit (rpb2) sequences. New species Lopharia resupinata and L. sinensis are described and illustrated. Lopharia resupinata, from south-eastern China, is closely related to L. ayresii, and L. sinensis, from northern China, is related to L. cinerascens and L. mirabilis. Lopharia mirabilis specimens from temperate to tropical areas with varied hymenophore configurations all cluster together in a fully supported clade. Dendrodontia and Fuscocerrena are shown to be synonyms of Dentocorticium, which is phylogenetically related to Lopharia. Four new combinations, Dentocorticium bicolor, D. hyphopaxillosum, D. portoricense and D. taiwanianum, are proposed. Revised generic descriptions of Lopharia and Dentocorticium are provided with keys to the six accepted species in each genus. A list of all names in Lopharia and Dentocorticium are presented with their current taxonomic status. Type specimens of Dentocorticium brasiliense and D. irregulare were examined and determined to be later synonyms of Punctularia subhepatica and Diplomitoporus daedaleiformis, respectively.

Keywords

Corticioid fungi, dendrohyphidia, species complex, wood-inhabiting fungi

Introduction

The genus Lopharia s.s., typified by L. lirellosa Kalchbr. & MacOwan (= Radulum mirabile Berk. & Broome), is characterised by a dimitic hyphal system with clamped generative hyphae, large basidia and basidiospores and large, encrusted, hyaline, thick-walled cystidia (Hjortstam and Ryvarden 1990, Boidin and Gilles 2002, Bernicchia and Gorjón 2010). Of 35 taxa placed in Lopharia, Hjortstam and Ryvarden (1990) accepted only L. cinerascens (Schwein.) G. Cunn. and L. mirabilis (Berk. & Broome) Pat. and Boidin and Gilles (2002) additionally accepted L. pseudocinerascens Boidin & Gilles. Welden (1975, 2010) adopted a broad interpretation of Lopharia that included species of Porostereum Pilát. A few phylogenetic studies that have included Lopharia s.s. and Porostereum spadiceum (Pers.) Hjortstam & Ryvarden (generic type) showed that they are distantly related (Ko et al. 2001, Yoon et al. 2003, Wu et al. 2007, Jang et al. 2016). Both genera are included in the Polyporales with Lopharia in the Polyporaceae and Porostereum in the Phanerochaetaceae (Justo et al. 2017).

Dentocorticium (Parmasto) M.J. Larsen & Gilb. was segregated from Laeticorticium Donk to accommodate L. ussuricum Parmasto (generic type) and Hydnum sulphurellum Peck (Larsen and Gilbertson 1974) because they lack probasidia. Subsequently, nine species were described or transferred to the genus (Larsen and Gilbertson 1977, Ryvarden 1978, Domański 1988, Boidin et al. 1996, Boidin and Gilles 1998, Duhem and Michel 2009).

Dendrodontia Hjortstam & Ryvarden (generic type Grandinia bicolor P.H.B. Talbot) is similar to Dentocorticium in possessing tuberculate to odontoid hymenophore, dendrohyphidia and thin-walled smooth basidiospores, but differs by its dimitic hyphal system with brown skeletal hyphae (Hjortstam and Ryvarden 1980, Boidin and Gilles 1998). The monotypic genus Fuscocerrena Ryvarden was erected for Polyporus portoricensis Spreng. ex Fr. This taxon is characterised by dark brown, effused, effused-reflexed to pileate basidiocarps with a poroid to spinose hymenophore, a dimitic hyphal system with brown skeletal hyphae and dendrohyphidia (Ryvarden 1982). Except for the variable hymenophore configuration and greenish-yellow hymenial surface, F. portoricensis (Spreng. ex Fr.) Ryvarden is similar to many species of Dendrodontia and Dentocorticium at the microscopic level.

Morphologically, Lopharia s.s. is distinct from Dentocorticium and Dendrodontia but are phylogenetically closely related as shown in phylogenetic studies based on two to six taxa (Yoon et al. 2003, Wu et al. 2007, Justo and Hibbett 2011, 2017, Jang et al. 2016). In this study, eleven taxa of Lopharia s.s., Dentocorticium, Dendrodontia and Fuscocerrena from North America and East Asia were included in phylogenetic analyses of a concatenated 3-gene dataset of ITS, 28S and rpb2 sequences.

Materials and methods

Morphological studies. Voucher specimens are deposited in the herbarium of Beijing Forestry University (BJFC), the National Museum of Natural Science in Taiwan (TNM) and the Centre for Forest Mycology Research (CFMR). Samples for microscopic examination were mounted in 0.2 % cotton blue in lactic acid, 1 % phloxine and Melzer’s reagent. The following abbreviations are used: L = mean spore length, W = mean spore width, Q = L/W ratio, n (a/b) = number of spores (a) measured from given number of specimens (b). Colour codes and names follow Kornerup and Wanscher (1978).

DNA extraction and sequencing. A CTAB plant genome rapid extraction kit-DN14 (Aidlab Biotechnologies Co. Ltd, Beijing) was employed for DNA extraction and PCR amplification from dried specimens. The ITS, 28S and rpb2 gene regions were amplified with the primer pairs ITS5 and ITS4 (White et al. 1990), LR0R and LR7 (http://www.biology.duke.edu/fungi/mycolab/primers.htm) and rpb2-f5F and rpb2-7.1R (Liu et al. 1999, Matheny et al. 2007), respectively. The PCR procedures for ITS and 28S followed Liu et al. (2017), while the procedure for rpb2 was the same as Justo and Hibbett (2011). DNA sequencing was performed at Beijing Genomics Institute and the sequences are deposited in GenBank (Table 1).

Table 1.

Species and sequences used in the phylogenetic analyses. Newly generated sequences are set in bold.

Taxa Voucher Locality ITS 28S rpb2
Amauroderma rugosum ML 56 Japan AB509712 AB368061 AB368119
Boletopsis leucomelaena AFTOL 1527 USA DQ484064 DQ154112 GU187820
Climacodon septentrionalis AFTOL 767 USA AY854082 AY684165 AY780941
Coriolopsis gallica RLG-7630-Sp USA JN165013 JN164814 JN164821
Coriolopsis trogii RLG-4826-Sp USA JN164993 JN164808 JN164867
Daedaleopsis confragosa WD 747 Japan GU731549 AB368062 AB368120
Datronia mollis RLG-6304-Sp USA JN165002 JN164791 JN164872
Datronia scutellata RLG-9584-T USA JN165004 JN164792 JN164873
Dendrocorticium bicolor He 2772 China MF626354 MF626378
Dendrocorticium bicolor He 2757 China MF626355 MF626379
Dendrocorticium portoricense He 2161 USA MF626356 MF626380 MF626397
Dendrocorticium portoricense He 2202 USA MF626357 MF626381
Dendrocorticium taiwanianum He 3383 China MF626361 MF626385
Dendrocorticium taiwanianum He 4615 China MF626362 MF626386
Dendrocorticium taiwanianum He 3777 China MF626388
Dendrocorticium taiwanianum Wu 9907-1 (type) China MF626363 MF626387
Dendrocorticium ussuricum He 3322 China MF626360 MF626384 MF626399
Dendrocorticium ussuricum He 3278 China MF626358 MF626382
Dendrocorticium ussuricum He 3294 China MF626359 MF626383 MF626398
Dentocorticium sulphurellum T 609 Canada JN165015 JN164815 JN164875
Earliella scabrosa PR 1209 Puerto Rico JN165009 JN164793 JN164866
Fomitopsis pinicola AFTOL 770 USA AY854083 AY684164 AY786056
Ganoderma lucidum WD 565 Japan EU021460 AB368068 AB368126
Ganoderma tsugae AFTOL 771 USA DQ206985 AY684163 DQ408116
Grifola sordulenta AFTOL 562 USA AY854085 AY645050 AY786058
Hydnellum geogenium AFTOL 680 USA DQ218304 AY631900 DQ408133
Irpex lacteus TM 03-480 Japan AB079264 EU522839 DQ408117
Lentinus squarrosulus WD 1729 Japan GU001951 AB368071 AB368129
Lentinus tigrinus MUCL 22821 Japan AF516520 AB368072 AB368130
Lenzites betulinus AJ 150 USA JN164915
Lopharia ayresii He 20120724-4 China MF626352 MF626375
Lopharia ayresii He 2778 China MF626353 MF626376
Lopharia cinerascens He 2188 USA MF626350 MF626373 MF626395
Lopharia cinerascens He 2228 USA MF626351 MF626374
Lopharia resupinata He 4401 (type) China MF626377 MF626396
Lopharia mirabilis Dai 5147 China MF626342 MF626365 MF626389
Lopharia mirabilis Yuan 2532 China MF626343 MF626366 MF626390
Lopharia mirabilis Dai 5598 China MF626341 MF626364
Lopharia mirabilis He 4558 China MF626344 MF626367
Lopharia mirabilis Dai 14978 China MF626345 MF626368 MF626391
Lopharia mirabilis Dai 13722 China MF626346 MF626369 MF626392
Lopharia sinensis He 2428 (type) China MF626347 MF626370 MF626393
Lopharia sinensis He 2510 China MF626348 MF626371 MF626394
Lopharia sinensis He 2424 China MF626349 MF626372
Lopharia sp. FP-105043 USA JN165019 JN164813 JN164874
Phanerochaete chrysosporium FPL 5175 USA AF854086 AF287883
Phlebia radiata FPL 6140 USA AY854087 AF287885 AY218502
Polyporus squamosus AFTOL 704 USA DQ267123 AY629320 DQ408120
Polyporus umbellatus WD 719 Japan EU442276 AB368109 AB368166
Pseudofavolus cucullatus WD 2157 Japan AF516601 AB368114 AB368170
Pycnoporus sanguineus PR-SC-95 Puerto Rico JN164982 JN164795 JN164858
Pycnoporus cinnabarinus ZW 02-30 China DQ411525 AY684160 DQ408121
Trametes ectypa FP-106037-T USA JN164929 JN164803 JN164848
Trametes hirsuta RLG-5133-T USA JN164941 JN164801 JN164854
Trametes versicolor FP-135156-Sp USA JN164919 JN164809 JN164850
Trametopsis cervina TJV-93-216-Sp USA JN165020 JN164796 JN164877

Phylogenetic analyses. The molecular phylogeny used a combined dataset of ITS, 28S and rpb2 sequences. Justo and Hibbett (2011) was consulted for taxon sampling and outgroup selection. The sequences were aligned using the MAFFT v.6 (Katoh and Toh 2008, http://mafft.cbrc.jp/alignment/server/). Alignments were optimised manually in BioEdit 7.0.5.3 (Hall 1999) and deposited at TreeBase (http://treebase.org/treebase-web/home.html, submission ID: 21717).

Maximum Likelihood (ML), Maximum Parsimony (MP) and Bayesian Inference (BI) analyses were performed by using RAxML 7.2.6 (Stamatakis 2006), PAUP* 4.0b10 (Swofford 2002) and MrBayes 3.1.2 (Ronquist and Huelsenbeck 2003), respectively. In ML analysis, statistical support values were obtained from rapid bootstrapping of 1000 replicates using default settings for other parameters. In MP analysis, gaps in the alignments were treated as missing data. Trees were generated using 100 replicates of random stepwise addition of sequence and tree-bisection reconnection (TBR) branch-swapping algorithm with all characters given equal weight. Branch supports for all parsimony analyses were estimated by performing 1000 bootstrap replicates (Felsenstein 1985) with a heuristic search of 10 random-addition replicates for each bootstrap replicate. For BI, best models of evolution were estimated by using MrModeltest 2.2 (Nylander 2004) and the Bayesian posterior probabilities (BPP) were determined by Markov Chain Monte Carlo sampling in MrBayes 3.1.2. Four simultaneous Markov chains were run for two million generations and trees were sampled every 100th generation. The first quarter of the trees, which represented the burn-in phase of the analyses, were discarded and the remaining trees were used to calculate posterior probabilities in the majority rule consensus tree.

Phylogeny results

The ITS-28S-rpb2 sequences dataset contained 54 ITS, 55 nuc 28S and 40 rpb2 sequences from 56 samples representing 38 ingroup and 2 outgroup taxa (Table 1). Twenty-three ITS, 25 nuc 28S and 11 rpb2 sequences were generated for this study (Table 1). The dataset had an aligned length of 2806 characters, of which 836 were parsimony informative. MP analysis yielded four equally parsimonious trees (TL = 5240, CI = 0.323, RI = 0.594, RC = 0.192, HI = 0.677). The best model estimated and applied in the Bayesian analysis was GTR+I+G. MP and BI analyses resulted in almost the same tree topologies as that of ML analysis, which is similar to that of Justo and Hibbett (2011). Only the ML tree is shown in Fig. 1 with maximum likelihood and maximum parsimony bootstrap values ≥ 50 % and BPP ≥ 0.95 labelled along the branches. In the tree, the Dentocorticium clade sensu Justo and Hibbett (2011) was recovered and strongly supported. The five species of Lopharia s.s. and FP-105043 (as Lopharia sp.) are in a strongly supported lineage with two subclades – (1) Lopharia sinensis, L. mirabilis and L. cinerascens and (2) L. resupinata and L. ayresii. The Dentocorticium species are in a clade with five distinct and well-supported lineages representing the species D. ussuricum, D. sulphurellum, D. bicolor, D. taiwanianum and D. portoricense.

Figure 1. 

Phylogenetic tree inferred from maximum likelihood analysis of the combined ITS, 28S and rpb2 sequences of taxa in Polyporales. Branches are labelled with maximum likelihood and maximum parsimony bootstrap values ≥ 50 % and Bayesian posterior probabilities ≥ 0.95.

Taxonomy of Lopharia species

Lopharia resupinata S.H. He, S.L. Liu & Y.C. Dai, sp. nov.

MycoBank No: 823071
Figs 2A–B, 3

Diagnosis

Distinguished from other Lopharia species by its resupinate basidiocarps, a densely compact texture, a monomitic hyphal system and small basidiospores 7–9(–10) × 4–5 µm.

Holotype

CHINA. Jiangxi Province: Anyuan County, Sanbaishan Forest Park, on fallen angiosperm branch, 15 Aug. 2016, He 4401 (holotype, BJFC 023842!).

Etymology

resupinata” (Lat.) refers to the resupinate basidiocarps.

Figure 2. 

Basidiocarps of Lopharia species. A–B L. resupinata (holotype, He 4401) C–D L. sinensis (C holotype, He 2428 D He 2510) E L. ayresii (He 3884) F L. cinerascens (He 2228). Scale bars: 1 cm.

Fruiting body

Annual, resupinate, adnate, ceraceous, hygrophanous, not separable from the substrate when fresh, becoming crustaceous, brittle and easily detached from substrate upon drying, first as small patches, later confluent up to 20 cm long, 2.5 cm wide, up to 400 µm thick. Hymenophore smooth, under a lens pilose from projecting cystidia, pale orange (6A3), orange grey (6B2) to greyish-orange (6B3) when fresh, becoming brownish-orange [6C(2–4)] to light brown [6D(4–5)] upon drying, uncracked; margin abrupt, concolorous when fresh, reflexed and incurved upon drying, abhymenial surface white (6A1).

Microscopic structures

Hyphal system monomitic, generative hyphae with clamp connections. Subiculum thin, with numerous small crystals; hyphae hyaline, thin- to slightly thick-walled, moderately septate and branched, interwoven, 2–3.5 µm in diam. Subhymenium thickening, up to 300 µm thick; hyphae hyaline, slightly thick-walled, vertically arranged, densely agglutinated, 2–4 µm in diam. Lamprocystidia abundant, arising from subhymenium, subulate, heavily encrusted with crystals, distinctly thick-walled, embedded in subhymenium or exerted, 80–150 × 10–20 µm. Basidia clavate, with a basal clamp connection and four sterigmata, 50–65 × 8–10 µm; basidioles dominating in hymenium, similar to basidia but smaller. Basidiospores ellipsoid, hyaline, thin-walled, smooth, containing a large guttule, IKI–, CB–, 7–9(–10) × 4–5 µm, L = 7.9 µm, W = 4.4 µm, Q = 1.81 (n = 30/1).

Remarks

Lopharia resupinata, like L. ayresii, has a resupinate habit, a monomitic hyphal system and a densely compact texture. Lopharia ayresii (Fig. 2E), however, has larger basidiospores (11.2 ± 0.7 × 6.4 ± 0.4 µm, from type, Boidin and Gilles 1991). In Fig. 1, L. resupinata and L. ayresii cluster together. Lopharia cinerascens and L. mirabilis differ from L. resupinata by having effused-reflexed to pileate basidiocarps, a dimitic hyphal system and larger basidiospores (Hjortstam and Ryvarden 1990, Boidin and Gilles 2002). Lopharia resupinata has a thickening subhymenium with embedded lamprocystidia, characters that are also found in species of Phlebiopsis Jülich.

Figure 3. 

Microscopic structures of Lopharia resupinata (drawn from the holotype). A Basidiospores B Basidia C Basidioles D–E Lamprocystidia (D in cotton blue E in KOH).

Lopharia sinensis S.H. He, S.L. Liu & Y.C. Dai, sp. nov.

MycoBank No: 823072
Figs 2C–D, 4

Diagnosis

Differs from L. cinerascens by its ellipsoid basidiospores and long, projecting cystidia. Known only from northern China.

Holotype

CHINA. Ningxia Autonomous Region: Jingyuan County, Liupanshan Forest Park, on dead angiosperm branch, 4 Aug. 2015, He 2428 (holotype, BJFC 020881!).

Etymology

sinensis” (Lat.) refers to the type locality in China.

Fruiting body

Annual, effused to effused-reflexed, adnate, coriaceous, first as small patches, later confluent, effused part up to 8 cm long, 2.5 cm wide, up to 1 mm thick, pilei projecting up to 1 cm, 3 cm wide. Abhymenial surface tomentose to glabrous, greyish-orange (6B3) to brownish-grey [6D(2–4)]. Hymenophore smooth, greyish-orange (6B3), greyish-brown (6D3) to light brown [6D(4–6)], uncracked; margin thinning out, lighter than hymenophore surface, up to 1.5 mm wide, becoming indistinct and concolorous with age.

Figure 4. 

Microscopic structures of Lopharia sinensis (drawn from holotype). A Basidiospores B Basidia C Basidioles D Lamprocystidia.

Microscopic structures

Hyphal system dimitic, generative hyphae with clamp connections. Cortex and tomentum present. Subiculum well developed, hyphae more or less regularly arranged, interwoven. Skeletal hyphae dominant, thick-walled, pale yellow, unbranched and septate, flexuous, 3–6 µm in diam. Generative hyphae hyaline, thin- to slightly thick-walled, rarely branched and septate, 2–4 µm in diam. Lamprocystidia abundant, large, subulate, distinctly thick-walled, arising from subhymenium, 100–280 × 8–20 µm, projecting up to 200 µm beyond hymenium. Basidia clavate, with a basal clamp and four sterigmata, 45–70 × 9–13 µm; basidioles dominating in hymenium, in shape similar to basidia, but smaller. Basidiospores ellipsoid, hyaline, thin-walled, smooth, containing a large guttule, IKI–, CB–, 11–14 × (6–)6.5–8 µm, L = 12.6 µm, W = 7.1 µm, Q = 1.75–1.79 (n = 60/2).

Additional specimens examined

CHINA. Gansu Province: Pingliang County, Kongtongshan Forest park, on fallen trunk of Euonymus maackii, 3 Aug 2015, He 2401 (BJFC 020855); on dead angiosperm branch, 3 Aug 2015, He 2408 (BJFC 020862); Tianshui County, Dangchuan Forest Farm, on construction wood, 8 Aug 2015, He 2510 (BJFC 020963). Hebei Province: Xinglong County, Wulingshan Nature Reserve, on fallen angiosperm branch, 2 Sep 2017, He 5005 (BJFC). Ningxia Autonomous Region: Jingyuan County, Liupanshan Forest Park, on dead angiosperm trunk, 4 Aug 2015, He 2424 (BJFC 020877) & He 2438 (BJFC 020891).

Remarks

Lopharia sinensis belongs to the L. cinerascens clade (Fig. 1). It differs from L. mirabilis by its smooth hymenophore surface and north temperate distribution and from L. cinerascens by its ellipsoid basidiospores and long, projecting cystidia (Hjortstam and Ryvarden 1990, Dai 2002). Lopharia pseudocinerascens from Africa also belongs to the L. cinerascens group and can be distinguished from L. sinensis by narrower basidiospores (8–14 × 4.5–6.5 µm, Boidin and Gilles 2002).

Six species of Lopharia, L. ayresii, L. cinerascens, L. resupinata, L. mirabilis, L. sinensis and Lopharia sp. (FP-105043) are included in a fully supported monophyletic clade (Fig. 1). They all develop the large encrusted cystidia, the large basidia (> 50 µm long) and the relatively large basidiospores (> 8 µm long and 4 µm wide) that characterise the genus. Lopharia mirabilis, the generic type, is a tropical species possessing a tuberculate, odontoid, irpicoid to semiporoid hymenophore (Hjortstam and Ryvarden 1990, Dai 2002). The authors’ phylogenetic analyses show that collections from temperate to tropical areas in China, with smooth to semiporoid hymenophores, cluster together, thus extending the geographical range and hymenophore variability for L. mirabilis (Figs 1, 5). Thus, specimens from Taiwan, previously identified as L. cinerascens (Boidin and Gilles 2002, Wu 2010) because of their smooth hymenophore, are in fact L. mirabilis.

Figure 5. 

Basidiocarps of Lopharia mirabilis. A He 4558 B Dai 15094 C Dai 14978 D He 20120923-7 E He 1657 F Cui 9330.

Lopharia cinerascens is a cosmopolitan species in temperate to subtropical areas (Hjortstam and Ryvarden 1990, Boidin and Gilles 2002). These phylogenetic analyses suggest that it is a species complex (Fig. 1). Two specimens (He 2188 and He 2228, Fig. 2F) from Wisconsin in northern United States are probably L. cinerascens s.s. for it is near the type locality of Pennsylvania. They are phylogenetically distinct from FP-105043 (listed as L. cinerascens in Justo and Hibbett, 2011) which was collected in Mississippi, southern United States.

Lopharia ayresii nests within the Lopharia clade and forms with L. resupinata a strongly supported lineage sister to the L. mirabilis group (Fig. 1). These two species have resupinate basidiocarps, a monomitic hyphal system, a thin to indistinct subiculum and a thickened subhymenium. Otherwise, they fit well with other Lopharia species in developing large basidia and basidiospores and encrusted cystidia. The addition of these species requires that the genus description of Lopharia be modified to include monomitic taxa.

It is still premature to make a conclusion about the distribution of Lopharia species with present data. Three species, L. pseudocinerascens, L. sinensis and L. resupinata, have been found from the type localities only (Boidin and Gilles 2002, present study). Lopharia mirabilis is reported from tropical Africa to temperate to tropical East Asia (Hjortstam and Ryvarden 1990, present study). Lopharia ayresii seems to be pantropical and is reported from Mauritius, Réunion (Boidin and Gilles 1991), southern China (Wu 2008), Taiwan (Wu 2010), Okinawa (Maekawa et al. 2003) and South America (Hjortstam et al. 2005, Hjortstam and Ryvarden 2008).

Lopharia Kalchbr. & MacOwan, Grevillea 10: 58, 1881, emended

Note

Basidiocarps annual, effused, effused-reflexed or pileate, crustaceous, coriaceous or corky. Pilei tomentose to glabrous. Hymenophore surface smooth, tuberculate, odontoid, irpicoid to semiporoid, cream, greyish-brown to light brown. Hyphal system monomitic or dimitic; generative hyphae with clamp connections. Lamprocystidia metuloid, large, subulate, hyaline, distinctly thick-walled. Dendrohyphidia absent, simple hyphidia hyphoid, thin-walled, hyaline. Basidia clavate with 4 sterigmata, large (> 50 µm long). Basidiospores ellipsoid to cylindrical, hyaline, thin-walled, smooth, negative in Melzer’s reagent, acyanophilous.

Type species

Lopharia mirabilis (Berk. & Broome) Pat., Bulletin de la Société Mycologique de France 11: 14, 1895.

Key to species of Lopharia s.s

1 Hymenophore tuberculate, odontoid, irpicoid to subporoid L. mirabilis
Hymenophore smooth or slightly tuberculate 2
2 Basidiocarps effused-reflexed to pileate; hyphal system dimitic 3
Basidiocarps resupinate; hyphal system monomitic 6
3 Basidiospores 4.5–6.5 µm wide; reported from Africa L. pseudocinerascens
Basidiospores 6.5–8 µm wide 4
4 From Taiwan L. mirabilis
From elsewhere 5
5 Cystidia projecting up to 70 µm; basidiospores Q value > 1.9; from northern United States L. cinerascens
Cystidia projecting up to 200 µm; basidiospores Q value < 1.9; from northern China L. sinensis
6 Basidiospores > 10 µm long L. ayresii
Basidiospores < 10 µm long L. resupinata

List of names in Lopharia and their current taxonomic status

The list by species epithet is obtained from Index Fungorum (http://www.indexfungorum.org, 25 Sep. 2017). If a name is accepted, a direct statement is made with supporting evidence cited. Note that Miettinen et al. (2017: 26) consider Hjortstamia Boidin & Gilles to be a synonym of Phlebiopsis based on molecular and morphological criteria. Hjortstam and Ryvarden (1990) compiled the first nomenclature of Lopharia species.

abietina (Pers.) Z.S. Bi & G.Y. Zheng, [Macrofungus flora of the mountainous district of North Guangdong]: 62 (1990). Accepted as Veluticeps abietina (Pers.) Hjortstam & Tellería. Supported by ITS (Yang et al. 2016) and multi-gene phylogenetic analyses (Garcia-Sandoval et al. 2011).

albida Rick, Brotéria, Ci. Nat. 7: 13 (1938). An unidentifiable species of Hyphodontia as reported by Hjortstam and Ryvarden (1990: 59) and Baltazar et al. (2016: 119) for the type is sterile.

americana Rick, Egatea 13: 435 (1928). Hjortstam and Ryvarden (1990: 59) reported that the type is lost.

amethystea (Hjortstam & Ryvarden) A.L. Welden, Flora Neotropica Monograph 106: 70 (2010). = Hjortstamia amethystea (Hjortstam & Ryvarden) Boidin & Gilles. Hjortstam and Ryvarden (1990: 29) observed that the species is close to Porostereum (Phlebiopsis) crassum (Lév.) Hjortstam & Ryvarden.

areolata G. Cunn., Bull. New Zealand Dept. Sci. Industr. Res. 145: 331 (1963). = Phanerochaete areolata (G.H. Cunn.) Hjortstam & Ryvarden. Welden (1975: 547) noted that the type was related to the genus Phanerochaete. Hjortstam and Ryvarden (1990: 59) also examined the type and pointed out similarities to Phanerochaete hiulca (Burt) Welden.

ayresii (Berk. ex Cooke) Hjortstam, Mycotaxon 54: 188 (1995). Accepted in Lopharia and supported by phylogenetic analyses (fig. 1 herein). The type (Kew 35450, Mauritius, P.B. Ayres) was examined.

bambusae Rick, Iheringia 7: 199 (1960). Accepted as a synonym of Fomitiporia bambusarum (Rick) Campos-Santana & Decock. Hjortstam and Ryvarden (1990: 59) and Baltazar et al. (2016: 119) examined the type and agreed that it belongs to the Phellinus (Fomitiporia) punctatus species complex.

cheesmanii (Wakef.) G. Cunn., Bull. New Zealand Dept. Sci. Industr. Res. 145: 195 (1963). Accepted as a synonym of Laurilia sulcata (Burt) Pouzar as proposed by Hjortstam and Ryvarden (1990: 59) who examined the type at Kew. In addition, Boidin (1969: 190) observed finely echinulate, amyloid basidiospores in the type specimen.

cinerascens (Schwein.) G. Cunn., Trans. Roy. Soc. New Zealand 83: 622 (1956). Accepted in Lopharia and supported by phylogenetic analyses (fig. 1 herein).

crassa (Lév.) Boidin, Bull. Trimestriel Soc. Mycol. France 74: 479 (1959). Accepted as Phlebiopsis crassa (Lév.) Floudas & Hibbett and supported by multi-gene phylogenetic analyses; see (Floudas and Hibbett 2015: figs 1, 3) and (Miettinen et al. 2016: fig. 2 part 2).

cystidiosa (Rehill & B.K. Bakshi) Boidin, Rev. Mycol. (Paris) 34: 191 (1969). = Porostereum cystidiosum (Rehill & B.K. Bakshi) Hjortstam & Ryvarden.

dregeana (Berk.) P.H.B Talbot, Bothalia 6: 57 (1951). = Australohydnum dregeanum (Berk.) Hjortstam & Ryvarden.

fulva (Lév.) Boidin, Bull. Mens. Soc. Linn. Lyon 28: 213 (1959). Accepted as Porostereum fulvum (Lév.) Boidin & Gilles. Although considered a synonym of P. spadiceum by Hjortstam and Ryvarden (1990: 61), Boidin and Gilles (2002: 109) showed by crossing experiments and differences in basidiospore shape and size that P. fulvum was distinct from P. spadiceum. Welden (1975) also noted basidiospore size differences. In addition, they have distinct distributions — P. fulvum is reported from Africa, Reunion, India, Pakistan, Nepal, Philippines, Australia, New Zealand and Siberia, whereas P. spadiceum is known from Europe, Armenia and Morocco (Boidin and Gilles 2002, Talbot 1954, Welden 1975).

heterospora (Burt) D.A. Reid, Rev. Mycol. (Paris) 33: 251 (1969). Accepted as a synonym of Dendrophora albobadia (Schwein.) Chamuris. Welden (1975: 547), Boidin and Lanquetin (1977: 120) and Chamuris (1987) examined the type specimen, Matthews 27 and agreed that it is conspecific with D. albobadia.

involuta (Klotzsch) G. Cunn., Bull. New Zealand Dept. Sci. Industr. Res. 145: 194 (1963). = Podoscyha involuta (Klotzsch) Imazeki. In a phylogenetic study of stipitate stereoid fungi, Sjökvist et al. (2012) showed that Podoscypha was paraphyletic with P. involuta and two other species in a lineage separate from the larger group of Podoscypha species.

javanica Henn. & E. Nyman, Monsunia 1: 144 (1900) [1899]. A possible synonym of L. mirabilis (Talbot 1954: 342; Boidin 1959: 207) or L. cinerascens (Welden 1975: 536). A portion of the type may be at NY (no. 00775916).

lilacina (Berk. & Broome) A.L. Welden, Flora Neotropica Monograph 106: 71 (2010). = Porostereum lilacinum (Berk. & Broome) Hjortstam & Ryvarden.

lirellosa Kalchbr. & MacOwan, in Kalchbrenner, Grevillea 10 (54): 58 (1881). Accepted as a synonym of L. mirabilis as proposed by Talbot (1951: 56; 1954: 340). Hjortstam and Ryvarden (1990: 62) and Boidin and Gilles (2002: 94) follow Talbot’s synonymy.

mexicana A.L. Welden, Tulane Stud. Zool. Bot. 17: 19 (1971). = Hjortstamia mexicana (A.L. Welden) Boidin & Gilles.

mirabilis (Berk. & Broome) Pat., Bull. Soc. Mycol. France 11: 14 (1895). Type species of Lopharia.

novae-granata A.L. Welden, Mycologia 67: 540 (1975). = Hjortstamia novae-granata (Welden) Hjortstam & Ryvarden.

ochracea G. Cunn., Bull. New Zealand Dept. Sci. Industr. Res. 145: 196 (1963). Accepted as Amylostereum areolatum (Fr.) Boidin based on basidiospore size (Thomsen, 1998) and its occurrence in New Zealand (Talbot 1964, Gaut 1969). Boidin and Lanquetin (1984) identified two paratype specimens as a species of Amylostereum. Hjortstam and Ryvarden (1990: 62) reported that the type specimen was morphologically indistinguishable from A. chailletii (Fr.) Boidin.

papyracea (Bres.) D.A. Reid, Kew Bull. 12: 131 (1957). Accepted as Phlebiopsis friesii (Lév.) Spirin & Miettinen. Originally published as L. papyracea (Jungh.) D.A. Reid. Lloydella papyracea Bres. 1910 is the replacement name for Thelephora papyracea Jungh. which is a later homonym of T. papyracea Schrader ex J.F. Gmelin 1792.

papyrina (Mont.) Boidin, Bull. Mens. Soc. Linn. Lyon 28: 210 (1959). Accepted as Phlebiopsis papyrina (Mont.) Miettinen & Spirin.

perplexa D.A. Reid, Kew Bull. 17: 297 (1963). = Hjortstamia perplexum (D.A. Reid) Boidin & Gilles.

phellodendri (Pilát) Boidin, Bull. Mens. Soc. Linn. Lyon 28: 207 (1959). = Porostereum phellodendri Pilát, type of Porostereum. A possible synonym of P. fulva (Boidin and Gilles, 2002: 108) or P. spadiceum (Hjortstam & Ryvarden, 1990: 62). See discussion under L. fulva.

pilosiuscula (Hjortstam & Ryvarden) A.L. Welden, Fl. Neotrop. Monogr. 106: 73 (2010). Placement is uncertain for it is not typical of Porostereum (Hjortstam and Ryvarden 1990: 49) nor of Lopharia s.s. (Welden 2010: 73).

pseudocinerascens Boidin & Gilles, Bull. Trimestriel Soc. Mycol. France 118: 96 (2002). Accepted in Lopharia.

rhodocarpa (Rehill & B.K. Bakshi) S.S. Rattan, Biblioth. Mycol. 60: 172 (1977). Accepted as Peniophora rhodocarpa Rehill & B.K. Bakshi. The authors follow Hjortstam & Ryvarden (1990: 62) who examined the isotype at Kew.

rimosissima Rick in Rambo, Iheringia, Ser. Bot. 7: 199 (1960). The protologue does not provide enough information to identify this species but it may be a Xylodon species. A line after the protologue states that it appears to be identical to Odontia rimosissima Peck [= Xylodon rimosissimus (Peck) Hjortstam & Ryvarden].

rimosissima (Berk. & M.A. Curtis) A.L. Welden, Mycologia 67: 544 (1975). = Hjortstamia rimosissima Boidin & Gilles. Known only from the type from Nicaragua collected on dead cane. Although the type lacks basidiospores, it is otherwise similar to P. crassa (Burt 1925: 342; Welden 1975: 544, 2010: 73).

rugulosa (Berk. & M.A. Curtis) Hjortstam, Mycotaxon 54: 188. 1995. Of uncertain generic disposition because of conflicting observations of the type specimen (Ginns 1971: 230, Hjortstam 1990: 420, Ryvarden 2010: 115).

sharpiana A.L. Welden, Tulane Stud. Zool. Bot. 17: 18 (1971). = Porostereum sharpianum (A.L. Welden) Hjortstam & Ryvarden. Hjortstam and Ryvarden (1990: 51) made the transfer after examining the type specimen. Welden (2010: 74), however, believed it is better placed in Lopharia s.s.

spadicea (Pers.) Boidin, Bull. Mens. Soc. Linn. Lyon 28: 211 (1959). Accepted as Porostereum spadiceum (Pers.) Hjortstam & Ryvarden. See L. fulva for additional information.

umbrinoalutacea (Wakef.) A.L. Welden, Mycologia 67: 546 (1975). Accepted as Porostereum umbrinoalutacea (Wakef.) Hjortstam & Ryvarden. Hjortstam and Ryvarden (1990: 63) made the transfer to Porostereum after examining the type specimen. Welden (1975: 539) noted that P. umbrinoalutacea was closely related to P. fulvum and P. spadiceum.

vinosa (Berk.) G. Cunn., Trans. Roy. Soc. New Zealand 83: 625 (1956). Accepted as a synonym of Phlebiopsis crassa. Lentz (1955: 20), (Cunningham 1956: 624, fig. 2) and Hjortstam and Ryvarden (1990: 63) examined the type of Corticium vinosum Berk. They all agree that C. vinosum is conspecific with Thelephora crassa Lév. Note that some authors have mistakenly used Thelephora vinosa Berk. instead of Corticium vinosum Berk. as the proper basionym; see May et al. (2003: 295) for a summary.

Taxonomy of Dentocorticium, Dendrodontia and Fuscocerrena species

Dendrodontia bicolor (generic type, Fig. 6A), Fuscocerrena portoricensis (generic type, Fig. 6B), Dentocorticium sulphurellum, Dentocorticium taiwanianum (Fig. 6C–D) and Dentocorticium ussuricum (Parmasto) M.J. Larsen & Gilb. (generic type, Fig. 6E–F) cluster in a strongly supported clade (Fig. 1). The phylogenetic analyses demonstrate that the three genera are closely related and support merging the genera together. Amongst the three generic names, Dentocorticium (1974) has priority over Dendrodontia (1980) and Fuscocerrena (1982). Thus, the latter two genera are treated as synonyms of Dentocorticium and four new combinations are proposed. An expanded and more inclusive generic circumscription of Dentocorticium is presented below.

Figure 6. 

Basidiocarps of Dentocorticium species. A D. bicolor (He 2757) B D. portoricense (He 2161) C–D D. taiwanianum (C He 3383 D He 4635) E–F D. ussuricum (E He 3278 F He 3294). Scale bars: 1 cm.

Dentocorticium (Parmasto) M.J. Larsen & Gilb., Norwegian Journal of Botany 21: 225, 1974, emended

Laeticorticium sect. Dentocorticium Parmasto, Conspectus Systematis Corticiacearum: 151, 1968; Dendrodontia Hjortstam & Ryvarden, Mycotaxon 10: 273, 1980; Fuscocerrena Ryvarden, Transactions of the British Mycological Society 79: 279, 1982.

Note

Basidiocarps annual, effused, effused-reflexed or pileate, membranous, coriaceous or soft corky. Hymenophore surface odontoid, tuberculate, spinose, poroid, daedaleoid, sometimes developing irregular ridges or hyphal pegs. Hyphal system dimitic or trimitic; generative hyphae with clamp connections, brown skeletal hyphae in subiculum, spine trama and hyphal pegs, microbinding hyphae may be present in subiculum or substrate. Dendrohyphidia present. Cylindrical to subfusiform cystidia may be present. Basidia clavate with 4 sterigmata. Basidiospores ellipsoid to cylindrical, hyaline, thin-walled, smooth, negative in Melzer’s reagent, acyanophilous.

Type species

Laeticorticium ussuricum Parmasto, Eesti NSV Teaduste Akadeemia Toimetised 14: 229, 1965.

Key to species of Dentocorticium

1 With hyphal peg 2
Without hyphal peg 3
2 Sterile margin distinct and brown; hyphal pegs 4–5 per mm; subiculum brown D. taiwanianum
Sterile margin indistinct; hyphal pegs > 5 per mm; subiculum grey D. hyphopaxillosum
3 Hymenophore poroid or with ridges, hydnoid to spinose, from North and South America D. portoricense
Hymenophore smooth, tuberculate, odontoid, rarely spinose 4
4 Hymenial surface white to yellow, basidiospores 7–9.5 × 2.5–3 µm long, reported from North America D. sulphurellum
Hymenial surface cream, brown to violaceous, basidiospores 5–7 × 2.2–2.5 µm long, reported from East Asia D. ussuricum
Hymenial surface cream, yellow or brown, basidiospores 8–9 × 3–4 µm long, reported from southern Africa, Australia, East Asia, North and South America D. bicolor

Dentocorticium bicolor (P.H.B. Talbot) Nakasone & S.H. He, comb. nov.

MycoBank No: 823073
Fig. 6A

Dendrodontia bicolor (P.H.B. Talbot) Hjortstam & Ryvarden, Mycotaxon 10: 273, 1980.

Basionym

Grandinia bicolor P.H.B. Talbot, Bothalia 4: 947, 1948.

Type specimen examined

South Africa: Natal Province: Pietermaritzburg District, Town bush valley, on dead wood, Aug. 1934, W.G. Rump 100, UDA Herb. No. 27756 [K, K(M)15722, holotype].

Other specimens examined

China. Anhui Province: Qimen County, Guniujiang Nature Reserve, on fallen angiosperm branch, 8 Aug 2013, He 1722 (BJFC 016189, CFMR). Yunnan Province: Yongde County, Daxueshan Nature Reserve, on dead Juglans branch, 28 Aug 2015 He 2757 (BJFC 021195, CFMR) & He 2772 (BJFC 021210, CFMR). Zhejiang Province: Lin’an County, Tianmushan Nature Reserve, on dead angiosperm branch, 6 Aug 2013, He 1691 (BJFC 016158, CFMR). South Africa, Natal Province, Pietermaritzburg District, Town bush, on (corticated) indigenous wood, Oct 1934, W.G. Rump 215, herb.no. 28291, W.G. Rump 217, herb no. 28292, W.G. Rump 270 herb. No. 28502 (PREM).

Remarks

See Hjortstam and Ryvarden (1980) for a description and illustration of this species. The authors were unable to obtain sequences of Dentocorticium bicolor from the type locality in South Africa. Maekawa (1994) reported D. sulphurellum from Japan; however, the Japanese specimens may be D. bicolor, for D. sulphurellum appears to be restricted to North America.

Dentocorticium hyphopaxillosum (M.J. Li & H.S. Yuan) Nakasone & S.H. He, comb. nov.

MycoBank No: 823080

Basionym

Dendrodontia hyphopaxillosa M.J. Li & H.S. Yuan, Phytotaxa 156: 183, 2014.

Type specimen examined

China. Guangxi Autonomous Region: Shangsi County, Shiwandashan Forest Park, on fallen angiosperm branch, 24 Jul 2012, Yuan 6269 (CFMR, isotype).

Remarks

Although not included in phylogenetic analyses, this combination is made based on morphological evidence. See Li and Yuan (2014) for description and illustration.

Dentocorticium portoricense (Spreng. ex Fr.) Nakasone & S.H. He, comb. nov.

MycoBank No: 823074
Fig. 6B

Fuscocerrena portoricensis (Spreng. ex Fr.) Ryvarden, Transactions of the British Mycological Society 79: 280, 1982.

Basionym

Polyporus portoricensis Spreng. ex Fr., Elenchus Fungorum 1: 115, 1828.

Specimens examined

Costa Rica. San José Province: Jardin, on hardwood, 9 Aug 1963, J.L. Lowe 13402 (CFMR). Uruguay. Depto. Tacuarembó, Ext. Paso Baltasar, on Eucalyptus globulus, 11 Nov 2001, L. Bettucci and S. Lupo, MVHC 5038 (CFMR). USA. Florida: Alachua County, Devil’s Millhopper, on Magnolia sp., 18 July 1972, H.H. Burdsall, Jr., HHB 19632 (CFMR). Tennessee: Cocke County, Cosby Nature Trail, on Liriodendron tulipifera log, 2 Aug 2010, H.H. Burdsall, Jr., HHB 6651 (CFMR). Wisconsin: Dane County, Madison, Picnic Point, on dead angiosperm tree, 7 Oct 2014, He 2161 (BJFC 018806, CFMR); 11 Oct 2014, He 2202 (BJFC 018832, CFMR).

Remarks

Dentocorticium portoricense is easily recognised by its poroid, hydnoid to spinose, dark brown hymenophore and greenish-yellow hymenial surface. Phylogenetically, it is closely related to D. taiwanianum (Fig. 1). See Ryvarden (1982) for description and drawing of this species with synonymy.

Dentocorticium taiwanianum (H.C. Wang & Sheng H. Wu) Nakasone & S.H. He, comb. nov.

MycoBank No: 823075
Fig. 6C–D

Basionym

Dendrodontia taiwaniana H.C. Wang & Sheng H. Wu, Mycologia 102: 1153, 2010.

Type specimen examined

Taiwan: Nantou County, Hsitou, alt. 1000 m, on (corticate) branch of angiosperm, 3 Jul. 1999, S.H. Wu 9907-1, F10258 (TNM, holotype).

Other specimens examined

China. Guizhou Province: Libo County, Maolan Nature Reserve, on dead angiosperm branch, 14 Jun 2016, He 3777 (BJFC 022276). Hainan Province: Wuzhishan County, Wuzhishan Nature Reserve, on dead angiosperm branch, 10 Jun 2016, He 3927 (BJFC 022429). Taiwan: Nantou County, Nandongyan Mountains, on fallen angiosperm trunk, 7 Dec 2016, He 4615 (BJFC 024057); Xitou, on dead angiosperm branch, 11 Dec 2016, He 4635 (BJFC 024078) & He 4639 (BJFC 024082). Yunnan Province: Baoshan County, Baihualing, on fallen angiosperm branch, 30 Nov 2015, He 3383 (BJFC 021778).

Remarks

This is a common species in tropical China. See Wang et al. (2010) for a description and illustration of this species.

List of names in Dentocorticium and their current taxonomic status

The list by species epithet is obtained from Index Fungorum (http://www.indexfungorum.org, 25 Sep. 2017). If a name is accepted, a direct statement is made with supporting evidence cited.

blastanos Boidin & Gilles, Cryptog. Mycol. 19: 193 (1998). Accepted as Neocampanella blastanos (Boidin & Gilles) Nakasone, Hibbett & Goranova and supported by molecular data (Nakasone et al. 2009: fig. 1).

brasiliense M.J. Larsen & Gilb., Norweg. J. Bot. 24: 117 (1977). Accepted as Punctularia subhepatica (Berk.) Hjortstam. The isotype at CFMR (Brazil, Rio Grande du Sol, ad ligna angiosperma, 1936, Rick) was examined. It has rare basidiospores (6.5–8.7 × 3.2–3.7 µm) and characteristic knobby dendrohyphidia that are brown in the upper portion and hyaline at the base. The holotype at FH is apparently lost.

expallens (Bres.) Domański, Mala Flora Grzybów. Tom I: Basidiomycetes (Podstawczaki), Aphyllophorales (Bezblaszkowce). Corticiaeae, AcanthobasidiumIrpicodon 5: 248 (1988). = Crustomyces expallens (Bres.) Hjortstam. In addition to Corticium, Dentocorticium, and Crustomyces, this species has been transferred to Phlebia and Laeticorticium, but none of these generic placements is satisfactory.

irregulare Ryvarden, Bull. Jardin Bot. Natl. Belg. 48: 84 (1978). Accepted as a synonym of Diplomitoporus daedaleiformis (Henn.) Ryvarden. The holotype of D. irregulare (JR 4316, GENT) and isotype of Poria daedaleiformis (US0239243, BPI) were examined. Basidiospores of D. irregulare were narrower [(2.8–) 3–3.5 µm] than reported by Ryvarden (1978) and similar to those of D. daedaleiformis (Ryvarden 2012: 16). Also in D. irregulare, skeletal hyphae were observed in the ridges and spines and obclavate, subfusiform cystidioles (11.5–21 × 4–5.5 µm) in the hymenium; these were not described earlier. Cystidioles were also observed in the isotype of P. daedaleiformis but no basidiospores. Both species develop elongated pores and ridges, clamped generative, dendrohyphidia and occur in the same geographical area in Africa.

nephrolepidis Boidin & Gilles, Cryptog. Mycol. 19: 193 (1998). Accepted as a synonym of L. cyathae (S. Ito & S. Imai) Hjortstam & Ryvarden as determined by Nakasone (2005) who examined the holotype.

pilatii (Parmasto) Duhem & H. Michel, Cryptog. Mycol. 30: 165 (2009). Accepted as Phlebiopsis pilatii (Parmasto) Spirin & Miettinen based on ITS and 28S sequences analyses (Miettinen et al. 2016: fig. 2 part 2). However, P. pilatii differs from other Phlebiopsis species in the absence of lamprocystidia and presence of dendrohyphidia and microbinding hyphae (Duhem and Michel 2009: figs 7–17).

sasae (Boidin, Cand. & Gilles) Boidin, Lanq. & Duhem, Bulletin de la Société Mycologique de France 112: 116 (1996). Accepted as Leptocorticium sasae (Boidin, Cand. & Gilles) Nakasone based on morphological criteria (Nakasone 2005).

sinapicolor Boidin, Gilles & Duhem, Cryptog. Mycol. 19: 194 (1998). A poorly studied species. Duhem and Michel (2009: 171) cite morphological similarities between this species and P. pilatii.

sulphurellum (Peck) M.J. Larsen & Gilb., Norweg. J. Bot. 21: 226 (1974). Accepted in Dentocorticium as inferred from multi-gene sequences (fig. 1 herein) and morphology.

ussuricum (Parmasto) M.J. Larsen & Gilb., Norweg. J. Bot. 21: 226 (1974). This is the generic type of Dentocorticium.

utribasidiatum Boidin & Gilles, Cryptog. Mycol. 19: 196 (1998). Accepted as Leptocorticium utribasidiatum (Boidin & Gilles) Nakasone based on morphological features and examination of the holotype (Nakasone 2005).

Acknowledgements

This study was supported by the Fundamental Research Funds for the Central Universities (No. 2017PT09) and the National Natural Science Foundation of China (Nos. 31470144 & 31670013).

References

  • Baltazar JM, Da Silveira RMB, Rajchenberg M (2016) Type studies of J. Rick’s corticioid homobasidiomycetes (Agaricomycetes, Basidiomycota) housed in the Herbarium Anchieta (PACA). Phytotaxa 255: 101–132. https://doi.org/10.11646/phytotaxa.255.2.1
  • Bernicchia A, Gorjón SP (2010) Fungi Europaei 12. Corticiaceae s.l. Edizioni Candusso, Alassio, 1008 p.
  • Boidin J (1959) Hétérobasidiomycètes saprophytes et homobasidiomycètes résupinés. VII. Essai sur le genre «Stereum sensu lato. » Bulletin Mensuel de la Société Linnéenne Lyon 28: 205–222. https://doi.org/10.3406/linly.1959.8081
  • Boidin J (1969) A propos du genre Lopharia Kalchbr. et Mc Ow. em. Boidin 1959. Revue de Mycologie (Paris) 34: 187–191.
  • Boidin J, Gilles G (1991) Basidiomycètes Aphyllophorales de LÎle de La Réunion. XVI. Les genres Hyphoderma, Hyphodermopsis, Chrysoderma nov. gen. et Crustoderma. Cryptogamie Mycologie 12: 97–132.
  • Boidin J, Gilles G (1998) Contribution à l’étude des genres Dendrocorticium, Dendrodontia et Dentocorticium (Basidiomycotina). Cryptogamie Mycologie 19: 181–202.
  • Boidin J, Gilles G (2002) À propos du genre Lopharia sensu lato (Basidiomycètes, Aphyllophorales). Bulletin de la Société Mycologique de France.118: 91–115.
  • Boidin J, Lanquetin P (1977) Peniophora (subg. Duportella)malençonii nov. sp. (Basidiomycètes Corticiaceae), espèce mèditerranéenne partiellement intérsterile avec son vicariant californien. Revue de Mycologie (Paris) 41: 119–128.
  • Boidin J, Lanquetin P (1984) Le genre Amylostereum (Basidiomycetes) intercompatibilités partielles entre espèces allopartriques. Bulletin Trimestriel de la Société Mycologique de France 100: 211–236.
  • Boidin J, Lanquetin P, Duhem B (1996) Contribution à la connaissance du genre Dendrothele (Basidiomycotina, Aphyllophorales). Bulletin Trimestriel de la Société Mycologique de France 112: 87–126.
  • Burt A (1925) The Thelephoraceae of North America. XIV. Peniophora. Annals of the Missouri Botanical Garden 12: 213–357. https://doi.org/10.2307/2394076
  • Chamuris GP (1987) Notes on stereoid fungi I. The genus Dendrophora, stat. nov., and Peniophora malenconii subsp. americana, subsp. nov. (Stereum heterosporum). Mycotaxon 28: 543–552.
  • Cunningham GH (1956) Thelephoraceae of New Zealand – Parts VII and VIII. Transactions of the Royal Society of New Zealand 83: 621–636.
  • Dai YC (2002) Notes on Lopharia mirabilis (Berk. & Broome) Pat. in China. Fungal Science 17: 31–38.
  • Domański S (1988) Mala flora grzybów. Tom I: Basidiomycetes (Podstawczaki), Aphyllophorales (Bezblaszkowe). Corticiaceae, Acanthobasidium – Irpicodon 5: 1–427.
  • Duhem B, Michel H (2009) Une espèce nouvelle de Corticium s. st. Etudes dans les genres Dendrocorticium et Dentocorticium (Basidiomycotina). Cryptogamie Mycologie 30: 161–179.
  • Floudas D, Hibbett D (2015) Revisiting the taxonomy of Phanerochaete (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling. Fungal Biology 119: 679–719. https://doi.org/10.1016/j.funbio.2015.04.003
  • Garcia-Sandoval R, Wang Z, Binder M, Hibbett D (2011) Molecular phylogenetics of the Gloeophyllales and relative ages of clades of Agaricomycotina producing a brown rot. Mycologia 103: 510–524. https://doi.org/10.3852/10-209
  • Ginns JH (1971) The genus Merulius IV. Species proposed by Berkeley, by Berkeley and Curtis, and by Berkeley and Broome. Mycologia 63: 219–236. https://doi.org/10.2307/3757757
  • Hall TA (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.
  • Hjortstam K, Ryvarden L (1980) Studies in tropical Corticiaceae (Basidiomycetes) I. Mycotaxon 10: 269–287.
  • Hjortstam K, Ryvarden L (2008) Some corticioid fungi (Basidiomycotina) from Ecuador. Synopsis Fungorum 25: 14–27.
  • Hjortstam K, Ryvarden L, Iturriaga T (2005) Studies in corticioid fungi from Venezuela II (Basidiomycotina, Aphyllophorales). Synopsis Fungorum 20: 42–78.
  • Jang Y, Jang S, Lee J, Lee H, Lim YW, Kim C, Kim JJ (2016) Diversity of wood-inhabiting polyporoid and corticioid fungi in Odaesan National Park, Korea. Mycobiology 44: 217–236. https://doi.org/10.5941/myco.2016.44.4.217
  • Justo A, Hibbett DS (2011) Phylogenetic classification of Trametes (basidiomycota, polyporales) based on a five-marker dataset. Taxon 60: 1567–1583.
  • Justo A, Miettinen O, Floudas D, Ortiz-Santana B, Sjokvist E, Lindner D, Nakasone K, Niemelä T, Larsson KH, Ryvarden L, Hibbett DS (2017) A revised family-level classification of the Polyporales (Basidiomycota). Fungal Biology 121: 798–824. https://doi.org/10.1016/j.funbio.2017.05.010
  • Ko KS, Jung HS, Ryvarden L (2001) Phylogenetic relationships of Hapalopilus and related genera inferred from mitochondrial small subunit ribosomal DNA sequences. Mycologia 93: 270–276. https://doi.org/10.2307/3761648
  • Kornerup A, Wanscher JH (1978) Methuen handbook of colour. 3rd Ed. Eyre Methuen, London, 252 pp.
  • Katoh K, Toh H (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286–298. https://doi.org/10.1093/bib/bbn013
  • Larsen MJ, Gilbertson RL (1974) Dendrocorticium and Dentocorticium, gen. nov. (Aphyllophorales, Corticiaceae) as segregates from Laeticorticium. Norwegian Journal of Botany 21: 223–226.
  • Larsen MJ, Gilbertson RL (1977) Studies in Laeticorticium (Aphyllophorales, Corticiaceae) and related genera. Norwegian Journal of Botany 24: 99–121.
  • Liu SL, Tian Y, Nie T, Thawthong A, Hyde K, Xu LL, He SH (2017) Updates on East Asian Asterostroma (Russulales, Basidiomycota): new species and new records from Thailand and China. Mycological Progress 16: 667–676. https://doi.org/10.1007/s11557-017-1301-5
  • Maekawa N (1994) Taxonomic study of Japanese Corticiaceae (Aphyllophoraceae) II. Reports of the Tottori Mycological Institute 32: 1–123.
  • Maekawa N, Suhara H, Kinjo K, Kondo R (2003) Corticioid fungi (Basidiomycota) in mangrove forests of the islands of Iriomote and Okinawa, Japan. Mycoscience 44: 403–409. https://doi.org/10.1007/s10267-003-0133-0
  • Matheny PB (2005) Improving phylogenetic inference of mushrooms with rpb1 and rpb2 nucleotide sequences (Inocybe; Agaricales). Molecular Phylogenetics & Evolution 35: 1–20. https://doi.org/10.1016/j.ympev.2004.11.014
  • May TW, Milne J, Shingles S, Jones RH (2003) Catalogue and Bibliography of Australian Fungi 2. Basidiomycota p.p. & Myxomycota p.p. Fungi of Australia Volume 2B ABRS/CSIRO Publishing, Melbourne, 453 pp.
  • Miettinen O, Spirin V, Vlaska J, Jr. Rivoire B, Stenroos S, Hibbett DS (2016) Polypores and genus concepts in Phanerochaetaceae (Polyporales, Basidiomycota). MycoKeys 17: 1–46. https://doi.org/10.3897/mycokeys.17.10153
  • Nakasone KK, Hibbett DS, Goranova G (2009) Neocampanella, a new corticioid fungal genus, and a note on Dendrothele bispora. Botany 87: 875–882. https://doi.org/10.1139/b09-046
  • Nylander JAA (2004) MrModeltest 2.2. Program distributed by the author. Evolutionary biology Centre, Uppsala University, Uppsala.
  • Ryvarden L (1978) Studies in the Aphyllophorales of Africa 6. Some species from eastern Central Africa. Bulletin du Jardin Botanique National de Belgique 48: 79–119. https://doi.org/10.2307/3667919
  • Ryvarden L (2010) Stereoid fungi of America. Synopsis Fungorum 28: 1–206.
  • Sjökvist E, Larsson E, Eberhardt U, Ryvarden L, Larsson KH (2012) Stipitate stereoid basidiocarps have evolved multiple times. Mycologia 104: 1046–1055. https://doi.org/10.3852/11-174
  • Swofford DL (2002) PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.
  • Thomsen IM (1998) Characters of fruitbodies, basidiospores and cultures useful for recognizing Amylostereum areolatum and A. chailletii. Mycotaxon 69: 419–428.
  • Welden AL (2010) Stereum s.l. Flora Neotropica Monograph 106: 1–79.
  • White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (Eds) PCR protocols, a guide to methods and applications.Academic, San Diego, 315–322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1
  • Wu SH (2008) Twenty species of corticioid fungi newly recorded from China. Mycotaxon 104: 79–88.
  • Wu SH (2010) Survey of corticioid fungi in Taiwan, to 2010. Fungal Science 25: 49–60.
  • Yoon SI, Kim SY, Lim YW, Jung HS (2003) Phylogenetic evaluation of stereoid fungi. Journal Microbiology and Biotechnology 13: 406–414.
login to comment