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Abstract: Aspergillus nidulans has long-been used as a model organism to gain insights into the genetic basis of asexual and sexual developmental processes both in
other members of the genus Aspergillus, and filamentous fungi in general. Paradigms have been established concerning the regulatory mechanisms of conidial
development. However, recent studies have shown considerable genome divergence in the fungal kingdom, questioning the general applicability of findings from
Aspergillus, and certain longstanding evolutionary theories have been questioned. The phylogenetic distribution of key regulatory elements of asexual reproduction in
A. nidulans was investigated in a broad taxonomic range of fungi. This revealed that some proteins were well conserved in the Pezizomycotina (e.g. AbaA, FlbA, FluG,
NsdD, MedA, and some velvet proteins), suggesting similar developmental roles. However, other elements (e.g. BrlA) had a more restricted distribution solely in the
Eurotiomycetes, and it appears that the genetic control of sporulation seems to be more complex in the aspergilli than in some other taxonomic groups of the
Pezizomycotina. The evolution of the velvet protein family is discussed based on the history of expansion and contraction events in the early divergent fungi. Het-
erologous expression of the A. nidulans abaA gene in Monascus ruber failed to induce development of complete conidiophores as seen in the aspergilli, but did result in
increased conidial production. The absence of many components of the asexual developmental pathway from members of the Saccharomycotina supports the hypothesis
that differences in the complexity of their spore formation is due in part to the increased diversity of the sporulation machinery evident in the Pezizomycotina. In-
vestigations were also made into the evolution of sex and sexuality in the aspergilli. MAT loci were identified from the heterothallic Aspergillus (Emericella) heterothallicus
and Aspergillus (Neosartorya) fennelliae and the homothallic Aspergillus pseudoglaucus (=Eurotium repens). A consistent architecture of the MAT locus was seen in
these and other heterothallic aspergilli whereas much variation was seen in the arrangement of MAT loci in homothallic aspergilli. This suggested that it is most likely that
the common ancestor of the aspergilli exhibited a heterothallic breeding system. Finally, the supposed prevalence of asexuality in the aspergilli was examined. In-
vestigations were made using A. clavatus as a representative ‘asexual’ species. It was possible to induce a sexual cycle in A. clavatus given the correct MAT1-1 and
MAT1-2 partners and environmental conditions, with recombination confirmed utilising molecular markers. This indicated that sexual reproduction might be possible in
many supposedly asexual aspergilli and beyond, providing general insights into the nature of asexuality in fungi.
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INTRODUCTION

Members of the genus Aspergillus have long-been used as
model organisms to study developmental processes in fila-
mentous fungi. This is due to their ease of cultivation and
manipulation under laboratory conditions, the well-characterised
morphology of asexual spore development, and the fact that
they exhibit both homothallic (self-fertile) and heterothallic
(obligate out-crossing) sexual breeding systems (Krijgsheld et al.
2013). The homothallic species A. nidulans in particular has
been used extensively for investigations into the genetic basis of
asexual and sexual sporulation, following its establishment as a
model organism by Pontecorvo (1953). Studies have revealed a
series of genetic pathways governing asexual and sexual
reproduction, with ongoing research using a variety of –omic
techniques to gain ever deeper insights into the precise mo-
lecular mechanisms of these pathways (Park & Yu 2012, Dyer &
O'Gorman 2012).

Results from studies with A. nidulans have been considered
to provide insights that are applicable to sporulation processes in

the aspergilli as a whole, as well as being of relevance to the
Pezizomycotina in general. However, it is possible that some
aspects of the genetic regulation may be restricted to A. nidulans
and its close relatives. Whole genome sequence has recently
become available from both a wide taxonomic range of the as-
pergilli (de Vries et al. 2017) and the fungal kingdom in general,
revealing considerable genome divergence within fungi. This
now offers the opportunity to assess how widespread aspects of
the regulatory pathways of reproduction in A. nidulans are in a
broad biodiversity of fungi, as well as addressing certain specific
questions concerning the control and evolution of asexual and
sexual development in the aspergilli. These issues are investi-
gated in detail in the present study under the common theme of
reproduction, looking first at asexual and then later at sexual
reproduction. Findings from both sets of analyses reveal how
data obtained from Aspergillus species may, or may not, be of
general relevance to understanding reproductive processes in
other fungal taxa. The results presented follow on from initial
work reported in the comparative genomics analysis of de Vries
et al. (2017).
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Asexual development in Aspergillus

Aspergillus species are well known for the prolific production of
asexual spores termed conidia. These are produced from co-
nidiophores with a characteristic aspergillum-like morphology
consisting of a foot cell, stalk and vesicle bearing metulae and
phialides with radiating conidia (Fig. 1A), although rare excep-
tions do exist within the aspergilli with different conidial head
morphologies (Yu 2010, Samson et al. 2014). A. nidulans has
been used as a model for the study of conidiation for many
decades and consequently considerable knowledge has been
accumulated about the regulatory pathways involved in this
species (Adams et al. 1998, Etxebeste et al. 2010, Park & Yu
2012). The initiation of conidiation involves the regulation of
thousands of genes in A. nidulans (Garzia et al. 2013, C!anovas
et al. 2014), of which there are a series of upstream activators
and negative repressors, central regulators, as well as light-
responsive and velvet regulators [Fig. 1B; also see Fig. 2A of
de Vries et al. (2017)].

The initiation of the conidial developmental pathway in
A. nidulans is controlled by upstream developmental activators
(UDAs), which consist of three genetic cascades containing the
flbA (fluffy low BrlA expression), flbB/D/E and flbC genes. Up-
stream of the flbB/D/E and flbC modules lies fluG, which is an
activator of the flb modules (Fig. 1B). FluG is responsible for the
synthesis of an endogenous diffusible factor, with the mer-
oterpenoid compound dehydroaustinol shown to induce con-
idiation in a ΔfluG mutant (Rodriguez-Urra et al. 2012). FluG is
involved in the repression of the activity of SfgA (Seo et al. 2006).
This step is crucial to initiate the conidiation machinery because
SfgA itself is a repressor of the fluffy genes (Seo et al. 2006).
Further repressors of conidiation active during vegetative growth
are NsdD, VosA and two G-protein signalling pathways (Seo
et al. 2006, Park & Yu 2012, Lee et al. 2014, 2016).

The expression of the various fluffy genes ultimately activates
the central regulatory pathway (CRP) composed sequentially of
brlA, abaA and wetA (Adams et al. 1998, Etxebeste et al. 2010,
Park & Yu 2012) (Fig. 1B). Deletion of any of these genes leads

to particular blocks in the proper development of conidiophores,
resulting in abnormal morphologies termed bristle, abacus and
wet-white, respectively (Yu 2010). The first genome sequencing
projects of the aspergilli demonstrated that the CRP was also
present in species such as A. fumigatus and A. niger, and it was
suggested that the same pathway observed in A. nidulans was
likely to control asexual sporulation in these species as well (Pel
et al. 2007, Samson et al. 2009, Yu 2010). Most recently, de
Vries et al. (2017) investigated the presence of CRP in a
broader range of Aspergillus and Pezizomycotina species. BrlA
seemed to be limited to the Eurotiales, suggesting a specific role
for conidiation in this group. By contrast, WetA was widely
distributed in the Pezizomycotina, suggesting a general function
for the synthesis of spore cell wall layers. Meanwhile, AbaA was
widespread in the Ascomycota, Basidiomycota, and Mucor-
omycota, suggesting other general functions in fungal develop-
ment. However, intriguingly the abaA gene was missing from
Monascus ruber (a close relative of the aspergilli) and was not
uniformly present in the fungal kingdom (de Vries et al. 2017).

Other proteins also influence conidial formation in A. nidulans.
These include the transcription factors StuA and MedA, both of
which have been termed developmental modifiers because they
are required for the development of proper conidiophore
morphology (Busby et al. 1996, Wu & Miller 1997). A further
major group is the velvet (Vel) proteins, which have been
implicated in the regulation of developmental processes, and
also secondary metabolism, and which are specific to fungi
(Bayram & Braus 2012). The members of this family are char-
acterized by the velvet domain comprising approximately 150
amino acids with a fold resembling the Rel homology domain
(RHD) of the mammalian transcription factor NF-κB (Ahmed
et al. 2013). The velvet proteins act downstream of the light
receptor proteins LreA, LreB and FphA in A. nidulans to either
promote or repress asexual or sexual reproduction, depending
on the specific VeA, VelB or VelC protein (Bayram & Braus,
2012, Dyer & O'Gorman 2012). The velvet regulators can
interact both with each other and also with non-velvet proteins to
control development and conidiation (Bayram & Braus, 2012).

Fig. 1. (A) A schematic presentation of conidiophore development of in A. nidulans. (B) A genetic model of the regulation of conidiophore development.

OJEDA-L!OPEZ ET AL.

38



Given this background, a main aim of the present study was
to study the phylogenetic distribution of known regulators of
conidiation in A. nidulans to determine how widespread the ac-
tion of these proteins might be in the fungal kingdom. This
included an analysis of the upstream regulators and repressors,
the central regulatory pathway, and the possible expansion or
contraction of the velvet family proteins. A second specific aim
was to heterologously express abaA in M. ruber, to see to what
extent this might impact on conidiophore morphology given the
close taxonomic relatedness to the aspergilli and that abaA
appears to be absent from the M. ruber genome whilst all other
regulators are present (Vries et al. 2017).

Sexual development in Aspergillus

Whereas asexual reproduction is observed universally in the
aspergilli (Raper & Fennell 1965, Samson et al. 2014), sexual
reproduction has only been observed in approximately 36 % of
species (Dyer & O'Gorman 2011). Where sex occurs, it leads to
the formation of ascospores within enclosed cleistothecia, which
break down at maturity to passively release the sexual spores.
The Aspergillus species with described sexual cycles are over-
whelmingly homothallic in nature, with a ratio of approximately
13:1 homothallic: heterothallic taxa (Dyer & O'Gorman 2012).
Despite the supposed monophyly of Aspergillus there is never-
theless a surprising diversity in the morphology of sexual
structures within the genus compared to the more limited vari-
ation seen in conidial development (Samson et al. 2014). Up to
12 different sexual genera have been phylogenetically associ-
ated with Aspergillus asexual forms, being distinguished by
morphological aspects of the cleistothecia such as the wall
(peridium) composition and colour, and whether cleistothecia
develop within larger surrounding sclerotia (Dyer 2007, Peterson
2008, Samson & Varga 2010, Dyer & O'Gorman 2012).

Numerous studies have been undertaken with A. nidulans to
determine the genetic basis of sexual development, with over 70
genes now identified as having roles in various stages of the
sexual process. These have been divided into genes encoding
proteins involved with perception of environmental signals,
mating and signal transduction, transcription factors and other
regulatory proteins, endogenous physiological processes, and
ascospore production and maturation (Dyer & O'Gorman 2012).
Of particular note was the discovery that the breeding system of
particular species is governed by the presence of mating-type
(MAT) genes (Dyer et al. 2016). The genome of the homothal-
lic model species A. nidulans was found to contain both MAT1
and MAT2 mating-type genes encoding alpha-domain and high-
mobility group (HMG) domain transcription factors, respectively
(Galagan et al. 2005, Paoletti et al. 2007). A similar discovery
was later made for the homothallic Aspergillus (Neosartorya)
fischeri and Aspergillus (Petromyces) alliaceus (Rydholm et al.
2007, Ramirez-Prado et al. 2008). Deletion of either MAT gene
led to loss of self-fertility in A. nidulans, although deletion mutants
were still able to outcross in a heterothallic fashion (Paoletti et al.
2007). Related work led to the identification of complementary
MAT1-1 and MAT1-2 isolates in species such as A. fumigatus, A.
parasiticus, A. flavus and A. lentulus (Paoletti et al. 2005,
O'Gorman et al. 2009, Horn et al. 2009a,b, Swilaiman et al.
2013). In these instances, isolates were found to have an idio-
morphic MAT locus containing either a MAT1-1-1 alpha domain
or a MAT1-2-1 HMG mating-type gene, respectively. Under

suitable conditions a sexual cycle could be induced in all of these
species, with successful crossing requiring isolates of compatible
mating type to be present. This provided clear evidence of a
heterothallic breeding system in all of these species, determined
by the presence of either MAT1-1-1 or MAT1-2-1 genes in the
genome of individual isolates. MAT genes were also shown to
exhibit cross-species activity and influence gene expression in
asexual species when heterologous genes were used in host
MAT gene replacement experiments (Grobe & Krappmann 2008,
Pyrzak et al. 2008, Wada et al. 2012).

The observation that homothallism predominates in the genus
has been used as evidence to suggest that this breeding system
was ancestral in the aspergilli, with subsequent conversion to
heterothallism through loss of self-fertility in the relatively few
known heterothallic species (Geiser et al. 1996, 1998, Varga
et al. 2000). Furthermore, the fact that the majority of the as-
pergilli are only known to reproduce by asexual means has led to
the theory that sexual reproduction (meiosis) has been lost
multiple times in this group due to evolutionary selection for
asexuality (Geiser et al. 1996). These hypotheses have been
applied more generally to the evolution of sex and asexuality in
fungi (Dyer & Kück 2017).

Given this background, an additional main aim of the present
study was to determine whether homothallism is truly ancestral in
the aspergilli, or whether the genus has heterothallic origins,
building on recent findings by de Vries et al. (2017). To address
this question, we examined how MAT locus architecture varied
throughout the aspergilli, including the cloning of MAT loci from
the first two ever identified heterothallic Aspergillus species,
Aspergillus (Emericella) heterothallicus (Kwon & Raper 1967)
and Aspergillus (Neosartorya) fennelliae (Kwon & Kim 1974), as
well as the homothallic Aspergillus pseudoglaucus (=Eurotium
repens) (Chen et al. 2017a,b). A further specific aim was to
determine whether asexuality truly dominates in the aspergilli, or
whether supposed ‘asexual’ species might retain the potential for
sexual reproduction. To address this, an analysis of MAT gene
presence and recent breakthroughs in inducing sexual repro-
duction was used to investigate whether sex might be possible in
A. clavatus, which lacks a known sexual morph, as a represen-
tative of the asexual aspergilli. This species was chosen due to its
medical importance both as an opportunistic pathogen and pro-
ducer of antibiotics (Bergel et al. 1944, Suzuki et al. 1971, Varga
et al. 2007), as well as its importance as a spoilage organism
(Varga et al. 2003). Indeed, these studies overall are of possible
biotechnological and fundamental significance given that the
sexual cycle provides a valuable tool for strain improvement and
genetic analysis (Ashton & Dyer 2016), so it would be of great
benefit if sex could be induced in supposed ‘asexual’ aspergilli.

MATERIALS AND METHODS

Bioinformatic analyses

Supplementary Table 1 lists species employed in bioinformatic
analyses in this study. Filtered gene model derived proteomes
were downloaded from the Mycocosm site (https://genome.jgi.
doe.gov/programs/fungi/index.jsf) (Grigoriev et al. 2014). Ortho-
Finder version 2.2.0 (Emms & Kelly 2015) with default options
was used to assess orthology among the 54 fungal proteomes.
The resulting species tree was modified with Archaeopteryx (Han
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& Zmasek 2009) to fit the Mycocosm site evolutionary tree of the
fungi, and a re-run of Orthofinder with the modified tree was used
to estimate the reconciled trees for each orthogroup. Data from
Aspergillus nidulans was used as a reference to find the
orthogroups for the FluG, FlbA-E, SfgA, NsdD, MedA, StuA,
VelA-C and VosA regulatory proteins of conidation. The recon-
ciled trees were used to ascertain the orthology-paralogy re-
lationships among the members of the same orthogroup. Protein
domains were annotated employing the NCBI web Cd-search
tool (Marchler-Bauer & Bryant 2004) against the CDD data-
base. Domain architectures and trees were visualized with
Domosaics (Moore et al. 2014).

To construct trees including basal fungi, proteins were first
identified from the Mycocosm site. Multiple alignments were then
made with Clustal Omega (Sievers et al. 2011), and maximum-
likelihood trees were generated using the IQ-Tree server
(Trifinopoulos et al. 2016) and drawn in iTOL (Letunic & Bork
2016). Branches were evaluated by 1 000 ultrafast bootstrap
replicates and by the SH-aLRT test. Best model selection was
carried out by the ModelFinder option included at the IQ-Tree
server (Kalyaanamoorthy et al. 2017). Additional blastp and
tblastn searches were conducted using the NCBI, JGI-
Mycocosm (Grigoriev et al. 2014) and FungiDB (Stajich et al.
2012) databases where necessary.

For AbaA, BrlA and WetA, protein sequences from
A. nidulans were used to query their homologues using the
HMMER 3.1b2 package (http://www.hmmer.org/). The cut-off E
values for homologues of AbaA, BrlA and WetA were set at e−5,
e−100 and e−5, respectively. The homologues were aligned by
MUSCLE (Edgar 2004) and then submitted to Weblogo (http://
weblogo.threeplusone.com/create.cgi) to generate the
conserved motifs.

Genetic manipulation of abaA in Monascus
ruber

A heterologous gene expression approach was used to deter-
mine the effect of abaA expression in Monascus ruber.
A. nidulans isolate FGSC A4 (Fungal Genetics Stock Center,
USA) was used as the donor of the abaA gene and maintained
on PDA slants at 30 °C. Escherichia coli DH 5α and Agro-
bacterium tumefaciens EHA105 were used for hosting plasmids
and were cultivated in LB medium at 28 °C.

Briefly, the abaA gene (AN0422) was amplified from
A. nidulans FGSC A4, while the trpC promoter and terminal
fragments were cloned from the plasmid pSKH, and the selective
marker gene neoR for neomycin resistance was cloned from the
plasmid pKN1 (Li et al. 2010). These four DNA fragments were
fused by double-joint PCR as illustrated in Supplementary Fig. 12
(Yu et al. 2004). Primers used in this study are listed in
Supplementary Table 2. The fused fragment was then introduced
into the expression vector pCAMBIA3300 via the vector pMD19-
T. The recombinant vector carrying the abaA expression cassette
was next introduced into the genome of M. ruber isolate M7 by
Agrobacterium tumefaciens-mediated transformation according
to Shao et al. (2009). Transformants were selected on potato
dextrose agar (PDA) medium containing 15 mg/mL G418 (Sigma-
Aldrich, Shanghai, China). Gene integration was confirmed by
PCR, cDNA sequencing and Southern blotting. Southern blot
assays were performed according to protocols for the DIG-High
Prime DNA Labeling & Detection Starter kit I (Roche,

Mannheim, Germany). To prepare probes, fragments from the
open reading frame of abaA and the selective marker gene neoR
were amplified with primer pairs abaA-F/abaA-R, and neo-F/neo-
R (Supplementary Table 2), respectively, and then labelled with
digoxin after purification with a DNA gel extraction kit (Sangon
Biotech, China). In order to verify the relative expression level of
abaA in the selected mutants, quantitative real-time RT-PCR was
performed using β-actin as a reference gene (Liu et al. 2014). The
wild-type and mutants were cultivated at 28 °C on potato dextrose
agar (PDA) and an Olympus BH2 compound microscope with
differential interference contrast optics was used to take photo-
micrographs of resulting phenotypes.

Identification and sequencing of the MAT locus
of Aspergillus (Emericella) heterothallicus

Isolates 50-3 and 50-5 of A. heterothallicus (=Emericella heter-
othallica) were obtained from the BDUN culture collection at The
University of Nottingham. These were derived from single sporing
of the reference isolates WB4982 (MAT-A) and WB5086 (MAT-a),
from Kwon & Raper (1967). Isolates were cultivated in malt
extract liquid media (20 g malt extract powder, 1 g peptone per L
distilled water) at 28 °C, and genomic DNA extracted using a
DNeasy Plant Mini Kit (Qiagen) according to manufacturer's
instructions.

To characterise the MAT loci, a bridging strategy was used
involving PCR with degenerate primers of the internal MAT genes
as well as amplification of genes known to be conserved in the
external flanking regions of the MAT locus. Initially, fragments of
the MAT1-1 and MAT1-2 genes were amplified from
A. heterothallicus isolates 50-5 and 50-3, respectively, utilising the
degenerate primer sets MAT5-6 and MAT3-4, and MAT5-7 and
MAT3-5 respectively [these primers designed for Eurotiomycete
fungi; Houbraken & Dyer (2015)] using PCR conditions described
by Eagle (2009). Resultant PCR products were gel extracted,
ligated into plasmid pTOPO4, then cloned into E. coli prior to DNA
sequencing. In parallel, fragments of the SLA2 and APN2 genes
[known to flank either side of the MAT locus in many Pezizo-
myoctina species (Debuchy & Turgeon 2006, Dyer et al. 2016)]
from isolates 50-5 and 50-3 were amplified and sequenced in a
similar fashion using SLA2 and APN2 degenerate primer sets
designed against conserved sequence found in the genomes of
available Aspergillus species (primers used for SLA2 were
aaSLA2: AYMGNGARATGGCNGAYYTNGARG and SLA2R:
CRTANSDNGGNSWNGCRTTYTG; for APN2 primers used were
aaAPN2: CARMGNAARGAYYTNMGNGAYGAYATG and
APN2R: GGRTANCCNCCNAYYTGNYKNTC), using PCR con-
ditions described by Eagle (2009). This allowed the subsequent
design of species-specific non-degenerate primers for each of the
resulting MAT1-1, MAT1-2, SLA2 and APN2 gene fragments.
Primers were designed from the SLA2 and APN2 fragments to be
orientated inwards towards the MAT locus, and pairs of outward
primers were designed from the MAT1-1 and MAT1-2 fragments
[see Eagle (2009) for specific details]. This allowed production of
a SLA2 to MAT amplicon, and a separate MAT to APN2 amplicon
(amplifying outwards from either the MAT1-1-1 or MAT1-2-1
fragments). The resulting products were sequenced by chromo-
some walking (Eagle 2009). Resulting sequence was interrogated
by PSORT II (http://psort.nibb.ac.jp/) and TFSITESCAN (http://
www.ifti.org/cgi-bin/ifti/Tfsitescan.pl) programs for the presence
of nuclear-targeting and promoter-region motifs.
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Identification and sequencing of the MAT loci
from Aspergillus (Neosartorya) fennelliae and
Aspergillus pseudoglaucus

Isolates 54-1 (CBS 410.89, MATA) and 54-2 (CBS 411.89, MATa)
of A. (Neosartorya) fennelliae were obtained from the BDUN
culture collection at The University of Nottingham. Both were
originally isolated from Marine Sludge in Japan, 1981 (Takada &
Udagawa 1985). Similar procedures were used to identify the
MAT locus as described above for A. heterothallicus. A bridging
strategy was used based on initial degenerate PCR of fragments
of the MAT, SLA2 and APN2 genes. This allowed the design of
species-specific primers, which were used to amplify SLA2 to
MAT and separate MAT to APN2 amplicons, allowing chromo-
some walking of the entire MAT region. Full experimental details
are provided in Eagle (2009).

For studies of A. pseudoglaucus (=Eurotium repens) two
isolates were obtained from the BDUN culture collection (Uni-
versity of Nottingham), namely 51-1 (origin unknown) and 51-2
(CBS 529.65) originally isolated in 1965 from Prunus domestica
in France (Peterson 2008). Attempts were made to identify MAT
loci as described above for A. heterothallicus and A. fennelliae
using the bridging strategy with degenerate PCR of fragments of
the MAT, SLA2 and APN2 genes. However, it was also neces-
sary to use thermal asymmetric interlaced (TAIL) PCR in com-
bination with the use of the MAT degenerate primers to get
sufficient MAT locus sequence (Arie et al. 1997). Successive
rounds of TAIL-PCR were performed with degenerate PCR
primers to extend the region around the MAT gene fragment (Liu
& Whittier 1995). Sequence data was pooled from isolates 51-1
and 51-2 to ensure consistency. See Eagle (2009) for full
experimental details.

Sexual biology of Aspergillus clavatus: mating-
type diagnostic assay

Twenty isolates of A. clavatus from worldwide locations were
obtained from the BDUN collection at the University of Notting-
ham (isolates 65-1 to 65-20; Supplementary Table 3). Isolates
were maintained on Aspergillus complete agar or liquid media
(ACM) (Paoletti et al. 2005) at 28 °C, and genomic DNA
extracted using a DNeasy Plant Mini Kit (Qiagen) according to
manufacturer's instructions.

To study the potential for sexual reproduction in A. clavatus it
was first necessary to elucidate the mating types of these iso-
lates in order that directed crosses could be set up. Putative
MAT1-1-1 gene sequence data was obtained from The Broad
Institute A. clavatus genome screening project (http://www.broad.
mit.edu/tools/data/seq.html) (gene locus ID: ACLA_034110) and
specific MAT1-1-1 primers were designed from within this
sequence to detect the presence of isolates of the MAT1-1 ge-
notype (primers AclM1F: CAGTTGTTCGTAGCAGACGGGG,
and AclM1R: CGGTGGAGTATGCTTTGGCGAGG). In parallel,
attempts were made to amplify a fragment of the MAT1-2-1 gene
sequence using degenerate primers MAT5-7 and MAT3-5
(Houbraken & Dyer 2015) utilising PCR conditions described
by Eagle (2009). The resulting putative MAT1-2-1 amplicon from
isolate 65-13 was cloned and sequenced. The same bridging
strategy as used in A. heterothallicus (see above), involving
chromosome walking in from the SLA2 and APN2 flanking
genes, was then used to clone and sequence the entire MAT1-2

region of A. clavatus from isolate 65-13 [see Eagle (2009) for
specific details; GenBank accession MH401197]. This allowed
the design of MAT1-2-1 specific primers within the MAT1-2 idi-
omorph to detect the presence of isolates of the MAT1-2 ge-
notype (primers AclM2F: ATCAAGGCTCTTCGTGTCATGC, and
AclM2R: ATGCTTCTTCTTCATATCTTCTGCC).

The resulting MAT primer sets were used in PCR as diag-
nostic tools to determine mating type in a screen of genomic
DNA from the remaining isolates of A. clavatus. Amplifications
were performed using 25 μL reaction volumes containing 2.5 μL
10X PCR Buffer (containing 20 mM MgCl2), 0.2 μL (25 mM each)
dNTPs, 2.5 μL (10 μM) of the respective MAT forward and
reverse primers, 0.2 μL FastStartTaq Polymerase (Roche, UK),
~50 ng genomic DNA, and ultrapure water to a final volume of
25 μL. PCR was performed on a Techne Genius thermal cycler,
using an initial denaturation step of 94 °C for 5 min; 35 cycles
consisting of 1 min at 94 °C, 1 min at 60 °C for MAT1-1 and
55 °C for MAT1-2, and 1 min at 72 °C; followed by a final
extension step at 72 °C for 5 min (all steps were performed at a
ramp rate of 70 °C/min). Resultant PCR products were resolved
on 1.5 % agarose gels and visualized by ethidium bromide
staining. The hypothesis of a 1:1 ratio of mating types in the
worldwide sample population and ascospore progeny was tested
using χ2 and contingency χ2 tests (Fisher 1938).

Sexual biology of Aspergillus clavatus: crossing
and progeny analysis

Crosses were then set up in 9 cm Petri dishes between six
MAT1-1 strains and three MAT1-2 strains of A. clavatus which
were inoculated in all possible pair wise combinations (n = 18),
following the barrage crossing procedures of O'Gorman et al.
(2009). All crosses were set up on oatmeal agar (Robert et al.
2007; pinhead, Odlums, Ireland) in triplicate, sealed with Nes-
cofilm® and incubated at 25 °C, 28 °C or 30 °C in the dark. The
crosses were examined periodically for the presence of cleis-
tothecia for up to five months, using a Nikon-SMZ-2B dissection
microscope.

Attempts were then made to isolate ascospore progeny
from putative mature cleistothecia. The fruit bodies were
cleaned by rolling on 4 % tap water agar to remove adhering
conidia as described by Todd et al. (2007). Intact cleistothecia
were then added to 500 μL of 0.05 % (v/v) Tween 80 and heat
treated at 69 °C for 10 min to inactivate any adhering conidia,
with the assumption that the peridium of the cleistothecia
served as a barrier to protect the ascospores to some extent
(higher temperatures and longer periods were found to kill the
ascospores as well; data not shown). The cleistothecia were
centrifuged, the supernatant discarded and then 50 μL of
0.05 % (v/v) Tween 80 was added and cleistothecia ruptured
by squashing with a needle tip (Todd et al. 2007). The solution
was then brought up to 500 μL by addition of 0.05 % Tween
80 (v/v) and vortex-mixed for 1 min to release the ascospores.
One hundred μL of a 5 × 105 ascospore mL−1 suspension was
then spread inoculated onto ACM plates (Paoletti et al. 2005),
which were incubated at 37 °C for 14 h. Single spore cultures
were established on ACM by transferring individual germinating
ascospore with a LaRu lens cutter attached to a Nikon-
OPTIPHOT microscope.

The segregation of five genetic markers was then examined
in the ascospore offspring using RAPD-PCR fingerprinting as
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previously described (Murtagh et al. 1999, O'Gorman et al. 2009,
Swilaiman et al. 2013). An initial screen of sixteen RAPD primers
revealed four (OPC20, 0PT18, UBC90, OPQ6; sequences
available on request) that yielded polymorphisms suitable for
genotyping. Finally, cleistothecia were examined by scanning
electron microscopy as described by Swilaiman et al. (2013).

RESULTS AND DISCUSSION

Reproduction via the formation of spores is a property seen
throughout the fungal kingdom, which presumably arose early on
in the evolution of many different lineages. The ability to produce
both a tremendous abundance of asexual and/or sexual spores,
combined with the possibility of the long-distance dispersal of
these propagules, helps account for the ecological success and
widespread occurrence of members of the fungal kingdom
(Golan & Pringle 2017). The formation of asexual and sexual
spores is in a balance controlled by both environmental factors
and intracellular signals (Adams et al. 1998, Rodríguez-Romero
et al. 2010, Ruger-Herreros et al. 2011, C!anovas et al. 2016,
Marcos et al. 2016). It is therefore of both academic and applied
significance to understand the genetic controls of asexual and
sexual development, with the prospect of exploiting such
knowledge to control detrimental species whilst promoting
growth of beneficial species.

In terms of filamentous fungi, A. nidulans and Neurospora
crassa have been the most widely used models to study
developmental processes up to this point. Research with
A. nidulans in particular has established paradigms for the ge-
netic regulation of asexual and sexual reproduction (Adams et al.
1998, Braus et al. 2002, Han & Han 2010, Etxebeste et al. 2010,
Dyer & O'Gorman 2012, Park & Yu 2012), as well as the as-
pergilli in general being used to propose hypotheses concerning
the evolution of asexuality and sexual breeding systems (Geiser
et al. 1996, Geiser et al. 1998, Varga et al. 2000, Galagan et al.
2005, Dyer 2007, Dyer & O'Gorman 2012). However, it has
become apparent that there can be significant divergence at the
genome level even within a single fungal genus (Galagan et al.
2005). Therefore, the present study was undertaken to assess
the phylogenetic distribution of the regulatory pathways of
asexual reproduction in a broad taxonomic range of fungi, to gain
some indication of their prevalence. In parallel some long-
standing questions concerning the control and evolution of
sexual development in the aspergilli were addressed. Overall it
was found that some features seen in A. nidulans indeed appear
to be of relevance to a wide biodiversity of fungi. However, some
other features are much less conserved, even within the Euro-
tiomycetes, and some hypotheses about the origins of sex and
asexuality in the aspergilli appear to be incorrect, as will now be
described.

Bioinformatic analysis of asexual development
in Aspergillus

An A. nidulans-centric approach was used to study the phylo-
genetic distribution and molecular features of known regulators
of conidiation from this species. This involved screening for the
presence of a series of upstream activators and repressors,
central regulators, as well as velvet regulators (Fig. 1B) in 54

fungal species including 16 Aspergillus species, related Asco-
mycota and more distant Basidiomycota and Mucoromycota
(Fig. 2). This analysis complements and builds on the findings
presented by de Vries et al. (2017).

Upstream activators and repressors
With respect to conidiation upregulators, the A. nidulans FluG
upstream activator protein was found to possess two charac-
teristic domains, a GlnA domain (glutamine synthetase), and a
metallo-dependent hydrolase domain, belonging to the amido-
hydrolase superfamily (Supplementary Fig. 1). Homologues of
the fluG orthogroup were found in the majority of Ascomycota,
possibly linked to a role in conidiation as seen in A. nidulans.
More distant orthologues were also found in the Basidiomycota,
although not in the Mucoromycota (Fig. 2A). Phylogenetic
analysis further showed that this orthogroup can be divided into
two large groups. One of these encompasses species with
proteins that possess only the GlnA domain, with the other
containing homologues that have both domains described
above. The only exceptions were a subtree encompassing four
basidiomycetes and the ascomycete Penicilium chrysogenum, in
which proteins only contained the metallo-dependent hydrolase
domain. These five species possess proteins that are likely to
have lost the GlnA domain after the FluG orthologues became
separated from the rest of the species in this orthogroup. In some
species of the Pezizomycotina fluG has been lost, specifically in
Cladosporium, Botrytis, Trichoderma and Magnaporthe. It was
already noted by de Vries et al. (2017) that almost half of the
Aspergillus species analysed possess two copies of the fluG
gene, possibly suggesting more differentiated regulation of
development in these species.

Regarding conidiation repressors, the A. nidulans SfgA
repressor protein also has two specific domains: a Gal4-type
Zn(II)2Cys6 type transcription factor, which consists of two heli-
ces organized around the Zn(II)2Cys6 motif, and a fungal tran-
scription factor regulatory middle homology region, which is
present in the large family of fungal zinc cluster transcription
factors that contain an N-terminal GAL4-like DNA-binding
domain (Supplementary Fig. 2). SfgA was found to be present
exclusively in the Eurotiomycetes, being conserved in all
Aspergillus species as well as being present in Monascus,
Histoplasma, and Penicillium, although not in Talaromyces
species (Fig. 2B). All the other Pezizomycotina lack homologues
of sfgA (Dothideomycetes, Sordariomycetes, Lecanoromycetes
etc.). By contrast, the NsdD repressor protein (a GATA-type zinc-
finger transcription factor) whilst also being present in all the
Eurotiomycetes had a broader distribution in many other
Ascomycota (Fig. 2B). Interestingly A. wentii and A. luchuensis
have two paralogs of nsdD, which likely appeared independently
by gene duplication. Some other members of the Pezizomyco-
tina, such as certain Sordariomycetes and Leotiomycetes,
contain shorter copies of nsdD, which are likely homologues of
AnnsdD as they cluster together (Supplementary Fig. 3). Indeed,
deletion of nsdD orthologues in Fusarium (csm-1) and Botrytis
(ltf1) increases conidiation (Schumacher et al. 2014, Niehaus
et al. 2017) as has been reported for A. nidulans (Lee et al.
2016).

The absence of the A. nidulans SfgA and NsdD repressors of
conidiation in some other Ascomycota indicates that in such
groups the induction of conidiation employs a different mecha-
nism than the derepression exerted by the FluG factor as seen in
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A. nidulans. Alternatively, given that in many of these cases a
homologue of fluG is present in the genome, it is possible that
FluG derepression occurs by some other mechanism, or even
that FluG directly activates elements of a downstream conidiation

pathway. Interestingly Fusarium can undergo microconidiation in
liquid media under standard growth conditions (L!opez-Berges
et al. 2013) and contains a fluG homologue but not an sfgA
homologue. Although it could be argued that the absence of sfgA

Fig. 2. Distribution of proteins involved in the regulation of conidiation using A. nidulans proteins as bait. (A) Fluffy genes involved in the activation of the central developmental
pathway of conidiation. (B) Repressors of conidiation and developmental modifiers. (C) Velvet proteins. The phylogenetic tree of species was estimated using Orthofinder. Black
squares denote presence; white squares denote absence; and grey squares denote that the presence of proteins that Orthofinder predicts to belong to the orthogroup but they
are either truncated with respect to the A. nidulans respective homologue or do not fulfill the domain architecture requirements. Absence in the Ascomycota clade was confirmed
by tblastn searches in the corresponding genomes using the corresponding A. nidulans homologue.
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allows fungi to conidiate in liquid media, this is not the case for
other Sordariomycetes also lacking sfgA, such as N. crassa, in
which induction of conidation requires growth on a solid surface
or particular starvation conditions (Berlin & Yanofsky 1985). In
this group of organisms, repression of conidiation in
P. chrysogenum poses an interesting case, as it lacks a complete
homologue of fluG, but it has homologues of both sfgA and nsdD
repressors. Analysis by tblastn against all the Penicillium taxon in
NCBI revealed that some Penicillium species contain a complete
fluG homologue, while some other species contain N-terminal or
C-terminal truncated versions (data not shown).

The next set of results of the bioinformatic analyses con-
cerned the remaining members of the fluffy group of genes,
which promote asexual conidiation. FlbA is a regulator of the G-
protein signalling (Yu et al. 1996). Accordingly, FlbA contains
three different domains (Supplementary Fig. 4): two DEP do-
mains that are responsible for mediating intracellular protein
targeting and regulation of protein stability in the cell, and a RGS
(Regulator of G-protein Signalling) domain that is an essential
part of FlbA because it is involved in the cellular signalling events
downstream of G-protein coupled receptors (GPCRs). The DEP
domain is present in many signalling molecules, including RGS
proteins. This pathway signals through a cAMP-PKA, which is
broadly distributed in eukaryotes, and therefore it was expected
that most fungal species would contain an flbA homologue.
Indeed, FlbA was found to be highly conserved, appearing in all
of the species included in this study with the exception of the
Saccharomycotina, that have lost one of the domains during their
evolution and, surprisingly, Cladosporium in which there are no
homologues (Fig. 2A). By contrast, N. crassa and
F. graminearum contain two copies of flbA. In the phylogenetic
tree two subtrees were observed (Supplementary Fig. 4): the first
one has species with just two of the three domains, and the
second one has members where all three domains are
conserved. We assume that this second subtree comprises
species with proteins most orthologous to A. nidulans FlbA.

FlbC is a C2H2 zinc finger transcription factor involved in
binding directly to the cis-regulatory element of brlA and inducing
its expression (Kwon et al. 2010). FlbC is included in a very large
orthogroup encompassing other C2H2 zinc finger transcription
factors (e.g. BrlA). It was found to be well conserved throughout
the Pezizomycotina, appearing in almost all the species studied
(Fig. 2A). In this orthogroup, it was possible to further differen-
tiate the orthologues of FlbC from paralogous proteins involved in
other biological processes thanks to the domain architecture
combined with the clustering pattern (Supplementary Fig. 5).
According to this strategy, FlbC is present in all species of
Pezizomycotina (except in Xilomycetes) and Mucoromycota,
however was absent from the Basidiomycota and some Asco-
mycota such as the Taphrinomycotina and Saccharomycotina.
Deletion of flbC in Aspergillus species and some Sordar-
iomycetes is consistent with a broad role in fungal development.
For example, deletion of flbC in Fusarium resulted in reduced
conidiation, whilst in N. crassa and M. oryzae flbC mutants
showed a reduction in aerial hyphae in addition to reduced
conidiation levels (Son et al. 2014a,b, Malapi-Wight et al. 2014,
Cao et al. 2016, Matheis et al. 2017, Boni et al. 2018). Over-
expression of flbC in A. nidulans produced abnormal vesicles-
like structures at the tips (Kwon et al. 2010), which suggests a
possible role in the blastic development of the conidiophores.

In the other FluG-dependent pathway in A. nidulans, FlbE
interacts with FlbB at the fungal tip in a process necessary to

activate FlbB (Herrero-Garcia et al. 2015), and then FlbB induces
FlbD (Fig. 1). FlbB and FlbD form a heterodimer that activates
the expression of brlA in a cooperative way (Garzia et al. 2010).
FlbB contains a basic leucine zipper (bZIP) domain of DNA
binding (Etxebeste et al. 2008). The bZIP structural motif con-
tains a basic region and a leucine zipper, composed of alpha
helices with leucine residues 7 amino acids apart, which stabilize
dimerization with a parallel leucine zipper domain. Analysis of the
FlbB phylogenetic distribution revealed that it is found exclusively
in the Pezizomycotina (Fig. 2A), and a duplication event is
evident that divides the tree into two main subtrees
(Supplementary Fig. 6). The upper one contains all the ortho-
logues of AnflbB, whilst the lower one contains other bZIP pro-
teins of the Ascomycota, which suggests the presence of
paralogous proteins, which may have acquired new functions
during evolution.

FlbD has been reported to possess a Myb-like DNA-binding
domain (Wieser & Adams 1995). Myb DNA binding domains
display extraordinary similarity to SANT domains, which are
involved in histone tail binding and remodelling of nucleosomes
(Boyer et al. 2004). Our search for domains using the Cd-search
tool against the CDD database showed that FlbD has a SANT
domain (Supplementary Fig. 7), which opens the possibility that
the role of FlbD is to re-model the chromatin at the brlA promoter
to allow its expression. The distribution of flbD perfectly matches
the distribution of flbB, with the exception of Leptosphaeria
(Fig. 2A), which contains two truncated versions clustering
together in the Dothideomycetes cluster but with different domain
architecture, which points to a different role. Trichoderma has a
truncated version containing only the myb-like DNA binding
domain and no additional sequence. Interestingly, despite the
perfectly matching flbB and flbD distribution, deletion of flbB in
Fusarium and N. crassa did not show any phenotype in con-
idiation (Son et al. 2014a,b, Carrillo et al. 2017). On the other
hand, homologues of flbD are essential for the development of
the conidiophores in Fusarium and Magnaporthe (Kim et al.
2014b, Son et al. 2014a, Dong et al. 2015, Matheis et al.
2017), and for filamentous growth in Candida (Homann et al.
2009), suggesting that FlbD can also operate without forming
a heterodimer with FlbB. In Aspergillus, flbD can also function in
a flbB-independent manner orchestrating the formation of the
external tissue (peridium) of the fruiting body (cleistothecia)
during sexual development (Arratia-Quijada et al. 2012). In
addition to the activation of brlA expression, which is not present
in Sordariomycetes (see below), it was reported that FlbB may
also be a key factor in the transition from metulae to phialide in
A. nidulans (Etxebeste et al. 2009). Sordariomycetes contain
phialides but not metulae, which can explain the lack of
phenotype of the flbB mutants. Although the asexual develop-
mental structures of N. crassa are more simple than the
Aspergillus ones, N. crassa displays a complex ontogeny with
the formation of blasto-arthrospores during macroconidiation
(Cole 1986). Microconidiation in N. crassa ressembles more the
development of conidiophores in Aspergillus (Springer 1993).
The flbD homologue in N. crassa poses another interesting case:
it complements the orthlogous mutation of A. nidulans, but
deletion in N. crassa does not show any phenotype (Shen et al.
1998) exposing again the differences in the ontogeny between
these organisms.

FlbE has no known domains. In general, the distribution of
flbE also matches the distribution of flbB and flbD, with the
exception of Podospora. However, flbE seems to be absent from
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the Leotiomycetes, Orbiliomycetes and Pezizomycetes exam-
ined (Fig. 2A). Further analysis showed that Botrytis has a ho-
mologue with low homology in the N-terminal part, and Cladonia
has two putative copies (one of them shorter). The absence of
flbE in some taxa suggest that in these cases, FlbB must be
activated in a different way than in A. nidulans, whether this still
happens at the tip or not remains unknown.

Regarding the developmental modifiers in A. nidulans, StuA
contains a basic helix-loop-helix (bHLH)-like structure of the
APSES domain (Dutton et al. 1997). Members of this family
participate in developmental processes and cell cycle progres-
sion. A StuA homologue was present in all the Pezizomycotina
and possible orthologues were detected in the Mucoromycota,
which also showed an expansion of the number of copies.
However, StuA was generally absent in the Basidiomycota,
except for possible retention in Ustilago (Fig. 2B and
Supplementary Fig. 8). The domain architecture is very diverse
in this orthogroup. Some members have a Sec23_BS domain
(sandwich domain) characteristic of SNARE proteins. Some
others contain PAT1 domain (topoisomerase II-associated pro-
tein), required for accurate chromosomal transmission in yeast.
In the Saccharomycotina two stuA homologues of the APSES
family were found. In yeast these homologues (PHD1 and SOK2)
are involved in pseudohyphal growth, a process with some
similarities to the formation of sterigmata cells in the aspergilli,
and in Candida EFG1 is involved in hyphal growth and the white-
phase cell type (Stoldt et al. 1997). The fission yeast Schizo-
saccharomyces pombe has two APSES proteins involved in cell
cycle (Zhu et al. 1997), which are non-ortholgous to the devel-
opmental APSES regulators of other fungi developing more
complex structures. Although the deletion of stuA homologues
results in a decreased conidiation in Fusarium, Magnaporthe,
Aspergillus, Talaromyces and Neurospora, the morphological
defects are different. In Magnaporthe and Fusarium stuA seems
to be involved in the development of the conidiophore. Macro-
conidia are produced from intercalarly phialides, rather than from
the conidiophore in Fusarium. No difference in morphology was
observed between the mutant and the wild type in Magnaporthe
(Ohara & Tsuge 2004, Nishimura et al. 2009). In Aspergillus and
Talaromyces stuA mutants showed shorter stalks and absence of
metulae and phialides. In this case, a few conidia arise directly
from the stalk (Miller et al. 1992, Borneman et al. 2002).
Borneman et al. (1992) suggested that StuA controls develop-
mental processes requiring budding, which is in agreement with
the non-filamentous phenotype of the deletion mutant of Ustilago
(García-Pedrajas et al. 2010) and matches the blastic develop-
ment of the conidiophores in these fungi. In the case of
N. crassa, the deletion mutant was not characterized in depth
with respect to conidiation. The mutant showed a stunted
appearance, conidiating close to the agar surface (Aramayo
et al. 1996). If StuA truly orchestrates blastic development,
then residual conidiation of N. crassa could arise during the
secondary arthric development of macroconidia. A deeper
characterization of the mutant phenotype is required.

The final developmental modifier MedA, showed a taxonomic
distribution similar to stuA (Fig. 2B). The medA homologues of
the Pezizomycotina seemed to form a distinct cluster
(Supplementary Fig. 9), which does not clarify whether homo-
logues in the Zygomycotina and some Basidiomycotina have a
similar role to that seen in A. nidulans. Furthermore, medA
mutants show different phenotypes depending on the species. In
all cases, the levels of conidiation are affected. Whereas in

A. nidulans, deletion of medA produces conidiophores with
multiple layers of sterigmata cells (metulae and phialides), in
A. fumigatus the medusoid aspect was not observed, although
mutants still produced a few conidia (Gems & Clutterbuck 1994,
Gravelat et al. 2010). In Fusarium and Magnaporthe, the deletion
of medA produced a switch to acropetal conidiation with aberrant
conidiophores (Lau & Hamer 1998, Ohara et al. 2004). In
N. crassa deletion of the medA homologue, acon-3, blocked the
budding process resulting in major hyphal constrictions (Springer
1993). In contrast, in U. maydis medA mutants grew normally by
budding but were incapable of forming conjugation tubes and
filamentation (Chacko & Gold 2012). Taken together, it appears
that medA homologues contribute to coordinate the switch be-
tween filamentous elongation and budding division, but have
contrasting roles depending on the species. In agreement with
this, monomorphic yeasts (such as S. cerevisiae and S. pombe)
lack a medA homologue whereas fungi belonging to other
taxonomic groups, that are capable of developing complex
reproductive structures, contain an orthologue.

Central regulatory pathway
BrlA, AbaA and WetA have been identified as the central reg-
ulators for asexual development in A. nidulans (Adams et al.
1998, Park & Yu 2012). These transcription factors regulate
mRNA expression of genes associated with initiation, elongation,
and termination of conidiation (Park & Yu 2012). The bio-
informatic analysis reported in de Vries et al. (2017) looked
especially at the occurrence of the central regulatory pathway
(brlA / abaA / wetA) in the Eurotiomycete genomes under
investigation. It was found that whereas only one or two elements
of the pathway were present in the Ascomycota in general, that
all elements of the pathway were present as a central conserved
feature in all Aspergillus, Penicillium and Talaromyces species
examined. This bioinformatic analysis was extended in the pre-
sent study to include further outgroup species and also an ex-
amination of motifs present in the central regulatory proteins.

It was again found that the central regulatory genes brlA,
abaA and wetA are highly conserved in Aspergillus species, and
also that conserved DNA binding motifs are present in these
central regulatory proteins (Fig. 3A). For example, BrlA ortho-
logues were found to be highly conserved in Aspergillus and
Penicillium species and other Eurotiomycetes. However, BrlA
was absent from all other Ascomycota, Basidiomycota and
Mucoromycota (Fig. 3A). This suggests that BrlA plays a role in
the initiation of conidiation specifically in Eurotiales fungi. BrlA
orthologues contain a fungal specific C2H2 domain for DNA
binding activity (Adams et al. 1988). By contrast, AbaA ortho-
logues could be found in most fungi including both filamentous
and yeast-like members of the Ascomycota, suggesting that
AbaA is not only involved in conidiophore development but also
might have other general functions for fungal morphogenesis.
Interestingly, several Basidiomycota such as Schizophyllum
commune, Laccaria bicolor, and Coprinopsis cinerea were found
to contain more than one AbaA orthologue, whereas A. oryzae
was the only member of the aspergilli to contain two AbaA ho-
mologues. It was also confirmed that Monascus ruber, a close
relative of the aspergilli, lacks an AbaA homologue correlating
with a change in conidiation morphology (Hawksworth & Pitt
1983, Wong & Chien 1986). AbaA orthologues were found to
contain a TEA domain with a DNA binding motif (Burglin 1991,
Andrianopoulos & Timberlake 1994). TEA domains contain
three alpha-helices, two helices with possible DNA binding
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activity being in the N-terminus of the domain and whose se-
quences are quite diverse in fungi. The remaining helix is highly
conserved in most fungi, and is thought to be a nuclear local-
isation signal (Fig. 3B, with the conserved RTRKQVSSHLQ
sequence shown by a red bar). WetA orthologues were also
present throughout the Pezizomycotina. However, Saccha-
romycetes, including Candida albicans, Pichia pastoris, and
Saccharomyces cerevisiae did not contain WetA orthologues
(Fig. 3A). WetA orthologues were found to contain a conserved
ESC1/WetA-related domain containing a putative 16 amino acid
nuclear localization signal and a 9 amino acid transcription
activation domain (shown by red and blue bars, respectively, in
Fig. 3B) (Marshall & Timberlake 1991, Son et al. 2014a,b, Wu
et al. 2017).

Thus, the central regulatory pathway from A. nidulans ap-
pears to be a defining feature of the aspergilli as a whole and it
appears likely that the pathway functions in a similar fashion
throughout the genus. AbaA and WetA elements of the pathway
are also more widely present in the fungal kingdom where it can
be speculated that they are also involved in developmental
processes such as sporulation, although this awaits experimental
confirmation.

Velvet regulatory proteins: phylogenetic distribution
and expansion/contraction of the velvet family
Although the velvet proteins have been mainly characterized in
Aspergillus, they were found to be present across several
different fungal taxa (Fig. 2C). In the aspergilli, all species
included in this study contained one copy of veA, velB, velC and
vosA, with the exception of A. flavus and A. oryzae, which
contain a duplication of vosA (Supplementary Figs 10 & 11). It is
rather interesting that T. marneffei, T. stipitatus and P. zonata
also have duplications of vosA. There are two possible expla-
nations: an early duplication of vosA in the Eurotiomycetes
followed by lost of one of the paralogues in those species that
only contain one copy. The second possibility is that indepen-
dent duplications have led to the vosA paralogues found in
these species. This second possibility appears to be more
parsimonious due to the following observations. The duplication
of vosA seen in A. flavus and A. oryzae is not present in the
closely related species A. terreus, which suggests that the
duplication occurred after the separation of the A. terreus and
A. flavus/A. oryzae clades. The presence of two copies in
A. bombycis and A. nomius, which form a monophyletic group
together with A. flavus and A. oryzae, but not in A. brevijanus
and A. terreus confirms this hypothesis. Indeed, the velC genes
from A. flavus and A. oryzae appear to be separated from the
rest of the aspergilli velC homologues (Supplementary Fig. 11).
Both T. marneffei and T. stipitatus contain vosA paralogues that
cluster according to the species, which points to a duplication
event occurring independently after the separation of both
species. This is further supported by observations of single vosA
copies in the other three Talaromyces species available at the
Mycocosm site. In particular T. aculeatus is in the same
monophyletic group with T. marneffei but not with T. stipitatus,
supporting this hypothesis. Taking all these observations above
together, it suggests that for unknown reasons vosA has a
higher tendency for gene expansions than the other velvet

proteins in the Eurotiomycetes. Indeed, using the blastp search
tool against the Eurotiomycetes database at the JGI website, we
found two independent duplications of veA in Penicillium, no
duplications of velB, five independent duplications of velC (two
in Aspergillus and three in Penicillium) and 6-7 independent
duplications of vosA (two in Aspergillus, one in Penicilliopsis,
two in Talaromyces, and 1-2 in Paecilomyces).

Velvet proteins are specific to fungi (Bayram & Braus 2012)
and seem to be widely distributed in this kingdom as they can be
found in all the Eurotiomycete species included in this study
(Fig. 2C). In order to study in further detail the distribution and
evolution of the velvet proteins, we also included early divergent
fungi in the analysis, using the velvet domain of AnVeA as a bait
to search for homologues in Mycocosm (Grigoriev et al. 2014),
and selected all the homologues found from two random species
of each fungal phyla (except for the Ascomycota, where the
model fungi A. nidulans and N. crassa were purposefully
selected and those in which only one species is available in the
Mycocosm database) (Fig. 4). Our initial searches and further
interrogation using FungiDB (Stajich et al. 2012) could not
identify velvet homologues in the 20 species belonging to six
different genera of the oomycetes deposited in the databases.
Similarly, no homologues could be found in the six species
belonging to four different genera of the Microsporidia. However,
two velvet proteins were found in the only species of Crypto-
mycota available on the JGI database, suggesting that either
Microsporidia lost their velvet genes or the Cryptomycota have
acquired these genes. The two homologues in Cryptomycota are
short proteins of 239 and 247 amino acids displaying low simi-
larity between each other (29 % identity and 46 % positives in
205 amino acids according to the blast search), and both contain
the velvet domain encompassing most of the protein length.
These two copies lie in separate clades in the tree and show a
basal location in the branches in agreement with the presumed
evolutionary history of the Cryptomycota. One of the clades
contains the Cryptomycota velvet protein 1114 and the veA and
vosA homologues of A. nidulans and N. crassa (Fig. 4). Ho-
mologues in the vosA clade appeared relatively early (in Blas-
tocladiomycota) but seem to be absent in many basal phyla. The
vosA and veA clades form a monophyletic group suggesting that
vosA may have evolved from veA. Indeed the domain structure
of VeA and VosA shares the N-terminal localization of the velvet
domain, which is different to the domain organisation seen in
VelB and VelC (Bayram & Braus, 2012). The clade containing the
other Cryptomycota velvet protein (2092) is not well resolved in
the tree and contain subtrees with non-characterized velvet
homologues corresponding to basal fungi and basidiomycetes,
and another subtree with the velB homologues of A. nidulans and
N. crassa. Homologues in the velB clade appear later in Zoo-
pagomycotina. The velC-like homologues encompass a non-
monophyletic group of genes that are not well resolved in the
tree. Supplementary Fig. 11 also shows a paraphyletic group of
the velC-like homologues in the 54 fungal species under anal-
ysis, in which the homologues in the Mucoromycota, Basidio-
mycota and the rest of the Pezizomycotina that do not belong to
the Eurotiomycetes form a separate group. A. nidulans velC is
located in the base of the so-called unassigned velvets and the
velB clade, which makes it difficult to draw conclusions. Available

Fig. 3. Orthogroup containing the BrlA, AbaA, and WetA proteins. (A) Distribution of the BrlA, AbaA, and WetA proteins for asexual sporulation across different fungal taxa. (B)
Sequence logos of the DNA binding motifs of AbaA, BrlA, and WetA from the fungi examined. Red bars indicate nuclear localization signals (NLS) and the blue bar is the
transcription activation domain. Amino acids indicated with red spots are associated with DNA binding activity.
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data do not help either to predict a general function for them. For
example, deletion of velC does not have any observable
phenotype in N. crassa (manuscript in preparation), but it shows
a decrease in conidiation, and affects appressoria and plant
penetration in M. oryzae (Kim et al. 2014a). By contrast, deletion
of velC in A. nidulans produced increased conidiation and
reduced number of cleistothecia (Park et al. 2014). In the
absence of more genomic sequences of the early divergent fungi
of the Cryptomycota and Blastocladiomycota phyla, and homo-
logues in the Microsporidia, it seems that the Cryptomycota
homologue in this clade could be the closest form to the origin of
the velB/C homologues. The tree shows an increasing expansion
of the velvet family from Cryptomycota up to the Mucoromycota
and then a contraction in the Basidiomycota and Ascomycota.

Overview of asexual development
Taking the results of the bioinformatic analyses above as a
whole, a few key observations can be made. Firstly, the fact that
many components of the asexual developmental pathway of

A. nidulans are absent from members of the Saccharomycotina
supports the hypothesis that the difference in their cellular
complexity is due in part to the increased diversity in the spor-
ulation machinery seen in the Pezizomycotina (Lengeler et al.
2000). Thus, many species in the Saccharomycotina are uni-
cellular microorganisms, incapable of developing complex
multicellular structures (such as conidiophores) or are only able
to develop rudimentary ones (e.g. pseudohyphal growth of
S. cerevisiae) (Gancedo 2001, Sudbery 2011). Upstream regu-
lators of conidiation in the aspergilli are also missing from the
Basidiomycotina, many of which undergo only sexual repro-
duction as part of their life cycle. Secondly, the model derived for
asexual development in A. nidulans seems generally applicable
to the aspergilli and most Eurotiomycete species, based at least
on conservation of the regulatory proteins. Whereas in other
members of the Pezizomycotina, homologues of the Aspergillus
regulators of conidiation seem to be generally conserved, but
perform somewhat different biological roles to accomplish the
diverse ontogeny observed in this fungal group. Finally, based on

Fig. 4. Phylogenetic tree of the velvet proteins in fungi. The proteins of A. nidulans and N. crassa are coloured as follows: VeA, orange; VelB, green; VelC, red; VosA, blue. The
branches of the clades containing those homologues are coloured accordingly. Branches and proteins from the basal fungus of the Cryptomycota phyla are coloured in purple.
Black branches represent clades not assigned to any of the above homologues. Branches with bootstrap values lower than 0.8 have been collapsed and are not resolved in the
tree.
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present knowledge it appears that the activation of sporulation
seems to be more complex in the aspergilli than in some other
taxonomic groupings of the Pezizomycotina, where one or more
repressors of conidiation seem to be absent. Considering the
evolution of asexual reproduction in the aspergilli, at least two
possibilities seem possible. There might have been an acquisi-
tion of increased genetic complexity leading to the extant
developmental program seen in the aspergilli, and/or the exis-
tence of convergent but different genetic strategies to control the
onset of sporulation in other taxa. Linked to this, Monascus
provides a particularly interesting example as it was found to
contain all the upstream genetic regulatory machinery, including
the conidiation suppressors and activators of A. nidulans (Fig. 2).
It also has homologues for brlA and wetA of the central devel-
opmental pathway (Figs 1B & 3). However, critically it lacks the
middle genetic element abaA, which is responsible for the dif-
ferentiation of the phialides (Sewall et al. 1990). This led to the
following section of experimental work.

Genetic manipulation of abaA in Monascus
ruber

Members of the genus Monascus are used in the production of
Asian foodstuffs and are phylogentically very closely related to
the aspergilli (Chen et al. 2015, 2017a,b). However, Monascus
has a distinct morphology regarding the development of asexual
conidia. Asexual spores are produced either direct from hyphae
or produced laterally on short pedicels either singly or in short
chains (Hawksworth & Pitt 1983, Wong & Chien 1986). The
bioinformatic analyses of de Vries et al. (2017) found that the
genome of M. ruber contains all the standard genetic regulatory
machinery for conidial production seen in the aspergilli. However,
it lacks abaA from the central developmental pathway, which is
responsible for the differentiation of the phialides in A. nidulans
(Sewall et al. 1990). The conidiophore in M. ruber M7 can be
likened to a single string of an abacus on the vesicle, whereas
that in A. nidulans resembles several strings of an abacus
emerging from a swollen vesicle and the phialides i.e. the
conidiophore of M. ruber differs in that it lacks the production of a
swollen vesicle and the metulae and phialides seen in
A. nidulans. It was therefore tempting to speculate that the
presence or absence of the abaA gene might be a significant
contributory factor to the difference in conidiation form between
Monascus and the aspergilli. We therefore examined whether
heterologous expression of A. nidulans abaA in M. ruber might
lead to a change in conidiation form, perhaps similar to that seen
elsewhere in the Eurotiales.

A total of 21 M. ruber transformant strains were obtained in
which expression of A. nidulans abaA was confirmed by PCR,
cDNA sequencing and Southern blotting (Supplementary Figs 13
& 14). Nine were found to have one copy, ten possessed two
copies, and two contained three copies of abaA. Among these,
two strains (1 and 22) with one copy of abaA, two strains (3 and
8) with two copies, and two strains (11 and 14) with three gene
copies were selected for further investigation. In order to verify
the relative expression level of abaA in the selected mutants,
quantitative real-time RT-PCR was performed. Results showed
that the relative expression level was positively correlated with
abaA gene copy number (Supplementary Fig. 15). The conidial
morphology was then examined. This revealed that among the
six abaA expression strains, most conidiophores were similar to

the M7 parent, with no obvious change in micro-morphology or
colony macro-morphology, although exceptionally a small num-
ber of conidiophores were observed in which one to three conidia
were born in two-three-way branches at the top of vesicles
(Fig. 5; Supplementary Fig. 16). By contrast, conidial counts
showed that production of conidia was significantly increased in
some mutants, which was positively correlated with abaA gene
copy number, compared to the parental WT (Fig. 6). There was
also evidence of earlier germination rates and increased resis-
tance of spores to external stressors in the abaA expression
strains, as well as changes in the proteome as a result of abaA
expression (Supplementary Figs 17–19).

In conclusion, the heterologous expression of abaA in
M. ruber had some effect on conidial formation, but it failed to
lead to a branching conidiophore form as seen in Aspergillus or
Penicillium. Given that AbaA is present in many other members
of the Pezizomycotina (Fig. 3) it seems that most likely that gene
loss has occurred in the ancestor of Monascus that diverged
from an ancestor of the aspergilli, and that Monascus species
have then adapted the regulation of the central pathway
accordingly. Further evidence for this hypothesis is that the
Monascus genome includes brlA, which otherwise only has a
narrow distribution in the Eurotiales.

Evolution of sexual breeding systems in
Aspergillus

There has been longstanding interest in the evolution and control
of sexual reproduction in the fungal kingdom since the earliest
reports of different sexes and self-fertility in fungi by Blakeslee in
the early 1900s, who introduced the terms homothallism and
heterothallism (Houbraken & Dyer 2015). Since then the study of
fungal sex has been used to gain insights into the evolution of
sex and transitions between self-fertility and cross-fertility that
occur throughout the eukaryotic tree of life (Lee et al. 2010,
Heitman et al. 2013, Heitman 2015).

Given that both homothallic and heterothallic breeding sys-
tems are widespread in the fungal kingdom, one particular
question that has arisen and long-been debated in fungal biology
is whether homothallism or heterothallism might be the ancestral
sexual state (e.g. Whitehouse 1949, Metzenberg & Glass 1990).
This is both of fundamental interest, but also has practical
ramifications for the exploitation of fungal sex for breeding pur-
poses (Ashton & Dyer 2016). It has been argued that given the
long time scales and vast evolutionary distances separating
extant species from common evolutionary ancestors, that at best
any features of present day sex will be derived. Despite this, it is
suggested that the original form of sexual reproduction may have
been unisexual (unifactoral), with sexes superimposed as a later
feature (Nieuwenhuis et al. 2013, Heitman 2015). In practice
then, models for the evolution of sexual breeding system might
be at best, and most reliably, applied with any certainty to related
groups of extant taxa. It is also noteworthy that investigations into
the evolution of sex in fungi have been greatly assisted over the
past 20 years by the molecular identification of mating-type loci,
which have been found to be responsible for transitions in modes
of sexual reproduction (Heitman et al. 2013, Dyer et al. 2016).

In the case of the Pezizomycotina, different models for the
evolution of sexual breeding systems were proposed in the
1990s. The fact that the vast majority of known Aspergillus
sexual species are homothallic, combined with phylogenetic
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reconstruction analysis, led Geiser et al. (1996, 1998) to propose
that this group was derived from a homothallic ancestor. This
contrasted with evidence from Cochliobolus species that evolu-
tion of homothallism from a heterothallic ancestral strategy was

more likely (Yun et al. 1999). This was based on the observation
that whereas heterothallic species from the genus exhibited a
consistent, conserved arrangement of mating-type genes at the
MAT locus, that homothallic species instead had a variable

Fig. 5. Conidial morphology of wide-type M. ruber M7 (two images) and transformants (1, 22, 3, 8, 11, 14) (three images) expressing one to three copies of the A. nidulans
abaA gene. Conidiophores are circled in red, with magnified images shown by the inset arrow. Strains were incubated on PDA (potato dextrose agar) medium at 28 °C, with pre-
sterilized glass microscope oblique cutting in the medium. After 4 d, coverslips were taken to observe the conidia morphology under the microscope. Scale bars as indicated.
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arrangement of MAT genes both in terms of gene arrangement,
order and orientation. It was therefore argued that the most
parsimonious explanation was that homothallic species arose
independently from heterothallic ancestors sharing a common
MAT locus structure, accounting for the subsequent variation in
homothallic MAT locus arrangement but consistent heterothallic
MAT arrangement (Yun et al. 1999). There was also further
evidence of sequential MAT gene insertions conferring homo-
thallism in some species. It was later suggested that hetero-
thallism is also the most likely ancestral mating state of members
of the genus Stemphylium, which is closely related to Cochlio-
bolus (Inderbitzin et al. 2005). It was hypothesized that homo-
thallic members had arisen by an inversion and fusion event of
an ancestral heterothallic MAT loci. In parallel it has been sug-
gested that the ancestor of all extant ascomycete yeast species
may have had a heterothallic mating strategy (Butler 2007).

Therefore the genus Aspergillus seemed to be the exception
in having arisen from a homothallic ancestor. This apparent
anomaly was investigated in the bioinformatic analysis of de
Vries et al. (2017), where it was found that all of the presumed
asexual species were found to contain either a MAT1-1-1 or
MAT1-2-1 mating-type gene, consistent with the presence of
either MAT1-1 or MAT1-2 idiomorphs. Adjacent gene synteny
was also conserved across all species, again consistent with
heterothallism (Dyer et al. 2016). This indicated that

heterothallism might be widespread in the aspergilli, bringing into
question the supposed homothallic origins of the genus. In the
present study, MAT loci were therefore experimentally cloned
from a further series of representative heterothallic and homo-
thallic Aspergillus species, to determine whether observations of
MAT locus structure could provide a more definitive insight
following the approach of Yun et al. (1999).

Identification of MAT loci from A. heterothallicus,
A. fennelliae and A. pseudoglaucus
In the case of the heterothallic A. heterothallicus, putative MAT-1-
1, MAT1-2-1, SLA2 and APN2 gene fragments were successfully
amplified using PCR with degenerate primers. Utilising the
bridging strategy, it was then possible to amplify an entireMAT1-1
idiomorph region from isolate 50-5 containing a putative MAT1-1-
1 gene, flanked by the SLA2 and APN2 genes (Fig. 7). Sequence
analysis of the region revealed the presence of a 1 139 bp open
reading frame (ORF), including one putative intron, which was
predicted to encode a 362 amino acid MAT1-1-1 protein with a
characteristic alpha-box domain (GenBank accession
MH401192). Analysis of the putative MAT1-1 protein revealed no
clear nuclear targeting signals. Similarly, the bridging strategy
was also used to amplify an entire MAT1-2 idiomorph region from
isolate 50-3 containing a putative MAT1-2 gene, again flanked by
the SLA2 and APN2 genes (Fig. 7). Sequence analysis of the

Fig. 6. Comparison of conidia production between M. ruber isolate M7 and transformant strains expressing the A. nidulans abaA gene. Strains were cultivated on PDA plates
for 10 d before harvesting and counting of conidia. Error bars represent SD. ANOVA analysis of conidial counts was performed, with statistically significant differences between
M. ruber isolate M7 and the transformant strains indicated: * represents p < 0.05 and ** represents p < 0.001.
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region revealed the presence of a 1 075 bp ORF including two
introns, which was predicted to encode a 321 amino acid MAT1-2
protein (GenBank accession MH401191). Analysis of the putative
MAT1-2 protein revealed three nuclear targeting signals (KKKH
at position 182, RKRR at position 202 and PSERKRR at position
199) upstream of the start site. Possession of nuclear targeting
sites is consistent with a role of the MAT1-2-1 gene as a tran-
scriptional activator (Dyer et al. 2016). Further analysis of the
MAT1-2 idiomorph region of isolate 50-3 also revealed, intrigu-
ingly, the presence of an additional putative ORF which shared
high homology with the recently described MAT1-2-4 gene
identified from A. fumigatus (Yu et al. 2017). The
A. heterothallicus MAT1-2-4 gene was located between the SLA2
and MAT1-2-1 gene (Fig. 7) and comprised a 771 bp ORF
(including one putative intron), which was predicted to encode a
242 amino acid MAT1-2-4 protein (GenBank accession
MH401191). Analysis of the MAT1-2-4 protein revealed no clear
targeting signals, only a transcriptional activator TATA box
sequence 35 bp upstream of the start site.

The bridging strategy, using PCR with degenerate primers of
MAT-1-1, MAT1-2-1, SLA2 and APN2 and consequent chromo-
some walking, was also used successfully to amplify entire
MAT1-1 and MAT1-2 idiomorph regions from heterothallic
A. fennelliae isolates 54-1 and 54-2, respectively. These MAT loci
were again flanked by the SLA2 and APN2 genes (Fig. 7).

Sequence analysis of the MAT1-1 idiomorph revealed the pres-
ence of a 1 160 bp ORF containing one putative intron, which was
predicted to encode a 369 amino acid MAT1-1-1 protein (Gen-
Bank accession MH401193). Analysis of the putative MAT1-1-1
protein revealed one nuclear localisation sequence (KKKP at
position 82), consistent with a role for the MAT1-1-1 gene as a
transcriptional activator (Dyer et al. 2016). Analysis of theMAT1-2
idiomorph revealed a 1 072 bp ORF, containing two putative in-
trons, which was predicted to encode a 322 amino acid MAT1-2-1
protein (GenBank accession MH401194). Analysis of the putative
MAT1-2-1 protein revealed three nuclear localisation signals
(KKKH at position 183, RKRR at position 203 and PSERKRR at
position 200). However, unlike A. heterothallicus no MAT1-2-4
gene was found in the region adjoining the MAT1-2-1 gene.

Finally, the bridging strategy was used successfully to identify
a 9 437 bp SLA2 to APN2 region from isolates 51-1 and 51-2 of
the homothallic A. pseudoglaucus (Fig. 7). This region was found
to contain a 1 078 bp MAT1-2-1 gene homologue, which con-
tained two putative introns and was predicted to encode a 321
amino acid MAT1-2-1 protein (an alternative possible ATG start
site was also detected 7 amino acids inwards of the proposed
MAT1-2-1 start site) (GenBank accession MH401195). Analysis
of the putative MAT1-2-1 protein revealed three nuclear targeting
signals (KKKH at position 183, KKRR at position 203 and
PYEKKRR at position 200 upstream of the start site). Further

Fig. 7. Model proposed to explain the evolution of MAT loci and breeding systems in Aspergillus species from a heterothallic ancestor (not to scale). Adapted in part from Dyer
(2007). Mating-type genes are shown in colour: MAT1-1-1 family α-domain in red, MAT1-2-1 HMG family in green, and MAT1-2-4 family in blue. Note that gene nomenclature
varies between heterothallic and homothallic species due to presence of idiomorphs only in the former species. Flanking genes (SLA2 and APN2) are shown by diagonal
hatching. Dotted lines indicate idiomorph region; heavy bold lines indicate conserved sequence flanking the idiomorph region; suffix ‘d’ indicates disabled pseudogene (Rydholm
et al. 2007). Note that the illustration does not show all genes present in the flanking regions (e.g. an APC gene is also present in some species, but syntenic order varies
according to species). Furthermore, only limited sequence is available from the A. pseudoglaucus MAT1-1 gene region, as indicated by question marks.
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analysis of the MAT region also revealed the presence of a
putative MAT1-2-4 gene homologue, containing one putative
intron and which was predicted to encode a 242 amino acid
MAT1-2-4 protein (Fig. 7), as reported by Yu et al. (2017).
However, no evidence of a MAT1-1-1 gene was found in the
SLA2 to APN2 region. Despite this, a 151 bp fragment of a
putative MAT1-1-1 family gene was successfully amplified from
A. pseudoglaucus by PCR with degenerate primers MAT5-6 and
MAT3-4. TAIL-PCR was therefore used to chromosome walk
upstream and downstream of this fragment. In total, 1 598 bp of
sequence from the MAT region was obtained, which was found to
include a 1125 bp putative MAT1-1-1 family gene, which con-
tained one putative intron and was predicted to encode a 356
amino acid MAT1-1-1 family protein (GenBank accession
MH401196). Analysis of the putative MAT1-1-1 family protein
revealed three nuclear targeting signals (KKRR at position 83,
KRRR at position 84 and RRRP at position 85) upstream of the
putative start site. There was no obvious sequence homology to
the previous SLA2-APN2 A. pseudoglaucus MAT gene region.
Given the presence of two apparently independent MAT loci,
these regions were therefore named MAT1 (containing the alpha
domain encoding gene) and MAT2 (containing the HMG-domain
encoding gene) to recognise their separate locations, consistent
with the nomenclature of A. nidulans and A. (Neosartorya)
fischeri as recommended by G. Turgeon (Fig. 7) (Turgeon &
Yoder 2000, Paoletti et al. 2007, Rydholm et al. 2007). As a
result the MAT1-1-1 alpha domain family gene was named
simply MAT1-1 (as there were no alternative idiomorphs in this
species), the MAT1-2-1 HMG domain family gene was named
MAT2-1, and the novel MAT1-2-4 family gene was named MAT2-
4 (Fig. 7) for consistency with previous work (Turgeon & Yoder
2000, Paoletti et al. 2007, Rydholm et al. 2007, Yu et al.
2017). For further background see Wilken et al. (2017), who
have recently proposed updated nomenclature for MAT genes.

RNA expression studies were also undertaken with all of the
MAT genes identified from A. heterothallicus, A. fennelliae and
A. pseudoglaucus. All of the genes were found to be expressed
under the conditions assayed, except for the MAT1-2-4 genes of
A. heterothallicus and A. pseudoglaucus (Eagle 2009).

Implications of MAT loci structure for evolution of
sex in the aspergilli
Results of the present study provided clear evidence that the
heterothallic A. heterothallicus and A. fennelliae shared the same
general genomic arrangement of MAT loci as seen previously in
the heterothallic A. fumigatus and the asexual aspergilli studied
by de Vries et al. (2017) (Fig. 7). The term ‘proto-heterothallic’ has
been suggested to be used for such latter species where evi-
dence of heterothallism is present, but a sexual cycle has yet to
be demonstrated (Houbraken & Dyer 2015). By contrast, results
from the homothallic A. pseudoglaucus added further evidence of
a variety of MAT gene arrangements seen in homothallic
Aspergillus species (Fig. 7). For example, there is evidence of a
translocating break leading to the arrangement of MAT loci in
A. nidulans (Galagan et al. 2005, Paoletti et al. 2007), both alpha-
and HMG-domains at the same single MAT locus in A. (Petro-
myces) alliaceus (Ramirez-Prado et al. 2008), and a localised
MAT region duplication and then translocation in A. fischeri
(Rydholm et al. 2007). The precise situation in A. pseudoglaucus
has yet to be determined as only limited sequence could be
cloned adjacent to theMAT1-1 gene, but there would appear to be
two independentMAT loci present. Following the logic of Yun et al.

(1999), it can therefore be strongly argued that it is most likely that
the common ancestor of the aspergilli exhibited a heterothallic
breeding species. This is on the basis of the general consistency
of the heterothallic MAT locus arrangement in the aspergilli, but
divergence in the homothallic MAT arrangement (Fig. 7). Thus, it
can be envisaged that new Aspergillus species arose as sub
groups, containing both MAT1-1 and MAT1-2 isolates, which
gradually diverged from each other. Within such groups there
might then be occasional evolutionary selection for homothallism
(e.g. Murtagh et al. 2000) and the different forms of homothallic
MAT loci would then arise as a result of spontaneous mutation,
accounting for the inconsistency in their organisation.

One caveat to this conclusion is the recent discovery of the
MAT1-2-4 gene in the MAT1-2 idiomorph of a diverse taxonomic
range of 10 Aspergillus species including A. fumigatus and
A. pseudoglaucus (Yu et al. 2017), and now A. heterothallicus as
well (Fig. 7). The gene was shown to be functional in
A. fumigatus where gene deletion led to an inability to mate (Yu
et al. 2017). However, this gene has not so far been detected or
described from most other aspergilli (including A. nidulans) and
was absent from the MAT1-2 idiomorphs of A. fennelliae and
A. clavatus sequenced in the present study. Given the taxonomic
divergence between A. fumigatus, A. pseudoglaucus,
A. heterothallicus and other species where the gene has been
detected [e.g. A. versicolor and A. carbonarius; Yu et al. (2017)] it
might be expected that MAT1-2-4 gene was a conserved
ancestral feature of the MAT loci of the aspergilli. So, one pos-
sibility is that there have been multiple independent losses of this
gene in the evolutionary history of the group (Fig. 7). A number of
MAT genes specific to certain groups of the Pezizomycotina
have now been described (Wilken et al. 2017). A further caveat is
that a fragment of the MAT1-2 gene was found bordering the
MAT1-1 idiomorph of A. fumigatus (Paoletti et al. 2005) and the
related A. lentulus (Swilaiman et al. 2013), which could indicate
evolution from a homothallic ancestor containing both MAT1-1
and MAT1-2 genes (Galagan et al. 2005). However, bioinformatic
analysis of the MAT regions of many other aspergilli indicates this
to be an unusual occurrence thereby not discrediting the hy-
pothesis of a common heterothallic ancestor. One final consid-
eration is that the apparent predominance of homothallism in the
aspergilli is due to the considerable bias in the numbers of ho-
mothallic species with Emericella and Eurotium sexual states
that have been described [see Table 1 of Dyer & O'Gorman
(2012)]. If these are excluded and asexual species included,
then there is a bias instead towards heterothallism.

Table 1. Number of cleistothecia produced by crosses of
A. clavatus on oatmeal agar medium at 25 °C in the dark after
10 weeks.

Crosses Number of cleistothecia

MAT1-2

65-16 65-19 65-20

MAT1-1 65-2 + + −
65-7 − + −
65-8 + − −
56-10 + − −
65-14 +++++ + −
65-18 ++++ + −

Ratings indicate the mean number of cleistothecia produced from three replicate
crosses on Oatmeal agar in 9 cm diameter Petri dishes: -none; +,1–19; ++,
20–39; ++++, 60–79; +++++, 80–100.
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Asexuality in the aspergilli and sexual
reproduction in A. clavatus

Despite the many supposed benefits of sexual reproduction,
approximately 20 % of all fungal species are only known to
reproduce by asexual means (Hawksworth et al. 1995, Taylor
et al. 1999, Dyer & Kück 2017). The genus Aspergillus is
particularly well known for the predominance of asexual species.
Based on the presence of meiotic and mitotic taxa in a series of
different Aspergillus phylogenetic clades, Geiser et al. (1996)
suggested that asexual fungi are recent derivatives from older
meiotic lineages. However, although there might be short-term
benefits there would also be long-term costs and Geiser et al.
(1996) suggested that the asexual lineages would be more
susceptible to extinction. Thus, the aspergilli have been seen to
provide a model for the evolution of asexuality in fungi. However,
there have been a number of breakthroughs over the past decade
indicating that asexuality might not after all be dominant in the
genus Aspergillus. Based on results of population genetic ana-
lyses, the presence of sex-related genes (as detected in genome
sequencing projects), the presence of isolates of complementary
mating type, and the induction of sexual reproduction in certain
high-profile ‘asexual’ species, it has been argued that a ‘sexual
revolution’ is occurring in the genus Aspergillus and the closely
related genus Penicillium (Dyer & O'Gorman 2011). As a result,
the prevalence of asexuality in the genus is being questioned.

To investigate whether asexual species might have a cryptic
sexual cycle, de Vries et al. (2017) investigated whether ‘sex-
related’ genes involved with mating processes were present and
functionally expressed in supposed ‘asexual’ aspergilli. All of the
presumed asexual species examined were found to contain
either a MAT1-1 or MAT1-2 idiomorph as well as genes encoding
putative pheromone receptors and a pheromone precursor.
Furthermore, when the species were grown under conditions
conducive to sexual reproduction in the aspergilli it was found
that the mating-type, pheromone precursor and receptor genes
were expressed in all of the asexual species in the same way as
known sexual species. These results suggested the possibility of
inducing the sexual cycle in species of applied importance.

This work was extended in the present study by assessing
whether it was possible to induce sexual reproduction in the
supposed asexual species A. clavatus (Varga et al. 2007). The
MAT PCR diagnostic using primer pairs AclM1F with AclM1R, or
AclM2F with AclM2R successfully amplified putative MAT gene
fragments from all 20 worldwide isolates of A. clavatus. Ampli-
cons of the predicted 244 bp size for MAT1-1 genotypes and
388 bp for the MAT1-2 genotypes were produced in different
isolates (Supplementary Fig. 20) indicating a heterothallic
breeding system. The overall mating-type distribution did not
deviate significantly from a 1:1 ratio [(45 % MAT1-1) n = 9, 55 %
MAT1-2 n = 11; Х2 = 0.80; n = 20; P = 0.654, (p > 0.05)]. When
isolates were grouped according to geographic origin there was
also no significant difference in the MAT distribution. Based on
the equal distribution of mating types, it can be assumed that
these populations previously or currently are propagating sexu-
ally in their original habitats (Dyer & O'Gorman 2012).

Nine isolates of A. clavatus (six MAT1-1 and three MAT1-2)
from different geographic origins were then crossed in all possible
pairings under a range of different temperatures on oat meal agar,
which had previously been used to induce the sexual cycles of
A. fumigatus and A. lentulus (O'Gorman et al. 2009, Swilaiman

et al. 2013). Significantly, after four weeks of incubation cleisto-
thecia were observed in three crosses at temperatures between
at 25 °C to 30 °C; all contained asci and ascospores when
crushed. The cleistothecia formed along the barrage zones be-
tween isolates of opposite mating types (Fig. 8). Cleistothecia
were superficial, subglobose to ovoid (315−[513]−692 μm), hard,
yellowish-brown saffron colour (fawn), uniloculate, nonostiolate
covered by dense aerial hyphae, maturing gradually from the
centre outward after 4 wk; covered by dense aerial hyphae
stromatal peridium. Asci were 8-spored irregularly disposed
globose to subglobose, and ascospores hyaline, lenticular
(6.0−[6.5]−7.0 μm), variously sculptured, with two equatorial
crests. The cleistothecia were similar to those seen in Aspergillus
acanthosporus in which the species produce hard and sclerotioid,
fawn nonostiolate, unilocular stromata that take 3–4 wk to mature
and which at maturity contain hyaline ascospores that have two
equatorial ridges (Udagawa & Uchiyama 2002).

Cleistothecia continued to develop in other crosses such that
after 10 wk- of incubation cleistothecia were formed in 9 of the
attempted 18 crosses (Table 1). Greatest fertility, in terms of
number of cleistothecia, was observed in cultures incubated at
25 °C. This was slightly below the optimum temperatures pre-
viously described for A. lentulus and A. fumigatus of 28 °C and
30 °C, respectively (O'Gorman et al. 2009, Swilaiman et al.
2013). No additional cleistothecia were observed in any of the
crosses at any of the three incubation temperatures when cul-
tures were incubated for a further five months. A few features of
the crossing data were noteworthy. Firstly, where cleistothecia
formed there was a large variation in isolate fertility depending on
the mating partners, with isolate 65-16 (MAT1-2) generally pro-
ducing the highest number of cleistothecia whilst one isolate
(from India) was sterile with all mating partners (Table 1). Sec-
ondly, there were relatively few cleistothecia produced overall,
with 78 % of the nine fertile crosses producing less than 20
cleistothecia per 9 cm Petri dish, and no crosses producing more
than 100 cleistothecia under the incubation conditions. Finally,
some crosses were more flexible in their temperature require-
ment for crossing than others. For example, isolates 65-2, 65-8,
65-10, and 65-14 produced cleistothecia at both 25 and 28 °C,
whereas isolates 65-7 and 65-18 were fertile only at 25 °C.

An analysis of recombinationwas then conducted to confirm that
meiosis had taken place, using ascospore-derived progeny from the
representative cross 65-14 × 65-16. There was clear evidence of
recombination of genetic markers as a result of the sexual cycle.
Analysis of the progeny using the PCR mating-type diagnostic
revealed a near 1:1 segregation ratio ofmating type [MAT1-1:MAT1-
2 = 6:6; χ2 = 0.33; p = 0.563, (p > 0.05)]. Moreover, the RAPD
analysis showed that the majority of these progeny had recombi-
nant genotypes based on four RAPD-PCRmarkers. Combining the
MAT and the RAPD data revealed that 83 % of the progeny had
unique genotypes (Table 2). A representative gel of segregation
patterns of the RAPD markers is shown in Supplementary Fig. 21.
Note that loss of RAPDmarkers was observed in some offspring as
described elsewhere (Dyer et al. 1996).

The discovery of sexual reproduction in A. clavatus is signifi-
cant because it provides further evidence that sexual reproduction
might be possible in supposedly ‘asexual’ aspergilli and beyond if
partners of compatible mating type and the correct environmental
conditions can be identified. Therefore, the original argument of the
apparent evolution of asexuality in fungi based on the prevalence
of asexuality in the aspergilli (Geiser et al. 1996) has been su-
perseded given new evidence about the possibilities for sexual
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Fig 8. A, B. Sexual reproductive structures in A. clavatus. Paired cultures of isolates 65-14 × 65-16 on oatmeal agar showing formation of fawn to dark brown cleistothecia
(arrowed) along the barrage zones following four weeks incubation at 25 °C. C. SEM micrograph of a cleistothecium showing the interwoven hyphae that form the peridial wall.
Scale bar = 100 μm. D. A photomicrograph of 8-spored asci. E. SEM micrograph of lenticular ascospores (white arrow) Scale bar = 1 μm. F. Close-up of the peridium of
interwoven hyphae with group of ascospores, (white arrow). Scale bar = 10 μm.

EVOLUTION OF DEVELOPMENT IN ASPERGILLUS

www.studiesinmycology.org 55

http://www.studiesinmycology.org


reproduction in these asexual aspergilli from recent (Dyer &
O'Gorman 2011, 2012) and the present studies. Indeed, the dis-
covery of sexual reproduction in A. clavatus is consistent with
phylogenetic work demonstrating that the known sexual species
A. acanthosporus clusters together with A. clavatus, which hinted
at the possibility of sexual reproduction in the latter species
(Peterson 2000). In addition, one species in the section Clavati,
Aspergillus ingratus, has been reported to produce saffron-
coloured sclerotia when incubated in the dark, representing a
possible stage of sexual development (Yaguchi et al. 1993). It is
noted under the ‘one fungus, one name’ convention (Hawksworth
et al. 2011) that no new Neocarpenteles or other name is now
presented for A. clavatus, instead the original A. clavatus epithet is
applied to the holomorph.

CONCLUSIONS

Members of the genus Aspergillus will no doubt continue to be
used as model fungi for a variety of reasons such as their ease of
growth under laboratory conditions, the availability of classical

genetic and molecular resources, and the economic and
biotechnological importance of many of the species (Bennett
2010). Overall results of the present study indicate that results
gained with A. nidulans can provide insights into asexual and
sexual developmental processes certainly within the aspergilli,
and also to the broader fungi kingdom to some extent. However,
the growing appreciation of genome diversity in fungi indicates
that caution must be exercised before making assumptions
based simply on studies in A. nidulans. Also it cannot be
assumed that just because homologues of genes are present in
different taxa that they have the same functional/mechanistic
action. This normally requires some experimental validation.
There is also one final irony from the present study. Although
some previous theories about the evolution of sexual repro-
duction in the aspergilli now appear to be incorrect and not
applicable to fungi in general, new discoveries about the potential
for sexual reproduction in asexual species in the aspergilli now
provide a novel model for fungi in general. Therefore Aspergillus
has arguably reclaimed its role in the vanguard of fungal biology
in this instance.
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