i

N 70 42366

CR 114159

Design of an ALGOL Machine

by

Thomas F. Signiski

UNIVERSITY OF MARYLAND
COMPUTER SCIENCE CENTER

COLLEGE PARK, MARYLAND

Technical Report 70-131 September 1970
NGR-21-002-206

Design of an ALGOL Machine

by

Thomas F. Signiski

This research was supported in part by Grant NGR-21-002-206
from the National Aeronautics and Space Administration to the
Computer Science Center of the University of Maryland.

Table of Contents

Abstract

1. Introduction

1.1 Organization of the report. .
1.2 The subset of ALGOL
1.3 Design Assumptions

1.3.1 Input Sequence
1.3.2 Output Sequence
1.3.3 Error Sequence

2. Configuration of the Machine

2.1 Memories

2.1.1 Allocation of Memory Ml

2.1.1.1 BLOCK NUMBER COUNTERS
2.1.1.2 DELIMITER STACK ‘
2.1.1.3 FLAG STACK
2.1.1.4 INITIAL STACK
2.1.1.5 COUNT STACK

2.1.2 Allocation of Memory M2

2.1.2.1 NAME TABLE
2.1.2.2 PROGRAM ARFA
2.1.2.3 INPUT QUEUE
2.1.2.4 OUTPUTSTRING
2.1.2.5 OPERAND LIST
2.1.2.6 LINK TO FORLIST STACK

2.2 Registers
2.3 CLD Description

3. Program Execution

3.1 An ALGOL Program

3.7 Machine Conditions at the Start of Execution
3.3 Execution of the Example Program

Label search

Declarations

The READ Statement

The First Conditional Statement
Initial Value Assigned to TEMP

The Iteration

W W www
W wwWwww
N e b

3.3.6.1 Process the For List Element
3.3.6.2 Process the Statement Contained in the Tteration
3.3.6.3 Repeat the Iteration

The Boolean Assignment Statement
The Second Conditional Statement
Exiting the Program

(SN RS
[SSIROL
0o~

[P
(S8
O

Sequence Charts

Initial Point Sequence

Output String Initialization Sequence
Number Processing Sequence

Block Entry Sequence

Block Exit Sequence

Delimiter TRUE Sequence

Delimiter FALSE Sequence

Iteration Initialization Sequence
Declaration Imitialization Sequence
NAME TABLE Activity Sequence

4.10.1 Hash Coding a Name
4.10.2 NAME TABLE Entry

4.,10.2.1 Handling Collisiomns
4.10.2.2 Entering a Name

4.10.3 NAME TABLE Search

. . .

O oo~ WwN -

Eo - I R P S P S L
o

.

4.11 Label Processing Sequence
4.12 Variable Processing Sequence
4,13 Factor Sequence

4.13.1 Multiplication
4.13.2 Division

4.14 Term Sequence

4.,14.1 Addition and Subtraction
4.14.2 Unary Minus

Sum Sequence

Logical Expression Sequence
Arithmetic Expression Sequence
Assignment Sequence
Unconditional Statement Sequence
End of Statement Sequence
Program Body Sequence

Iteration Control Sequence
Read/Write Execution Sequence
Error Sequence

.

PR HE e

o A O S SR R
PLUNOHFHFOWoRNOWD

Acknowledgements

References

Appendix: Description of the Subset of ALGOL

A.1 Elements of the Subset

A.1.1 Character Set
A.1.2 Delimiters
A.1.3 Names

A.l.4 Numbers

A.1.5 Logical Values

A.2 Expressions

A.2.1 Variables

A.2.2 Arithmetic Expressions
A.2.3 Logical Expressions

A.2.4 Designational Expressions

A.3 Statement, ;
A.3.1 Unconditional Statement

A.3.l.1 Assignment
A,3.1.2 Transfer ;
A.3.1.3 Communication

A.3.2 Conditional Statement
A.3.3 Iteration

A.3.4 Empty Statement
Program Structure

AL
A.5 Declarations

Abstract

This‘report describes the design of a syntax-directed machine whose
language is a subset of ALGOL to be referred to as ALGOL for simplicity. This
machine is described in the Computer Design Language (CDL). ‘The subset of
ALGOL is first described. Computer elements such as memories and registers
as well as the allocations of the memories for serving functional elements
such as stacks are then described. Program execution by the machine is then
illustrated in great detail with an example. This is followedvby the presen-
tation of a set of sequence charts to implement the syntax-directed algoritim.

Tnis work aims to demonstrate the feasibility of a high-level language

processor and to illustrate the use of the CDL to describe it,

Design of an ALGOL Machine

T. F. Signiski

1. Introduction

Algebraic languages such as FORTRAN and ALGOL allow a user to write
programs in a format which is close to his natural language. However, when
such languages are implemented on a general-purpose computer, the user's
programs must be translated into machine code before they can be executed.

To the users, the time required for the translation is not directly productive
since it produces no output data. It is greatly desirable that the translation
be eliminated.

One solution for accomplishing this is to build a machine which
executes an algebraic language directly. In other words, a machine which has
the algebraic language as its machine language. Such a machine would be a
hardware interpreter of the language that it executes. To demonstrate the
feasibility of such a machine, the design of a machine that executes a subset
of ALGOL is described in this report. This machine is a syntax-directed (1,2)

computer described in the Computer Design Language (CDL) (3,4).

1.1 Organization of the Report

This report is divided into four sections. This first section de-
fines the subset of ALGOL and describes the machine sequences that are assumed
to be available but are not implemented in this report. Section two describes
the configuration of the machine except for the control part to be described
in a separate report. Section three gives a step by step description of the
machine's operations in executing an ALGOL program. Section four presents
the sequence charts of the machine's sequences and a detailed description of

these sequences. A list of references is provided. An informal but detailed

description of the subset of ALGOL is attached a

n
fw
]
'

]

s>
10}
f]
0.
}._l
o

1.2 The Subset of ALGOL

The subset of ALGOL described in Appendix A of this report was selected
because it provides a nontrivial example of a higher level language machine
and is small enougnh so that the description of the machine design is not
overly complicated. The major features of ALGOL that are not includea in
this subset are procedures, arrays, switches, regl variables, comment state-
ments, logical operators, and the arithmetic‘operation of exponentiation. The

subset does include iterations, relational operators and unconditional statements.

1.3 Design Assumptions

In the interest of simplifying the machine description, certain machine
sequences have not been implemented although it is assumed the machine executes

these sequences. These sequences are discussed below.

1.3.1 Input Sequence

It is assumed that the ALGOL program which is to be executed has al-
ready been read into memory and is ready for execﬁtion. In the interest of exe-
cution speed it is also assumed that some pre-processing has taken place during
the input phase. This pre-processing consists of eliminating the blank spaces
from the program and placing the remaining program constituents®* into separate
locations in memory. Strings of characters which are to be printed out during
the execution of a WRITE statement are placed seven characters per word in
successive memory locations. The constants in the program are converted from
BCD to 36-bit, fixed point binary form and are identified with the special char-

acter 17, in the left most character position of their memory location. All

8

other program constituents are stored left-adjusted in their respective locations.

Table 1 shows a labeled assignment statement and a WRITE statement as they would

%A program constitutent is any name, number, delimiter, or string of characters

enclosed by apostrophes as specified in the Appendix, Sections A.1 and A.3.1.3.

Table 1 Example of ALGOL Statements Stored in Memory

Program Constitutent | Memory Contents (octal)

L ' 43000000000000

-15000000000000
ARC 21512300000000
= 13000000000000
B o 22000000000000
+. 20000000000000
3 , 17000000000003
$ 5300000000000
WRITE , - 66513163250000
(74000000000000.
! 14000000000000
THE VAL ’ 63302560652143
UE OF A | 64256046266021
RC IS 51236031626060
! 14000000000000
s 73000000008000
ARC 21512300000000
) 53000000000000
$ 53000000000000

appear stored in the machine. Each line in the table corresponds to a memory
location. The two statements shown in the Table are:
L:ARC=B+3$

WRITE('THE VALUE OF ARC IS',ARC)S$

It is also assumed that the data which is to be read in during execu-
tion of the program has already been read in, converted to binary form, and

stored in a separate buffer area.

1.3.2 Output Sequence

When a WRITE statement is to be executed, the strings of characters
énd the values of the variables that are to be printed out are prepared for
output but the output is not implemented. The strings of characters are
assembled in a separate buffer area of memory called the OUTPUTISTRING area.
The values of the variables are fetched from memory and converted to BCD form.

The machine then transfers to another sequence.

1.3.3 Error Sequence

The machine transfers to this sequence whenever a syntax error is
detected. In this sequence it is assumed the machine identifies the errov,

prints out a diagnostic message, and halts.

2. Configuration of the Machine

The computer elements selected to implement the ALGOL machine are
shown in Figure 1 except for the control elements to be described in a separate

report.

2.1 Memories

The machine is designed With two memories, M1 and M2, Ml is a 128~
word, 6-bit-per-word memory and M2 is a 40%96-word, 42-bit-per-word memory. Both
are random-access core memories. Ml has address register ARl and buffer regis-
ter BR1. M2 has address register AR2 and buffer register BR2. Both memories
are treated as though they contain several distinct areas. These areas are
described below. Tablies 2 and 3 list the names of these areas, their memory

locations and their siges.

2.1.1 Allocation of Memory M1

In memory M1, five areas are allocated for use as counters and stacks.

These are described below.

2.1.1.1 BLOCK NUMBER COUNTERS

Each counter, which comprises one memory word, corresponds to a block
level in a nesting of blocks as depicted in Figure 2. During execution of
a program, the counters contain current counts of the number of blocks which

have been entered at their corresponding block levels.

2.1.1.2 DELIMITER STACK

This stack dynamically stores the delimiters (see Appendix, Section
A.1.2) encountered while scanning the program. The delimiters are placed on
and removed from this stack in such a manner as to execute the program in accor-
dance with the syntax and semantics of the allowed sﬁbéet. The top element of
this stack is stored in the six-bit register D1 rather than in memory to reduce

the number of memory accesses. The single character delimiters (*, /, +, etc.)

lx#..d“ f ad = " & RO R TR = . T
SUTUO®L T{OTV OU%T Jo szusucn 1 canlig
AINLS sSTIvod oL ANIY
9z k
LsIr QNYY3J0
. 330k
oNLILSINILNO
[-nv] [Ti-0)nrdx] SThE
_ b mwu ?Tov\@ ININ® LndNIT Tree
‘ —‘mr-:.&rl— ~ A:uovAB
o e | Zons| [(-0 7> ii-o)Inox
N ; — ﬁ ﬁ _ ﬁ \l_ ﬁ;ﬁ _ YIyY Wwydoodd
I (os-1r> | [Tr-e)nzx)
- (th- 0 Sbeb-a)TW
vy =] oy ems] [0
H T N _ ?-o:mu _ (or-oy L 379VL
Q@

»N-ovunv

_ REALLS _

_ Cororamay Q3 QR mp

r

(th-030K |

Gr-0> z¥3 ;

[777 g %:sﬁﬁzd,.i(w«é_ Aavis
= ilrvro 2
_ ﬂw m _ I l (15-995] . 1
B Frep— e -- IYILLINT 2ol
H 734 (Mi=0) LT .Wu.ovuu ﬂ Q,ovo\xl_ e — o
E | (o-s£)dnd | [[G-o xx| s

E] I EEOFES arvLs

5T ‘ . .
[G-)IINI] [S-0IvY Oss] [e o] Co] oK LETEIPESEL]
[Aa]l [AwW] [V [as] e S-0'LFin
. I . <okvﬂﬂkw““m E (3-0'L3i-0)iw "
- - 3

5] [oow] [G0V [Gor75%) e |o

\

v

Table 2 Areas of Memory Ml

Name Locations Size
BLOCK NUMBER COUNTERS 0-15 16
DELIMITER STACK 11-87 72
FLAG STACK 88~107 | 20
INITIAL STACK 108-117 10
COUNT STACK 118-127 10

Table 3 Areas of Memory M2

l Name Locations Size
NAME TABLE 0-511 512
PROGRAM AREA | s12-3722 3211
: 1

INPUT QUEUE | 3723-3922 20
OUTPUTSTRING | 3923-4065 1001
OPERAND LIST 4066-4085 20

LINK TO FORLIST STACK : 4086-4095 10

l
| ;

3LOCK COUNT BLOCK BLOCK BLOCK BLOCK
AT FACH LEVEL LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3
1 A:BEGIN
1 B:BEGIN
END B $
2 C:BECIN
1 D:BEGIN
1 E¢BEGIN
END E $
2 F:BEGIN
END F $
F
END D $
2 G:BEGIN
END G $
2
END C $
3 H:BECIN
END H $
END A $

Figure 2: Program illustrating numbering system for Block Levels and
Block Humbers.,

are stored in their internal form (see Table 4) whereas the multiple character
delimiters (BEGIN, GOTO, IT, etc.) are stored as shown in Table 5. The code

for unary minus is also shown in Table 5.

2.1.1.3 FLAG STACK

The elements of this stack indicate whether or not certain parts of
the program are to be executed. Each time a conditional statement is encountered
a new element is placed on this stack. It is removed after the conditional state-
ment has been completely scanned. An element can be assigned one of two values;
one or zero. The value of the element is determined respectively by the validity
or non-validity of the condition specified in the conditional statement. Only
the top element of the stack controls the execution process; this element is
referred to as the current flag. If the value of the current flag is one, the
program is executed as well as scanned whereas if it is zero, the program is
simply scanned. At the start of execution an initial flag is placed on this
stack with a value of one. This initial flag controls the prégram execution while
no conditional statements are being processed. Since the value of the current
flag is checked frequently, the top element is stored in the single-bit re-

gister F1 rather than in memory to reduce the number of memory accesses.

2.1.1.4 INITIAL STACK

The INITIAL STACK elements control the processing of for list elements
of the type STEP-UNTIL. If the value of the current flag is one (see Section
2.1.1.3), a new element is added to this stack each time an iteration is en-
countered. It is removed at the completion of the iteration. These elements
are assigned an initial value of one. When a STEP-UNTIL for list element is
first encountered, the corresponding INITIAL STACK element (always the top ele-
ment) is set to zero and the iteration's controlled variable is assigned its
initial value for the for list element. Thereafter, when the STEP-UNTIL for

list element is scanned, the zero value of the INITIAL STACK element causes the

10

sable 4 Sir-bit Inteinal Character Codes for the Algol Machine
ﬂLettégéwn - S
Character Code (octal) Character Code (octal) |
A : 21 N b5 |
B 22 0 14 ;
c | 23 F U7 |
} D 24 Q 50
‘5 B | 25 i R 51
F 26 3 5 62 f
G 27 | T 63 |
H 30 f 1 an
I 31 v 65 |
J L1 W 66 |
K L2 X 67
L 43 70
M 1y 2 71 z
Digits
Character Code (octal) 1! Craracter Code (octal).w_j
0 00 i 05
1 01 6 0é
2 02 7 07 ;
| 3 03 8 10 }
! L Ok 11 i_
? Other Symbol s é
i Character Code (octal) Character Code (octal)
g - 13 ¥ 53
! ' 14 * o
! 15 | > 60
é + 20 | / A1
i) 3 i , 73
l - 40 (7

Table 5 Codes Used to Store the Multiple Character
Delimiters on the DELIMITER STACK

SR | ,

Delimiter | Code (Octal) | Delimiter Code (Octal)

BEGIN | 22 COTO | 27

FOR | 26 READ : § 51

DO | 2l | WRITE B L7

STEP ﬁ 62 LSS f 43

UNTIL ol LEQ L 71 i

WHILE ’ 66 EQL ; 50 |

IF 31 § GEQ i 67 j

THEN | 63 GTR o 70 !

ELSE g 65 NEQ § L3 '

BOOLEAN § 21 - (unary ; i

INTEGER | 16 ninus) | |
J i [SN N N DS L ; .

12

value of the controlled variable to be changed by the amount of the increment
specified by the STEP-UNTIL for list element.

When an iteration has been executed the number of times specified by
its STEP-UNTIL for list element, the corresponding INITIAL STACK element is
reset to one and thus is initialized in the event that another STEP-UNTIL for

list element is encountered in the iteration's for list.

2.1.1.5 COUNT STACK

A stack of counters. If the value of the current flag is one (see
Section 2.1.1.3), a new element is added to this stack each time an iteration
is encountered. It is removed at the completion of the iteration. These coun-
ters are assigned an initial value of one. As each for list element of a for
list is satisfied, the value of the associated counter is incremented by one.
Thus. each time the machine returns to an iteration's for list to determine
whether or not the iteration's statement should be executed again, it can se-
lect the correct for list element for testing by scanning the for list and
counting the for list elements and comparing the count to the top element of

this stack.

2.1.2 Allocation of Memory M2

In memory M2, six areas are allocated for use as tables, queues, and

stacks. These are described below.

2.1.2.1 NAME TABLE

This table stores the variables and labels declared in the program
along with their values and additional information which allows the machine to
determine in which block of the program they are declared. Scatter storage
is used to address the names (5). Each entry in this table is a two word

node. The format of the first word of a node is the same for all names entered

13

into this table. This format is depicted in Figure 3(a). It is divided into
four fields. The two-bit field TYPE identifies the name as either a label, an
integer variable, or a Boolean variable. The two 5-bit fields BLOCK LEVEL
NUMBER and BLOCK NUMBER refer to the numbering system depicted in Figure 2
and contain the values of the block in which the name is declared. The 30-
bit field NAME contains the first five characters of the name. If the name is
a label, the format of the second word of its node is as shown in Figure 3(b).
This word also contains the five-bit field BLOCK LEVEL NUMBER which is contained
in the first word. The 11-bit field L{LABEL) contains the address of the lo-
cation in the PROGRAM AREA of MZ which contains the colon following the label.
Figure 3(c) depicts the format of the second word of a node for a
name that is a variable. The six~bit field VAI indicates whether or not a value
has been assigned to the variable. This field receives the code 778 when the
variable is entered into the table. This code indicates that the variable has
not been assigned a value and therefore cannot be used as an operand in an
expression. When a variable is assigned a value, field VAL is set to zero and
the value is placed in the right-most 36 bits of the word. For integer variables
the value consists of a sign bit and 35 magnitude bits with negative values in
two's complement form. For Boolean variables the value is an unsigned one or
Zero.

2.1.2.2 PROGRAM AREA

This area holds the Algol program that is being executed. Each loca-
tion of this area contains a single constituent of the program except that
strings of characters which are to be printed out during the execution of a WRITE
statement are placed seven characters per word in successive words. The constants
occuring in the program are stored as 36 bit signed integers and are identified

by the special character 17, in the left-most charvacter position of their word.
18]

5]

The other constituents of the program are storved lefr justified in BCD form (see

Table 1).

14

L2 57 11 12)
HLOCK -
croa | LEVEL MLOCK NAME (first five characters)
SRR RUMBER

AT
s CODW
i

latel

' integer varilable
©1 Boolean variable

1 undefined

(a) Tfirst word of all nodes

0 41

W=

T(LALEL) = the address of the location in the PROGRAM AREA »f #2 containing
the colon which follows the label.

(t) second word of nodes storing labels

[6)]
!
=
[o]
=3
(o
o}
B

VAT

VAT = Value Assigned Indicator

(¢c) second word of nodes storing variatles

Pioure 3 Word Formats lor NAME TABLE area of 12

15

2.1.2.3 INPUT QUEUE

Values (data) which are to be read in during execution of the
program are stored in this area. They are stored in the order in which
they are to be read in with the first location containing the first value.
Numbers are stored in fixed point, binary form in the right~most 36 bits.
Negative numbers are stored in two's complement form. The logical values TRUE

and FALSE are stored as 1 and 0 respectively.

2.1.2.4 QUTPUTSTRING

Whent a string of characters is to be printed out during the exe-
cution of the program, it is first assembled in this area of memory. Table
6 shows the contents of this area of memory after a string of characters
has been assembled for output. The string shown in the table is 'THIS IS
AN EXAMPLE STRING AS IT WOULD APPEAR IN MEMORY AFTER BEING ASSEMBLED FOR

OUTIPUT' .

2.1.2.5 OPERAND LIST

If the value of the current flag (see Section 2.1.1.3) is one,
this list is wsed to dynamically store the operands and the results of oper-
ations on the operands that cccur in a statement as it is being scanned.
When a constant is encounterved, it 1s stored im this list. When a variable
iz encountered, the address of its location in the NAME TABLE is stored in
this list. Finslly, when an opevation is to be performed, the top element(s)
of this list is fetched and after the cperation is complete, the result is

placed in this list.

_Table 6 Example String Stored in the OUTPUTSTRING area of Memory M2

Memory Contents
Memory Address

{ Character Form Internal Code

3923 | mHISIS 63303162603162
3924 LANGEXA 60214560256 721
3925 MPLELST 44474325606263
3926 RINGuAS 51314527602162
3927 - WITLWOU 60316 360664664
3928 é LDLAPPE 43246021474725
3929 ? ARLINGM 21516031456044
3930 % EMORYA 25444651706021
3931 . FIERLBE 26632551602225
3932 % INGUASS 31452760216262
3933 % EMBLED., 25442243252460
3934 } FORLOUT | 26465160466463
3935 PUTuw 47646 333606060
3936 é Lo L ~ 60606060606060
4065 oL G 6060606060606

NOTE: The symboltwiindicates a space.

17

This list operates as a queue when a communication statement (see Appendix,
Section A.3.1.3) is being executed and as a stack when any other type of state-

ment is being executed. Figure 4 depicts the formats used in this list.

2.1.2.6 LINK TO FORLIST STACK

A stack of peinters. If the value of the current flag is one, a new
element is added to this stack each time an iteration is encountered. It is
removed at the completion of the iteration. These pointers contain the PROGRAM
AREA address of the equal sign (=) preceding their corresponding iteration's
for list. They enable the machine to return to the for list after the state-
ment contained within the iteration has been executed. The format for this

stack is shown in Figure 5.

2.2 Registers

There are 13 index registers, six for Memory M1 and seven for Memory
M2, The six index registers for M1 and XCL, XCL1l, XD, XF, XI, and XC. Index
registers SCL, XD, XF, XI and XC store the current addresses of the BLOCK NUM-
BER COUNTER, DELIMITER STACK, FLAG STACK, INITIAL STACK, and COUNT STACK areas
of M1l respectively. Index register XCL1l indicates the new current address of
the BLOCK NUMBER COUNTER area when a transfer statement is executed in a program.

The seven index registers for Memory M2 are XNT, XPA, XIN, XOUT,
¥XPD, XLF, and ¥PV. Index registers XNT, XPA, XIN, XOUT, XPD, and XLF store the
current addresses of the NAME TABLE, PROGRAM AREA, INPUT QUEUE, OUTPUTSTRING,
OPERAND LIST, and LINK TO FORLIST STACK areas of M2 respectively. Index regis-
ter XPV stores the contents of index register XPA at the start of a label
search and is used to address the elements of the OPERAND LIST during the
execution of a communication statement.

Regsiter D1 is the top element of the DELIMITER STACK. Single-bit

register F1 is the top element of the FLAG STACK and is called the current flag.

18

1 29 30 M
////////////// // o
L{RAME) = the addp:ss of the location of the variable in the NANE TAFELZ
{a) 1ink to ths locatlon of a variable in the NAKL TADLE
S 567 21
7
5 //) MAGNITUDE
(b) a constant or the result of an operation
Bit 0" ipndicates whether the word is a link or a value; 1=2iyk, O=valuc.
Figure 4 Formats for OPERAND LIST area of memory M2
0 29 30 :
//// ///////////// //// .
L(FORLIST) = the address in the PROGRAM AREA of memory 2 of ihe eogual sisn (=

preceding an iteration®s for list.

Monre S Word Tormat for the LINK TO FORLIST STACK area of nmemory

19

Register BUF is the output register. The single-bit register BI indicates
whether a Boolean or an integer variable is being printed out. A value of one
indicates a Boolean variable while a value of zero indicates an integer vari-
able.

Register CC counts the commas that are encountered in an iteration's
for list when the machine is scanning the for list to return to the for list
element currently being processed. By comparing the contents of CC to the con-
tents of the top element of the COUNT STACK, the machine can détermine when it
reaches the proper for list element. Register IT is set to one at the start

of an iteration. If a communication statement occurs within an iteration, the
contents of XPD are transferred to this register. It is set to zero at other
times.

Register S stores the constituents of the program when they are fetched
from the PROGRAM AREA of M2. The program constituent decoder identifies the
constituents while they are in this register.

Register HC and CSC are used in conjunction with index register XNT
to hash code the declared labels and variables for placement into the NAME
TABLE. HC holds the variable and CSC is a counter. XNT receives the hash
coded address. HC is also used in conjunction with register AC to convert the
values of integer variables from binary to BCD form for output.

Register CBl stores the count of the number of blocks which have been
entered at the current block level during execution of the program. Referring
to Figure 2, at point P in the execution of the program shown, register (Bl
would contain the value one since only one block (block D) has been entered at
block level two., At point Q however, register CBl would contain the value two
since two blocks (blocks B and C) have been entered at block level one. Note

that the fact block B has been exited has no effect on the count.

20

Registers CB2, CN and CL are used to determine if a collision exists
when a name is hash coded for entry into the NAME TABLE and the hashed address
is non-empty. These registers are also used to find the most recent entry of
a name during a search of the NAME TABLE.

Register R is used in conjunction with index register XNT, memory
address register AR2, and the 12-bit adder to calculate a new address when a
collision occurs while entering a name into the NAME TABLE and when a search
is being made for the most recent entry of a name.

Single-bit register ES indicates whether a name is being entered or
searched for in the NAME TABLE. If ES contains a one, an entry is being made
whereas, if ES contains a zero, a search is being conducted. When a search of
the NAME TABLE is being conducted, the type (label, Boolean, or integer)
of the name and the address of its location in the NAME TABLE are placed in
register A.

Registers AC, MQ and SR are used to perform the arithmetic operations
of addition, subtraction, multiplication, and division. Registers AC and SR
are also used to form the difference of the two operands when a relational oper-
ation is executed. Additionally, AC is used in conjunction with register HC
to convert the values of integer variables from binary to BCD form for output.
A full adder-subtractor is wired between registers AC and SR. The single~bit
register SD indicates whether addition or subtraction is to occur. If SD con-
tains a one, addition is specified; otherwise subtraction. The single-bit
register E is a reference flipflop used in multiplication and division. Over-
flow in the operations of addition, multiplication, and division is indicated
by the single-bit registers AV, MV and DV respectively. The single-bit

register SSK stores the sign of the contents of register SR during arithmetic

21

operations. It is used to check for overflow in addition and subtraction and
to set the sign of the quotient in division.

Register ONT counts the number of bits processed during multiplica-
tion and division and also indicates whether or not an inner block is being
scanned during a label search and during a scan to the end of an iteration.

Register SHFT counts the number of bits that the divisor (register SR)
is shifted left (scaled) so that the division can take place when the divisor
is smaller than the quotient.

The twenty-four single-~bit registers, IP, AP, NMB, etc., are con-
trol registers for calling the various sequences of the machine. During exe-
cution only one of these registers is set to one at any given time.

Single~bit register G is the run/stop control flipflop. Light FINI

indicates when program execution is complete.

2.3 CDL Description

Comment, configuration of the Algol Machine.
Register, AR1(0-6), $address register for M1
AR2 (0-11) , $Saddress register for M2
BRL(0-5), Sbuffer register for M1
BR2(0-41), $buffer register for M2
Comment , the index registers used with memory MIL.
Register, XCL(0-4), $store address for BLOCK NUMBER COUNTIERS in M1

XCL1(0-4), Stransfer statement control register

Xn(0-6), Sstore address for DELIMITER STACK of M1
XF(0-6), store address for FLAG STACK of ML
X1(0-6), S$store address for INITIAIL STACK of M1
XC(0-6), Satore address for COUNT STACK of M1

Comment, the index registers used with memory MZ.

Register, XNT(0-10), Sstore address for NAME TABLE of MZ

22

Register,

XPA(O-11),
XIN(0-11),
XouT(0-11),
XPD(0-11),
XLF(0-11),

XPV(0-11),

Sstore
Sstore
Sstore
Sstore
Sstore

Sstore

address

address

address

address

address

address

for PROGRAM ARFEA of M2

2l

or INPUT QUEUE of M2
for OUTPUTSTRING of M2
for OPERAND LIST of M2
for LINK TO FORLIST STACK of M2

for OPERAND LIST of M2 during execution

cf communication statements

Comment, the remaining registers

Register,

D1(0-5),
F1,

BUF (35-0) ,
BI,
Ccc(0-5),
IT(0-11),
S(0-41),

HC(0-41),

€sc(0-2),
CB1(0-4),

CB2(0-4),

Stop element of DELIMITER STACK

Stop element of FLAG STACK

Soutput register

Soutput control flipflop

Scount commas in for list

Siteration control register

Sidentify constituents of the program

S$hold names for hash coding and convert integer values

from binary to BCD for output

Scontrol counter used in hash coding of names

Sstores block number count for current Block Level

Sstores block number count for Block Level of name

fetched from NAME TARLE

Comment, the registers used when entering a name into or searching for a name

Register,

in the NAME TABLE

CN(1-307,

C].J(l"é) 3

Scompavre
the name

Scompare

the name founc

the name being entered or searched for with
found in the NAME TABLE

current Block Level with the Block Level of

the NAME TARLE

3 ne LAaDE

23

Register, R(1-9), Sgenerate random number to add to NAME TABLE address
if a collision occurs
ES, Scontrol flipflop for entry or search of NAME TABLE
A(1-14), Sstore type and NAME TABLE address of variable found
in the NAME TABLE during a search

Comment , the registers used for arithmetic operations.

Register, AC(35-0), Saccumulator
MQ(35-0), Smultinlier-quotient register
SR(35-0), Sstorage register used in arithmetic operations
SD, Sadd-subtract control flipflop (add when 1)
E, Sreference flipflop used in multiplication and division
AV, Sadd overflow indicator
MV, Smultiply overflow indicator
DV, $divide overflow indicator
SSR, Sstore sign of register SR during arithmetic operations
CNT(0~-5), Scontrol counter
SHFT(0-5), Scount leftshifts of register SR when setting up for
division

Casregister, AQ=AC-MQ

Comment , the registers which enable the sequences of the machine.

Register, 1P, Scontrol register
AP, Scontrol register
NMB , Scontrol register
BGH , Scontrol register
WD, Scontrol register
TRU, Scontrol register
FLS, Scontrol register

FR, Scontrol register

24

Register, DCL, Scontrol register
NME, Scontrol register
LBL, Scontrol register
VR, Scontrol register
FT, $control register
™, Scontrol register
SM, Scontrol register
AE | Scontrol register
LE, Scontrol register
AS, Scontrol register
UN, S$control register
ST, Scontrol register
BD, Scontrol register
FP, Scontrol register
RP, Scontrol register
ER, Scontrol register
G, S$run/stop control register

Light, FINT

Comment , description of the memories.
Memory, M1(ARL)=M1(0-127,0-5),
M2 (AR2)=M2 (0-4095,0~41)
Comment , description of the parallel adder-subtractor
Terminal, C(36~1)=(SDOAC(35~0))*SR(35-0)+(SDOAC(35-0))*C(35-0)+SR(35-0)*C(35-0),

€(0)=0,
SUM(35-0)=AC(35-0)6SR(35-0)BC(35-0)

Comment , description of the binary to BCD converter

Subregister, HCO(3-0)=HC(38-41),
HC1(3-0)=HC(34-37),
HC2(3-0)=HC(30-33),
HC3(3-0)=HC(26-29),
HC4(3-0)=HC(22-25) ,
HC5(3-0)=HC(18-21),
HC6(3-0)=HC(14-17) ,
HC7(3-0)=HC(10-13),

HC8(3-0)=HC(6-9),
HCY (3-0)=HC(2-5) ,

Comment, these terminals indicate whether or not the contents of the above

subregisters are greater than or equal to five.

Terminal , AD30=HCO (3)+(HCO(2) *(HCO (1) +1C0(D))),
AD31=HC1(3)+(HC1(2)*(HC1(1)+HC1(0))),
AD32=HC2 (3)+(HC2(2) *(HC2 (1)+HC2(0))) ,
AD33=HC3(3)+(HC3(2)*(HC3(1)+HC3(0))),
AD34=HC4(3)+(HC4(2) *(HC4(1)+1C5(0))),
AD35=HC5 (3)+(HC5(2) *(HC5 (1)+HC5(0))) ,
AD36=HC6 (3)+(HGC6(2) *(HC6 (1)+1C6(0))),
AD37=HC7(3)+(HC7(2)*(HC7(1)+HC7(0))),
AD38=HC8(3)+(HC8(2) *(HC8(1)+HC8(0))),
AD39=HCY (3)+(HCI(2) *(HCI(L)+HCI(0)))

Comment , description of the program constituent decoder

25

Decoder, $1(0-63)=5(0-5) Sdecodes single character program constituents

and the first letter of multiple character
gram constituents

Comment, single character program constituents

pro-

26

Terminal, SEQ=S1(11),
SAP=51(12),
SCO=51(13),
SNUM=S1(15),
SPL=51(16),
SLP=S1(28),
SMI=S1(32),
SDLR=S1(43),
SSTR=S1(44),
SDI=S1(49),
SCMA=S1(59),
SRP=51(60),
Comment, decoders for the remaining characters of multiple character constituents
Decoder, $21(2-6)=S(6-8),
$20(0,1,3,5,6)=5(9-11),
S$31(2-6)=S(12-14),
$30(0-7)=S(15-17),
S41(2-4,6)=5(18-20),
S40(0-7)=5(21-23),
$51,(2,4,6)=5(24-26),
$50(0,3,5,7)=5(27-29),
$61(2,6)=5(30-32),
$60(0,1,5)=5(33-35),
S$71(4-6)=5(36-38),
$70(0,1,5)=5(39-41)
Comment , the multiple character reserved names
Terminal, BEGIN=S1(18) %521 (2)*520 (5)*S31(2)*S30(7)*S41(3) *S40(1) *551(4) *

S50(5) *S61(6) %360 (0) *571(6) *S70(0) ,

Terminal, END=S1(21)#S21(4) *S20(5) *S31(2) %S30(4) %S4 1(6) *S40(0) *S51(6) *
550 (0) *S61(6) #S60 (0) *S71(6) *S70(0) ,
IF=S1(25) *S21(6) *S20(6) *S31(6) #S30(0) *S4L(6) *S40(0) *S51(6) *S50 (0) *
$61(6) %360 (0)*S71(6) *S70(0) ,
EQL=S1(21) *S21(5) *520(0) *S31 (4) #S30(3) *S41(6) *S40(0) #S51(6) *
S50 (0) *S61(6) *S60 (0) #S71(6) *S70(0) ,
GTR=S1(23) *S21 (6) *S20(3) *S31(5) *S30 (1) *S41.(6) *S40(0) *S51(6) *
S50(0) *S61(6) #S60(0) *S71(6) *S70(0) ,
GEQ=51(23) *$21(2) *$20(5) *S$31(5) *S$30(0) *S41(6) *S40(0) *S51(6) *
S50 (0) *S61(6) %S60(0)*S71(6) *S70(0) ,
NEQ=S1(37) *S$21(2) *S20(5) *S3L(5) *S30(0) *S41 (6) *S40(0) *S51(6) *
S61(6) *S60(0)*S71(6)*S70(0) ,
READ=S1(41) *S21(2) #S20(5)*S31(2) *S30(1) *S41(2) *S40 (4) *S51(6) *
S50 (0) *S61(6) *S60(0) *S71(6) #S70(0) ,
WRITE=S1(54) *S21(5) %820 (1) *S31(3) #S30 (1) *S41(6) *S40(3) *S51(2) *
S50 (5) *S61(6) *S60 (0) #571(6) *370(0) ,
TRUE=S1(51) *S21(5) *S20 (1) *S31(6) *S30(4) *S41(2) *S40(5) *S51(6) *
S50 (0) *S61(6) #S60 (0) *S71(6) *S70(0) ,
FALSE=S1(22) *S21 (2) *S20 (1) #S31(4) *S30(3) *541(6) *S40(2) *S51(2) *
S50 (5) *S61(6) #S60(0) *S71(6) *S70(0) ,
BOOLEAN=S1(18) *S21(4) *S20(6) *S31(4) *S30(6) *S41(4) #S40(3) *551(2) *
S50 (5) *S61(2) #S60 (1) *S71(4) *#S70(5),
THEN=S1(51) #521(3) #520(0) *#S31(2) *530(5) *S41(4) *S40(5) *S51(6) *
S50(0) *S61(6) *S60 (0) #S71(6) *570(0) ,
ELSE=S1(21) *S21(4) #520(3) #S31(6) %530 (2) *S41(2) #540(5) #S51(6) *
S50 (0) *S61(6) *S60(0) *S71(6) #570(0) ,
FOR=S1(22) %521 (4) *S20(6) *S3L(5) %530 (1) *S41(6)*S40 (0) *$51(6)*

S50 (0)*S61(6) *S560(0)*571(6)*S70(0),

28

STEP=S1(50)*%S21(6)*S20(3)*S31(2)*S30(5)*S41(4) *S40(7)*S51(6)*
S50(0)*S61(6) %360 (0)*S71(6) *370(0) ,
UNTIL=S1(52) *S21 (4)*S20(5) *S31(6) *S30(3) *541(3) *S40(1) *S51(4)*
S50(3) %561(6)*S60(0)*S71(6) *570(0) ,
WHILE=S1(54) %521 (3) #520(0)*S31(3)*S30(1)*S41(4)*S40(3)*S51(2)*
S50(5) *S61{6) *S60(0) ¥S71(6)*3570(0) ,
DO=S1(20) *S21 (4)*S20(6) *S31(6)*S30(0)*S41(6)*S40(0) *S51(6) *
S50(0) *S61(6)*S60(0)*S71(6)*570(0) ,
LSS=51(35)*521(6)*S20(2) %#S31(6) *S30(2)*S41(6) *S40(0)*S51(6) *
S50(0) *561(6) #S60(0) *571(6) *570(0) ,
LEQ=S1(35) %521 (2)*520(5) *S31(5)*S30(0)*S41(6)*S40(0) *S51(6) *
S50(0) *S61(6)*S60(0)*S71(6)*570(0),
INTEGER=S1(25) #S21(4) *S20(5)*S31(6)*S30(3) #S41(2) *540(5) *
S51(2) *S50(7) *S61(2) *S60(5) *S71(5)*S70(1) ,
GOTO0=S1(23) *521(4) *S20(6) #S31(6) *S30(3) *S41 (4)*S40(6) *S51(6)*
S50(0)*S61(6) *S60(0)*S71(6) *570(0),
Comment, code the delimiters for input to the DELIMITER STACK
Terminal, SDELO=SMI+SSTR+SDI+THEN+ELSE+STEP+UNTILAWHILE+LSS+LEQHEQLAGTRHGEQT
NEQ+READHWRITE+INTEGER,
SDEL1=SPIL4SDI+SLP+BEGIN+IF+THEN+ELSE+FORFSTEP+UNTIL+WHILE+DO+
LEQ+GTR+GEQ+BOOLEANHGOTO,
SDEL2=SEQ+SAP+SSTR+SLP+IF+LEQ+EQLAGTR+READ,
SDEL3=S AP+SSTR+SLP+EL SE+FORHUNTILAWHILE+DO+GEQHNEQ+WRITE+INTE GER+
GOTO+SMI*IP,
SDEL4=SEQ+REGIN+THEN+FO RESTEP+WH LLE+LS S+GEQHWRITE+ INTEGER+GOTO ,
SDEL5=SEQ+SDI+IF+THEN4EL SE+LS SHLEQHGEQHNEQHREAD+HWRITE+BOOLEAN+GOTO ,
SDEL (0-5)=SDELO-SDEL1-SDELZ~SDEL 3-5SDEL4~SDELS

Comment , register 5 contains a name used as a label or a variable whenever charac-

29

ter position one of S contains a letter and none of the reserved name
terminals listed above are activated. The following terminal is
activated by these conditions
Terminal, SVAR=(SL(17)+S1(18)+S1(19)+S1(20)+S1(21)+581(22)+51(23)+51(24)+
S1(25)+S1(33)+51(34)+S1(35)+S1(36)+S1(37)+SL(38)+51(39)+
S1(40)+S1(41)+S1(50)+81(51)+S81(52)+S1(53)+51(54)+51(55)+51(56)+
$1(57)) *(SDELO ' *SDEL1 '*SDEL2 "*SDEL3' *SDEL4 ' #SDEL5 ")
Comment , the relational operators

Terminal, SRO=LSS+LEQ+EQLAGEQHGTRANEQ

30

3. Program Execution

This section describes how the machine executes an ALGOL program

stored in the memory.

3.1 An ALGOL Program
Figure 6 depicts a program written in the previously~described sub-
set of ALGOL. This program reads a value for variable N and calculates N} if

this value is greater than or equal to zero. If this value is less than zero,

the program indicates to the programmer that the value for N is illegal.

3.2 Machine Conditions at the Start of Execution

The memories of the machine are first cleared (all locations set to
zero). Then, the program is read in the stored in the PROGRAM AREA of memory
M2 as shown in Table 7. The value(s) to be assigned to N when the READ state-
ment is executed is also read in with the program and stored in the INPUT QUEUE
area of memory M2. The registers of the machine are next initialized and exe-
cution begins. Tables 8, 9, and 10 list the contents of the different areas
of both memories and those of the registers at the start of execution. The
index registers which normally contain the current addresses of the areas of
both memories are initially set to a value which is one less than their corres-
ponding area's first address. The current flag, Fl, is set to one; thus causing
the machine to start executing as well as scanning the program. The special

=

character)78 (symbolized by @ in Tables 11 to 28) is placed on the DELIMITER
STACK (D1). This character insures that a character other than zero is found

the first time the DELIMITER STACK is referenced.

3.3 Execution of the Example Program

The actions of the ALGOL Machine in executing the program shown in
Figure 7 will now be described. For this example N will receive a value of

three. The reader should refer to Table 7 in following this description.

BEGIN INTEGER M, TEWMP, V $
BOOLEAN X §
READ (X) $
TF N LSS O THEN
BECIN X=FALSE §
L1:G0T0 L
END $
TEMP=1 $
FOR V = N STEP -1 UNTIL 1 DO
TEMP = TEMPxV $
X=TRUE $
L: IF X THEN WRITE (°*N FACTORIAL=*, TEMP)

ELSE WRITE (*ILLEGAL VALUE FOR N*) §$

=
s}

Figure © An Algol program for calculating N§

31

Table 7 PROGRAM AREA of Memory M2 showing the ALGOL program

I Memory Contents %

i Memory Address T ?

: Character Form | Internal Code
512 | BEGIN | 2225273145000

| 513 INTEGER 31456324272551

1 514 % N " 4500000000000 j
515 % , 73000000000000 g
516 § TEMP 73254447000000 |
517 L, 73000000000000 °
518 § v 65000000000000
519 L 53000000000000
520 ' BOOLEAN 22464643254145
521 i X ~ 67000000000000
522 s 53000000000000
523 | READ 51252124000000
524 L 74000000000000
525 Con 45000000000000
526) 34000000000000
527 .8 53000000000000
528 . IF 31260000000000
529 S 45000000000000
530 . LSS 43626 200000000
531 9 17000000000000
532 THEN 63302545000000
533 BEGIN 22252731450000
534 X 67000000000000
535 - 13000000000000
536 FALSE 26214362250000
537 S 53000000000000

538 L1 43010000000000

Table 7 Continued

i

Memory Address

Memory Contents

,Character Form |

Internal Code

GOTO

STEP
1
UNTIL
1

DO
TEMP

TEMP

b =

|
|

15000000000000
27466 346000000
43000000000000
25452400000000
53000000000000
63254447000000
13000000000000
17000000000001
530000600000000
26 465100000000
65000000000000
13000000000000
450000600000000
6263254 7000000
40000000000000
17000000000001
64456 331430000
17000000000001
24460000000000
6325444 7600000
13000000000000
63254447000000

 54000000000000

65000000000000
530000000600000
67000000060000
13000006000000

33

34

Table 7 Conti

nued

Memory Address

Memory Contents

Character Form

Internal Code

556
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592

TRUE

$
L

IF

X
THEN
WRITE
(

1

N FACTO
RIAL=

Al

TEMP

ELSE
WRITE
(

1

ILLEGAL
VALUE
FOR N

¥

)

$
END

63516425000000
53000000000000

43000000000000

15000000000000
31260000000000
67000000000000
63302545000000

66513163250000 !

7400000000000
14000000000000
45602621236 346

51312143136060
14000000000000
73000000000000
63254447000000
34000000000000
25436225000000
6651316 3250000
74000000000000
14000000000000
31434325272143
6065214 3642560
26465160456060
1400000000000
34000000000000
53000000000000
2 5452400000000

Table 8 1Initial State of Memoxy M1

Area name

Contents

|

!

i

2

i

BLOCK NUMBER COUNTER

: DELIMITER STACK
iFLAG STACK

| INITIAL STACK

COUNT STACK

All locations

, All locations

- All locations

+ A1l locations

All locations

contain

contain

contain

contain

contain

zZero

zero*

zero®

2ero

Zero

!
!
i

|
!
$

*The top elements of these stacks are not kept
see registers D1 and F1 in Table 10.

Table 9 1Initial State of Memory M2

in memory,

Area name

Contents

NAME TABLE
PROGRAM AREA
INPUT QUEUE
OUTPUTSTRING
OPERAND LIST

LINK TC FOR LIST S5TACK

All jocations contain zero

The program to be executed

The value(s) to be read in

A1l locations contain zero

- All locations contain zero

f All locations contain zero

as data

35

Table 10 Initial State of the Registers®*

Register %Contents (octal) !
!
XCL i 37
XD i 17
XF | 127
é X1 % 153
! :
| G ? 165
2 XNT f 3777
: XPA f 0777
§ XIN @ 7212
| XOUT 7522
% XPD 7741
% XLF | 7765
% F1 1
i D1 ' 57
§ CB1 0
% IT | 0

#The registers not listed in this table are not set
to a specific state at the start of execution.

37

3.3.1 Label Search

At the start of execution, the machine Increments index register XPA
by one (to a value of 512), places its contents into address register AR2,
fetches the first program constituent from the PROGRAM AREA and places this con-
stituent in register S for identification. The output of the program constituent
decoder identifies the constituent. Upon recognizing the contents of S as the
delimiter BEGIN, the machine places these contents on the DELIMITER STACK by
transferring them to register D1. It then increments the count for block level
zero in the BLOCK NUMBER COUNTER area of memory M1, places the count for block

~level zero in register CBl, stores the contents of index register XPA in index
register XPV, and initializes registers CNT and ES for a label search. CNT is
set to zero and ES is set to one. Since register XPA is used in the label search,
register XPV provides the means to return to the start of the block when the
label search is finished.

During the label search, the block just entered is scanned for colons.
The machine scans the block by sequentially fetching program constituents from
the PROGRAM AREA and placing these constituents in register S for identification.
If a2 colon is found, a check is made to determine whether it is in an inner
block (a block contained within the block just entered) or in the block being
scanned. If the colon is in an inner block, it 1s ignored; otherwise, the
label preceding it is fetched from the PROGRAM AREA, hash coded, and stored in
the NAME TABLE along with the PROGRAM AREA address of the colon and other infor-
mation used to identify it. The method of determining whether or not a colon is
in an inner block is described in Section 4.4. The hash coding and NAME TABLE
entry algorithms are described in detail in Section 4.10. The label search
continues until the end of the block is reached. Table 11 shows the contents of
the BLOCK NUMBER COUNTERS, the DELIMITER STACK, wnd the NAME TABLE at the end

of the label search. Note that label L1 has not been placed in the NAME

38

[B el

Tarle 11 Contents of the BLOCK WUITLR COUNTERS, the DALILITE

and the XAv. TASLE after the label search of the outer
block of the exanple prosran.

I BLOCK [UnBER COUWTER

i Address | Uontents
0
1
15 0

Contents of Address Register XCL: O

DELIHITER STACK

Address Contents

16 @
17

]
]
L

87

|
Contents of Address Register XD: 207

Top Element of DELIVITER STACK in Reglster Dl:

I-—-
&
(]
-t

o
NARE TABLE {
Address¥* Contents**}
-) i
1 . i
H(L) 3]0l & |
H{L)+1 0f 1071:
OSIES SEPAIN SIS NP S,

|
[6! i
% % 1

Contents of Address Fegister ANT: H(L)¥*

#The notation H(HANE) represents the hash coded address of arl.
#%3ge Section 2.1.2.1 and Figure 3 for the descripiion of thes

SLATH

39

TABLE since it occurs in an inner block.

3.3.2 Declarations

At the end of the label search, the contents of index register XPV
are transferred to index register XPA. XPA is then incremented by one (to
a value of 513) and the next program constituent is fetched from the PROGRAM
AREA and placed in S. The output of the program constituent decoder indicates
that this constituent is the declarator INTEGER and the machine places it on the
DELIMITER STACK (see Table 12). The machine then scans for the variables de-
clared in the declaration. It increments index register XPA by one and fetches
the name N from the PROGEAM AREA. Tt recognizes N as a name, hash codes it,
and places it in the NAME TABLE. It then increments index register XPA by one
and fetches the comma following N from the PROGRAM AREA. The comma causes the
machine to look for another declared name. The name TEMP is then fetched, hash
coded, and placed in the NAME TABLE. The comma following TEMP causes the machine
to process V in the same manner. The $ in memory location 519 indicates the end
of the integer declaration and causes the machine to erase the declarator INTEGER
from the DELIMITER STACK. The machine does this by settingregister Dl to zero. The
Boolean declaration which follows the integer declaration is processed in the same
mammer . Table 13 shows the contents of the DELIMITER STACK and the NAME TABLE
at the completion of the Boolean declaration. At this time, index register XPA

contains 522.

3.3.3 The READ Statement

Continuing on, the machine increments index register XPA and fetches
the input operator READ from the PROGRAM AREA and places this operator omn the

DELIMITER STACK. It then fetches the left parenthesis in memory location 524.

o

Then, realizing that a READ statement is being processed, the machine skips past
the parenthesis by incrementing index register XPA by one and fetching the next

program constituent. The machine fetches the name N in memory location 525.

40

Taile 12 Contents of the DELINITER STACH after
the declarator ILTEGER is recognized.

DuLinITmw STACK

Address Contents

16 e .
17 GG IN
15

® @
[[
@ L4

&7

Contents of Address hegister RD: 2173

Pop lement of DILILITHR STACK in hegister Dle IaTaCas

41

- 2
I . ey - -
she [
} o > e
o A ; 0
- v o O
2 _ ; £
- ; P o
; K o= —i - s 0
W . a3 Lo o o £
i - o I ; S S
® u) -~ PN W.lmw O Gy
b3 &0 ! R
(7 e L “ » 4D oy
\ w g 1 W !
‘ } oo
, 5 oo by 48
et - o e e e e e . ! -
: M9 ; : 0 o &
. U i ! a% W
! < : ; yoom
S S «wo O o wmw o [
A_ ~ = o W= i b < O gy
_ 3 S ES ol % o 5
i o 4~ = TN PG TS - S
! 5 © SRS .
, 9 s i B e Gq e
R e v 2 st et o I jo y T4 (@] =1 e
4 § SEEQN]
0 © 38 = i 4 < -
42 O a +n Lh i
[} S 4 e’ w
I3 < e @ TN
b o =
ol @ wa i
o C
Ty Gy o

ection

42

Recognizing this constituent as a name, the machine examines the current flag,
register Fl. Since Fl contains one, the machine increments the OPERAND LIST
address in index register XPD by one and then uses this address to store the
address of N's location in the NAME TABLE in the OPERAND LIST. The machine

then fetches the right parenthesis in memory location 526. The right parenthe-
sis causes the machine to examine the top element on the DELIMITER STACK. This
element 1is contained in register D1, Since this element is the operator READ,

the machine examines the current flag, register Fl. Since F1l éontains one, the
machine fetches the first element in the INPUT QUEUE (the value 3). It then
utilizes the NAME TABLE address of N that was placed in the OPERAND LIST previous-
ly and assigns the value 3 to N. Table 14 shows the contents of the DELIMITER
STACK, the OPERAND LIST, and the NAME TABLE at this point in the execution. The
next program constituent fetched from the PROGRAM AREA is the $ in memory location
527. This $ indicates the end of the READ statement and causes the machine to

erase the NAME TABLE address of N from the OPERAND LIST.

3.3.4 The First Conditional Statement

The machine then increments XPA by one (to a value of 528), fetches
the deldimiter IF, and places it on the DELIMITER STACK. The machine then incre-
ments XPA and fetches the variable N. Since F1 contains one, the machine places
N's NAME TABLE address in the OPERAND LIST. The relational operator LSS is then
fetched and placed on the DELIMITER STACK. The constant zero in memory location
531 is then fetched. This constituent causes the machine to again check the status
of the current flag in register Fl. Since F1 contains one, the constant zero
is placed in the OPERAND LIST. Upon fetching amd vecognizing the delimiter THEN
in memory location 537, the machine executes the rvelation just scanned and places
a new flag on the FLAG STACK. This new flag is placed in register Fl and the old
flag is stored in memory Ml. The value of the new flag is determined by the

outcome of the relation.

#The notation H(IALZ) represents the hash coded address of NAKE.

Table 14 The Contents of the DILIITTSR STACK,

the CF&TA:.D LISV, and the Jarsd TANLE Durine - Tatle 14 Continued
the Frocessing of the HiAD Statement: N
DEZLINITZR STACK HALE TAZLE
Address | Contents hadresst Contents**
. 16 e . H(L) 31001y L
17 BAGIN H(L)+1 0} j1071
18 H(x) 2{0j1 it
: T 5+ 3
87 ' H(TiF) 2lolajrip
‘ HTZF)+1 77
Contents of Address Reglster XDi 2l1g B(v) 21011 v
Top Element of DELINITER STACK in Register D1t READ H(V)+L 77
H4(X) {01 X
H(x)+1 77
OFERASD LIST e .
Address | Contents Contents of Address Register XNT: H(I)*
4066 H(a)*
Loé7
k085

Contents of Address Register XPD: 77423

£~
w

FThe notation H(IALE) represents the hash coded address of RAKE. ,
#*See Section 2.1.2.1 and Figure 3 for the description of these conten?

b

In executing the relation, the machine fetches the last two elements
entered into the OPERAND LIST (The constant zero and the NAME TABLE address of
N). When an operand is fetched from the OPERAND LIST, the OPERAND LIST address
in index register XPD is decremented by one. This effectively erases the oper-
and from the OPERAND LIST. If either or both operands are NAME TABLE addresses,
the machine uses the addresses to fetch the needed values. In this case, the
address of N is used to fetch the value of N. The relation is then executed
by subtracting zero from 3 (the value of N) and checking the reéults. Since the
value of N is not less than zero, the relation is false and a zero is entered
into the OPERAND LIST. The relational operator is then erased from the DELIMITER
STACK. The machine then fetches the result of the relation from the OPERAND
LIST for examination. Seeing that the result is zero, the machine assigns the
new flag the value zero. This new flag is now the current flag and while it
remains current, the machine will scan but not execute the program. After
raising the new flag, the machine replaces the delimiter IF with the delimiter
THEN on the DELIMITER STACK. Table 15 shows the contents of the DELIMITER STACK,
the OPERAND LIST, the NAME TABLE, and the FLAG STACK during and after the pro-
cessing of the relation.

Continuing on, the machine fetches the delimiter BEGIN from memory
location 533. After placing this delimiter on the DELIMITER STACK and incre-
menting the count for block level one in the BLOCK NUMBER COUNTER area of ML
and placing the count for block ievel one in register CBl, the machine performs
a label search. Table 16 shows the contents of the BLOCK NUMBER COUNTERS, the
DELIMITER STACK and the NAME TABLE at the end of the label search.

After the label search, the machine increments index register XPA
by one and fetches the variable X from memory location 534. Since the value of
the current flag is zero, the machine ignores this variable and continues on.

The = is fetched and placed on the DELIMITER STACK. The logical value FALSE is

TER _STACK, the QFERAND.
AS

e FLAS STACK While

;hg “e}, ti:m R’ LS X ; Eg;ng Frogesseds
DZLIWITZR STACK
Address Contents
15 @
17 BEGIN
18 IF
19
*®
87

Contents of Address Register XDi

225

Top Element of DELIMITER STACK in Register Di: LSS

CFERAND LIST
Address Contents
4066 E(N)*,
Loé7 .0
ko68
4035

Contents of Address Register XPD:

FLAG STACK
Address Contents
a8 !
107

Contents of Address Heglster XFi

77438

1278

Top Element of FLAG STACK in Register Fl: 1

*The notatlon H(IA.E) represents the hash coded address of HAME

Table 15 Continued

FANE TAZLE
Address¥ Contents¥**
H(1) 3i0(1} L
H(L)}+1 o} 11072
H(iD) 2]o1 i
H(¥)+1 3
H(TZ:F 2iol1|TaF
H(TENP)+1 77
K(V) 2{011] v
H(V)+1 77
H{X) 1jofa}l X
H(X)+1 77

Contents of Address Register XiTs H(N)#

(2) prior to execution of the relation _

*The notation H(NANE) represents the hash coded address of NAME.
*#*See Sectlon 2.1.,2.1 and Figure 3 for the description of these

contents.

o~
U

Iable 15 Continued o .. Table 15 Continued
DELILITER STACK
sddress Contents
16 lANE TABLE
17 BEGIN Address™® Contents¥*#
18 4(1) 3ol L
. H(L)+1 - o} J1071
: 2(1) 21041 ki
87 - H{i)+1 3
contents of sddress. Register XDi 2lg H(T(F) 2|0})T20F
Top Elenent of DILIXITER STACK in Register Dl: IF ' A(TEER)AL | 77)
. H{V) z2{oj1 v
H(v)+1 77
OPERALD LIST H(X) 1jo0i1 X
Address Contents ' H(X)+1 77
4066 0 ;
1067 Contents of Address Register XNT: H(X)*
4085 ' (b) just after the relation is executed.
Contents of Address Register XPD: 77b2g .

FLAG STACK
Address Contents
88

@
@
°

107

Contents of Address Register XFi 127g
Top Element of FLAG STACK in Reglster Fl: 1

*The notation H(HAME) represents the hash coded address of FKAiZ.
#¥Gee Section 2.1.2.1 and Figure 3 for the description of these

contents.

9%

Tavie 15 Continued®

DILTHITER STACK
Address Contents
16 @
17 RESIN
«
-
«
67

Gontents of Address Reglstex Dt 2lg
Tep Eiement of DELIFITER STACK in Register Di: THEH

OFEZRAID LIST
sdaress Contents

10466

1085

contents of Address Register XEFDs 77418

FLAG STACK
) Address Contents
88 -1
89
107

contents of Address Tezister XF: 130g
Contents of Register Dl: 0

{c) .after the new flag is placed on the FLAG STACK

contents.

Table 15 Continued

NA¥E TABLE
Address¥ Contente ¥

H(L) 310{1] L
H{L)+1 0} 1071

H{K) zioll b
H(m)+1 3
H{T=P) 21011 TSP
A(Tzip)+r 177

q{v) 201 ¥
H(V)+1 77

H{x) 10l X
H(X)+1 77

Contents of Address Register XNT: H(i}*

*The notation H(MALE) rerresents the hash coded address of IArZ.
#%See Section 2.1¢2.1 and Figure 3 for the description of these

o~
~J

contents of the I1 COE NUNBER COULTEZNS, the DILIXITZR

ara tna ks TASLs Aftex the La‘ogl Search of-
vhe inner Siock of the Exanple Frorran

DEILINTTER STACK
tddress | Contents
16 @
v ZEGIN
18 THER
19
i 87

contents of Address Register AD: 228
Top Element 'of DELIFITER STACK in Register DLs BEGIX

BLGCK NUKBER COUNTERS
Address Contents
Q 1
- 1 1
2 0
o . .
- 15 0

coptents of Acdress Register XCL: 1

Table 16 Continued

FAKS TAELE
Address® Contentsg®#
H{L) {043l L
A2(L)+1 o} {1071
H{M) 2(041 N
H{&)+1 3
H(TErF) 210111 TP
H(72:P)+1 77
H(V) 21011 v
H(V)+1 770)
- HX) 1lolat X
H{x)+1 77
H(LL) 3liint 11
H(I1)+Ll 1) {1033

Contents of Address Regilster XiT:

8%

H(L1)*

*The notation H{NAVE) represents the hash coded address of NANXE.

#¥%See Section 2.1.2.1 and Figure 3 for the description of these

contents.

is fetched and ignored because the current flag contains zero. The $ is then
fetched. It causes the = to be erased from the DELIMITER STACK. The machine
then scans past label L1 and the colon that follows it. It then fetches the
delimiter GOTO from memory location 540 and places this delimiter on the DELIMIT-
ER STACK. This delimiter is immediately erased from the DELIMITER STACK when
the label L is fetched and the current flag is again examined and found to be
zZero.

The machine then fetches the delimiter END from memory location 542.
This delimiter signifies the end of a block and causes the machine to reset
register CBl with the count of block level zero and reset the DELIMITER STACK
to its contents prior to entering the block. After the delimiter END is processed,
the contents of the BLOCK NUMBER COUNTERS, and the DELIMITER STACK are as shown
in Table 17. Note that label L1 remains in the NAME TABLE but it is now inaccess-—
ible to the program. The machine next fetches the $ in memory location 543.
This $ indicates the end of the conditional statement and causes the machine to
erase the delimiter THEN and the current flag from the DELIMITER STACK and tne
FLAG STACK respectively. The machine does this by setting registers D1 and
Fl to zero. The original flag which was assigned a value of one at the start
of execution is then fetched from memory M1 and stored in register Fl. This
flag is again the current flag. Since this flag has a value of one, the progran
will again be executed as well as scanned. The contents of the DELIMITER STACK

and the FLAG STACK at this point are as shown in Table 18.

3.3.5 Initial Value Assigned to TEMP

The machine next fetches the variable TEMP from memory location
544 . Since the current flag now has a value of one, the machine places the address
of TEMP's location in the NAME TABLE in the OPERAND LIST. It then fet ches the
= in memory location 545 and places it on the DELIMITER STACK. It then fetcnes

the constant one from memory Location 546 and examines the value of the current

Table 17 The Contents of the BLOCK NUMBER Area and the
DELIMITER STACK Upon Exiting the Inner Block

DELIMITER STACK
Address | Contents
16 @

17 BEGIN
18 THEN
19
87

Contents of Address Register XD: 228
Contents of Register Dl: O

BLOCK NU{BER COUNTER '
Address | Contents
0 , 1
1 1
2 0
15 0

Contents of Address Register XCL: O

Tatle 13 Contents of the DELIrITER STACK and the
SLAG STACK at the Completion of the
Conditional Statement,

b DT TrsR STACK

Address Contents
16 @
17 BEGIN
13
= |
87 %

Contents of Adcdress Reglster XD: 21g

Contents of Register Dl: O

TLAG STACK
Address | Contents |
!
i

¢ {

AU B

Contents of Address Register XF: 127g

52

flag in register Fl. Since Fl contains one, the machine places thé constant one
in the OPERAND LIST. It then fetches the § following the one. The $ causes the
machine to perform the assignment indicated by the operator =. This operation
is performed on the two elements last entered into the OPERAND LIST. The var-
iable TEMP is set equal to the value 1. The = is then removed from the DELIMIT-
ER STACK and the NAME TABLE address of TEMP and the value 1 are removed from

the OPERAND LIST. (See Table 19).

3.3.6 The Iteration

At this point the machine fetches the delimiter FOR from memory
}ocation 548. Recognizing this delimiter as the beginmning of an iteration, the
maéhine sets the variable IT to one and places a one on the COUNT STACK. It
then fetches the controlled variable of the iteration from memory location 549.
This is the variable V. The machine then checks the contents of the current
flag. Since Fl contains one, the machine places the NAME TABLE address of V
into the OPERAND LIST. It then fetchés the = following the controlled variable
and again checks the contents of the current flag. Since F1 still contains one,
the PROGRAM AREA address of the = is placed on the LINK TO FORLIST STACK and a
one is placed in the INITIAL STACK. Table 20 depicts the contents of these

areas of memory at this time.

3.3.6.1 Process the For List Element

The machine then fetches the variable N from memory location 551.
Since Fl contains one, the machine places N's NAME TABLE address in the OPERAND
LIST. It then fetches the delimiter STEP from memory location 552 and places
this delimiter on the DELIMITER STACK (Table 21). The machine then examines the
value of the top element on the INITIAL STACK. Since this element contains one
and the value of the current flag is one, the NAME TABLE address of N is replaced by

the value of N in the OPERAND LIST. This value is then assigned to the controlled

. Tatle 19 Contents of the DaLILITIR STACK, the OFAPALD LIST, and

the A.E TASLS Durine the Processine of the Assisnment TiiF=1%

DELILITER STACK
Address | Contents

16 @

17 BEGIN

18

19

87

Contents of Address Reglster XDs 21g
Top Element of DELINMITER STACK in Reglister D1t =

OFEPAID LIST

Address | Contents
4066 H(TErp)*
L0547 1
* 14068
L4085

Contents of Address Register XPDt 77438

*ne notation H(;A4Z) represents the hash coded address of IAME.

Tab) ")
l'AZR TAELE
Address® Contents*¥
H(L) 3lof| L
T H(L)R o] 1om
A() 2i0}1 i
H(1)+1 3
H(T=:2) 2{0 1T
H(T2:P)+ 77
H(VY) 2:011 v
H(V)+1 77
H(X) 10§} X
H(X)+L 77
H(L1) i1} Ll
H(L1)+1 1033

Contents of Address Register XNT: H(TEMP)#*

(a) just prior to executing the assignment

contents.

¥ The notation H(NANE) represents _the hash code
**gee Section 2.1.2.1 and Figure 3 for the descr

d address of NAiZ.
iption of these

Table 19 Continued

DELIFITER STACK
Address | Contents

16 @

17 BEGIN

18

87

Contents of Address Register XD: 21g
Contents of Register Dl: O

OPERAMD LIST
Address Contents
L066

4085

Contents of Address Register XPDs 7741g

Table 19 Continued

FARE TABLE
Address* Contents¥**
H(L) sfoif L
H(L)+1 0] {1070
B(&) 21011 Iy
H(x)+1 3
E(TEP) 2lof1f1=p
H(T=:P)+1 1
H(V) 2jofa} v
H(V)+1 77
H(X) ol X
HX)+1 77
H(L1) 3j1i 11
H{L1)+1 1033

Contents of Address Register XNT:

(v) after the assignement is executeds

Fihe notation H(LANE) represents the hash coded

H(TEMP)*

address of NAFEZ.

#%Gge Section 2.1.2.1 and Figure 3 for the descrirtion of these

contents.

29

Jat WV ts of the DELIKITER STACK, the OFERAID LIST, the
. IRTTIAL STACK, the CCUNT STACK, and the LIUH TG FCRLIST STACK Table 20 Continued

. +he Start of the Iteration in the Example Frogram
COUHT STACK
DILTHITER STACK Address | Contents
Address | Contents 118 1
16 @ 119
17 BEGIN i
[]
18 .
. 127
87 Contents of Address Register XCs 1668
Contents of Address Register XDs 218
Top Element of DELIMITER STACK in Register D: FOR
’ LINK TO FORLIST STACK
Address | Contents
OPEPAXD LIST 3 1056
Address | Contents 4087
4066 H{V)*
1067 .
. 4095
. 4085 Contents of Address Register XLFi 7766g

Contenis of Address Register XPDs 7742g

INITIAL STACK
Address | Contents

108 1

209

117

Contents of Address Register XXt 1l5ig

*The nqta.tion H(MAME) represents the hash coded address of KANE.

Table 21 The Contents of the DELIMITER STACK and the
CFERAND LIST During Execution of the Iteration

DELI#ITER STACK
Address | Contents
16 @

17 BEGIN
18 FOR
19

37

Contents of Address Register ¥XD: 228
Top Element of DELIMITER STACK in Register Dl: STEP

OPERAND LIST
Address Contents

Lo66 H(V)*

4067 H(R)*

4068

4085

Contents of Address Register XFD: 7743g

*The notation H{NAME) represents the hash coded address of iAiE.

g s

variable V in the NAME TABLE. The machine then fetches the unary minus from memory
location 553. This delimiter causes the machine to place the special symbol
448 on the DELIMITER STACK. Since F1l contains one, the constant one following
the unary minus is placed in the OPERAND LIST. The machine then fetches the

delimiter UNTIL.

Upon identifying this delimiter, the machine converts the value

1 in the OPERAND LIST to -1 and erases the special symbol 44_ from the DELIMITER

8
STACK. The machine then replaces the delimiter STEP with the delimiter UNTIL

on the DELIMITER STACK. Upon fetching the constant one which follows the de-
limiter UNTIL from memory location 556, the machine again checks the contents of
the current flag. It finds that F1l contains one. The machine therefore places
the one in the OPERAND LIST. Table 22 shows the contents of the DELIMITER

STACK, the OPERAND LIST and the NAME TABLE at this time.

Upon fetching the delimiter DO from memory location 557, the machine
realizes that the entire for list element has been scanned and removes the de-
limiter UNTIL from the DELIMITER STACK. It then examines the contents of the
top element on the INITIAL STACK. Since this element contains one, the machine
resets it to zero. It then determines the value of the expression C* sign B — A;
where A, B and C are the last three elements placed in the OPERAND LIST re-
spectively. The values of these elements are the values of the three arithmetic
expressions which occur in the STEP-UNTIL for list element. If these elements
are NAME TABLE addresses, the values of the variables are fetched from the NAME
TABLE before the expression isevaluated. If the value of this expression is
less than or equal to zero, the statement contained within the iteration is to
be executed: ctherwise, the execution of the iteration is complete for this for
list element. At this point in the example, the resultant value of the expression
is -2; thus, the statement contained within the iteration is to be executed.

The machine scans to the beginning of the statement by sequentially fetching

Takle 22 The Contents of the DILTHITZR STASK, the OFERAND LIST,
and the LANS TAELS Durinz Lveluation of the For List klement

DZLILITER STACK
Address Contents
- 16 e __.
17 BEGIN
13 FOR
19
87 -

Contents of Address Fegister XDs 22g
Top Element of DELINITER STACX in Register Dl: UNTIL

OPERAXD LIST
Address Tontents

Lots H(V)*
- 067 | 3

. 12068 =

4069 1

Lo70

1085

Contents of Address Register XPD: 77h5g

*The notation H(.‘(AI’E.‘) répre-sént-é fhe hash coded address of NAME.

Table 22 Continued

FLA-C AR LA

NAME TABLE
Address¥* Contents**
H(L) 3fojil L
H(L)+1 of {1071
4(41) 2j011 It
H()+1 3
H{T5:F) 21011 TE:F
H(T2:P)+1 1
B(v) 2lofal v
H(v)+1 3
2(X) 1fofr] X
H(X)+1 77
H(LL) 3t} 1
H(11)+1 1] |2033

Contents of Address Register XNTs H(V)*

¥Ihe notation H(MAKE) represents the hash coded address of KAKE.

#%See Seotion 2.1.2.1 and Figure 3 for the description of these
contents. .

8¢

59

program constituents fxom the PROGRAM AREA wntil it identifies the delimiter DO.
The machine places this delimiter

on the DELIMITER STACK. It also erases elements A, B, and C from the OPERAND

LIST. The contents of the DELIMITER STACK and the OPERAND LIST at this time

are as depicted in Table 23.

3.3.6.2 Process the Statement Contained in the Iteration

The machine fetches the variable TEMP from memory location 558.
It then checks the contents of the current flag in register Fl. Since F1 con-
tains one, the machine places the NAME TABLE address of TEMP in tﬁe OPERAND

from memory location 559
LIST. It then fetches the =4and places it on the DELIMITER STACK. The second
occurrence of TEMP in memory location 560 also results in its NAME TABLE address
from memory location 561

being placed in the OPERAND LIST. the machine then fetches the *Aand places
it on the DELIMITER STACK. The NAME TABLE address of V is then placed in the
OPERAND LIST. Table 24 depicts the contents of the DELIMITER STACK and the
OPERAND LIST at this point in the execution of the program.

The machine then fetches the $ from memory location 563. The $
indicates the end of the statement and causes the machine to check the DELIMITER
STACK to determine if the operations which occur in the statement have been
completed. The machine finds the operator * on the DELIMITER STACK and fetches
the NAME TABLE addresses of TEMP and V from the OPERAND LIST and uses these
addresses to fetch the values of TEMP and V from the NAME TABLE. The machine
then performs the multiplication operation on these values and places the result~
ant product in the OPERAND LIST. It then erases the operator * from the DELIMITER
STACK (Table 24(b)).

Again checking the DELIMITER STACK, the machine finds the assignment
operator =, It then fetches the NAME TABLD address of TEMP and the product of
TEMP*V from the OPERAND LIST and uses the address to assign the product as the
new value of TEMP. It then places the product back in the OPERAND LIST and erases

the = from the DELIMITER STACK. Thus the contents of the DELIMITER STACK, the

Table 23 Contents of the DELIMITER STACK and the OPERAND LIST
After the For List Blement has been Tested

DELIMITER STACK

Address Contents

16 @

17 BEGIR

18 FOR

19

20

87

Contents of Address Register XD: 238
Top Element of DELIMITER STACK in Register Dl: DO

OPERAND LIST
Address Contents
4066 H(V)*
Lo67
L4085

Contents of Address Register XPDs 7742

*The notation H(HAME) represents the hash coded address of LANE.

meple 2L The Contents of the

DITIFITIN STACK, the CFEPAND °

LI52, ord the ra.s

.o burdine

vecution of the

S<nterent Contained

7ithin the Iteration

DIZLIFITZR STACK AJ

Address Contents
15]
17 BERIN
18 FOR
19 o
20 =
21
a7 1

contents of Address Register XDi
Top Element of DELIFITER STACK in Register Dls

CFZRAND LIST
Address Contents

. k066 H(v)*~
4067 H(TEP) *
4068 H(TErP)*
4069 H{V)*
L4070
4085

et
Lonv

ents of Address Register XiT: H{V)*

®

*The notation H(#A¥E) represents the hash coded address of NAME.

Patle 24 Corntinued

contents of Address Rezister X'Ts H(V)*

(a) Just after scanning the statement

.

J—
*The notation H(MAFE) represents
*%3ce Sectlon 2.1.2.1 and Figure

contents.

o)
=

the hash coded address of HAILZe
3 for the descrirtlon of these

e e e e

Table 24 Continued

DILIXITZR STACK
Address Contents
16 @
17 BEGIK
18 FOR
19 0
20 =
21
87

Contents of Address Register XD 21&8
Contents of Register Dls O

OPEPAND LIST

Address Contents
4066 H{v)*
Los7 H{TEZIP)*
L068 3
- L4059
L4085

Contents of Address Register XPD: 770lg

#The notation H{IAME) represents the hash coded address of NALE.

Table 2k Continued

BArD TAZLE
Address¥ Contents*¥*
7(L) 3101 L
H(L}+2 o} l1o71
H2(3) 21002 i
i)+l 3
3(7.2) 21011 7EE
H(TZE)+L 1
H(V) 21011 ¥
H(7)41 3
4G 11041 X
H(4)+L 77
=(n1) 3Ll Lt
H{L1)+1 1033

Contents of Address Register XKT: H(V)*

(v) after performing the multiplication operation

*The rotation H(MANZ) repres

®

ents the hash coded address of NArE.

*#Gee Section 2.1.2.1 and Fisure 3 for the description of these

contents.

9

Table 24 Continued

- DELTHITER STACL " °F

Contents

Contenté of Ag§:§s§’ggg;i_$@g£ XD: 23g
Contents qf»_ﬂeg":s_ter.plrx, Y

tontents of Address Register XPDs 77433

S station H{IAKE) repres

ents the hash code

a address of NAME.

Tahle 2& Continued

NALE TAZLE
Address* Contents ¥
1) ol 1
B(L)+1 I 1ol hom
200 [2lofal
200+ | 3
(7o ?) 2iolxltor
{75 P41 3
(¥ 2lo(1 i
E()+1 3
1#(x) 1iofl b4
H(n)+1 77
(1) 3i1j) 11
K11)+1 1} 11033

Contents of Address Register XNT: H(TENP)*

(c) after performing the assignment operation

¥The notation H(IAKE) represents the hash coded zddress of RANE
*%3ee Section 2.1.2.1 and Figure 3 for the description of these
contents.

€9

64

OPERAND LIST, and the WAME TABLE at this point are as shown in Table 24(c).

3.3.6.3 Repeat the Iteration

The machine again checks the DELIMITER STACK and finds the delimiter
DO. It erases this delimiter from the stack and checks the stack again. This
time it finds the delimiter FOR and realizes the iteration statement has been
processed. It then erases all elements in the OPERAND LIST which were entered
after the NAME TABLE address of the iteration's controlled variable (Table 25).

The machine now must return to the iteration's for list to see if
the iteration statement should be executed again. It does this by fetching
the top element on the LINK TO FORLIST STACK and placing it in index register
XPA.

Once the machine returns to the iteration's for list, it examines
the top element on the COUNT STACK. The value of this element indicates which
for list element is currently being used to determine the value of the itera-
tion's controlled variable. It also causes the machine to scan the for list until
it reaches the indicated for list element. In this instance, the top element
on the COUNT STACK has the value one? therefore, the first for list element (in
this case the only for list element) is currently being used and no scanning of
the for list is required to reach it.

The machine now starts to process the for list element for the

N

second time. Upon fetching the variableAfrom memory location 551, the machine
examines the contents of the current flag and finds that Fl contains one. The
machine enters the NAME TABLE address of N into the OPERAND LIST. It then places
the delimiter STEP on the DELIMITER STACK. The machine then examines the top
element on the INITIAL STACK. Since this element now contains zero, the value

of the iterationt controlled variable replaces the NAME TABLE address of N in

the OPERAND LIST. The —~1 is handled as before and the delimiter UNTIL again

replaces the delimiter STEP on the DELIMITER STACK. The constant one following

wrle 29: Contents of the DULIRITZR STACK and the CFabARND L137T
an the rachine Returns to the Iteration®s For List

I

DELIRITEY 5TACK

i Address

i 16

Contents
@ i

T30

BEGTn

i
-+
v
i

}

=
ﬂ

{_.J
~NO

1
|
i
{
{
|
H

LY

an

TGontents of Address Register XD: 2l¢

Top wlement of DELILITZR STACK in Hegister Dl: Fuk

- i
OFERALD LIST

Address Contents
L066 H(v)*
LOs7

e !
. !

1
s !

4085

Contents of Address Register A¥D: 77428

¥ he notation H{IAFE) represents the hash coded address of LA,

65

66

the delimiter UNTIL is again placed in the OPERAND LIST. The delimiter DO
again informs the machine that the entire for list element has been scanned;
the machine therefore removes‘the reserved name UNTIL from the DELIMITER STACK
and examines the contents of the top element on the INITIAL STACK. Since this
element is now zero, the machine adds the values in the B and C elements of the
OPERAND LIST (where B and C are defined as before) and stores the result in the
C element. It then assigns the result, via the NAME TABLE address in the OPERAND
LIST, to the iteration's controlled variable; thus the controlled variable is
"stepped" -1. The value of the test expression C* sign B - A is again calculated.
This time the result is ~1 and the machine executes the statement contained with-
in the iteration as before; thereby changing the value of TEMP to six.
At the completion of execution of the statement, the machine

again returns to the start of the iteration's for list and processes the for
list element. Since the value of the top element on the INITIAL STACK is
still zero, the value of the controlled variable is reduced to one and the re-
sult of the test expression is calculated to be zero; therefore, the state-
ment contained within the iteration is executed a third time. Since V now has
a value of one, the value of TEMP does not change when the multiplication is
performed.

Again returning to the for list, the machine reduces the value of
the controlled variable to zero. This value causes the test expression to
yield a result of +1. This result indicates the iteration has been executed
the number of times specified by the for list element. The machine therefore
increments the top element of the COUNT STACK by one, resets the top element
of the INITIAL STACK to one, and scans the for list for the start of the next
for list element. Upon identifying the reserved name DO the machine realizes
there are no more for list elements; hence no further execution of the iter-

ation is required. It therefore erases the delimiter FOR from the DELIMITER

67

STACK, erases the NAME TABLE address of the iteration's controlled variable

V from the OPERAND LIST, erases the top element on the INITIAL STACK, the

COUNT STACK, and the LINK TO FORLIST STACK, resets register IT to zero and scans
to the end of the iteration. At this point, the contents of these areas of

memory are as shown in Table 26.

3.3.7 The Boolean Assignment Statement

Continuing on, the machine fetches the variable X from memory lo-
cation 564. After finding that the current flag contains one, the machine enters
the NAME TABLE address of X into the OPERAND LIST. It then fetches the = from
memory location 565 and places it on the DELIMITER STACK. It then fetches the
logical value TRUE. This value causes the machine to place a one in the
OPERAND LIST. The $ following the logical value causes the machine to execute
the indicated assignment and to reset the DELIMITER STACK and the OPERAND LIST

to their contents before the assignment statement was entered.

3.3.8 The Second Conditional Statement

Scanning on, the machine by-passes the label L and the colon which
follows it. It then fetches the delimiter IF from memory location 570 and
places it on the DELIMITER STACK. The variable X is fetched and causes the
machine to again examine the contents of the current flag. Since Fl contains
one, the machine places the NAME TABLE address of X in the OPERAND LIST. It
then fetches the delimiter THEN. This delimiter causes the machine to replace
the NAME TABLE address of X with the value of X. The machine then examines this
value to determine what value to as$ign the new flag that is generated for this
conditional statement. Since X's value is one, the new flag is assigned the
value one. This new flag is the current flag. After the new flag is set, the
value of X is erased from the OPERAND LIST and the delimiter IF is replaced by

the delimiter THEN on the DELIMITER STACK (Table 27).

Teble 250 The Con

ents of the Areas of lerory After

L)
teration 1s Comrletely Frocessed,

DILIGITER STACK
Aédress { Contenis
16 @
17 BEGIW
18
87

Gontents of Address Register XD: 21g

Contents of Register Di:

OFZRAXND LIST

Address

Contents

Lo66

©
®
B

4035

Contents of Address Register XPD:

COURT STACK

Address

Contents

118

3
s
o

127

Contents of Address Register XDs

0

77418

1658

Table 26 Contimued

RALE TAELZ

Address* Contents**

H(D) 31041l L
H(L)+1 o} hon

H(1D 201 b
H(#)+1 3
H(rap) - | 2|0f1|TEP
H(TE2)+1 6

H(v) 2jo01 v
H(V)+1 0 >

XY 1{0l1 X -
CH(K)HL 77

H(11) 3{1)1} 11

H{L1)+1 ~ 1 i1 (1033

Contents of Address Reglster XNT: H(TEI®)®

INITIAL STACK
Address . | Contents
w o) ..108 . _

Contents of Address Register XI: 1533

LINK TO FORLIST STACK
Address |Contents

4086

4095
Contents of Address Register XLF: 77658

% The notztion L(NAME) represents the hash coded address of IAYE.
#%See Section 2.,1.2.1 and Figure 3 for the description of these
contents.

39

o]
z

[

7 “he Contents of the DELINLITER STACK and the

. -

LA STACK After mvaluating A and Flacins

cew las for the Conditional sStatement.

Top 21

[l

Ton

st

DELIAITuR

Y

[S3ae]

Sl Vol
(I AW

I

Address

Cont

ents

15

SRRSO S —
j—t

‘ —t
~3

)

@ @

o
5

@

oy i
(/ i
H

@

)
I

Al

{

-

Contents of Address iemister LD: 21p

Y

enent of DELILITLR STACK in Fegilster Dl

FLAG STA

Address

0]

Contents

D
)

e
NG

1

2,

Contents of Address KHe

T

Henent of FLAG 3TACK

in

o5
wL

Register F¥l: 1

69

70

The machine then fetches the output operator WRITE and places it
on the DELIMITER STACK. Raalizing a WRITE statement is being processed, the
machine scans past the left parenthesis and fetches the apostrophe from memory
location 575. The machine places the apostrophe on the DELIMITER STACK. This
apostrophe indicates that the beginning of a string of characters which is to
be printed out has been reached and causes the machine to scan in search of a
second apostrophe. Since the current flag has a value of one, the contents of
the memory locations that are fetched while the machine is SCanning for the second
apostrophe are placed in the OUTPUTSTRING area of memory M2Z. When the second
apostrophe is found, the contents of the OUTPUTSTRING area are printed on the
1iné printer and the first apostrophe is removed from the DELIMITER STACK. (The
output algorithm is not implemented in this report). The comma following the
output string indicates that the WRITE statement has not been completely pro-
cessed; therefore, the machine continues scanning the program with the output.
operator WRITE still on the DELIMITER STACK. Upon fetching the variable TEMP
from the memory location 580, the machine examines the contents of the current
filag in register Fl. Since Fl contains one, the machine places the NAME TABLE
address of TEMP in the OPERAND LIST. The vight parenthesis dis then fetched
from memory location 581l. This delimiter indicates to the machine that there
are no more variables or strings of characters in the output list, The machine
then fetches the value of TEMP via its NAME TABLE address in the OPERAND LIST
and converts this value to BCD form for output. The NAME TABLE address of TEMP
and the output operator WRITE are then removed from the OPERAND LIST and the
DELIMITER STACK respectively (Table 28j.

Upon fetching the delimiter ELSE, the machine changes the value of
the current flag from one to zero and replaces the delimiter THEN with ELSE

on the DELIMITER STACK. With the current flag now zero, the machine scans to

manle 20 The Conicnts of the 2% % 3TACK and the OTE

2Ty
a4

LIST Durin~ xecution of statenent which
putouts the value of N§

DELIVITIE 3TACK
Address Contents

14 @

17 EERIN

18 THEH

19

:
87

contents of Address Reglster XDi 223
Top Elenent of DELIRITER STACK in Register Di: WRITE

CPZvAND LI3T
Address {Contents
1066 H(TEIP)*
L4067
1085

Contents of Address Regilster XPD: 77428

just before printing the velue of TELP

*inc potation H{A!

“E) represents the hash coded address of HARE.

Tavle 20 Continued

DILIVITER STACK
Address ECoﬁtents

16 i@

17 SIGIH

18 THEX

19

. i
87

Contents of Address Register XD: 228

Contents of Register Di: 0

OFERAID LISY

Contentis

Address
4056

4085

Contents of Address Register XPD: 771y

(v) after the WRITE statement is completely processed

1L

72

the end of statement symbol ($) in memory location 591, without executing the
WRITE statement following the ELSE. Upon reaching the end of statement symbol
the machine erases the delimiter ELSE from the DELIMITER STACK and the current

flag from the FLAG STACK. The initial flag again becomes the current flag.

3.3.9 Exiting the Program

Finally, the interpretor fetches the reserved name END from memory
location 592. After resetting register CBl, the machine realizes that it had
been operating at block level zero and thus the outermost block (the program)

has been completely processed. The machine then halts.

73

4. Sequence (harts

The machine operations for executing a program are now put into sequence
charts. The operations are organized into the 24 sequences listed in Table 29.
The machine beings execution in the initial point sequence. During execution,
register S and the top element of the DELIMITER STACK, register D1, determine
the wachine transfers from one sequence to another. There is a control flip-
flop associated with each sequence. When a sequence is completed, its control
flipflop is reset to zero. While their control flipflops contain a value of
zero, the sequences constantly examine them and wait for their contents to
become one. In addition to the sequences, Table 29 also lists the sequence
control flipflops and the sequences to which the machine can transfer from
each sequence. The sequences are described in detail in the following para-

graphs.

4.1 Initial Point Sequence

The machine starts executing an ALGOL program in this sequence. It
reenters this sequence whenever a delimiter is placed on the DELIMITER STACK
and the program constituent following the delimiter could be one of several
types. In this sequence the machine fetches program constituents from the PRO-
GRAM AREA, identifies them, and transfers to the appropriate sequence for pro-
cessing them. Some constituents require little processing and are processed
in this sequence. These are the delimitrers GOTO, READ, WRITE, IF, DO, the left
parenthesis, the comma, the wmary + and -, and character strings which are to
be printed out. This sequence is shown in Figures 7A and 7B.

When this sequence is entered, the machine first sets the NAME TABLE
activity control flipflop, ES, to zero. It then fetches the next program constitu-
ent (at the start of execution, the first program constituent) from the PROGRAM

AREA. Tt does this by incrementing the current PROGRAM AREA address in index

register XPA by one, transferring this address to

Table 29 The Machine Seguence for Executing a FProgram

Sequence

Control Flipflop

Sequence to which Machine Can Transfer

Initial Point Sequence

Output String Initialization Sequence

Number Processing Sequence

lock Entry Sequence

Blocl Exit Sequence

Delimiter TRUE Sequence

Delimiter FALSE Sequence

IP

AP

NMB

BGN

ND

TRU

FLS

Output String Initialization Sequence
Number Processing Sequence

Block Entry Sequence

Block Exit Sequence

Delimiter TRUE Sequence

Delimiter FALSE Sequence

Iteration Initialization Sequence
Read/write Execution Sequence
Declaration Initialization Sequence
NAME TABLE Activity Sequence
Unconditional Statement Sequence

Error Sequence

Initial Point Sequence

Read/write Execution Sequence

Factor Sequence

Initial Point Sequence

NAME TABLE Activity Sequence

Logical Expression Sequence

Logical Expression Sequence

9L

Continued

PO,

No.

Control Flipflop

Secuence to which Machine Can Transfer

10.

11,

1z.

13,

14

Tteration Initialization Sequence

Declaraticn Initialization Sequence

NAME TARLE Activity Sequence

1.abel Processing Sequence

Variable Processing Sequence

Factor Sequence

Term Sequence

DCL

NME

LBL

VR

FT

™

NAME TABLE Activity Sequence
NAME TABLE Activity Sequence

Initial Point Seguence

Block Entry Sequence

Label Processing Sequence
Variable Processing Sequence
Unconditional Statement Sequence

Exrror Sequence

Initial Point Sequence
Unconditional Statement Sequence

Error Sequence

Initial Point Sequence
Factor Sequence

Logical Expression Sequence

Term Sequence

Error Sequence

Initial Point Sequence
Sum Sequence

Error Sequence

</

Table 29 Continued

No.

Sequence

Control Flipflop

Sequence to which Machine Can Transfer

16.

17.

18.

-
o

Sum Sequence

Arithmetic Expression Ssquence

Logical Expression Sequence

Assignment Sequence

Unconditional Statement Sequence

SM

LE

AS

UN

Error Sequence

Initial Poimt Sequence

Factor Sequence

Arithmetic Expression Sequence
Logical Expression Sequence

Error Sequence

Initial Point Sequence
Assignment Sequence
Iteration Control Sequence

Error Sequence

Initial Point Sequence
Assignment Sequence
Iteration Control Sequence

Error Sequence

Unconditional Statement Sequence

Initial Point Sequence
End of Statement Sequence

Exrror Sequence

9L

Table 29 Continued

! No. i Sequence Control Flipflop Sequence to which Machine Can Transfer
20. . End of Statement Sequence : ST Program Body Sequence

Iteration Control Sequence

Error Sequence \

. . . . S e o e o e s

21. ? Program Body Sequence % BD Initial Point Sequence

Block Exit Sequence

o 2+ s e et e e e ¢ e e i et

Error Sequence

{

i

22. % Iteration Control Sequence ; FP ‘ Initial Point Sequence
' Block Exit Sequence

End of Statement Sequence

23. Read/write Execution Sequence } RP Output String Initialization Sequence

Unconditional Statement Sequence

Error Sequence

e et e 121 oo i s £ e e o e i . SRS —— - — S R S

24. Error Sequence ; ER

LL

78

#

/
|XPA <--countup XPA|

L,
IAR2<3~-XPAI

[BR2 <--12(AR2)|

[5<--3r7

A 4

(@-1)

&=

| XOUT <==countup XOUT

XOUT=77L2)=

AR2 <

A\ 4

:~XOUTI

4

M2 (AR2) <--BR2 |

Y
IARl <—-—XD]

L

BR1 <--M1(ARL)

/4
XD <==countdn XD

D] <«-=BR1

Toiy

£ D)

=

A 4

Write out the string

of characters

Figure 7a

The Initial Point Sequence Chart

[

SMI,

SLP GOTCO, | READ, SPL, SNME INTEGER,
WRITE, | IF, DO SCHA BOOLEAN
=) other
=) 7
47,51
=| IF(D1#0) THEN(BRL <~-D1, NME <==1, ICL <~-1s
%D <-~countup XD) Ip <--0 1P <--0
#
4
ARl <--XD ‘ B
f\ A
[.(ARL) <--BR1] @EDHE—
im <--SDEL|
4
SDLR END FOR TRUE FALSE SNUM SAP SRP OTHER BEGIN
3 9 4 9 7 2
UN <ol D<--15] [FR<--1,| [TRU<--1,| [FLS<--1,| [NMB<--1,| |AP<--1,| |RP<~--1,| |ER<--1,| |BGN<--1,
TP <~=0 TP <~=0 IP <~=0 IP <=0 IP <-~0 IP <--0 Ip<--0 | |IP<=--0 IP <~~0 IP <==0
A 4 L 4 4 /

Figure 7b

The Initial Point Secuence Chart

6L

80

to address register AR2, and finally transferring the contents of the memory
location to register S through buffer register BRZ. The machine then examines
the contents of register D1. If register D1 contains an apostrophe (Dl=148)
and the constituent just fetched from the PROGRAM AREA is also an apostrophe
(SAP is true), then an output character string has been completely scanned.
Therefore, the machine erases the apostrophe from the DELIMITER STACK by fetch-
ing the next element on the stack from memory Ml and placing it in register D1.
Index register XD contains the DELIMITER STACK address. This addréss is de-
cremented by one after the delimiter is fetched. Register D1 is then examined
for the delimiter WRITE. If D1 does not contain this delimiter, the machine
transfers to the error sequence; otherwise, it examines the current flag, regis-
ter F1. If F1l contains a one, the character string has been assembled in the
OUTPUTSTRING area of memory M2 and is printed out. The machine then fetches
the next program constituent from the PROGRAM AREA. If Fl contains zero, the
machine immediately fetches the next program constituent.

If register D1 contains an apostrophe, (Dl=148), but the program con-
stituent fetched from the PROGRAM AREA is not an apostrophe (SAP is false), the
contents of register 5 (also register BR2 at this point) are part of an output
string. If Fl contains a one, this part of the output string is placed in the
OUTPUTSTRING area of memory M2. The machine then fetches the next program con-
stituent from the PROGRAM AREA. 1If Fl contains a zero, the machine immediately
fetches the next program constituent. In placing the contents of register BR2
in the OUTPUTSTRING area the machine first increments the current address of this
area {(located in index register XOUT) by one and then, after determining that
the length of the string is within the allowed limits (1000 characters), uses
the address to transfer the contents to memory MZ. The machine then fetches
the next program constituent from the PROGRAM AREA. TIf the output string exceeds

the maximum allowable length, the machine transfers to the error sequence.

81

1f register D1 does not contain an apostrophe (Dl%léS), the course of
action taken by the machine is determined by the program constituent decoder.
If this decoder identifies the contents of S as one of the delimiters GOTO,
READ, WRITE, IF, DO, or unary minus, the machine places the delimiter on the
DELIMITER STACK and fetches the next program constituent from the PROGRAM AREA.
As shown in Figure 7B, in placing a delimiter on the DELIMITER STACK, the machine
first determines whether or not register D1 contains zero. If it does, the
machine transfers the delimiter to DI1. If D1 does not contain zerb3 the machine

first stores it contents in memory M1 and then transfers the delimiter to DI1.

If the decoder identifies the contents of register S as a left parenthesis and

register D1 does not contain either of the delimiters READ or WRITE, the left
parenthesis is placed on the DELIMITER STACK; otherwise it is passed over. In
either case, the machine then fetches the next program constituent from the
PROGRAM AREA. The delimiters unary + and the comma are always passed over.

If the program constituent decoder identifies the contents of register
S as any other program constituent than those mentioned above, the machine

rransfers to the appropriate sequence as listed in Table 29.

4.2 Output String Initislization Sequence

This sequence is shown in Figure 8. The machine enters this sequence
from the initial point sequence whenever the contents of register S are identi-
fied as an apostrophe (SAP is true) and the top element of the DELIMITER STACK
is not an apostrophe (El%lég)g Execution of this sequence initializes the
machine for assembling an output string in the OUTPUTSTRING area of memory MZ.
Upon entering this sequence, the machine first determines whether or not there
are any variables in the OPERAND LIST whose values are to be printed out. It
does this by checking the current OPERAND LIST addvess in index register XPD
and the contents of the iteration control register IT. If the current OPERAND

LIST address indicates that the OPERAND LIST is empty (XPD;77418) or if register

RP &-=1

fap<--0,]

IF(D1#0) THEN(ZRL <--D1,
XD %-~countup XD}

D1 «~--8DEL,
AP w==0,
IP <--1

Figure 8 The Output String Initialization Sequence Chart

73

12 (AR2) <«--2R2

[XPA <-~countup XPAJ

AR2 <~-XPA
-BR2 <--12(AR2)

B <--0,
PT <--1

—

Figure 9 The Number Processing Sequence Chart

83

IT indicates that the variables in the OPERAND LIST are iteration controlled
variables (IT=1), there are no values to be printed and the apostrophe in
register S is placed on the DELIMITER STACK. The machine then transfers to the
initial point sequence to fetch the next program constituent.

If there are variables in the OPERAND LIST whose values are to be
printed out, the machine transfers to the read/write execution sequence. It
returns to this sequence after printing out the values. Upon returning, it
again examines registers XPD and IT. This time it finds there’are no values to
be printed out and places the apostrophe in S on the DELIMITER STACK. It

then transfers to the initial point sequence.

4.3 Number Processing Sequence

This sequence is shown in Figure 9. The machine enters this sequence
from the initial point sequence whenever the contents of register S are identi-
fied as a number (SNIM IS TRUE). Upon entering this sequence, the machine first
examines the current flag, register F1. If Fl contains a one, the machine in-
crements the current OPERAND LIST address in index register XPD by one and then
transfers the number into the memory location of memory M2 specified by the new
address. If ¥l contains a zero, the number is not entered into the OPERAND
LIST. Regardless of the value of the current flag, the machine fetches the
next program constituent from the PROGRAM AREA, stores it in register S, and

then transfers to the factor sequence.

4.4 Block Entry Sequence

rre
I

1is sequence is shown in Figures 10A and 10B. The machine enters

this sequence from the initial point sequence whenever the contents of register
S are identified as the delimirer BEGIN. Upon entering this sequence the machine

first places the delimiter BECGIN on the DELIMITER STACK. It then increments

the current address of the BLOCK NUMBER COUNTER area by one. This address is located

& g
L-m—-—#i-@;nml

o | SF(D1#0) THEN(BRL <==D1,
XD<--countup £D)

D1, <-~SDEL

EKCL Gom=countup XCLi

ARY <~~XCL

BRL @~--10 (ARL)

%BRZL “-=countup ERlJ

CBl <-~BRL{1~5)

KL(ARL) <~~BR1,
CHT <~~0,
KV G =-XPhs
ES %~-1

Figure 10a The Block Eatry Seq(xence Chart

%8

other
S¢Co BEGIN | - SAP ERD
[V gpm—
E(GNr=0) —t (T
= EXPA <=~countup KPA} i

NME <=1,

BGN <~-0

4
[CNT <-~countup CNT]

[XPA<--XzV]

BGN <=~0,
IP %--l

BR2 <-~N2(AR2)

{CNT <~-countdn CNT}

Figure 10b The Block Entry Sequence Chart . .

JR—

85

in index register XCL. It then fetches the block count for the block level just
entered from memory M1 (see Section 2.1.1.1). It then updates this block

count by incrementing buffer register BR1 by one. The updated block count is
then transferred to the current block count register, CBl, and also into its
location in memory M1. The machine then initializes for a label search. It
stores the current PROGRAM AREA address in index register XPV, sets the counter
CNT to zero, and sets the NAME TABLE activity control register, ES, to one.

By saving the current PROGRAM AREA address in register XPV, theAmachine is

able to return to the beginning of the block at the end of the label search.
The label search is now executed.

| During the label search the machine scans the block just entered in
search of colons (:). The program constituents are sequentially fetched from
the PROGRAM AREA, placed in register S, and identified. If a colon is found
(8C0 is true), the machine determines whether it is in an inner block (a block
contained within the block just entered) or in the block being scanned. 1If

the colon is in an inner block it is ignored; otherwise, the machine fetches
the label preceding the colon, places it in register S, and transfers to the
NAME TABLE activity sequence. Since register ES was set to one at the start

of the label search, the NAME TABLE activity sequence enters the label into

the NAME TABLE. Meanwhile, this sequence is constantly examining its control
flipflop BGN while waiting for its contents to become one. After the label

has been entered into the NAME TABLE, the machine transfers back to this sequence
{BGN4&-~1) and the label search continues.

The machine determines whether or not a label is in an inner block by
the following method. It is noted that at the start of a label search the
counter CNT is set to zero. While the label search is being performed, if the
delimiter BEGIN is fetched into register S, the contents of counter NT are

incremented by one. If the delimiter END is fetched into register S, the con-—

86

tents of counter CNT are examined and if they are greater than zero, they are
decremented by one. Each time a colon is fetched into register S the contents
of counter CNT are examined. If CNT has a value greater than zero, the colon
occurs in an inner block; otherwise, it occurs in the block just entered. When
the delimiter END is fetched and the value in (NT is zero, the machine knows
the entire block has been scanned and terminates the label search. At the end
of a label search, the machine transfers the contents of index register XPV
to index register XPA and then transfers to the initial point sequence.
Whenever an apostrophe is fetched into register S (SAP is true) dur-
ing a label search,; the machine scans without reacting to the constituents wntil
another apostrophe is found. Therefore, any colons which occur in an output

character string go unrecognized.

4.5 Block Exit Sequence

This sequence is shown in Figure 11. The machine enters this sequence
when the contents of register S are identified as the delimiter END. In exe-
cuting this sequence the machine first decrements the current address of the
BLOCK NUMBER COUNTERS area of memory M1 by one. It then restores the DELIMITER
STACK to its contents prior to entering the just completed block. It does this
by sequentially fetching elements from memory MLl and transfering them to register
D1 until it finds the first occurrence of the delimiter BEGIN (Dl=228). It
then erases this delimiter by setting register D1 to zero. After restoring the
DELIMITER STACK, the machine determines whether or not it has scanned the entire
program; that is, has it just completed the outermost block (block level zero).

Tt examines the contents of index register XCL for a value of 31 the value

8;

(o]

agsigned to XCL at the start of execution. If XCL contains 31_ the entire pro-

(
e
co

gram has been scanned and the machine halts by setting the run/stop control

to zero. It also turns the lig

N

been completely scanned, the machine increments the current PROGRAM AREA address

ENTRY

%CN}ED

Y
[XCL <=-countdn XCL|

=

@2

ID1 <~-0}

G @””09
ND =0,
FINI <--0ON

=(*c1=31)
b

IXPA <“==-countup XPAJ

IARZ 4—-5-=XPA;
3

BR2 <--12(AR2)

!

S <«--BRZ,
AR1 <=-XCL

4
BR1 <=~} (ARL)

CBL <-=-BR1(1-5)

UN 4"""“’"1 &
ND <& ~=0

BRL <-~M1(ARL)

Dl «--BR1,
XD <&-=countdn AD

l

Figure 11 The Block Exit Sequence Chart

87

88

by one, fetches the next program constituent, and stores it in register S.
It then fetches the block number count for the block level just entered from
memory M1 and transfers it to the current block count register, CBl. It then

transfers to the wunconditional statement sequence.

4.6 Delimiter TRUE Sequence

This sequence is shown in Figure 12. The machine enters this sequence
from the initial point sequence whenever the contents of register S are iden-
tified as the delimiter TRUE. Upon entering this sequence, the maﬁhine first
examines the current flag, register F1. If Fl contains a one, the machine in-
crements the current OPERAND LIST address in index register XPD by one and then
uses this address to enter a value of one into the OPERAND LIST. It then trans-
fers to the logical expression sequence. If Fl contains a zero, the machine

transfers immediately to the logical expression sequence.

4.7 Delimiter FALSE Sequence

This sequence is shown in Figure 13. The machine enters this sequence
from the initial point sequence whenever the contents of register S are identi-
fied as the delimiter FALSE. Upon entering this sequence, the machine first
examines the current flag, register Fl. If Fl contains a one, the machine in-
crements the current OPERAND LIST address in index register XPD by one and then
uses this address to enter a value of zero into the OPERAND LIST. It then trans-
fers to the logical expression sequence. If Fl contains a zero, the machine

transfers immediately to the logical expression sequence.

4.8 TIteration Initialization Sequence

This seguence ig shown in Figure 14. The machine enters this sequence
from the initial point sequence when the contents of register S are identified
as the delimiter FOR. Execution of this sequence initializes the machine for

executing the iteration statement jusi entered. The machine first sets the

iteration control register IT to one. It then places the delimiter FOR on

XPD <~=countup XPD

gARZ <~—-XPDE
BR2 QEE

M2(AR2) <=-~BR2

TRU 4”‘"09
LE<-~1

Figure 12

Sequence Chart for Frocessing
thhe Logical Value TRUE

EXPD <==countup XPDE

ARZ <£---XPD!
4

BR2 <-=0C|

i
M2(AR2) <==BR2

FI:S @"'“‘Og
LE@~~l

Figure 13 Sequence Chart for Processing
tihe Logical Value FALSE

68

90

the DELIMITER STACK. Tt then increments the current addresses of the COUNT
STACK, the INITIAL STACK, and the LINK TO FORLIST STACK by one. These addresses
are located in index registers XC, XI, and XLF respectively. It then places

the value one on the COUNT STACK. It then increments the current PROGRAM AREA
address by one, fetches the next program constituent from memory M2, and stores
it in register S. This constituent should be the iteration's controlled vari-
able so the machine transfers to the NAME TABLE activity sequence. At this
point the NAME TABLE activity control register, ES, contains a zero. Therefore,
a search of the NAME TABLE will be conducted for the location of the iteration's

controlled wvariable.

4.9 Declaration Initialization Sequence

This sequence is shown in Figure 15. The machine enters this sequence
from the initial point sequence whenever the contents of register S are identi-
fied as one of the declarators BOOLEAN or INTEGER. Upon entering this sequence
the machine first sets the NAME TABLE activity control flipflop, ES, to one;
thus, the names following the declarator will be entered into the NAME TABLE
when the NAME TABLE activity sequence is executed. After setting ES, the machine
nlaces the declarator in register S onto the DELIMITER STACK. It then incre-
ments the current PROGRAM ARFA address by one, fetches the next program constitu~
ent from memory M2, and stores it in register S. According to the ALGOL syn~
tax, this constituent should be the first name of the list of variables declared
in the declaration. Therefore, the machine transfers. to the NAME TABLE activi-

ty sequence to enter the name into the NAME TABLE.

4.10 HAME TABLE Activity Sequence

This sequence is shown in Figures 16A-E. The machine enters this

sequence when the contents of register S arve identified as an unreserved name.

EE‘S <~-~—l§

¥,

TF{D1#C) THEN(BRL ®~-D1,
%D <~~countup XD)

Ixea 4———ccntup XPA}

[ARZ <-~-XPA]

o
3]
N
A

$
L
N
£
B

TCL <=~0g
RKE @--1

Figure 15 The Declaration Initialization Sequence Chart

ENTRY

GESY

i 1T <—-——l[

IF(D1#0) THEN(BRL <--D1, |

XD <~-countup XD)

7

B =--spe)

XC <=-=countup XC,
XTI & XTI
XLF <~~countup Py

M (ar1) <--BRL}

1XPA Z-—countup XPA|

BR2 «-~M2(AR2)

o

!

FR%--0,
NME <--1

A

Figure 14 The Iteration Initfalization Sequence Chart

Ne)
'—.—L

92

Upon entering this sequence, the machine first hash codes the unreserved name

to obtain a NAME TABLE address (5). It then examines the control register ES.
If register ES contains a one, the name is entered into the NAME TABLE;
otherwise, the NAME TABLE is searched for the location of the name. The follow-
ing sections explain the hash coding, the NAME TABLE entry, and the NAME TABLE

search algorithms,

4.10.1 Hash Coding a Name

As shown in Figure 16A, the machine first sets registers CSC and XNT
to zero, and sets register R to one. It also transfers the name from register
S to register HC. Register CSC is a counter which counts the number of circular
leftshifts of register HC in bytes. A byte is seven bits. Index register XNT
receives the hash coded address. Register R is used to calculate a new address
if a collision occurs. Register HC holds the name while it is being hashed.
After initializing the registers, the machine executes the hash coding
loop. 1In executing this loop the machine performs three operations. First
it increments index register XNT by the value contained in subregister HC(0-9).
Second, it circularly leftshifts the contents of register HC one byte. Finally,
it increments register CSC by one. The machine terminates this loop when the
contents of register CSC reach six. At that time register HC will have been
civecularly shifted 42 bits so that it will again contain the name in its proper
form. Register XNT will contain the final hash coded address. This address
is rransferred to address register AR2. It is noted that the length of the
hash coded address is one bit less than the length of register AR2Z, and that the
address i1s transferred left adjusted to register ARZ with the right-most bit of
register ARZ being set to zero. This action allows the machine to effectively
hash code only the even addresses and thus reserve the odd addresses for the

second word of each node.

A3

ENTRY

4
S, /G775Y

i
I
=

CSC <=-0,

ANT %==0Qy

HC %==8;
R<=-1

[xir<--xxT_aad 0-Kc(0-9)]

HE e G (7141) ~EC (0-6)

£5C @--countup CSC
|

e

Figure 16s NAME TABLE Activity Sequence Chart

, .
CN<w--BR2(12-41) & HC(1-30),
QL < --0-XCL

[cL<--CL sub 0-BR2(2-6)|

S IO

ARL @-~BR2{2-6

[cB2 <--CB2 sub BR2(7-11)|

&

CB2 <--CB1]

[cBz2 <-—c32 sub BR2(7-11)]

[XNT <—-X4T add 0-0-R|

|R<--XNT (2-10)]

XNT(0,1) <~-00]

[AR2 <--AR2 add 0-0-XNT(0~8)-0]

&

ER<~-1,
2 i @55 KNE =0
T <=-F-0-0 @

Figure 16 b NAME TABLE Activity Sequence Chart

€6

BR2(246) @~=X0L,
BR2(7-11) % =~C21,
BR2(12~41) @=~~5C{0-29)

A
[2r2(0,1) <=-51(0,1)]

[2(amz) <=3z

BR2(0-5) @==77,
AR2(11) <@--1

b

¥2(AR2) < ==332,

APh <e=~countup XPA

g}axz(o,l)_f_-»u]

}2(AR2) %~-Ba2,
KPA <~-countup XFA

AR2{11) @--1,
BR2{2-6) @~~ACL,
BR2{30-41) @~-XP4,

BR2(0,1,7,-29) <--0

SCUA SILR other
| !
IP Gw=ly Ll <=~-0, ER Gl
NHE Gmn) ES Gem(,
Uil ewsl,
]

BGH < =~1,
NHE €=-0

Figure 16c NAME TABLE Activity Sequence Chart

CN %--BR2(12-41)8HC(1~30)
CL «~-0-XCL

EXNT <-—~R—~O-»Ol
¥

[XNT =--XNT add 0-0-R]
[Re--xNT(2-10)
ANT(0,1) <-=00

[ARz <--AR2 add 0-0-XNT(0-8)-0]

iy

=

[eL<--CL sub 0-BR2(2-6)|

CI=0)— G3)

[aRy <--0-0-BR2(2-6)|

|BR1 <~-}1(ARL)

CB2 <«~=-BR1(1~5)

[cB2 <--CB2 sub BR2(7-11)|

A<--BR2(0,1)-AR2

Figure-16d NAME TABLE Activity Sequence Chart

76

95

/
LBL <--1, VR<--1, ER<--1,
NIE <~-0 IE < ==0 NHE <-=0

Figure l6e NAME TABLE Activity Sequence Chart

96

4.10.2 NAME TABLE Entry

As shown in Figure 16B, if register ES contains a one, the contents of
the memory location specified by the hash coded address are transferred to
buffer register BR2 for examination. If register BR2 contains a zero, the mem-
ory location is empty and the machine enters the name into it. This procedure
is described in Section 4.10.2.2. If register BRZ2 contains a non-zero value,
the memory location is already occupied and the machine must determine whether
the name occupying the location was declared in a block still being processed
or in a completed block. If the block is still being processed, the name is
still active and a new address must be calculated to enter the name just hashed
into the table. If the block has been completed, the name is no longer access-
ible to the program and can be written over. Referring to Section 2.1.2.1,
it is seen that when a name is entered into the NAME TABLE, some additional infor-
mation is entered with it. This information includes the block level and the
block nunber which were current when the name was entered. The machine compares
this dinformation with the current block level and block number to determine
whether or not a name is still active.

Referring again to Figure 16B, when the memory location specified by
the hash coded address is occupied, the machine compares the name occupying
the location with the name being entered and stores the results of the comparison
in register CN. This result is examined later in the sequence if the block
level and block number information indicates that the two names were declared
in the same block. At this time, the machine also transfers the current block
level (located in index register XCL} to register CL. It then decrements re-
gister CL by the contents of subregister BR2(Z-6). This is the block level of
the name in the NAME TABLE. The machine then examines register CL. If re-
gister CL contains zero, the two block levels are the same and the machine

must compare the block numbers to finally determine whether or not the name

97

is still active. To perform the block number comparison, the machine transfers
the current block number (located in register CBl) to register CB2. It then
decrements register CB2 by the contents of subregister BR2(7-11). This is the
block number of the name in the NAME TABLE. It then examines register CB2.

I1f CB2 contains a non-zero value, the name in the NAME TABLE was declared in

a block already completed and is no longer accessible to the program. There-
fore, the machine enters the name that was just heshed into this location (see
Section 4.10.2.2). Referring to Figure 2, if execution of the program has pro-
ceeded to point Q, any names declared in block B would fit this condition.

If register CB2 contains zero, the name in the NAME TABLE and the name
just hashed have been declared in the same block. Therefore, the machine examines
reginter £ tc determine whether or not they are the same name. If they are,
an error condition exists since a name cannot be declared more than once in
a block. Therefore, the machine transfers to the error sequence. If the two
names are not the same, a collision exists and a new address must be calculated
to enter the name just hashed. The procedure for doing this is described in
Section 4.10.2.1.

If register CL contains a non-zero value, the current block level and
the block level of the name in the NAME TABLE differ. Therefore,; the machine
examines the left-most bit of register CL, CL(1l), to determine whether the name
in the NAME TABLE was declared at a block level that is higher or lower than

in the NAME TABLE
the current biock level. If CL(l) contains a one, the name*was declared at a
higher block level and is no longer accesssible to the program. Therefore, the
machine enters the name that was just hashed into this location (see Section
4.10.2.2), Referring to Figure 2, if execution of the program has proceeded

to point P, any names declared in block E or block F fit this condition.

98

If CL(1) contains a zero, the name was declared at a lower block
level and the machine must compare the block numbers to finally determine whether
or not the name is still active. To perform the comparison, the machine first
transfers the block level of the name in the NAME TABLE from subregister BR2(2~6)
to address register ARL. It then fetches the block number count for this block
level from the BLOCK NUMBER COUNTER area of memory M1l. It stores this count in
register CBZ. It then decrements register CB2 by the contents of subregister
BRZ(7-11); the block number of the name in the NAME TABLE. The machine then
examines the content of register CB2. If CB2 contains zero, the name in the
NAME TABLE is still active and the machine must calculate a new address to enter
the‘mame just hashed (see Section 4.10.2.1). Referring to Figure 2, if execu-
tionr of the program has proceeded to point P, any names declared in block C
would fit this condition.

If register CB2Z contains a non-zero value, the name in the NAME TABLE
is no longer accessible and the machine enters the name that was just hashed
into this location (see Section 4.10.2.2). Referring again to Figure 2, if
execution of the program has proceeded to point P, any names declared in block

B would fit this condition.

4,10.2.1 Handling Collisions

The collision handling algorithm implemented in this machine is

known as the random probing method (5). In this algorithm a pseudorandom num-
ber generator is called to provide an offset which is added to the collision
address to obtain a new address. The offset is generated in three steps: the
previcus offset is multiplied by five, the low order nt2 bits of the product are
saved while the remaining bits are ignored, and finally, the remaining bits of
the product are divided by four. In the machine the offset is stored in regis-
ter R. It is noted that register R is set to one each time this sequence is

entered; thus the same offsets are generated each time a collision occurs. As

99

shown in Figure 16B, the machine multiplies the offset by four by transferring

it left adjusted by two bits to index register XNT. It then effects the required
multiplication by five by incrementing register XNT by the contents of register
R. It then stores the low order n+2 bits of the product in register R. Fi-
nally, it increments register ARZ by the contents of register XNT such that

register ARZ is effectively incremented by the product divided by four.

4.10.2.2 Entering a Name

After hash coding a name and determining that the location specified
by the hashed address is either empty or occupied by a name no longer required
by the program, the machine enters the hashed name into the NAME TABLE. As
shown in Figure 16C, the machine transfers the current block level (located in
index register ¥XCL), the current block count (located in register CBl), and the
first five characters of the name (located in subregister HC(0-29) to subregisters
BR2(2-6), BR2(7-11), and BR2(12-41) respectively. It then examines the top
element on the DELIMITER STACK, register Dl. If vegister DL contains a aeclara~
tor, the name is a variable and the machine transfers the type of the variable
from subregister D1(0,1) to subregister BR2(0,1). It then transfers the con-
tents of register BRZ into the NAME TABLE. This is the first word of the node
for this name (see Figure 3). The machine then increments the contents of

address vegister AR2Z by one andenters the special code 77 left-adjusted,

89

into register BRZ. The contents of register BR2 are then transferred into the
NAME TABLE as the second word of the node for this name. Referring again to

Figure 3, the 77, is placed in the VAL field. This code indicates that no value

8
has been assigned to the variable. When a value is assigned, either by execution
of an assignmwent statement or execution of a READ statement, the VAL field is

set to zero and the assigned value is stored in the rightmost 36 bits of the

word.

100

After entering the variable in the NAME TABLE, the machine increments

the current PROGRAM AREA address by one, fetches the next program constituent
Memory

from M2, and stores it in register S. If this constituent is a comma (SCMA is
true) , the machine transfers to the initial point sequence. If this constituent
is an end of statement symbol, $ (SDLR is true), the machine erases the declara-
tor from the DELIMITER STACK by setting register D1 to zero, sets the control
register ES to zero, and transfers to the unconditional statment sequence. I1f
this constituent is not a comma or an end of statement symbol, the machine
transfers to the error sequence.

If register D1 does not contain a declarator, the name being entered is
a iabel and the machine sets subregister BR2(0,1) to 11. It then transfers the
contents of register BR2 into the NAME TABLE. This is the first word of the
node for this name (see Figure 3). The machine also inerements the PROGRAM
ARFA address by one, It then increments the contents of register ARZ by one
and transfers the PROGRAM AREA address and the current block level to subregis~
ters BR2({30-41) and BR2(2-6) vrespectively. The contents of register BR2 are
then transferred into the NAME TABLE as the second word of the node for this

name. The machine then transfers to the block entry sequence.

4,10.3 NAME TABLE Search

As shown in Figure 16D, if register ES contains a zero, the machine
sets register A to zero. It then transfers the contents of the memory location
specified by the hash coded address to buffer register BR2 for examination. If
register BR2Z contains a non=-zero value, the memory Jlocation is occupied and the
machine compareé the name in the location with the name being search for. It
stores the result of this comparison in register CN. At the same time, it
transfers the current block level to register CL. It then examines the contents

of register CN. 1If register (N contains a non-zero value, the names are different

o e

101

and a new address must be calculated to continue the search. The machine oper-
ations performed to calculate a new address are described in Section 4.10.2.1.

If register CN contains a zero, the name in the NAME TABLE matches
the name being searched for and the machine must determine whether or not this
entry of the name is still active; that is, is the block in which the name was
declared still being processed. The machine must also determine whether this
is the most recent entry of the name in the table or whether the name was de-
clared again in another block. It first compares the block levél of the name
with the current block level. It decrements register CL by the contents of
subregister BR2(2-6). It then examines the contents of register CL. If CL
contains a zero, the two block levels are the same. If they are the same, the
machine must compare the block numbers to finally determine whether or not the
name is still active. Therefore, the machine transfers the current block num-
ber to register CBZ as shown in Figure 16E. It then decrements register (B2
by the contents of subregister BR2(7-11); the block number of the name in the
NAME TABLE. It then examines the contents of register CB2. If register CB2
contains a zevo, this entry of the name is still active. Therefore, its type
and NAME TABLE address are transferved to register A, Since this entry occurred
at the curvent block level, the search is complete. Therefore, the machine ex-
amines subregister A(1,2) to determine the name's type. If the name is a label,
the machine transfers to the label processing sequence; otherwise, it transfers
to the variable processing sequernce.

As shown in Figure 16D, if the block levels differ (CL#0), the machine

examines subregister CL(l} to determine whether the name in the NAME TABLE was

i

[

ock level.

declaved at a block level that is higher or lower than the current b

he name was declarved at a lower block

o

If subregister CL{l) containg a zerc

o e 3 UL S A S A A 3 1 E o -5
level and the machine must compare lock numbers to £

whether or not the name 1s still active. The machine transfers the block level

102

of the name from subregister BR2(2~6) to address register ARIL. It then fetches
the block number count for this block level from the BLOCK NUMBER COUNTER

area of memory Ml. It stores this count in register CB2. It then decrements
register CB2 by the contents of subregister BR2(7-11); the block number of the
name in the NAME TABLE. It then examines the contents of register CB2. If
register CB2 contains a zero, this entry of the name is still active. There-
fore, its type and NAME TABLE address are transferred to register A. Since
this entry of the name occurred at a block level lower than the current block
level, the machine calculates a new address in search of a more recent entry of
the pmame. The machine operations performed to calculate a new address are
described in Section 4.10.2.1.

If register (B2 contains a non-zero value or if subregister CL(1)
iﬂdicates that the name in the NAME TABLE was declared at a higher biock level
than the current block level,the name is no longer accessible to the program.
Therefore, the search is complete since a more recent entry would have been
entered on top of this entry. The machine now examines the contents of regis-
ter A, If register A contains a zero, no entry of the name was found. There~-
fore, the machine transfers to the error sequence. If register A contains some
value, the machine examines subregister A(l,2) to determine the name's type.

The machine reacts as described previously.

4.11 Label Processing Sequence

This sequence is shown in Figures L7A and 17B. The machine enters

o

his sgequence from the NAME TABLE activity sequence when a name is located in
rhe WAME TABLE and identified as a label. Upon entering this sequence, the
machine increments the current PROCEAM ARFEA address in index register XPA by
one, fetches the next program constituent from memory M2, and stores it in

register §. If this constituent is a colon (SC0 is true), the machine transfers

to the dnitial point sequence; thereby passing over the label and the colon.

KPA @=~countup XPAE

{
TAR2 <-~¥KPh

&

CABR—

Flgure 17a

[Ar2 <= (314}

[arL (1) <1

| BR2 -~z (AR2)

UF GmmooUNtUD A7 L

ARL ==X

871 %~k (A7)

AP <~--counidn XFE

XP %w~countdn i,

F1L<--BRL{5)»

AR < -~KCT

YPA «-~BR2(30-41),
XCLL %~=BR2(2-6)

!

5

Label Processing Sequence Chart

b
gE?(lé-—il(ARl)E
.i{___..,

CBL <~~BRl,
pay Q"“'lv
I3L %--0

[XCL @~-countdn ACL

ALF Ge=wco
XC %wmco

XI%~~CO

untdn ALF,

untdn XC,

untin X1

IBFL @ =~}1{a1)|

DL <--3R0

AD<%~-countdn A0,

3

Figure 17b Label Processing Sequence Chart

)
Lad

104

If the constituent is not a colon the machine examines the top element on the
DELIMITER STACK in register D1. If register D1 contains the delimiter GOTO
(Dl=278), the machine examines the current flag, register Fl. If Fl contains
zero, the machine erases the delimiter from register D1 and transfers to the
unconditional statement sequence. If Fl contains one, the machine acts to
transfer to the location in the program specified by the label. The machine
first transfers the label's NAME TABLE address from subregister A(3-14) to
address register AR2. This address was placed in register A during execution
of the NAME TABLE activity sequence. The machine then increments address
vegister AR2 by one; thus, AR2 contains the address of the second word of the two
word node contained in the NAME TABLE for the label. The machine then fetches
this word from memory M2. This word contains the PROGRAM AREA address of the
label (see Section 2.1.2.1). The machine transfers this address to index re-
gister XPA.

Before the machine can begin executing the program at the new address,
it must first set its stacks and registers for operation at the block level
of the label. To do this it first transfers the label's block level from
subrepgister BR2{2-6) to to index register XCL1l. It then examines the contents of
register D1. If DIl contains the delimiter FOR (Dlx268), the program has trans-
ferred out of an iteration statement and the elements that were placed on
the COUNT STACK, the INITIAL STACK and the LINK TO FORLIST STACK for this iter-
ation are no longer needed. Therefore, the current addresses of these stacks
{located in registers XC, %I, and XLF respectively) are decremented by one.

1f register DLl contains either of the delimiters THEN or ELSE
(b1=63_ or Dlm658}s the program has transferved out of a conditional statement

O

and the flag associated with the conditional statement is no longer required.
Therefore, the current FLAG STACK address in index register XF is decremented

by one.

165

1f register D1l contains the delimiter BEGIN (D1=22 the machine com-

o)
pares the current block level in index register XCL with the block level of the
label in index register XCL1. 1If they are not equal, the current block level
is decremented by one. The machine sequentially fetches DELIMITER STACK ele-
ments from memory M1, stores them in register D1, and examines them until it
recognizes the deliimiter BEGIN and finds the current block level equal to the
block level of the label. At that time, the machine updates the current flag

and the current block number registers by fetching their values from memory

Ml. It then transfers to the initial point sequence.

4.12 Variable Processing Sequence

This sequence is shown in Figures 18A and 18B. The machine enters
this sequence from the NAME TABLE activity sequence when a name is located in
the NAME TABLE and identified as a variable. Upon entering this sequence, the
machine first examines the current flag, register F1. If Fl contains one, the
machine examines the contents of register Dl. If register D1 contains either
the delimiter READ (DlﬁSlg) or the delimiter WRITE (Dl:478), the machine ex~-
amines the iteration control register IT. 1If register IT contains a value of
one, it is set to the current OPERAND LIST address located in index register
X¥PD. A wvalue of one in register IT indicates that at least one iteration is
being processed. Therefore, the OPERAND LIST contains the NAME TABLE address(es)
for the iteration's controlled variable(s). By setting register IT to the
OPERAND LIST address before the variables in the communication statement are
placed in the list, the machine has a means of determining which variables in
the OPERAND LIST are to be processed and rvemoved during execution of the read/
write execution sequence. The machine next transfers the NAME TABLE address of
the variable from subregister A(3-14) to subregister BR2(30-41) and increments

the OPERAND LIST address by one. It then stores the con

ol
rr
o}
bl
s
rt
0}
6]

106

®

&
4
wd
<

]
=)

il g)_

L)
N

1

!

B other fges
\-“.-.

L7,51
A

IF(I7=1) TAEn(IT <©--XiD)

)

S,
o

BR2(0) <«--1,
BR2(1-29) <==0,
XPD <€ ~=-countup XPD,
3R2(30-41) <--A(3-1L4)

w2 (AR2) <-=32R2

IP %==1, b7,51 @D
VR ©==0 other

/
EXEA < =-countup RFAI

ARZ <wc=}i}A[

|BR2 <--i2(ar2)|

et
!.—a
0o
[l
"
Y
et
o
o

o

(:0,2)=01)

v

/

ol <--1L,
AR <==2T,
AT <—=LLF,
32 (30-41) «~--XPA

Z1(ARL) <=--10L,
c2(anR) <=-2l2

}

§

Ti(D150) THEN (BRL <=-D1,

W e--countup AD)

M {z’&lﬁl) ===D m;%

S

ED:L 4__.E

TP =]y

Vi <m=0

Figure 185

Seri uence Chal"t

LOT

108

in the OPERAND LIST. Figure 4 shows the format for storing an address in the
OPERAND LIST. The NAME TABLE address of the variable was placed register in
A during execution of the NAME TABLE activity sequence.

After storing the NAME TABLE address, the machine again examines the
contents of register D1. If D1 contains either the delimiter READ (Dl=518) or
the delimiter WRITE (Dl=478), the machine transfers to the initial point sequence.

If register D1 contains any delimiter other than READ or WRITE, the
machine increments the current PROGRAM AREA address by one, fetches the next
program constituent from memory M2, and stores it in register S, If this con-
stituent is not an equal sign (SEQ is false), the machine examines subregister
A(le) to determine the type of the variable. If its type is Boolean, the
machine transfers to the logical expression sequence. If its type is integer,
the machine transfers to the factor sequence. If this constituent is an equal
sign, the contents of register D1 are examined again. If register D1 contains
the delimiter FOR (Dlﬂ268), the current flag is examined. If Fl contains a one,
the machine stores a one in the top element on the INITIAL STACK. It also
stores the current PROGRAM AREA address in the top element on the LINK TO FORLIST
STACK. It then transfers to the initial point sequence. If Fl contains a

zero, the machine transfers immediately to the initial point sequence.

4.13 Factor Seguence

This sequence is shown in Figure 19A~G. The machine enters this
sequence whenever a number, a NAME TABLE address of .an integer variable, or
the resultant value of a sum enclosed by parenthesis is placed in the OPERAND
LIST, 1In executing this sequence, the machine examines the contents of register
Dl to determine whether or not a multiplication or a division operation is
specified. If either of these operations is specified and the current flag,
register F1, contains one, the machine performs the operation on the top two

elements in the OPERAND LIST. After the operation, the two operands are replaced

109

in the OPERAND LIST by the result. The machine then removes the operator from
the DELIMITER STACK and transfers to the term sequence.

As shown in Figure 19A, if register D1 contains zero, the machine trans-
fers the current DELIMITER STACK address in index register XD to address regis-
ter AR1. It then fetches the top element on the stack from memory M1 and stores
it in register Di1. At the same time, it decrements register XD by one. It
then examines the contents of register D1. If D1 contains a multiplication
operator (D1=S48) or a division operator (Dl=618), the machine examines the cur-
rent flag. If Fl contains a one, the machine performs the specified operation.
1f ¥1 contains zero, the machine removes the operator from the DELIMITER STACK
by setting register DI to zero. It then transfers to the term sequence.

If register D1l contains any delimiter other than the multiplication

or division operator, the machine transfers directly to the term sequence.

4.13.1 Multiplication

The multiplication algorithm implemented in this machine is Booth's
algorithm for numbers in signed 2's-complement representation (6). To perform
the multiplication, the machine fetches the two operands from the OPERAND LIST
as shown in Figure 19B. The current OPERAND LIST address in index register XPD
is transfervred to address register AR2. The contents of the memory location are
then transferred into buffer register BRZ. If subregister BR2(0) contains a
one, this operand is a NAME TABLE address for a variable. The machine trans-
fers this NAME TABLE address to address rvegister AR2, increments it by one, and
transfers the value of the wariable to register BRZ. The NAME TABLE address is

incremented by one to obtain the address of the second word of the variable's

D

two word node. This is done since it is the second word of the node that con-

[¢

tains the value of the variable. The VAL field in subregister BRZ{0-5) is

now examined. If this field contains the special character 77 the variable

83

has not been assigned a value and cannot be used as an operand. Therefore, the

DRl &~-11(4F1)

IS oeh

XD %--countdn XD,

Dl % -=3R1

| P ———

|

=

]
o}
o
58
@
H

DI <-~0,
Th<e--1,
PP <--0

T @l ___)']

FT Gwe()

Figure 19z "Factor Sequence Chart

(36)

ARp <-~%2D)

[3r2 <--~12{4R2)

OotT

HQ €--BR2(6-41),
XpD «~~countdn XPD

Figure 198 Factor Sequence Chart

AC—D Gt <=
AC(35)~AC=EQ,

ONT @-=countdn CHT

TF((19(0)=0)*(E=1))
THEN(SD €==1,E<~-0)
FLSE(SD ©=~0, 8 <==1)

)

[ac <--5U1]

Figure 19c¢

F2(0) <-~o§

(

(AC=0)+(1:250) *

>%____.

(AC=777777777777)

9 <--AC(0)-FQ(35-1)

¥

ta.R2 @——XPD,
BR2{0~5) <~=0,
BR2(6-41) <--11Q

112(AR2) <--BR2|

v

Il <==0,
TI‘L ‘@"‘"‘lg

Fi<e==0

Factor Sequence Chart

I";V ‘<"""'ly
G €m=0

Wait for operator

intervention

TTIT

i oY i-»o,
] g <«~-C,
Wm S:rfT G0,
CHT <==43,
[a2(11) <--1 E<--4C(35),
SSR<~-SR(25)

IF(AC(25)=SR(35)) THEN(SD «=--0)
ELSE(SD<«%--1)

[AC <--50%)

Wait for operator

intervention

G D) S A—

SHFT <=-=~countup SHFT, IV <--1,
SR<~~shl SR G<--0

}

(AN

ERG--1,
FT <--0

Wait for operator

intervention

Figure 19e Factor Sequence Chart

Figure 19d Factor Sequence Chart

IF(352#32(35)) THE0 (858 <==1)

ZLSZ(3353 «=~0)

!

E<--0,
AV <=--0,
SD<--SD'

@;ZEO = G6

L

= (Ac=0 \ £

—

IF(Ac(35)=5r(35)) THEn(1.9(0) <--1,
83D <--0)zZLS2(i.Q(0) «-~0, SD<--1)

Q<e=-=shl [Q,
CXNT <=--countdn CiT

AQ<~~shl AQ,
CKT <=-countdn CIT

A

4

Figure 19f Factor Sequence Chart

[(z=0) Tizii(:a(0) <--1)]

:Q(35) <--1w(35)"

AC «--0,
SSR<--S3R81Q(35) »
IF(¥2(35)) THEL (FQ < --1R'add 1)

AR2 <--XPD,
BR2(6-1k <--AC,
BR{0-5) <--0

12(4R2) <~-3R2

DL <--0,
TH<=-1,
FT <=~0

AC-MQ(34-0) <~=
AC(34-0)-1G(34-0)-0,
SHFT <--countdn. SHFT

| I

Figure 19g Factor Sequence Chart

EEL

114

machine transfers to the errvor sequence. If the variable has been assigned

a value or if the operand itself is a value, the machine transfers the value

to the multiplier—-quotient register, MQ. It then decrements the OPERAND LIST
address by one and fetches the second operand from the OPERAND LIST. The second
operand is the multiplicand and is transferred to register SR. As shown in
Figure 19C, the machine next sets the accumulator, AC, the multiply overflow
indicator, MV, and the reference flipflop, E, to zero. It also sets the count-
er CNT to 438. The contents of the registers involved in the mulfiplication pro-
cess at this time are as shown in Figure 20(a). The multiplication is now per-
formed. The machine first examines the contents of register CNT. If CNT does
not contain zero, the multiplication continues; otherwise, it is complete. With
the contents of register CNT not equal to zero, the machine compares the contents
of subregister MQ(0) with the contents of register E. If they are equal, the
combined register AC-MQ-E is shifted one bit to the right and register CNT

is decremented by one. The machine then reexamines the contents of register

CNT. 1If the contents of subregister MQ(0) and register E are not equal, the
machine either increments or decrements the accumulator by the multiplicand

in register SR. Register SD controls the operation and terminals SUM are the
resultant value. Which operation is performed depends upon the contents of
register E. If register E contains a one, register SD is set to one and the
multiplicand is added; otherwise, register SD is set to zero and the multipli-
cand is subtracted. In either case, register E is complemented. After the
addition or subtraction, the machine again examines the contents of register

CNT. Since CNT is not decremented when an addition or a subtraction is per-
formed, it can not contain a value of zero. Therefore, subregister MQ(0)

and register E are again compared. Since register E was complemented, the com-

- T

parison indicates they are equal and the machine shifts the combined register

Uk
5 CRT Hv
l . J s F
i multiplicand | 435 | ¢ 0
O PSS | ——
35 0 0 5
AC N
i
; 7Zero multiplier %
. | S o}
35 0 35 0
(a) before multiplication
5 CuT MV
7T T : i
multiplicand 0o ,J 0
PN L b
35 0 0 5
A)
f ¥ i
' product 0
@ 4
.0

35

!
0 35

(b) after multiplication

Figure 20

Contents of Regist

ers Involved in the Multiplication FProcess

115

116

AC-MQ-E one bit to the right and decrements register CNT by one. The multi-
plication process continues until the 35 magnitude bits of the multiplier have
been rightshifted out of MQ. At that time, CNT will contain a value of zero and
the final product will be contained in registers AC and MQ as shown in Figure
20(b). Note that subregister MQ(0), is not part of the product. This bit is

set to zero so as not to cause an error in the overflow test. Since values stored
in memory are limited to 36 bits, the machine examines the product to determine

if it exceeds 35 magnitude bits in significance. If it does, overflow has occurred
and the machine sets register MV to one and the run-stop control register, G,

to zero. It then waits for the operator to intervene. If overflow has not
occured, the product is right shifted one bit. It is then transferred to sub~-
register BR2(6-41) and finally stored in the OPERAND LIST. The machine then
erases the multiplication operator from the DELIMITER STACK and tramnsfers to

the term sequence.

4.13.2 Division

The division algorithm implemented in this machine ié von Neumann's
nonrestoring method (6). To perform the division, the machine fetches the two
operands from the OPERAND LIST as shown in Figure 19D. The machine operations
performed tc fetch these operands are described in Section 4.13.1. The divisor
is fetched first and placed in register SR. If the divisor has a value of zero,
the machine sets the divide overflow indicator, DV, to one and the run-stop
control flipflop, G, to zero. It then waits for the operator to intervene. If
the divisor is not gzero, the machine continues on and fetches the dividend. It
stores the dividend in the accumulator.

As shown in Figure 19E, after fetching the operands, the machine sets
registers SHFT, MQ, and DV to zero. It also stores the sign of the dividend

in reference flipflop E, stores the sign of the divisor iIn register SSR, and

117

sets register CNT to 438. Figure 21(a) depicts the contents of these registers
at this time. The machine then tests the divide-stop condition. A dividend
larger than or equal to the divisor identifies this condition. In testing for
this condition, the machine subtracts the divisor from the dividend and examines
the difference. If the two values differ in sign, the machine effectively per-
forms the subtraction by adding the two values. The terminals SUM are the re-
sults of this operation. The difference is stored in the accumulator. If the
accumulator contains zero or if the sign of the difference is the same as the
sign of the dividend (which is stored in register E), the divide-stop condi-
tion exists. When this condition exists, the machine attempts to scale the
idivisor so that it becomes larger than the dividend and the division can con-~
tinue. The machine first restores the dividend in the accumulator by adding
the divisor to the difference. It then determines whether or not the divisor
can be scaled. If the divisor has not been shifted to the left 35 bits and if
another shift would not cause a significant bit of the divisor's magnitude to
be lost, the divisor is shifted to the left one bit and register SHFT is incre-
mented by one. The machine then compares the scaled divisor and the dividend
as before. If the divide-stop condition still exists, the machine again attempts
to scale the divisor. This process continues wntil either the divisor becomes
larger than the dividend, in which case the division operation is executed, or
no further scaling of the divisor can occur. At that point the machine sets
register DV to one and register G to zero., It then waits for the operator

to intervene.

As shown in Figure 19F, if the divide-~stop condition does not occur or
it is eliminated by scaling, the division begins by setting register SS5R. Note
that the sign of the divisor was placed in register SSR earlier in this sequence.
If the sign bit in subregister SR(35) changed while the divisor was being scaled,

the setting of register SSR records this change. This step is necessary to

118

SR e CNT . bV S8R
divisor u3g | 0 82
35 0 05
AC Q B SHET
] dividend zero sl | 0
[N i
35 035 0
(a) before division
srR GHT v SSR
1 divisor 1 g 00 g 0 'SS ‘
Lo ¥ R ,
35 0 0 5
AG Mg B SHFT
S — — ey
| ZeTo gquotient J l 0 | t X !
35 0 35 o
(b) after division
S1l: sign of dividend
82 sign of divisor
53: result of comparison of contents of SSR and sign

&

of guotient
number of bits quotient
left

should be shifted to the

g of Registers Used in the Division Process

119

to insure that the quotient is given the proper sign. The machine next sets
reference flipflop E to zero and restores the dividend in the accumulator.

It then examines the contents of register (NT. If the value in register C3T

is non-zero, the division continues; otherwise, it is complete. Continuing the
division, the machine examines the contents of the accumulator. If the accumu-
lator contains a non-zerc value, the machine determines the first quotient bit,
which is one or zero according to the sign bits of the divisor and the partial
remainder being the same or different respectively. This bit is inserted in
subregister MQ(0) and the add-subtract flipflop, SD, is set accordingly. The
contents of casregister AQ are then snifted one bit to the left and the contents
of register CNT are decremented by one. If the quotient bit is omne, the con-
tents of register SR are subtracted from the contents of the accumulator; other-
wise, the contents of register SR are added to those of the accumulator. If

the contents of the accumulator remain non-zero, the machine continues this
process until all bit positions in register MQ except MQ(0) contain quotient
bits., At that time, register CNT contains zero (see Figure 21(b)). Tne machine
then applies a correction to the partial quotient. As shown in Figure 196G, tais
correction consists of inserting a one in subregister MQ(0) and complementing
subregister MQ(35).

If the value in the accumulator becomes zero at any time during the
process, the division is complete and the machine shifts the quotient to the
left and decrements the number in register CNT until the number reaches zerc.

In order to provide the proper correction in this case, a one is inserted in
subregister MQ(0) before the quotient is shifted left. Reference flipflono T
controls the insertion of the one. Subregister MQ(35) is complemented after

the quotient is shifted.

120

After completing the division process, the machine compares the sign
of the quotient with the value in register SSR, It stores the results of
this comparison in register SSR. It also sets the accumulator to zero and com-—
plements the quotient in register MQ if it is negative. The machine then examines
the contents of register SHFT to determine if the divisor was scaled. If it
was, the machine shifts the quotient left into the accumulator and decrements
the contents of register SHFT. When the contents of register SHFT reach zero,
the machine examines the wvalue in register SSR. If this value is one, the machine
complements the contents of the accumulator. It then transfers the contents of
the accumulator to subregister BR2(6-41) and finally stores them in the
OPERAND LIST. The machine then erases the division operator from the DELIMITER
STACK and transfers to the term sequence.

Notice that in storing the quotient, the quotient bits in register
MQ are truncated. This results in a quotient of zero whenever a division is

performed and the divisor is not scaled.

4.14 Term Sequence

This sequence is shown in Figure 22A-D. When the machine enters this
sequence it first determines whether or not register S contains a multiplica-
tion or a division operator (S8STR is true or SDI is true). If register S con-
tains either of these operators, the machine places the operator on the DE-
LIMITER STACK and transfers to the initial point sequence; otherwise, the machine
examines the contents of register Dl to determine what operation to perform.

As shown in Figure 22A, if register DI contains a zero, the machine fetches

the top element on the DELIMITER STACK from memory ML and transfers it to regis-
ter D1. It then examines the contents of register DI again. If D1 contains an
addition operator (Dlw208) or a subtraction operator (Dl=408), the machine sets

register §D to one or zero respectively. It then examines the current flag.

o S

38TP+5DI)

(D15#0) THEK(BRL <-~D1,

KD <=--countup XD)

#1(ARLl) <=~~BRL

v

EARl <~—-—']{D!

BR1 <--11(AFL)

¥

—(

XD <-~-countup AD;

D1

) other

20

40

[5D<--1]

[5D <-=0]

3
D] <--BDEL o
& S Gl
Ti @0y :
1} o

IP é’”l T“ o O

D1 <--0,

Sil <=1,

¥ % =m0

4
;Sur\.— 22a Term :ﬂ;ili‘;uguce Chart

Tt

SR<%-~BR2(6-41),
XPD <~~countdn XPD

IBR2 <--~L2(Ar2)

BRZ(O) 1

| AR2 <-—~BP2(30-41)]

IF(AC(35)=SR(35
FLSE(SSR<--0),
AV <--0

)) THEN(SSR<--1)

LAC <»-«-BR2(6-41)

Figure 22Zb Term Sequence Chart

ER <=1,
TN G0

AC <~
AV <~

~SUi,
-C(36)

((spessr)*

(aV@SR(35)) }Emmm——

AV <

BR2(0~-5) <--0,
BR2{6~L1)<--AC,
AR2 <--XPD Wait for operator

-0, E—-—O

intervention

lHZ(AR2) 4-—332[

D <=-0,
SH<--1,
TH @m0

Q)

Figure

22¢ Term Sequence Chart

et

AR2 <-=BR2(30=-41)

¥

AR2(11) <--1

[BR2 <~-1i2(AR2))|

= {BR2(0~5)=77)

ER<--1,
TH <==0

g

AC <==BR2(6=U1)

{

SD 4‘“"13
SR<~~1,
AG <~=~ACH

AR2 <~~XPD
BR2(0-5) <=-0,
BR2(6-01) <==AC

v

l12(AR2) <--BR2|

!

Dl <g“'““‘09
SM <““"13
TH <=0

[

L4

¥

)

Figure Z2d Term Sequence Chart

123

124

If F1 contains a one, the machine performs the specified operation. If F1l
contains a zero, the machine remcves the operator from the DELIMITER STACK by
setting register D1 to zero. It then transfers to the sum sequence. If register
D1 contains a unary minus operator (Dl=448), the machine examines the current
flag and reacts in the same way as described for the addition and subtraction
operators. If register D1 contains any other delimiter, the machine transfers

directly to the sum sequence.

4.14.1 Addition and Subtraction

Addition and subtraction are implemented in this machine as direct
addition and subtraction of numbers in signed 2's-—complement representation.
A 36~bit parallel adder-subtractor is wired between registers AC and SR.
Terminals SUM are the different outputs of this adder-subtractor. The value in
register SD determines whether these outputs reflect the sum or difference of
the inputs. To perform an addition or a subtraction, the machine‘fetches the
two operands from the OPERAND LIST as shown in Figure 22B. A description of
the machine operations performed to fetch these operands is contained in
Section 4.13.1. The addend (subtrahend) is fetched first and placed in regis-
ter SR. The augend (minuend) is then fetched and placed in the accumulator.
The machine then compares the signs of the two operands. If they are the same,
it sets register SSR to one; otherwise, it sets register SSR to zero. It also
sets the add overflow indicator, AV, to zero. It then stores the outputs of
the adder-subtractor in the accumulator. The carry from the most significant
bit is stored in register AV. The machine then tests for overflow. If over-
flow has occurred, the machine sets the run-stop control register, G, to zero.
It then waits for the operator to intervene. ILf there is no overflow, the

machine sets register AV to zero and transfers the sum (difference) into the

125

OPERAND LIST. It then transfers to the sum sequence.

4.14.2 Unary Minus

As shown in Figure 22E7 the machine fetches an operand from the
OPERAND LIST and stores it in the accumulator. The machine operations performed
to fetch the operand are described in Section 4.13.1. The machine next comple-
ments the contents of the accumulator and stores a one in register SR. It then
increments the contents of the accumulator by the contents of register SR.
This effectively yields the 2's-complement of the original valué of the oper-
and. The machine then stores the operand back in the OPERAND LIST. It then
removes the unary minus operator from the DELIMITER STACK and transfers to the

sum sequence.

4,15 Sum Sequence

As shown in Figuvre 23A, the operations performed in this sequence de-
pend upon the output of the program constituent decoder. If this decoder indi-
cates that register S contains either an addition, a subtraction, or a relational

the operator
operator (SPL, SMI, or SRO is true), the machine places /\ on the DELIMITER
STACK and transfers to the initial point sequence. If the decoder indicates
that register 5 contains a rvight parenthesis (SRP is true), the machine examines
register D1 to determine what actionto take. A value of zero in register D1
causes the machine to fetch the top element on the DELIMITER STACK and store it
in D1, If register D1 contains a left parenthesis (Dl$748), the machine transfers
to the factor sequence; otherwise, it transfers to the error sequence.

If the program constituent decoder indicates that register § contains
either the delimiter THEN or the delimiter END, the machine examines the con-
tents of register D1 to determine what action to take. Again, a zero causes
the machine to fetch the top element on the DELIMITER STACK and store it in
register D1. If +he top element on the LELIMITER STACK is not a relational

operator, the machine examines the output of the program constituent decoder.

| e}

971

sy, [SPL, SIP 5.0,
ST o [
: —o O 2()
¢ ? —/ 50,067, .
IP(D1£0) THEI(BRL < ~-D1, 0 ‘F othe & 70,71
@——-———4 D1 D
L) ==~countup %D) = s
) 4
AL =--XD
L — #
BRI <~-112 (AR1) THE =L L
l l:Il "':"""l, =
XD “--countdn %D, it = ==0 IBnL <--11(4n1)
D1 <~-BRL ; v 4
XD <=~countdn XD, ER<=--1, L <=1,
< D1 <--BR1 Sii <=0 Sii<e
D1 <--0,
FT "/'-"‘"1 ® L 4
Sl <=-0
¥ 2 i

Figure 23a Sum Sequence Chart

5

0 (-) L3,45,50,67,70571 ,
131 63 other

- L

[AR1 <-XF|

o BR] <--11(ARL)

/
i

(B

-1,

SH <€ ==0

je=

Tigure 230 Sum Seguence Chart

LTT

5D % ~~0y
AR2 % »=XPD

£:2(Ap£)!

|BR2 @

LE<--1,
SM @w=0

ER<~-1,

SHe~~0

ER<--1,
Sk %==0

Figure 23c Sum Sequence Chart

IF(D1=43) THEN(IF(AC(35)) THEN(BR2 <~-1) ELSE(BR2 %~~0)),
IF(D1=l5) THEN(IF{AC=0) THEN(BR2 <-~0)ELSE(ER2 @~-1)),
IF{D1=50)THEN(IF(AC=0)THEN(BR2 <~-1)ELSE(ER2 ©~~0)},

IF({D1=70)THEN(IF(AC(35) YTHEN(BR2 <-~0)ELSE(BR2 @--1)),

IF(D1=67)THEN(IF(AC(35)+(AC=0)) THEN(BR2 <-~0) ELSE(BR2 @ =-1)},
IF(D1=71) THEN(IF(AC(35)+(AC=0)) THEN(BR2 < ~-1)ELSE(ERZ <~~0))

ARZ <--XPD]

lMZ(ARz) <---BR2]
[B<--0

LE<~~1,
SH<~--0

&)

Figure 23d Sum Sequence Chart

8¢T

129

If the decoder indicates that register S contains the delimiter THEN, the
machine transfers to the error sequence; otherwise, it transfers to the arith-
metic expression sequence.

If register D1 contains a relational operator, the machine examines
the current flag. As shown in Figure 23C, if F1l contains zero, the machine
transfers to the logical expression sequence; otherwise, it performs the specified
operation. It does this by subtracting one operand from the other and examining
the difference. If the difference indicates that the relation is true, the
machine places a one in the OPERAND LIST; otherwise, it places a zerc in the
OPERAND LIST. As shown in Figure 23C, the machine first sets register SD to
zero. It then fetches the two operands from the OPERAND LIST. The machine
operations performed to fetch these operands are described in Section 4.13.1.

The first operand 1s stored in register SR and the second operand is stored in
the accumulator. As shown in Figure 22D, once the operands are fetched, the
machine transfers the outputs of terminals SUM to the accumulator. Since regis-
ter SD contains zero, these outputs are the difference of the two operands.

The machine next examines the accumulator and sets buffer register BR2 accord-
ingly. It then stores the contents of register BR2 in the OPERAND LIST, erases
the relational operator from register D1, and transfers to the logical expression
sequence.

As shown in Figures 23A and 23B, if the program constituent decoder
indicates that register S contains the delimiter ELSE, the machine examines the
contents of register Dl to determine what action to take. Again, a zero causes
the machine to fetch the top element on the DELIMITER STACK and store it in
register D1. 1If register D1l contains an equal sign (D12138) the machine transfers
to the arithmetic expression sequence. If register D1 contains the delimiter
THEN (Dl=638), the machine examines the current flag, register F1. If F1 con-

tains one, it is complemented: otherwise, the second flag on the FLAG STACK

is fetched from memory M1 and examined. If this flag is one, the current flag is

130

complemented. The machine then replaces THEN with ELSE in register D1 and
transfers to the initial point sequence.

If register D1 contains a relational operator, the machine reacts
as described above. Any delimiter other than an equal sign, THEN, or a relation-

al operator causes the machine to transfer to the error sequence.

4.16 Logical Expression Sequence

This sequence is shown in Figures 24A~C. The machine enters this
sequence when it reaches the end of a logical expression. As shoﬁn in Figure
24A, the machine operations performed in this sequence depend upon the contents
of register D1. A value of zero in register D1 causes the machine to fetch
the top element on the DELIMITER STACK from memory M1 and store it in register
D1. 1If register Dl contains the delimiter IF (D1=318), the logical expression
just scanned 1ie the test condition in a conditional statement and it should
be followed by the delimiter THEN. Therefore, the machine examines the output
of the program constituent decoder. If this decoder indicates that register
S does not contain the delimiter THEN, the machine transfers to the error
sequence., If register 5 does contain the delimiter THEN, the machine places
a new flag on the FLAG STACK. As shown in Figure 24B, it first stores the
current flag in memory Ml. It then places a new flag in register Fl1. If Fl
contains zero, the new flag is also zero. If Fl contains one however, the
machine must examine the value of the logical expression to determine the value
of the new flag. The wvalue of the logical expression just scanned is the value
of the top element in the OPERAND LIST. The machine fetches this operand and stores
it in buffer register BR2. 1If this operand is a NAME TABLE address of a varia-—

£
i

ble (BR2{0)=1), the machine uses the address to fetch the value of the variable
from the NAME TABLE. It then examines the VAI field in subregister BR2(0-5).

§ ey . 7 5 N T o 'l A
If this d contains 7 the variable has not been assigned a value and

cannot be used as an operand. Therefore, the machine transfers to the error

HXF Gm=countup XF

AF2 %-XF
@D | y
= BR1(0-4) «-=0,
BR1{5) <~~F1
0 f"“‘“‘"‘—“")lz AS Gmel T
-w-m-—w—-—v—-——-—& Dl . ¥ - .
S b . | ML(AR1) <--ERL
e & Fi=1
EARl <—--‘AD§ -
"é‘“”‘—‘% THE
[581 <mm: 1) [£R2 =--%FD)
I5Fl < E 1(ARL)|
é T XPD <~~countdn XFD,
A @==countdn XD, XD <@-=countdn XD, A2 IZ(ARZ)
Gl
Dl -2 R D1 «~-BRL ;
I | ‘
ER =1, D1 <~~SDEL,
LE @~~0 LD @--count up XD
(R0
IP %=~1,
Fl<--0
LE<==0 . E
ER<--1, {
LE<--0 DL <~-SDiL,
IP %=-~1,
LE <~--0

Figure 242 Logical Expression Sequence Chart &
e

Figure 24b logical Lxpression Sequence Chart

et

132

€3

ARZ w--{PD

1
XPD <--countdn APD,

BR2 <--{2(AR2)

4
|AR2 <=-PR2(30-41)

:

AR2(11) <~-1

¥

BR2 <~-12(AR2)|

={3r2(0-5)=77)

S

[
AR]_ <"“"°“XC $

ARZ € -=XLF

¥

BR2 <==12(AR2),
BRL <=-¥1(ARL)

ﬁ?Rl <==-countup ERl!

¥1L{ARl) <=~BRl,

45

IXPA <—=countup XPA]

5

IF(D1#0) THEN(BRL <=--D1,

XD <==-countup XD)

BR2 <--12(AR2)

iS<—~-BR2!

!

XPA <=-=BR2(30-41)

7

ARL ==--XD

11 (AR1) <--371]

SorT.

W ik fdl

Figure 24c¢ Logical Ixpression

Sequence Chart

133

sequence. Lf the variable has been assigned a value or 1f the operand itself
is a value, the machine sets the new flag. If the value is zero, the new fiag
is set to zero; otherwise, it is set to one., After setting the new flag, the
machine replaces the delimiter IF with the delimiter THEN in register DI1.
It then transfers to the initial point sequence.

Referring again to Figure 24A, if register Dl contains the delimiter
WHILE (Dl=668), the logical expression just scanned is the test condition in a
for list element. If the current flag, register Fl, contains one, the machine
must examine the value of the logical expression and determine whether or not
to execute the statement contained in the iteration. If the current flag con-
>tains zero, however, the machine continues scanning the program without execut-
ing the statement.

As shown in Figure 24A, the machine removes the delimiter WHILE from
the DELIMITER STACK by fetching the next delimiter on the stack from memory
M1l and storing it in register Dl. It then examines the current flag. If F1
contains zero, the machine examines the output of the program constituent de-
coder. If the decoder indicates that register S contains the delimiter DO,
the machine places it on the DELIMITER STACK by transferring it to register DIl.
It also increments the DELIMITER STACK address in register XD by one. This
effectively restores the delimiter in register D1 back into memory M1. The
machine then transfers to the initial point sequence. A comma in register S
(SCMA is true) causes the machine to transfer directly to the initial point
sequence while any other program constituent causes the machine to tramnsfer
to the error sequence.

As shown in Figure 24C, if vegister ¥l contains one, the machine fetches
the top element on the OPERAND LIST from memory M2 and stores it in register
BR2. If this operand is a NAME TABLE address of a variable (BR2(0)=1), the

machine uses the address to fetch the value of the variable from the NAME

134

TABLE. It then examines the VAL field in subregister BR2(0-5). If this field

contains 77 the variable has not been assigned a value and cannot be used as

8°
an operand. Therefore, the machine transfers to the error sequence. If the
variable has been assigned a value or if the operand itself is a value, the
machine stores the value in the accumulator for examination. This value is
the result of the logical expression and if it is zero, the execution of the
iteration for this for list element is complete. Therefore, the machine
fetches the starting address of the iteration's for list from the LINK TO
FORLIST STACK in memory M2, enters it into index register XPA as the new PRO-
GRAM AREA address, and then transfers to the iteration control sequence. At
the same time, it updates the for list element count for the iteration by
fetching the count from the GOUNT STACK in memory Ml, incrementing this count
by one, and returning it to the COUNT STACK. If register AC does not contain
zero, the statement contained within the iteration is to be executed. There-
fore, the machine scans to the end of the iteration's for list by sequentially
fetching programcoustituents from the PROGRAM AREA of memory M2 until it re-
cognizes the delimiter DO. At that time the machine places the delimiter on
the DELIMITER STACK and transfers fo the initial point sequence.

As shown in Figure 24A, if register D1 contains an equal sign (Dl=138),
the machine transfers to the assignment sequence. If register Dl contains a
delimiter other than IF, WHILE, or an equal sign, the machine transfers to the

error segquence.

4.17 Arithmetic Expression Sequence

This sequence is shown in Figures 25A=1. The machine enters this
sequence when it reaches the end of an avithmetic expression. As shown in
Figure 25A, the machine operations performed in this sequence depend upon the
contents of register DIL. A value of zero in register D1 causes the machine to

fetch the top element on the DELIMITER STACK from memory Ml and store it in

135

register D1. If register Dl contains the delimiter ELSE (D1t658), the machine

is completing a conditional statement and the flag associated with the condition~
al statement is no longer needed. Therefore, the next flag on the FLAG STACK

is fetched from memory M1 and stored in register Fl. This flag becomes the
current flag. The machine then fetches the next element on the DELIMITER STACK
and stores it in register DI.

If register D1 contains the delimiter FOR (Dl=268), the arithmetic
expression occurs in a for list element. The machine must determine whether
the arithmetic expression is the entire for list element or whether it is the
first arithmetic expression in a for list element of the type STEP-UNTIL or
‘the arithmetic expression in a for list element of the type WHILE. As shown in
Figure 25E, the machine determines this by examining the output ¢f the program
constituent decoder. If this decoder indicates register S contains a comma
(SCMA is true) or the delimiter DO, the arithmetic expression is the entire
for list element. If register S contains DO, this for list element is the
last element in the iteration's for list and the machine erases the delimiter
FOR from the DELIMITER STACK by fetching the next delimiter from memory M1
and storing it in vegister Dl. The machine then examines the current flag. If
register F1 contains zero, the machine is only scanning the program and transfers
to the initial point sequence; otherwise it acts to execute the statement con-
tained in the iteration.

As shown in Figure 25F, the machine fetches the top element on the
OPERAND LIST from memory M2. If this operand is a NAME TABLE address of a
variable (BR2(0)=1), the machine uses the address to fetch the value of the
variable., If no value has been assigned to the variable, the machine transfers
to the error sequence; otherwise, it stores the value in the accumulator. This
value is the value of the arithmetic expression and it is to be assigned to

the iteration's controlled variable. The machine assigns the value to this

410

i

[z <—-xD]

Bl <-~M1(AFL)

\13

}\S 4—’1 ?

/
Alil 4‘“‘“}{?9

ERY <-~n1{AK1)

Dl -2,

£D <w=--countdn AD

Fl1<--BRL(5),

NP <-=countdn X¥

Figure 25a

%5430

%«

6l

AE<--0

IP 4‘-"1’
AE <--0,
D1 <=--5DEL

Y
@{?f
i

Y

ER 4"‘“1 9

AR <-~0

d G(,—ijle-)

AN

¥
Al <€~-iD

\ 4

|pr1 <--11 (A1)

Dl @‘-I::.fl 9 lP 4"""1,
XD <=-=countdn XD AB <&-~0
V__..___._.___’J
4 4 /

Aritihmetic Expression Sequence Caart

9¢T

)
{210)
%, F

|

o
[A2 <-%71)
{392 P wﬂtfﬁ

{mz(o)»lf?{-——»»«w

s ‘Lw"m
imzxn) <—~~1§

ES

» pR2(0-5)=77
ﬂ__—_a_t_’?_&:ﬂm v
) -

SR @-~BR2{6~41]),

XPD %-~countdn XPD

Figure 25b

ER<=-l, 4C < --BR2(6-41)

AE @D

H

'

@

Arithmetic Expression Sequence Chart

°

(c0)
T

f R1<~~~:£L(AR1}§

FLSE(SSR@~-0) ‘J

8D <% --1
|

AV G--C{Bé) s
AQ < --8UM

? TF(40(35)=SR(35)) THEN(SSR «s_-«ni
1
s

e Z{(SD6SSR) * (AV6SR(35)))

YPD G w=-countdn LPD, 1
BR] %~=0

AV ©==0, P‘

1

XPD % --countdn XPD é

Hait for
operator AR2 <~-XPD
interventlon S
BRZ <~ M2 (AR2)]
pﬂ—wj“é ‘ .

ARz <--BR2(30-41) |

ARZ(ll Gm=l,
| BR2(0-5) <--0,
| BR2(6-41)<~~AC

F2(AR2) <--BR2

b
ML(ARL) <~~BR1|)

e
SD <1,
SR<-~1, (sp<--c|
AC <=-AC"
AC <mnBUT,

e e

Figure 25¢ Arithmetic Express

{on Sequence Chart

LET

138

wml el ar e e 13!
r(Ac(Cs)=sn{2smim{ssne--1),
f sy
ELSE{ IR ©==0) ;
R / -
v

AC <€--SUil,
AV <--C(26)
|
v L
((spossi)* *(a fm(zc 1))
[Sy
(47 <=0

)v

fgE-

CeGeo))T
f Ra

|

/

CARL <-‘-°-—.r(I

SN

e ; X
BR1 <--1 : lAR2 <--XP4 ‘3

m(Am) <—-—BRl'

| SR e Jo—

ARL <~-XC, J

ARZ <~ -=-XLF

rﬁ;:_m_@.m] B
'BR2 <E---—“2(A12)

o e i3 e o ~~J

i

M
| BR1 fé«-e«-countu !

%
ML(AR1) <--BR1,
XPA <~—-BR2(30 ~41)

SNOPSE—— et e

f--m-»\" o
!FT <<—"'—l, {

uA@frfLJ
@

hmetic E

g2}
’_.l
09
c
Il
o
e
w
[«
=
3
‘_J
1' T

J(PA <-=-countup KDAi

- 3w WALT for operator

intervertion

At e e e B e i s o ik

i

e

S
XD <--courtup XD)
M'-» N

TN ' AN
M(Am\ <———BRl

L y

[D1 <--=DEL!

sIP """'l’

i
{
e
| AE <=-0 :

LE—

xpression Sequence Chart

SCA

octher

» @
PRl ©--11{A7L)]

5 s
v

bt

<

>

IF(D1#0) THAL(DHL <==D1, | =
(T) (& 3
XD <=wcountup AD)
il <~=-countdn XD, #
Dl &--Lid PR
po fﬁm FL{AKL) <~=b ‘{15
e{ F1=1)
e B)
£
B
§Dl ’é—wﬁDs&E
Il: '4"‘“”3.9 AR Q‘”“’lg I}yé’""'lg
Al G0 AR @@=} AR Gwe()

Figure 25e Aritumetic Expression Sequence Chart

6eT

AC ©~~-322(5-41),
XFD <--countdn XED

AR2 ©--2R2(30-41)

AR2(11) <--1,
E22(0-5) <--0,
BR2(6-41) <--AC

12(422) €--28

ER€--1,
Al <%=--0

&

Figure 25f Arithmetic Expression Sequence Chart

3Rl <~-13(ARL)

[3RL <=~~countuy A

[1(an1) «——sm[

[YEA <%-=-countup XPA I
[AR2 <--kPA]
AR2 @--i2(AR2)

IF(DLF0) THEN(DRL <~-D1,
XD <~-countup XD)

ID]_ <—-—SDZL]

XC <€~--counidn AC,
XI <-~--countdn XI,
XLF <--czountdn XLF,
XED <%~-coantdn XPD

!

[1r(xc=165)15

(11 <--0)]

IF <--1,
AE <--0

Figure 25g Arithmetic Expression Sequence Chart

o%t

HLO
t

W
[R82 < ~-XED
X
[3r2 <--i2 (AR2)]
{DR2 (AR2)

. 3
,MW,W..?{;{Baz(okl)

e

L. S
JAR2 eweBRZ{ 30410

Figure 25h Arithmetic Expression Sequence Chart

2p2(0~5) €==0;
BR2(6-11) % --AC

i M2(AR2) «--BR2

E(PD “==countup XPD}

K10

Figure 251 Arithmetic Expression Sequence Chart

{2

142

variable by fetching the variable's NAME TABLE address from the OPERAND LIST
and then using this address to store the value in the NAME TABLE. The machine
then scans to the beginning of the statement contained in the iteration as shown
in Figure 25G. If the program constituent decoder indicates register S
contains DO, the machine is already &t the beginning of the statement. Also,
as stated earlier, this for list element is the last element of the iteration's
for list. Therefore, the machine decrements the COUNT STACK, the INITIAL STACK,
and the LINK TO FORLIST STACK addresses by one. This effectively‘erases the
top element on these stacks. The addresses of these stacks are located in index
registers XC, XI, and XLF respectively. The machine next examines the COUNT
STACK address. If this address indicates the COUNT STACK is empty, the machine
sets register IT to zero. It then transfers to the initial point sequence.
If register S does not contain the delimiter DO, the machine increments the
count in the top element on the COUNT STACK by one. It then scans through the
for list by sequentially fetching program constituents from memory M2 until it
finds delimiter DO. It places DO on the DELIMITER STACK and then transfers
to the initial point sequence.

Referring again to Figure 25E, if register S contains either the de-
limiter STEP or the delimiter WHILE, the machine examines the current flag.
If F1 contains zero, the machine places the delimiter in register S on the
DELIMITER STACK and then transfers to the initial point sequence. If Fl1 contains
one, the machine fetches the value of the arithmetic expression from the OPERAND
LIST as shown in Figure 25H. The machine stores this value in the accumulator.
It then fetches the NAME TABLE address of the iteration controlled variable from
the OPERAND LIST and stores the address in register AR2. As shown in Figure
251, the machine then determines whether or not register S contains the delimiter
STEP. 1If register S does contain STEP, the machine fetches the top element on

VL]

the INITIAL STACK from memory ML and examines it. If register S does not con-

143

tain STEP or if the top element on the INITIAL STACK is not zero, the machine
transfers the value of the arithmetic expression to buffer register BRZ and
then stores it in the NAME TABLE. This action assigns the value to the iter-
ation controlled variable. The machine again determines whether or not register
S contains STEP. If rvegister S does, the machine increments the OPERAND LIST
address by one. This effectively restores the arithmetic expression in the
OPERAND LIST. The machine then places the delimiter in register S on the
DELIMITER STACK as shown in Figure 25E.

If register S contains STEP and the top element on the INITIAL STACK
is zerc, the machine fetches the value of the itevation controlled variable
Vfrom the NAME TABLE. It then increments the OPERAND LIST address by one and
stores this value in the OPERAND LIST. This value replaces the arithmetic ex-
pression just scanned. The machine then places the delimiter STEP on the
DELIMITER STACK as shown in Figure 25E.

Referring again to Figure 25A, if D1 contains the delimiter STEP
(Dl=628)9 the arithmetic expression just scanned is the second arithmetic ex-
pression in a for list element of the type STEP-UNTIL. This arithmetic express-
ion should be followed by the delimiter UNTIL. Therefore, the machine examines
the output of the program constituent decoder. If the decoder indicates that
register S does not contain UNTIL, the machine transfers to the error sequence.
If register § does contain UNTIL, the machine places it on the DELIMITER STACK
by transferring it to register Dl. This action also erases the delimiter STEP
from the DELIMITER STACK. The machine then transfers to the initial point
sequence.

Tf register D1 contains the delimiter UNTIL (Dlm648}, the arithmetic
expression just scanned is the third arithmetic expression in a for list element
of the type STEP-UNTIL. As shown in Figure 254, the machine erases UNTIL from

the DELIMITER STACK by setting vegister Dl to zero. It then examines the cur-

144

rent flag. If register F1 contains zero, the machine examines the output of the
program constituent decoder. If the decoder indicates register S contains the
delimiter DO, the machine places the delimiter on the DELIMITER STACK by trans-
ferring it to register Dl. The machine then transfers to the initial point
sequence. If the decoder indicates register S contains a comma, the machine
fetches the top element on the DELIMITER STACK from memory M1, stores it in
register D1, and then transfers to the initial point sequence.

If register F1l contains one, the machine performs a test to determine
whether the statement contained in the iteration should be executed or whether
Qxecution under contrel of this for list element is complete. As shown in
Figure 25B, the machine fetches the values of the three arithmetic expressions
from the OPERAND LIST. It stores the value of the third arithmetic expression
in register MQ, the value of the second arithmetic expression in register SR,
and the value of the first arithmetic expression in the accumulator. The
machine operations performed to fetch these values are described in Section 4.13.1.

As shown in Figure 25C, the machine next fetches the top element on
the INITAL STACK from memory M1l for examination. If this element contains one,
the machine has not processed this STEP-UNTIL for list element previously and
the iteration's controlled variable is not to be "stepped" at this time. The
machine then sets the top INITIAL STACK element to zero. If the top element on
the INITIAL STACK is zero, the machine increments the value in the accumulator
by the value in register SR. It should be noted that since the top element of
the INITIAL STACK is zero, the value in the accumulator is the current value of
the iteration's controlled variable. The machine then tests for overflow. If
overflow has occurred, the machine sets run/stop control f£lipflop G to zero and
then waits for the operator to intervene. If there is no overflow, the machine
fetches the NAME TABLE address of the iteration's controlled variable from

the OPERAND LIST, transfers this address to address register ARZ, and then

145

assigns the value in the accumulator to the controlled variable. Thus, the
value of the iteration's controlled variable is "stepped'” by the value of the
second arithmetic expression in the for list element.

The machine then determies the value of the expression A%sign B -~ C;
where A vepresents the iteration’s controlled variable and B and C represent
the second and third arithmetic expressions in the for list element. The machine
first examines the sign bit of the second arithmetic expression in subregister
SR(35). 1If the value of this expression is negative, the machine complements
the value of the iteration’s controlled variable in the accumulator. It also
sets register SD to one. If the value of the second arithmetic expression is
positive, the machine sets register 5D to zero. The machine then transfers
the value of the third arithmetic expression from register MQ to register SR.
As shown in Figure 25D, if the sign bits in subregisters AC(35) and SR(35)
are equal, the machine sets register SSR to one; otherwise, it sets register
SSR to zero. The contents of this register are used to test for overflow. The
machine then transfers the value on terminals SUM to the accumulator. These
terminals are the outputs of the parallel adder~subtractor wired to registers
AC and SR. The machine then tests for overflow. 1If overflow has occurred
the machine sets run/stop control register G to zero and then waits for the oper-
ator to intervene. Lf there is no overflow, the machine sets register AV to
zero and then examines the contents of the accumulator. At this time the accum-
ulator contains the results of the previously described expression; A%*sign B - C.
If the result of this expression is less than or equal to zero, the machine
acts to execute the statement contained in the iteration. The machine scans

Dy

)

i

[£4]
.
0
"
;‘v«n\
[
93]
[md

to the end of the iteration sequentially fetching program constitu-

I

ents from the PROGRAM ARFA of memory MZ until it recognizes the delimiter BO.

At that time the wachine places the delimiter on the DELIMITER STACK and transfers

146

to the initial point sequence. If the result of the expression is greater than
zero, the execution of the iteration is complete for this for list element.
Therefore, the machine resets the top element on the INITIAL STACK to one. It
then fetches the starting address of the iteration's for list from the LINK TO
FORLIST STACK in memory M2 and places it in index register XPA. It also updates
the for list element count for the iteration by fetching the count from the
COUNT STACK in memory M1, incrementing the count by one, and returning the count
to the COUNT STACK. The machine then transfers to the iteration cbntrol se-
quence.

Referring again to Figure 25A, if register D1 contains an equal sign
(Dl:138), the machine transfers to the assignment sequence. If register D1
contains any delimiter other than ELSE, FOR, STEP, UNTIL, or an equal sign,

the machine transfers to the error sequence.

4.18 Assignment Sequence

This sequence is shown in Figure 26. Upon entering this sequence the
machine examines the contents of register Dl1. If register Dl contains an equal
sign (Dl=138) the machine examines the current flag. If F1 contains a one, the
machine assigns the value of the top element in the OPERAND LIST to the variable
whose NAME TABLE address is the second element in the OPERAND LIST. As shown
in Figure 26, the machine fetches the first operand from the OPERAND LIST and
stores it in the accumulator. The machine operations performed to fetch the
operand are described in Section 4.13.1. It then fetches the second operand.

If this operand is not a NAME TABLE address of a variable (BR2(0)#1), the machine
transfers to the error sequence. If it is a NAME TABLE address, the machine
transfers it to address register ARZ. It then increments the address by one

and transfers the contents of the accumulator to subregister BR2(6-41). It

should be noted that subregister BR2(0-5) is set to zero. This action erases

147

Uk <==1,
AS <==0

ARP <==XPD

[BR2 < ~-112(AR2)|

|AR2 <--BR2(30-U1)

[AR2(11) <--1|

|BR2 <~-12(AR2)]
ER <-~1,

AS <m0 e}

AC @=-=BR2(6-41),
XPD <e==countdn XPD

e

BR2 <<~ =12 (AR2)|

ER @“”"19

y v
<——L—(BR2(0)=1)

AS <=0

|AR2 <~-~BR2(30-41)]

AR2(11) <==1,
BR2(0=5) <==0,
BR2(6=L1) «-~~AC

{12 (4R2) <--3R2]

{BRL) (ar1)|

D1 <%-=BR1

AD < =~=countdn £D

Figure 26 Assignment Sequence (Chart

148

the code 778 from the VAL field. The contents of register BRZ are then stored
in the NAME TABLE; thus, assigning the value to the variable. The value is

also placed back in the OPERAND LIST. The machine then fetches the next element
on the DELIMITER STACK from memory M1l and stores it in register D1. It then
examines the contents of register D1 to determine whether or not another vari-

able is to receive the value. If register Dl does not contain an equal sign,

the machine transfers to the unconditional statement sequence.

4.19 TUnconditional Statement Sequence

As shown in Figure 27, upon entering this sequence, the machine examines
the_contents of register D1. A value of zero causes the machine to fetch the
top element on the DELIMITER STACK from memory M1 and store it in register DI1.
If D1 contains the delimiter THEN(D1=638), the machine examines the output of
the program constituent decoder. If the decoder indicates that register S
contains the delimiter ELSE, the machiqe examines the current flag, register
F1. 1If F1l contains one, it is complemented; otherwise, the second flag on
the FLAG STACK is fetched from memory M1 and examined. If this flag is one, the
current flag is complemented. The machine then replaces THEN with ELSE in
register Dl and transfers to the initial point sequence. If register D1 con-
tains any other delimiter, the machine transfers to the end of statement sequence.

If the program constituent decoder indicates that register S contains
either an end of statement symbol (SDLR is true) or the delimiter END, a condi-
tional statement has just been completed and the flag placed on the FLAG STACK
at the start of the statment is no longer required. Therefore, the machine
fetches the second flag from memory Ml and stores it in register Fl. This action
erases the unneeded flag and causes the second flag to become the current flag.
The machine then transfers to the end of statement sequence.

the
Any output oprrogram constituent decoder other than the end of state-

ment symbol ©Y the delimiters ELSE and END causes the machine to transfer to

ENTRY

L
=1
oﬁaoﬁher ST ==l
ﬁ &3 Ne—=0
ELSE 1
?é: AND, other
=] S0
{1 =1} ShLR \
- T < e
[ar1 <—-xF) LR <-=1,
UN <€=-0 |
. R 111 (A
BR1 <~~11(ARL) BRI <--H1(AR1) PR <--i1(ADL)
?{ BR1=0 A
AD <@ -—countdn AD, - = AF @-=countdn X&'
i e A} ©
D] <--DBRL M1 <--F ¥l <--3R1L(5)
ST 4""“‘1;

= |IF(D140) THEN (PRL <=-D1,

XD <--countup XD} UN<=~=0
4
IP 4""“19
UN <@==0
4

Figure 27 Unconditional Statement 3equence Chart

6971

150

the error sequence.

4.20 End of Statement Sequence

This sequence is shown in Figures 28A and 28B. Upon entering this
sequence, the machine examines the contents of register D1. If register D1
contains a zero, the machine fetches the top element on the DELIMITER STACK
from memory M1 and then reexamines register Dl1. If D1 contains the delimiter
ELSE (Dl=658), the machine erases it from the DELIMITER STACK by fetching the
next delimiter from memory Ml. It also erases the current flag frém register
Fl by fetching the next flag from memory Ml. It then reexamines register D1
to determine whether or not the next element on the DELIMITER STACK is also the
delimiter ELSE,

If register D1 contains the delimiter DO (Dl=248), the machine erases

this delimiter
A from the DELIMITER STACK by fetching the next delimiter from memory Mil.

It then reexamines the contents of register D1. If D1 containsi the delimiter
FOR, the machine examines the current flag; otherwise, it transfers to the error
sequence. If Fl contains a zero, the program is only being scanned and the
machine is not required to return to the iteration's for list. Therefore, it
sets register D1 to zero and decrements the COUNT STACK, INITIAL STACK, and
LINK TO FORLIST STACK addresses (located in registers XC, XI, and XLF respective-
ly) by one. This action returns these stacks to their states before the iteration
was encountered. If register XC contains 1658, the COUNT STACK is empty. This
indicates that no iterations are being processed and register IT is set to zero.
The machine then transfers to the program body sequence.

As shown in Figure 28B, if register Fl contains one, the machine removes

operands from the OPERAND LIST one by one until it finds a NAME TABLE address

(BR2(0)=1). 1If the program has been syntactically correct to this point, this

ENTRY

0 D': other |PPe=-1,

ARL <~-XD
[Bry <--r2 (a5)} [5RL <--2 (a7L)]
. ARL %-=XC, |
XD <%~~countdn XD, XD <=-=-countdn XD, XD<-~countdn XD, ARZ <-=XLF (D < ——countdn K50]
D1 <-=3RL D1 <--ER1 D] <--BRL,
___J ARL <-oXF BRL <--H1(ARL),

BR2 «-~N2(AR2)

BRL «~-~11(ARL)

BRL <«~-~countup BRL,
XPA <~--BR2(30-41)

XF @-~countdn XF,

F1 «--BRL(5) [
Dl <«--0, ER<--1,
XC «=~-countdn XC, ST <--0 FPw-=1,
XLF %~~countdn XLF, ST <~-0
XI €=--countdn XI

[1r(xc=1635) =z (17 <--0)] @
The-1,

ST <-~0 " Figure 28b End of Statement Sequence Chart
i ¥ -

Figure 28a End of Statement Sequence Chart

6T

152

operand is the NAME TABLE address of the iteration's controlled variable and
the machine is set to return to the iteration's for list. It does this by
fetching the list's starting address from the LINK TO FORLIST STACK and trans-
ferring it to index register XPA. At the same time, it fetches the for list
element count for this for list from the COUNT STACK and increments it by one.

It then transfers to the iteration control sequence.

4,21 Program Body Sequence

This sequence is shown in Figure 29. The machine operations in this
sequence depend upon the output of the program constituent decoder. If this
decoder indicates that register S contains an end of statement symbol (SDLR is
true) the machine examines the iteration control register IT. If register IT
contains a zero, no iterations are being processed and all the operands in the
OPERAND LIST are no longer required by the program. Therefore, the machine
sets the OPERAND LIST address in register XPD to 77418. This is the value the
register contains when the OPERAND LIST is empty. The machine then transfers
to the initial point sequence.

If register IT contains a non—zero value, at least one iteration is
being processed and the NAME TABLE address(es) of the iteration controlled
variable{s) that is stored in the OPERAND LIST is still required by the program.
If the program has been syntactically correct to this point, all elements in
the OPERAND LIST that were entered after the iteration controlled variable(s)
should be values rather than NAME TABLE addresses. Thereforé, the machine
removes the elements one by one until it finds a NAME TABLE address. A NAME
TABLE address is recognized when a one appears in subregister BR2(0)}. The
machine then transfers to the initial point sequence.

If register S contains the delimiter END when this sequence is entered,

the machine transfers to the block exit sequence. If register S contains any

NTRY
.
2 (To-1)
7
SDLR END other
= gf}—i@
4
3)
ND <--1, ER<--1,
[AR2 <--XPD BD <-=0 BD <=-~0

BR2 <--}2(AR2)

§
= {3Rr2(0)=1

1
[xPD<--7701]
la’
1
IP <=1,
BD <-=0

[XPD <--countdn XPD|

Figure 29 Program Body Sequence Chart

154

other program constituent, the machine transfers to the error sequence.

4.22 Iteration Control Sequence

This sequence is shown in Figure 30A and 30B. Prior to entering this
sequence, the machine sets the PROGRAM AREA address register, XPA, to the start
of the dteration's for list. In this sequence the machine scans the for list
until it reaches the beginning of the for list element that is currently con-
trolling execution of the iteration. It then transfers to the initial point
sequence to process the for list element. The machine determines‘which for list
element is in control by counting the for list elements as it scans and compar-
ing this count with the wvalue of the top element on the COUNT STACK. If the
end of the for list is reached before the count equals the value on the COUNT
STACK, the processing of the iteration is complete. Therefore, the machine
restores its stacks and registers to their contents prior to encountering the
iteration. It then scans to the end of the iteration and continues processing
the program.

As shown in Figure 30A, upon entering this sequence, the machine
transfers the current COUNT STACK address in index register XC to address regis=—
ter AR1. It then fetc%es the top element on the stack and examines it. If its

for
value is one, the firstAlist element in the for list is currently controlling
the iteration. Since the PROGRAM AREA address register is already set to the
begimming of this for list element, the machine transfers immediately to the
initial point sequence. If the value of the top element of the COUNT STACK is
greater than one, the machine sets register CC to one. It then fetches a pro-
gram constituent from the PROGRAM AREA of memory M2 and stores it in register
S. If the program constituent decoder indicates that rvegister S contains a
comma (SCMA is true), the machine increments the count in register CC by one

T v b e *
the value of the top element on the COUNT STACK.

PO

and compares this count to

i
t

TF <--1,
FP ©=-0

t

BR2 <--}2(AR2)

[5%--px2]

othey
SCEA DO
fcC <~-~countup &C | D1 <~-0,
CNT <"”""O 2

Xl <«==countdn A1,
%G <==countdn XC,
XPD €==countdn XFD,
XLF <%-«countdn XLF

v

TF(AC=165) THEN(IT <==0)

o

Bl})

Tteration Control Sequence Chart

w

Y

iXPA' %=-countup }ﬁPA%

y

ARZ <—-—-—-XPAE

BR2 <«--112(AR2)

S 6-——BRZE

3

BEGIN SAP SDLR EID

4 =
CNT <~~countup CNT XPA ®-~-countup XPA '4~—-£-4@T=0) 1 Clil=0
[AR2 <~--XPA] [CNT <--countdn CNT |

BR2 <--12(AR2)

ST <=1, ND <--1,
FP <=~=0 FP <=0
¢ ¥

Figure 30b Iteration Control Sequence Chart

96T

157

the two counts are equal the machine transfers to the initial point sequence;
otherwise, it continues to scan the for list. If the decoder indicates that
register S contains the delimiter DO, the end of the for list has been reached
and processing of the iteration is complete. The machine then erases the de-
limiter FOR from the DELIMITER STACK by setting register Dl to zero. It also
sets register CNT to zero and decrements the OPERAND LIST, COUNT STACK, INITIAL
STACK, and LINK TO FORLIST STACK addresses by one. It then examines the COUNT
STACK address. If this address indicates the COUNT STACK is empty, register
IT is set to zero.

After setting register CNT to zero, the machine is ready to scan to
’the end of the iteration. As shown in Figure 30B, it scansthrough the program
until it finds an end of statement symbol ($§) occurring at the current block
level or the delimiter END which signifies the end of the block containing the
iteration. It sequentially fetches the program constituents from the PROGRAM
AREA, stores them in register S, and identifies them. If a $ is found (SDLR
is true), the machine determines whether or not it occurs at the current block
level by the following method. If the delimiter BEGIN is fetched into register
S, the contents of register CNT are incremented by one. If the delimiter END
is fetched into register S, the contents of register CNT are examined and if
they are greater than zero, they are decremented by one. Each time a $ is
fetched into register S the contents of register ONT are examined. If register
CNT has a value greater than zero, the $§ occurs at a higher block level rather
than at the current block level and it is ignored. 1f register CNT containg zero,
the $ occurs at the current block level and the scan terminates. The machine
then transfers to the end of statement sequence. When the delimiter END is
fetched and the value in register CNT is zero, the machine transfers to the

exit

blockﬁSequence,

Whenever an apostrophe is fetched into rvegister S (SAP is true), the

o

158

machine continues scanning without reacting to the constituents until a second
apostrophe is found. Therefore any $ which occur in an output character string

go unrecognized.

4.23 Read/Write Execution Sequence

This sequence is shown in Figures 31A-C. As shown in Figure 31A,
upon entering this sequence, the machine examines the contents of register DIl.
If register D1 does not contain an input-output operator, READ or WRITE, the
machine transfers to the error sequence; otherwise, it continues iﬁ this se-

quence. The input-output operations are described below.

4.23.1 Writing

When register Dl contains the delimiter WRITE (Dl=478), the machine
examines the current flag. If register F1l contains one, the machine sets index
register XPV to the memory address of the location preceding the location of the
first variable whose value is to be printed out. This location varies depend-
ing upon the number of iterations being processed at the time the WRITE state-
ment is encountered. If no iteration is being processed (IT=0), register XPV is
set to 77418° This is the address of the location preceding the OPERAND LIST
locations in memory. This address causes the machine to print out the value of
all the variables in the OPERAND LIST. When an iteration is being processed
and register IT contains a value greater than one, the contents of register IT are
transferred to register XPV. Register IT contains the address of the OPERAND
LIST location containing the controlled variable of the most recently entered
iteration. If register IT contains one, no variables were listed in the WRITE
statement and register XPV is set to the contents of register XPD. As will be
seen, this value causes the machine to immediately terminate the write operation;
thus, unless the WRITE statement contains an output string, it is equivalent to

an empty statement.

PV @ mmcountup X PJE
s k;

[ARZ <--XFV

ERZ <E-—~~.‘422(AR2)¥

| AR2 <~-BR2(30-41)

IF(BR2(0,1)=01)THEN{BI ©~~1)
E,xm G PPLL ' ELSE (BI <-~0),
ARR(11) *~-1

RP @m0
AP G-l

[6R <12 (AR2)

DL &m0y
APA <@--countup XPA ER %=1,
& AP Gme()
Al

Figure 31b Read/Write Executlon Sequence Chart

Figure 3la Read/Write Execution Sequence Chart

651

-

1l
/}

IF(BI) THEN(IF(BR2=1)TH

ZLSE(BUF ©=-202113622560)) ELSE(HC <~-0)

BN BUF <-~63516L4256060)) =

”;
/
i
CHT =--1t3,

AC =~~DR2(6~41)

.af-_ ACG(35)=1

AC <

SD ‘é“"‘lp

SR <‘“"19

PUF <~-10

"’"'f‘LC ¢ $

AC <

--SUN

[AC <—-

shl AC!

TP(AD30) THEN(HCO <~~HCO
IF(AD3L) THEN(HCL <-~HCL
IF(AD32) THEN{HC2 <=--HC2
IF(AD33) TELN(HC? <=--1C3
IF(AD3M4) THEN(HCU < -~HCH
IF(AD35) THEN(HCS <~~HC5
IF(AD36) THEN(HCO <=~HC6
IF(AD37) THEI([07 <~=H07
IF(AD38) THEN(HCE <~-1C8
IR (AD39) THEN(HUG <~~IC9

add
add
add
add
add
add
add
add

3)s

3)s

3)s
3)s
3)s
3)»
3)’

3):'

add 3) s

add

3)

Y

HO=AC < =~HO(1-11) -4

G"'O’

CNT <&--countdn CNT

@)

wa

Cutput the value

of the variable

Figure 3lc Read/Write Ixecution Sequence Chart

091

161

[BRz <--h2(AR2)|
T
AC<@mwBRQ(6“Ql)5

XPY countup APV

-]
v
[BR2 <--12(aR2)]

1

7 1 =3
{BR2(0)=1}

|AR2 <--BR2(30-411)]
% -
BR2 <==#2(AR2)

Y |
fBrz(0,1)=11)=)

TF(PR2(0, 1) THEN(BT «~-1)
ELSE(BT <=--0)
«——{BI)

- et

(AC=0)

tead/Write Execution Sequence Chart

Figure 31d

162

After setting register XPV, the machine compares its contents with the
contents of register XPD. If their contents are not equal, the machine performs
the write operation: otherwise the operation is complete. As shown in Figure
318, the machine first increments register XPV. It then fetches an operand from
the OPERAND LIST. If this operand is not a NAME TABLE address, the machine
transfers to the error sequence; otherwise it uses the address to fetch the type
of the variable from the NAME TABLE. 1If the variable is a Boolean variable
(BR2(0,1)=01), the machine sets register BI to one. If the variable is an in-
teger variable, the machine sets register BI to zero. At the same time it incre-
ments address register AR2 by one and fetches the value of the variable from
the NAME TABLE. If the VAI field in subregister BR2(0-5) contains 778, the
variable has not been assigned a value and the machine transfers to the error
sequence. If a value has been assigned to the variable, the machine continues the
write operation.

As shown in Figure 31C, by examining the contents of register BI,
the machine ascertains whether the variable is of type Boolean or type integer.
If the variable is Boolean, its internal value (1 or 0) is converted to a logical
value (TRUE or FAiSE). This value is placed in the output register BUF. It
is then printed out. (This part of the sequence has not been implemented.) If
the variable is integer, its value is converted from binary to BCD form and
then printed out.

The conversion algorithm implemented in this machine is the double-
dabble method of conversion (7). This method is implemented as follows. Ini-
tially, register CNT is set to 438 and the value to be converted to BCD form
is stored in the accumulator. If this value is negative, its two's complement
is formed and a minus sign is placed in the output register BUF. The value is

then left adjusted by one bit in the accumulator. The conversion loop is then

163

executed. This loop is controlled by register CNT. Register HC receives the
BCD value. This rvegister is divided into 10 four-bit subregisters. Each sub-
register contains onedigit of the value when the conversion is complete. In
the conversion process the contents of the 10 subregisters are simultnaeously
examined by terminals AD. Each subregister that contains a value greater than
five is incremented by three. The combined register HC-AC is then left shifted
one bit and register CNT is decremented by one. This loop continues until the
number is register CNT reaches 0; at that time, the BCD value in register HC is
transferred to register BUF and is printed out.

When all the variables listed in the WRITE statement have been pro-
cessed, the machine erases their WAME TABLE addresses from the OPERAND LIST by
resetting index register XPD. If no iteration is being processed, the machine
sets register XPD to 77418. This effectively empties the OPERAND LIST. If
one or more iterations are being processed, the machine sets register XPD to
the address of the location containing the controlled variable of the most re-
cently entered iteration. It then examines the output of the program constit-
uent decoder. If this output indicates that register S contains an apostrophe,
the machine transfers to the output string initialization sequence; otherwise
it removes the delimiter WRITE from the DELIMITER STACK by setting register D1
to zero. It then increments the PROGRAM AREA address in index register XPA
by one, fetches a program constituent from memory M2, and stores this constituent

in register S. It then transfers to unconditional statement sequence.

4.23.2 Reading
When register D1 contains the delimiter READ (Dl=—*518)3 the machine first
examines the output of the program constituent decoder to determine whether or

not register S contains an apostrophe. If register S does contain an apostrophe,

164

the machine transfers to the error sequence; otherwise, it examines the current
flag. If register Fl contains one, the machine sets register XPV as explained
in Section 4.23.1. After setting register XPV, the machine comparesits con-
tents with the contents of register XPD. If their contents are not equal, the
machine performs the read operation; otherwise the operation is complete. As
shown in Figure 31D, in performing the operation the machine first increments
the INPUT QUEUE address in index register XIN by one. It then uses this address
to fetch an input value from memory M2. It stores this value in the accumu-
lator and increments register XPV by one. It then fetches the operand addressed
by the contents of register XPV from the OPERAND LIST. If this operand is not
a ﬁAME TABLE address (BR2(Q)#1), the machine transfers to the error sequence;
otherwise, it transfers this address to address register AR2 and fetches the name
from the NAME TABLE. It then examines the name's type in subregister BR2(0,1).
If the name is a label (indicated by 11 in the type field), the machine transfers
to the error sequence. If the name is a Boolean variable (indicated by 01 in
the type field), the machine sets register BIL to one. It then examines the
value in the accumulator. If this value is not one or zero and register BI
indicates the name is a Boolean variable, the machine transfers to the error se-
quence; otherwise, it increments register AR2 by one and assigns the value to
the

the name by storing it in the NAME TABLE. It then loops to comparéAcontents of
register XPV with the contents of register XPD.

When all the variables listed in a READ statement have been assigned
a value, the machine performs the same operations that it performs upon complet-

ing the WRITE statement. These operations are described in Section 4.23.1.

4.24 Error Sequence

The machine transfers to this sequence whenever a syntax error is de-
tected. Although this sequence is not implemented, it is assumed that the machine

identifies the error, prints out a diagnostic message, and halts.

L

165

Acknowledgements

I am indebted to Dr. Yaohan Chu for the help and guidance he provided
throughout this report. I would like to acknowledge Drs. Jack Minker and
Victor Schneider who taught the courses from which this work evelved.

Special thanks are due my wife and Miss Nancy A. Nowell for their efforts

in typing this report.

166

()Y
.

References
V. Schneider, '"On the Parsing of Context—-free Languages by Pushdown
Automata', Tech. Report 68-76, Computer Science Center, University of

Maryland, August, 1968.

V. Schneider, "Syntax-checking and Parsing of Context-~free Languages
by Pushdown-store Automata", Proc. of the SJCC, 1967, pp. 685-697.

Y. Chu, "An Algol-like Computer Design Language', Comm. of the ACM,
Oct. 1965, pp. 607-615.

Y. Chu, "Introduction to Computer Organization'', Prentice-Hall, Inc.,
1970.

R. Morris, "Scatter Storage Techniques', Comm. of the ACM, Jan. 1968,
pp. 38-44.

Y. Chu, '"Digital Computer Design Fundamentals', McGraw-Hill, N.Y., 1962.

. Instruction Manual for Supplementary S-PAC Modules and Equipment, Doc~-

ument No. 71-175, Computer Control Company, Inc., Framingham, Massachusetts,
1964, pp. 5-26, 5-27.

P. Naur., Editor, "Revised Report on the Algorithmic Language Algol 60",
Comm. of the ACM, June, 1963, pp. 1-17.

Programmer's Reference Manual for Univac 1108 Algol, Document No. UP-7544,
Sperry Rand Corporation, 1967.

le7

APPENDIX

Description of the Subset of ALGOL

The language described herein is the subset of ALGOL (8,9) that is
executed by the ALGOL machine. The major features of ALGOL that are not imple-
mented are procedures, arrays, switches, real variables, comment statement, log-
ical operations, and the arithmetic operation of exponentiation.

This description is intended as a reference to this subset of ALGOL

only and is not intended for any other purpose.

A.l Elements of the Subset

A.1.1 Character Set

Programs for this machine are written using the character set consist-
ing of:

letters: ABCDEFGHIJKLMNOPQRSTUVWIXYZ

digits: 0 1 23 456 7 89

other symbols: , 1 §=-+ %/ 'V ()

where LJ represents a blank space

A.1.2 Delimiters
The delimiters are:
arithmetic operators: + - % /
relational operators: LSS LEQ EQL GEQ GTIR NEQ
sequential operators: GOTO IF THEN ELSE FOR DO
input~output operators: READ WRITE
separators: , : 5.0 STEP UNTLL WHILE
declavators: BOOLEAN INTEGER
brackets: ()} ' BEGIN END
it is noted that some of the delimiters consist of groups of characters.

As will be seen, these delimiters have the same form as names and therefore

168

they are called reserved names. These names can never be used except in their
context as delimiters.
Where it is not obvious, the meaning of a delimiter will be given at

the appropriate place in the description.

A.1.3 HWames

A.1.3.1 Syntax
A <name> consists of any string of seven or less letters or digits,

beginning with a letter.

A.1.3.2 Semantics

A name is chosen by a programmer to identify variables and labels.
Names are unique only to their first five characters; that is, two names must
differ in their first five characters to be considered different names. All

names must be separated from each other by delimiters.
A.1.4 Numbers

A.1.4.1 Syntax
A <pumber> is an integer. An <integer> consists of a string of
one or more digits. A number cannot exceed in magnitude the value

23 _1=34,359,738,367.

A.1.4.2 Semantics

All numbers are considered to'be of the type INTEGER.

A.1.5 TLogical Values

The <logical values> are TRUE and FALSE., They are represented in-
ternally by 1 and O respectively. These values have the same form as names
and thevefore they are also considered reserved names and cannot be used except

in their context as logical values.

169

4.2 Expressions

An expression 1s a rule for computing a value. There are three
kinds of expressions in this subset: arithmetic, logical, and designational.
The constituents of these expressions are logical values, numbers, variables,
arithmetic, relational, and certain sequential operators, and other expressions.
The value of an arithmetic expression is an integer number. The value of a log-
ical expression is either TRUE or FALSE; these values are represented internally

by 1 and O respectively. The value of a designational expression is a label.

A.2.1 Variables

A.2.1.1 Syntax

A <variable>» is a <name> .

A.2.1.2 Semantics
A variable is a designation given to a singie value. The value may
change during program execution but the variable name will not. The type of

the wvalue of a particular variable 1s defined in the declaration for the var-

iable (see Section A.5, Declarations).

A.2.2 Arithmetic Expressions

A.2.2.1 Syntax
An <arithmetic expression> is either a <sum> or an expression of

the form IF <logical expression> THEN <sum> ELSE <arithmetic expression> .

b)Y + <term>
o} - <term>
dy <sum> + <term>

e) <sum> ~ <term>

170

A term is defined as:
a) <factor>
b) <term> * <factor>
c) <term> / <factor>
A factor is defined as:
a) <variable>
b) <number>

c) (<sum>)

A.2.2.2 Semantics

The value of an arithmetic expression that is simply a sum is obtained
by performing the indicated arithmetic operations on the values of the factors
of the sum. The value of an arithmetic expression containing the delimiters
IF, THEN and ELSE is determined by the values of the logical expressions (see
Section A.2.3). The logical expressions are evaluated one by one from left
to right until an expression having the value TRUE is found. The value of the
arithmetic expression is then the value of the sum following this logical
expression. All operands in arithmetic expressions, with the exception of the
logical expressions which are found between the delimiters IF and THEN, must
be of the type INTEGER. Also, the resultant value of all arithmetic expressions

is of type INTEGER.

A.2.2.3 Precedence of Operators

Parenthesis may be used to specify the order of operations in arith-
metic expressions. If parentheses are not used (or within parentheses) the
order of operations is determined from left to right with the following pre-
cedence established by the syntax:

a) */

b) + -

171

A.2.3 Logical Expressions

A.2.3.1 Syntax

A <logical expression> is a <relation> .

A <relation> is defined as:
a) <logical primary>
b) <sum> <relation operator> <sum>
A <logical primary> is defined as:
a) <variable>
b) <logical value>
A.2.3.2 Semantics
Any variable used as a logical primary must be declared BOOLEAN (see
Section A.5, Declarations). A relation of the form <sum> <relational operator>
<sum> has the value TRUE if the relation holds and the value FALSE if the rela-
tion does not hold.

The meanings of the relational operators are:

Operator Meaning
LSS Less then
LEQ Less than or equal to
EQL Equal to
GEQ Greater than or equal to
GTR Greater than
NEQ Not equal to

A.2.4 Designational Expressions

A.2.4.1 Syntax

A <designational expression> is a <label>. A <label> is a <name>.

172

A.2.4.2 Semantics

The value of a designational expression is a label.

A.3 Statement

As in ALGOL 60, the statement is the basic unit of operation in this
subset. Normally, statements are executed in the order they are written in
the program. However, this sequence can be altered by the execution of cer-
tain types of statements. A statement can be an unconditional statement, a

conditional statement, an iteration, or an empty statement.

A.3.1 Unconditional Statement

An <unconditional statement>Ais defined as:
a) an <assignment>
b) a <transfer>
¢) a <communication>
d) a <block> (see Section A.4, Program Structure)

A.3.1.1 Assignment

A.3.1.1.1 Syntax
An <assignment> is defined as:
a) <variable>=<arithmetic expression
b) <variable>=<logical expression>

¢) <variable>=<assignment>

A.3.1.1.2 GSemantics

When executed, an assignment assigns the value of the arithmetic
expression or the logical expression to each of the variables preceding the
equal sign. If the expression is an arithmetic expression, then all of the
variables to the left of the equal sign must be of type INTEGER, whereas, if
if the expression is a logical expression then all of the variables to the left

of the equal sign must be of type BOOLEAN.

A.3.1.2 Transfer

A.3.1.3.1 Syntax

173

A <transfer> consists of the sequential operator GOTO followed by

a <designational expression>.

A.3.1.2.2 Semantics

When a transfer is executed, the value of the designational expression

(which is a label) is determined and execution of the program continues at

the start of the statement with this label.

side into a block.

A transfer cannot lead from out-

A <string of characters> is limited to 1000 characters in length.

A.3.1.3 Communication
A.3.1.3.1 Syntax
A <communication> is defined as:
a) WRITE (<list>)
b) READ (<variable list>)
A <list> is defined as:
a) <variable >
b) '<string of characters>'
c) <list>,<variable>
d) <list>,'<string of characters>'
A <variable list> is defined as:
a) <variable>
b) <variable list>,<variable>
A.3.1.3.2 Semantics

The operator WRITE causes the values of the variables and the string

of characters that are listed to be printed out on the line printer in the order

in which they are listed.

Each value and string of characters is printed on a

174

Separate line.

The operator READ causes cards to be read until each variable listed
in the variable list has been assigned a value. The variables are assigned
values in the order in which they are listed in the variable list. Values on
a card are delimited by one or more blanks and by the end of the card. Any
values on a card that is read in that are not assigned to a variable are lost;
that is, the next read operation begins by reading a new card. Care must be
" taken that the values on the cards correspond in type to the variaBles to which
they are assigned, A communication which has no elements in its list or wvariable

list is equivalent to an empty statement (Section A.3.4).

A.3.2 Conditional Statement

A.3.2.1 Syntax
A <conditional statement> has one of the two following forms;
a) IF <logical expression> THEN <unconditional>
b) IF <logical expression> THEN <unconditional> ELSE <statements>
4£.3.2.2 Semantics

The first form of the conditional statement means that the uncon-
ditional is executed only if the logical expression has the logical value
TRUE. Otherwise, the unconditional is skipped and execution begins again with
the next statement in sequence.

The second form of the conditional statement menas that if the logical
expression has the logical value TRUE then the unconditional is executed and un-
less it alters the execution sequence, the next statement that is executed is
the first statement following the entire conditional statement. If the logical
value of the logical expression is FALSE then the statement immediately following
the delimiter ELSE is executed and the unconditional is skipped.

The following diagram illustrates the execution sequence for condition-

al statements that are "nested".

175

e e o e 1 e i '

et 2

LE1 TRUE | LE2 TRUE N o _
T 3 . fy
IF LE1 THEN Ul ELSE @IF LE2 THEN U2 ELSE §% $ §2
} IR .
LE1 FALSE LE2 FALSE
A.3.3 Iteration
A.3.3.1 Syntax
An <iteration> consists of a <FOR clause> followed by a <statement>.
A <FOR clause> 1is: FOR <variable>=<for list> DO.
A <for list> is defined as:
a) <for list element>
b) <for list>,<for list element>
There are three kinds of <for list elements>, they are:
a) <arithmetic expression>
b) <arithmetic expression> STEP <arithmetic expression> UNTIL
<arithmetic expression>
¢) <arithmetic expression> WHILE <logical expression>
A.3.3.2 Semantics
An iteration causes the statement which it contains to be executed
zero or more times. It also causes its controlled variable to take on one
or more values in sequence. When all of the for list elements have been pro-
cessed, executlon of the program continues with the statement immediately follow-
ing the iteration. FEach type of for list element is discussed separately below.
A.3.3.3 For List Flements

quence of values assigued to the contro

For list elements are processzed in turn from left to right. The se-

Ko
18 way.

176

A.3.3.3.1 Arithmetic Expression

The value of the arithmetic expression is calculated and assigned to

the controlled variable. The statement contained im the iteration is executed

once.

A.3.3.3.2 STEP-UNTIL List Element

The assignments and executions that take place when an element of
the type A STEP B UNTIL C is processed can best be described as the following

ALGOL statements.
VAR = A §
L1:IF (VAR~C) * SIGN(B) LEQ O THEN
BEGIN Statement $
VAR = VAR + B §
GOTO L1
END
VAR is the controlled variable. 1If the test fails initially, then the state-
ment contained in the iteration is not executed at all. Each time the state-

ment is executed, this for list element must be reevaluated to see if the state-

ment should be executed again.

A.3.3.3.3 WHILE Element

The sequence of execution that takes place when an element of the
type D WHILE E is processed can best be described by the following Algol statements:
L2:VAR = D 8
IF E THEN
BEGIN Statement $
GOTO L2

END

177

Again, VAR is the controlled variable. The iteration continues wntil the log-
ical expression has a value of FALSE. This for list must also be reevaluated

each time the statement is executed.

A.3.3.4 The Value of the Controlled Variable Upon Termination of an Iteration

When an iteration is terminated by execution of a transfer leading out
of the iteration, the controlled variable retains the value it had before the
transfer was executed. When an iteration is terminated by exhaustion of its

for list, the controlled variable retains the value it was last assigned.

A.3.3.5 Transfer Leading Into an Iteration

The effect of a transfer which refers to a label within an iteration

is undefined.

A.3.4 Empty Statement

An empty statement executes no operation. It can be used to place a

label.

A.4 Program Structure

A.4.1 Syntax
A <program> is defined as a <block>.
A <block> consists of a <block head> followed by a <body> followed
by delimiter END.
A <block head> is defined as:
a) BEGIN
b) <block head> declaration $
A <body> 1is defined as:
a) <label statement>
b} <body>3<label statement>
A <label statement> is defined as:

a) <statement>

178

b) <label>:<label statement>

A.4.2 Semantics
An ALGOL program written in this subset is a block which may contain
other blocks within it. A block constitutes the scope for names declared with-
in it. Names declared in the block head of a block are defined only in that
block and have no meaning outside of it. Names (except those used as labels)
that appear in a block but are not declared in that block must have been declared
in a block which encompasses the block in which they appear. If a name is
declared in a block and then is declared again in an inner block, the first
declaration of the name is inaccessible inside the inner block. A name can be
declared only once in a block; that is, a name can identify only one value in a

block. Labels separated from a statement by a colon behave as though declared

in the block head of the smallest block encompassing the statement.

A.5 Declarations

A.5.1 Syntax
A <declaration> is defined as a <name declaration>.
A <name declaration> is defined as:
a) INTEGER <name>
b) BOOLEAN <name>

¢) <name declaration>,<name>

A.5.2 Semantics
A name declaration defines certain properties of the variables used

in a block. Fach name must be declared before it is used in a block.

