AERONOMY REPORT NO. 60

DIGITAL-IONOSONDE STUDIES OF f-REGION WAVES

Aeronomy Laboratory

Supported by
National Aeronautics and Space Administration

AERONOMY REPORT
 NO. 60

DIGITAL IONOSONDE STUDIES OF F-REGION WAVES
by
R. M. Harper
S. A. Bowhil1

May 1, 1974

Abstract

Accurate fixed-frequency virtual height data collected on a digital ionosonde is analyzed to measure speed and direction of traveling ionospheric disturbances by matching the experimental data with virtual height and echo amplitude obtained from a simple model of the disturbed ionosphere. Several data records analyzed in this manner indicate speeds of 400 to $680 \mathrm{msec}^{-1}$ and a direction of propagation from north to south. The digital ionosonde collects virtual height data with a time resolution of 10 sec and a height resolution of less than 300 m .

TABLE OF CONTENTS

ABSTRACT i
TABLE OF CONTENTS. iii
LIST OF FIGURES v

1. INTRODUCTION 1
1.1 Statement of the Problem 1
1.2 Outline of the Thesis 2
2. ANALYSIS OF TRAVELING IONOSPHERIC DISTURBANCES BY VIRTUAL-HEIGHT
MEASUREMENTS 3
2.1 Gravity Waves 3
2.2 Radio Waves as a Tool for Studying Iraveling Ionospheric Disturbances 7
2.3 Focusing of Radio Waves due to Ionospheric Irregularities 10
2.4 Effects of More Than One Reflection Point 13
2.5 Second Reflections 15
2.6 Lateral Deviation 20
3. DATA COLLECTION AND PROCESSING 25
3.1 Hardware Interconnections and Timing 25
3.2 Data Processing Techniques 28
3.3 Error Analysis 31
3.4 Collection Programs 37
3.5 Display Programs 44
3.6 Ionosonde Frequency Counter 51
4. EXPERIMENTAL RESULTS 59
4.1 Effects of Reflector Horizontal Wavelength in Focusing and Multipath 60
4.2 Interference Between Two Echoes with Nearly the Same Virtual Height 62
4.3 Data Showing Focusing 70
4.4 Data Showing Multipath 74
4.5 Data Showing Ordinary and Extraordinary Reflections 80
4.6 Data Showing Unusual Features 82
5. RESULTS AND SUGGESTIONS FOR FUTURE WORK 88
REFERENCES 91
APPENDIX I. OPERATING INSTRUCTIONS FOR THE DIGITAL IONOSONDE AND A LISTING OF THE COLLECTION AND DISPLAY PROGRAMS 92
APPENDIX II. OPERATING INSTRUCTIONS AND A LISTING OF PROGRAM GRAPH 115
APPENDIX III. OPERATING INSTRUCTIONS AND A LISTING OF PROGRAM SHAPE 121
APPENDIX IV. OPERATING INSTRUCTIONS AND A LISTING OF THE PROGRAM TO COMPUTE LATERAL DEVIATION 131

LIST OF FIGURES

Figure

2.1 Refractive index curve for an internal gravity wave from Georges [1967] 5
2.2 Refractive index curve for an acoustic gravity wave from Georges [1967] 6
2.3 Iso-ionic contours in the presence of a gravity wave from Harper [1972] 8
2.4 Ionosphere modeled as a curved reflector 11
2.5 Focusing of radio waves by a curved reflector 12
2.6 Three ray paths exist when the center of curvature is above the ground 14
2.7 Virtual height and amplitude calculated from a reflector 16
2.8 One- and two-hop ray paths 17
2.9 Geometry of two-hop focusing 19
2.10 Virtual height and amplitude for the two-hop ray calculated for the reflector in Figure 2.7 21
2.11 Three views of the ordinary and extraordinary reflection points and the phase front of a gravity wave 24
3.1 Block diagram of the digital ionosonde 26
3.2 Timing diagram for the digital ionosonde 27
3.3 Parabola fitted to three samples of the received echo 30
3.4 Height error as a function of G for various echo widths and no noise 32
3.5 Height error as a function of G for a $30 \mu \mathrm{sec}$ wide echo and various noise conditions 33

Figure

3.6 Height error as a function of echo width with G-2.5 $\mu \mathrm{sec}$
and various noise conditions 35
3.7 Distortion of echo shape due to two overlapping echoes 36
3.8 Height and amplitude change as a function of echo separation for several values of relative amplitude 38
3.9 Overall flowchart of data collection and processing programs 39
3.10 Flowchart of the interrupt service routine 40
3.11 Flowchart of subroutine RDATA 42
3.12 Flowchart of subroutine ECHO 43
3.13 Subtract assumed echo shape from received echo to resolve second echo 45
3.14 Schematic diagram of background clock board M452 47
3.15 Flowchart of the background display programs 48
3.16 Example of height versus time graph 49
3.17 Example of echo shape graph 50
3.183.19Schematic of ionosonde frequency counter data latch and binaryto BCD converter board55
3.20 Schematic of ionosonde frequency counter power supply and board interconnections 56
3.21 Timing diagram for the ionosonde frequency counter 57
4.1 One- and two-hop virtual height and echo amplitude for a sinusoidal reflector with $\mathrm{P}=500 \mathrm{~km}$ 61

Figure
4.2 One- and two-hop virtual height and amplitude for a sinusoidal
reflector with $P=450 \mathrm{~km}$. 6
4.3 One- and two-hop virtual height and amplitude for a sinusoidal
reflector with $P=400 \mathrm{~km}$. 6
4.4 One- and two-hop virtual height and amplitude for a sinusoidal reflector with $\mathrm{P}=300 \mathrm{~km}$. 6

Data record taken on May 4, 1973 6
4.6 Expanded view of part of Figure 4.5 showing interference between two echoes and the calculated position of the higher echo . . . 6
4.7
hop echo 7
4.8 Reflector shape that produces virtual height and amplitude curves that match the data in Figure 4.7 7
4.9 Data record taken on Nov. 2, 1972 showing focusing of thetwo-hop echo. 74.10 Reflector shape that produces virtual height and amplitudecurves that match the data in Figure 4.97
4.11 Data record taken on Sept. 7, 1973 7
4.12 Expanded view of part of Figure 4.11 showing multipath 7.
4.13
Reflector shape that produces virtual height and amplitudecurves that match the data in Figure 4.127
4.14 Data record taken on Dec. 8, 1973 showing multipath in the two-hop echo - 7
4.15 Reflector shape that produces virtual height and amplitude curves that match the data in Figure 4.14 8

Figure

4.16 Data record taken on Nov. 17, 1973 showing an unusual two-hop echo . 83
4.17 Data record taken on Dec. 1, 1973 showing an unusual two-hop echo . 85
4.18 Data record taken on Oct. 10, 1973 showing multipath which cannot be explained with the present reflector model 87

1. INTRODUCTION

Virtual height recorders were among the first instruments used to study traveling ionospheric disturbances. Virtual height data are generally recorded on photographic film with a height resolution on the order of a few km. With the availability of high speed computers for real time data collection, better resolution can be obtained by digitizing the output of a virtual height recorder and analyzing the data with a computer. Besides better height resolution, computer algorithms provide noise reduction and greater flexibility in collecting and recording the data.
1.1 Statement of the Problem

The purpose of this work is to study traveling ionospheric disturbances (TIDs) in the F region by comparing accurate fixedfrequency virtual-height data from a digital ionosonde with virtual heights calculated from simple models of the disturbances.

Horizontal speed, wavelength and direction of the disturbances are calculated from virtual-height data. The ionosphere is modeled as a curved reflector of radio waves. Virtual height and focusing effects for a reflector are calculated and compared with experimental data. The shape and size of the reflector are varied until the calculated height and amplitude match the experimental data. The horizontal wavelength of the disturbance is the horizontal size of the reflector and the speed of the disturbance is the wavelength divided by the period of the disturbance.

To determine the direction in which the disturbance is moving, the separation between the ordinary and extraordinary
wave reflection points is calculated. The time delay between the appearance of prominent features of the disturbance at the two reflection points is measured to determine the component of speed projected in the $\mathrm{N}-\mathrm{S}$ direction. The angle at which the disturbance is propagating relative to North is the arc-cosine of the N-S projection of the velocity divided by the speed of the disturbance. The direction measured is either east or west of North. The ambiguity cannot be resolved with the present equipment.

1.2 Outline of the Thesis

Chapter 2 reviews gravity wave and radio wave propagation theory and describes how radio waves reflected from the ionosphere are used to study gravity waves.

Chapter 3 describes the data collection system and contains an analysis of the accuracy of the algorithm used to determine virtual height.

Chapter 4 discusses the results of the analysis of data by methods described in Chapter 2.

Chapter 5 contains the conclusions and suggestions for further work.

Operating procedures and listings of the programs for collecting and analyzing virtual height data are given in the appendices.

2. ANALYSIS OF TRAVELING IONOSPHERIC DISTURBANCIS BY VIRTUAL-HEIGHT MEASUREMENTS

Traveling disturbances in the F region have been observed for more than 20 years. Munro [1950] used fixed-frequency virtual-height measurements to determine speed, direction and extent of these disturbances. Hines [1959] developed a theory of gravity waves to explain the disturbances observed by Munro and others.

In this chapter the effects of gravity waves on the propagation of radio waves are discussed and also how radio waves are used to measure the properties of traveling ionospheric distrubances.

In Section 2.1 the properties of gravity waves and their effects on the ionosphere are discussed.

In Section 2.2 the propagation of radio waves which retrace their path after reflection from a disturbed ionosphere is discussed.

In the following sections, techniques are developed to measure the speed and direction of the disturbance from properties of radio propagation in an ionosphere disturbed by gravity waves.

2.1 Gravity Waves

Sound waves propagating through the ionosphere are called gravity waves because of the effect gravity has on them. Gravity causes the density of the atmosphere to decrease with height. This horizontal stratification causes the propagation to be anisotropic.

A derivation of the wave equations can be found in Yeh and Liu [1972]. The dispersion relation for a gravity wave in an isothermal atmosphere is given by

$$
\begin{equation*}
\frac{n_{x}}{\left\{1-w_{a}^{2} / \omega^{2}\right\} /\left\{1-\omega_{b}^{2} / w^{2}\right\}}+\frac{n_{z}}{\left(1-\omega_{a}^{2} / \omega^{2}\right)}=1 \tag{2.1}
\end{equation*}
$$

where $n_{x}=k_{x} / k_{0}$
$n_{z}=k_{z} / k_{0}$
$c_{s}=$ speed of sound
$\omega_{a}=\gamma g / 2 c_{s}$ acoustic cutoff frequency
$\omega_{b}=(\gamma-1)^{1 / 2} g / c_{s}$ buoyant or Brunt frequency.
The coordinates are set up with z vertical, and with \vec{k}_{o} in the $x-z$ plane
$k_{0}=w / c_{s}=\left|\bar{k}_{0}\right|=$ the wave number
k_{x} and k_{z} are the components of \bar{k}_{0} in the x and z directions respectively.

$$
\begin{aligned}
& \gamma=\text { the ratio of specific heats } \\
& g=\text { the gravitational acceleration }
\end{aligned}
$$

For frequencies less than the Brunt frequency, the refractive index curve is shown in Figure 2.1. For these waves, called internal gravity waves, the phase velocity is directed downward when the waves are traveling upward.

Waves with frequencies greater than the acoustic cutoff frequency are called acoustic gravity waves and have an elliptical refractive index curve as shown in Figure 2.2.

For frequencies between the Brunt and acoustic cutoff frequencies, either k_{x} or k_{z} is imaginary. Freely propagating waves cannot have frequencies in this range, called the cutoff region.

INTERNAL GRAVITY WAVES

Figure 2.1 Refractive index curve for an internal gravity wave from Georges [1967].

ACOUSTIC WAVES

Figure 2.2 Refractive index curve for an acoustic gravity wave from Georges [1967].

Typical values for ω_{a} and ω_{b} at 250 km are .483 and $.436 \mathrm{rad} \mathrm{sec}{ }^{-1}$ corresponding to periods of 13 and 14.4 min respectively.

Associated with the propagation of a gravity wave is the motion of small air parcels which move in elliptical orbits. Above the dynamo region, a force applied on the ions by collisions with neutral particles tends to drag them along with the air parcel but because of the earth's magnetic field, the ions are constrained to move in a spiral path along the field lines. Neglecting diffusion, the resulting ion velocity is equal to the component of the air parcel velocity parallel to the magnetic field. Electrons move with the ions to maintain neutrality.

Figure 2.3 shows the iso-ionic contours for a traveling ionospheric disturbance observed at Arecibo by Harper [1972]. In the next section, the propagation of radio waves in a disturbed ionosphere such as shown in Figure 2.3 is discussed.

2.2 Radio Waves as a Toot for Studying Traveling Ionospheric Disturbances

Almost all data on traveling ionospheric disturbances comes from radio propagation experiments. The earliest techniques relied on the time delay of waves reflected from the ionosphere. A description of wave propagation in a horizontally stratified ionosphere is given in Budden [1961].

For radio waves in the F region with frequencies greater than 1 MHz , the refractive index is given by

$$
\begin{equation*}
\mu=1-\frac{X}{1-T \pm\left(T^{2}+Y_{L}^{2}\right)^{1 / 2}} \tag{2.2}
\end{equation*}
$$

The axis are set up with z vertical and the magnetic intensity vector \vec{B} in the $x-z$ plane. ℓ and n are the x and z direction cosines of \vec{B}.

Figure 2.3 Iso-ionic contours in the presence of a gravity wave from Harper [1972].

$$
\begin{aligned}
T & =Y_{T}^{2} / 2(1-X) \\
Y_{L} & =n Y \\
Y_{T} & =\ell Y \\
Y & =\omega_{H} / \omega \quad \omega_{H}=\left|B e / m_{e}\right| \text { gyrofrequency } \\
X & =\left(\omega_{n} / \omega\right)^{2} \quad \omega_{n}^{2}=N e^{2} / \varepsilon_{o}^{m} e_{e} \text { plasma frequency }
\end{aligned}
$$

ε_{o} is the permittivity of free space
N is the electron density
e is the charge on an electron
m_{e} is the mass of an electron
The refractive index has two values corresponding to the ordinary and extraordinary polarizations. For a horizontally stratified ionosphere, a wave transmitted vertically and reflected from the ionosphere will retrace its path and return to the ground at the point where it originated. Reflection occurs where $\mu=0$. The ordinary wave path is deflected towards the magnetic pole and reflected when $X=1$ or $N=\varepsilon_{o} m_{e} \omega^{2} / e^{2}$. The extraordinary wave path is deflected towards the equator and reflected when $X=1-Y$.

Gravity waves cause the ionosphere to be nonhorizontally stratified and waves which retrace their path are not vertically incident on the ionosphere. Under these conditions, the reflection conditions $X=1$ and $X=$ 1 - Y for the two polarizations still hold, but the path is deflected in the x and y directions from the path it would take in a horizontally stratified ionosphere.

The most convenient quantity to measure, relating to disturbances in the ionosphere, is virtual height h^{\prime}, the equivalent height of the reflection point if the wave traveled at the speed of light c. If the time delay between the transmission of a wave and its reception at the same point after being reflected from the ionosphere is T, the virtual height is $h^{\prime}=c T / 2$.

For the purpose of studying gravity waves, the ionosphere is modeled as a curved reflector with radio waves that retrace their path reflecting at right angles to the surface as shown in Figure 2.4. The reflector moves horizontally with the same velocity as the gravity wave. The shape is assumed to be constant with time and not to vary in the y direction. The virtual height of a wave reflected from point A is the slant height from the ground to point B on the reflector. The virtual height measured from a fixed location will vary as the reflector moves horizontally with velocity v. To calculate virtual height for a reflector, it is easier to think of the reflector remaining stationary and the transmitter and receiver moving along the ground with velocity $-v$.

Virtual height measurements from the digital ionosonde provide the period and a measure of the amplitude of the disturbance directly. Several methods for determining horizontal wavelength, speed and direction are discussed in the following sections.

2.3 Focusing of Radio Waves due to Ionospheric Irregularities

One property of a curved reflector is to focus or defocus the waves reflected from it. The intensity of the radio waves reflected back to the receiver is related to the curvature of the reflecting surface. Whitehead [1956] derives a formula to relate the amplitude of the received wave to the curvature of the reflector using the approximation that the transmitter illuminates the reflector with constant power per unit area. The following derivation is similar but drops that assumption. Figure 2.5 shows the geometric relation between the reflector and the transmitter. At the point of reflection, the reflector has a one dimensional radius of curvature R. The amount of power illuminating the reflector over an area of length J and

Figure 2.4 Ionosphere modeled as a curved reflector.

Figure 2.5 Focusing of radio waves by a curved reflector.
unit width is focused onto an area of length L and two units wide. The amount of power illuminating the reflector per unit area is proportional to h^{2}. The mirror formula is $1 / h+1 / s=2 / R$. By similar triangles $J / L=s /(s-h)=R / 2(R-h)$. The amplitude squared of the returning wave is proportional to the power per unit area at the ground which is equal to the power per unit area at the reflector times the focusing factor $R / 2(R-h)$.

$$
\begin{equation*}
A^{2} \propto \frac{1}{h^{2}} \frac{R}{R-h} \tag{2.3}
\end{equation*}
$$

If the shape of the reflector is given by $H(x)$, the radius of curvature R is given by

$$
\begin{equation*}
R=1+\frac{d H(x)}{d x}{ }^{2} 3 / 2 \frac{d^{2} H(x)}{d x^{2}} \tag{2.4}
\end{equation*}
$$

Focusing depends on the horizontal structure of the reflector so the amount of focusing can be used to determine the reflector shape. This is discussed further in the next section.

2.4 Effects of More Than One Reflection Point

When the center of curvature of the reflector is above the ground, three rays reflected from the dome-shaped reflector retrace their paths back to their source simultaneously as shown in Figure 2.6.

For an assumed reflector shape $H(x)$, the virtual height of a ray reflected from a point x_{0} on the reflector is given by

$$
\begin{equation*}
h^{\prime}=H\left(x_{o}\right)\left(1+m^{2}\right)^{1 / 2} \tag{2.5}
\end{equation*}
$$

Figure 2.6 Three ray paths exist when the center of curvature is above the ground.
where m is the slope of the reflector at the reflection point and the point on the ground where the ray originated is given by

$$
\begin{equation*}
x=x_{0}+H\left(x_{0}\right) m \tag{2.6}
\end{equation*}
$$

A program for a Hewlett-Packard Mode1 9830 calculator plots virtual height and amplitude variations caused by focusing for any reflector shape. Operation of the program is discussed in Appendix III. The average height, peak-to-peak amplitude, horizontal size and shape of the reflector are adjustable. The reflector shape, virtual height and amplitude are plotted on a Hewlett-Packard Model 9862 plotter. An example is shown in Figure 2.7. The horizontal axis is in km . The graph can be thought of as the height and amplitude for a stationary reflector as the transmitter and receiver are moved in the horizontal direction. If the reflector is moving and the transmitter and receiver are stationary, the horizontal axis is proportional to time. The proportionality factor is the speed of the reflector.

If the virtual height and amplitude calculated from an assumed reflector shape matches the experimental data, the horizontal length of the gravity wave is equal to the length of the reflector. The horizontal phase speed of the disturbance is the wavelength divided by the period of the disturbance.

2.5 Second Reflections

A ray which travels from the ground to the ionosphere and back twice is called a second reflection or a two-hop ray. The simplest two-hop ray path is shown in Figure 2.8. The two-hop ray is not incident at right angles on the reflector and does not retrace its path after being reflected

Figure 2.7 Virtual height and amplitude calculated from a reflector.

Figure 2.8 One- and two-hop ray paths.
from the ionosphere as the one-hop ray does. Because of this, the two-hop ray is reflected below the height where $X=1$ and $X=1-Y$ for the ordinary and extraordinary polarizations respectively. For the reflector slopes of less than 20 degrees normally found in the ionosphere, the two-hop ray is nearly incident at right angles to the reflector and the one-hop reflector is used as an approximation of the reflection height of the two-hop ray. The virtual height and amplitude for a two-hop ray can be calculated for a known reflector $H(x)$ in the same manner as for the one-hop ray. The virtual height for a ray which is reflected at x_{0} is

$$
\begin{equation*}
h^{\prime}=H\left(x_{0}\right)\left(1+1 / \cos \left(2 \tan ^{-1}(m)\right)\right) \tag{2.7}
\end{equation*}
$$

where m is the slope of the reflector at x_{0}. The ray originates at

$$
\begin{equation*}
x=x_{0}+H\left(x_{0}\right) \tan \left(2 \tan ^{-1}(m)\right) \tag{2.8}
\end{equation*}
$$

Focusing is calculated from the geometry shown in Figure 2.9. For simplicity, instead of being reflected at the ground, the ray passes through and is reflected from a mirror ionosphere on the other side of the ground line. From the mirror equation $1 / s+1 / w=2 / R$ and $1 / t+1 /\left(2 H\left(x_{o}\right)-w\right)=2 / R$. By similar triangles $K / J=\left(2 H\left(x_{o}\right)-\omega\right) / \omega$ and $L / R=(t-s) / t$. The amplitude of the ray as recieved is equal to the power per unit area along J times the focusing factor J / L.

$$
\begin{equation*}
A^{2}=\frac{1}{s^{2}} \frac{\omega}{2 H\left(x_{j}\right)-w} \frac{t}{t-s} \tag{2.9}
\end{equation*}
$$

Figure 2.9 Geometry of two-hop focusing.

The program which calculates the height and amplitude for a one-hop ray path, also calculates the two-hop virtual height and amplitude. Figure 2.10 shows the two-hop virtual height and amplitude for the reflector shape used in Figure 2.7. The two-hop ray path data are used in the same manner as the one-hop data to determine the shape and size of the reflector.

A method of determining the direction of the disturbances is discussed in the next section.

2.6 Lateral Deviation

For a horizontally stratified ionosphere, the deviation of the wave path from vertical, the lateral deviation, is given by Budden [1961] as

$$
\begin{equation*}
\frac{d x}{d z}= \pm \frac{\ell n Y^{2}(1-\mu)^{2}}{\left(4 Y_{L}^{2}(1-X)^{2}+Y_{T}^{4}\right)^{1 / 2}} \tag{2.10}
\end{equation*}
$$

The - sign applies to the ordinary polarization and the + sign applies to the extraordinary polarization. The equation is integrated numerically to give lateral deviation. Table 2.1 gives the lateral deviation versus height above the bottom of the ionosphere for the two polarizations. For this calculation the F region of the ionosphere is modeled as a parabola with a width of 400 km and a maximum electron density of $10^{12} \mathrm{~m}^{-3}$.

For an ionosphere disturbed by a gravity wave, the reflection points oscillate around the points for an undisturbed ionosphere and the separations calculated are average separations.

Since the reflection points are separated in the horizontal and vertical direction, the time delay between the appearance of prominent features of the disturbance at the two reflection points depends on the vertical phase variation and the horizontal velocity of the disturbance. The phase

Figure 2.10 Virtual height and amplitude for the two-hop ray calculated for the reflector in Figure 2.7.

TABLE 2.1

Lateral deviation of ordinary and extraordinary wave polarizations.

progression for disturbances with periods greater than 25 min is downward. Georges [1967] measured the angle of the phase front for a disturbance with a period of 40 min at 83° from vertical. For shorter periods the angle of the phase front decreases to 45°.

Figures $2.11 \mathrm{a}, \mathrm{b}$, and c indicate the reflection points and the phase front of the distrubance looking west, down and perpendicular to the velocity vector of the disturbance respectively. If the maximum for the ordinary reflector is at the ordinary reflection point, the maximum for the extraordinary reflector has a distance of $D_{x}+D_{z} \tan \phi$ to go to reach the extraordinary reflection point. If the time it takes for this to happen is τ, the projection of the velocity in the southerly direction is $V_{s}=\left(D_{x}+D_{z} \tan \phi \sec \theta\right) / \tau$. The cosine of the angle θ is the speed of the reflector v divided by the velocity projection in the southerly direction.

$$
\begin{equation*}
\cos \theta=V / V_{s}=V \tau /\left(D_{x}+D_{z} \tan \phi \sec \theta\right) \tag{2.11}
\end{equation*}
$$

This can be solved for θ

$$
\begin{equation*}
\theta=\cos ^{-1} \frac{V \tau-D_{z} \tan \phi}{D_{x}} \tag{2.12}
\end{equation*}
$$

The angle θ is measured either east or west of north. The ambiguity cannot be resolved with the present equipment.

The velocity v is determined by methods described in the last three sections. Chapter 4 contains the results of applying the methods of this chapter to data collected by the digital ionosonde described in Chapter 3.

Figure 2.11 Three views of the ordinary and extraordinary reflection points and the phase front of a gravity wave.

3. DATA COLLECTION AND PROCESSING

The digital ionosonde, used to provide virtual height data for this work is formed by connecting a J5W ionosonde to a PDP-15 computer through a Hewlett-Packard Model 5610A analog-to-digital converter (ADC). A block diagram of the digital ionosonde is shown in Figure 3.1.

This chapter describes the operation of the system. The next section describes the basic hardware. Section 3.2 describes the algorithm used to provide accurate virtual height data and the accuracy of the algorithm is discussed in Section 3.3. Sections 3.4 and 3.5 discuss the PDP-15 programs. Section 3.6 describes a digital frequency counter for the ionosonde and the ways it is used.

3.1 Hardware Interconnections and Timing

The ionosonde contains a 20 kw pulse transmitter, a receiver and oscilloscopes and cameras to record virtual height data. A pulse generator synchronizes the transmitter pulse to the 60 Hz power line and is used to synchronize the $A D C$ to the ionosonde.

The ionosonde transmits a $70 \mu \mathrm{sec}$ pulse every 16.6 msec . The frequency of the pulse is adjustable from 250 kHz to 20.25 MHz . The bandpass of the ionosonde reciever is set by a switch at $10,20,35$, or 70 kHz . The 20 kHz setting, which gives a received pulse width of approximately $30 \mu \mathrm{sec}$ at 3 dB points, is normally used. The demodulated or video output is connected to the ADC through a line driver and a coaxial cable. The ionosonde sync pulse triggers the encode gate generator which generates the encode gate signal. $300 \mu \mathrm{sec}$ after a pulse is transmitted, the encode gate line goes to a logical $1(5 \mathrm{~V})$ for 6 msec as shown in Figure 3.2. While the encode gate signal is at " 1 " the $A D C$, if enabled by the computer,

Figure 3.1 Block diagram of the digital ionosonde.

Figure 3.2 Timing diagram for the digital ionosonde.
samples the video output of the ionosonde at $10 \mu \mathrm{sec}$ intervals, converts the analog voltage to a binary value and stores the values in consecutive locations in the PDP-15 core memory. The series of samples of the receiver output are called a frame of data.

A program on the PDP-15 identifies the echoes and prints their height and amplitude. The basic techniques for identifying echoes and measuring their virtual height are discussed in the next section. The data collection programs are discussed in Section 3.4.

3.2 Data Processing Techniques

A simple method of identifying echoes and determining their height is to set a threshold and to call a series of samples greater than the threshold an echo. The location of the largest sample in the echo determines the time delay of the echo and its virtual height. If the Ith sample in a frame is the peak of an echo, the time delay is $T=300+10 \cdot(T-1) \mu \mathrm{sec}$.

There are several problems with this method. Noise sometimes exceeds the echo amplitude and, depending on the threshold level, either noise is detected as an echo or the echo is not detected. To reduce the effects of noise, a number of frames are averaged together.

The received amplitude at a fixed time delay after the transmission of a pulse contains both a noise and echo signal. Over a short period of time, the signal amplitude is constant but the noise varies in a random manner. If the signal exceeds the noise, the average amplitude over a number of frames approaches the signal amplitude. The signal-to-noise ratio is increased by a factor of the square root of the number of frames averaged. If too many frames are averaged, however, rapid changes in virtual height are not detected. As a compromise, 600 frames are averaged, which reduces
the noise by a factor of $\sqrt{600}$ or 27.6 dB and provides a determination of the virtual height every 10 sec . It is preferable to measure the average power or average amplitude squared rather than the average amplitude but the PDP-15 is not fast enough to square each sample and still have time to detect echoes and print out data.

The resolution to which the time delay is measured is $\pm 5 \mu \mathrm{sec}$ which gives a height resolution of only $\underset{-}{ } 750^{\circ} \mathrm{m}$. To increase height resolution, the shape of the received echo is interpolated from its samples and the center is determined more accurately. Figure 3.3 shows a typical received echo shape and the $10 \mu \mathrm{sec}$ sampling points. A parabola is used to approximate the shape of the peak of the received echo which is approximately Gaussian. Using the coordinate system in Figure 3.3, the formula for a parabola is $Y=A x^{2}+B x+C$. The parabola is fitted to the largest sample and the sample on each side of the largest.

$$
\begin{aligned}
& \text { at } X=0, Y=Y_{2}=C \\
& \text { at } X=1, Y=Y_{3}=A+B+C \\
& \text { at } X=-1, Y=Y_{1}=A-B+C \\
& A=\frac{Y_{1}-2 Y_{2}+Y_{3}}{2} \\
& B=\frac{Y_{3}-Y_{1}}{2} \\
& C=Y_{2}
\end{aligned}
$$

The maximum amplitude of the parabola is offset from $x=0$ by a distance P and at this point the derivative of the equation for the parabola is 0 .

$$
2 A P+B=0
$$

Figure 3.3 Parabola fitted to three samples of the received echo.

$$
P=\frac{-B}{2 A}+\frac{Y_{1}-Y_{3}}{2\left(Y_{1}-2 Y_{2}+Y_{3}\right)}
$$

The echo delay can now be determined more accurately as

$$
T=300+10(I-1+P) \mu \mathrm{sec}
$$

The accuracy of this formula depends on how close a parabola approximates the received echo shape and how much noise distorts the shape of the echo. This is discussed in the next section.

3.3 Error Analysis

The following analysis of the accuracy of the height algorithm assumes that if there are more than one echo, they do not overlap.

If the center of the echo is offset from the largest sample by a distance of G, the error in determining the virtual height of the echo is $P-G$. Figure 3.4 shows the error as a function of the echo offset G for various echo widths. For the $30 \mu \mathrm{sec}$ wide echo, the maximum error is $.125 \mu \mathrm{sec}$ corresponding to a virtual height error of 18.75 m . The error decreases with increasing pulse width but, because the wider the echo, the closer the three samples are to being the same amplitude, noise causes larger errors for wider echoes than for narrow echoes.

To simulate the error under different noise conditions, a Monte Carlo approach is used. Random noise with a Gaussian distribution is added to a Gaussian shaped echo. A parabola is fitted to the largest sample and the sample on either side and the offset P is calculated. The process is repeated many times to get an RMS error. Figure 3.5 shows how the error varies with offset for a 30 usec wide echo under conditions of no noise, 50 dB and 30 dB signal-to-noise ratio. The error for less than 50 dB

Figure 3.4 Height error as a function of G for various echo widths and no noise.

Figure 3.5 Height error as a function of G for a $30 \mu \mathrm{sec}$ wide echo and various noise conditions.
signal-to-noise ratio is approximately independent of the offset G. Figure 3.6 shows the error as a function of the received pulse width for an offset of $2.5 \mu \mathrm{sec}$ and various signal conditions. For a fixed signal-to-noise ratio, the error has a minimum value for some range of pulse width.

Noise conditions for the ionosonde vary with frequency, time of day and weather. Typical signal-to-noise ratios are from 0 to 30 dB . Averaging over 600 samples adds about 30 dB to the signal-to-noise ratio. Figure 3.6 indicates that the 30 usec pulse width is near the minimum error for signal-to-noise ratios in the range of 30 to 60 dB . The error varies from $\pm 300 \mathrm{~m}$ in noisy conditions to $\pm 50 \mathrm{~m}$ for good signal conditions.

The phase of the returning echo relative to the transmitted signal and the time delay for the echo depend on the height of the reflector. When two echoes are received from different parts of the reflector but with nearly equal virtual heights, the amplitudes of the two echoes add vectorially and both echo shapes are distorted slightly. The apparent height and amplitude of each echo are different from the actual height and amplitude if the echoes did not interfere. The amount of change depends on the phase difference between the two echoes, their separation and their relative amplitudes. The maximum changes occur when the two echoes are in phase and 180° out of phase.

For the lower of the two echoes, the apparent height and amplitude increases when they are in phase and decreases when they are 180° out of phase. For the higher echo, the apparent height decreases and the amplitude increases when they are in phase. The height increases and the amplitude decreases when they are 180° out of phase. The changes in echo shape are shown in Figure 3.7. The maximum height and amplitude changes as a

Figure 3.6 Height error as a function of echo width with $G=2.5 \mu \mathrm{sec}$ and various noise conditions.

Figure 3.7 Distortion of echo shape due to two overlapping echoes.
function of the separation between the echoes for several values of relative amplitude are shown in Figure 3.8.

3.4 Collection Programs

A set of programs RPROC, HDATA, ECHO and PCK are used to collect and print out virtual height data on the digital ionosonde. An overall flow chart of the collection process is given in Figure 3.9.

RPROC is the main program which calls other subroutines. HDATA is a collection of subroutines which are written in assembly language because their functions cannot be done in FORTRAN. HDATA contains the following subroutines.

Subroutine GO reads console switch 0 which determines whether collection continues or restarts.

Subroutine ADGET sets up the ADC to put 530 samples in array BUF1. When the frame of data is in BUF1, an interrupt generated by the ADC starts the interrupt service routine ADINT at the highest priority level. Figure 3.10 contains a flow chart of the interrupt service routine. ADINT checks for a timing error in the $A D C$ and starts the rea1-time subroutine RTS at a lower priority level. Additional operations done by RTS are not done in ADINT because the disks need to interrupt on the highest priority level but cannot while ADINT is running.

If a timing error occurs in the $A D C$ or if the first sample in BUFl is above a fixed level indicating a noisy frame, the data on that frame is ignored, otherwise the elements in BUFl are added to the elements in array BUF2. After 600 frames, minus those ignored, are added together in this manner, the data in BUF2 is transferred to array CDATA and BUF2 is zeroed out to prepare for averaging the next 600 frames. The code used to add the

Figure 3.8 Height and amplitude change as a function of echo separation for several values of relative amplitude.

Figure 3.9 Overall flowchart of data collection and processing programs.

Figure 3.10 Flowchart of the interrupt service routine.

600th frame to BUF2 and transfer BUF2 to CDATA is executed in less than 11.4 msec in order to start the ADC in time to catch the next frame of data as shown in Figure 3.2. The code to add BUF1 to BUF2 is in straight line form to minimize its execution time. Since this code is executed once for each frame, minimizing its execution time provides more time for processing.

Subroutine RDATA is used to transfer control to the background until 600 frames have been added together, then data processing by RPROC continues. A flowchart of subroutine RDATA is given in Figure 3.11. Occasionally the ADC does not start when requested to by ADGET. RDATA checks for this condition and restarts the collection process if it has stopped. If the data processing by RPROC takes longer than 10 sec , the data collection and processing get out of synchronization. RDATA checks for this condition also and prints a warning if it occurs.

Subroutine RDAT sets up the in1ine code used to add BUF1 to BUF2, zeros out BUF2 and starts the $A D C$ at the beginning of a collection run.

Subroutine BGDAT sets up a series of words which contain pointers to data used by the background display programs discussed in Section 3.5.

The remaining programs, PROC, ECHO and PCK, are written in FORTRAN.
Subroutine ECHO searches a copy of part of CDATA for echoes. A flowchart of ECHO is given in Figure 3.12. ECHO searches a region from 75 km below to 75 km above a specified height. The region searched is wide enough to include the ordinary and extraordinary echoes under most conditions. An echo is defined as 4 or more continuous samples above a threshold and noise is defined as all samples below the threshold. A threshold is set initially and a new threshold is computed for each 10 sec of data. Because of the offset in the amplifiers between the ionosonde and the ADC,

Figure 3.11 Flowchart of subroutine RDATA.

Figure 3.12 Flowchart of subroutine ECHO.
the true zero level is not known. The sample with the smallest value is assumed to be the zero level. The average of the noise samples is calculated and a new threshold is set at 5 times the average noise level. The threshold adjusts to changing noise and signal conditions. If the noise level suddenly increases above the threshold between one 10 sec period and the next, when the average noise is calculated, no samples will be below the threshold and an improper noise level is obtained. If too few samples are below the threshold, the threshold is set at a high level and another attempt is made to determine the noise and compute a new threshold.

Once an echo has been found, a parabola is fitted and the amplitude and height are recorded. Then a modified parabola shape shown in Figure 3.13 is subtracted from the actual echo shape and the search starts again below the location where the last echo started. This allows echoes which are close together to be resolved.

When RPROC is started, an initial height XHT is typed in. ECHO searches for echoes near this height and again at twice this height for second reflections. RPROC prints out data on 3 echoes at the lower height and 2 echoes at the higher height. The data are also put in a compact form and stored on the disk. After the echoes near XHT are located, subroutine PCK is called.

Subroutine PCK looks for an echo within 20 km of XHT. If there is at least one, the height of the closest echo to XHT is used as the new value of XHT. This is done so that ECHO is a1ways searching a region centered on the location of the last echo.

3.5 Display Programs

In February 1973, a Hazeltine 2000 cathode-ray terminal replaced the model 33 teletype as the background control device. The Hazeltine terminal

Figure 3.13 Subtract assumed echo shape from received echo to resolve second echo.
operates on a serial current loop interface and is compatible with the interface for a teletype. The Hazeltine terminal operates at a maximum speed of 9600 baud or 873 characters per second as compared to the teletype which operates at 110 baud or 10 characters per second. The substitution required only minor modifications to the PDP-15 hardware to use the full speed of the Hazeltine terminal.

The background clock board M452 is shown in Figure 3.14. The oscillator generates an 800 Hz signal which is divided to provide 110 Hz . Capacitor C5 is decreased to $.01 \mu f$ and resistor $R 3$ is adjusted to give 76800 Hz for the required baud rate of 9600 . The TTY connector W078A does not operate at this rate because of a $1 \mu f$ filter capacitor. After changing this capacitor to $.022 \mu f$ the Hazeltine terminal worked properly.

The Hazeltine terminal writes 5 full 74 character lines per second. The entire screen of 26 lines can be filled in approximately 5 sec . The Hazeltine terminal is used to provide real-time information on the operation of the data collection process and on the data being collected. Figure 3.15 contains a flowchart of the background display programs BGRAPH, BDATA, PARA and GRAPH. Depending on the setting of console switch 17, either a graph of 11 minutes of virtual height data or a graph of the echo shape is produced. An example of the virtual height graph is shown in Figure 3.16. A starting time in minutes is typed in and then the height of the echo picked by PCK is displayed. This graph provides a quick method of determining what the reflecting layer is doing and whether collection should continue or not.

An example of the echo-shape graph is given in Figure 3.17. The height and time for the one-hop echo in the center of the screen is given

DIGITAL EQUIPMENT CORPORATION • MAYNARD, MASSACHUSETTS

Figure 3.14 Schematic diagram of background clock board M452.

Figure 3.15 Flowchart of the background display programs.

Figure 3.16 Example of height versus time graph.

Figure 3.17 Example of echo shape graph.
at the top on the graph. The 0's represent the one-hop echo, the +'s represent a parabola fit to the one-hop echo and the \#'s represent the two-hop echo. The left-hand side of the screen has the height and amplitude of the averaged data near the one-hop echo. If any of the symbols overlap, an * is printed. The one-hop threshold is indicated by a T on the third line of the graph. This graph is useful in determining whether the algorithms in ECHO are functioning properly. It is also useful to check that ECHO is detecting all the echoes and not detecting noise as echoes. In conditions of high noise and low-signal strength, echoes can be seen on the graph that cannot be seen on an oscilloscope monitoring the video signal from the ionosonde.

3.6 Ionosonde Frequency Counter

A frequency counter was designed and built to measure the ionosonde transmitter frequency. The ionosonde is licensed to operate only on the ten frequency bands listed in Table 3.1. The frequency counter keeps the operation of the ionosonde legal by turning the transmitter off while the ionosonde is sweeping through frequencies not listed in Table 3.1. A digital display of the ionosonde frequency is provided in the computer room and, with remote ionosonde controls, the ionosonde can be operated from the computer room. With the digital input port to the PDP-15, the computer reads the ionosonde frequency and by using the digital output port, the computer can control the ionosonde frequency.

The ionosonde frequency range, 250 KHz to 20.25 MHz , is divided into four bands, 250 kHz to $750 \mathrm{kHz}, 750 \mathrm{kHz}$ to $2.25 \mathrm{MHz}, 2.25 \mathrm{MHz}$ to 6.75 MHz and 6.75 MHz to 20.25 MHz , called Band I, II, III and IV respectively. The transmitter frequency is formed in a mixer which subtracts a 4 MHz

Tab1e 3.1 Frequency bands on which the ionosonde is licensed to operate

$420-1800 \mathrm{kHz}$
$2000-2170 \mathrm{kHz}$
$2194-2495 \mathrm{kHz}$
$2505-3500 \mathrm{kHz}$
$4000-4995 \mathrm{kHz}$
$5005-7000 \mathrm{kHz}$
$7300-8362 \mathrm{kHz}$
$8366-9995 \mathrm{kHz}$
$10005-14000 \mathrm{kHz}$
$14350-14990 \mathrm{kHz}$
$15010-19990 \mathrm{kHz}$

signal on Bands I, II and IV or 8 MHz on Band III from a variable frequency oscillator (VFO) signal. The mixer operates in a pulsed mode so the transmitter frequency is not continuously available and cannot be counted directly. The counter measures the VFO frequency minus 4 or 8 MHz . This is done by presetting the counter to - $4 \mathrm{MHZ}(-8 \mathrm{MHz}$ on Band III) before counting starts.

The circuit diagram for the frequency counter is given in Figures 3.18, 3.19 and 3.20. A 1 MHz crystal oscillator is divided by 400 to provide the time base. The VFO signal is converted to TTL levels and counted for a period of $200 \mu \mathrm{sec}$ which provides a frequency resolution of 5 kHz . The counter is 12 bits long, giving a maximum frequency count of 20.48 MHz . The timing diagram in Figure 3.21 shows the relation between the preset period and the counting period. During the preset period the counter is preset to $6430_{8}\left(4700{ }_{8}\right.$ on Band III) and the SRFF formed by two cross-coupled NANDs is set.

If the VFO input signal is not present, during the clear period the counter is set to 0 . If this were not done, when the ionosonde is off, the counter would indicate 6340_{8}. When the computer reads a frequency of 63408 , it cannot tell whether the ionosonde is operating at 16.48 MHz or turned off. A reading of 0 is unambiguous. If a VFO signal is present, the counter will count during the count period, the SRFF is reset and the counter is not cleared during the clear period. At the end of the count period, the counter is allowed to settle for $50 \mu \mathrm{sec}$, then the Data-Ready signal is true for $50 \mu \mathrm{sec}$. During this time, the count is transferred to 12 latches. The data in the latches are read by the computer through the digital input port.

Figure 3.18 Schematic of ionosonde frequency counter time base, counter and frequency deleter board.

Figure 3.19 Schematic of ionosonde frequency counter data latch and binary to $B C D$ converter board.

Figure 3.20 Schematic of ionosonde frequency counter power supply and board interconnections.

Figure 3.21 Timing diagram for the ionosonde frequency counter.

The data from the latches are converted to 4 decades of BCD using 7 code converter read-only-memories ($R O M s$). The $B C D$ data drive a frequency display in the computer room, indicating the ionosonde frequency in $10^{\prime} \mathrm{s}$ of kHz .

The 10 most significant bits of the counter are used to determine if the ionosonde frequency is in an allowed frequency band or not. The frequency range from 0 to 20.48 MHz is covered in 1024 segments, each 20 kHz wide. A 1024 bit ROM has one bit for each segment. A " 1 " is programmed in the ROM for segments that are in prohibited frequency bands and a " 0 " is in the other bits.

The 1024 bit ROM used in the counter is organized as 256 four-bit words. A 4-bit data selector effectively converts the ROM into a 1024 by 1 organization. If the output of the data selector is 1 during the Data-Ready period, a monostable multivibrator is triggered and puts out a 33 msec pulse used to turn off the ionosonde transmitter. If the ionosonde is in a restricted frequency, the monostable multivibrator is retriggered every $400 \mu \mathrm{sec}$ and stays set, keeping the ionosonde transmitter off. If the ionosonde frequency is on the edge of an allowed band, because of the uncertainty of ± 1 in the count, the monostable multivibrator is not retriggered every $400 \mathrm{\mu sec}$ but once every several $400 \mu s e c$ periods. As long as the monostable multivibrator is triggered at least once every 33 msec , it stays on and keeps the transmitter off.

The monostable multivibrator Q and \bar{Q} outputs drive 2 high current interface drivers to light LED's, indicating whether the transmitter is on or off and also drive a line which turns the ionosonde transmitter on and off. A switch is provided to override the counter and keep the ionosonde constantly on or off.

4. EXPERIMENTAL RESULTS

This chapter presents an analysis of some of the data collected on the digital ionosonde by methods described in Chapter 2.

The digital ionosonde was operated for about two hours starting between 1300 and 1500 CST several days a week for five months. A frequency of 4.1 MHz was normally used because there is little interference at that frequency and good reflections from the F region are obtained. The extraordinary reflection cannot be seen at this frequency and several runs were made at a higher frequency where both reflections were present.

On each run, the virtual height varies in a quasiperiodic manner with a period of 10 min or more and a height change of more than 10 km and in some cases as much as 50 km . Due to the increasing height of the F region in the afternoon, the fluctuations are superposed on a linear increase of virtual height. The amplitude generally fades with a period of a few seconds because of very small irregularities in the ionosphere. This fading is nearly all removed by the present system which averages over a 10 sec period. Their residual effect is to produce small random height and amplitude variations. Some of the random variation in height is due to errors in the height algorithm described in sections 3.2 and 3.3. Large periodic increases in amplitude occur in some runs with periods of 15 to 30 min due to focusing. Focusing is observed on 75% of the data runs and several of these are described in section 4.3.

The multiple reflection points described in section 2.4 are shown in 33% of the runs. Section 4.4 shows examples of these.

Data taken at frequencies higher than 4.1 MHz , showing both ordinary and extraordinary echoes are described in section 4.5.

Section 4.6 describes some experimental data with features that cannot be explained with the present reflector model described in Chapter 2.

In the next section, a sinusoidal reflector is used to illustrate the effects of the length of the reflector on focusing and multipath.

Section 4.2 describes a data run in which two echoes are close enough to interfere with each other as described in section 3.3.

4.1 Effects of Reflector Horizontal Wavelength on Focusing and Multipath

Focusing is caused by the reflector acting as a curved mirror as described in section 2.3. Multipath is when more than one echo is observed from one reflector simultaneously as described in Section 2.4. To illustrate the effects of the reflector wavelength on the occurrence of focusing and multipath, the virtual height and amplitude for sinusoidal reflectors of various wavelengths are calculated The reflectors have the form $B=250-10 \cos (2 \pi x / P) \mathrm{km}$. The average height and amplitude of the reflectors are typical values for a frequency of 4.1 MHz . P is the wavelength of the reflector. The amplitude and virtual height of an echo from the reflector are calculated for one cycle of the reflector, $0<x<P$.

The horizontal wavelength of the reflector in Figure 4.1 is 500 km . Only a small amount of focusing occurs in the two-hop amplitude and almost none in the one-hop amplitude. The virtual height of the one-hop comes to a narrower peak than the reflector and the two-hop height is more sharply peaked than the one-hop height. For longer wavelengths, there is less focusing and the virtual height is closer to the reflector height. Near the center of the reflector, the two-hop echo experiences more focusing than the one-hop echo for two reasons. First, the two-hop echo is reflected and focused twice, effectively doubling the depth of the reflector

Figure 4.1 One- and two-hop virtual height and echo amplitude for a sinusoidal reflector
for the two-hop echo. Secondly, the two-hop echo has to travel twice as far making the apparent reflector for the two-hop echo twice as high. For long wavelengths, the transmitter and receiver are closer to the center of curvature for the apparent two-hop reflector than the one-hop reflector. As the reflector wavelength decreases to 450 km , the two-hop height comes to a sharp peak and the amplitude shows a large enhancement as shown in Figure 4.2. The one-hop height and amplitude are not much different from the height and amplitude in Figure 4.1.

For a wavelength of 400 km , as shown in Figure 4.3 , three reflection points appear in the two-hop virtual height. The one-hop height shows increased distortion and the amplitude shows some focusing.

For a wavelength of 300 km , as shown in Figure 4.4 , three reflection points appear on the one-hop virtual height.

Except for the cases of multipath, the maximum and minimum one-hop virtual height correspond to the maximum and minimum height of the reflector.

4.2 Interference Between Two Echoes with Nearly the Some Virtual Height

The interference between two echoes is described theoretically in Section 3.3. This section describes an example of this phenomenon.

Figure 4.5 is a graph of 100 min of data taken from 1931 to 2111 CST on May 4 , 1973 at 3.1 MHz with almost four cycles of a disturbance with a period of 26 min . The two-hop echo shows four segments of focusing but at other times the two-hop amplitude is too small to be detected. For the first 50 min , the one-hop height has a random fluctuation of about 160 m superimposed on the slower periodic variation. This error is within the accuracy range of the echo detection algorithm as calculated in Section 3.3.

Figure 4.2 One- and two-hop virtual height and amplitude for a sinusoidal reflector with $\mathrm{P}=450 \mathrm{~km}$.

Figure 4.3 One- and two-hop virtual height and amplitude for a sinusoidal reflector with $P=400 \mathrm{~km}$.

Figure 4.4 One- and two-hop virtual height and amplitude for a sinusoidal reflection with $P=300 \mathrm{~km}$.

Figure 4.5 Data record taken on May 4, 1973.

An interesting feature of this record is the short-period oscillation in the one-hop height and amplitude from 2022 to 2039 . This portion of the graph is expanded in Figure 4.6. The same feature is noted again from 2044 to 2111 , but not as clearly. While the data were being taken, two echoes very close together were noted visually, but the echo detection algorithm described in section 3.2 which can detect two echoes close together was not yet in use. The detection algorithm used finds only one echo which is the echo within 10 km of the echo found in the previous 10 sec interval if such an echo exists. If more than one echo is within 10 km of its previous echo, the closest echo to the echo found in the previous 10 sec is picked and printed out. Only the lower echo was detected except at 2023 and 20 sec when the upper echo was detected. The difference in the virtual height of the two echoes decreases from 2022 to 2030 and then increases.

The phase difference between the echoes changes from 0° to 180° and back to 0° every time the difference between their virtual heights changes by one-half wavelength. When the echoes are in phase, the apparent height and amplitude of the lower echo increases and when they are out of phase, the amplitude and apparent height decreases. At 2030, the two echoes are closest together. One minute later, the apparent height and amplitude have gone through one oscillation and the echoes have moved one-half wavelength apart or 48.4 m . The frequency of the oscillations increases indicating that the rate of separation is increasing. At 2035, the oscillations appear to die out. Because the height and amplitude are averaged over 10 sec , what is actually happening is that the height and amplitude are going through one complete oscillation in 10 sec . The rate of separation

Figure 4.6 Expanded view of part of Figure 4.5 showing interference between two echoes and the calculated position of the higher echo.
continues to increase until the echoes are too far apart to interfere. The same thing appears to happen while the echoes are approaching but it is not as clearly represented in the graph.

From the amount of change in amplitude and height and using Figure 3.8, the approximate virtual height of the second echo near 2030, where the oscillations are slow enough that the 10 sec averaging does not distort the oscillations, is determined and put on Figure 4.6. The number of phase variations determines the height of the upper echo at other times. The calculated position comes close to the one point where the upper echo was detected. The height of this point is also distorted by as much as the lower echo height. The detected point is within this error of the calculated echo position.

The difference between the radial velocities of the two echoes is very small, on the order of a few $\mathrm{m} \mathrm{sec}^{-1}$, indicating that their motion is coupled in some way. A possible explanation for the two echoes is that the shape of the reflector is not constant in the Y direction as assumed in section 2.3 . Another possibility is that a small additional irregularity exists at the same height as the reflector but displaced several km laterally from the ionosonde antennas in the direction of propagation of the disturbance. The irregularity is displaced vertically by the disturbance and follows the height of the reflector. As the reflector slope increases, the reflection point moves in the direction of propagation of the disturbance and comes closer to the irregularity until, at the inflection point of the reflector, halfway between the minimum and maximum of the reflector, the reflection point is at its closest approach of the irregularity. This is the only occurrence of this phenomenon in five
months of data collection but the same effect occurs when multipath gives two echoes close together.

4.3 Data Showing Focusing

Focusing, as described in Section 2.3, is observed on three-quarters of the data runs taken. Several of these are described in this section.

Figure 4.7 shows 65 min of data taken on May 5, 1973 at 1502 CST. Two cycles of a disturbance are shown with a period of about 22 min . The amplitude shows large enhancements just after each peak in height. The two-hop echo is not included in Figure 4.7 because it is only present twice when focusing increases the two-hop echo amplitude to a point where it is detected. Using the calculator program described in Section 2.4, the reflector shape that produces the focusing effects in Figure 4.7 is determined as shown in Figure 4.8. If the overall dimension of the reflector is reduced to 1700 km , multiple reflection points form. If it is increased to 1900 km , the focusing produced by the first cycle disappears. The dimension of the reflector must be somewhere between 1700 and 1900 km . 1800 km provides a good fit to the data. The wavelength of the disturbance is then 900 km and the velocity is $680 \mathrm{~m} \mathrm{sec}-1$.

Figure 4.9 is a graph of 83 min of data collected on November 2, 1973 at 1336 CST. Three cycles are shown with an average period of 24 min . The extraordinary echo is detected at several points during the run. The amplitude for the one-hop echo shows rapid fading but no clear focusing. The height has a random variation of 630 m superimposed on the periodic variations. Small irregularities in the ionosphere are causing some of the random height variation because the height accuracy of the digital

Figure 4.7 Data record taken on May 5, 1973 showing focusing of the one-hop echo.

Figure 4.8 Reflector shape that produces virtual height and amplitude curves that match

Figure 4.9 Data record taken on Nov. 2, 1972 showing focusing of the two-hop echo.
ionosonde is greater than this. Signal conditions were very good for this run and the two-hop echo is detected for most of the run. The two-hop amplitude shows two periods of focusing. Figure 4.10 shows the reflector shape and the one- and two-hop height and amplitude calculated from the reflector. A reflector 1000 km long produces the best fit to the data. This gives a wavelength of 475 km and a speed to $396 \mathrm{~m} \mathrm{sec}{ }^{-1}$.

4.4 Data Showing Multipath

Multipath occurs when more than one one-hop or two-hop echo is received simultaneously from the reflector as described in Section 2.4. This section presents and discusses several data runs showing this effect.

Figure 4.11 shows 122 min of data collected on September 7, 1973 at 1308 CST and at a frequency of 4.1 MHz . There appear to be 13 cycles of a disturbance in the first 90 min giving an average period of 7 min . The disturbance appears to die out and be replaced by a slower disturbance. Two cycles at 1344 and 1354 show multipath. These are expanded in Figure 4.12. From 1344 to 1345 the two echoes near 240 km have nearly the same virtual height and are close enough to interfere with each other as described in Section 3.3. The echo heights in Figure 4.12 are distorted because the two echoes are close together. The same thing happens with the two echoes near 250 km from 1354 to 1356 . The reflector which produces these echoes is shown in Figure 4.13. The wavelength of the disturbance is about 725 km which gives a velocity of $450 \mathrm{~m} \mathrm{sec}^{-1}$.

Figure 4.14 show 135 min of data taken on December 8, 1973 starting at 1309 CST and at a frequency of 3.8 MHz . About 6 cycles of a disturbance with a period of 15 min are shown. The ordinary and extraordinary echoes are both recorded and also a number of two-hop echoes. The one-hop echoes

Figure 4.10 Reflector shape that produces virtual height and amplitude curves that match the data in Figure 4.9.

Figure 4.11 Data record taken on Sept. 7, 1973.

Figure 4.12 Expanded view of part of Figure 4.11 showing multipath.

Figure 4.13 Reflector shape that produces virtual height and amplitude curves that match the data in Figure 4.12.

show little focusing and no splitting. The two-hop echoes are split in at least three places at 1328,1357 and 1423. The two-hop amplitude is generally too low to give a good picture of what is happening. Figure 4.15 shows a reflector shape which produces two-hop echoes similar to those in Figure 4.14. From this reflector, the approximate wavelength of the disturbance is determined to be 400 km and the velocity of the disturbance is $456 \mathrm{~m} \mathrm{sec}^{-1}$.

4.5 Data Showing Ordinary and Extraordinary Reflections

This section shows how the ordinary and extraordinary echoes can be used together to determine the direction of the disturbance. Two data records with both ordinary and extraordinary echoes present are analyzed in this section. The basis for the direction measurement is explained in Section 2.6.

Figure 4.14, used as an example of multipath, has both ordinary and extraordinary echoes. The extraordinary reflector is delayed by approximately 55 sec from the ordinary reflector which means the disturbance is traveling roughly in a southerly direction. The frequency used for this run was 4.8 MHz and the F region critical frequency was 7.5 MHz . Using the program to compute lateral deviation described in Appendix IV, the lateral deviation is computed as 9 km and the vertical separation of the reflection points is 16.5 km . The period of the disturbance is approximately 10 min so a value of 45 deg is assumed for the angle of the phase front of the disturbance relative to vertical. Using the formula for the direction of the disturbance derived in Section 2.6 and the velocity of $456 \mathrm{~m} \mathrm{sec}^{-1}$ calculated in Section 4.4 , the angle of propagation of the disturbance relative to north is 19 deg . The angle of propagation is very

Figure 4.15 Reflector shape that produces virtual height and amplitude curves that match the data in Figure 4.14 .
sensitive to changes in the angle of the phase front. Decreasing the angle to 43.7 deg changes the direction of propagation to directly south.

Figure 4.9, used as an example of focusing in Section 4.3, also shows parts of the extraordinary reflector. The variations in height of the extraordinary reflector are delayed by about 166 sec on the average from the ordinary height variations. This means the disturbance is traveling roughly from north to south. The frequency used for this run is 4.2 MHz and the critical frequency is 9.5 MHz . Using the program to compute lateral deviation, the lateral deviation is 4.12 km and the vertical separation of the reflection points is 8 km . The period of the disturbance is about 25 min . Using a phase front ang1e of 45 deg , and assuming the disturbance is traveling directly to the south, the projection of the velocity on the north-south axis is $73 \mathrm{~m} \mathrm{sec}^{-1}$ which is much slower than the velocity of the disturbance calculated as $396 \mathrm{~m} \mathrm{sec}^{-1}$ in section 4.3 . The projection of the velocity on the north-south axis should be larger than the magnitude of the velocity or equal to it if the disturbance is traveling due south. A value of 82 deg for the phase angle is required to make the projection of the velocity equal the magnitude of the velocity. This is very close to the angle of 83 deg measured by Georges [1967] for a disturbance with a period of 40 min .

4.6 Data Showing Unusual Features

Several data runs contain features which cannot be explained with the present reflector model described in Chapter 2.

Figure 4.16 is a graph of 125 min of data taken on November 17, 1973 at 1340 CST at 4.8 MHz . The amplitude of the one-hop echo is very high and during the first 60 min of the run, the ADC sometimes is saturated.

Figure 4.16 Data record taken on Nov. 17, 1973 showing an unusual two-hop echo.

An ordinary and extraordinary reflection are present and the ordinary twohop echo is also observed. About 11 cycles of a disturbance with a period of 10 min is observed. The amplitude of the disturbance is below normal and because of the saturation of the $A D C$, the shape of the disturbance is not clear. The two-hop echo shows segments of focusing which correspond to peaks in the ordinary one-hop height but for the most part, the amplitude is too small to get a good picture of the two-hop height variation. An interesting feature of the two-hop height is the echo which increases linearly in height. The amplitude of this echo increases slowly until about 1440 and then decreases. The amplitude is very steady, showing no signs of fading. The echo is first picked up at 1359 and 20 sec at a height of 397.5 km and increases in height beyond the detection range of ECHO at 1502 and a height of 535 km . The 10 w height of the echo from 1400 to 1430 implies that it is not a two-hop echo since there is no one-hop echo at one-half this height. The amplitude is very constant and higher than the two-hop echo amplitude when it is not focused. This signal could be a type of noise reported by Gerson [1962] which he calls β type sweepers. The signal could be caused by another pulse transmitter operating at nearly the same frequency and synchronized to a power line with a slightly different frequency to account for the changing time delay relative to the ionosonde transmitter.

Figure 4.17 shows 93 min of data taken on December 1,1973 starting at 1310 CST at a frequency of 4.1 MHz . A few cycles of a disturbance with a period of about 20 min are shown. A few extraordinary echoes are also detected. The two-hop echo is present for most of the run. An unusual feature of this record is the second two-hop trace starting at 1417 and

Figure 4.17 Data record taken on Dec. 1, 1973 showing an unusual two-hop echo.
increasing in height until the end of the run. This trace is similar to the one in Figure 4.16 but it is not as straight and does not start as far below the normal two-hop height. The amplitude of the echo is approximately constant for the 25 min that is recorded. It also starts too low to be a two-hop echo. This echo appears to be associated with one cycle of the disturbance and it could be that this is a multipath phenomenon which cannot be explained with the present reflector model.

Figure 4.18 shows 122 min of data taken on October 10,1973 starting at 1250 CST at a frequency of 4.7 MHz . This graph clearly shows several examples of multipath. There is very little fading in the amplitude and the random height error is less than 200 m . Focusing can clearly be seen on each cycle of the disturbance. The two-hop echo also shows focusing but for the most part the two-hop echo is too weak to be detected. A few extraordinary echoes are detected. At this frequency and on the day the data were taken, the extraordinary echo is below the ordinary echo. The exact shape of the multipath echoes cannot be reconstructed with the present curved reflector model. All multipath echoes using the current reflector model have some form of X or crossover which is not present in Figure 4.18.

Figure 4.18 Data record taken on Oct. 10, 1973 showing multipath which cannot be explained with the present reflector model.

5. RESULTS AND SUGGESTIONS FOR FUTURE WORK

In the previous chapters, a system for collecting accurate fixedfrequency virtual-height data and methods for analyzing the data to determine speed and direction of traveling ionospheric disturbances are presented. Virtual height is measured with a time resolution of 10 sec and with a height resolution of less than 300 m and in some cases as little as 50 m . Five months of data from the digital ionosonde shows quasi-periodic height variations on all data records with periods of 5 to 30 min and amplitudes of 10 to 50 km . Focusing is apparent on 75% of the records and multipath is observed on 33% of the records.

The horizontal wavelength of the disturbance is determined by matching virtual height and amplitude calculated from an assumed reflector shape with the data from the digital ionosonde system. Several data records analyzed in this manner indicate wavelengths from 400 to 900 km and speeds of 400 to $680 \mathrm{~m} \mathrm{sec}^{-1}$. The direction of the disturbance is determined by measuring the time delay between the appearance of prominent features of the disturbance at the ordinary and extraordinary reflection points. Two records analyzed in this manner indicate that the disturbance is traveling approximately due south.

To graph the data from the digital ionosonde on the plotter, large amounts of paper tape are punched out on the PDP-15 and generally used only once to make a graph of the data. The partial reflection experiment and presumably future experiments will collect data on the PDP-15 and graph it on the plotter. The paper punch on the PDP-15 occasionally makes errors in punching the tape and the paper tape reader connected to the calculator also makes occasional errors in reading the tape. The tape
reader also has no convenient way of handling large pieces of paper tape. For these reasons, another method of transferring data between the PDP-15 and the calculator is desirable. A magnetic cassette tape unit could be attached to the PDP-15 through the digital input-output port. This would eliminate the need to use paper tape for transferring large amounts of data. It would be necessary to find out the format used by the calculator in writing on the cassette tapes and program the PDP-15 to write tapes in the same format.

The frequency counter described in Section 3.6 makes computer control of the ionosonde frequency possible. It should be possible to switch the ionosonde between several frequencies to get a vertical profile of the disturbance. The frequency counter also simplifies writing a program to take digital ionograms.

To investigate the unexplained data and increase the accuracy of the wavelength measurements, ray tracing could be used with a model of the ionosphere as disturbed by gravity waves. Clark [1970] develops a computer model of the ionosphere disturbed by gravity waves and a set of differential equations for ray tracing by Haselgrove [1963] is implemented on the HP-9830 calculator. A data collection program that takes continuous digital ionograms or one that takes an ionogram every few minutes and fixed frequency virtual height data at other times could be used to determine the electron density distribution.

A first step in improving the data from the digital ionosonde is to add phase measuring capability by adding two synchronous detectors to the ionosonde. The computer, using the digital output port sets the height at which two sample-and-hold circuits sample the output of the synchronous
detectors. After the $A D C$ finishes sampling the magnitude of the amplitude as it does in the present system, the two sample-and-hold voltages are multiplexed into the ADC input and sampled.

A further improvement is to measure the angle of arrival of the echo. Two more antennas, two more receivers, four more synchronous detectors and four sample-and-hold units would be required. Since the computer can rapidly change the height at which the sample and hold circuits sample, if there are more than one echo, a different echo can be looked at with each transmitter pulse. The direction of propagation of the disturbance is obtained directly and unambiguously from the angle-of-arrival measurement.

REFERENCES

Clark, R. M., K. C. Yeh and C. H. Liu (1970), Gravity waves in the ionosphere, Tech. Rep. 39, Ionospheric Radio Laboratory, Univ. Ill., Urbana-Champaign.

Budden, K. G. (1960), Radio waves in the ionosphere, Cambridge University Press, London.

Georges, T. M. (1967), Ionospheric effects of atmospheric waves, ESSA Tech. Rep. IER 57-ITSA 54.

Gerson, N. C. and W. H. Gossard (1962), Diurnal variation of sweeper activity, J. Geophys. Res. 77, 1007-1011.

Harper, R. M. (1972), Observation of a large nighttime gravity wave at Arecibo, J. Geophys. Res. 77, 1311-1315.

Haselgrove, J. (1963), The Hamiltonian ray path equations, J. Atmos. Terr. Phys., 25, 398-400.

Hines, C. O. (1954), An interpretation of certain ionospheric motions in terms of atmospheric waves, J. Geophys. Res. 64, 2210-2211.

Munro, G. H. (1950), Traveling disturbances in the ionosphere, Proc. Roy. Soc. 202, 208-223.

Whitehead, J. D. (1960), Focusing of short radio waves reflected from the ionosphere, J. Atmos. Terr. Phys., 9, 269-275.

Yeh, K. C. and C. H. Liu (1972), Theory of Ionospheric Waves, International Geophysics Series 17, Academic Press, New York.

APPENDIX I. OPERATING INSTRUCTIONS FOR THE DIGITAL IONOSONDE AND A LISTING OF THE DATA COLLECTION AND DISPLAY PROGRAMS

The following procedure is used to operate the fixed frequency data collection system. A listing of the programs is included after the operating instructions.

1. Turn on Hazeltine 2000 video terminal and the PDP-15 computer. Press the ONLINE button on the Terminet 1200 TTY. The address switches on the PDP-15 should be set to 00111_{8}. Press STOP and RESET at the same time. Then press START. The following should appear on the foreground TTY.

FKM15 V3A

\$\}

If not, see the procedure for cold starting the PDP-15 taped next to the computer console.
2. Turn on the encode gate generator and monitor oscilloscope. Disconnect the coaxial cable from the $P R$ receiver to the ADC input and connect the cable from the ionosonde video attenuator to the $A D C$ input. The cable from the $P R$ encode gate generator is similarly disconnected from the ADC encode input and replaced with the cable marked IONOSONDE ENCODE PULSE.
3. Mount the tape marked Ionosonde Programs on tape unit 2. At the foreground TTY type the underlined portion of the following.
$\$ \mathrm{~N} 2 \mathrm{cr}$
\$\} A DT2 -4, -5/DK2 2 cr
\$ 3MPOFF cr
\$ SHARE cr
\$ GLOAD cr
FGLOAD V2A
\$ 3 PROC, HDATA esc esc means press the ESCAPE key
At the background console type the following.
BKM15 V3A
\$3A DT2 -4,-5 cr
\$3GLOAD cr
BGLOAD V2A
\$3BGRAPH, BDATA esc
4. At the ionosonde, turn on the power supply for the line drivers and the monitor oscilloscope. Turn the RECORDING START/INTERVAL SECECTOR switch to manual, turn the camera switch off and turn the data oscilloscope power supply off. Run one sweep to determine Fof2 and then set the frequency as desired. Reduce the transmitter power to save tube life as far as is consistant with good echo amplitude.
5. To start the collection programs, set console switch 0 to 1 and switch 17 to 0 and type the following.

OPERATION
$\underline{0} \mathrm{cr}$
HEIGHT
APPROX ECHO HEIGHT cr
The approximate height is determined from the monitor scope. The TTY will print the echoes within 75 km of the height selected. The shape of the first echo printed is displayed on the Hazeltine. When the exact height has been determined, set console switch 0 to 0 and wait until OPERATION is typed on the TTY. Set switch 0 to 1 and type
the following.
OPERATION
1 cr
HEIGHT
ACCURATE ECHO HEIGHT cr
FILE NAME
$\underline{\operatorname{XXXXX} \operatorname{XXXX}} \mathrm{cr}$
Where the X 's can be any printing characters or spaces such as the date and time. The program will type out a heading. Write in the operating frequency and the critical frequency. To stop the data collection, set switch 0 to 0 .
6. To transfer the data stored on the disk to paper tape, type the following on the foreground TTY.
$\uparrow \mathrm{B} \uparrow \mathrm{C}$
FKM15 V3A
\$3A PPO 4/DK2 5 cr
\$\}PIP cr
PIPBF V14A
$>T$ PPO \div DK2 $X X X X X X X X X$ (A) cr
To transfer the data to magnetic type, type the following. $\xrightarrow{\uparrow B+C}$

FKM15 V3A
\$3A DT2 4/DK2 5 cr
\$3PIP cr
PIPBF V14A
$>$ T DT2 \leftarrow DK2 XXXXXXX XXX (A) cr

XXXXXXX XXX are the same 9 characters typed in for the file name in step 5 but with the space after the 6 th character instead of the 5 th.

PROGRAM LISTING

c	RPGOC EJYED FIGEUENCY DATA YRUCESSINO PYOGEAM REAL HDACA(000), ER(10), iff(b), FUA:E(2), SB(2) INTEGAR CDATA(j30), [(1024), EA(10), IA(3)
C ARIAYS	
\bigcirc	ARTAMYS
C	coata chintarls trie average fr 600 fraves uf data
c	
c	Fur each 10 seo mimerat
c	Ef aidd ea curmain Tric dieight and asplitude jF up ro 10
c	ECHDES DETECTED BY ECHO
C	
c	
c FAAME IS TiE WAGE UF THE FILE USED TJ STJRE HEIOHT AND	
C	AIfPLITUDE DATA. THE FIFRAT FUR InPUTING FIAME IS XXXXX XXXX
C where x is ary primitig Character or space	
c	
C ARE DEtECTED THAN casi be printed	
C variablej	
C	TO IS THE Midestold used by Echo
c	
\checkmark	Fi IS The furber of flatrs igvored due th noise jr due
C	Tu adc tirsing ephors
C	bG is the neigit offset dye to the 30 usice encode gate delay
C	dt is the . Dat assigntent of a disk
C	CUL IS USED TO PRINT ";
C	alt is used tu end a line with an alimode hilich Suppresses
c	THE NORYAL CARQAOE RETURA,
	COMMS/DATAS/CDATA, BG, TO, FRI
	COMADI/DIS/T, HDATA
	$\mathrm{FR}=600$
	DT=2
	$B G=30$
	IFLAG=1
	ALT $=((7 \times 3+6) * 3+4) * 512$
	$\mathrm{COL}=(3 * 3+5) * 4096$
	FRJ $=73000.16334$.
${ }_{c}^{C}$	SET UP TABLE TU CONVEPT ADC NUMBERS TO
	INTEGERS If The raidge 213 O0-218
	DO $1 \mathrm{I}=1,512$
	$\mathrm{X}=\mathrm{FLOAT}(\mathrm{I}-1) \times 32.175$.
	$\mathrm{J}=\mathrm{INT}(\mathrm{X})$
	IF (X-FLOAT (J) .GT. .5) $\mathrm{J}=\mathrm{J}+\mathrm{l}$
1	$\Gamma(1)=J$
	D] $2 \mathrm{I}=513,1024$
	$\mathrm{X}=\mathrm{FLUAT}(1025-\mathrm{I}) \div 32.175$.
	$\mathrm{J}=\mathrm{INT}(\mathrm{X})$
	IF (X-FLUAT (J) .GT. .5) $\mathrm{J}=\mathrm{J}+1$
2	$T(1)=-3$
$\mathrm{c}=$	
100	MRITE (6,30)
50	FOR:MAT (1OHIDPERATIOL)
c	INITIALIzE Tiresinlid used in subroutine echo
	$\mathrm{T} 1=10000$
	$\mathrm{T} 2=10000$

```
C DATA FOR GACKG!}OUND PRCGRAM
    CALL BOLAT(IELAU,RGR,CDATA,TIDATA,HA,I!,IS,F,T1)
    READ(6,51) OP
    OPERATIUN = O HRINI ANL ECIOES FOUND NEAR X:IT
        = I LUOK FO!? ECHOES NEA? XHT AND 2*XGT
            PRINT ECHULIEIGHT ARD ASPLITUOES ANO STJ!RE DATA
                ON .DAT 2 THIS DEVISE SIOULD SE A DISK
                    A DECTAPE TAKES TOU LGIVG
    FORMAT(I4)
    W!2TE(0,52)
    FUR:(aT(7H HEIGIT)
    READ(0.53) XHT
    FOR:{AT(F5.1)
    IF(OP .EG. O) Gח TU 3
    NRITE(6.54)
    FORMAT(IOH FILE NANE)
```



```
    FOPMAT (A5,1K,A4)
    CALL ENTER(DI,FMASE)
C UNE EXTRA LING MUST BE ADDED TG THE BEGI WNING OF THE FILE
C AND THU AT THE END FUR THE HP 9830 GHAPH PROGRAM TO
C WORK PRUPEPLY
    WRITE(ET,64) 0,600,0,0,0.,0,0.,0
    C WRITE HEADING
    NRITE(6,56)
    FORMAT(1X//1X,4HDATE,2OX,10HFREO (NLIZ), 20X, OHCRIT FREO///
    115X,5H1 HUP, 2BX,5H2 HEP/22H TIME FR HGT AMP,
    224X,9HHST A:MP)
    ARGUEMENTS FOR RDATA
    CALL RDAT(T,CDATA,FI)
    NH=0
```



```
C BEGINNINO OF DATA CULLECTIDA
200 CALL GO(LI)
O}\quadL=1 IF SNITCi| O IS SET
C =1 IF SNITCH O IS RESEI
C IF (LI EEO. O) GO CONTS # OF 10 SECONO PERIODS SINCE START
    Ni}}=:Nid+
C IT IS RESET AFIER 1OO MIN
    IF (Nii .OT - 600) NH=1
    IM AND IS AHE THE TIME IN MINUTES AHJ IONS DF SEOONDS
    I!}=(NH-1)/
    IS=NH-I-IN+6
C WAIT FOR ADC INTERHUPT ROIJTIHE TO FILL COATA
    CALL RDATA
    F=FH-FI
C CALCULATE: FACTDR TO CONVERT NUMRERS IN CDATA Tu YIIIIVOITS
    FRI=FRJ/FIOAT(F)
    IF (UP .EO. 1) 30 T0 30
```



```
    DATA COLLECTION
    IX=INT(XHT*2./3.)-SO+1
    TO=T1
C IX IS THE CENTER UF THE REGION IN CUMTA IHAT IS SEARCHEU
    FuR ECHm:S
    CALI ECHOSIX,NE,EH, SA)
```

```
    Tl=TO
    IF (NE .EO. O) GO TO II
c. LOOK FOR THE LABGEST ECHO
    L=1
    DO 10 I=1.NE
10 IF (EA(I).OT.EA(L)) L=I
C CENTER THE BACGGRIUND ECIT SHAPE GRAPA NN THE HIGMEST ECH?
    KKK=INT(EH(L)*2.13.+.5)-BC+1
    HDATA(HH)=EH(L)
    IFLAG=0
    NRITE(6,57) I`,COL,IS,F,(EH(I),I=1,NE)
57 FOR!fAT(IX,I2,A1,I1,1HO,I4,1OF6.1)
    GO TO 200
C W ECHOES FUUND
11 KKK=1X
C START THE BACKOROUND ECHD SHAPE PROGLKAM, DO NOT EIT PAKABULA
    IFLAG=-1
4 WRITE(0,57) [M,CUL,IS,F
    GO TU 200
```



```
20 IF (OP.EO. O) GUTO 100
    I=-1
    WRITE(DT,64) I,000,0,0,0.,0,0.,0
    WRITE(DT,64) I ,000,0,0,0.,0,0.,0
    CALL CLOSE(DI)
    OO TU 100
C-----------------
30 IX=INT (XITT*2./3.)-DG+1
C WRITE FIRST PART OF LINE. ALT SUPPRESSES CARRAGE PETURN
    HRITE(6,58) I",CO!,IS,F;ALT
58 FOHMAT(IX,I2,A1,I1, liO,I4,1X,A1)
C ZERO DUI HEIGMI AHD A!PPLTTJDE ABHAYS
    DO 31 I=1,5
    HT(I)=0.
    IA(I)=0
    HDATA(NA)=0.
    LI.=0
    TO=\Gamma1
C SEARCH FUR ECHMES HEAR XITT
    CALL ECHU(IX,NG,EH, EA)
    T1=TO
    IF (NE.EO. O) GO T0 40
C FIND ECin CIOSSST TL XHT
    CALL PCK(J, BH, Xitr,:I')
    K=1
    IF (J .EO. O) (%) TU 32
    MAIN EClU] FOU:IO
    X=EH(J)
    HT(1) = X
    IA(1) =F:A(J)
    EA(J)=-1000
    KKK=1N!T(X+2./3.+.5)-!40+1
    NEN XHT
    XHI=X
C SAVE HIEIMTT FOR HEIGIIT VS. TIME GRAP!?
    HDATA(i+fi)=x
```

```
    START RACKOROUVD GRAPII PREGRA:
        IFLAG=0
        \(K=2\)
    C
    32
\(C\)
\(C\)
36
39
37
    U] \(34 \mathrm{LL}=\mathrm{K}, 3\)
    IF (NE.LT. LL) \(\because \cap\) TO 35
    \(I=1\)
    DO \(33 \mathrm{~J}=1\), HE
    IF (EA(J). GT. EA(I)) I \(=\mathrm{J}\)
    \(\| T(L L)=E!(I)\)
    \(I A\left(L_{L}\right)=E N(I)\)
    \(E \&(I)=-1000\)
    U. \(=4\)
    \(L L=L L-1\)
    PRIMT UUT GME-HP ESHCES AND THET? ATPLITUDES
    HH+ SUPPYESSES LINE FEED AT DHE STABT DF A LINE
    DU \(30 \quad I=1, I L\)
    WHITE ( 0,59 ) HT (I), IA (I), ALT
    FORTAT (1:1+,1X, © \(6.2,14, A 1)\)
    \(\mathrm{J}=2\)
    IF THERE ARE YUNE THAN 3 TVE-HOP ECHUES, PRINT A
    IF (NE .LE 3) \(\mathrm{J}=1\)
    WPITE (6,60) S3(J), NLT
    FUR?aT(14+.2A1)
    \(I X=I \operatorname{HT}(X H T * 4 . / 3)-.8 O+1\)
    \(\mathrm{L}=4\)
    \(T 0=T 2\)
    LOUK FOR TWU-HOP ECITOES
    CALL ECFU (IX, NE2, EH, EA)
    \(\mathrm{T} 2=\mathrm{T} 0\)
    IF (NE2 . EO. O) Gח TO 41
    SPACE OVER TO FNOPMP COLUMA
    \(L=(3-L L) * 11\)
    WRITE( \(x, 61\) ) (S3(1), I=1,L), ALT
    FOR:SAT(1i+t, OUA1)
    ARRANGE FIO-HTP ECHOES II DRUER DF THEIF AFFL:TUDES
    D) \(39 \mathrm{~L}=4,5\)
    IF (NE2 . IT. L-3) GU TU 40
    \(I=1\)
    DU \(48 \mathrm{~J}=1\), NE 2
    IF (EA(J). GT. EA(I)) \(I=J\)
    \(H T(L)=E H(I)\)
    \(\mathrm{I} A(\mathrm{~L})=\mathrm{EA}(\mathrm{I})\)
    PRINT UUT THO-IUP ECHC HEIGHT AND AUPLITJDE
    WRITE (6, 59) HT(L), IA(L), hLT
    \(E A(I)=-1000\)
    \(\mathrm{L}=6\)
    IF (NE2 .LE. 2) Gח TO 41
    END LINE \(\because i\) TH A * IF THERE ARE YORE THAH 2 TWB-HOP ECHOES
    NRITE \((6,62)\)
    FOR:AT (2.1+*)
    GO TO 42
    MIITE 6.03 )
    Fopman (2it+)
    ELIMAATE SPACES IA ARRAY IH AHD HT
    \(\mathrm{L}=\mathrm{L}-4\)
    D) \(43 \quad \mathrm{I}=1, \mathrm{~L}\)
    \(\mathrm{J}=\mathrm{LL}+\mathrm{I}\)
    \(K=3+I\)
```

```
    HT(J)=1HT(K)
43 IA(J)=IA(X)
    L=L+IL
    IF (L .(E. 5) 引〕JT\45
    J=L+1
    DD 44 I=J,5
    HT}(J)=0
    IA(J)=0
    STURIS DADA UN . UAT 2
    ARITE(DT,64) (ff,F,L,CL,(rIC(I),IA(I),I=1,2)
    FOR:4T(1X,I3,I4,I2,I2,2(F7.2,I4))
```



```
    UNT THE NEXT LINE
    IF (L . LE, 2) उU TO 200
    WRITE(DT,0b) (HT(I),IA(I),I=3,5)
    FO&{AT(1X,3(F7.2,I4))
    O0 TO 200
C ND ECHUES FOUHD, GHAPH AMPLITUDE SEAR XHT BUT DC SOT
C FIT PARABOLA
46 KNK=IX
    IFLAG=-1
    GO TU 37
    END
```

－TITLE rDATA／racra Subprigeaiss Fur bippidC －GLDEL RDATA，RDAT，BGLAT，DA， GU
. DEC
NS A $!=530$
「H $=50$
$F R=600$
.$O C T$
$C P=20.4$
$5 C R=112$
TT $=6$


```
\begin{tabular}{|c|c|c|c|}
\hline & DAC & \multicolumn{2}{|l|}{BUF 3} \\
\hline & LAC & (NSAM*3 & /SIET UP CODE TT TAKE ADC DATA FRT' 3 UFI \\
\hline & PAL & & /CUAVEST IT Tf INTEGGRS IA THE RANGE 216 \\
\hline & CLX & & /TU-218 AND ADD IT TU BUF3 \\
\hline & LAC & T2 & /STRAGGI LINE CUDE IS WSGidio ro achieve iligh \\
\hline \multirow[t]{6}{*}{A} & DAC & T2, X & /SPEED \\
\hline & I AC & & \\
\hline & AXS & 3 & \\
\hline & \(J \times P\) & A & \\
\hline & CLX & & \\
\hline & LAC & T2+1 & \\
\hline \multirow[t]{6}{*}{B} & DAC & [2+1, X & \\
\hline & I AC & & \\
\hline & AXS & 3 & \\
\hline & JMP & B & \\
\hline & CLX & & \\
\hline & LAC & T2+2 & \\
\hline \multirow[t]{7}{*}{C} & DAC & T2+2, X & \\
\hline & I AC & & \\
\hline & AXS & 3 & \\
\hline & JMP & C & \\
\hline & LAC & ( NS A M & /7ERO OUT BUF2 \\
\hline & PAL & & \\
\hline & CLX & & \\
\hline \multirow[t]{10}{*}{D} & D2: & 3UF2, \(X\) & \\
\hline & AXS & & \\
\hline & JMP & D & \\
\hline & LAC & \((-F R\) & /SETUP NUMEER OF FRAMES TO be averaged \\
\hline & DAC & F & \\
\hline & LAC & \({ }_{6} 1\) & /SET FLG TJ 1, SET TH 0 WHEM SOO FRASES HAVE \\
\hline & DAC & FLG & /BEEA AVFRAOTD \\
\hline & DZM & FIG & /ZERO UUT \# DF FRAMES DISCARDED AS TOD NOISY \\
\hline & JISS & ADGET & /START A TO D CONVERTE? \\
\hline & JMP* & RDAT & \\
\hline \multirow[t]{3}{*}{BGDAT} & 0 & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{/DATA FUP BACKGRUUND PRMGRAMS
- DA
+12}} \\
\hline & JMS* & & \\
\hline & JMP & & \\
\hline FLAG & 0 & & LOC OF NORD SET TO O NHEM AN ECIU HAS BEEM FOUND \\
\hline K & 0 & & /CENTER OF MAIN ECHO \\
\hline CDATA & 0 & & /ARRAY UF AVERAGED DATA \\
\hline HDAIA & 0 & & /ARRAY UF HEIGHT VS TIME DATA \\
\hline NH & 0 & & /LOC OF NUMBER OF 10 SECU.ND PERIUDS \\
\hline IM & 0 & & תOC OF TIME I iv MINUTS \\
\hline IS & 0 & & /LOC OF TIME IN SECO:JDS \\
\hline FRI & 0 & & /LOC OF A APLITUDE: NGRSALIZATION FACTOR \\
\hline \multirow[t]{8}{*}{THir} & 0 & & /LOC OF 1 HUP THRESHILD \\
\hline & LAC* & CDATA & \\
\hline & DAC & cdata & \\
\hline & LAC* & hDATA & \\
\hline & DAC & HDATA & \\
\hline & LAC & (FLAG &  \\
\hline & DAC* & (SCR &  \\
\hline & JMP* & BGDAT & /AND OTHE! DATA \\
\hline \multirow[t]{4}{*}{RDATA} & 0 & & /VAIT FO: ALL FRAYES TJ 3E COLLEC[ED \\
\hline & LAS & \(F\) & \\
\hline & PAX & & \\
\hline & LAC & FLG & \\
\hline
\end{tabular}
```



```
SUBMOUTINE EC:GU(IX,NE,E:G,EA)
00000
SUBAUTTINE FCHO SEARCHES THE AREA FROM 5O DIVISIUNG
BELDN IX TO EO DIVISINHS AEUVE IX FUH ECimES
A TiRESGULD IS CALCULATED AS BEIH:G 5 TIOES THE AVERACE
NOISE. A:F ECIOU IS 4 UG NDRE CUNTINUUUS SARPLES A,BVE
THE TiHRESHOLU
REAL E!H(10)
INTEGER CD(530), CDNTA(101), EA(10),T,BG
CUMMD:1 /DATAO/ CD,DG,T.FRI
NE=0
IIIN=CD(IX)
U=0.
J=0
DO NOT SEARC:S OUTSIDE SF CDATA
IF (IX .LT. 51) IX=31
IF (IX .(OT. 47S) IX=475
DU 1 I=1,101
II =IX-5I+I
K=CD(II)
AN AMPLITUDE ABOVE THE TiARESHDLD IS ASSUMCD TO BE
PART OF AN ECGO AND NTT INCLUDED IN THE MOISE
IF (K .GT. I) GO TU I
IF (K .IT. NIH) {IH=K
SUM UP NOISE SAMPLES
U=U+FLOAT(K)
J=J+1
CDATA(I)=K
I- CDATA(I)=K
C IF THRESHOLD IS TON LOA THERE WILL NOT BE ENOUGH NOISE SA!PLES
IF (J .LT. 50) OU TO II
    CALCULATE AVEIAGE NOISE AND NEN THRESHOLD
    U=U/FLOAT (J)
    T=WIN+5*(INT(U)+1-MIN)
    I=1
    SKIP DVER SASPLES ABOVE THRESHOLD AT BOTTMY DF RANGE
    ALL UF THAT ECHD :MAY !OT BE IN THE AIPRAY
    IF (CDATA(I) .LT. T) GO TO 4
    I=I+1
    IF (I .GT. 1O1) REIURN
    TO T] 3
    LOUK FOR AN AMPLITUDE ABUVE THE THRESHOLD
    IF (CDATA(I) .GT. T) GO TO 5
        I=I+1
        IF (I .GT. 101) RETU!?N
        GO TO 4
        FIND FIDTH UF REGION AEOVE THRESHULD AND ?AXIUUY AUPLITUOE
        K=I
        DO 6.J=1,101
        M=J+1
        IF (Y.OT. 101) RGGURN
        IF (CDATA(!) .ST. CDATA(K)) K=M
        IF (CDATA(N) .LT. T) (OO TO 7
        CONTI!JjE
    I=M
    IF WIDTH IS LESS THAN 4 DIVISIONS, IT IS NOT AN EOHT
    IF (J %IT. 4) @O lo 4
    I=I-J
    NE=NE+1
    IF (NE .Gl'. 10) RETURN
```

```
C FIND PARA:IETERS OF ECHO AND FIT A PARABMLA TO IT
    Z=COATA(K-1)
    C=CDATA(K)
C RECOUD ECHO A&PLITUDE
    EA(NE)=C:NF?I+.J
    X=CDATA (K+1)
    A=(X-C-C+Z)/2.
    B=(X-Z)/2.
C CALCULATE INTERPOLATED HEIGHT
    Z =-3人(A+A)
    A=A*. }
    RECORD ECHO HEIGHT
    EH(NE)=(Z+FIDAT(IX+K+GG-52)):*3./2.
    CALCULATE %IDTI UF ECHO AT A PGINT :AALF NAY BETWEEN THE
    MINIMUR AND THE {OXIGU?: AMPLITUDE OF THE ECHL
    W=(3*B/A - (2.* (C-FLUAI(RIN)*FRI)))/A
    IF (A .LE. O.) GU ID 10
    Y=SQRT (%)
    I 1=K-IMT(㮩)
    12=K+INT(H)
    IF (I| .LT. |) I|=1
    IF (12 .OT. 101) 12=101
    SUBTRACT PAPASOLA FRO! PAPT OF ECHO ABUVE THE HALF MAY
    POINT AND SUETOACT AN'! INVERTED PARABOLA FRU{ THE PART
    OF THE ECHO BELUA THE half bay puINT
    DO & J=I1,I2
    X=K-K
    Y=(A*X+B)*X+C
    IF (ABS(X) .LT.W/2.) Cg TO B
    U=:!
    IF (X .LT. O.) D=-i,
    Y=-(A*(X-0)+3)*(X-O)+FLOAT(YIN)
    CDATA(J)=CDATA(J)-INT(Y)+!!\
    IF (NE .EQ. 1) O] TO 4
    X=FH(NE)-EH(NS-1)
    IF (X .LT. O.) BU IU 4
    IF (X .GT. 14.) GO TU 4
    X=FLUAT (EA(NE))/FIGAT(EA(NE-1))
    IF (X .GT. .22六 GO TU 4
    NE=NE-1
    I = 4
    Gu 10 4
    C IF THRESHOLD IS TOO LOH, RECOMPUTE IT STARTING :ITH
    C A HIGHER VALUE
    11 T=250./F|RI
    J=0
    U=0.
    DU 12 I=1,101
    IF (COATA(I) .OT. T) GO TO 12
    U=U+FLUAI'(CDATA(I))
    J=J+1
    CDIVTIINUE
    IF (J .LT. 5O) RETUR'A
    G] TU 13
    END
```

```
    SUBAOUTINE PCK(J,:A,XHT,NE)
C SUBROUTIWE PCK FINLS THE ECHO CIUSEST TO XitI AND SETS J
```



```
REAL H(10)
D=20.
J=0
DU 1 I=1,NE
A=ABS(1|(I)-X:IT)
IF*(A .OT. L) OO TL I
J=I
D=A
CunTIGUE
RETURH
ENL
BGRAP！
PROGRAY BGPAPH PRODUCES A GRAPH OF THE HEIGAT VA？IATITH DE THE
```



```
AND TND－GOF ECiG SHAPES
GEAL A（25，3），i（67）
INTEGE：B（25）， \(\mathrm{D}(25), \mathrm{TI}(12), \mathrm{BG}, \mathrm{FR}, \mathrm{T}, \mathrm{COI}, \mathrm{FF}\)
Cuvidil／DAT／A，F
DATA BLAR，STAR／1H，1！ \(1: /\)
COL \(=(3 * 3+5) \div 40.90\)
CALI IMIT（E，D，\(\therefore, F R, T, F F)\)
READ SETCING UH SHIFCH I\％，IF SET，分」 TU ？AND GRAPA HEIGIT
VS．TI：AE IF IT IS RESET，TO TO 10 A：LD GRAD THE ECHO SHAPE
CALL SHR
IF（K）1，10，2
READ STAKTIWS TIUE FOP WEIOHC VS．TIXE GRAP：A
2 R REAO 2 （6，50）II
50 FDR：MAT（I2）
C CLEAR SCREDN
CALL ZAP（25）
\(F \cdot A X=0\) ．
F：IIN＝1000．
C FIND PREjEMT TIME
CALL NFi？＇
\(J=1 T * 0 \pm 1\)
```



```
READ SHITCH SETHI！G AGAIA
If（K ．Lie．J）in？Tu 1
C SET END TIUE AFK U！？ 11 ＂IN OREATE！？FHAN SIURIMG TIME
C WHICHEVE！？IS s MALLAT？
IF（K ．Gif．J J ， 6 ） \(\mathrm{K}=\mathrm{J}+66\)
DO \(3 I=J, K\)
CALL HCHI（C，I）
IF（C ．EO．O．）UU い 3
```



```
IF（C ．GI．F： \(1 A X\) ）\(F \because \because A X=C\)
IF（C ．LT．F＇lI：F！I！\(!=C\)
CunsINuこ
CALCUIAIE RDR：MALTATIUA FACTOR
```



```
    divide t:{e hetgit ramge ImTO 25 parts
    D] 6 II=1,2',
    F:TM=F:AK-Sp
    FIt=F:MN-SP/2.
    :}=
    DU 4 I= 1,67
    F(I)=La.
```



```
    D:5 I=J,:
    CALE HGET(C,I)
    IF (C.00. 0.) CO TJ 5
    IF (C .GT. FANX) GU IT %
    IF (C .lE. FMIN) OU TO 5
    M}=1+1-
    F(4)=STAG
5 GMivimue me live OF the ganph
    HRTE(6,51) Fit,(F(I),I=1,S)
    FORMAT(1X,F5.1,07A1)
    FHAX=F)[I:
6 continue
c SETUP mid mrite uut the time axis
    Di] }71=1,1
    TI (I)=IT+I-1
    W4ITE(6,52)(TIC(I),I=1,12)
    FDH:MA(1X,12I\sigma)
    OT TO 
```



```
10 BG=30
    FF=1
C FILL ARRAYS B AND D BITH PROPER SECTION DF CDATA
    CALL BDATA
    N=2+FF
```



```
    FRI=75000./(15384.*FLOAT(FO))
    THP=FLDAT (T)*FRI
c converi data iA b AND D TD MILlivOLTS AND PUT IN rEAL ARRAY
    DO 11 I=1,25
    J=25-I
    A(J,2)=FLCAT(D(I))*FRI
    A(J,1)=FLDAT(B(I))*FRI
11 CONTINUE
    P:f=0.
C Skip parabola fit if ho main echu mas found
    IF (FF,EO. O) GO TU 12
    CALL paba(a,pי)
    KK=K+3C-1
    P!=1.5*(FLUAT(KK)+PM)
c GET TIEE ARD Clear scpeen
12 CALL TIME(I&,IS)
    C4IL ZAP(2i)
    CALL GAAPH(II,KE, I!,COL, IS,PN,THR)
    G3 TO I
    EN
```

	.title hiata					
/	These subruitines tave data frus the fugegpund procrans as					
1						
SCR=112						
INIT	0		/ Antitalization Roulicine			
	J.95*	. DA	fargueredts are set mp moy to save tive later			
	J4P	.+7				
\bigcirc						
0						
K 0						
FR						
rF	LAC*	(SCP.	תocatini scr is an unjsed register in the			
	DAC	LUC	TABLE. If CBITAI:S THE LUC UF Th' ARYAY In			
	LAC*	LnC	MHiCh The loc mf data for ggraph is kept			
	DAC	FLAG	mblag is loc of mord mhich is Sef to o on -1			
	ISZ	LOC	dDependilg din mhether an ecito was found mi dot			
	LAC*	LOC				
	DAC	KA	/KA IS LOC OF WORD CONTAINING IHDEX DF CENTER			
	ISZ	LOC	IOF MAIN ECHU in cdata			
	LAC*	LDC				
	DAC	CDATA	cdata contains loc of array cdata			
	ISZ	LOC				
	LAC*	LOC				
	DAC	HDATA	/hData contains loc if abray hdata			
	IS2	LDC				
	LAC*	LDC				
	DAC	NH	/LOC OF NUMBER OF 10 SEC . PERIODS SINCE START			
	ISZ	LOC	IDF data collection			
	LAC*	LOC				
	DAC	LIM	/LIY AND LIS CONTAIN LOCATIDN OF TIME IN			
	ISZ	LOC	minutes aidi secondos since the start			
	LAS*	LOC	AOF DATA COLLECTIOM			
	DAC	LIS				
	ISZ	LOC				
	LAC*	LOC				
	DAC	F	/LOC OF WDRD CDITAINAG \Rightarrow OF FRAMES AVERAGED			
	ISZ	LDC				
	LAC*	LOC				
	DAC		LOC OF NORD CONTAINING DNE-HOP TAPESHOLD			
	JMP*	INIT				
	. DEC					
${ }_{\text {ADATA }}$	0	THIS	Subroutine Transiers data from cdata io b and d			
	LAC*	FLAG	/STAY in this loop divill flag is set to o dr -1			
A	SZA!Sma					
	JMP	A				
	IAC					
	SNA		/IF FLAG IS -1, PUT O IN FF, ND MAIN ECHO			
	D2M*	FF				
	LAC	$(1$	/RESET FLAU TO 1			
	DAC*	FLAG				
	LAC	(-25	/PREPARE TO TRANSFER 25 'IDRDS FROM CDATA TO B			
	DAC	count	/AMPLITUDE IEAR XHT			
	LAC*	B				
	DAC	BB	LOC OF Abray b			
	LAC*	KA	/GET CEMTER OF ONE-HOP EChO			


```
    U=:%
    IF (X .LT. O.) U=-゙
```



```
    A(I,3)=Y
    :2ETURN
    EM!
    SUBMOMTINE GRAPH(M,K,I`,OUL,IS,PY,TM?)
    THIS SUBROUTIGE PRODUCES A GPAPH DF THE AVERAGE AMPILTTDE
    NEAR XYT AGD 2%XHT. IF NS ECHO IS FOHD ,GAS XHT, G=3 AND A
        MODIFIED PARAEULA IS FITTED TO TiEE ECHO AND DISPLAYED UN THE
        ORAPH, U[HEPWISE !I=? AHD NJ PARABOLA IS GRAPHED.
        K IS THE lOCATIUN OF THE MAIN ONE-HOP ECitu IN CDATA
        IM AND IS ARE THE TIUE IN UIMJTES AND SECONDS
        COL IS THE CUDE FOR THE SY:HBOL :
        PM. IS THE INTERPOLATED HEIG:TT OF THE INAIG ECHO
        THR IS THE THMESHOLD USED EY SUBRUUTINE EOHO FOR THE
        DNE-HOP [CHO
        REAL A(25,3),D(4),F(67)
        INTEGER COL
        COMHON/DAT/A,F
        DATA D(1),D(2),D(3),O(4)/1HO,1H2,1H+,1H*/
        DATA DASH, BLAN,EYE,ZEPQ,T/1H-, HH, lHI, 1HO, lHT/
        FMAK=-500.
        FMIN=500.
        FIND SINIRUY AND HAXIPGUY IN A(I,J) DO WOT COUNT THE PARABOLA
        IN FIMDING THE :INIGUM
        DO 1 I =1,25
        IF (A(I,l) .LT. FMIN) F!INM=A(I,i)
        IF (A(I,2) .LT. F!IIN) F!IN=A(1,2)
        DO 1 }J=1,i
        IF(A(I,J) .GT. FIAX) FMAX=A(I,J)
        IF(F!III) 2,3,3
        NEGATIVE MINIIUH
        CALCULATE O POSITIOM
        IY=INT (-FMIN*S./(F\AX-FMIN))+1
        IF (IY .GT. 3) GO TO 20
        C CALCULATE AMPLITUDE NDRMALIZATION FACTOR
        SP=F!&AX/FLOAT(6-IY)*.1
        G] TO.5
        LIMIT O POSITION OF MIN IS IOD NEGATIVE
        IY=3
        SP=-F\IN/30.
        GU TO-5
        POSITIVE YINIMUM
    IY=0
    SP=FPAAX/60.
    SET UP FIRST LINE
5 DT 13 I=2,40
13 F(I)=UASH
    PUT AN "I" IN EVERY 1OTH POSITION
    DO 14 I=1,41,10
    F(I)=EYE
    JZ=1Y*10+1
C INDICAIE O PUSITIOM
    F(JZ)}=2ER
```

```
C WRITE FIRST LIHE INCLUDING TIME AND HEIGHT OF ONE-FiOF ECif
    MaITE(6,4) (F(J), j=1,41), [%,ON, IS,P4
```



```
4 Con FuLLUMimG FOR EACH GF THE 25 LINGS OF THE GRAPA
    DO 16 I=1,23
c max miolcates the lengTh of the lime
    MAX=JZ
    IA IS Almlitude dF DiNE-HOP Trace
    IA=I INT (A (I, 1)+., )
C Fif IS THE CuRRESPMGDING :IEIOHT
FH=FLDAT(K+13-I)*1.5
C BLANK OUT THE LIGE
    D.7 }7\textrm{J}=1,5
    F(J)=BLA:N
    ADD O A:MPLITUDE LIHE
    F(JZ)=EYE
C ADD SYMBULS FO! EACH OF THE DTHEP TRACES
    DO a J=1, i:
    IN=INT(A(I,J)/SP+.5)+JZ
    IF (I! .LT. 0) (UU TU %
    IF (I! .OT. (AX) MX=I:
    IF(F(IM)-BLAM) 0,10,9
    If There is alrendy a symbol in that place, put a * THEre
    F(IM)=D(4)
    GOTO 8
    F(IY)=D(J)
8 % CONTINUE
C indicate thdesidold jh the tifird line
    J=INT(THR/SP+.5) +JZ
    IF (J .LT. 1) J=61
    IF (J.GT.61) J=61
    IF (J .GT, YAX) :IAX=J
    F(J)=T
16 MRITE(6,11) FH,IA,(F(J),J=1,MAX)
    RETUR:%
    END
```

ZAP
APS
$\begin{array}{ll}\text { JMP } & \text {-DA } \\ 0 & +2\end{array}$

- inall
$\begin{array}{ll}\text { LAAI } & 6 \\ \text { (}-1000\end{array}$
DAC CITI
J:
LAC (176.
Jis Phit
LA:I $\quad(-1000$
DAC CHI
HACK ISZ CNT

```
    JMP YACK
    LAC* ARG
    JMS PRNT
    J!f% ZAP
PRNT
O
DAC DUT
,WRITE 6,3,BUF.3
., AAIT 6
J:RP% PRNT
2000
0
UUT
CNT
BUF
0
O
.END
```

APPENDIX II. OPERATING INSTRUCTIONS AND A LISTING OF PROGRAM GRAPH The following procedure is used to graph the data from the digital ionosonde once the data is on paper tape. A listing of the graph program is included after the operating instructions.

1. Turn on the calculator and the plotter. Insert the tape cassette marked Ionosonde Programs, type LOADI and press EXECUTE.
2. Adjust the plotter to the size of paper used and put a black pen in the plotter.
3. Turn on the paper tape reader, insert the paper tape and press READ.
4. At the calculator, press RUN and EXECUTE. Enter the number of 10 sec periods of data on the tape. If 0 is entered, the entire tape is read. The data are stored in the magnetic tape casette in blocks of 20 min.
5. When the data are on the magnetic tape, type in a heading for the graph such as the date and time of the data. If several graphs of the same data are needed, after one has been made, type CONT 520 and press EXECUTE to return to this point.
6. Enter the limits of the portion of the data to be graphed in minutes and seconds. If 0,0 is typed in as the START and END times, all the data are graphed.
7. Type in the minimum height to be graphed. All echoes below this height are ignored. The calculator now makes one pass through the tape to determine the minimum and maximum heights and then plots an axis and the heading.
8. When the display reads PEN? change the pen to a blue one, type 0 and
press EXECUTE. The height data are now plotted for one one-hop and one two-hop echo.
9. When the display again reads PEN? change the pen to a red one, type 0 and press EXECUTE. The one-hop and two-hop amplitudes are now plotted.
10. When the display again reads PEN? put the blue pen back in the plotter, press 0 and EXECUTE. The extra one-hop and two-hop echoes are now added to the graph.


```
30 F=3
40 1-HN-N1=1
50, %=%%=0
Eb UISF "FM%"*
TG |HFUT IE
कठ dF IE>0 IHEM IGO
90 IE=14%%
LGE If NANTMGEG %= IE THEN amb
```



```
AOB IF HOGTHEN IGE
HE IF H& THEN 4EG
150 IF H上=N THEN 2e区
```



```
17017=17+1
Isb H:NAW00
190 IF H2=M THEN 220
zob rf GBECH+4-\cdots|>4 THEH Sge
218 510%
zeg IF ECS THEV 2G%
```



```
ZGEE=E-N1
```



```
२त IF I<4 THEN क50
```



```
290 15E1+I-3
306 HINamIWHLJ.NMI
```



```
20 EGTG 50, 
3% HLIMJ=ALIMJ=0
346 4%"0 50
50 IF TYE, THEN OE
GE HEST I
%% GacuE 1290
30 40T0 10%
seg FOE T=1 T0 5
40G HCT:M+17=HCI:MI
```



```
436 जmT |
440 50%1% 1236
450100T0 150
4EG FOE I=1 TG %
4% FWE J=\ T0 120
```



```
49% NE%T
```



```
51G ST#EE MATH F
%4 F=|M%
5% T|F" "M|",
```

```
E4G THFUT Y*
```



```
GE THFUT II:J:
```



```
50 MrEF "EMT"!
590 Mm|T I*,%
E%19=1246+13,10+1
EIG MEF "m|",
Geg Inmul Ms
630 IF Iv>1 THEM E5D
E4 IE=14%9
5015%1
```



```
E% @ly]=01%]=0
```



```
Eg% IF HLANME THEN 34G
FOE FOF J=1 T0 %
TME=1+.
FG F0% \=3%% T0 k+t
7%G=H[TMM
F4B IF S=| THEN FOG
```



```
FG0 [",-\]=5
TG IF S`|NE OE SME THEM Fge
```



```
7% HEMT |
S0% NE,NT I
```



```
846 T%=%-1
50 F1,4] 3
```



```
G% F=| I=| Ti゙%
950 k=1+.1
```



```
9|% GO%UE ISE%
"ed NEMT |
G% LAEEL &%,%,0口ロ"%
```



```
GGE LHEEL Cक`\%
```



```
geg fof%=1, T# 2
90 प"%| 2ด%
```



```
1016 5-%x.-%
```



```
1040 K=L+L
```



```
1WGG LMEEL &x`"HEIGHT"*
```



```
108% 15=%
Hg% GOEUE 16g%
1.6E GOTO 115G
```



```
|eg LabEm&%"Fmblatume":
1%6 15#+1
1146 TOEME 1650
IIWE NEPT L
LING MEXT %
1170 m0\e 20%6
1&% F%%T G!-1.!
1%013=%
Lam GDGUE log
1%10 FIGT 1, %5, %5y1
\2eg %T0F
LSO HWH+1
124W M=N+1
\5G IF HQNOTHEN IOGO
E60 M=1
1*%G4F IS=1 THE4 1316
```



```
1%g% F=F゙+d
130. FETMM
1310 FEH
|sem LOMD DITFF
LSB %"O |ege
```



```
15"0 M= I!
```



```
\%0 10'0 1310
```



```
1416 PLOT T, M,M,
```



```
4FELHEEL (1,47日)T
146E NEMT I
```



```
14%%=%%
149% IF E%>4 THEN 15NE
150% %=1%
1510 FOR I=0TW %%
1"eg FLaT D, %%%%|
15%0 MFLOT --5.5,-M, %
```



```
156B NENT I
15EG FORMAT F5,0!"""
```



```
1GED FLOT M, 5!|y
```



```
1G4GLGEEL &%`"TME &NNN":
1550 PLOT Bamanay
16EGLFEFL, &GO\
167G FORMMT FO.0!" HOP"
1G% FETUEH
169% प%%|% 1%46
17%40%8
```



```
1%G IF TG=% THEN IBGO
17% J=2
1740%=[4]m,M]
1%5% IF ROLK] THEN WEE
```



```
17% EOTM |E%%
|mb FEM
1790 I=-%
```



```
1Feg Y:=
```



```
1540 m"%uB 12%%
1550 GTM 17e0
1%6 N
4%% 6TTO 1B|G
A&g FEM
|%कg שETMF|
```



```
19|G EETUFW
```



```
19%E RETUPH
1940 FOR I=1 TO E
1%50k=, kw.J
1.50 5walkmamm[k]
19%G&% T=\&+1-1 T0 k+1
195% <=H[W!W]
199% IF & < = N9 THEN OgOD
```



```
"%"F%4
%日क\ |E\T \
240 Nm, I
2050.=1
Eate f%Tum,
```



```
2geg FMH% 
"G% M1s%
2|G मISF "PEH":
2110 IN"MT 13
E12g m:Tumb
```

APPENDIX III. OPERATING INSTRUCTIONS AND A LISTING OF PROGRAM SHAPE

Program SHAPE calculates the virtual height and amplitude for a reflector and provides easy methods for modifying the reflector shape to make the calculated virtual height and amplitude match the experimental data.

1. Turn on the calculator and plotter, insert the tape cassette marked Ionosonde Programs and type LOADKEYO and press EXECUTE. Put the function key overlay marked SHAPE over the function keys.
2. Press RUN and INIT (f_{0}). The calculator asks for the limits of the reflector size. If a portion of a graph produced by GRAPH is to be analyzed, a sheet of graph paper is put on the graph with the X axis lined up with the 1 owest virtual height and the Y axis lined up with the first sample point. The X coordinate of the last sample point and the Y coordinate of the highest virtual height, both in units of grid intervals are entered into the calculator. If the twohop height in grid units is to graphed, the height variation of the two-hop echo is entered next. Otherwise go to step 3.
3. Press POINTS (f_{1}) and enter the coordinates, in grid units, of key points such as relative minima and maxima which have the same height as the reflector height.
4. Points are connected with a half cycle of a sine curve by pressing HALF-SINE $\left(f_{2}\right)$. Enter the X coordinates of the two points to be connected with a half sine and press EXECUTE.
5. To connect two points with a straight line, press CURVE FIT (f_{3}). Enter 2 as the number of points and then enter the X coordinates of the two points to be connected with a straight line. A curve through
more than two points is made by specifying the number of points to be greater than two and then enter that number of X coordinates of points to be fitted. The first coordinate is the starting point of the curve and the last point entered is the end point of the curve.
6. FILL (f_{13}) is used to modify the reflector curve shape by adding or subtracting a sine-shaped segment from the reflector. The start and end points of the segment to be modified and the amount in grid units to be added are entered.
7. Place the graph paper in the plotter and press MOVE PEN (f_{12}). Press the space bar to move the pen and adjust the pen position controls until the pen moves between the origin of the graph and the coordinate made up of the X ordinate of the last sample and the Y ordinate of the maximum height. The resulting plots will be the same size as the graphed data.
8. Press PARAM $\left(f_{4}\right)$. Enter the estimated horizontal length of the reflector in km , the height of the lowest echo and the difference between the maximum and minimum virtual height.
9. Press AXIS (f_{6}) to draw and label an axis for the one-hop echo. Shift f_{6} or f_{16} draws and labels an axis for the two-hop echo.
10. Press REF SHAPE $\left(\mathrm{f}_{7}\right)$ to draw the one-hop reflector shape. Shift f_{7} or f_{17} draws the two-hop reflector shape which is twice as high as the one-hop reflector at all points.
11. Press RES HEIGHT (f_{8}) to draw the one-hop virtual height calculated from the one-hop reflector. Press f_{18} to draw the two-hop virtual height.
12. Press AMP $\left(f_{9}\right)$ to draw the amplitude of the one-hop echo. Press f_{19} to draw the two-hop echo amplitude.
13. In the case of multipath, NORM $\left(f_{5}\right)$ changes the scale factor used in graphing the reflector shape and the virtual height so that the maximum excursions in height fit on the graph. It should not be used when trying to match a reflector to a data graph because the scale size may be changes. Shift f_{5} or f_{15} does the same thing for the two-hop graph.
14. HEIGHT (f_{11}) displays the height of the reflector in grid units for any X coordinate.
```
1G EEM KE'G
QGEEM INTTHETFATMOW
```



```
#0%%=
7G ITGF "UPFER LTMETS M,":
```



```
g% Y"%%
HO MMGF "पE| STEE OF % HOF Y",
140 \NFU" Y
120 wHD
16 meM REY 1
ZE EEN INPUT FOMNTE
```



```
4E INPUT GI:'1
5% HIFNHCGNJ='M
60 E0TM S0
|WFMNEY Z
20 mEM MMLFETHE
```



```
50%=HEFNG(B)]
G%=HLye]
```



```
gatery%%
```



```
LEG MEST I
130 प#T# %%
```



```
E|EEM WINWEFIT
## MTSF"洮 mF FOMMTS",
4% INFUT N
```



```
G0 FOR I=1 T0 N
```



```
01 |H%\T\
```



```
106 U1T,M]=1
AB FO| J=% TWN
```



```
1%Q HERT I
14% पEQT I
```



```
10% 12=01%%=
```



```
\क M|T क=|क
```



```
9% 4%",
#4 |",
##%%MTM
|EM KEY 
```



```
4# WM| - #
", F1=%4=0
```



```
FE%,
```



```
1%" INW"# HE
```



```
A#E INFUT F
\:4 4, %H0
1.4% 
156 4%=%
```



```
|%%%"%dy
|क umw,
19 EMW
```



```
7@ mETuFG z
|EWMKEG II
& &E| M&F&", HEDCHTS
# प|%" "%"!
4E INFMT N
```



```
E% m"NTO
MEMFE'% |e
```



```
5%MUT 1!1.1
EQ WHT a2gbe
F!4%TM 30
1O EEN KEY 13
```



```
40 THUT &U,M,W
50 2.wFHm(0)
60 1%%2.-%1
70 T=-1%%
```



```
1WE ME,%T I
11% प"T0 %0
1: DEF FWMC?
```



```
4E FETUEW 81
MEWHEM E
"G FEM HOFMFLIFE
OQ Y=H:
4,
"10%=0
EEF%F
74 5"0m |=2 TM 255
0% =FWEO
```



```
120 4=W
1.g IF प<प" THFH 156
1.4% प":%
150 If w%| THEN 1.7日
16% F%=%
FOTH SP% THEN 190
1%% F"%%
15% MEYT I
"## प=प%-41
```



```
20.w
1G FEM NEY E
WGEM HरTS
#E FMT 1.G
44 F'口T घu, %
ED F"LOT E:口, 1, -1.
```



```
14&FLIT --4, %,"m,%
\eg LHEEL (x)T!
```



```
1.4E IF T >= U1 THEN GO
```



```
IEB IFTFFITHEN IBG
```



```
19G F゙LOT (TFP%F%,#y-1
##EFLOT --\y-1%
2|| IF T=W WHEM 2g|
```



```
2%G LFBEI ©%\
24%T=T+%|
#5g ff T <= F% THEN IBO
260 541
1EEMKEY
```



```
%ay
40 F0] I=1 TG 2EE
```



```
Fa MEvT
8% F
90 EHIN
100. =-.5+1
11% F%N
```



```
40.1=0
40 f00% I=% TG 255
5% %wFWE(E)
E% 4
```



```
106 NEXT I
110 FEW
|m
130 Im.1+1
1.40 FEM
150 4070 me
```

```
|EE| KE% G
EEEM REEULTING EEHO FMFLTTUTE
```



```
4E . % = %
```



```
150%%=10
```



```
14%1-5
## NET T
20日EF
#% N
*,5
```



```
#% IN.IN!
*E% FW
```



```
AEET FES AE
```



```
3% 4, %=W+M
40 45=w4+W+F
FE4=0
Fg=#
```



```
## TF N% THEN %%
```



```
4% ज4=%
14 IF प&% THEN 160
150
```



```
10% F=%
%U% NE%T T
```



```
20%%%%%-m
#%EN
```

```
10 WEM KE'H 1E
2Q EEM % HOF H%N
#g FLOT I:1.E5
```



```
G6 प|G" "LMEEL, ETEP GTEE IN KM %,%":
7a JMFUT %I!%1
```



```
1%M LFEEL G%T:
190 T=T"M\\
140 IFT>= 4, THENge
```



```
160 IF T":=4 THENM 180
1704=T+81
```



```
IS0 FLOT &T"F4%FFG!, ES, -1
cQu GPLIT --1,3,-1.3
```



```
2gG LMEEL &%":
240 T- T+%1
25b lF T <w Fe THEN IEG
260 54%
1: EmN KEY 1%
20 FEM HSSUMED REFLEMTOR SHFE e HOF
## I=%
40 FOE I=1 "W 2%E
```



```
TM MEYT I
OG FEM
90 5%m
1,0015.1+!
1.10 FEM
12% %1%% % 
1% FEN KE% 1%
```



```
0% =0
```



```
50 zmFMECB
60 IF M>1 THEN446
```



```
1.6 ME:%T
```

```
#%%
\% EMN
4% F%H
1.6% moT IN
1,% |=.1+1
1% F%=|
&0 MTG IGE
10%"#kE% 19
```



```
4& <%=WE
```



```
"almy,
```



```
9%%%%
|EM |!'M
```



```
14 F%=10
```



```
*)
#E NL=N
240 |E%'WT
*MEN
*) &|m
",
#%%TOM
#4 FE|
G% m0TO%40
#% |
#% F"w
```


APPENDIX IV. OPERATING INSTRUCTIONS AND A LISTING OF
THE PROGRAM TO COMPUTE LATERAL DEVIATION

This program computes the separation of the ordinary and extraordinary reflection points using the formula for lateral deviation given in Budden [1961]. The separation of the reflection points is used to find the direction of propagation of the disturbance as discussed in Section 2.6.

To run the program, turn on the calculator and printer, insert the cassette marked ionosonde programs and type LOAD2 and press execute. When the program is loaded press run and execute. Enter the ionosonde operating frequency and the critical frequency when the calculator asks for them and a table similar to Table 2.1 is printed.


```
2@ FTMEI 4
20 HC I J=H[ E ]=%=0
4E DISP "OFERGTING FREOUEHE'T IN HHZ":
SA INF|T F
GG FRTNT "OPERGTIHG FREGUEHU' ="#F
```



```
EA IAFUT F2
TA PEMT "CETTGGL FEEGUENEY =",F2
1G6 F=F%10+6
116FE=F2%16+6
12G H1=F2+FZQG.E
130 21=200
148 21=8G.E&F*F
150 E=0.5E*10+!-4%
1F0 L=-0, 5,50,5E
1%0 N2=0,54,0,5E
```



```
210 Y1=Hz*'%
204 Y=L品
2%& <=0,05
240 2=1=01
25| F0% L=1 TO 2Q
2042=2+k
```



```
200 1%=%
290% %=14%1
डG FणF I=1 TG z
315 IF % >= 1-C-I)*'THEN &eG
Se\ I=1+1-8
```



```
20% H[T]=H[T]+TL] ]*K
GE NEXT I
SE% MEXT !
```



```
40日 FOFHAT FF,z,4Fg.4.E1G.2,Fg.4
410 mT0 e50
42O IF I=1 THEN 49E
```



```
440 1=1
4% SI=HE17
460 52=2
476 H[1]=m[1]=6
4E0 GTMO S0
4SE IF I=1 THE& 3TB
```



```
5\G 
52g Y=2-5e
Sg FETHT
S4Q HETTE &SE5S%%%
```



```
501 ETOF
```

