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ABSTRACT

Accurate fixed-frequency virtual height data collected on a digital

ionosonde is analyzed to measure speed and direction of traveling iono-

spheric disturbances by matching the experimental data with virtual height

and echo amplitude obtained from a simple model of the disturbed ionosphere.

Several data records analyzed in this manner indicate speeds of 400

-l
to 680 msec- 1 and a direction of propagation from north to south. The

digital ionosonde collects virtual height data with a time resolution

of 10 sec and a height resolution of less than 300 m.
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1. INTRODUCTION

Virtual height recorders were among the first instruments used

to study traveling ionospheric disturbances. Virtual height data are

generally recorded on photographic film with a height resolution on the

order of a few km. With the availability of high speed computers for

real time data collection, better resolution can be obtained by digitizing

the output of a virtual height recorder and analyzing the data with

a computer. Besides better height resolution, computer algorithms provide

noise reduction and greater flexibility in collecting and recording the

data.

1.1 Statement of the Problem

The purpose of this work is to study traveling ionospheric

disturbances (TIDs) in the F region by comparing accurate fixed-

frequency virtual-height data from a digital ionosonde with

virtual heights calculated from simple models of the disturbances.

Horizontal speed, wavelength and direction of the disturbances

are calculated from virtual-height data. The ionosphere is modeled

as a curved reflector of radio waves. Virtual height and focusing

effects for a reflector are calculated and compared with experimental

data. The shape and size of the reflector are varied until the

calculated height and amplitude match the experimental data. The

horizontal wavelength of the disturbance is the horizontal size of

the reflector and the speed of the disturbance is the wavelength

divided by the period of the disturbance.

To determine the direction in which the disturbance is

moving, the separation between the ordinary and extraordinary
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wave reflection points is calculated. The time delay between

the appearance of prominent features of the disturbance at the

two reflection points is measured to determine the component of

speed projected in the N-S direction. The angle at which the

disturbance is propagating relative to North is the arc-cosine of the

N-S projection of the velocity divided by the speed of the disturbance.

The direction measured is either east or west of North. The

ambiguity cannot be resolved with the present equipment.

1.2 Outline of the Thesis

Chapter 2 reviews gravity wave and radio wave propagation

theory and describes how radio waves reflected from the ionosphere

are used to study gravity waves.

Chapter 3 describes the data collection system and contains

an analysis of the accuracy of the algorithm used to determine

virtual height.

Chapter 4 discusses the results of the analysis of data

by methods described in Chapter 2.

Chapter 5 contains the conclusions and suggestions for further

work.

Operating procedures and listings of the programs for collecting

and analyzing virtual height data are given in the appendices.
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2. ANALYSIS OF TRAVELING IONOSPHERIC DISTURBANCES BY

VIRTUAL-HEIGHT MEASUREMENTS

Traveling disturbances in the F region have been observed for more than

20 years. Munro [1950] used fixed-frequency virtual-height measurements to

determine speed, direction and extent of these disturbances. Hines [1959]

developed a theory of gravity waves to explain the disturbances observed by

Munro and others.

In this chapter the effects of gravity waves on the propagation of

radio waves are discussed and also how radio waves are used to measure the

properties of traveling ionospheric distrubances.

In Section 2.1 the properties of gravity waves and their effects on

the ionosphere are discussed.

In Section 2.2 the propagation of radio waves which retrace their path

after reflection from a disturbed ionosphere is discussed.

In the following sections, techniques are developed to measure the

speed and direction of the disturbance from properties of radio propagation

in an ionosphere disturbed by gravity waves.

2.1 Gravity Waves

Sound waves propagating through the ionosphere are called gravity waves

because of the effect gravity has on them. Gravity causes the density of the

atmosphere to decrease with height. This horizontal stratification causes

the propagation to be anisotropic.

A derivation of the wave equations can be found in Yeh and Liu [1972].

The dispersion relation for a gravity wave in an isothermal atmosphere is

given by
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n n
S X + Z1 (2.1){l-21 {l-2/ 2  (i- 2/W 2

a b a

where nx = k /k

n= k /k

cs = speed of sound

wa = yg/2cs acoustic cutoff frequency

wb = (y-1)1/ 2 g/cs buoyant or Brunt frequency.

The coordinates are set up with z vertical, and with k in the x-z

plane

k= w/C = Ik O  = the wave number

k and k are the components of k in the x and z directions
x z o

respectively.

y = the ratio of specific heats

g = the gravitational acceleration

For frequencies less than the Brunt frequency, the refractive index

curve is shown in Figure 2.1. For these waves, called internal gravity

waves, the phase velocity is directed downward when the waves are traveling

upward.

Waves with frequencies greater than the acoustic cutoff frequency are

called acoustic gravity waves and have an elliptical refractive index curve

as shown in Figure 2.2.

For frequencies between the Brunt and acoustic cutoff frequencies,

either k or k is imaginary. Freely propagating waves cannot have fre-
quencies in this range, called the cutoff region.

quencies in this range, called the cutoff region.
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Figure 2.1 Refractive index curve for an internal gravity
wave from Georges [1967].
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Figure 2.2 Refractive index curve for an acoustic gravity
wave from Georges [1967].



7

-l
Typical values for ma and wb at 250 km are .483 and .436 rad sec

corresponding to periods of 13 and 14.4 min respectively.

Associated with the propagation of a gravity wave is the motion of

small air parcels which move in elliptical orbits. Above the dynamo region,

a force applied on the ions by collisions with neutral particles tends to

drag them along with the air parcel but because of the earth's magnetic

field, the ions are constrained to move in a spiral path along the field

lines. Neglecting diffusion, the resulting ion velocity is equal to the

component of the air parcel velocity parallel to the magnetic field.

Electrons move with the ions to maintain neutrality.

Figure 2.3 shows the iso-ionic contours for a traveling ionospheric

disturbance observed at Arecibo by Harper [1972]. In the next section, the

propagation of radio waves in a disturbed ionosphere such as shown in

Figure 2.3 is discussed.

2.2 Radio Waves as a Tool for Studying Traveling Ionospheric Disturbances

Almost all data on traveling ionospheric disturbances comes from radio

propagation experiments. The earliest techniques relied on the time delay

of waves reflected from the ionosphere. A description of wave propagation

in a horizontally stratified ionosphere is given in Budden [1961].

For radio waves in the F region with frequencies greater than 1 MHz,

the refractive index is given by

1/2

= 1 - (2.2)2 2 1/21-T + (T 2+YL 2 )

The axis are set up with z vertical and the magnetic intensity vector B

in the x-z plane. £ and n are the x and z direction cosines of B.
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Figure 2.3 Iso-ionic contours in the presence of a gravity wave
from Harper [1972].



T = YT 2/2(1-X)

YL = nY

YT = kY

= WH/w H = IBe/mel gyrofrequency

X= ( n/w)2  2 = Ne2/Eo m plasma frequency

E is the permittivity of free space

N is the electron density

e is the charge on an electron

m is the mass of an electron
e

The refractive index has two values corresponding to the ordinary

and extraordinary polarizations. For a horizontally stratified ionosphere,

a wave transmitted vertically and reflected from the ionosphere will re-

trace its path and return to the ground at the point where it originated.

Reflection occurs where p = 0. The ordinary wave path is deflected towards

2 2
the magnetic pole and reflected when X = 1 or N = om e . The extra-

ce

ordinary wave path is deflected towards the equator and reflected when

X = 1 - Y.

Gravity waves cause the ionosphere to be nonhorizontally stratified

and waves which retrace their path are not vertically incident on the iono-

sphere. Under these conditions, the reflection conditions X = 1 and X =

1 - Y for the two polarizations still hold, but the path is deflected in

the x and y directions from the path it would take in a horizontally strat-

ified ionosphere.

The most convenient quantity to measure, relating to disturbances in

the ionosphere, is virtual height h', the equivalent height of the reflec-

tion point if the wave traveled at the speed of light c. If the time delay

between the transmission of a wave and its reception at the same point after

being reflected from the ionosphere is T, the virtual height is h' = cT/2.
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For the purpose of studying gravity waves, the ionosphere is modeled

as a curved reflector with radio waves that retrace their path reflecting

at right angles to the surface as shown in Figure 2.4. The reflector

moves horizontally with the same velocity as the gravity wave. The shape is

assumed to be constant with time and not to vary in the y direction. The

virtual height of a wave reflected from point A is the slant height from the

ground to point B on the reflector. The virtual height measured from a

fixed location will vary as the reflector moves horizontally with velocity v.

To calculate virtual height for a reflector, it is easier to think of the

reflector remaining stationary and the transmitter and receiver moving along

the ground with velocity -v.

Virtual height measurements from the digital ionosonde provide the

period and a measure of the amplitude of the disturbance directly. Several

methods for determining horizontal wavelength, speed and direction are dis-

cussed in the following sections.

2.3 Focusing of Radio Waves due to Ionospheric Irregularities

One property of a curved reflector is to focus or defocus the waves re-

flected from it. The intensity of the radio waves reflected back to the

receiver is related to the curvature of the reflecting surface. Whitehead

[1956] derives a formula to relate the amplitude of the received wave to

the curvature of the reflector using the approximation that the transmitter

illuminates the reflector with constant power per unit area. The following

derivation is similar but drops that assumption. Figure 2.5 shows the geo-

metric relation between the reflector and the transmitter. At the point of

reflection, the reflector has a one dimensional radius of curvature R. The

amount of power illuminating the reflector over an area of length J and



V
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Figure 2.4 Ionosphere modeled as a curved reflector.
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SR h

Figure 2.5 Focusing of radio waves by a curved reflector.
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unit width is focused onto an area of length L and two units wide. The

amount of power illuminating the reflector per unit area is proportional to

h2 . The mirror formula is 1/h + 1/s = 2/R. By similar triangles

JIL = s/(s-h) = R/2(R-h). The amplitude squared of the returning wave is

proportional to the power per unit area at the ground which is equal to the

power per unit area at the reflector times the focusing factor R/2(R-h).

A2 1 R (2.3)

h2 R-h

If the shape of the reflector is given by H(x), the radius of curvature

R is given by

R =2 3/2 d2H(x) (2.4)
Rdx dx2

Focusing depends on the horizontal structure of the reflector so the

amount of focusing can be used to determine the reflector shape. This is

discussed further in the next section.

2.4 Effects of More Than One Reflection Point

When the center of curvature of the reflector is above the ground,

three rays reflected from the dome-shaped reflector retrace their paths

back to their source simultaneously as shown in Figure 2.6.

For an assumed reflector shape H(x), the virtual height of a ray re-

flected from a point x on the reflector is given by

h' = H(x o ) (l+m 2 ) 1/2 (2.5)
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z

H(xo)  \

Xo X

Figure 2.6 Three ray paths exist when the center of curvature is
above the ground.



where m is the slope of the reflector at the reflection point and the

point on the ground where the ray originated is given by

x = + H(xo)m (2.6)

A program for a Hewlett-Packard Model 9830 calculator plots virtual

height and amplitude variations caused by focusing for any reflector shape.

Operation of the program is discussed in Appendix III. The average height,

peak-to-peak amplitude, horizontal size and shape of the reflector are ad-

justable. The reflector shape, virtual height and amplitude are plotted

on a Hewlett-Packard Model 9862 plotter. An example is shown in Figure 2.7.

The horizontal axis is in km. The graph can be thought of as the height

and amplitude for a stationary reflector as the transmitter and receiver are

moved in the horizontal direction. If the reflector is moving and the trans-

mitter and receiver are stationary, the horizontal axis is proportional to

time. The proportionality factor is the speed of the reflector.

If the virtual height and amplitude calculated from an assumed re-

flector shape matches the experimental data, the horizontal length of the

gravity wave is equal to the length of the reflector. The horizontal phase

speed of the disturbance is the wavelength divided by the period of the

disturbance.

2.5 Second Reflections

A ray which travels from the ground to the ionosphere and back twice

is called a second reflection or a two-hop ray. The simplest two-hop ray

path is shown in Figure 2.8. The two-hop ray is not incident at right

angles on the reflector and does not retrace its path after being reflected
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Figure 2.7 Virtual height and amplitude calculated from a reflector.
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Figure 2.8 One- and two-hop ray paths.
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from the ionosphere as the one-hop ray does. Because of this, the two-hop

ray is reflected below the height where X = 1 and X = 1 - Y for the ordinary

and extraordinary polarizations respectively. For the reflector slopes of

less than 20 degrees normally found in the ionosphere, the two-hop ray is

nearly incident at right angles to the reflector and the one-hop reflector

is used as an approximation of the reflection height of the two-hop ray.

The virtual height and amplitude for a two-hop ray can be calculated

for a known reflector H(x) in the same manner as for the one-hop ray. The

virtual height for a ray which is reflected at x is

h' = H(xo) (l+1/cos(2 tan-i (m))) (2.7)

where m is the slope of the reflector at x . The ray originates at

-1
x = x + H(x ) tan(2 tan- (m)) (2.8)

Focusing is calculated from the geometry shown in Figure 2.9. For

simplicity, instead of being reflected at the ground, the ray passes through

and is reflected from a mirror ionosphere on the other side of the ground

line. From the mirror equation 1/8 + l/w = 2/R and 1/t + 1/(2H(x o)-w) = 2/R.

By similar triangles K/J = (2H(x o)-w)/w and L/R = (t-s)/t. The amplitude of

the ray as recieved is equal to the power per unit area along J times the

focusing factor JIL.

A2  1  W t (2.9)
s 2 2H(x )-w t-s
S o
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Figure 2.9 Geometry of two-hop focusing.
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The program which calculates the height and amplitude for a one-hop

ray path, also calculates the two-hop virtual height and amplitude. Figure

2.10 shows the two-hop virtual height and amplitude for the reflector shape

used in Figure 2.7. The two-hop ray path data are used in the same manner

as the one-hop data to determine the shape and size of the reflector.

A method of determining the direction of the disturbances is dis-

cussed in the next section.

2.6 Lateral Deviation

For a horizontally stratified ionosphere, the deviation of the wave

path from vertical, the lateral deviation, is given by Budden [1961] as

dx + n 2 (1_1/2 (2.10)
(4 2 (l-X) yT4 ) + /2

The - sign applies to the ordinary polarization and the + sign applies

to the extraordinary polarization. The equation is integrated numerically

to give lateral deviation. Table 2.1 gives the lateral deviation versus

height above the bottom of the ionosphere for the two polarizations. For

this calculation the F region of the ionosphere is modeled as a parabola

12 -3with a width of 400 km and a maximum electron density of 10 m

For an ionosphere disturbed by a gravity wave, the reflection points

oscillate around the points for an undisturbed ionosphere and the separa-

tions calculated are average separations.

Since the reflection points are separated in the horizontal and verti-

cal direction, the time delay between the appearance of prominent features

of the disturbance at the two reflection points depends on the vertical

phase variation and the horizontal velocity of the disturbance. The phase
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progression for disturbances with periods greater than 25 min is downward.

Georges [1967] measured the angle of the phase front for a disturbance with

a period of 40 min at 830 from vertical. For shorter periods the angle of

the phase front decreases to 450 .

Figures 2.11a, b, and c indicate the reflection points and the phase

front of the distrubance looking west, down and perpendicular to the velocity

vector of the disturbance respectively. If the maximum for the ordinary

reflector is at the ordinary reflection point, the maximum for the extra-

ordinary reflector has a distance of D + D tan to go to reach the extra-

ordinary reflection point. If the time it takes for this to happen is T,

the projection of the velocity in the southerly direction is

V = (D + Dz tan secO)/T. The cosine of the angle 6 is the speed of the

reflector v divided by the velocity projection in the southerly direction.

cos6 = V/V = VT/(D x+D tan4 sec6) (2.11)

This can be solved for 6

- VT1 - D tan
e = cos z (2.12)

D

The angle 6 is measured either east or west of north. The ambiguity cannot

be resolved with the present equipment.

The velocity v is determined by methods described in the last three

sections. Chapter 4 contains the results of applying the methods of this

chapter to data collected by the digital ionosonde described in Chapter 3.
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3. DATA COLLECTION AND PROCESSING

The digital ionosonde, used to provide virtual height data for this

work is formed by connecting a j5W ionosonde to a PDP-15 computer through

a Hewlett-Packard Model 5610A analog-to-digital converter (ADC). A block

diagram of the digital ionosonde is shown in Figure 3.1.

This chapter describes the operation of the system. The next section

describes the basic hardware. Section 3.2 describes the algorithm used to

provide accurate virtual height data and the accuracy of the algorithm is

discussed in Section 3.3. Sections 3.4 and 3.5 discuss the PDP-15 programs.

Section 3.6 describes a digital frequency counter for the ionosonde and the

ways it is used.

3.1 Hardware Interconnections and Timing

The ionosonde contains a 20 kw pulse transmitter, a receiver and oscil-

loscopes and cameras to record virtual height data. A pulse generator

synchronizes the transmitter pulse to the 60 Hz power line and is used to

synchronize the ADC to the ionosonde.

The ionosonde transmits a 70 Isec pulse every 16.6 msec. The fre-

quency of the pulse is adjustable from 250 kHz to 20.25 MHz. The bandpass

of the ionosonde reciever is set by a switch at 10, 20, 35, or 70 kHz.

The 20 kHz setting, which gives a received pulse width of approximately

30 psec at 3 dB points, is normally used. The demodulated or video output

is connected to the ADC through a line driver and a coaxial cable. The

ionosonde sync pulse triggers the encode gate generator which generates

the encode gate signal. 300 psec after a pulse is transmitted, the encode

gate line goes to a logical 1(5 V) for 6 msec as shown in Figure 3.2.

While the encode gate signal is at "1" the ADC, if enabled by the computer,



J-5W IONOSONDE PDP- 15/30
LINE r-

DRIVERSI
RECEIVER VIDEO OUTPUT I ,/O BUS/ ADCMIXER lop I CPU

------ IONOSONDE I I
DETECTOR SYNC. I I

I ENCODE
GAT E

GENERATOR

MEMORY
VFO

VFO J L I
I IONOSONDE

BAND M FREQUENCY
TRANSMITTER PULSE I COUNTER COUNT

MIXER GENERATOR ITRANSMITTER
ENABLE

Figure 3.1 Block diagram of the digital ionosonde.

I'.



16.6 msec
TRANSMITTER -70 70sec

PULSE

IONOSONDE
SYNC. 300

j- -I 6.0 msec >

ENCODE GATE ' _ _

VIDEO OUTPUT

I I
I I

VIDEO OUTPUT I

FIRST 10 psec
SAMPLE 4 5.25 msec o -- 3.3 msec -4-* 4.75 msec --

SAMPLE AND STORE ADD DATA TRANSFER
IN BUFI IN BUFI BUF2

TO BUF2 TO CDATA

Figure 3.2 Timing diagram for the digital ionosonde.



28

samples the video output of the ionosonde at 10 psec intervals, converts the

analog voltage to a binary value and stores the values in consecutive loca-

tions in the PDP-15 core memory. The series of samples of the receiver

output are called a frame of data.

A program on the PDP-15 identifies the echoes and prints their height

and amplitude. The basic techniques for identifying echoes and measuring

their virtual height are discussed in the next section. The data collection

programs are discussed in Section 3.4.

3.2 Data Processing Techniques

A simple method of identifying echoes and determining their height is

to set a threshold and to call a series of samples greater than the threshold

an echo. The location of the largest sample in the echo determines the time

delay of the echo and its virtual height. If the Ith sample in a frame is

the peak of an echo, the time delay is T = 300 + 10 * (I-1) psec.

There are several problems with this method. Noise sometimes exceeds

the echo amplitude and, depending on the threshold level, either noise is

detected as an echo or the echo is not detected. To reduce the effects of

noise, a number of frames are averaged together.

The received amplitude at a fixed time delay after the transmission of

a pulse contains both a noise and echo signal. Over a short period of time,

the signal amplitude is constant but the noise varies in a random manner.

If the signal exceeds the noise, the average amplitude over a number of

frames approaches the signal amplitude. The signal-to-noise ratio is in-

creased by a factor of the square root of the number of frames averaged.

If too many frames are averaged, however, rapid changes in virtual height

are not detected. As a compromise, 600 frames are averaged, which reduces
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the noise by a factor of A600 or 27.6 dB and provides a determination of

the virtual height every 10 sec. It is preferable to measure the average

power or average amplitude squared rather than the average amplitude but

the PDP-15 is not fast enough to square each sample and still have time

to detect echoes and print out data.

The resolution to which the time delay is measured is + 5 psec which

gives a height resolution of only w 750'm. To increase height resolu-_

tion, the shape of the received echo is interpolated from its samples and

the center is determined more accurately. Figure 3.3 shows a typical re-

ceived echo shape and the 10 Usec sampling points. A parabola is used to

approximate the shape of the peak of the received echo which is approxi-

mately Gaussian. Using the coordinate system in Figure 3.3, the formula

for a parabola is Y = Ax2 + Bx + C. The parabola is fitted to the largest

sample and the sample on each side of the largest.

at X = 0, Y = Y2 = C

at X = 1, Y = Y3 = A + B + C

at X = -1, Y = Y1 = A - B + C

A I Y 2Y2 + Y3

SY - Y +

B= 2

C = 2

The maximum amplitude of the parabola is offset from x = 0 by a dis-

tance P and at this point the derivative of the equation for the parabola

is 0.

2 AP + B = 0
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-B Y1- Y3
2A 2(Y 1 -2Y 2 +Y3 )

The echo delay can now be determined more accurately as

T = 300 + 10(I-1+P) psec

The accuracy of this formula depends on how close a parabola approxi-

mates the received echo shape and how much noise distorts the shape of the

echo. This is discussed in the next section.

3.3 Error Analysis

The following analysis of the accuracy of the height algorithm assumes

that if there are more than one echo, they do not overlap.

If the center of the echo is offset from the largest sample by a dis-

tance of G, the error in determining the virtual height of the echo is P-G.

Figure 3.4 shows the error as a function of the echo offset G for various

echo widths. For the 30 psec wideecho, the maximum error is .125 psec cor-

responding to a virtual height error of 18.75 m. The error decreases with

increasing pulse width but, because the wider the echo, the closer the

three samples are to being the same amplitude, noise causes larger errors

for wider echoes than for narrow echoes.

To simulate the error under different noise conditions, a Monte Carlo

approach is used. Random noise with a Gaussian distribution is added to a

Gaussian shaped echo. A parabola is fitted to the largest sample and the

sample on either side and the offset P is calculated. The process is re-

peated many times to get an RMS error. Figure 3.5 shows how the error

varies with offset for a 30 psec wide echo under conditions of no noise,

50 dB and 30 dB signal-to-noise ratio. The error for less than 50 dB



180

120- ECHO WIDTH = 10 sec

E

15 psec
- 60 -

x 20 psec
0

0 - 30/.sec

0

-60
I

-120-

-180 I I I I I 
-5 -4 -3 -2 -I 0 I 2 3 4 5

OFFSET, G (Gsec)

Figure 3.4 Height error as a function of G for various echo widths and no noise.



270

240

0 210
X

180
z

0 150-

L 120-

O
90-

I 60
- NO NOISE

I 30- 50 dB

O 2 3 4 5
OFFSET, G (M.sec)

Figure 3.5 Height error as a function of G for a 30 psec wide echo and various
noise conditions.



34

signal-to-noise ratio is approximately independent of the offset G. Figure

3.6 shows the error as a function of the received pulse width for an offset

of 2.5 psec and various signal conditions. For a fixed signal-to-noise

ratio, the error has a minimum value for some range of pulse width.

Noise conditions for the ionosonde vary with frequency, time of day

and weather. Typical signal-to-noise ratios are from 0 to 30 dB. Averaging

over 600 samples adds about 30 dB to the signal-to-noise ratio. Figure 3.6

indicates that the 30 psec pulse width is near the minimum error for signal-

to-noise ratios in the range of 30 to 60 dB. The error varies from + 300 m

in noisy conditions to + 50 m for good signal conditions.

The phase of the returning echo relative to the transmitted signal and

the time delay for the echo depend on the height of the reflector. When two

echoes are received from different parts of the reflector but with nearly

equal virtual heights, the amplitudes of the two echoes add vectorially and

both echo shapes are distorted slightly. The apparent height and amplitude

of each echo are different from the actual height and amplitude if the

echoes did not interfere. The amount of change depends on the phase dif-

ference between the two echoes, their separation and their relative ampli-

tudes. The maximum changes occur when the two echoes are in phase and 1800

out of phase.

For the lower of the two echoes, the apparent height and amplitude

increases when they are in phase and decreases when they are 1800 out of

phase. For the higher echo, the apparent height decreases and the ampli-

tude increases when they are in phase. The height increases and the ampli-

tude decreases when they are 1800 out of phase. The changes in echo shape

are shown in Figure 3.7. The maximum height and amplitude changes as a
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function of the separation between the echoes for several values of rela-

tive amplitude are shown in Figure 3.8.

3.4 Collection Programs

A set of programs RPROC, HDATA, ECHO and PCK are used to collect and

print out virtual height data on the digital ionosonde. An overall flow

chart of the collection process is given in Figure 3.9.

RPROC is the main program which calls other subroutines. HDATA is a

collection of subroutines which are written in assembly language because

their functions cannot be done in FORTRAN. HDATA contains the following

subroutines.

Subroutine GO reads console switch 0 which determines whether collec-

tion continues or restarts.

Subroutine ADGET sets up the ADC to put 530 samples in array BUF1.

When the frame of data is in BUF1, an interrupt generated by the ADC starts

the interrupt service routine ADINT at the highest priority level. Figure

3.10 contains a: flow chart of the interrupt service routine. ADINT checks

for a timing error in the ADC and starts the real-time subroutine RTS at a

lower priority level. Additional operations done by RTS are not done in

ADINT because the disks need to interrupt on the highest priority level

but cannot while ADINT is running.

If a timing error occurs in the ADC or if the first sample in BUF1 is

above a fixed level indicating a noisy frame, the data on that frame is

ignored, otherwise the elements in BUFI are added to the elements in array

BUF2. After 600 frames, minus those ignored, are added together in this

manner, the data in BUF2 is transferred to array CDATA and BUF2 is zeroed

out to prepare for averaging the next 600 frames. The code used to add the
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600th frame to BUF2 and transfer BUF2 to CDATA is executed in less than

11.4 msec in order to start the ADC in time to catch the next frame of data

as shown in Figure 3.2. The code to add BUF1 to BUF2 is in straight line

form to minimize its execution time. Since this code is executed once for

each frame, minimizing its execution time provides more time for processing.

Subroutine RDATA is used to transfer control to the background until

600 frames have been added together, then data processing by RPROC continues.

A flowchart of subroutine RDATA is given in Figure 3.11. Occasionally the

ADC does not start when requested.to by ADGET. RDATA checks for this condi-

tion and restarts the collection process if it has stopped. If the data

processing by RPROC takes longer than 10 sec, the data collection and pro-

cessing get out of synchronization. RDATA checks for this condition also

and prints a warning if it occurs.

Subroutine RDAT sets up the inline code used to add BUF1 to BUF2, zeros

out BUF2 and starts the ADC at the beginning of a collection run.

Subroutine BGDAT sets up a series of words which contain pointers to

data used by the background display programs discussed in Section 3.5.

The remaining programs, PROC, ECHO and PCK, are written in FORTRAN.

Subroutine ECHO searches a copy of part of CDATA for echoes. A flow-

chart of ECHO is given in Figure 3.12. ECHO searches a region from 75 km

below to 75 km above a specified height. The region searched is wide

enough to include the ordinary and extraordinary echoes under most condi-

tions. An echo is defined as 4 or more continuous samples above a threshold

and noise is defined as all samples below the threshold. A threshold is

set initially and a new threshold is computed for each 10 sec of data.

Because of the offset in the amplifiers between the ionosonde and the ADC,
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the true zero level is not known. The sample with the smallest value is

assumed to be the zero level. The average of the noise samples is calcu-

lated and a new threshold is set at 5 times the average noise level. The

threshold adjusts to changing noise and signal conditions. If the noise

level suddenly increases above the threshold between one 10 sec period and

the next, when the average noise is calculated, no samples will be below

the threshold and an improper noise level is obtained. If too few samples

are below the threshold, the threshold is set at a high level and another

attempt is made to determine the noise and compute a new threshold.

Once an echo has been found, a parabola is fitted and the amplitude

and height are recorded. Then a modified parabola shape shown in Figure

3.13 is subtracted from the actual echo shape and the search starts again

below the location where the last echo started. This allows echoes which

are close together to be resolved.

When RPROC is started, an initial height XHT is typed in. ECHO

searches for echoes near this height and again at twice this height for

second reflections. RPROC prints out data on 3 echoes at the lower height

and 2 echoes at the higher height. The data are also put in a compact

form and stored on the disk. After the echoes near XHT are located, sub-

routine PCK is called.

Subroutine PCK looks for an echo within 20 km of XHT. If there is at

least one, the height of the closest echo to XHT is used as the new value of

XHT. This is done so that ECHO is always searching a region centered on

the location of the last echo.

3.5 Display Programs

In February 1973, a Hazeltine 2000 cathode-ray terminal replaced the

model 33 teletype as the background control device. The Hazeltine terminal
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operates on a serial current loop interface and is compatible with the

interface for a teletype. The Hazeltine terminal operates at a maximum

speed of 9600 baud or 873 characters per second as compared to the tele-

type which operates at 110 baud or 10 characters per second. The sub-

stitution required only minor modifications to the PDP-15 hardware to use

the full speed of the Hazeltine terminal.

The background clock board M452 is shown in Figure 3.14. The oscil-

lator generates an 800 Hz signal which is divided to provide 110 Hz.

Capacitor C5 is decreased to .01 pf and resistor R3 is adjusted to give

76800 Hz for the required baud rate of 9600. The TTY connector W078A does

not operate at this rate because of a 1 pf filter capacitor. After changing

this capacitor to .022 pf the Hazeltine terminal worked properly.

The Hazeltine terminal writes 5 full 74 character lines per second.

The entire screen of 26 lines can be filled in approximately 5 sec. The

Hazeltine terminal is used to provide real-time information on the opera-

tion of the data collection process and on the data being collected.

Figure 3.15 contains a flowchart of the background display programs BGRAPH,

BDATA, PARA and GRAPH. Depending on the setting of console switch 17, either

a graph of 11 minutes of virtual height data or a graph of the echo shape is

produced. An example of the virtual height graph is shown in Figure 3.16.

A starting time in minutes is typed in and then the height of the echo

picked by PCK is displayed. This graph provides a quick method of deter-

mining what the reflecting layer is doing and whether collection should

continue or not.

An example of the echo-shape graph is given in Figure 3.17. The

height and time for the one-hop echo in the center of the screen is given
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at the top on the graph. The O's represent the one-hop echo, the +'s repre-

sent a parabola fit to the one-hop echo and the #'s represent the two-hop

echo. The left-hand side of the screen has the height and amplitude of the

averaged data near the one-hop echo. If any of the symbols overlap, an *

is printed. The one-hop threshold is indicated by a T on the third line of

the graph. This graph is useful in determining whether the algorithms in

ECHO are functioning properly. It is also useful to check that ECHO is de-

tecting all the echoes and not detecting noise as echoes. In conditions of

high noise and low-signal strength, echoes can be seen on the graph that

cannot be seen on an oscilloscope monitoring the video signal from the

ionosonde.

3.6 Ionosonde Frequency Counter

A frequency counter was designed and built to measure the ionosonde

transmitter frequency. The ionosonde is licensed to operate only on the

ten frequency bands listed in Table 3.1. The frequency counter keeps the

operation of the ionosonde legal by turning the transmitter off while the

ionosonde is sweeping through frequencies not listed in Table 3.1. A digi-

tal display of the ionosonde frequency is provided in the computer room

and, with remote ionosonde controls, the ionosonde can be operated from

the computer room. With the digital input port to the PDP-15, the com-

puter reads the ionosonde frequency and by using the digital output port,

the computer can control the ionosonde frequency.

The ionosonde frequency range, 250 KHz to 20.25 MHz, is divided into

four bands, 250 kHz to 750 kHz, 750 kHz to 2.25 MHz, 2.25 MHz to 6.75 MHz

and 6.75 NMHz to 20.25 MHz, called Band I, II, III and IV respectively.

The transmitter frequency is formed in a mixer which subtracts a 4 MHz
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Table 3.1 Frequency bands on which the
ionosonde is licensed to operate

420 - 1800 kHz

2000 - 2170 kHz

2194 - 2495 kHz

2505 - 3500 kHz

4000 - 4995 kHz

5005 - 7000 kHz

7300 - 8362 kHz

8366 - 9995 kHz

10005 - 14000 kHz

14350 - 14990 kHz

15010 - 19990 kHz
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signal on Bands I, II and IV or 8 MHz on Band III from a variable fre-

quency oscillator (VFO) signal. The mixer operates in a pulsed mode so

the transmitter frequency is not continuously available and cannot be

counted directly. The counter measures the VFO frequency minus 4 or 8 MHz.

This is done by presetting the counter to - 4 MHZ (- 8 MHz on Band III)

before counting starts.

The circuit diagram for the frequency counter is given in Figures 3.18,

3.19 and 3.20. A 1 MHz crystal oscillator is divided by 400 to provide the

time base. The VFO signal is converted to TTL levels and counted for a

period of 200 lsec which provides a frequency resolution of 5 kHz. The

counter is 12 bits long, giving a maximum frequency count of 20.48 MHz.

The timing diagram in Figure 3.21 shows the relation between the preset

period and the counting period. During the preset period the counter is

preset to 63408 (47008 on Band III) and the SRFF formed by two cross-coupled

NANDs is set.

If the VFO input signal is not present, during the clear period the

counter is set to 0. If this were not done, when the ionosonde is off, the

counter would indicate 6340 8. When the computer reads a frequency of 63408,

it cannot tell whether the ionosonde is operating at 16.48 MHz or turned

off. A reading of 0 is unambiguous. If a VFO signal is present, the

counter will count during the count period, the SRFF is reset and the

counter is not cleared during the clear period. At the end of the count

period, the counter is allowed to settle for 50 psec, then the Data-Ready

signal is true for 50 psec. During this time, the count is transferred to

12 latches. The data in the latches are read by the computer through the

digital input port.
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The data from the latches are converted to 4 decades of BCD using

7 code converter read-only-memories (ROMs). The BCD data drive a frequency

display in the computer room, indicating the ionosonde frequency in 10's

of kHz.

The 10 most significant bits of the counter are used to determine if

the ionosonde frequency is in an allowed frequency band or not. The fre-

quency range from 0 to 20.48 MHz is covered in 1024 segments, each 20 kHz

wide. A 1024 bit ROM has one bit for each segment. A "1" is programmed

in the ROM for segments that are in prohibited frequency bands and a "O"

is in the other bits.

The 1024 bit ROM used in the counter is organized as 256 four-bit words.

A 4-bit data selector effectively converts the ROM into a 1024 by 1 organiza-

tion. If the output of the data selector is 1 during the Data-Ready period,

a monostable multivibrator is triggered and puts out a 33 msec pulse used

to turn off the ionosonde transmitter. If the ionosonde is in a restricted

frequency, the monostable multivibrator is retriggered every 400 psec and

stays set, keeping the ionosonde transmitter off. If the ionosonde fre-

quency is on the edge of an allowed band, because of the uncertainty of + 1

in the count, the monostable multivibrator is not retriggered every 400 psec

but once every several 400 psec periods. As long as the monostable multi-

vibrator is triggered at least once every 33 msec, it stays on and keeps the

transmitter off.

The monostable multivibrator Q and Q outputs drive 2 high current inter-

face drivers to light LED's, indicating whether the transmitter is on or off

and also drive a line which turns the ionosonde transmitter on and off. A

switch is provided to override the counter and keep the ionosonde constantly

on or off.
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4. EXPERIMENTAL RESULTS

This chapter presents an analysis of some of the data collected on

the digital ionosonde by methods described in Chapter 2.

The digital ionosonde was operated for about two hours starting

between 1300 and 1500 CST several days a week for five months. A fre-

quency of 4.1 MHz was normally used because there is little interference

at that frequency and good reflections from the F region are obtained.

The extraordinary reflection cannot be seen at this frequency and

several runs were made at a higher frequency where both reflections were

present.

On each run, the virtual height varies in a quasiperiodic manner

with a period of 10 min or more and a height change of more than 10 km

and in some cases as much as 50 km. Due to the increasing height of the

F region in the afternoon, the fluctuations are superposed on a linear

increase of virtual height. The amplitude generally fades with a period

of a few seconds because of very small irregularities in the ionosphere.

This fading is nearly all removed by the present system which averages

over a 10 sec period. Their residual effect is to produce small random

height and amplitude variations. Some of the random variation in height

is due to errors in the height algorithm described in sections 3.2 and

3.3. Large periodic increases in amplitude occur in some runs with periods

of 15 to 30 min due to focusing. Focusing is observed on 75% of the data

runs and several of these are described in section 4.3.

The multiple reflection points described in section 2.4 are shown in

33% of the runs. Section 4.4 shows examples of these.

Data taken at frequencies higher than 4.1 MHz, showing both ordinary

and extraordinary echoes are described in section 4.5.
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Section 4.6 describes some experimental data with features that can-

not be explained with the present reflector model described in Chapter 2.

In the next section, a sinusoidal reflector is used to illustrate

the effects of the length of the reflector on focusing and multipath.

Section 4.2 describes a data run in which two echoes are close

enough to interfere with each other as described in section 3.3.

4.1 Effects of Reflector Horizontal Wavelength on Focusing and

Multipath

Focusing is caused by the reflector acting as a curved mirror as

described in section 2.3. Multipath is when more than one echo is

observed from one reflector simultaneously as described in Section 2.4.

To illustrate the effects of the reflector wavelength on the occurrence of

focusing and multipath, the virtual height and amplitude for sinusoidal

reflectors of various wavelengths are calculated The reflectors have

the form H = 250 - 10cos(2fx/P) km. The average height and amplitude of

the reflectors are typical values for a frequency of 4.1 MHz. P is the

wavelength of the reflector. The amplitude and virtual height of an echo

from the reflector are calculated for one cycle of the reflector, 0 < x < P.

The horizontal wavelength of the reflector in Figure 4.1 is 500 km.

Only a small amount of focusing occurs in the two-hop amplitude and almost

none in the one-hop amplitude. The virtual height of the one-hop comes to

a narrower peak than the reflector and the two-hop height is more sharply

peaked than the one-hop height. For longer wavelengths, there is less

focusing and the virtual height is closer to the reflector height. Near

the center of the reflector, the two-hop echo experiences more focusing

than the one-hop echo for two reasons. First, the two-hop echo is re-

flected and focused twice, effectively doubling the depth of the reflector
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for the two-hop echo. Secondly, the two-hop echo has to travel twice as

far making the apparent reflector for the two-hop echo twice as high. For

long wavelengths, the transmitter and receiver are closer to the center

of curvature for the apparent two-hop reflector than the one-hop reflector.

As the reflector wavelength decreases to 450 km, the two-hop height

comes to a sharp peak and the amplitude shows a large enhancement as

shown in Figure 4.2. The one-hop height and amplitude are not much dif-

ferent from the height and amplitude in Figure 4.1.

For a wavelength of 400 km, as shown in Figure 4.3, three reflec-

tion points appear in the two-hop virtual height. The one-hop height

shows increased distortion and the amplitude shows some focusing.

For a wavelength of 300 km, as shown in Figure 4.4, three reflec-

tion points appear on the one-hop virtual height.

Except for the cases of multipath, the maximum and minimum one-hop

virtual height correspond to the maximum and minimum height of the

reflector.

4.2 Interference Between Two Echoes with Nearly the Same Virtual Height

The interference between two echoes is described theoretically in

Section 3.3. This section describes an example of this phenomenon.

Figure 4.5 is a graph of 100 min of data taken from 1931 to 2111 CST

on May 4, 1973 at 3.1 MHz with almost four cycles of a disturbance with a

period of 26 min. The two-hop echo shows four segments of focusing but

at other times the two-hop amplitude is too small to be detected. For the

first 50 min, the one-hop height has a random fluctuation of about 160 m

superimposed on the slower periodic variation. This error is within the

accuracy range of the echo detection algorithm as calculated in Section 3.3.
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An interesting feature of this record is the short-period oscillation

in the one-hop height and amplitude from 2022 to 2039. This portion of the

graph is expanded in Figure 4.6. The same feature is noted again from

2044 to 2111, but not as clearly. While the data were being taken, two

echoes very close together were noted visually, but the echo detection

algorithm described in section 3.2 which can detect two echoes close

together was not yet in use. The detection algorithm used finds only one

echo which is the echo within 10 km of the echo found in the previous

10 sec interval if such an echo exists. If more than one echo is within

10 km of its previous echo, the closest echo to the echo found in the pre-

vious 10 sec is picked and printed out. Only the lower echo was detected

except at 2023 and 20 sec when the upper echo was detected. The difference

in the virtual height of the two echoes decreases from 2022 to 2030 and

then increases.

The phase difference between the echoes changes from 00 to 1800 and

back to 00 every time the difference between their virtual heights changes

by one-half wavelength. When the echoes are in phase, the apparent height

and amplitude of the lower echo increases and when they are out of phase,

the amplitude and apparent height decreases. At 2030, the two echoes are

closest together. One minute later, the apparent height and amplitude

have gone through one oscillation and the echoes have moved one-half wave-

length apart or 48.4 m. The frequency of the oscillations increases indi-

cating that the rate of separation is increasing. At 2035, the oscillations

appear to die out. Because the height and amplitude are averaged over

10 sec, what is actually happening is that the height and amplitude are

going through one complete oscillation in 10 sec. The rate of separation
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continues to increase until the echoes are too far apart to interfere. The

same thing appears to happen while the echoes are approaching but it is

not as clearly represented in the graph.

From the amount of change in amplitude and height and using Figure 3.8,

the approximate virtual height of the second echo near 2030, where the

oscillations are slow enough that the 10 sec averaging does not distort the

oscillations, is determined and put on Figure 4.6. The number of phase

variations determines the height of the upper echo at other times. The

calculated position comes close to the one point where the upper echo was

detected. The height of this point is also distorted by as much as the

lower echo height. The detected point is within this error of the calcu-

lated echo position.

The difference between the radial velocities of the two echoes is

-i
very small, on the order of a few m sec -1, indicating that their motion is

coupled in some way. A possible explanation for the two echoes is that

the shape of the reflector is not constant in the Y direction as assumed

in section 2.3. Another possibility is that a small additional irregu-

larity exists at the same height as the reflector but displaced several

km laterally from the ionosonde antennas in the direction of propagation

of the disturbance. The irregularity is displaced vertically by the dis-

turbance and follows the height of the reflector. As the reflector slope

increases, the reflection point moves in the direction of propagation of

the disturbance and comes closer to the irregularity until, at the inflec-

tion point of the reflector, halfway between the minimum and maximum of

the reflector, the reflection point is at its closest approach of the

irregularity. This is the only occurrence of this phenomenon in five
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months of data collection but the same effect occurs when multipath gives

two echoes close together.

4.3 Data Showing Focusing

Focusing, as described in Section 2.3, is observed on three-quarters

of the data runs taken. Several of these are described in this section.

Figure 4.7 shows 65 min of data taken on May 5, 1973 at 1502 CST.

Two cycles of a disturbance are shown with a period of about 22 min. The

amplitude shows large enhancements just after each peak in height. The

two-hop echo is not included in Figure 4.7 because it is only present

twice when focusing increases the two-hop echo amplitude to a point where

it is detected. Using the calculator program described in Section 2.4,

the reflector shape that produces the focusing effects in Figure 4.7 is

determined as shown in Figure 4.8. If the overall dimension of the re-

flector is reduced to 1700 km, multiple reflection points form. If it is

increased to 1900 km, the focusing produced by the first cycle disappears.

The dimension of the reflector must be somewhere between 1700 and 1900 km.

1800 km provides a good fit to the data. The wavelength of the distur-

bance is then 900 km and the velocity is 680 m sec -i

Figure 4.9 is a graph of 83 min of data collected on November 2, 1973

at 1336 CST. Three cycles are shown with an average period of 24 min.

The extraordinary echo is detected at several points during the run. The

amplitude for the one-hop echo shows rapid fading but no clear focusing.

The height has a random variation of 630 m superimposed on the periodic

variations. Small irregularities in the ionosphere are causing some of

the random height variation because the height accuracy of the digital
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ionosonde is greater than this. Signal conditions were very good for this

run and the two-hop echo is detected for most of the run. The two-hop

amplitude shows two periods of focusing. Figure 4.10 shows the reflector

shape and the one- and two-hop height and amplitude calculated from the

reflector. A reflector 1000 km long produces the best fit to the data.

This gives a wavelength of 475 km and a speed to 396 m sec-1

4.4 Data Showing Multipath

Multipath occurs when more than one one-hop or two-hop echo is

received simultaneously from the reflector as described in Section 2.4.

This section presents and discusses several data runs showing this effect.

Figure 4.11 shows 122 min of data collected on September 7, 1973 at

1308 CST and at a frequency of 4.1 MHz. There appear to be 13 cycles of

a disturbance in the first 90 min giving an average period of 7 min. The

disturbance appears to die out and be replaced by a slower disturbance.

Two cycles at 1344 and 1354 show multipath. These are expanded in Figure

4.12. From 1344 to 1345 the two echoes near 240 km have nearly the same

virtual height and are close enough to interfere with each other as des-

cribed in Section 3.3. The echo heights in Figure 4.12 are distorted

because the two echoes are close together. The same thing happens with

the two echoes near 250 km from 1354 to 1356. The reflector which produces

these echoes is shown in Figure 4.13. The wavelength of the disturbance

is about 725 km which gives a velocity of 450 m sec -1 .

Figure 4.14 show 135 min of data taken on December 8, 1973 starting

at 1309 CST and at a frequency of 3.8 MHz. About 6 cycles of a disturbance

with a period of 15 min are shown. The ordinary and extraordinary echoes

are both recorded and also a number of two-hop echoes. The one-hop echoes
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show little focusing and no splitting. The two-hop echoes are split in

at least three places at 1328, 1357 and 1423. The two-hop amplitude is

generally too low to give a good picture of what is happening. Figure 4.15

shows a reflector shape which produces two-hop echoes similar to those in

Figure 4.14. From this reflector, the approximate wavelength of the dis-

turbance is determined to be 400 km and the velocity of the disturbance
-l

is 456 m sec-

4.5 Data Showing Ordinary and Extraordinary RefZections

This section shows how the ordinary and extraordinary echoes can be

used together to determine the direction of the disturbance. Two data

records with both ordinary and extraordinary echoes present are analyzed

in this section. The basis for the direction measurement is explained in

Section 2.6.

Figure 4.14, used as an example of multipath, has both ordinary and

extraordinary echoes. The extraordinary reflector is delayed by approxi-

mately 55 sec from the ordinary reflector which means the disturbance is

traveling roughly in a southerly direction. The frequency used for this

run was 4.8 MHz and the F region critical frequency was 7.5 MHz. Using

the program to compute lateral deviation described in Appendix IV, the

lateral deviation is computed as 9 km and the vertical separation of the

reflection points is 16.5 km. The period of the disturbance is approxi-

mately 10 min so a value of 45 deg is assumed for the angle of the phase

front of the disturbance relative to vertical. Using the formula for the

direction of the disturbance derived in Section 2.6 and the velocity of
-i

456 m sec-1 calculated in Section 4.4, the angle of propagation of the

disturbance relative to north is 19 deg. The angle of propagation is very
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sensitive to changes in the angle of the phase front. Decreasing the

angle to 43.7 deg changes the direction of propagation to directly south.

Figure 4.9, used as an example of focusing in Section 4.3, also shows

parts of the extraordinary reflector. The variations in height of the

extraordinary reflector are delayed by about 166 sec on the average from

the ordinary height variations. This means the disturbance is traveling

roughly from north to south. The frequency used for this run is 4.2 MHz

and the critical frequency is 9.5 MHz. Using the program to compute

lateral deviation, the lateral deviation is 4.12 km and the vertical sepa-

ration of the reflection points is 8 km. The period of the disturbance

is about 25 min. Using a phase front angle of 45 deg, and assuming the

disturbance is traveling directly to the south, the projection of the

-l
velocity on the north-south axis is 73 m sec which is much slower than

-1
the velocity of the disturbance calculated as 396 m sec- 1 in section 4.3.

The projection of the velocity on the north-south axis should be larger

than the magnitude of the velocity or equal to it if the disturbance is

traveling due south. A value of 82 deg for the phase angle is required

to make the projection of the velocity equal the magnitude of the velocity.

This is very close to the angle of 83 deg measured by Georges [1967] for

a disturbance with a period of 40 min.

4.6 Data Showing Unusual Features

Several data runs contain features which cannot be explained with

the present reflector model described in Chapter 2.

Figure 4.16 is a graph of 125 min of data taken on November 17, 1973

at 1340 CST at 4.8 MHz. The amplitude of the one-hop echo is very high

and during the first 60 min of the run, the ADC sometimes is saturated.
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An ordinary and extraordinary reflection are present and the ordinary two-

hop echo is also observed. About 11 cycles of a disturbance with a period

of 10 min is observed. The amplitude of the disturbance is below normal

and because of the saturation of the ADC, the shape of the disturbance is

not clear. The two-hop echo shows segments of focusing which correspond

to peaks in the ordinary one-hop height but for the most part, the ampli-

tude is too small to get a good picture of the two-hop height variation.

An interesting feature of the two-hop height is the echo which in-

creases linearly in height. The amplitude of this echo increases slowly

until about 1440 and then decreases. The amplitude is very steady, showing

no signs of fading. The echo is first picked up at 1359 and 20 sec at a

height of 397.5 km and increases in height beyond the detection range of

ECHO at 1502 and a height of 535 km. The low height of the echo from 1400

to 1430 implies that it is not a two-hop echo since there is no one-hop

echo at one-half this height. The amplitude is very constant and higher

than the two-hop echo amplitude when it is not focused. This signal could

be a type of noise reported by Gerson [1962] which he calls 8 type sweepers.

The signal could be caused by another pulse transmitter operating at nearly

the same frequency and synchronized to a power line with a slightly dif-

ferent frequency to account for the changing time delay relative to the

ionosonde transmitter.

Figure 4.17 shows 93 min of data taken on December 1, 1973 starting

at 1310 CST at a frequency of 4.1 MHz. A few cycles of a disturbance with

a period of about 20 min are shown. A few extraordinary echoes are also

detected. The two-hop echo is present for most of the run. An unusual

feature of this record is the second two-hop trace starting at 1417 and
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increasing in height until the end of the run. This trace is similar to

the one in Figure 4.16 but it is not as straight and does not start as far

below the normal two-hop height. The amplitude of the echo is approximately

constant for the 25 min that is recorded. It also starts too low to be a

two-hop echo. This echo appears to be associated with one cycle of the

disturbance and it could be that this is a multipath phenomenon which can-

not be explained with the present reflector model.

Figure 4.18 shows 122 min of data taken on October 10, 1973 starting

at 1250 CST at a frequency of 4.7 MHz. This graph clearly shows several

examples of multipath. There is very little fading in the amplitude and

the random height error is less than 200 m. Focusing can clearly be

seen on each cycle of the disturbance. The two-hop echo also shows

focusing but for the most part the two-hop echo is too weak to be de-

tected. A few extraordinary echoes are detected. At this frequency and

on the day the data were taken, the extraordinary echo is below the

ordinary echo. The exact shape of the multipath echoes cannot be recon-

structed with the present curved reflector model. All multipath echoes

using the current reflector model have some form of X or crossover which

is not present in Figure 4.18.
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5. RESULTS AND SUGGESTIONS FOR FUTURE WORK

In the previous chapters, a system for collecting accurate fixed-

frequency virtual-height data and methods for analyzing the data to

determine speed and direction of traveling ionospheric disturbances are

presented. Virtual height is measured with a time resolution of 10 sec

and with a height resolution of less than 300 m and in some cases as

little as 50 m. Five months of data from the digital ionosonde shows

quasi-periodic height variations on all data records with periods of 5

to 30 min and amplitudes of 10 to 50 km. Focusing is apparent on 75%

of the records and multipath is observed on 33% of the records.

The horizontal wavelength of the disturbance is determined by

matching virtual height and amplitude calculated from an assumed re-

flector shape with the data from the digital ionosonde system. Several

data records analyzed in this manner indicate wavelengths from 400 to
-i

900 km and speeds of 400 to 680 m sec -1. The direction of the distur-

bance is determined by measuring the time delay between the appearance

of prominent features of the disturbance at the ordinary and extra-

ordinary reflection points. Two records analyzed in this manner indicate

that the disturbance is traveling approximately due south.

To graph the data from the digital ionosonde on the plotter, large

amounts of paper tape are punched out on the PDP-15 and generally used

only once to make a graph of the data. The partial reflection experiment

and presumably future experiments will collect data on the PDP-15 and

graph it on the plotter. The paper punch on the PDP-15 occasionally makes

errors in punching the tape and the paper tape reader connected to the

calculator also makes occasional errors in reading the tape. The tape
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reader also has no convenient way of handling large pieces of paper tape.

For these reasons, another method of transferring data between the PDP-15

and the calculator is desirable. A magnetic cassette tape unit could be

attached to the PDP-15 through the digital input-output port. This would

eliminate the need to use paper tape for transferring large amounts of

data. It would be necessary to find out the format used by the calculator

in writing on the cassette tapes and program the PDP-15 to write tapes

in the same format.

The frequency counter described in Section 3.6 makes computer control

of the ionosonde frequency possible. It should be possible to switch the

ionosonde between several frequencies to get a vertical profile of the dis-

turbance. The frequency counter also simplifies writing a program to take

digital ionograms.

To investigate the unexplained data and increase the accuracy of the

wavelength measurements, ray tracing could be used with a model of the

ionosphere as disturbed by gravity waves. Clark [1970] develops a com-

puter model of the ionosphere disturbed by gravity waves and a set of

differential equations for ray tracing by Haselgrove 11963] is implemented

on the HP-9830 calculator. A data collection program that takes continuous

digital ionograms or one that takes an ionogram every few minutes and

fixed frequency virtual height data at other times could be used to

determine the electron density distribution.

A first step in improving the data from the digital ionosonde is to

add phase measuring capability by adding two synchronous detectors to the

ionosonde. The computer, using the digital output port sets the height

at which two sample-and-hold circuits sample the output of the synchronous
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detectors. After the ADC finishes sampling the magnitude of the ampli-

tude as it does in the present system, the two sample-and-hold voltages

are multiplexed into the ADC input and sampled.

A further improvement is to measure the angle of arrival of the echo.

Two more antennas, two more receivers, four more synchronous detectors

and four sample-and-hold units would be required. Since the computer can

rapidly change the height at which the sample and hold circuits sample,

if there are more than one echo, a different echo can be looked at with

each transmitter pulse. The direction of propagation of the disturbance

is obtained directly and unambiguously from the angle-of-arrival

measurement.
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APPENDIX I. OPERATING INSTRUCTIONS FOR THE DIGITAL IONOSONDE AND A

LISTING OF THE DATA COLLECTION AND DISPLAY PROGRAMS

The following procedure is used to operate the fixed frequency data

collection system. A listing of the programs is included after the

operating instructions.

1. Turn on Hazeltine 2000 video terminal and the PDP-15 computer.

Press the ONLINE button on the Terminet 1200 TTY. The address

switches on the PDP-15 should be set to 001118. Press STOP and

RESET at the same time. Then press START. The following should

appear on the foreground TTY.

FKMI5 V3A

$1

If not, see the procedure for cold starting the PDP-15 taped next

to the computer console.

2. Turn on the encode gate generator and monitor oscilloscope.

Disconnect the coaxial cable from the PR receiver to the ADC input

and connect the cable from the ionosonde video attenuator to the

ADC input. The cable from the PR encode gate generator is simi-

larly disconnected from the ADC encode input and replaced with the

cable marked IONOSONDE ENCODE PULSE.

3. Mount the tape marked Ionosonde Programs on tape unit 2. At the

foreground TTY type the underlined portion of the following.

$}N 2 cr cr means press the CARRIAGE RETURN

$}A DT2 -4, -5/DK2 2 cr key

$}MPOFF cr

$}SHARE cr
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$}GLOAD cr

FGLOAD V2A

$}PROC,HDATA esc esc means press the ESCAPE key

At the background console type the following.

BKM15 V3A

$}A DT2 -4,-5 cr

$}GLOAD cr

BGLOAD V2A

$ }BGRAPH,BDATA esc

4. At the ionosonde, turn on the power supply for the line drivers and

the monitor oscilloscope. Turn the RECORDING START/INTERVAL SECECTOR

switch to manual, turn the camera switch off and turn the data

oscilloscope power supply off. Run one sweep to determine Fof2 and

then set the frequency as desired. Reduce the transmitter power to

save tube life as far as is consistant with good echo amplitude.

5. To start the collection programs, set console switch 0 to 1 and

switch 17 to 0 and type the following.

OPERATION

0 cr

HEIGHT

APPROX ECHO HEIGHT cr

The approximate height is determined from the monitor scope. The

TTY will print the echoes within 75 km of the height selected. The

shape of the first echo printed is displayed on the Hazeltine. When

the exact height has been determined, set console switch 0 to 0 and

wait until OPERATION is typed on the TTY. Set switch 0 to 1 and type
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the following.

OPERATION

1 cr

HEIGHT

ACCURATE ECHO HEIGHT cr

FILE NAME

XXXXX XXXX cr

Where the X's can be any printing characters or spaces such as the date

and time. The program will type out a heading. Write in the operating fre-

quency and the critical frequency. To stop the data collection, set switch

0 to 0.

6. To transfer the data stored on the disk to paper tape, type the

following on the foreground TTY.

+B+C

FKM15 V3A

$}A PPO 4/DK2 5 cr

$}PIP cr

PIPBF V14A

>T PPO+DK2 XXXXXX XXX (A) cr

To transfer the data to magnetic type, type the following.

+B+C

FKM15 V3A

$}A DT2 4/DK2 5 cr

$}PIP cr

PIPBF V14A

>T DT2+DK2 XXXXXX XXX (A) cr
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XXXXXX XXX are the same 9 characters typed in for the file name in

step 5 but with the space after the 6th character instead of the 5th.
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PROGRAM LISTING

C RPROC FIXED FREOUENCY DATA PROCESSING PROnRAM
REAL HDACA(600),E(10), iT(b),FNA;E(2),SB(2)
INTEG'It CDATA(530), f(024), EA( 1),IA(5)
INTEUEi TO,TI ,T2, F- ,F I,,OP, ,CUL,ALT,DT

C ARRAYS
C CDATA CUTA I:S THiE AVEPAJE 9F 600 FRA'ES OF DATA
C T IS USED Tu CONtVERTr ADC NJU-:-ERS TO 6IilNAY
C HDAfA C:JTAINS THlE HEIHT UF TilE :iAIi ECHO PICKED BY PCK
C FJLR EACH 10 SEC ITiERVAL
C El AND EA CO,4TAIN THE HEIGUHT AND AM.PLITUDE OF UP TO 10
C ECHOES DETECTED BY ECi'H
C HT AliD IA CO;W'AIN i HEIGT IAND AMIPLITUDE OF UP TO 3
C ONE-HOP AN 2 TN'U-:-iP ECHOiES THAT ARE PRINTED AND
C STORED 9A THE DISK
C FiA..E IS THE iA'.E OF THE FILE USED TO STDORE HEIGHT AND
C AMPLITUDE DATA. THE FrFr.,T FUR IiPUTING FIAME IS XXXXX XXXX
C NHERE X IS AIHY PRINiTIi.NG CHARACTER OR SPACE
C SB3 C3OTAINS " " AND "*", ' A * IS PRIiTErD 'iHEAN MORE ECHOES
C ARE DETECTED THAN CAN BE PRINTED
C ---------------------------------------------

C VARIABLES
C TO IS lTHE TiRESHOLD USED BY ECHO
C Ti AND T2 AIPE THE O3NE-HUP AND Tv;jI-HlOP THRESHOLDS
C FI IS THE NUMBER OF F.RA.:ES IGNORED DUE TO NOISE 0' DUE
C TO ADC TIMING ERRORS
C dG IS THE HEIGHT OFFSET DUE TO THE 30 iUSEC ENCODE GATE DELAY
C DT IS THE .DAT ASSIGHfENTf OF A DISK
C COL IS USED TO PRINT ";"

C ALT IS USED TU END A LINE WITH AN ALT.iODE WHICH SUPPRESSES
C THE INDR-':AL CARRAGE RETURN

CO :MMI/DATAS/C DATA, BG,TO, FRI
COMMDiO/D rS/T, iDATA
DATA SB(I),S3(2)/IH ,1HI*/
FR=600
OT=2
BG=30
IFLAG=I
ALT=((7*8+6)*R+4)*512
COL=(3*3+5 )*4096
FRJ=75000./1 6334.

C SET UP TABLE TO CONVERT ADC NUMBERS TO
C INTEGERS IN THE RANGE 213 GO -218

DO 1 1=1,512
X=FLOAT(I-I)*32./75.
J=INT(X)
IF (X-FLOAT (J) .GT. .5) J=J+1

I T(I)=J
DO 2 I=513,1024
X=FLUAT(1025-I)*32./75.
J=INT(X)
IF (X-FLOAT(J) .GT. .5) J=J+I

2 T(I)=-J

100 'lRITE(6,50)
50 FORMAT(10HI OPERATION)
C INITIALIZE TiiREiSHOLD USED IN SUBROUTINE ECHO.

T1=10000
T2=10000
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C DATA FOR 'ACKGIO'UND P' UGRA.{
CALL bGDAT( IFLAU,K :'KK,CDATA,HDATA,NU, I,IS,F,TI)
READ(6,51) OP

C OPERATION = 0 PRINT ALL ECH'OES FOUNID NEAR XiT
C = I LUCK FOR ECHOES NEAR XMIT AND 2*XHT

C PRINT ECHU HEIGHT AND AMPLIfUDES AND STORE DATA
C ON .DAT 2 THIS DEVICE SiHOUL)D . E A DISK
C A DECTAPE TAKES TOU LONG
51 FORAAT(I14)

WVPITE(6,52)
52 FOR IAT(7H iEI rIGHT)

READ(6,53) XHT
53 FOR-IAT(F5. I )

IF(OP .EO. O) GO TO 3
,RITE(6,54)

54 FORMAT(10H FILE NAP.E)
READ(6,55) FNA'.!E(I ),FNA'E(2)

55 FORMAT(A, I X, A4)
CALL ENTER(DT,FNAME)

C ONE EXTRA LINE_ MUST BE ADDED TO THE BEGI',IINING OF THE'FILE
C AND TWO AT THE END FOR THIE HP 9830 GRAPH PROGRAM TO
C WORK PRUPERLY

WRITE(DT,64) 0,600,0,0,0.,0,0.,0
C WRITE HEADING

WRITE(6,56)
56 FORMAT(IX//IX,4HDATE,20X,10HFREQ (MHZ),20X,9HCRIT FREQ///

115X,5HI HOP,28X,5H2 HGP/22H TIMIE FR HOT AMP,
224X, 9HHGT AMP)

C ARGUEMENTS FOR RDATA
3 CALL RDAT(T,CDATA,FI)

NH=O
C--------------------------------------- --------------

C BEGINNING OF DATA COLLECTION
200 CALL Gn(LL)
C LL=I IF SWITCil 0 IS SET
C =1 IF SWITCH 0 IS RESET

IF (LL .EO. 0) G0 TO 20
C NH COUNTS # OF 10 SECO;.ND PERIODS SINCE START

Nii=NH+
C IT IS RESET AFTER 100 MIN

IF (Ni-i .GT. 600) N!H=1
C IM AND IS ARE THE TIME IN MIN',,I4UTES AND 10IS OF SECONDS

I'=(NH-1 )/6
IS=NH-I -I"*6

C ',AIT FOR ADC INTERiRUiPT RO!JTIHE TO FILL CD\T4
CALL RDATA
F=FR-FI

C CALCULATE FACTOR TO CONVERT NUMIBERS IN CD,T TO MII.LIVOLTS
FRI=FRJ/FLOAT(P)
IF (UP .EO. I) 'J TO 30

C------------------------------------------------------
C THE FOLL' ING SECTIUN PiRI NTS ECHU HEICITS FODND) ,EAR
C XHT. IT IS USED TO (ET AN ACCURATE IIJH FR STARTI:NO TIL
C DATA COLLECTIn

IX=INT(XifHT*2./3.)-O+I
TO=T 1

C IX IS THE'- CENTHE OF THE REGIO:I IN CD tTA FHAT IS SEARCHEi)
C F'.)O ECHO!ES

CALL ECli(IX,.NEEHEA)
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TI =TO
IF (N- .EO. 0) GO TO II

C. LOOK FOR THE LARGEST ECHO
L=I
DO 10 I=1,NE

10 IF (EA(I) .GT. EA(L)) L=I
C CENTER TiE BAC,(G;. OUND EClI SHAPE GRAPH (-N THE HIGIEST ECH1

KKK=INT(EH(L)--k2./3.+.5)-B+I
HDATA( iiH ) =EH(L)
IFLAG=O
4RITE(6,57) I',COL, IS,F,(EH( I), 1=1 ,NE)

57 FORMAT( IX, I2,AI ,II, HO G, 14, OF6. )
GO TO 200

C NO ECHUES FOUND
11 KKK=IX
C START THE BACKGROUND ECHO SHAPE PROGRAM, DO NOT FIT PARABULA

IFLAG=-1
4 NRITE(6,57) I ,COL,IS,F

GO TO 200
C---------------------------------------------
C IF OPEFATIUN = I, CLOSE DATA FILE
20 IF (OP .EO. 0) GU TO 100

I=-I
WRITE(DT,64) 1,600,0,0,,0.,0,0.,0
RITE(DT,64) 1,600,0,0,0.,0,0.,0

CALL CLD) E (Df)
GO TO 100

C---------------------------------------
C DATA COLLECTIOn
30 I X= I Tff (X iT*2. / 3. ) - !+ I
C V.RITE FIRST PART OF LINIE. ALT SUPPRESSES CARRAGE RETURN

WRITE(6,5F) I",CO!.,IS,F,ALT
58 FORMAT(IX,I2,AI ,II,IiO,4,4,IX,A)
C ZERDO OUT HEIGfHT AND AMPLIT"UDE AR1HAYS

DO 31 I=1,5
HT(I)=0.

31 IA(I)=0
HDATA( JH)=0.
LL=O
TO=f I

C SEARCH FUR ECHIJ'S hEAR XHT
CALL ECHO( IX, N, EH,EA)
T1 =TO
IF (NE .EO. 0) GO TO 46
FI li) ECiiin C "LOSST TU XHT
CALL PCK(J,EH,XilT,:IE)
K=1
IF (J .EO. 0) (,' T 32

C MAIN ECHU FOUii)
X=EHi(J)
HT( 1 )=X
IA(1)=EA(J)
EA(J)=- I 00
:KK= I 'T ( X*2./3.+.5) -BG+ 1

C iN'JE XHT
XHl'=X

C SAVE HFIGHT FOR HEIGHT VS. TIME GR!?AP!l
IHDATA (NH) =X
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C START BACKGROU:D Gi'APi{ PCOGRA"
IFLAG=O
K=2

C ARfRANiGE OTHER ECHnES If! JRDER OF THERE AIPLITUDES
32 0j 34 LL=K,J

IF (1E .LT. LL) rO TO 35
I=1
DO 33 J=I,NE

33 IF (EA(J) .GT. LA(I)) I=J
HT( LIL) =E( I)
IA(LL)=EA( I)

34 EA(I)=-1000
LL=4

35 LL=LL-1
C PRIiT OUT CNE-HJP ECHOES ANiD THEIR A'PLITUDES
C IH+ SUPPRESSES LINiE FEED AT THE START OF A LINE

DJ 36 I=I,LL
36 ',RITE(6,59) HT(I),IA(I),ALT
59 FO .iAT( I +, I X,F6.2,14,AI
37 J=2
C IF THERE ARE "'UE THAW 3 ONE-HOP ECHJES, PRINT . *

IF (NE .LE. 3) J=1
WRITE(6,60) S(J),ALT

60 FUIORAT(IH!+,2A )
IX=I IT( XHTl*4./3. ) -G+1
L=4
TO=T2

C LOiK FOR TWO-RHP ECHOES
CALL ECHU(IX,1,E2,Ei,EA)
T2=TO
IF (4E2 .EO. O) GO TO 41

C SPACE OVER TO f:i[U-HOP COLU'MN
L=(3-LL)* 1
VIRITE(6,61 ) (Si3(1),I=1,L),ALT

61 FOR.IAT(IH+,5OAI)
C ARRAINGE fTiO-HOP ECHOES INft ORDER OF THEIIR MI'.PLiUDES

DO 39 L=4,5
IF (NE2 .LT. L-3) GO TU 40
I=1
WD 48 J= 1,NE2

48 IF (EA(J) .GT. EA(I)) I=J
HT(L)=EH(I)
IA(L)=EA(I)

C PRINT UUT TVWO-HIUP ECHO HEIGHT AND AIPLIT'JDE
NiRITE(6,59) HT(L),IA(L),ALT

39 EA(I)=-1000
L=6

40 IF (NE2 .LE. 2) GO TO 41
C END LINE WITH A * IF TH;IERE ARE :IORE TiHAN 2 'W'O-HiiP ECHOES

VIRITE(6,62)
62 FORMAT(2,i+*)

GO TO 42
41 IR ITE(6, 63)
63 FORHMAT(2iH+ )
C ELIMINiATE SPACES IN ARRAY IH AND HT
42 L=L-4

Di. 43 I=I,L
J=LL+I
K=3+I
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HT(J) = I' (K)
43 IA(J) = A(k)

L=L+-LL
IF (L .GE. 5) GU3 TO 45
J=L+l
DO 44 I=J, 5
[HT(J)=0.

44 IA(J)=O
C STJUE DAfA UN .UAT 2
45 ,RITE(DT,64) i,F,L,LL,(H (I),IA( ),I=l , 2)
64 FORMAT( IX,13,14,I2,I2,2(F7.2, 4))
C IF THERE !!'JRE TRAH 2 ECH!:ES TOTAL, STORE THE REST
C UN THE iEXT LINE

IF (L .LE. 2) Si TO 200
WRITE(DI,65) (HT(I),IA(I),I=3,5)

65 FOW'AT(lX,3(F7.2,I4))
GO O0 200

C NO ECHULES FOUND, GRAPH A.4PLITUDE :iEAR4 XHT BUT DC AOT
C FIT PARA'3OLA
46 KKK=IX

IFLAG=-1
GO TO 37
END

.TITLE RDATA /MACRO SUBP CRA'MS FUR RRPROC

.GLOBL RDATA, RDUT, 3GDAT, .DA,GU

.DEC
NS AM=530
fH-50
FR=600

.OCT
CP=204
SCR=112
TT=6

GO 0 /SET 51S TO I IF DATA S:IIfCH 0 IS SET
JMS* .DA / 0 IF DATA SIIflH 0 IS 'ESET
JM.P1 .+2

SN'I 0
DZMl*' SN
LAS
SPA
ISZ*- S:
JP* GO

RDAT O /PARA' .ETERLS FOR DATA COLLECTION
J,!S* .DA
J.P .+4

T 0 /LOC OF LJC OF ARRAY TO CJNVERT ADC ;-S TO SIN t-S
BUF3 0 /LOC rlF LUC OF AVERAJED INTEGER DA-TA
I 0 /LOC OF # OF FRAM.ES IO:l;i

.INIT TT,I,RDAT
DZM,* (CP /FOREGROUND IS ^C CO;DFIN',ER
LAC* T
DGAC T /PUT LOC OF ARRAY T IN T
LAC* BUF3 /PUT LOC OF A!RAY CDATA IN BUF3
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DAC BUF3
LAC (NSAM *3 /SE'T UP CODE TO TAKE ADC DATA FRO'1 3UFI
PAL /CUNVEirT IT ftO INTEGWERS IN THE RANGE 21 b
CLX /TO -218 AND ADD IT TU BUF3
LAC T2 /STRAIGHT LINE CODE IS ;NEDED TO ACHIEVE ;ISiGH

A DAC T2,X /SPEED
IAC
AXS 3
J!AP A
CLX
LAC T2+1

B DAC T2+I,X
IAC
AXS 3
JMP B
CLX
LAC T2+2

C DAC T2+2,X
IAC
AXS 3
JMP C
LAC (NSAM /ZERO OUT BUF2
PAL
CLX

D DZ'1 BUF2,X
AXS I
JMP D
LAC (-FR /SETUP NU.MBER OF FRAMES TO BE AVEAGED
DAC F
LAC (I /SET FLU TO 1, SET TO 0 NHEN 600 FRA"'ES HAVE
DAC FLG /BEEi' AVERAGED
DZM FIG /ZERO UUT # OF FRAMES DISCARDED AS TOO NOISY
J.IS ADGET /START A TO D CONVERTER
JM).P* RDAT

BGDAT 0 /DATA FOR BACKGROUND PROGRAMS
JMS* .DA
JMP .+12

FLAG 0 /LOC OF 4ORD SET TO ;0 VHE: AN ECHO HAS BEEN FOUND
K 0 /CENTER OF !MAIN ECHO
CDATA 0 /ARRAY OF AVERAGED DATA
HDATA 0 /ARRAY OF HEIGHT VS TI.ME DATA
NH 0 /LOC OF NUMBER OF 10 SECOUD PERIUDS
IM 0 /LOC OF TI'ME IN MINUTS
IS 0 /LOC OF TIME IN SEC ONDS
FRI 0 /LOC OF AMPLITUDE N':lR*''ALIZATION FACTOR
THR 0 /LOC OF I HUP THREShJLD

LAC* CDATA
DAC CDATA
LAC* HDATA
DAC HDATA
LAC (FLAG /LOC SCR Ii UNUSED REGISTOR IN .SCU,,' TABLE
DAC* (SCR /UGD PR;OG LliOKS THAL TU FIND LOC OF FLAG
JMP* tBODAT /AND OTIl;.:R DATA

RDATA 0 /MAIT FO'; ALL FRA'.ES T ; 3E COLLECfED
LAC F
PAX
LAC FLG
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SZA
JiP E
.NAIT TT /ALL 600 FRAMES COLLECTED BEFoRE PROGRA'. GrnT Tfl
.NlRITE TT,2,"'SG2,6 /THIS POINiT, SLUOI PROC, TI"E SCALE IS IFF

J'P H
E PXA /ALL 600 FRAU(ES J43T COLLECTED YET

TAD (10 /IF THERE ARE LESS THIALN 10 FRAM'.ES LEFT TO BE

SM A /AVERAGED IN, GO TO Ai AiN LOOP UNTILL ALL
JMP G /HAVE BEEN AVERAGED
DAC .+4 /rTiiERPISE START TIMR FOR (F-10)/60 SECrDNDS

.T.IMER O,TINT,0 /AND GIVE TI"'E TO BACKG I'JND

. IDLE
TINT 0 /RETURN HERE -'M1HEN TI'ME ELAPSES

DZM TINT
G LAC FLO /SHOULD TAKE 1/6 SEC TO FINISH COLLECTION

SZA /IF TIME IS UP CONiJINlUE
JM:P J /OTHER VISE GO TO J

H ISZ FLG /RESET FLAG
DZM DIE /ZERO CUT DIE, ADC WO1RKED 0"
LAC TFIG /TRAJSFER FRAMES IGNOiRED
DAC* I
J"P* RDATA /RETURN

J LAC (-I
DAC DIE
.TI!MER 60,DEAD,O /START TI'.MER FOR I SECOND

L LAC FLG /LOOP UNTILL ALL FRAES HAVE BEEN COLLECTED
SZA
JMP L
JMIP iH

DIE 0
DEAD 0 /IF I SEC TIER HAS ELAPSED AND ALL FRAMES ARE

ISZ DIE /COLLECTED, DIE=O, RETURN
SKP /IF ALL FRAM',S HAVE .,OT BEEN COLLECTED, DIE=-I

JM.P Mf /THE ADC FAILED TO START ,iHEN CO'MMANDED TO

.RLXIT DEAD
M DZM DEAD

LAC (NSAM /PREPARE TO RESTART ADC
PAL /ZERO OUT BUF2
CLX

N DZM BUF2,X
AXS I
J.AP N
LAC (-FR
DAC F
LAC (1
DAC FLG
DZM FIG
JMS ADGET /RFESTART ADC
.!IAIT -T /PRINT ERROR MJESSAGE
. RITE TT,2,!MSGI,12
J.iP SW+ I /RETURN TO RPROC

MSGI 2000 /ERROR 'ESSGES

.ASCII 'ADC DIED'<I5>
VSG2 2000

0
.ASCII SP'<I5>
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/ ADC INITERFACE INSTRUCTIOS
AD'I=703124 /R ITE INITIALIZE
ADSO=703701 /SKIP ON OJVEPFL).'I
ADST=703721 /SKIP UN TI ING ERlUH
ADCO=703704 /CLEAR UVE iFLO'
ADCT=703/44 /CLEAR TI!MING ERUR FLAG
.SETUP=I15
.SCUM=100
AD;CH=26
ADCAR=AD','CR+ I
ADGET 0 /ADC SERVICE ROUTINE

JMP ADFST /FIRST TIME THRU J!0 fO AJFST
DAC* (AD;iCR) /PUT NUM,3ER? OF SA'IPL!ES TO i3E COLLECTED IN LOC 27
LAC (BUFI-1 /PUT LUC OF BUF1 IN LOC 26
DAC* (ADCAR)
ADWI /START ADC
JMP* ADGET

ADFST LAC* (.SETUP)
DAC
J?..S* .- I
ADSO
AD I NT
LAC* (.SCO+5 I

REALTP DAC
LAC* (.SCOIA+b4

CALL4 DAC
LA -NSAM
DAC ADGET+1
J'P ADGET+2

ADINT 0 /ADC IJNTSUPT ROUTIN
/PRDCESSIG STA.TS 1i{RE AFTER DE 5i FRiAME HAS
/BEEN C'LLTECTED. THE DATA I,. A FRi !E IS
/ADDED T9O UF2 AND EV'ERY 600 FR'M,'S, UF2 IS
/T ANSFE;ED r)T tlJF3 i1) 13UF2 IS Zhi-ti"-D U'Jf
/THEN TiiE ADC IS :,tESA!TED. ALL f.I5 'UST BE
/DUNE !iN LESS T !AN I I .4 '.1SEC TO PEVENT
/MISSIiGU A FA' E 0R 5TAOTING THIE
/ADC IN- THE MIDDLE OF A FA'iE

DBA
DAC ADSA
ADST
SKP
ISZ ERR /SET ERR TO 1 IF A TIMING ERROR HAS nCCURED
ADCO /IN THE ADC INTErIFACE
ADC f
LAC (6000O0+?TS /SET UP EITY TO THE PR"CSSI"G!
JlS* REALTP /SUtriOUTINE AT A Oi'ER P:RIU!ITY LEVEL
J;,S,* CALL4
ADINT
0
LAC ADSA
D3R
J' P- ADINT

RTS 0
DAC AREG /SAVE TilE A, X AND L REGISTEhS
PXA
DAC XREG
PLA
DAC LiEG
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LAC ERR
UZi ERR /ZERO UUT ERR
SZA /IF THIEE iAS A TI MING E1]RR, GO TO S
JtP S /DATA FiR THIS !A.'E IS LJSf
LAC T /SET UP FOR CON:VERTING ADS ;IUMBES TO IiTEGERS
PAX
LAC*-k UFI,X /IF THE A'PLITUDE OF THIE FIRST S'PLE IS GREATE.
TAD (-TH /TiiAN A Ti HOLuD THE UiiLE FRAVE IS ASSUED TO
S.A /BE INOISY AiD I' IS G;NOWRED

T2 L4C* SUFI,X /CUNVERT NJ'MER IN EUFI 1U7 INTEGER
TAD SUF2 /ADD CCRESPONIDIN E.ITqY OF EBUF2
DAC 3IF2 /STORE SUI BACK I'I BUF2
.BLOCK 3*NS4AI-3 /REPEAT FIR SACi SA'!LE IA.i UFI

P ISZ F /DONE IT-i ONE FRAME, ADO ONE TO F
JiP R /IF ALL FRAMES ;ARE iOT COLLECTED, GO TO R
LAC FIG /ALL FRAMES COLLECTED, SAVE 'THE :U0MLIER OF FRAMES
DAC TFIC /IGNORED
DZM FIG
LAC (-FR /SETUP T3 RESTART ADC
DAC r
DZM FLG
LAC (NSAM /TRANSFER BUF2 TO BUF3 AND ZERO OUT BUF2
PAL
CLX

0 LAC BUF2,X
DAC* BUF3,X
DZM BUF2,X
AXS I
JM.P Q
LAS /IF DATA SWITCH 0 IS SET GO TO R, CONTINUE
SPA /PROCESSING
J'mP R
LAC LREG /IF DATA SEITCH 0 IS 0, LOAD REGISTORS ;;I'T
PAL /THEIR ORIGINAL CONTENTS AND RETURN
LAC XREG
PAX
LAC AREG
.RLXIT RTS

R LAC XREG /RESTORE REGISTERS, RESTART ADC AID RETURN
PAX
LAC LREG
PAL
JMS ADGET
LAC AREG
.RLXIT ATS

S ISZ FIG
JP P

ADSA 0
TFIG 0
F 0
FLG O
FIG 0
AREG 0
XREG 0
LREG 0
ERR 0
BUFI .BLOCK NSAM
BUF2 .BLOCK NSAM

.END
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SUBROUTIJE ECiU( IX, i'E, :Ei, EA)
C SUBROUTINE ECHO SEARCHES THE AREA FROM 50 DIVISIONS
C BELON IX TO 50 DIVISIniNS AuOVE IX FUR EC;iJES
C A TiliESHOLD IS CALCULATED AS BEING 5 TI'MES fi AVERACE
C NOISE. AN ECH IS 4 (JR M:.ORE CUNTINUUS SA'IPLES AJOVE
C THE THRESHOLD

REAL EH(I0)
INTEGER CD(530),CDATA(101),EA(IC),T,3G
COMMON /DATAS/ CD,EG,T,FRI
N.E=O
MIN=CD(IX)
U=0.
J=O

C DO NOT SEARCH OUTSIDE OF CDATA
IF (IX .LT. 51) IX=31
IF (IX .GT. 475) IX=475
DO I I=1,101
II=IX-51+I
K=CD(II)

C AN AMPLITUDE ABOVE THE THRESHOLD IS ASSUMED TO BE
C PART OF AN ECHO AND NOT INCLUDED IN THE NOISE

IF (K .GT. T) GO TO I
IF (K .LT. MIN) MIN=K

C SUM UP NIOISE SAMPLES
U=U+FLOAT(K)
J=J+l

I CDATA(I)=K
C IF THRESHOLD IS TOO LOW THERE WILL NOT BE ENOUGH NOISE SAMPLES

IF (J .LT. 50) GO TO II
C CALCULATE AVERAGE NOISE AND NEW THRESHOLD
13 U=U/FLOAT(J)

T=MIN+5*( INT(U)+1-MIN)
I=I

C SKIP OVER SAIPLES ABOVE THRESHOLD AT BOTfOM OF RANGE
C ALL OF THAT ECHO MAY NOT 3E IN THE AARAY
3 IF (CDATA(I) .LT. T) GO TO 4

I=I+1
IF (I .GT. 101) RETURN
GO TO 3

C LOOK FOR AN AMPLITUDE ABOVE THE THRESHOLD
4 IF (CDATA(I) .GT. T) GO TO 5

I=I+1
IF ( J .GT. 101) RETURN
GO TO 4

C FIND NIDTH UF REGION ABOVE THRESHOLD AND 'AXIMU, AMPLITUDE
5 K=I

DO 6-J=l,01
M=J+ I
IF (M .OT. 101) RETURN
IF (CDATA(M) .OT. CDATA(K)) K=M
IF (CDATA(M) .LT. T) 0(0 FO 7

6 CONTINUE
7 I=M
C IF WIDTH IS LESS THAN 4 DIVISIONS, IT IS NOT AN ECHO

IF (J .LT. 4) GO TO 4
I=I-J
NE=NE+I
IF (NE .GT. 10) WRETURN
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C FIND PARAMETERS OF ECHO AND FIT A PARA6dL, TO IT
Z=CDATA(K-1)
C=CDATA(K)

C RECORD ECEHO A'PLITUDE
EA(NE)=C:*F I +. 5
X=CDATA(K+I)
A=(X-C-C+Z)/2.
B=(X-Z)/2.

C CALCULATE INTERPOLATED HEIGHT
Z=-B/(A+A)
A=A*.6

C RECORD ECHO HEIGHT
EH(NE)=(Z+FLOAT(IX+K+E-52))*3./2.

C CALCULATE ';IDTH OF ECHO AT A POINT HALF I;Y BETWEEN THE
C MINIMUM AND TiHE MAXIMUM.' AMPLITUDE OF THE ECHO

W=(B*B/A-(2.*(C-FL T(MIN)*FRI) ))/A
IF (W .LE. 0.) GO0 TO 10
W=SQRT (N)
I1 =K-INT(W)
12=K+INT( )
IF (II .LT. 1) Il=1
IF (12 .OT. 101) 12=101

C SUBTRACT PARABOLA PROM PART OF ECHO ABOVE THE HALF NAY
C POINT AND SUBTRACT AN INVERTED PARABOLA FROM THE PART
C OF THE ECHO BELuj THE HALF NAY POINT

DO 8 J=II,I2
X=K-K
Y=(A*X+B)*X+C
IF (ABS(X) .LT. W/2.) CO TO 8
U=
IF (X .LT. 0.) C=-W
Y=-(A*(X-D)+B) *(X-0)+FLOAT(' III)

8 CDATA(J)=CDATA(J)-INIT(Y)+MIN!
IF (INE .EQ. 1 ) GO3 TO 4
X=EH(NE)-EH(NE-1)
IF (X .LT. 0.) GO TO 4
IF (X .GT. 14.) GO TO 4
X=FLOAT(EA(NE))/F!3AT(EA(NE-1 ))
IF (X .GT. .225) GO TO 4

10 NE=JE-I
I ='A
GO TO 4

C IF THRESHOLD IS TOO LOW, RECOMPUTE IT STARTING WITH
C A HIGHER VALUE
II T=250./FRI

J=0
U=O.
DO 12 I=1,101
IF (CDATA(I) .GT. T) O0 TO 12
U=U+FLUAT(COATA( I))
J=J+l

12 CONTINUE
IF (J .LT. 50) RETURN
G3 TU 13
END
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SUBROUT I NE PCK(J,H 5,XHfT,NE )
C SUL3jOUTIIE PCK FINDS THE ECHO CLLISES Tn XHiT AND SETS J
C EOUAL TU TiHE P-SITION bF THiAT ECHO I Ai\Y ii. IF iNO ECHO
C IS IIITH-"i 20 K. OF XHT, J IS SET TO UN ?TURfl

REAL H(lO)
D=20.
J=O
DO I I= I,N E
A=AtS (i(I )-XHT)
IF'(A .GT. D) GO TU I
J=I
D=A

1 CUNITI iN UE
RETURHI
END

C bGRAPH
C PROGRAM BORPAPH PRODUCES A GRAPH -OF THE !EIGHT VAIATIOI OF THE
C MAIN ECOD UVER AN II ,I JfUTE i IPE-Ij Il A *J:APH OF fifH ONE-
C AND TIWOD--iOP ECi1HO SiiAPES

REAL A(26,3),f:(67)
INTEGER B(25),D(25),TI(12),BG,FR,T,COL,FF
CO O/10 /DAT/A, F
DATA BLAN,STAMR/1H ,1HP.1/
COL=(3*3+5) *40.)o
CALL INIT(i,D,KC,FR,T,FF)

C RE.AD SETTINU OF SMITCH li, IF SET, 03 TU 2 AND OGNP- HEIGHT
C VS. TpIE IF IT IS RESET, TO TO 10 A..D UrA THE CHO S;HAP
1 CALL Si'R

IF(K) 1,10,2
C READ STAi TI i; TI.IE FOR HEIGHT VS. TIE GRfAP' A

2 READ(6,50) If
50 FORMAT(I2)
C CLEAR SC.-rEEN

CALL ZAP(25)
F'IAX=0.
FMIN=1 000.

C FIN:i PNr;ESEN,IT TI.E
CALL NFRi
J=IT*6+ I

C IF STARTIIG1 TI'IE IS G!SEATR TIAN PRESENT TI'E (30 ~ACK, AND
C READ :SWi ITCH SEfTfI NG AJGA IN

IF (K .LE. J) , T' 1
C SET ED TIE Af K JP? 11 "IN GREATEO FHAN STI'?TING TIME,
C IHICHEVEI- " I I ALLR

IF (K .Of. J+66) K=J+66
DO 3 I=J,K
CALL HUIET(C,I)
IF (C .E). 0.) ( iFL 3

C FIND 'A4I"U. AND ',XI'U. HF.IGHT UVER THE .AONGE OF TiH GRAPH
IF (C .OGT. FIAX,) F.'AX=C
IF (C .LT. FlI:l) F"I-=C

3 CON f I NN E
C CALCULATE iDRM ALIZATION FACTOR

SP=( F"AX-.F ; I i)/2b.
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C DIVIDE THE HEIGHT RANGE IrfO 25 PARTS
DJ 6 II=1,2b
FId=F'AX-SP
FI=FMAX-SP/2.
',.= I
DO 4 I=1,67

4 F(I)=ALAN
C FID ECHOES IN PRESENT PART OF HiEIGHT RANGE

DU 5 I=J, '
CALE -;ET(C,I)
IF (C .E. 0.) GO TU 5

IF (C .Tf. FAX) GO TO 5
IF (C .LE. F"IN) G TiO 5
=I+1 -J

F( M ) =STAR
5 CONTINUE
C OUTPUT UNE LINE OF THE URAPH

.JRI E(6,51) Fi,(F(I),I=1,M)
5t FORMAT(IX,FS.1 ,07AI)

FAX=FAII!
6 CONTINUE
C SETUP AND 'RITE UUT THE TIME AXIS

Di 7 1=1,12
7 TI(I)=IT+I-1

;/iITE(6,52)(TI(I),!=1,12)
52 FORAT(X,1216)

GO TO I
C---------------------------------------
C ECHJ SHAPE GRAPH
10 B3=30

FF=l
C FILL ARRAYS B AND D ;iITH PROPER SECTION OF CDATA

CALL BDATA
N=2+FF

C CALCULATE FACTiP TO CONVERT INTEGERS IN B AND D TO 'ILLIVOLTS
FRI=75000./(15384.*FLAT(FR))
THR=FLOAT(T) *FR I

C CONVEVERT DATA INi AND D TO MILLIVOLTS AND PUT IN REAL ARRAY
DO 11 I=1,25
J=26-I
A(J,2)=FLUAT(D(I))*FRI
A(J,1)=FLOAT( (I))*,FRI

11 CONTI NUE
PM=0.

C SKIP PARAB3OLA FIT IF NO MAIN ECHO WAS FOUND
IF (FF ,EQ. 0) GO TO 12
CALL PARA(A,P")
K<=K+ G-
P'=l .5*(FLUAT(KK)+PM)

C GET TIVE AND CLEAR SCRE i
12 CALL TIME(I ,IS)

CALL ZAP(28)
CALL GRAPH(Ni,KK,I? ,COL,IS,,PM,THR)
GO TO I
END



109

.TITLE DATA
/ THESI SIRrU!JTI'IES TAKE DATA FRUM THE FORiGti)U 'iD PROCrAMS AS
/ ~NEEDE:D TO DEVILUP T !E G.RAPHS U i TIE ACKlG iUND TERVIJA.L

.GLOBL SIR, DAfA, HGE'T, I IIT, .DA, F R,, T I!E
SCR=1 12
INIT 0 /INITIALIZATI'J R.UTI NE

J'fS* .DA /ARGUE'E:1TS ARE SET UP NO, TO SAVE TIVE! LATER
JM P .+7

B 0
D 0
K 0
FR 0
THR 0
FF 0

LAC* (SCR /LOCATION SCR IS 4N UNUSED REGISTER IN THE
DAC LUC /TABLE. IT COiITAIiS THE LJC UF TriH ARPAY IN
LAC* LOC /WHICH THE LOC nF DATA FOR 3 RAPH IS KEPT
DAC FLAG /FLAG IS LOC OF WORD .HICH IS SET T;O 0 OR -1
ISZ. LOC /DEPENDING ON !VI HETHE.: AN ECHO ?,'AS FOUND O ,inOT
LAC* LOC
DAC KA /KA IS LOC OF 'iORD CONTAIINIG INIDEX OF CENTER
ISZ LOC /OF MAIN ECHO IN CDATA
LAC* LOC
DAC CDATA /CDATA CONTAINS LOC OF ARRAY CDATA
ISZ LOC
LAC* LOC
DAC HDATA /HDATA CONTAINS LOC OF ARRAY HDATA
ISZ LOC
LAC* LOC
DAC NH /LOC OF NUM.BER OF 10 SEC. PERIODS SINCE START
ISZ LOC /OF DATA COLLECTIOIN
LAC* LOC
DAC LI; /LI'T AND LIS CON4TAIN LOCTION OF TIME IN
ISZ LOC /MINUTES iAND SECONDS SINCE THE ST4RT
LAC* LOC /OF DATA COLLECTION
DAC LIS
ISZ LOC
LAC* LOC
DAC F /LOC OF NORD CONTAINING . OF FRAMES AVERAGED
ISZ LOC
LAC* LOC
DAC T /LOC OF NORD CONTAINING ONE-HOP THRESHOLD
JMP* INIT
.DEC

BDATA 0 /THIS SUBROUTINE TRANSFERS DATA FROM CDATA TO B ANID D
A LAC* FLAG /STAY IN THIS LOOP UNTIL FLAG IS SET TO 0 OR -1

SZA!SSMA
JMP A
IAC
SNA /IF FLAG IS -I,. PUT 0 IN FF, NO MAIN ECHO
DZM* FF
LAC (I /RESET FLAU TO 1
DAC* FLAG
LAC (-25 /PREPARE TO TRANSFER 25 NORDS FROM COATA TO B
DAC COUNT /AMPLITUDE NEAR XHT
LAC* B
DAC BB /LOC OF ARRAY B
LAC* KA /GET CETrER OF ONE-HOP ECHO
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DAC* K
TAD CDATA
TAD (-13 /FIRST WOURD OF B IS A.!PLITUDE 12 DIVISIONS 13ELO.
DAC I /THE CENTE? OF THE ONIE-HOP ECHO

C LAC* I /TRANSFER DATA
DAC* BB
ISZ I
ISZ BB
ISZ COUNT
J.MP C
LAC (-25 /SET UP COU Tf FOR SECOND CURVE \00 GRAPH,
DAC COUNT /AMPLITUDE IEAR 2*XHT
LAC* D /LUC OF ARRAY 0
DAC BB
LAC* KA
TAD* KA
TAD CDATA
TAD (16
DAC I

CT LAC* I /TRANSFER DATA
DAC* BB
ISZ I
ISZ BB
ISZ COUNT
JMP CT
LAC* T /GET THRESHOLD AND NIJ3ER OF FRAIS COLLECTED
DAC* THR
LAC* F
DAC* FR
J!IP* SDATA

IGET 0 /THIS ROUTINE RETURNS THE HEIGHT OF THE MAINJMS* .DA /ECHO FOUND AT TIME ITel0 SECONDS
J'P .+3

CC 0
II O

LAC HDATA
TAD* II
TAD* II
TAD (-2
DAC II
LAC* II
DAC* CC
ISZ II
ISZ CC
LAC* II
DAC* CC
J.lP* IiGE'T

HFRM 0 /THIS SU TUhlTINE ~ETURiS THE !"H' I'F 10 SCND
LAC* NH /PERIODS THAT HAVE ELAPSED SINCE THE START OFDAC* K /THE COLLETION
JMP* NFR,

S0R O /THIS SU[-ROUTINE RETURiS I IF SWIfCH 17 IS
LAS. /SET ANiD 0 IF IT IS .ESET
AND (I
DAC* K
J..P* S "N R

/- - -- - -- - -- - -- - ---.....- - - - -- - - - - -



TIME 0 /THIS SUJROUTINE IETURNS; THil TIME IN MINUTES A.MU
JM5* .DA /SECCNDS SIiNCE THE IfAR-T F1; COLLECTIUN
JMP .+3

I M 0
IS 0

LAC* LIM
DAC* IPI'
LAC* LIS
DAC* IS
JMP* TI:E.

LI5 0

CDATA 0
KA 0
FLAG 0
I 0
COUNT 0
NH 0
HDATA 0
3B 0
LOC 0
r 0
F 0

.END

SUBROUT IE PARA(A,PM)
C SUBROUTIlIE PARA FITS A PARABLLA TO TiE OiE-HOP ECHO AND
C DETERIINES THE ASSU'fED SHAPE Q)F THE ECHU

REAL A(2",3) ,MIN
J=1

C SET A(I,3) T. -1000 SO UWUSED PARTS ILL JOT APPEAR
C UN TilE GRT.APH

DO I I=1,25
A(I, 3)=- 1000.

I IF (A(!,1) ,LT. A(J,l)) J=I
C DETERMINE THE PARAPETERS OF THE PARABOLA

MIN=A(J,I )
C Z IS THE AMPLITUDE 1.5 !K' BELO; THE CENTER? OF THE EC!I1
C X IS THE ANPLIUDE 1.5 K' ABOVE THE CENTY, OF THE ECH!

Z=A(14,1)
C=A(13,1)
X=A(12,1)
AC=(Z-C-C+X)/2.
B=(X-Z)/2.
PM.=-o/(AC+AC)
AC=AC'.6
iN=SOJT((J*L/AC-(2.*(C-M IN) ))/AC)

I lI=1 3-IiT ( )
12=1 3+INT(A)
IF (II .LT. 1) I =1l
IF (12 .T. 25) 12=25

C CALCULATE SHAPE OF !ODIFIED PARABOLA
D0 8 I=II,I2
X=13-I
Y=(AC*X+O) *X+C
IF (A'S(X) .LT. ;/2.) G9 TO c
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IF (X .LT. 0.) U=-"i

3 A(I,3)=Y
?ETURJ

SUB!OUTI 1IE GRAPH(N,K, I.',3L,IS, P.,T!R)
C THIS SUBROUTI"iE PRODUCES A G'RAPH OF THE AVERAGE APTPLITUIDE
C N;EAR XHT Afi D 2*'XHT. IF A: ECHO IS FOi'JID :EARc? XiHT, N=3 AND A
C IMODIFIED PARABJLA IS FITTED TO TIE ECHO A:,ID DISPLAYED UiN THE
C GRAPH, UOHERNISE '1=2 Ai) N' PARABOLA IS GRAPHED.
C K IS THE LOCATION OF TiE .!MAI ONE-HOP EC-i IN CDATA
C IM AND IS ARE THE TI'E I J ,.I!4UTES AND SEC.ONDS
C -COL IS THE CUDE FOR TlHE SY.BGL :
C PM IS THE INTERPOLATED iiEIGlHT OF THE !.MAI: ECHO
C THR IS THE THRESHOLD USED BY SUBROUTINiE ECHO FOR THE
C ONE-HOP ECHO

REAL A(2t,3),D(4),F(67)
INTEGER COL
COMMON/DAT/A, F
DATA D(1),D(2),D(3),D(4)/1H //1H I, -+,lii*/
DATA DASH, BLAN,EYE,ZERO,,T/IH-,IH ,IHI,IO,IHT/
FMAX=-500.
FMIN ,=5 00.

C FIND MINIMUM AND MAXIiUM IN A(I,J) DO NOT COUNT THE PARABOLA
C IN FINDING THE 'INI'UM

DO 1 I=1,25
IF (A(I,1) .LT. F'MIN) F!IN=A(I,1)
IF (A(I,2) .LT. F"MIN) F?-4IN=A(I,2)
DO I J=1,N
IF(A(I,J) .GT. F;MAX) FMAX=A(I,J)
IF(FMIIN) 2,3,3

C NEGATIVE MINIMUM
C CALCULATE 0 POSITION
2 IY=I NT(-FMIN*6./(FMAX-F4 IN))+1

IF (IY .OT. 3) GO TO 20
C CALCULATE AMPLITUDE NORMALIZATION FACTOR

SP=FMAX/FLOAT(6-IY)*.1
GO TO.5

C LIMIT 0 POSITION OF MIN IS TOO NEGATIVE
20 IY=3

SP=-FMIN/30.
GO TO'5

C POSITIVE MINIUM
3 IY=O

SP=FMAX/60.
C SET UP FIRST LINE
5 DO 13 I=2,40
13 F(I)=DASH
C PUT AN "I" IiN EVERY 10TH POSITION

DO 14 I=1,41,10
14 F(I)=EYE

JZ=IY*I 0+1
C INDICATE 0 POSITION

F(JZ)=ZERO
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C -4RITE FIRST LINE INCLUDING TIMIE AND HEIGHT OF ONE-HOi P ECHi
V;'RITE(6,4) (F(J), J=1, 41 ), ,C L,IS, P.

4 FORMAT( 12H ii(K ) AP ,41Al, 14, , , 10, I, 13.3,2H I)
C DO FULL&hIi.IG FORT EAC" CF THE 25 LINES OF THE GRAPi

DO 16 I=I,25
C MAX INiDICATES THE LENGTH OF THE LINE

MAX=JZ
C IA IS AIPLITUDE OF ONE-HOP TRACE

IA=INT(A(I, I )+.b)
C FMi IS THE CU;RESPOiDING iEIGHT

FH=FLOAT(K+13-I )* .
C BLANK OUT THE LINE

DO 7 J=1,61
7 F(J)=ELAN
C ADD O AMPLITUDE LINE

F(JZ)=EYE
C ADD SYM3JOLS FOR EACH OF THE OTHER TRACES

DO 8 J=1,!,
IM=INT(A(I,J)/SP+.5)+JZ
IF (I' .LT. 0) UO TO 8
IF (I1 .OT. 1AX) MAX=I!
IF(F(IM.I)-bLAi () 9,10,9

C IF TIHER IS ALREADY A SY!MBOL IN THAT PLACE, PUT A * THERE
9 F(IM )=D(4)

GO TO 8
10 F(I:")=D(J)
8 CONTINUE
6 IF (I .i.E. I) O TO 16
C INDICATE THRESHOLD !ON THE THIRD LI\E

J=INT(THR/SP+.5 )+JZ
IF (J .LT. 1) J=61
IF (J .GT.61) J=61
IF (J .GT. MAX) MAX=J
F(J)=T

16 WRITE(6, 11) FiiH,IA,(F(J),J=I,.MAX)
11 FOR. AT(1X,k35.1,I5,IX,61A )

RETURN
END

.TITL ZAP

.GLOOL ZAP,.DA

.IDDEV 6
ZAP 0

J"S* .DA
JiP ,.+2

ARG 0
.NAIT 6
LAN (-1000
DAC CNT

LOP ISZ CiI
J:AP LOP
LAC (176.
JMS PRNT
LAN' (-1000
DAC Cli'T

BACK ISZ CNT
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i !HACK
LAkC ARG
JM S Ppl1ST

J1~~* ZAP
PRN~T 0

DAC CJUT
.vIRITE 6,3,I3UF,3
., AIT 6
J1 p * PRNi~T

REu F 2000
0

JUT 10
0

ONT 0



APPENDIX II. OPERATING INSTRUCTIONS AND A LISTING OF PROGRAM GRAPH

The following procedure is used to graph the data from the digital

ionosonde once the data is on paper tape. A listing of the graph program

is included after the operating instructions.

1. Turn on the calculator and the plotter. Insert the tape cassette

marked Ionosonde Programs, type LOAD1 and press EXECUTE.

2. Adjust the plotter to the size of paper used and put a black pen in

the plotter.

3. Turn on the paper tape reader, insert the paper tape and press READ.

4. At the calculator, press RUN and EXECUTE. Enter the number of 10 sec

periods of data on the tape. If 0 is entered, the entire tape is

read. The data are stored in the magnetic tape casette in blocks of

20 min.

5. When the data are on the magnetic tape, type in a heading for the graph

such as the date and time of the data. If several graphs of the same

data are needed, after one has been made, type CONT 520 and press

EXECUTE to return to this point.

6. Enter the limits of the portion of the data to be graphed in minutes

and seconds. If 0, 0 is typed in as the START and END times, all the

data are graphed.

7. Type in the minimum height to be graphed. All echoes below this height

are ignored. The calculator now makes one pass through the tape to

determine the minimum and maximum heights and then plots an axis and

the heading.

8. When the display reads PEN? change the pen to a blue one, type 0 and
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press EXECUTE. The height data are now plotted for one one-hop and

one two-hop echo.

9. When the display again reads PEN? change the pen to a red one, type 0 and

press EXECUTE. The one-hop and two-hop amplitudes are now plotted.

10. When the display again reads PEN? put the blue pen back in the plotter,

press 0 and EXECUTE. The extra one-hop and two-hop echoes are now

added to the graph.
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APPENDIX III. OPERATING INSTRUCTIONS AND A LISTING OF PROGRAM SHAPE

Program SHAPE calculates the virtual height and amplitude for a

reflector and provides easy methods for modifying the reflector shape to

make the calculated virtual height and amplitude match the experimental

data.

1. Turn on the calculator and plotter, insert the tape cassette marked

Ionosonde Programs and type LOADKEYO and press EXECUTE. Put the

function key overlay marked SHAPE over the function keys.

2. Press RUN and INIT (f0). The calculator asks for the limits of the

reflector size. If a portion of a graph produced by GRAPH is to

be analyzed, a sheet of graph paper is put on the graph with the X

axis lined up with the lowest virtual height and the Y axis lined up

with the first sample point. The X coordinate of the last sample

point and the Y coordinate of the highest virtual height, both in

units of grid intervals are entered into the calculator. If the two-

hop height in grid units is to graphed, the height variation of the

two-hop echo is entered next. Otherwise go to step 3.

3. Press POINTS (fl) and enter the coordinates, in grid units, of key

points such as relative minima and maxima which have the same height

as the reflector height.

4. Points are connected with a half cycle of a sine curve by pressing

HALF-SINE (f2). Enter the X coordinates of the two points to be con-

nected with a half sine and press EXECUTE.

5. To connect two points with a straight line, press CURVE FIT (f3).

Enter 2 as the number of points and then enter the X coordinates of

the two points to be connected with a straight line. A curve through
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more than two points is made by specifying the number of points to be

greater than two and then enter that number of X coordinates of points

to be fitted. The first coordinate is the starting point of the curve

and the last point entered is the end point of the curve.

6. FILL (f1 3) is used to modify the reflector curve shape by adding or

subtracting a sine-shaped segment from the reflector. The start and

end points of the segment to be modified and the amount in grid units

to be added are entered.

7. Place the graph paper in the plotter and press MOVE PEN (f1 2). Press

the space bar to move the pen and adjust the pen position controls

until the pen moves between the origin of the graph and the coordinate

made up of the X ordinate of the last sample and the Y ordinate of the

maximum height. The resulting plots will be the same size as the

graphed data.

8. Press PARAM (f4). Enter the estimated horizontal length of the reflec-

tor in km, the height of the lowest echo and the difference between the

maximum and minimum virtual height.

9. Press AXIS (f6) to draw and label an axis for the one-hop echo. Shift

f6 or f16 draws and labels an axis for the two-hop echo.

10. Press REF SHAPE (f7) to draw the one-hop reflector shape. Shift f7

or f17 draws the two-hop reflector shape which is twice as high as

the one-hop reflector at all points.

11. Press RES HEIGHT (f8) to draw the one-hop virtual height calculated

from the one-hop reflector. Press fl8 to draw the two-hop virtual

height.

12. Press AMP (f9) to draw the amplitude of the one-hop echo. Press f19

to draw the two-hop echo amplitude.
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13. In the case of multipath, NORM (f5 ) changes the scale factor used in

graphing the reflector shape and the virtual height so that the maxi-

mum excursions in height fit on the graph. It should not be used when

trying to match a reflector to a data graph because the scale size may

be changes. Shift f5 or fl5 does the same thing for the two-hop graph.

14. HEIGHT (f11) displays the height of the reflector in grid units for

any X coordinate.
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APPENDIX IV. OPERATING INSTRUCTIONS AND A LISTING OF

THE PROGRAM TO COMPUTE LATERAL DEVIATION

This program computes the separation of the ordinary and extraordinary

reflection points using the formula for lateral deviation given in Budden

[1961]. The separation of the reflection points is used to find the

direction of propagation of the disturbance as discussed in Section 2.6.

To run the program, turn on the calculator and printer, insert the

cassette marked ionosonde programs and type LOAD2 and press execute.

When the program is loaded press run and execute. Enter the ionosonde

operating frequency and the critical frequency when the calculator asks

for them and a table similar to Table 2.1 is printed.
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