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SECTION I
SUMMARY

A. STUDY OBJECTIVES AND SCOPE

The major objectives of this study program were to: (1) conduct a
propulsion system analysis to assess the potential of the plug cluster engine
concept for the Space Tug baseline vehicle and nominal missions, (2) assess
the potential of utilizing an existing or high technology thrust chamber as
a module for such a plug cluster application, and (3) identify the technology
requirements for the development of a plug cluster engine.

To accomplish the objectives, the eleven task study program, summarized
on Figure 1, was conducted.

Design criteria were obtained from the Titerature on Space Tug systems,
on plug and plug cluster nozzles, on H/0 thrust chambers and on H/0 turbopump -
assemblies.

Engine performance and envelope parametric data were established over
a wide range of mixture ratios and engine geometry, using a plug cluster
performance model.

Subsystems of the engine were evaluated to determine their impact on
the design, and any limitations resulting from the utilization of the various
cycles were established.

Based upon the results of Tasks I through IIT and the study guidelines,
three configurations and two cycles were selected to be carried into con-
ceptual preliminary designs. The three configurations involved use of: (1)
ITA modules, (2) minimum change ITA modules, and (3) regeneratively cooled
modules. The two cycles were the expander and the gas generator cycle. In
addition to the cooled plug design, an uncooled carbon-carbon cloth plug
design was evaluated.

Plug cluster engine design, performance, weight, envelope and oper-
ational characteristics were evaluated for a variety of candidate cluster
configurations (Figures 2, 3 and 4). The selected plug cluster engines were
compared with the engine candidates that were evaluated for the baseline Space
Tug. The comparison was based on mission performance, cost, 1ife, and engine
geometry.

Upon completion of the first six tasks, an amendment was made to
the contract to address the "real world" problems of an actual engine.
Lightweight engine structures were examined, with the AGCarb ({carbon-carbon
cloth) nozzle extension providing a significant configuration improvement.

Techniques for providing thrust vector control for the plug cluster
engine were evaluated, and module hinging appeared to offer the best potential.
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Figure 3. Clustered Bell Nozzle Concept
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Figure 4. Scarfed Bel1/Plug Cluster Engine Concept



The lightest weight configuration for the fluid systems, their com-
ponents, and controls for a plug cluster was determined.

Analysis of the experimental cold flow data recently obtained on
Contract NAS 3-20104 (NASA CR-135229 "Plug Cluster Nozzle Flow Evaluation")
was made, and discrepancies in the data noted. The plug cluster engine per-
formance methodology was modified to reflect the cold flow data. Engine per-
formance calculated by this methodology rules out the large gap cluster con-
figuration on a standard plug nozzle due to the poor aerodynamic flow condi-
tions. Optimum performance is achieved, however, through the use of a fluted
plug formed from a cluster of large area ratio scarfed bell nozzles.

Throughout the entire study effort, basic data gaps and areas requiring
technology work were identified.

B. RESULTS AND CONCLUSIONS

High vacuum performance is achieved with the low pressure plug cluster
engine which makes maximum use of the large area available with the baseline
Space Tug. Low development and production costs for the engine are achieved
through the utilization of existing developed technology. The combination of
high performance and low cost makes the plug cluster engine competitive with
the baseline Space Tug RL10 IIB engine and the higher pressure Advanced
Space Engine, as shown in Figure 5.

The objectives of the program have been successfully accomplished.
The fact that existing developed, long cycle life thrusters can be clustered
in various manners and numbers, allows the designer the flexibility to con-
figure a large number of Orbital Transfer Vehicles (OTV) that operate at
almost any thrust Tevel desired.
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SECTION TII
INTRODUCTION

A. BACKGROUND

Several analyses of the propulsion systems required for the Space
Tug vehicle have been conducted in the past, but in each case, the studies
were conceived and conducted in a traditional fashion with primary con-
sideration given to engines having conventional bell nozzles. The use of
unconventional nozzles offers a great deal of potential for high performance,
long life, and flexibility in design, that had never been exploited nor even
studied in these vehicle applications. In cases where unconventional nozzles
were considered, restrictive assumptions that were applicable only to the
bell nozzles were arbitrarily imposed on the unconventional nozzles. As a
result, many options that an engine designer might have had in developing
advanced thrust chambers were ground ruled out of the studies. This restric-
tive situation becomes particularly troublesome when Tow cost and reusability
are required of the propulsion system in addition to high performance.

Space Tug vehicle application studies for the purpose of evaluating
candidate propulsion systems have been based on fixed input conditions, such
as propellant combination, narrow mixture ratio range, and engine envelope,
j.e., engine length and diameter. It is well known that the area ratio for
conic section (bell shaped) nozzles varies in a direct relationship with nozzle
length and inversely with throat radius (e « Lp/Rt). It is also well known that
an increase in propulsion system vacuum performance occurs primarily by an
increase in nozzle area ratio and is essentially independent of chamber pressure
(Is o €). Early candidate engines were limited in performance for a fixed
length application. There were four approaches available to achieve a higher
area ratio in this length: (1) high chamber pressure, (2) extendible nozzle,
(3) multiple engines, and (4) conventional nozzle.

The approach ultimately selected to attain high area ratio was to
increase the chamber pressure to make the throat area smaller for the same
nozzle length. This high chamber pressure then led to a specific set of
problems (high unit heat flux, high wall temperatures, and small, high speed,
high pressure turbomachinery) that must be solved to meet the high cycle life
required.

What is overlooked in this approach is that the true diameter limit
for the engine installation, i.e., the vehicle diameter, has not been uti-
1ized by the conventional bell nozzle to arrive at a solution to the basic
problem. Unconventional nozzles, i.e., clusters of small thrusters around
a contoured plug, can utilize this dimension to arrive at engine designs which
feature lower chamber pressures, with attendant lower heat flux, lower wall
temperatures, longer fatigue life, and less critical turbomachinery.

From 1969 to 1974, the NASA sponsored a number of efforts to establish
an adequate technology base for a cryogenic Attitude Control Propulsion System
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for the Space Transportation System. The final design life goal for the
thruster was 50,000 cycles (pulses) and 5,000 deep thermal cycles. The
Integrated Thruster Assembly (ITA) accumulated the best of the component
designs available and was life cycle tested 51,005 cycles. Designs for
higher performing, regeneratively cooled thrusters were also established
with high cycle life capability, but not tested as extensively as the ITA.

One of the intriguing variations, therefore, in the application of
plug nozzles to a Space Tug type vehicle and mission, is the possibility
that existing developed or high technology thrust chambers could be clustered
around a plug nozzle of very large diameter. Thus, the primary problems of
a high pressure engine are completely avoided in exchange for a different
set of problems such as clustered performance, base pressurization, and
installed weight. The engine designer then has a choice of problems to solve
to best meet the needs of the given application, with cost comparisons
involving the two types of propulsion systems also being an important factor.

B. PURPOSE AND SCOPE

The feasibility of the clustered plug Space Tug is heavily dependent
on the delivered performance and weight of the engine system, with the trade-
off in performance versus the gap between module nozzle exits being a signi-
ficant factor, It is the purpose of this study to conduct a propulsion
system analysis to assess the potential of the plug cluster engine concept
for the Space Tug baseline vehicle and nominal mission.

Plug cluster engine design, performance, weight, envelope, and opera-
tional characteristics were evaluated for a variety of candidate cluster
configurations. The selected piug cluster engines were compared with the
engine candidates that were evaluated for the baseline Space Tug. The com-
parison was based on mission performance, cost, life, and engine geometry.

C. GENERAL REQUIREMENTS

For purposes of this study, the engine design point for plug cluster
engine evaluation was assumed to be that given in Table I, commensurate
with the baseline Space Tug requirements.

TABLE I. - PLUG CLUSTER ENGINE DESIGN POINT

Propellant Combination Hydrogen and Oxygen
Mixture Ratio (nominal) 0/F = 6.0

Maximum Engine Diameter 447 cm (176 in.)
Maximum Engine Length 139.7 cm (55 in.)

(at engine gimbal, beyond
base of LOX tank)

Engine Cyclic Life 1200 firings
(no factor of safety)
Engine Thrust (nominal) 66,723 N (15,000 1bf)
10
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D. APPROACH

To accomplish the program objectives, a study involving eleven tech-
nical tasks was conducted. The results of the first three tasks were utilized
to select the configurations to be conceptually designed and analyzed to
optimize the plug cluster engine. Tasks conducted were:

1. TASK I: Literature Analysis

Significant publications pertfnent to the conduction of this
study were reviewed and evaluated, including:

a. Space Tug system studies.

b. Plug cluster nozzle and plug nozzle experimental and analytical
studies.

¢. H/0 thrust chambers of existing and high technology status.

d. H/0 turbopump assemblies of existing and high technology
status.

2. TASK II: Parametric Engine Performance

A simplified plug cluster engine performance methodology was
established and performance maps were prepared to display the delivered spe-
cific impulse in terms of the engine variables.

3. TASK IIl: Subsystem Evaluation

Base pressurization, engine cooling, and turbomachinery and power
subsystems analyses were conducted to determine any limitations inherent in the
various engine cycles proposed for the plug cluster engine.

4, TASK IV: Preliminary Design

Preliminary conceptual designs of plug cluster engines were pre-
pared for selected configurations and engine cycles.

5. TASK V: Plug Cluster Engine Qptimization

Parametric system analyses of the plug cluster engine were conducted
and tradeoffs were made in performance and engine weight to arrive at an
optimum set of engine designs. The technology requirements for such an engine
were defined.

6. TASK VI: Plug Cluster Engine Assessment

The plug cluster engine was compared with candidate Space Tug
engines for several baseline geosynchronous and interplanetary missions.
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7. TASK VII: Lightweight Engine Structures

Structural techniques, designs, and materials were selected to
provide the lightest weight plug cluster engine concept for typical space
applications.

8. TASK VIII: Thrust Vector Control Analysis

Techniques for providing thrust vector control (TVC) for a plug
cluster engine were evaluated and the best method selected.

9. TASK IX: Fluid Systems and Control Study

The lightest weight configuration for the fluid systems, their
components, and controls for a plug cluster engine were selected from an
evaluation of several candidate systems.

10. TASK X: Experimental Performance Data Evaluation

An analysis was conducted and an appraisal was made of the experi-
mental cold flow data reported in NASA CR-135229 "Plug Cluster Nozzle Flow
Evaluation". These results were compared with the performance predictions
in Tasks II, III and V. The methodology employed in Tasks II through V was
updated and revised in order to reflect the experimentally measured effects
of gaps, fairings, tilt angle, and base pressurization.

11. TASK XI: Plug Cluster Engine Optimization

The engine optimization obtained in Task V was revised to include
the results of the Tasks VII through IX analyses. The plug cluster assess-
ment conducted in Task VI was revised accordingly.

12



SECTION ITII
LITERATURE ANALYSIS

A. OBJECTIVES AND GUIDELINES

A literature analysis was conducted to provide background data on the
Space Tug system, plug cluster nozzles, H/0 thrust chambers, and H/0 turbo-
pumps to be considered in the study. Pertinent information from the litera-
ture was included in detail in the Task I Report (Unconventional Nozzle Trade-
of f Study - Monthly Technical Progress Report 20109-M-2, Task I - Literature
Analysis, Aerojet Liquid Rocket Co., Contract NAS 3-20109, September 1976).
The Task I Report provided narratives on the reports containing data that
served to allow evaluation of the plug cluster concept. The narratives included
a summary, the scope of work, results attained (pertinent figures and support-
ing data), an assessment of the state-of-the-art, and the strong and weak
points of the work. The bibliography is repeated in Appendixes B through E
of this report.

Specific information from the Task I Report that became the back-
ground data for the study is summarized in this section.

B. SPACE TUG SYSTEM STUDIES

Assessment of the plug cluster engine concept as a Space Tug propul-
sion system involves a multitude of factors, many of which have been pre-
viously studied in. depth for other Tug candidates. The system studies
involving the main engine propulsion have considered both storable and
cryogenic propellants, interim upper stages, and full capability Space
Tugs. The literature search conducted in this study was concentrated on
the cryogenic, full capability Tug.

The envelope of the cryogenic Tug is constrained by the dimensions
of the Space Shuttle payload bay. The baseline Tug vehicle utilizes a
Category II RL10 engine with a two-position nozzle in order to conserve
length. Typical engine data resulting from the study efforts indicate a
thrust requirement between 66,723 and 88,964 Newtons (15,000 and 20,000
pounds force), and an engine mixture ratio between 5 and 6. Payload opti-
mizes at the Tower mixture ratio for engines with lower chamber pressure.

The selection of the RL10 engine over more advanced engines was
primarily based upon DDT&E cost rather than the amount of payload delivered.
The engine Isp increase was originally evaluated using a sensitivity of +41 kg
(+90 1b) of payload per second of Isp, and the engine weight increase was
evaluated using a sensitivity of -2.5 kg (1b) of payload per kilogram (pound)
of inert weight for the deploy mission.

1. Baseline Space Tug

The current (October 1974) NASA definition (Ref. 1) of the base-
line Space Tug 1is given in Tables II and III and in Figures 6 and 7.
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TABLE II - BASELINE SPACE TUG CHARACTERISTICS SUMMARY (Ref. 1)

VEHICLE DESCRIPTION

ENGINE Pratt & Whitney RL-10-I1B
(Retractable Nozzle)

ACTUATOR Hydraulic
APS SYSTEM 24 Hydrazine thrusters (25#)
STRUCTURE

Skirts - Graphite Epoxy/Aluminum Composite

Tanks - Aluminum Alloy/E1liptical Bulkheads

Tank Supports - Fiber Glass Struts

Thrust Structure - Fiber Glass Strut Truss
THERMAL CONTROL SYSTEM

Tank Insulation - Goldized Super floc

Active System for Fuel Cell

Heat Pipes for Other Avionics

PAYLOAD CAPABILITY TO GEOSYN-
CHRONOUS ORBIT

Deploy 7926 1bs
Retrieve 3396 1bs
Round trip 2070 1bs

AVIONICS SYSTEM

Antenna - Electronically steerable
phased array

Platform - Strapdown

Power - Fuel Cell (2) plus Battery
Data Management - Data Bus

SC Retrieval - Laser Radar

SC Deployment Inspect - TV

14

MAIN ENGINE PERFORMANCE

THRUST(LBS)  lsp (SEC)

Full 15000 456.5

Pumped Idle 3750 434.7

Tank Head

Idle 157 377

VEHICLE CHARACTERISTICS

Length 30 ft

Diameter 14.67 ft

Dry Weight 5140 1bs

Burnout Weight 5755 1bs

First Ignition

Weight 56,779 1bs

Deployment

Adapter &

Shuttle Systems 1900 1bs

Ground Liftoff Weight 58,679 1bs

PAYLOAD SENSITIVITIES

L

BWS

aPL
S0P

aPL
BWO

apL
algp

DEPLOY  RETRIEVAL
ONLY ONLY
-2.62 -1.38 g
] 0.23
-0.38 0
83 1b/sec. 59 1b/sec.



TABLE ITI - BASELINE SPACE TUG WEIGHT BREAKDOWN

Weight kg (1b)

STRUCTURE 895 (1,974)

PROPULSION AND

MECHANICAL 611 (1,346)
THERMAL CONTROL 200  (441)
AVIONICS 418 (921)

10% GROWTH CONTINGENCY
INCLUDING FASTENERS 212 (468)

TOTAL DRY WEIGHT 2,336 (5,150)

UNUSUABLE RESIDUALS 274 (605)

BURN-OUT WEIGHT 2,610 (5,755)
EXPENDABLES 248 (547)
PROPELLANT RESERVES 136 (300)
USABLE PROPELLANTS 22,760 (50,177)*

FIRST IGNITION WEIGHT 25,755 (56,779)

ORBITER ACCOMMODATIONS
(including 10% contingency) 862 (1,900)

GROUND LIFT-OFF : 26,616 (58,679)

*Maximum propellant weight, prope]]ént may be off-loaded
to accommodate additional payload weight.
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Geosynchronous performance capability of the Space Tug is a func-
tion of various vehicle characteristics. The partials for the deploy only
and the retrieval only geosynchronous missions listed in Table II are
explained as follows:

3 PL An increase of Tug stage weight (dry weight plus unusable

b) ws propellants) by one kg (one 1b) reduces the payload that can be
deployed to geosynchronous orbit by 1.19 kg (2.62 1b), and that

which can be retrieved by 0.63 kg (1.38 1b).

An increase of Tug usable propellant capacity by one kg (one 1b)
increases the payload that can be retrieved from geosynchronous
orbit by 0.10 kg (0.23 1b). In the case of deployment of a
maximum weight payload o PL/5 UP = 0 since the Tug already has
more propellant capacity than can be utilized (i.e., propellants
must be off-loaded to meet the Orbiter constraint of 29,484 kg
[65,000 1b] at liftoff for the Tug plus its payloads).

Q
u
—

|

Q3
[
el

3 PL A one kilogram (one 1b) increase in weight of the equipment charge-
able to the Tug but remaining in the Orbiter (such as adapter
structure and propellant fill and vent equipment) decreases the
weight of payload that can be deployed to geosynchronous orbit by
0.17 kg (0.38 1b). This decrease comes about because of the
Orbiter constraint for Tug plus its payload at Tiftoff (when the
interface weight is increased, propellant must be off-loaded to
satisfy the constraint).

3 PL Increasing the main engine specific impulse by one second increases
Sp the payload that can be delivered to geosynchronous orbit by
38 kg (83 1b) and that which can be retrieved by 27 kg (59 1b).

The baseline Space Tug is composed of structures, propulsion and
mechanical, avionics, and thermal control systems. The general arrangement
and size of the Tug systems are shown in Figure 3, and the weight breakdown
is given in Table III. The thrust structure is an open fiberglass conic
frustrum truss with an aluminum gimbal block to interface with the engine.
It is attached directly to the LO2 tank with eight fiberglass epoxy struts
as shown in Figure 6.

The engine (RL10 Cat. IIB) shown in Figure 7, is a derivative of
the flight proven Pratt and Whitney RL10 engine. It provides a vacuum
thrust of 66,723 N (15,000 1b) and a specific impulse of 456.5 sec at a mix-
ture ratio of 6.0, ¢ = 205:1. The 1ife expectancy is 5 hours with 190
starts. The overall stowed engine length is seen to be 140 cm (55 in.),
where the gimbal point is 44 cm (17 in.) aft of the L0y tank.

2. Engine Evaluation

A sensitivity study was conducted in Reference 2 to determine the
overall program impact when the Option 2 Category IIA RL10 main engine is
replaced with an advanced engine candidate, i.e., Category IV RL10, Advanced

17

"



Space Engine (ASE), or the Aerospike (Figure 3). MWith the exception of the
Aerospike, the engine change effects are primarily engine related, i.e.,
engine DDT&E cost, weight and specific impulse. The Aerospike engine pro-
vides maximum Tug performance at an engine mixture ratio of 5.0, while the
other engines maximize tug performance at an engine mixture ratio of 6.0.
Therefore, a Tug using an Aerospike engine would have different tank sizes
than a Tug using the other engine candidates.

Results of this study (Figure 9) show that the Tug performance
increases by 10 to 20 percent with the use of advanced engines. For the
mission model used, the number of flights does not change significantly and
the fleet size does not change at all. The figure also shows that the total
program cost decreases with the advanced engines and the cost impact is due
primarily to DDT&E cost (mostly due to the main engine).

C. PLUG AND PLUG CLUSTER ROCKET NOZZLE STUDIES

During the past twenty years, many investigations have been conducted
in the field of unconventional rocket nozzles, and in the process, a large
volume of literature was generated. The most pertinent references on the
subject of plug and plug-cluster nozzles are listed in Appendix C.

The literature, reviewed in the Task I Report, describes experimental
and theoretical investigations of several types of plug nozzles generally
referred to as annular-throat, discrete-throat, Aerospike, and plug cluster
nozzles. Inverse-plug or expansion-deflection nozzies were also discussed
in the review.

In addition to plug nozzle performance in terms of thrust efficiency,
specific impulse or velocity coefficient, plug wall and base pressure and
heat transfer data were presented. The experimental data on thrust vector
control methods applicable to plug nozzles were also reviewed. In general,
a good agreement was found between the model cold-flow data and hot-flow
Ho/02 propellant test results.

The analytical methods discussed in the literature, are generally
adequate for the design and performance prediction of annular-throat isen-
tropic plug nozzles, but inadequate for the analysis of nozzles which
deviate considerably from the annular-throat configuration, such as plug-
cluster nozzles utilizing bell modules. In such cases, authors of various
reports generally resort to empirical correction factors to account for
shock wave interaction occurring at the module exit. These factors were
developed from testing of specific plug-cluster configurations and must
be applied with caution to new plug concepts.

Most of the analytical and experimental studies were stimulated by the
altitude compensation aspect of plug nozzles, which is a desirable charac-
teristic of nozzles for booster application. For this reason, the range of
many plug variables was limited to the booster phase of rocket propulsion.
The space tug vehicle operates in a vacuum at infinite pressure ratio and
the altitude compensation, which occurs at pressure ratios less than design

18
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value, does not apply. Here, the performance objective is to select the plug-
cluster configuration that would produce the maximum specific impulse for a
specified nozzle length.

Review of the literature on plug and plug-cluster nozzles allows the
following general observations to be made concerning the advantages and dis-
advantages of plug-cluster nozzles for Space Tug application:

ADVANTAGES :

(1) Plug cluster concept lends itself to modular approach, and full
utilization of available diameter.

(2) Thrust vector control can be produced by gimbaling or throttling
of individual modules or group of modules.

(3) Design techniques for bell module design are well developed.

(4) Plug cluster concept offers fail-operational potential for module-
out or turbopump-out fail-safe modes, whereas present Tug propulsion
systems are only fail-safe.

(5) Concept allows application of low pressure, long life propulsion
system components.

(6) Concept leads to shorter equivalent engine length.

DISADVANTAGES :

(1) Shock wave interaction at the cluster discharge reduces nozzle
performance.

(2) Analytical methods are not available at the present timei

(3) Plug cluster engines are sTightly heavier than single engines
of the same thrust level.

1. Plug Nozzle Performance Criteria

The plug and plug cluster nozzle Titerature indicates definite
trends in the performance of the nozzle as a function of the major design
variables. However, these trends can be misleading at the larger area ratios
(¢ > 80) and module gaps of this study. For example, plug engine performance
appears to decrease significantly with the degree of truncation (i.e., the
reduction in the ratio of plug length to isentropic plug length) as shown for
the ALRC data curve in Figure 10 (taken from Task I Report, pg. 107).

What is not indicated in the figure is that the tilt angle of the
annular throat remains constant at 38 degrees, and that the loss in thrust
for a zero length plug is primarily a divergence loss. If it is assumed that
a zero length plug does not turn the gas stream axially, the expected thrust
efficiency would be CTIcoso, or 0.78, which appears to be a valid extrapola-
tion of the ALRC curve in Figure 10.
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The loss in performance for an annular throat plug nozzle with a
smaller tilt angle (Ref. 3) is shown in Figure 10 to be much less. The value
for CTycoso of 0.956 is seen to be a close approximation to the experimental
efficiency, when zero flow furning is assumed.

The same trend is evident in the data for clustered modules on a
plug (Ref. 4). The value for Crycoso is 0.927 for the assumed isentropic Ct
in the figure. .

Another example of a literature trend involves the performance
Toss due to gaps between module exits of a plug cluster engine. A typical
representation is given in Figure 11 (Ref. 5). Experimental data (Ref. 4,
pp. 11-53 and 1I1-84) showing the effect of fairings on gap performance are
depicted in Figure 12. Addition of the fairing is seen to improve the per-
formance about 50% of the difference between the zero and one gap cases. It
is seen that Cy drops significantly when the gap is increased. But this drop
may be due to the gap (loss of effective area and/or aerodynamic losses), or due
to the increase in tilt angle or change in base pressure. Figure 13 (data from
Ref. 4, p. I1-39) shows the effect that can be attributed to the tilt angle
when the plug length is held constant. Interpretation of the curves in Figure
10 requires superposition of data giving the module Ct1 contribution (CTcose),
the base CT contribution, and the contour Cy contribution all versus the tilt
angle.  Such data are given in Ref. 4 but only for the baseline tilt angle.

The effect of tilt angle on base pressurization and thus Ct, is
depicted on Figure 14 (Ref. 4) for zero plug length. A

Base pressurization of the Aerospike annular plug engine amounts
to 2.4% of the thrust as shown in Table IV (Ref. 6). Experimental data,
giving the relationship between the base pressure and the base flowrate,
are shown in Figure 15 (Ref. 7) for an earlier version of the engine. Figure
16 (Ref. 7) depicts the nozzle thrust coefficient efficiency (C7) variation
with amount of base flow for the Aerospike. A maximum is seen to occur at
about .004 base flow.

A difference appears in this relationship when data for a plug
cluster (Ref. 4) is examined (Fig. 17). The maximum now appears between
1 and 2 percent {but no data points are shown between 0 and 2%). The aero-
dynamic conditions are entirely different, however. Data for the plug
cluster were obtained at (flowrates) pressures such that the wake might not
have closed on the plug. In vacuum, the wake will close unless the added
base flow becomes excessive, causing flow separation.

2. Plug Nozzle Design Criteria

Reference 4 describes the five geometric parameters that must be
determined to completely define a plug cluster configuration: module area
ratio (cg), number of modules (N), engine (cluster) area ratio (ep), gap
distance (&/De), and tilt angle (0). The equation relating these parameters
is given as -
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TABLE IV - NOMINAL PERFORMANCE, DOUBLE-PANEL AEROSPIKE ENGINE

SHOWING BASE CONTRIBUTION

Nozzle Type

Engine Thrust, pounds
Engine Mixture Ratio
Area Ratio

Stagnation Pressure, psia

Injector Mixture Ratio

Injector Flowrate, 1bm/sec

Hydrogen Injection Enthalpy, Kcal/mole
Oxygen Injection Enthalpy, Kcal/mole
ODIE Specific Impulse, 1bf-sec/1bm
0DK Specific Impulse, 1bf-sec/Tbm
Divergence Efficiency

Boundary Layer Loss, lbf-sec/lbm*
Energy Release Efficiency

Base Specific Impulse**, sec.

Base Flow Ratio, M /M

secondary
Base Flowrate, 1b/sec

primary

Base Pressure, psia
Base Thrust, 1bf

Engine Delivered Specific Impulse, sec.

* L ]
AFBL/Minjector

secondary’ secondary

Aerospike
25,000
5.5:1
200:1
1000
5.572
52.99
2.18
-1.005
498.5
497.3
0.9671
-17.93
0.995
6056.2
0.0019
0.10
0.60
609.7
470.4

it B



NOZZLE BASE PRESSURE RATIO AT VACUUM, PB/PC

0.0060

0.0050 [~

0.0040 —

0.0030 I~

25% LENGTH NOZZLE

12.2% LENGTH NOZZLE\//
—

0.00ZOﬁ" AEROSPIKE ENGINE TEST DATA
OMR = 5.0, €= 74.1, P, = 1050,
0.0010
O NR = 3,5, €= 74.8, Pc = 900
o ] ] | | J
0 0.01 0.02 0.03 0.04 0.05
SECONDARY-TO-PRIMARY WEIGHT FLOW RATIO, Ws/W,
Figure 15. Base Pressure Versus Secondary Flow at Vacuum -
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NOZZLE THRUST COEFFICIENT EFFICIENCY AT VACUUM, nCF

100
98 -
a
F B T
]
96
04g.9. 6
94
HOT FIRING DATA
O MR = 3.5
O MR= 5.0
92 - PREDICTED PERFORMANCE
—— MR = 3.5
- MR = 5.0
90
88 | | | | B
0 .01 .02 .03 .04 .05
Ws
FLOW RATIO, =
P
Figure 16. Vacuum Thrust Coefficient Efficiency Versus Secondary Flow
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=|—

_ (1 + 6/De)cos 0 2
180 (Eq. 1)
sin [arctan (cos © tan ——)]

N
The choice of any three of the parameters determines the other two.

For a given number of modules, module area ratio, and gap dis-
tance, the cluster area ratio and then tilt angle may be calculated. With
module and engine area ratios known, the tilt angle is obtained from a figure
such as Figure 18 (Ref. 4), as the difference between the Prandt1-Meyer
turning angles for the engine and module area ratios. A curve, illustrating
the relationship between cluster area ratio, number of modules, and tilt angle,
for the case of 6/De = 0, is shown in Figure 19 (Ref. 4). With a gap between
the modules, the amplification factor (ee/eM) will increase; correspondingly,
the engine area ratio, as well as the tilt angle, will increase.

There are two regions that must be considered in designing the
contour of the plug (Figure 20A): (1) the expansion region of the plug, and
(2) the transition region where the flows from the modules merge and mix to
form an annular flow field. The method used in Ref. 4 to design the plug con-
tour is as follows: (1) a single-expansion plug nozzle computer program
employing the method of characteristics is used to design a plug contour for
the desired cluster area ratio. This program provides a full-length plug
nozzle with the external expansion starting from a Mach 1 annular throat
(Figure 20B). (2) A module is then positioned, as shown in Figure 20C, so
that the outer lip of the module coincides with the expansion corner of the
single-expansion plug nozzle. Thus, the exit Mach line (corresponding to the
cluster area ratio or Mach number) for both the plug cluster nozzle and the
single-expansion plug nozzle coincide. (3) A smooth curve from the inside
module 1ip is then faired into the isentropic contour.

D. H/0 THRUST CHAMBER TECHNOLOGY

Hydrogen-oxygen thrust chambers that offer potential in a clustered plug
configuration for the Space Tug application fall into two categories:
(1) existing, or (2) demonstrated (high) technology status. All of the candi-
date engines for the single-engine Space Tug can be correspondingly cate-
gorized except for the existing RL10 that has been carried to operational
engine status.

The technology on small thrusters was recently reviewed by Gregory
and Herr (Ref. 8). Their paper covered the comprehensive program sponsored
by NASA-LeRC to provide the technology groundwork for the use of hydrogen-
oxygen propellants in the Space Shuttle Attitude Control Propulsion System
(ACPS) thrusters. Final reports on these projects were reviewed in Task I
of this study with the objective to independently assess the state-of-the-
art of these thrusters and their components with reference to the feasi-
bility of the plug cluster engine concept.

A prime candidate for the plug cluster engine is the NASA LeRC/ALRC
Integrated Thruster Assembly (ITA). Another high technology candidate 1s
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TRANSITION REGION

MACH ONE ANNULAR THROAT

MACH LINE CORRESPONDING TO
MODULE EXIT MACH NUMBER
SINGLE EXPANSION PLUG
NOZZLE CONTOUR '

f LAST MACH LINE

(B)
:E?LDULE OW TURNING POINT FOR SINGLE EXPANSION
NOZZLE CLUSTERED PLUG NOZZit

- PLUG LENGTH — g

(€)

Fﬁ'gure 20. Plug Contour Design
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the Extended Temperature Range (ETR) ACPS thruster. Additional candidates
include regeneratively cooled thrusters. :

A bibliography of pertinent reports that serve in the evaluation of
the thrusters for the plug cluster assembly engine is given in Appendix D.

1. Integrated Thruster Assembly

The Integrated Thruster Assembly (ITA), Figures 21 and 22 (Ref. 9),
is a flightweight GH2/GOp ACPS engine employing a spark initiated igniter.
The nominal operating conditions are: 6672 N (1500 1bf) thrust, 207 N/cml
(300 psia) chamber pressure, and a 4.0 mixture ratio, as given in Table V.
The thruster has demonstrated a steady state specific impulse of 435 sec at
a mixture ratio of 4.0 and 431 seconds at an O/F = 5.5 (Ref. 45). The ITA
consists of a premix triplet injector, a regeneratively cooled chamber, and
a dump-film cooled throat and skirt; an ox rich torch type igniter and
integral exciter/spark plug; two igniter valves, and two main propellant
valves. The ITA S/N 002 was fired 42,266 times over 4200 full thermal cycles.
A similar unit achieved 51,000 cycles in Tife testing at NASA/LeRC.

The scope of the ITA program included review of Hp/02 ACPS tech-
nology, design and fabrication of an optimized flightweight thruster, and
test firing to evaluate the thruster operation over a range of conditions
such as would be encountered in a Space Shuttle application. The objective
of the ITA program was to develop the technology for flightweight ACPS
thrusters by investigating areas of unresolved technology such as: (1) chamber/
injector life, (2) component interaction and optimization of a design to
meet the often conflicting requirements of steady state performance and
cooling, (3) pulsing with cold propellants, (4) response time, (5) flightweight,
and (6) long cycle Tife.

The results of the ITA program are as follows: (1) the ITA design
is satisfactory, simple to operate, and has adequate life, (2) the igniter
is very reliable, (3) chamber coolant part to part hydraulic characteristics
have no significant variations, (4) 51,000 pulses were demonstrated on a
single unit, (5) the predicted thermal cycle 1ife of 65,000 cycles agrees
with measured temperature data, (6) fuel lead starts can result in damage,
thus .01 to .02 sec oxidizer leads are used, (7) fuel lag shutdowns are pre-
ferred, (8) the longest firing duration made with the ITA was 513 sec, and
(9) the ITA weight was 6.895 kg (15.2 1bm) exclusive of valves.

The ITA program demonstrated a lightweight, compact, high per-
forming thruster which meets duty cycle and cycle life requirements, The
primary problem area of the ITA thruster was the main propellant valves, which
started to leak after 20,690 pulses. The upper limit on operating pressure
was 348 N/cm2 (482 psia) due to the pressure limit of main propellant valves.
Neither of these main propellant valve considerations should Timit the use of
the ITA results.

2. Extended Temperature Range Thruster

The Extended Temperature Range (ETR) Program (Ref. 10) involved
the study of five cooling concepts (Figure 23) and the design, fabrication,
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Figure 21. Integrated Thruster Assembly is a Prime Candidate for the Plug
Cluster Engine
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TABLE V.

Design Characteristics

Thrust
Chamber Pressure
Mixture Ratio
Pressure at Inlet to Valves
Fuel Flow Rhte
Regen and Injector
Fuel Film Coolant
Total
Oxidizer Flow Rate
Fuel Temperature
0Oxidizer Temperature
lgniter Fuel Flow Rate
Core
Coolant
Total
Igniter Oxidizer Flow Rate
Igniter Core MR
Igniter Overall MR

Geometry

Throat Diameter

Exit Diameter

Chamber Contraction Ratio
Nozzle Exit Area Ratio
Chamber L*

Overall Length

Overall Length (less exciter/spark plug)

Fwd End Clearance Diameter

Dimension of Cylinder Enclosing ITA

Weights (Design)

ITA (incl.
Main Propellant Valves
ITA (less valves)
Thrust Chamber (Incl.
Injector
Igniter

Design Performance

Specific Impulse
Steady State
Pulsing @ MIB

{IB

Response (electrical signal to 907% thrust)

Main Propellant Valves)

Insulation)

- ITA DESIGN SUMMARY

6672 X (15001bf)
207 N/cm (300" psia)
4.0

276 N/cm? (400 psia)

247 g/sec (.545 1lb/sec)
65.8 g/sec (.145 1lb/sec)
313 g/sec (.69 1lb/sec)
1252 g/sec (2.76 1b/sec)
1300C (2500R)

208°C (376°R)

.726 g/sec (.0016 lb/sec)
4.26 g/sec (.0094 1lb/sec)
4.99 g/sec (.01l 1lb/sec)
32.66 g/sec (.072 lb/sec)
45

6.55

4.88 cw (1.92 in.)

30.73 cm (12.1 in.)

33

40:1

43.18 cm (17 imn.)

74.68 cm (29.4 4in.)

61.37 cm (24.16 in.)

33.78 em (13.3 in.)

74.68 x 36.32 cm (29.4 x 14.3 in.

14.016 kg (30.9 1b)
7.257 kg (16.0 1b)
6.758 kg (14.9 1b)
3.933 kg (8.67 1b)
1.887 kg (4.16 1b)
.939 kg (2.07 1b)

426¢ N-sec/kg (435 1b —sec/lb )
3923 N-<ec/kg (400 1b_-sec/1b )
222 N-sec (50 lb-sec)

.050 sec
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a. Gas/Liquid Injection
Upstream Valve Film
Cooled Throat

m:/\
b. Liquid/Liquid

Injection Film Cooled
Chamber

Figure 23. Tested ETR Candidate Propellant Thermal Management Concepts
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and testing of two non-flightweight engine designs which are viable candi-
dates for Space Shuttle and Tug engine systems. One ETR design, using a
24-element liquid/liquid injector, was fired 66 times as a full thruster at
sea-Tlevel conditions, and 10 times with a cooled chamber at altitude condi-
tions, and was damaged after four seconds duration. The second design was a
36-element gas/1iquid injector that was fired successfully 48 times at sea-
Tevel conditions, and 44 times with a cooled chamber at altitude conditions
with five tests of 20 seconds duration each. The operating point of both
engines is 5560 N (1250 1bf) thrust, 345 N/cm2 (500 psia) chamber pressure and
4.5 mixture ratio with cryogenic propellants.

The ETR program successfully demonstrated a non-flightweight
36-element coaxial G/L thruster with a dump cooled regenerative chamber
and a Haynes nozzle over a chamber pressure range of 152 to 345 N/cml
(220 to 500 psia) and a mixture ratio range of 2.3 to 6.2 with fuel inlet
temperature of 36 to 116°K (64 to 208°R). A cumulative firing duration
of 273 sec, including five 20 sec tests, was made without damage. The
igniter and valve capability, reliability, and durability were demonstrated.

The G/L thruster demonstrated durations of 20 sec without damage,
and a steady state performance of 4266 N-sec/kg (436 1bf-sec/1bm) with 18%
fuel film cooling. A hydrogen inlet temperature of as low as 35.6°K (64°R)
and as high as 111°K (200°R) was demonstrated in the G/L thruster. A wide
range of operating conditions were tested. Combustion stability was demon-
strated on all testing. Large amounts of thermal data were obtained.

3. Hydrogen-Oxygen Auxiliary Propulsion Engines

Technology for long 1ife, high performing hydrogen-oxygen (H/0)
rocket engines suitable for Space Shuttle auxiliary propulsion systems (APS)
were obtained in several NASA sponsored programs. Injectors, fast response
valves, igniters, and regeneratively and film-cocled thrust chambers were
tested over a wide range of operating conditions and durations (Ref. 11 and
12). A typical schematic of a thrust chamber that was tested is shown in
Figure 24.

The scope of the H/0 APS programs included the screening of
candidate cooling methods during analysis and design studies, and the
fabrication and testing of the selected designs. Design criteria and per-
formance summaries are indicated for these designs in Table VI.

E. ~ H/0 TURBQPUMP ASSEMBLY TECHNOLOGY

The plug cluster engine concept is dependent upon the turbo-
machinery subsystem design, performance and weight. Since the perform-
ance of a conventional space engine is essentially insensitive to the
level of thrust chamber pressure, pump discharge pressures can be low,
and consequently, the turbopump weight, which is then a small percentage
of the total engine weight, is Tow. .

For the plug cluster engine, pump weight optimization will depend
upon the number of turbopump assemblies (TPAs) selected to feed the
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TABLE VI - APS CYCLE LIFE PERFORMANCE MATRIX (Ref. 11)

PHASE

AMBIENT TEMPERATULL

1 CHAMNCR DESTICONS AND CONDITTONS

PROPLLLANTS

P_, psia (§/cm?) 100 (69) 300 (207) 500 (345)
MR 4 3 4 5 4
Regen Chamber, 107% FFC
1 , 1bf-sec/lbm 449 455 452 440 455
(N-s/kg) (4400) 4 (4459) (4429) 43 0 (4459) 3
N¢ 3.5x10, 3x107 3x10§ 3x10§ 1.2x10
N¢ 3.5x10 Zx10 2x10 2x10
T
Film Cooled Chamber, 20% FFC
I , 1bf-sec/lbm 448 443 430 447
(N-s/kg) (4390) (4341) (4214) (4380
Ne T3 106 T3
Nf 9x10 9x10 9x10
T
PHASE II CHAMBER DESIGNS AND CONDITIONS
COLD PROPELLANTS
Regen Chamber, 97 FFC
T, 1bf-sec/1lbm - 444 442 431 442
(N-s/kg) 6 (4351) (4332) (4224) (4332)
N 107 106 A 106 A 106" 4 --
Nf 2x10 1.5x10 1.5x10 1.5x10 7.5x19)
T
Film Cooled Chamber
15%FFC
I , lbf-sec/lbm 441 438 428
(N-s/kg) 6 (4322) (4292), (4194) 4
N, 10, 106 4x105 102 4x10
N >10 105 105 10° 4x1n
T
20% FFC
I , 1bf-sec/lbm 438 435 425
(N-a/kg) 6 (4292) (4263) (4165 3
Ne 10, 108 106 8x10 2x10
N >10 10 105 102 --
T
Nf = Thermal cyclic life for pulses of 200 lbf-sec or less.
N = Thermal cyclic life for full thermal cycles. totai irrulse,

'3
T

Firings >2750 lb-~sec

6
All designs provide 10 pulse capability for 50 lb-sec bit impulse.
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thrusters (modules). Mission reliability, as well as the number of engine
restarts per mission, and the effect on chilldown propellant requirements
also depend strongly upon the number of TPAs in the feed system.

An important factor in the selection of the number of TPAs is the
geometric size of the critical components such as bearings and seals.
Miniaturization of these components must be avoided.

The turbopump selection further impacts the system payload capability
through the suction pressure requirements, and the classical tradeoff
of tank weight versus NPSH and chilldown propellant flow must be made.

A bibliography of reports on turbopump technology pertinent to the
plug cluster engine Space Tug application is given in Appendix E. It is
apparent that the TPA technology is of sufficient status to allow engine
system and design studies to be conducted in a realistic manner.

1. APS Turbopumps

Small, high-performance L02 (Table VII) and LH2 (Table VIII) turbo-
pump assembly configurations were fabricated with each unit consisting of pump,
turbine gas generator, and appropriate controls (Ref. 13). Development test-
ing was conducted on each type to demonstrate performance, durability, .
transient characteristics, and heat transfer under simulated altitude condi-
tions. Following successful completion of the development effort, two LO2
turbopump units and one LH2 turbopump unit were acceptance tested. A weld
failure in the turbine manifold of one LH2 turbopump unit prevented its
acceptance. The test results on the LO2 turbopump assembly correlated well
with predicted performance, while the LH2 turbopump test results showed lower
than anticipated developed head at the design point and in the high flow range
of operation. The lower developed head is attributed to higher than anti-
cipated pump flow passage resistance from effects typical of small multi-
stage pumps. The results of this program have established a sound technology
base for future development of small, high performance turbopumps and gas
generators.

Assessment of the state-of-the-art of these turbopump configura-
tions shows the breadboard designs are somewhat heavier than desired for use
on an engine. Further design refinements would likely be required for
adaptation to engine installations.

EDM and casting methods were extensively used in fabrication.
Although some difficulties were encountered, the processes were evidently
quite successful. The art of fabricating small turbomachinery components
will undoubtedly develop further as their use is increased.

2. RL10 Turbopump Assembly

Reference 14 examined selected RL10 derived candidate engines for
the cryogenic Space Tug to define detailed engine system performance, mechan-
ical and operational characteristics. A critical element evaluation estab-
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Pump:

Turbine:

-Turbopump:

Flow, m3/sec (gpm)
Inlet Pressure N/m2 (psia)
Developed Pressure, N/m2 (psid)

Inlet Temperature, K (R)

Energy Source

Exhaust Pressure N/m2 (psia)

Life, tbo, hrs
Operating Cycles
Start Time, sec
"ON" Time

"OFF" Time
Useful Life

Seal Leakage

Maximum Surface
Temperature

Turbine to Pump Heat Flow

TABLE VIT - APS OXIDIZER TURBOPUMP PERFORMANCE REQUIREMENTS (Ref. 13)

6.309 x 10°% (100)
137,895 - 344,738 (20-50)
1.103 x 107 (1600)

92.8 - 103.9 (167-187)

0,/H,
24.317 (35)

10

10,000

1.5

2 sec to 600 sec

5 sec to 24 hrs

10 years

Minimized

589 K (1060 R)

<52,752 Joule/hr

(50 Btu/hr nonoperative)

<158,256 Joule/hr
(150 Btu/hr operative)
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Pump:

Turbine:

Turbopump:

46

Flow

Flow

Developed Pressure
Inlet Pressure

Inlet Temperature

Energy Source

Exhaust Pressure

Life, tbo
Operating Cycles
"ON" Time

"OFF" Time

Start Time

Turbine to Pump Heat Flow

TABLE VIIT - APS LH, TURBOPUMP PERFORMANCE REQUIREMENTS ( Ref. 13)

2.01 kg/s (4.5 1b/sec)

0.02902 m3/sec (460 gpm)

1.103 x 10" N/m? (1600 psia)

124.106 - 344,738 N/m® (18 - 50 psia)
20.8 - 25 K (37.5 - 45 R)

0,/H,
2413.7 N/m? (35 psia)

10 hrs
10,000
2 sec (minimum)
5 sec to 24 hrs
1.5 sec

158,256 Joule/hr
(50 Btu/hr Static)

52,752 Joule/hr
(150 Btu/hr Operating)



lished the feasibility of various engine features such as tank head idle,
pumped idle, and autogenous tank pressurization and two-phase pumping. The
tank head idle and pumped idle mode are attractive as a means of achieving
pump chilldown with minimum loss of total impulse. The two-phase pumping
capability relates to minimizing the weight of gas pressurants.

Four engines were investigated with chamber pressures from 400 to
870 psia. The turbopump assembly configured for two-phase pumping required
a larger diameter inducer for the LH2 pump, and a low speed boost pump for
the LOX system.
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SECTION TV
ENGINE PERFORMANCE METHODOLOGY

A. OBJECTIVES AND GUIDELINES

The program objective was to prepare performance maps for the plug
cluster engine concept, displaying the delivered specific impulse in terms
of the following variables:

Combustion chamber pressure

Engine area ratio

Engine diameter

Number of clustered modules (or thrust per module)
Module area ratio

Module mixture ratio

Engine mixture ratio

Plug nozzle base pressure (or base flow rate)

The program requirement was to utilize simplified engine performance
methodology. Test data correlations for base pressurization and fairing
corrections were incorporated into the model. Nominal conditions for the
plug cluster engine were those of the baseline Space Tug as given in Table I.

A Task Report (Unconventional Nozzle Tradeoff Study - Monthly Technical
Progress Report 20109-M-4, Task Il - Parametric Engine Performance, Aerojet
Liquid Rocket Company, Sacramento, California, Contract NAS 3-20109,

November 1976) was issued summarizing the data generated.

Upon receipt of the experimental cold flow data from Contract NAS
3-20104, the engine performance methodology was revised. Performance maps
reflecting the experimentally measured effects of gaps, fairings, tilt angle,
and base pressurization were generated. Calculations for the baseline case
indicated only a small performance improvement over that obtainable from a
low area ratio (e = 40) module. These data led to a reevaluation of the
plug cluster design and to the formulation of a design and consistent per-
formance methodology.

B. MODULE PARAMETRIC PERFORMANCE MODEL

The approaches taken to define the performance of the pTug cluster
engine involve the establishment of the individual thruster (module) per-
formance as well as the performance contribution from the plug nozzle exten-
sion. Module performance is discussed in this section.

Module parametric performance analysis was accomplished using a
computer model constructed to meet the study's specific requirements. It
was built upon the procedures specified by the JANNAF Liquid Rocket Per-
formance Subcommittee (Ref. 15) and was a modification of a computer model
formulated for another engine study (Ref. 16). The JANNAF Subcommittee has
recommended two performance analysis methods. The standard procedure which

49
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utilizes the best available analytical procedure is primarily used for

single point performance analysis of existing engine systems. The second
method is a simplified procedure which utilizes design chart data and Tower
cost computer programs. It is designed for the parametric analysis of engine
systems and was ideally suited to this study. The simplified method, there-
fore, was utilized.

The program calculates delivered module performance and the module
envelope as a function of engine thrust (F), chamber pressure (P¢), area
ratio (EPS), mixture ratio (0/F), film cooling level, nozzle length (% Bell),
and injector type. To accomplish this wide-range, parametric analysis with
a minimum cost, the JANNAF procedures have been expanded to include: (1) ODE
and ODK Isp and C* data tabulations as a function of O/F, Pc, F, and EPS,

(2) injector design limits, and (3) envelope design data. Delivered module
performance and envelope are determined for any set of design and operating
conditions through the evaluation of the one-dimensional equilibrium (oDE)
specific impulse and the appropriate performance losses. The module
envelope is determined from the calculated performance level and the nozzle
design and chamber length requirements and specific operating conditions.

A brief description of the methods used to evaluate the above parameters
follows.

1. Performance Losses

a. One-Dimensional Equilibrium (ODE) and One-Dimensional
Kinetic (ODK) Performance

The ODE and ODK Isp and C* are included in block data form
in a subroutine. The data were calculated using the JANNAF approved 0DK/
ODE computer program. A parametric evaluation of the ODE and ODK Isp and
C* over a wide range of nozzle expansion ratios, O/F ratios, and chamber
pressures was accomplished and its results are included in the evaluation
program. The ODE Isp is included in the computer printout under the heading
ISPT.

b. Divergence Loss

The nozzle divergence loss (% DL) is evaluated for Rao
(Bel1) nozzles using design charts similar to those presented in Appendix
A of Ref. 17. Data from these charts are contained in block data format
in a subroutine which supplies the nozzle divergence efficiency and nozzle
Jength for a specified nozzle area ratio and % Bell. The divergence effi-
ciency as a function of length and area ratio is determined from a method-
of-characteristics computer program using the design technique developed

by Rao.
c. Boundary Layer Performance Loss

The boundary layer performance loss (% BLL) is evaluated
using the Design Charts presented in Appendix B of Reference 17. The Design
Chart data are included in block data format in a boundary layer loss sub-
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routine of the computer program. Inputs to the subroutine include the
nozzle area ratio and throat radius, chamber pressure, gamma (1.20), nozzle
exit angle, CSTAR, and wall temperature ratio.

d. Fuel Film Cooling Loss

The fuel film cooling loss (% FCL) is calculated using the
thermal exchange stream tube model from the ITA program (Ref. 9). This
mode1 resulted in fair correlations of the ITA film cooling Toss. The film
cooling loss was also evaluated as part of the Plug Cluster Module Demon-
stration Program (Contract NAS 3-20107), and these results were incorporated
into the Parametric Analysis Program that was used for engine optimization
in Task V.

e. Energy Release Loss

Two options were included in the program. The first option
assumes a fixed injector design (i.e., ITA) is utilized at all operating
conditions. The energy release loss (% ERL) is based on the empirical energy
release performance loss determined from the ITA program and extended using
the Gas/Gas mixing model developed under Contract NAS 3-14379 (Ref. 18).

This fixed injector design results in a larger energy release loss with
increasing mixture ratio and decreasing propellant temperature.

The second option included in the Parametric Computer Pro-
gram allows for development of a new injector design for each operating
condition. In this case, it was assumed that the new injector could be
developed to produce an energy release efficiency of 99% which is comparable
to the ITA design at nominal operating conditions (0/F = 4, Pc = 207, F =
6672, ambient propellants). The 99% ERE option was utilized 1n all of the
engine optimization studies as it represents the more realistic approach.

2. Module Performance

Performance and module geometric parameters for a fixed ITA type
injector and a new injector design (ERE = 99%), fully developed for each
operating point over the specified range of design and operating conditions,
are shown in the following tabulation:

TABLE IX. - MODULE PERFORMANCE PARAMETRIC RANGES

Propellants: (1); Hydrogen (T = 139°K), Oxygen (T = 208°K)*
Injector Design: (2); Fixed (ITA Type) and Variable (ERE Constant)
Thrust Level: (4); 2224, 6672, 13345, 22241 N (500-5000 1bf)
Chamber Pressure: (2); 20.41 and 34.02 ATM

Mixture Ratio: (5); 4, 5, 5.5, 6, 7

Area Ratio: (4); 40, 100, 150, 200

Fiim Cooling: (4); 0, 15, 20, 25%

Nozzle Length: (1); 75.5% Bell

Total Cases 1280

*ITA operating temperatures - the propellants for the Space Tug engine, however,
are stored as liquids at their normal boiling point. The performance calcula-
tions included in Figures 25-30 show the trends in performance, but are from
6 to 10 seconds higher in ODE specific impulse due to the use of ITA conditions.
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The parametric performance analysis results were tabulated in the
Task I1 Report for the fixed injector (ITA) and optimized (ERE = 99%) injec-
tor designs respectively. Included in each table are the estimated delivered
performance, performance losses, and engine envelope dimensions for 1280
specific design points which cover the range of parametric conditions included
in this study. The calculated delivered specific impulse is summarized as a
function of mixture ratio and fuel film cooling in Figures 25-27. Figure 25
shows the variation of delivered Isp with mixture ratio for the fixed injec-
tor design. Figures 26 and 27 contain similar plots of delivered specific
jmpulse for the optimized injector design at chamber pressures of 20.4 and
34 atm, respectively. 1In all cases, maximum specific impulse is obtained
at the low mixture ratio (4.0) point for a constant value of fuel film cool-
ing. The ‘influence of mixture ratio is less, however, for the optimized
injector design since its energy release loss is unaffected by the operating
mixture ratio.

The effect of area ratio on module specific impulse at an assumed
constant 20% FFC is jllustrated in Figures 28 and 29 for the fixed and opti-
mized injector designs, respectively. Module specific impulse increases
approximately 10-20 sec over the range of area ratio included in this study
(40-200). The effect of module thrust level on specific impulse is shown in
Figure 30 for an optimized injector design. With the assumption of a con-
stant energy release efficiency, specific impulse increases slightly
(approximately 1%) with increasing thrust level because of reduced kinetic
and boundary layer performance losses.

C. PLUG PERFORMANCE ANALYSIS

Plug cluster engine performance has been shown to reach, as a limit,
the performance of an annular throat plug nozzle. To a first approximation,
then, the performance contribution of the plug nozzle portion can be estimated
by comparing plug cluster and annular plug nozzle performance data. Therefore,
the performance of the annular throat plug is discussed in this section.

Plug nozzle contour and performance was analyzed by means of a com-
puter program based on theory developed in Reference 19. This well known
theory is valid for an annular throat truncated plug nozzle expanding from
Mach 1 to a desired Mach number, Mg, at the plug exit. The sketch of the
plug nozzle control surface is shown in Figure 31.

In performing parametric calculations, the Mach number Mg and initial
flow angle of are chosen and the base pressure is assumed zero. (eg and Mg
are design parameters which determine the plug area ratio and truncated length.)
The results are plotted as a function of plug area ratio (eg) and non-
dimensional plug length (L/Rg) with Mach number as a parameter as shown in
Figure 32. It can be seen that the effect of truncation of an ideal plug of
length L1 is to reduce the Mach number leaving the plug. At a given plug
area ratio, the truncation can be defined as follows:

L/Lp % = (L/RE/LI/RE) 100 (Eq. 2)
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FIXED INJECTOR DESIGN (ITA)

Pc = 20.4 ATM

Area Ratio = 40:1
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Figure 25. Module Delivered Specific Impulse for a Fixed Injector Design
Operating at a Chamber Pressure of 20.4 ATM
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OPTIMIZED INJECTOR DESIGN (ERE = 99%)

Pc = 34.0 ATM

Area Ratio = 40:1

F = 6672 N (1500 1bf)
75% Bell Nozzle

460 F
440 §-
— % FFC
b
- 0
@ 420 |
S
=
= 5
L
s 20
9 400 |-
& 25
E
=
=3
(S}
[+
—
380 |-
360 I....... A -l | R
3 4 5 6 7 8

Mixture Ratio

Figure 27. Module Delivered Specific Impulse for an Optimfzed injecié} Désign
Operating at a Chamber Pressure of 34.0 ATM.
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Figure 28.
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OPTIMIZED INJECTOR DESIGN (ERE = 99%)
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Figure 29. 7Inf]uence of Expansion Area Ratio on Module Specific>lmpu1se for

an Optimized Injector Design.

57



58

Vacuum Specific Impulse, (sec)

OPTIMIZED INJECTOR DESIGN (ERE = 99%)

Pc = 20.4 ATM
% FFC = 20
0/F = 6.0

75% Bell Nozzle

460
Area Ratio
as0 | 200
P — 150
;////":,/____—, 700
420
[ — 20

400 #—

380
] | | ] L J
4000 8000 12,000 16,000 20,000 24,000
| S o
(0) (1000 ) (2000 ) (3000 ) ( 4000) ( 5000)

Thrust, F, Nclbf)

Figure 30. Variation of Module Specific Impulse With Thrust Level for an
Optimized Injector Design
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The plug nomenclature is indicated in Figure 31. The ratio L/L] is commonly
referred to as the isentropic plug length percentage. The isentropic plug
Tength is really a misnomer as all plug calculations are isentropic. In
actuality, an isentropic plug is a plug in which the flow field is axial .
or effectively one-dimensional. All truncated plugs have flow fields which
are not purely axial and thus contain divergence Tosses.

The calculated plug nozzle vacuum thrust coefficient can also be
plotted as a function of plug length (L/Rg), area ratio (ef) and degree of
truncation (L/L1) as shown in Figure 33. This figure illustrates the effect
of area ratio and truncation on achievable vacuum thrust coefficient assuming
an isentropic expansion along the optimized plug contour from an annular
throat.

The plug nozzle performance will be higher than indicated in Figure 33
due to a finite base pressure acting on the plug base. In vacuum, or at
design pressure ratio, the wake behind the base will be closed (see Figure 34)
and the base pressure, without base injection, will be a function of the
expansion process along the plug wall. Experimentally obtained base pres-
sures for both low and high area ratio plug nozzles follow the trend shown
in Table X and Figure 35.

A relatively consistent correlation between PB and PE is evident
from Figure 35, where the basepressure obtainable is defined as that in which
the nozzle separation criteria holds. Base pressures above the nozzle separa-
tion criteria (Pg/Pg > 3.6, Ref. 42) cause an enlargement of the wake on the
plug base, and thereby reduce the effective area ratio obtainable with a plug
nozzle.

The data on plug nozzle base pressurization do not lead to a correla-
tion between the base flow rate required to maintain a base pressure relation-
ship, such as Pg = 2.5 PE. In some cases, no bleed flow was required. In
other cases, percentage flows as high as one percent were required. Testing
in facilities with finite volumes sometimes Teads to conditions wherein
wake closure is not achieved, unless a vacuum is pulled on the base region
at the start of the experiment to "snap" close the wake. This phenomena
could very well explain some of the variation in test data concerning base
pressurization of truncated plug nozzles. The assumption was made, therefore,
to utilize a bleed flow of 0.2% (see Table IV) of the engine flow, which is
?onsistsnt with the latest test data on the Aerospike where the wake is closed

Ref. 6).

D. PLUG CLUSTER PERFORMANCE ANALYSIS

The selection of a performance model for the plug cluster engine
proved to be the most difficult task in the study. This was due to the
fact that the accepted, somewhat empirical, approach was based on utilizing
a computer program for an annular plug with all external expansion. Experi-
mental data indicated that the performance for a cluster of modules (internal
expansion sections with discrete throats) could be very closely approximated
by the annular plug model, providing the gap between the modules was close to
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zero. At the start of the study, no method was available that could adequately
represent a plug cluster where the gap was much greater than zero.

Several approaches were taken before a satisfactory plug cluster engine
performance model was formulated. The initial approach relied heavily on
defining the module performance accurately, and included the contribution
provided by the plug. The plug contribution amounted to an area ratio increase
factor and a base pressurization thrust component. An empirical performance
improvement was added to account for the use of fairings in the gap between
the-modules.

The second approach incorporated the experimental results from Contract
NAS 3-20104 into a revision of the initial model.

The final approach is based entirely on the JANNAF simplified pro-
cedures for bell nozzles. The method provides a straightforward estimate of
the performance for plug cluster engines. The method is possible because the
engine is envisioned to be formed from a cluster of high area ratio bell
nozzles with zero gap (cf. Figure 4). A baseplate is provided, and the bells
are scarfed. The plug cluster engine, therefore, resembles a cluster of
modules, with large gaps, placed on a fluted plug. Since the aerodynamics
of the flow from each module is identical to that for a scarfed bell nozzle,
the JANNAF simplified procedures provide an accurate representation of the
performance, providing the base contribution is included.

The progressive effort in defining the performance models was bene-
ficial in obtaining an understanding of the weaknesses in some of the design
approaches, and this understanding led to the formulation of the optimum plug
cluster engine design configuration. Therefore, the rationale for each model
will be summarized in the following sections to document the resulting per-
formance associated with each design philosophy.

1. Plug Cluster Design Constraints

The nomenclature used to describe the plug cluster system is shown
in Figure 36. Geometric constraints for the cluster have been identified
(Ref. 4) in an equation which relates the area ratio amplification factor
(eg/eM) to the number of modules, the module spacing, and the module tilt

angle:
2
e 1 (1 + G/De) cos 0
vl 1 T80, | ° (Eq. 1)
M sin [tan” ' (cos o tan —N—J“
where:
g = cluster area ratio = 4 (REZ/Dt2 N)
ey = module area ratio = (De/Dt)2
N = number of modules
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§ = gap between adjacent modules
De = module exit diameter
= module throat diameter
RE = cluster exit radius

A solution of the equation for a constant tilt angle of 10° is
shown in Figure 37 to illustrate the cluster geometric constraint. As shown,
the cluster amplification factor increases with both the number of modules
and the gap between modules. Physically, for a fixed module size, the cluster
radius (Rp) increases as the number of modules increase so that the exit
area (Rp2) increases at a greater rate than the cluster throat area (NAt) .
Increasing the module tilt angle will decrease the amplification factor only
slightly because of the reduced exit radius due to the module tilt.

A cluster of Bell nozzle modules around a truncated plug generates
a complex three-dimensional non-isentropic flow field, which is presently too
difficult to describe with a simple model (cf. Figure 34). However, some
useful insight into the flow problem can be realized by assuming that the
gas expands isentropically from the Mach number at the module exit to the
Mach number at the cluster exit. Under this assumption, the tilt angle (o)
is equal to the difference in the corresponding Prandt] angles.

0 = vp - vy (Eq. 3)
where:
Vg © Prandt1-Meyer angle of plug exit Mach number ME
1/2 1/2
+ - -
- (%) tan”| (lYT}-) (M - 1)] - tan”! (2 - 1)V/2 (Eq. 3a)
vy = Prandt1-Meyer angle of module exit Mach number Me
1/2 1/2 1/2
+ - - -
= (& tan 1 [(1—;}) (M, - 1)] ~tan”t (12 -1) (Eq. 3)

The allowable plug cluster configurations are thus defined by com-
bining the geometric and Prandtl-Meyer constraints [Egs. (1) and (3)]. These
results are shown in Figures 38, 39, 40, 41, 42, and 43, respectively, for
mdoule gaps (s/Dg) of 0.0, 0.5, 1.0, 2.0, 3.0, and 4.0.

E. PLUG CLUSTER PERFORMANCE MODEL I

The initial plug cluster parametric model of this study approximated
the performance of the plug cluster system by the performance of the module
plus the added thrust generated on the exposed plug and plug base. This
approach appears to be justified since the sum to the thrust generated by
the modules comprises 95% or more of the total plug cluster engine thrust.
(The result is valid for the Space Tug engine cluster system which utilizes
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relatively high area ratio modules (40-200) and operates in a vacuum environ-
ment. For booster systems, the module performance is about 91% of the total
engine thrust.) Thus, the module performance contribution has a one to two
order of magnitude greater effect on the total engine performance than the
exposed plug contribution. In other words, a 1% error in the module thrust
contribution will result in approximately a 1% error in the plug cluster
engine performance, while a 10% error in the exposed plug thrust contribu-
tion will result in only a 0.5% or less error in the plug cluster engine
performance.

Based on this criteria, the following assumptions were made in
developing Plug Cluster Model I:

(1) Module performance is based on the JANNAF Simplified Performance
Evaluation Procedure and thus includes the effects of operating conditions
(0/F, Pc, propellant temperature), expansion kinetics, boundary layer losses,
fuel film cooling losses, and incomplete energy release performance losses.

The exposed plug thrust contribution can be estimated using the plug design

Cr curve (Figure 33) and a base CF contribution from an empirical correlation.
The CF curves are based on isentropic, constant gamma (perfect gas, frozen
flow) flow conditions and are used only to ratio the total engine performance
to the module performance. The throat of a module was assumed to coincide with
the throat of the annular plug.

(2) For an isentropic plug (i.e., L/L] = 100%) the module tilt angle
is determined from the Prandtl-Meyer angle difference for an expansion from
the module exit condition to the plug exit condition [Eq. (3)]. The module
tilt angle is assumed to decrease linearly with the plug length as the
exposed plug length is reduced from the isentropic value so that the tilt angle
is zero when the exposed plug length is zero (i.e., there is no module tilt
for a zero percent plug).

(3) No correction is made to the exposed plug thrust contribution for
the effect of discreet module throats as opposed to the annular continuous
throat configuration assumed in the calculation of the plug performance
curves. This assumption is best for a large number of modules and small
module gaps and worst for a small number of modules and large module gaps.
The discreet throat effect must be determined from experimental data.

These assumptions lead to a reduced cluster efficiency with increasing
module gap which is on the same order as the values reported in the literature.
This effect is shown in the following derivation:

—CF Plug with Gap
C; with Gap LC%I PTug with Gap
C; without Gap ~ [Cp Plug without Gap (Eq. 4)
Cp with Gap ‘}
I
L
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C, with Gap Cp with Gap Cp, Without Gap
C+ without Gap ~ | T without Gap C. with Gap
T F Fl

where it is assumed that the delivered Cf ratio (Cf with Gap/CF without
Gap) is approximately 1.0 and the ideal (CF1) ratio is a function of the
plug area ratio increase with increasing module gap.

A special case for the comparison of gap effects can be obtained by
engine-out operation of a module cluster without any module gap (i.e.,
constant module tilt angle, module area ratio, gap /D = 1.0 with every
other module out). Under this condition, the plug area ratio will increase
because of the reduced module throat area which will have the effect of
reducing the plug cluster performance efficiency and total thrust without
materially changing the delivered specific impulse. Thus, for all other
design parameters constant except the module gap, the plug area ratio can be
defined as follows:

“with Gap ~ Cwithout Gap (-0 * /D¢) (Eq. 5)

p

C; without Ga Cp at e (eE without Gap)(1 + G/DE) (Eq. 6)
I o

The efficiency ratio calculated in this manner is shown in Figure 44.
Note that the efficiency ratio increases as the engine area ratio increases
because of the diminishing effect of area ratio on performance. The general
trend in the curve can be compared with the trend in Figures 11 and 12 for a
10 and 20 percent plug of 15 to 30 area ratio.

1. Model I Calculation Procedure

The Plug Cluster Computer Program Model I is set up to calculate
performance based on a module arranged in a specific cluster configuration.
The input consists of a desired gap, module, engine area ratio and number
of modules for an isentropic plug as defined in Figures 38 through 43. As
the plug is truncated, the number of modules and gap are held constant while
the engine area ratio and tilt angle vary to accommodate the geometric
requirements imposed by Equation 1. Physically, this has the effect of
moving the cluster on the plug (by the amount Re sin 0) as the plug is
shortened (Figure 45).

The working plug forward boundary is at Lo where:

Ly = Lycoso- (Re + Rt) sin © (Eq. 7)

The degree of truncation of the plug is defined in terms of the isentropic
plug length (L/L1). Plug truncation lengths are chosen in the program based
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Figure 44. GAP Efficiency Factor for Constant Plug Cluster Performance.
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on a percentage of isentropic lengths (5, 10, 15, 20, 25, 30).

The plug-cluster vacuum thrust coefficient is expressed as

follows:
oL Cr
C =|C + AC. + aAC — (Eq. 8)
FE FM Ce Fr FB CFid/DE = 0)
PO
where:
CF = Plug-cluster thrust coefficient
E
CF = Module thrust coefficient calculated by means of
M JANNAF Simplified Analysis
CF = Thrust coefficient of a plug of length L/LI
PL
CF = Thrust coefficient of a plug of length LO/LI
PO
ACF = Increase in thrust coefficient due to base pressure
B
ACF = Increase in thrust coefficient due to fairings
F
Cr

T (6/Da = 0) = Ratio of thrust coefficients with gap [assumed
F € equal to 1.0 for this analysis as per Eq. (6)]

The value of CFy is obtained from the module parametric model and is equal to:
CFM = FM/PC At (Eq. 9)

The values of CFp_, CFpg, and the isentropic plug length are obtained by

interpolation of Figure 33. The contributions from the fairings and base
pressurization are obtained from empirical relationships to be described.
Finally, the thrust, total mass flowrate and specific impulse of the plug
cluster system are calculated as follows:

Fp = CFE PN A, (Eq. 10)
me = my M+ Maase (Eg. 11)
ISpE= Fe/me (Eq. 12)
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2. Model I Fairing Correction

The performance methodology indicates that the calculated engine
efficiency (Figure 44) reflects the same trend as the experimental data
(Figure 11) in showing a loss as a function of module gap. Therefore, it
appeared reasonable to apply a fairing correction (ACFF) to Eq. (8) to
obtain the predicted delivered performance for the plug cluster engine.

Data for two different gaps (5/De = 0.185 and 1.0) from Ref. (4)
(p. II-53) are given in Table XI (see Figure 12). Utilizing these data, an

TABLE XI. - GAP PERFORMANCE (CT) WITH FAIRINGS (Ref. 4)

Configuration G/DE =0 G/DE = 0.18 6/DE =1.0

Plug Length = 10%
No Fairings 0.966 0.950 0.914
Straight Fairings - 0.954 0.940

equation (curve fit) can be written of the form
Cr (without gap) - CT (with gap)

CTF = X + CT (with gap) (Eq. 13)

where:
Al = [CT - CT (with gap):l Ce (Eq. 14)

F F I
and where X is equal to 4 and 2, respectively, for 0.185 gap and 1.0 gap.
That is, the fairing correction becomes larger as the gap is increased.

Since no data were available on fairings for gaps greater than one,

Eq. (13), with X equal to 2, was utilized for all of the gap calculations
((S/De =1 to 4).

3., Model I Base Pressurization Correction

The base pressure can be 2.5 to 3.6 times the static pressure of
the exhaust gas for the fully expanded plug as shown in Table X. This pres-
sure is recognized to be the standard separation criteria (Pe > 0.4 P ambient)
for DelLaval nozzles. The achievement of such a base pressure may require a
finite mass flow into the base, the amount being presently determined from
experiment.  Base pressurization of the Aerospike (Ref. 6) annular plug
engine amounts to 2.4% of the thrust as previously shown in Table IV. Uti-
lization of these data for the 200:1 area ratio Aerospike plug allows the
development of the equation.

(Eq. 15)

K P A

wbase base "base
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where the constant K = 1.731 (1.695 x 10-4) was derived (Ref. 6) from QBase =
?.045 kg/szgo.lo 1b/s), Pbase = 0.041 atm (0.6 psia) and Apase = 0.634m
983.1 in.<).

Since the nozzle wake is closed, Eq. (15) would be expected to hold
forsmall changes in the base area and/or tilt angle. It has been assumed
to be valid for the larger area plugs of this study, but requires verification.

4. Model I Plug Cluster Engine Delivered Performance

Parametric performance data are given in Fiqures 46 through 50 for

Model I engines. The figures include the module losses computed by JANNAF
procedures, where the nomenclature is: ODE - one dimensional equilibrium,
KL ~ kinetics loss, DL - divergence loss, BLL - boundary layer loss, and
ERL - energy release loss. These losses are indicated by a bar giving a
total loss of about 20 seconds in Figure 46. Because the plug nozzle is
designed to turn the module exhaust, the module DL term is assumed zero

in the plug cluster performance calculations. The true loss may be between
that of zero and the module loss shown, giving an uncertainty band equiva-
lent in thickness to the DL band shown for the module. The plug length was
maintained essentially constant to be more representative of a practical

application.

The lower performance line shown represents the engine performance
for just the modules and truncated plug. Improvements provided by fairings
and base pressurization increase the cluster performance as shown. For
example, expansion (Figure 46) of the eM = 40 modules on an e = 72 plug is
seen to provide a 5% (23 second) improvement in engine performance. The
method of combining the module and plug nozzle performance appears to be
overly optimistic for the zero gap configuration, as the indicated losses
are less than the module loss bar. At large gaps, the delivered performance
appears correct, as the difference between the ODE line and the delivered
Tine is equal to or greater than the module loss bar.

The base correction for the zero gap point in Figure 46 amounts
to 1.5 seconds, or 0.3%. The maximum base pressurization correction shown
at e X 400 amounts to about seven seconds, or 1.5%.

No fairing correction is taken for a gap of zero, but for positive
module gaps, the previously presented method was utilized. In Figure 46,
the maximum fairing correction amounts to about nine seconds (2%) at
e v 400.

The gap = 3 point of Figure 46 shows engine losses considerably
greater than those from the module alone. These differences can be attributed
to gap and truncation terms in addition to the conventional losses.

In Figure 47, the (16%) film cooled module engine performance losses
are described. The film cooling performance loss (2.7%) is seen to have a
major impact on the engine performance.
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Figures 48 and 49 depict the proceding two cases at the higher
chamber pressure of 34.0 atm (500 psia). A corresponding case for ey =
100 modules, is given in Figure 50.

Examination of the data presented in Figures 46 and 50 for Model I,
shows that the clustered plug performance improvement for a eM = 40 and a
eM = 100 module is 7.8% and 5.7%, respectively, at the Targe area ratios of
this study.

F. ANALYSIS OF EXPERIMENTAL PLUG CLUSTER DATA (NAS 3-20104)

Module-plug cluster performance Model II, presented in the next sec-
tion, incorporates the results of the cold flow experiments conducted under
Contract NAS 3-20104 (Ref. 46). Prior to the use of these data, however, it
was a requirement of this contract to make an appraisal of the data and to
compare the results with those available in the literature. This section
documents the work performed to analyze the test data.

Tests were performed on twelve different cluster configurations shown
in Table XII. Freon or air were used as the test medium to determine the
effects of gap, module area ratio, cluster area ratio, fairings, fences,
tilt angle, and base pressurization on cluster performance. Validity of
the air data is questionable because condensation shocks could have had an
effect on the results. In addition, the applicability of the air data is
questionable becausé the tilt angles and module-match points were designed
based on the use of Freon. Figure 51 shows that the change in the ratio
of specific heat capacities has a strong influence on these design parameters.

A comparison of the experimental data from Contract NAS 3-20104 with
that given in Reference 4 is shown in Table XIII. It is seen that there is
general agreement with the engine performance based on the efficiency (nyg)
of the engine for zero gap cases, but that either the base or module per-
formance derived from the data do not agree. For example, the Contract
NAS 3-20104 results in the table indicate a negative recovery of the tilt
angle (cosine o) loss, whereas the Contract NAS 8-11023 results indicate some
recovery even for a zero length plug. It is not expected that the large
difference in area ratio between the cited cases should have any effect for
Zero gap cases.

For a fixed number of modules and module area ratio, the test data
in Figure 52 show that increasing the cluster area results in a decrease
in performance and efficiency. This decrease in performance and efficiency
is due to the mismatch of aerodynamic flow fields for discrete bell nozzles
exhausting onto an annular plug contour, as indicated in Figure 53. The loss
in performance is conventionally reported as due to the increase in gap
associated with the increase in cluster area ratio.

The trend in the data is what would be expected for a plug cluster
configuration based on an annular plug nozzle, where the contour has not

been optimized for discrete internal expansion sections (bell nozzles) with
a gap between the nozzles. Typical static pressure data are shown on a
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TABLE XII - AERODYNAMIC VARIABLES FOR TEST MODELS

Config. €c €y - N §/DE QT EXPTL 6T EC/EM EXPTL EC/EM

- - _ Eq.(3 Eq.(1)

FREON
Based on y = 1.15
A-11 500 40 12 1.96 27.9 31.9 12.48 - 12.36
A-10 400 40 12 1.62 26.93 29.4 10.01 9.92
D-10 400 40 20 1.06 25.93 29.4 9.85 9.80
E-10 400 40 5 2.88 26.93 29.4 10.60 10.34
B-10 400 80 12 77 17.2 19.5 5.04 5.01
c-10 400 200 12 .01 6.63 8.0 2.00 1.99
A-7 200 40 12 .77 19.23 21.5 5.02 4.99
Based on y = 1.4 (AIR)

A-11 500 40 12 1.96 27.9 19.9 12.48 _12.67
A-10 400 40 12 1.62 25.93 18.6 10.01 10.15
D-10 400 40 20 1.06 25.93 18.6 9.85 9.94
E-10 400 40 5 2.88 25.93 18.6 10.60 11.05
B-10 400 80 12 77 17.2 11.9 5.04 5.08
C-10 400 200 12 .01 6.63 4.6 2.00 2.00
A-7 200 40 12 .77 19.23 14.0 ° 5.02 5.06
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TABLE XIII- COMPARISON OF EXPERIMENTAL
PLUG CLUSTER PERFORMANCE

PARAMETER

NAS 8-11023* NAS 3-20104**
N 24 24 12 12
ey 4.85 4.85 7.7 195.6
€ 15.0 15.0 15.0 386.5
e - 18 18 10 6.63
PLUG LENGTH 0 9.4 0 0
IODE (MODULE) 63.72 63.72 66.62 94.78
¥ODE (ENGINE) 69.66 69.66 69.66 95.65
W (ENGINE) 3.48 3.48 3.48 0.574
IDEL (ENGINE) 66.45 67.29 - 67.15 91.46
Mg (ENGINE) 0.954 0.966 0.964 0.956
IDEL (BASE) 3.99 3.43 1.25 0.47
PB/PE 2.93 2.5 1.48 1.60
% BASE IS 6.0 .1 1.9 1.7
wBASE 0 0 0 0
IngL (MODULE ) *%*: 62.47 63.86 65.90 90.99
Nis (MODULE) 0.980 1.002 0.989 0.960
IODE (MODULE) . cos © 60.60 60.60 65.61 94.14
% cos O loss recovered**** 59.9 104.5 28.7 <0

* Reference 4: Base area estimated from photographs of hardware; flow rate
assumed from sample case given in Appendix A.

** Test 35.01; Configuration C-10; Air Media
*kk IDEL (ENGINE) - IDEL (BASE) = IDEL (MODULE)

Fokkk [IDEL (MODULE) - IODE (MODULE) x cos O]/[IODE (MODULE) - 1 MODULE) x cos 0]

ODE
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schematic of the plug cluster in Figure 53. The two values listed refer to
pressures measured on the plug nozzle wall between two modules (gap of 1.6
module exit diameters) and on the center line of one module exit. We would
expect the static pressure values to be lower as the gas expands on the

plug nozzle, and to approximate the jsentropic relationship. Correspondingly,
we would expect to be able to calculate the effective area ratio using the
isentropic relations (with suitable two dimensional conrections).

The calculated aerodynamic area ratios based on the pressure measure-
ments are shown on Figure 53 for 0, 15, and 30 percent plugs, and also on
Figure 54. It is seen that the gas expands from the module area ratio of
40 to an equivalent area ratio of 84 at the plug exit. Now, by definition,
this plug cluster configuration has an area ratio of 400. However, since
we are examining the gas flow data on the surface of the plug, we must compare
the data with the geometric plug flow area ratio. This area ratio is deter-
mined by taking the defined engine area, subtracting the area occupied by
the plug, and dividing this value by the sum of the module throat areas.

Three such area ratios are indicated on Figure 53.

It is seen, therefore, that less than one-third (84/303) of the avail-
able geometric plug flow area ratio was actually achieved with the 30% plug
test configuration of Figure 53. This result is consistent with the one-
third (40/119) value expected for a zero length plug, the larger plug flow
area being the result of the gap between the modules. We thus have a gross
discontinuity in area ratio at the match point.

The results from Contract NAS 3-20104 may be interpreted by examining
the geometric flow area for a zero gap version of Figure 53. Despite the
fact that an even number of modules cannot be added to change this con-
figuration to zero gap, the assumption can be verified by examining a cluster
with a §/De = 1 gap, for example. The addition of more modules increases
the sum of the throat areas, and thus decreases the geometric plug flow
area ratio to that shown in Figure 54 at zero gap. It is seen that the
aerodynamic area ratio based on the pressure measurements more closely fits
the zero gap geometric plug flow area ratio. Thus it can be concluded that
the stream tubes emanating from the nozzles (modules) apparently follow
essentially the same aerodynamic path regardless of the area available. The
performance at large gaps (for the tested configuration) is thus about the
same as at low gaps (area ratios).

The test results from Contract NAS 3-20104 indicate a serious flaw
in the design criteria of high area ratio plug clusters based on methodologies
developed from low area ratio testing. The low area ratio, low gap,
methodology stipulates a one-dimensional matching of the module Mach number
with that of an annular plug Mach number, as shown in Figure 55. But this
approach becomes unsatisfactory at gaps much greater than zero, because we
have a three dimensional problem. Geometric remedies, such as the addition
of fairings between the modules, offer a partial solution for large gaps,
as shown in Contract NAS 3-20104 and also indicated in Figure 12.

As shown in Table XIV the effective specific impulse of the base
injection flow (Isp Base) is from 6 to 13% less than the specific impulse
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TABLE XIV. - BASE PRESSURE AND SECONDARY EFFECTS (NAS 3-20104)

. . % I N

Test  Config. FVAC ws/wp ISPE FBase Total PB SPBase % Plug
29.01  A-10b 59.72 0 64.93 .2317 0.4 .014 - 30
29.02 A-10b 60.30 .0107 64.8  .8303 1.4 .051 61.08 30
28.01 A-10c 58.94 0 63.84 .8445 1.4 .035 - 15
28.03 A-10c 59.59 .0109 63.63 1.4685 2.5 .061 61.78 15
30.01 A-10d 56.33 0 61.17 2.6872 4.8 .062 - 0
30.02 A-10d 56.93 .0107 61.05 3.2050 5.6 .074 52.91 0

I = Fvac I = EEEE§§. F.o= p AB

SPE iy SP . B B

wp (1 + ws/wp) BASE ws

generated by the primary flow. The overall specific impulse with secondary
injection for Contract NAS 3-20104 testing was always less than the Isp with-
out base injection. This result differs from that found in Reference 4,
where the efficiency of the zero gap plug cluster was slightly better or
equal to that for no base flow up to a secondary flow of about two percent.
It also differs from that found for the annular throat (Aerospike) configura-
tion, where the secondary flow specific impulse amounted to 6056 seconds
(Table IV) for flows as low as 0.2 percent. The base pressurization results
from Contract NAS 3-20104 correspond to those obtained for below design point
testing of plug nozzles, where the wake is not closed. The results indicate
the possibility that the flow did not provide a closed wake, making

secondary injection not as effective.

The results from the testing on Contract NAS 3-20104 represent selected
point design plug cluster configurations, as resources did not allow a
systematic investigation of the many variables. Nevertheless, the data and
their comparison with related test data from the literature, indicate that
low performance will be obtained with large gap cluster configurations of
bell nozzles on annular plug designs. The results conclusively define the
problem as being one of assuring an aerodynamic flow match between the bell
and the plug. Solution of the problem leads to unconventional plug con-
tours that resemble a fluted plug, and provide much higher performance than
conventional type clusters.

G. MODULE-PLUG CLUSTER PERFORMANCE MODEL II

The initial computer model (Model I) represented an engine configuration
in which the cluster throat location coincided with the equivalent area ratio
annular plug throat Tocation. In order to provide a better approximation of
the test data from Contract NAS 3-20104, Model I was revised to incorporate
a Mach number match point. The configuration model is that shown in Figure 55.
Uncorrected plug performance is calculated in a similar manner to that for
Model I, except that CF g is now evaluated at the point of Mach number match.
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The uncorrected plug performance is multiplied by a gap efficiency
factor (see Figure 44), which is defined as the ratio of the uncorrected
cluster efficiency to the efficiency of a zero gap configuration at the
given cluster radius (REc).

Correction for base pressurization was provided by a correlation
derived from Contract NAS 3-20104 data utilizing the effective base pres-
sure Pg as a function of the plug exit pressure Pe.

Application of Model II to a cluster configuration used in Contract
NAS 3-20104 resulted in predicted performance of CF = 1.927 compared to the
measured CF = 1.928 - 1.933. Plug cluster engine performance computed for
the baseline case is shownin Table XV for both Models I and II. Cold flow
test information are included in the table for comparison.

It is seen from Table XV that Model II, based on Contract NAS 3-20104
test data correlations, predicts that a plug cluster engine will be only 91%
efficient. Model II is not considered to be an accurate representation of a
plug cluster engine, because of the approximations that have been utilized.
The model, however, does provide engine performance consistent with the
cold flow results for Contract NAS 3-20104 configurations. The model will
require révision to predict the performance of optimum cluster designs.

H. MODULE-PLUG CLUSTER PERFORMANCE MODEL III

The problem of achieving highly efficient aerodynamic flow for the
plug cluster engine concept was solved by joining high area ratio, partially
scarfed, bell nozzles in the manner shown in Figure 56. Discussions con-
cerning the performance of the scarfed-bell or fluted-plug cluster engine
concept are presented in this section.

Since the JANNAF simplified performance methodology ijs well established
for full bell nozzles, Model III includes the analysis of the configuration
shown in Figure 57. The performance of the scarfed-bell plug cluster engine
is expected to very closely approach that for the clustered bell concept

shown in Figure 57.

In order to make a direct comparison (in Section VIII of this report)
between the plug cluster engine and candidate Space Tug engines, such as the
RL10 and the Advanced Space Engine (ASE), this section also includes the
calculated performance for these engines.

1. Model II1 Description

The JANNAF simplified methodology, as utilized in this study,
reduces to the equation

AF
ISP s = Isp (n nya7 N 1S
delivered ODE ‘'KIN 'NOZ 'ERE F
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TABLE XV - PLUG CLUSTER PERFORMANCE MODEL COMPARISONS

Vacuum Thrust, KN (K1b)
Chamber Pressure, atm (psia)
Vacuum Specific Impulse, s
Mixture Ratio (0/F)

Engine Area Ratio (AE/At)
Module Area Ratio (Ae/A
Number of Modules
Module Gap (&/De)
Engine Diameter, cm (in)
Plug Base Diameter, cm (in)
Engine Length, cm (in)
Percent (L/LI) Plug

Tilt Angle, deg.

Base Flow Ratio %
Uncorrected Is‘ s

+)

Base Correction AIS, s

Gap/Fairing Correction AIS, s

Delivered Is’ s
Engine Efficiency b
s

Model 1

72.5 (16.3)
20.4 (300)
467.4

458
40
10

320 (126)
218 (86)
86 (34)

NAS 3-20104
Test 46.01
Model 11 Config. A-11
68.7 (15.5) --
20.4 (300) 10.7 (157)
443.8 --
5.5 --
458 493
40 40
10 12
2.05 , 1.96
320 (126) --
173 (68) --
91 (36) -
20 15
27.7 27.9
0 0
454.6 -
+ 0.6 --
- 11.4 --
443.8 --
0.914 0.895
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Figure 56. Scarfed Bel1/Plug Cluster Engine Concept.
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Figure 57. Clustered Bell Nozzle Concept.



where IspgDE is the one dimensional equilibrium specific impulse, nKIN is
the kinetic efficiency (Ispopk/ISPODE). nNOZ is the nozzle or divergence
efficiency, nERE is the energy release efficinecy, aFgL is the boundary
layer thrust decrement, and F is the nominal engine thrust.

The values of Ispgpp and Ispopk are generated by the JANNAF ODE-
ODK-TDK computer program, and nygz and AFgL are found using the charts and
methodology from Reference 17. The value of ngRp = 0.995 was used in the
performance calculations for all of the engines.

Because the plug cluster engine (PCE) is not strictly a bell
nozzle configuration, its performance required additional calculations as
follows:

°  Determine the Ispdelivered for scarfed nozzles.

° Calculate exit pressure (Pg) corresponding to overall PCE
area ratio.

°  Determine base pressure (Pg) as a function of PE (normally
assumed to be 2.5 x Pp but can be as high as 3.6 x Pg).

° Determine base area (Ag) of PCE.

° Calculate thrust loss (AFOT) due to module tilt angle (oT);
equals Fm (1 - cosot).

° Calculate delivered thrust of PCE; Fpce = N Fm + Pg Ag -
N aFgr, where N is the number of modules in the cluster.

° Calculate the delivered specific impulse; Ispde] = Fpce/

WENGINE» Where the flow rate to the engine, WENGINE, may
include a base bleed contribution.

The rationale and assumptions used in the calculations for the
PCE are described in the following.

2. MODEL III Nozzle Efficiency

Nozzle divergence efficiency is obtained in the standard manner
from the following equation

. 1 + cosa
"NOZ 2

where o is the nozzle divergence angle.

In the case of the plug cluster engine, there is some question
regarding the use of the module nozzle efficiency, since the module is
tilted toward the axis of the engine. For the case when the tilt angle
equals the nozzle divergence angle, the flow from the outer portion of the
nozzle is aligned with the axis of the engine. The flow from the inner
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portion of the nozzle is turned aerodynamically in foriming the wake on
the base of the plug. Since the method of calculation includes a tilt
angle (cos ©) loss, inclusion of the module nozzle divergence loss does
not appear to be warranted. Since there is some uncertainty, however, the
PCE delivered performance will be presented with and without this loss.

3. Scarfed Nozzle Performance

The scarfed bell/plug cluster nozzle concept (Figure 56) can be
envisioned to be a fluted plug nozzle with both internal and external
expansion components. As such, the performance would very closely approach
that for the full bell cluster shown in Figure 57. Were the scarfed bell/
plug cluster nozzle to operate as a cluster of scarfed nozzles with a small
amount of base thrust contribution, the performance would be less. In order
to present this degree of uncertainty, PCE calculations were made assuming
the module thrust contribution to be only that from a scarfed nozzle.

The first step in determining the performance of a scarfed nozzle
is to determine the area ratio (eeff) of an equivalent unscarfed nozzle.
In this manner it is assumed that the delivered performance of a scarfed
nozzle corresponds to the area ratio at the intersection of the scarfing
plane and the lengthwise nozzle axis. This method of scarfing is shown
in Figure 58, along with the method chosen for the PCE design.

The analytical expression for ceff is obtained by assuming a
15-degree conical nozzle and by specifying the two area ratios (e} and e2)
between which the nozzle is scarfed.

46162
(/k] + Ve

eff =

2
5 )

For the two scarfed nozzles considered, the expression yields:

When Nozzle is Scarfed From Ceff
E] = 40 tO 52 = 500 97
€ = 100 to €y = 500 191

Using these values of eqoff, the kinetics and boundary layer losses were
obtained from Figures 59 and 60, respectively.

As seen in Figure 58, the PCE scarfed nozzle is not as severely
scarfed as the one utilized in this analysis. However, the more conserva-
tive eoff Was utilized for this analysis.

4. Model III Base Pressurization

A relatively consistent correlation between Pg and Pg was pre-
viously cited in Table X and Figure 35 (Section IV,C), where thé base pres-
sure obtainable is defined as that in which the nozzle separation criteria
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Figure 59. Kinetics Loss for Scarfed Nozzle.
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holds. Base pressures above the nozzle separation criteria (Pg/PE > 3.6)
cause an enlargement of the wake on the plug base, and thereby reduce the
effective area ratio obtainable with a plug nozzle.

The assumption was made, as cited in Section IV,C to utilize
bleed flows of 0.2% of the engine flow.

5. Model III Plug Cluster Engine Delivered Performance

The plug cluster engine performance calculated by the outlined
methodology is summarized in Table XVI. Calculated values are given for
chamber pressures of 20.4 atm (300 psia) and 34.0 atm (500 psia), and for
mixture ratios of 5 and 6. Three types of nozzles are assumed: (1) per-
formance equivalent to a full bell nozzle, (2) performance equivalent to
a scarfed bell at ¢ = 40, and (3) performance equivalent to a scarfed bell
at ¢ = 100.

Table XVII gives a compariéon of the three performance models.

In order to estimate the possible uncertainty in the calculated
values of performance, a base case was selected, and the assumptions were
modified to determine their effect on performance. The result of the
uncertainty analysis is summarized in Table XVIII.

The Tower limit in performance is achieved by a cluster of bell
nozzles with zero tilt angle. For this case, it is assumed that the base pres-
sure is equal to Pg, and that there is zero base bleed. The nozzle efficiency
is now 0.994 as the divergence loss of the bell nozzle must be taken into
account. The resultant performance is found to be 460.7 seconds (nis = 0.943).
A possible upper 1imit for the cluster is found to be 471.7 seconds (nIs =
0.965). Zero base bleed and the maximum base pressure consistent with nozzle
separation criteria is assumed. Also a smaller boundary layer loss is assumed,
which is consistent with more rigorous calculations. A loss of 0.6 second in
specific impulse is required for a gas generator cycle plug cluster engine.

In order to further evaluate the validity of the performance
prediction for the plug cluster engine, calculations were made for the
RL10 and ASE using the same JANNAF simplified procedures. The results of
these calculations are given in Table XIX. Comparisons with the perform-
ance values presently accepted for these engines are shown.
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TABLE XVIT - PLUG CLUSTER PERFORMANCE MODEL COMPARISONS

Vacuum Thrust, KN (K1b)
Chamber Pressure, atm (psia)
Vacuum Specific Impulse, s
Mixture Ratio (0/F)

Engine Area Ratio (AE/At)
Module Area Ratio (Ae/A
Number of Modules
Module Gap (&/De)
Engine Diameter, cm (in)
Plug Base Diameter, cm (in)
Engine Length, cm (in)
Percent (L/LI) Plug

Ti1t Angle, deg.

Base Flow Ratio %
Uncorrected IS, S

t)

Base Correction AIS, S

Gap/Fairing Correction AIS, s

Delivered Is, S
Engine Efficiency b
s

Model 1

72.5 (16.3)
20.4 (300)
467.4
5.44
458
40
10

320 (126)
218 (86)
86 (34)

68.
20.
443,

458
40
10

320
173
9
20

27.

454,

443.

Model II Model III
7 (15.5) 67.1 (15.1)
4 (300) 20.4 (300)
8 463.9
.5 5.5
895
500
10
.05 0
(126) 433 (170)
(68) 246 (97)
(36) 82 (32)
7 5.3
.2
6 459.3
.6 + 4.6
.4 0
8 463.9
.914 0.947
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TABLE XVIII. -

Expander Cycle

UNCERTAINTY IN PLUG CLUSTER ENGINE PERFORMANCE
Base Case: nyg7 = 1.0 NB = 065 (0.2%)

MR = 6.0 ey = 500 N =10 PB = 2.5 PE OT = 5.3°
Pc = 300 € = 895 AFBL = 47.9
Delivered Isp Difference From

Variable Performance Base Case Isp

Base Case 464.4 -

?NOZ = 0.994 461.5 -2.9

wB =0 465.3 +0.9

Wg = 0.33 (17) 460.6 -3.8

Pg = 3.6 Pg 467.1 +2.7

PB =1.,5 PE 463.9 -0.5

o = 0

Wg =0 — 460.7 -3.7

PB = PE

NOZ = 0.994

AFBL = 38 467.5 +3.1

Gas Generator Cycle 463.8 -0.6

formance prediction

The JANNAF simplified procedure is seen to give conservative per-
for the ASE, and to give correct performance prediction

for the RL10, providing a more conservative nozzle efficiency and other
losses are utilized in the calculation. It is anticipated, therefore, that

the preceding me

thodology for the plug cluster engine will provide a reasonably

accurate assessment of the performance potential.
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TABLE XIX. JANNAF SIMPLIFIED PERFORMANCE FOR RL10 AND ASE

Engine RL10 RL10
Description 11B 1IB ASE ASE

Cycle Exp. Exp. SC SC

Pc 400 400 2000 2000

MR 5 6 5 : 6

€ 200 200 400 400

% Bell 75 75 90 90

F nom (1bf) 15K 15K 20K 20K

Ispode 477.3 477.2 484.0 485.8

Nere . 0.995 0.995 0.995 0.995

"kin 0.998 0.998 0.996 0.996

"noz 0.996 0.992 0.994 0.994

&Fp) 300,92 299.0 380.35 380.35

Toverall 0.969 0.965 0.966 0.966

1Sp delivered 462.5 460.6 467.6 469.3
(Ref. 26) (Ref. 27)
456, 2% 473.0

*Includes dump cooled nozzle loss and oz = 0.982
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SECTION V
SUBSYSTEM EVALUATION

A. OBJECTIVES AND GUIDELINES

Analyses were conducted for the four major subsystems of the plug
cluster engine to determine the configurations, operating conditions, and
weights that must be considered for the complete engine system analysis.
The subsystems analyzed are:

Base Pressurization

Engine Cooling (Thruster Module and Base Region)
Turbomachinery and Power

Thrust Vector Control

The extent of the subsystem analysis was carried out only to determine
the effect on engine performance limitations imposed on engine design, and
to define the geometry for the subsequent weight estimates.

The design point for the plug cluster engine evaluation was assumed
to be that given in Table I, commensurate with the baseline Space Tug re-
quirements. Upon completion of the analysis, the selected configurations
and associated rationale were reviewed with the NASA LeRC Project Manager
to select the specific configurations to be carried into the conceptual
design phase. :

B. ENGINE CYCLE ANALYSIS

Candidate cycles that were evaluated include expander topping and
gas generator cycles (Figures 61 to 70). Parallel turbine arrangements
and single turbine arrangements with a direct-drive fuel pump and a gear-
driven oxidizer pump were compared. The cycle analysis was conducted
utilizing a preliminary version of the 66.7 kN (15,000 pound) thrust plug
cluster engine at the baseline design point (Table XX). Conclusions derived
for the design point are essentially applicable for the thrust levels (between
44.5 kN and 111.2 kN [10,000 and 25,000 pounds force]) under consideration and
for chamber pressures to 34 atm (500 psia).

TABLE XX. PLUG CLUSTER ENGINE BASELINE DESIGN POINT

Vacuum Thrust 66,723 N (15,000 1bf)
Chamber Pressure 20.4 atm (300 psia)
Mixture Ratio 6

Engine Area Ratio 400

Number of Modules 10

The expander topping cycle is basically a closed cycle because the
turbine flow can be included in the main chamber flow. A small portion
(about 0.2%) is directed through the nozzle base to maximize the base pressure
thrust contribution. The gas generator cycle is an open cycle. The turbine
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Figure 61. Cycle EXO1: Expander Topping Cycle, Hp-Cooled TCA, 0p-Cooled
Plug, Single Turbine TPA, Base Pressurization with H2
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Figure 63. Cycle EX03: Expander Topping Cycle, Ho-Cooled TCA, TPA with
Separate Gas Driven Turbine, Base Pressurization with Hp
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Figure 64. Cycle EX04: Expander Topping Cycle, H,-Cooled TCA, 0,-Cooled
Plug, Parallel Turbine TPA, Base Pressam’zation with ﬁz
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Figure 65. Cycle EX05: Expander Topping Cycle, Hz-Coo1ed TCA, Hp-cooled Plug,
Parallel Turbine TPA, Base Pressurization with Hj.
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Figure 66. Cycle EX11A: Expander Topping Cycle, H2-Cooled TCA, 02-Cooled
Plug, Dual Single Turbine TPAs, Base Pressurization with
H2 %Not Shown)
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Figure 67. Cycle GG01: Gas Generator Cycle, H,-Cooled TCA, 02-Cooled Plug,
GG Exhaust on Plug, Single Turbine %PA, Base Pressurization With

Partial GG Exhaust.
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Figure 68. Cycle GGOZ2: Gas Generator Cycle, H,-Cooled TCA, H2-Cooled Plug,
GG Exhaust on Plug, RL10 TPA, Base Pressurization with Partial GG
Exhaust. '
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Figure 69. Cycle GGO3: Gas Generator Cycle, Hy-Cooled TCA, 02-Cooled Plug,
GG Exhaust on Plug, Parallel Turbine TPA, Base Pressurization With

Partial GG Exhaust.
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Figure 70.

Cycle GGO4: Gas Generator Cycle, Hyo Cooled TCA, Hp-Cooled Plug,
GG Exhaust on Plug, Parallel Turbine TPA, Base Pressurization With
Partial GG Exhaust
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exhaust flow is greater than the optimum base flow required for base pressuriza-
tion with the result that the majority of the flow is dumped from the engine,
producing a low thrust contribution. Since the chamber pressure is relatively
low for the plug cluster engine, the turbine flow rate, which is determined

by the turbomachinery requirements, is relatively small, such that the thrust
loss is only on the order of 0.6%. A portion of this loss can be regained by
dumping the gases on the plug in the gaps between the module exits.

In the expander cycle, turbine power is derived from passing most
of the hot hydrogen (and hot oxygen in some variations) from a cooling
jacket through low pressure ratio turbines. A control reserve can be ob-
tained when 5 to 20% of the available turbine flow bypasses the turbine. The
combined hydrogen flow, minus a small amount (0.2%) providing base pressuriza-
tion, is injected into the main combustion chamber.

Several types of expander cycles were examined. Cycle EXOT, depicted
in Figure 61, represents a plug cluster engine utilizing an RL10 type turbopump
assembly (TPA). Note that hydrogen is used to cool the modules, and oxygen
the plug and base. A discussion concerning modification of this pressure
schedule to best utilize an existing RL10 TPA is presented in the next section
(Section V.C.). The pump discharge pressures are 34.0 and 39.5 atm (500 and
580 psia) for the oxygen and hydrogen pumps, respectively.

Cycle EX02, shown in Figure 62, is identical to that in Figure 6]
except that hydrogen replaces oxygen as the plug coolant. The pump discharge
pressures are 26.8 and 43.2 atm (394 and 635 psia) for the oxygen and hydrogen
pumps. This cycle was one of those selected for conceptual design study. The
pressure schedule for a baseline engine, utilized in the preliminary cycle
evaluations, is given in Table XXI.

Cycle EX03 (Figure 63) with oxygen and hydrogen pump discharge pressures
of 40.5 and 35.7 atm (595 and 525 psia) utilizes both hot hydrogen and hot
oxygen-driven turbines. The feasibility of obtaining sufficient heat input to
the oxygen at the baseline pressure conditions, and at a short plug length,
is marginal, as discussed in Section V.D. on engine cooling. This cycle, and
those depicted in Figures 64 and 65 offer the potential of lighter weight
turbomachinery. Cycle EX05 (Figure 65) was selected for further design analysis.

An expander cycle configuration, utilizing two TPAs, is shown in Figure
66. This cycle provides an approach to a fail-operational mode as opposed to
a fail-safe failure mode designated for the single engine baseline Space Tug.
Each TPA of Cycle EX11A delivers propellant to one-half of the modules. The
propulsion system, therefore, has the capability of operating at full thrust
(all modules firing), at 50% thrust (one-half of the modules firing), or at
in-between thrust levels, depending upon the throttle capability of the final
design. Failure of component(s) in one TPA-fed subsystem would allow a
minimum of 50% thrust capability for the Space Tug to return to a service
station for repair. Since a weight penalty would be associated with Cycle
EXTIA, it is included here only to show a further potential that a module
cluster can offer.
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" TABLE XXI - CYCLE EX02 PRELIMINARY PRESSURE SCHEDULE

Pressure, atm (psia)

" Main Pump Discharge

AP Line (2%)

AP Plug Coolant Jacket
Plug Coolant Jacket Outlet
AP Line (1%)

AP Fuel Shutoff Valve (1%)
Valve QOutlet

Orifice Qutlet

Coolant Jacket Inlet

AP Coolant Jacket

Coolant Jacket Qutlet

AP Line (1%)

Turbine Inlet

AP Turbine (Total to Static)
Turbine Outlet

AP Line (1%)

Shutoff Valve Outlet (1%)
Orifice Qutlet

Main Injector Inlet

AP Injector (10%)

Chamber Pressure

0,

26.8 (394)
0.5 ( 8)

0.3 ( 4)
26.0 (382)
23.8 (350)
23.1 (340)

2.7 ( 40)

20.4 (300)

43

w o

38

o

38.

37.

36.

29.

29.

24.

24

23.
22.

.2 (635)
.9 (13)
.4 ( 50)
.9 (572)
3 ( 5)
( 5)
2 (561)
(554)
(537)
(98)
(435)
3( 4)
3 (431)
.9 (72)
4 (359)
3( 4)
.0 (352)
7 (348)
9 (337)
.5 ( 37)

w
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In the gas generator cycles shown in Figures 67-70, a small amount
of propellant (about 1% of the engine flowrate) is burned in a gas generator
to power high pressure ratio turbines. The mixture ratio is selected to
give a gas temperature of about 922°K (1660°R) (MR = 0.7 to 0.9, depending
upon the heat input to the propellants in the cooling circuit). In the cases
evaluated, the required turbine flowrate exceeds the optimum base pressuriza-
tion flowrate (0.2%) by a factor of five.

Cycle GGO1, depicted in Figure 67, represents a plug cluster engine
utilizing an RL10 type TPA. The oxygen and hydrogen pump discharge pressures
are 33.9 and 27.7 atm (498 and 407 psia), respectively.

In Cycle GGO2, shown in Figure 68 hydrogen is used as the coolant
for both modules and plug, with oxygen and hydrogen pump discharge pressures
of 27.1 and 31.8 atm (398 and 467 psia). This cycle was selected for concep-
tual design analysis. A Typical pressure schedule for this cycle is given in
Table XXII (next page).

In Cycles GGO3 and GGO4, Figures 69 and 70, a lighter weight parallel
turbine arrangement is utilized. Cycle GGO4 was one of the all hydrogen-
cooled cycles selected for further study.

1. Cycle Analysis Summary

: The results of the cycle analysis are presented in Table XXIII and
XXIV. There appear to be no limitations in the power balance for the regen-
eratively cooled plug and modules, even at chamber pressures to 34 atm. However,
no expander cycle power balance was possible for an ITA module with an expansion
ratio of e, = 100. This was due to the lack of sufficient LH, coolant tempera-
ture rise mn the shortened plug and the chamber portion of thg module.

TABLE XXIII. CYCLE ANALYSIS SUMMARY

Cycle EX02 GGO4
Regen-Cooled ITA (16% FFC) Regen-Cooled ITA (16% FFC)

Pc atm 20.4 20.4 20.4 20.4

ey 40 40 40 40

Is sec 467.4 454.9 466.8 454 .4

Als sec 0 0 0.6 (0.13%) 0.5 (0.10%)
GG 0 0 0.38 0.36

Pc atm 34.0 34.0 34.0

eM 40 40 40

Is sec 471.1 Calmo ed 470.1 457.7

Als sec 0 1.0 (0.21%) 0.8 (0.17%)
WGG 0 0.57 0.57

Pc atm 20.4 20.4 20.4

EM 100 100 100

Is sec 469.2 . No 468.5 Ca]ﬁz%ated
Als sec 0 Power 0.7 (0.15%)

WGG 0 Balance -~ 0.40
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TABLE XXIT - CYCLE GGO2 PRELIMINARY PRESSURE SCHEDULE

Pressure, atm (psia)

Main Pump Discharge

AP Line (2%)

AP GG Valve (10%)

Valve Outlet

GG Inlet

AP GG ( 10%)

Turbine Inlet

AP Turbine (Total to Static)
Turbine Qutlet

AP Line (20%)

PTug Dump

AP Shutoff Valve (2%)
Valve Qutlet

Orifice Outlet

Plug Coolant Jacket Inlet
AP Plug Jacket

Plug Coolant Jacket Outlet
AP Line (1%)

Fuel Shutoff Valve Inlet
AP Shutoff Valve (1%)
Valve Qutlet

Coolant Jacket Inlet

AP Module Coolant Jacket
Coolant Jacket Outlet
Orifice Outlet

Main Injector Inlet

AP Injector (10%)

Chamber Pressure

TCA GG
0, H, 0, H,
27.1 (398) 31.8 (467) 27.1 (398) 31.8 (467)
0.5 ( 8) 0.6 ( 9) 0.5 ( 8) 0.6 { 9)
- -- 2.7 ( 39) 3.1 ( 46)
-- -- 23.9 (351) 28.0 (412)
-- -- 23.2 (341) 25.7 (377)
-- -- 2.3 ( 34) 4.8 ( 70)
- - 20.9 (307)
-- - 17.9 (263)
-- - 3.0 ( 44)
-- -- 0.6 ( 9)
-- -- 2.4 ( 35)
0.5 ( 8) --
26.0 (382) --
23.8 (350) --
' - 31.2 (458)
- 3.4 ( 50)
-- 27.8 (408)
-- 0.3 ( 4)
-- 27.5 (404)
-- 0.3 ( 4)
-- - 27.2 (400)
-- 26.7 (392)
-- 2.7 ( 40)
-- 24.0 (352)
-- 23.7 (348)
23.1 (340) 22.9 (337)
2.7 ( 40) 2.5 ( 37)
20.4 (300)
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C. TURBOMACHINERY ANALYSIS

The turbomachinery selection and design studies were conducted by
giving consideration to the following system capabilities:

® Idle mode engine firing to provide thrust for propellant
settling in the tanks and thermal conditioning (chill)
of the propellant feed system.
® Two-phase flow pumping capability in both oxidizer and fuel pumps.

These capabilities are essentially the same as those provided by the
RL10 derivative IIA configuration. The existing RL10 TPA, however, has a 5-
hour 1ife limit.

1.  RLI1O IIA Turbopump Assembly Analysis

The fuel and oxidizer pump performance curves used for
RL10 derivative IIA turbopump performance predictions are shown in Figures
71 and 72. The turbine flow parameter is shown in Figure 73.

These curves were constructed utilizing the information in Reference 14
Appendices. Application of this pump to the various plug cluster engine
cycles requires certain modifications, which are outlined in the following.

°  Cycle EX01

) A modified RL10 derivative IIA turbopump was selected
for this engine. The modification consists of a 10% reduction in fuel pump
head coefficient accomplished by impeller trimming. No changes are anticipated
in the turbine, the low speed or the high speed oxidizer pump. Cycle power
balance was achieved with a turbine speed of 27,850 rpm and a turbine bypass
flow of 39% (Fig. 74). '

°  Cycle EX02

As with Cycle EX01, a modified RL10 derivative IIA
turbopump was selected. The turbopump modification consists of a 19% reduction
in oxidizer pump head accomplished by trimming the oxidizer impeller. Cycle
balance was achieved with a turbine speed of 27,500 rpm and a turbine bypass
flow of 40% (Fig. 75). As an alternate, the turbine could be modified by in-
creasing its flow area. This modification would reduce turbine speed and turbine
bypass flow. In addition, less trimming of the oxidizer pump would be required.

°  Cycle EX11A

The turbomachinery for this cycle either combines scaled
versions of the turbopumps selected for Cycle EX01, or represents a plug cluster
of double the thrust level. The dual turbopumps provide a redundancy
with reduced thrust capability in the event of one turbopump failure

°  Cycle GGO1

This cycle utilizes a modified RL10 derivative IIA turbo-
pump. A redesigned turbine is required to accommodate the hot combustion pro-
ducts from the gas generator. The fuel pump impellers are trimmed (similar to
EX01) or redesigned to provide the required propellant pressures. Heat shields
may be required to avoid excessive heat flux into the gearbox.
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1 |

Turbine Flow, (]b)sec)

~N
1

Turbine Flow, Kg/s

Figure 74. Expander Cycle EX01 Power Balance With RL10 Turbine.

Turbine Inlet Temp - 263°K (474°R)
Fuel Pump Speed - 27,850 rpm
(Fixed by LOX Pump Head)

2.5 ¢
Required for Power
2.0 Turbine
By-Pass
Flow 39%
1.5 l
1.0 Limits
© From Preliminary Power Balance
0.5 F 0 Untrimmed Fuel Pump
<> Trimmed Fuel Pump
0 1 1 | j
35 40 45 55
Fuel ‘Pump Discharga. Pressure, ATM
L ' | L ]
500 600 700 800

S S

Fuel Pump Discharge Pressure, psia
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Turbine Flow Rate, 1b/sec

Turbine Inlet Temp - 278°K (500°R)
Fuel Pump Speed - Varied
LOX Pump Trimmed to Required Head

Or
2.5 p
St l Required for Power
2.0 -
Turbine
By-Pass
4r Flow 42%
=15k
a
3F o
-
&
’E Turbine Flow Limit
“1of
2r -E © - Preliminary Power Balance
[
= Q) - Power Balance 10% LOX Pump Trim
0.5
-l ad
NF = 24,3900 rpm 27,500
OJE 0 .. 7 L ] AL J
35 40 45 50 55
Fuel Pump Discharge Pressure, ATM
L 1 1 ]
500 600 700 800
Fuel Pump Discharge Pressure,psia
Figure 75. Expander Cycle EX02 Power Balance With RL10 Turbine.
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°  Cycle GGO2
This cycle utilizes a modified RL10 derivative ] '
ITA turbopump. As with Cycle GG01, a redesigned hot gas turbine is required.
A heat shield may be required to reduce the heat flux to the gearbox.

2. Conceptual Turbopump Design Analysis

Section III,E, established the state-of-the-art of turbopumps re-
quired for this application. Utilizing these data and the MNASA guidelines from
References 21 and 22, pumps were conceptually designed to meet the baseline
Space Tug requirements including a 10-hour 1life expectancy. Table XXV summarizes
the design criteria.

The low speed LOX pump consists of a high head inducer driven
by a five-stage hydraulic turbine, with the turbine drive fluid being taken
from the discharge of the high speed LOX pump. The design parameters are
listed in Table XXVI. The nondimensional pump performance map is shown in
Figure 76, and the hydraulic turbine efficiency performance is presented in
Figure 77. The turbopump cross-section is shown in Figure 78.

It is anticipated that the low speed pump will be cooled to
liquid oxygen temperature prior to full speed operation.

The high speed LOX turbopump consists of a full shrouded single
stage centrifugal pump driven by a velocity compounded gas turbine such as
shown in Figure 70. The shaft is supported by a spring-loaded angular contact
ball bearing cooled by liquid oxygen. The design parameters are listed in
Table XXVII. The nondimensional pump head-flow and efficiency performance
is shown in Figure 79 and the turbine efficiency performance is shown in
Figure 80. It is anticipated that the pump will be cooled to liquid oxygen
temperature prior to full speed operation. Tank head idle-mode and pump
idle-mode are a logical sequence. The turbopump cross-section is shown in
Figure 81.

The liquid hydrogen turbopump consists of a fully shrouded
single stage centrifugal pump driven by a velocity compounded gas turbine.
The pump impeller has an inducer stage designed to provide a zero NPSH pumping
capability. The shaft is supported by two sets of spring-loaded angular con-
tact ball bearings. The rotor axial thrust is supported by a self-compensating
thrust balance incorporated in the impeller back shroud.

The turbopump design parameters are listed in Table XXVIII. The
nondimensional pump head-flow and efficiency characteristics are shown in
Figure 79. The drive turbine efficiency is shown in Figure 80. The pump Cross-
section is shown in Figure 82.

Application of the conceptual turbopump designs to the various
Plug cluster engine cycles are outlined in the following:

°  Cycle EX03

For this cycle, low speed pumps with a hydraulic turbine
drive are used for both the oxidizer and fuel to provide two-phase flow pumping
capability. The high speed turbopumps incorporate single-stage centrifugal
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TABLE XXV - TURBOPUMP DESIGN CRITERIA

GENERAL PUMP REQUIREMENTS |

1. Pump Zero Tank NPSH
2. TPA Life Expectancy 10 hours - 1200 Engine Starts

PUMPS
150 (1000) <Ng >600 (4000)

NS Z 225 (1500) Preferred
NV QO
Ng = “my3/s N o
Q - m°/min (gpm)
H-m(ft)
TURBINES

Fu]] Admission
A, N2 <258 x 10° (40 x 10 ) - (Blade Stress Cons1deratlon) -

cn? X rpmé (1n2 X rpmz) (Ref. 21)
INDUCERS NASA LIMITS
~ C
C, = /(NPSE) 23, -5 0.06
t
Fluid C
LOX 2.3
LH2 1.3
Design Limits S = 3,000 (20,000) - High Speed LOX |S = %L1l9;§7z
= : NPSH !
= 15,000 (100,000) - High Speed LH2 N - rpm i
= 4,500 (30,000) - Low Speed LOX q - m3/min (gpm)
NPSH - m (ft)
SHAFTING
Nc] > 1.5 NDesign ; Nc] - Lowest Shaft Critical Speed
(Watt) N =T g XD$0 ., o< 1,361 atm; D - mm, N - rpm  (Ref. 22)

3 .
[(Horsepower) N2 502602 09 o< 20,000 psi]

BEARINGS  NASA LIMITS
Fluid DN Limit D - mm, N - rpm
Lx 1.3 x 10°
LHy 2 x 10°
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TABLE XXVI. LOW SPEED LOX TURBOPUMP DESIGN PARAMETERS

PUMP - High Head Inducer

Flow, © Kg/s (Ib/sec) = 14.1 (31)
Pressure Rise, N, (psi) = 0.14 x 106 (20)
Flow, Q '5"—3 (gpm] = 0.0122 (193)

Head Rise, m (ft) = 12.2 (40)

Specific Speed = 3500

Design Speed, rpm = 4000

Tip Speed, T (ft/sec) = 18.1 (59.4)

Head Coefficient = 0.37

Tip Diameter, cm (in) = 8.64 (3.4)
Efficienqy, n= 0.68

NPSH, m (ft) = 0.68 (2.25)

Suction Specific Speed = 30,000

Inlet Flow Coefficient = 0.13

TURBINE - Five-Stage Hydraulic

Flow, w Kg/s (Ib/sec) = 2.77 (6.1)
Pressure Drop r':—z (psi) = 1.54 x 108 (223)
Flow, Q ¢~ (gpm) = 0.0024 (38.6)

Head, m (ft) = 135 (445)

Pitch Line Velocity m/s (ft/sec) = 9.3 (30.5)
Pitch Diameter cm (in) = 4.39 (1.73)
Blade Height, cm (in) = 0.254 (0.1)
Efficiency, n = 0.66
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Figure 76. Low Speed LOX Pump Dimensionless Performance Characteristics.
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Efficiency, n
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Figure 77. Effect of U/C0 on Turbine Efficiency, Single Impulse Stage.
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TABLE XXVIT - HIGH SPEED LOX TURBOPUMP DESIGN POINT PARAMETERS

PUMP - Single Stage Centrifugal (Fully Shrouded)
Flow, w Kg/s (1b/sec) = 16.83 (37.1)

Pressure Rise, =) (psi} = 3.1 x 108 {450)

Flow, Q ';‘_ (gpm) 0.0146 (231)!

Head Rise m, (ft) 274.3 (900)

Specific Speed, Ns = 1,589

Design Speed, rpm 17,176

Tip Speed ¢ (ft/sec) = 75.3 (247)

Head Coefficient, vy = 0.475

Efficiency, n = 0.68

Tip Diameter, cm (in) = 8.38 (3.3)

INDUCER

NPSH, m (ft) = 9.37 (31)

Suction Specific Speed, S = 20,000

Tip Diameter cm (in) = 5.00 (1.97)

Tip Speed m/s (ft/sec) = 45.1 (148)

Inlet Flow Coefficient = 0.18

Flow, Q gi (gpm) = 0.0146 (231)

TURBINE

Velocity Compounded - Full Admission

Pitchline Blade Speed, Uy, m/s (ft/sec) = 7137 (450)
Pitch Diameter, cm (in) = 15.24 (6)

Inlet Pressure — (psi) = 0.325 x 106 (47.2)

InTet Temperature °K (°R) = 922 (1660)

Exit Pressure (static) Y (psi) = 0.109 x 106 (15.8)
Ideal Nozzle Velocity, Gy w's (ft/sec) = 1936 (6351)

gg = 0.07M
Estimated Efficiency, n = (.32

Flow Kg/sec, (1b/sec) = 0.11 (0.245)

Exit Annular Area Aa, cm? (inz) = 102 (15.8)

AaNZ, cm? x rpn? (in x rpm?) = 30.6 x 10° (4.60 x 10%)
BEARINGS

Bore m (in) = 25 (0.984)

DN mm x rpm = 0.429 x 106

SHAFT CRITICAL SPEEDS

Not Determined

1Includes flow to hydraulic turbine drive for low speed pump.
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Figure 80. Effect of U/C0 of Turbine Efficiency, Velocity Compounded Stage.
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TABLE XXVIII - LH, TURBOPUMP DESIGN POINT PARAMETERS

PUMP - Single Stage Centrifugal (Fully Shrouded)

Flow -  Kg/sec (1b/sec) = 2.45 (5.4)

Pressure_Rise, H§ (psi) = 2.67 x 106 (391)

Flow - T (gpm) = 0.0355 (563)

Head Rise, m (ft) = 3992.9 (13,100)

Specific Speed, Ns = 1500

Design Speed, N = 77,400 rpm

Tip Speed m/s ft/sec = 295 (967)

Head Coefficient y = 0.45

Efficiency, n = 0.75

Tip Diameter, Dy cm, (in) = 7.37 (2.9)

INDUCER

NPSH m (ft) = 15.7 (52)

Suction Specific Speed = 95,000

Tip Diameter cm (in) = 5.84 (2.3)

Tip Speed m/s (ft/sec) = 237 (777)

Inlet Flow Coefficient, ¢ = 0.065

TURBINE

Velocity Compounded - Full Admission

Pitch Line Blade Speed, Un m/s (ft/sec) = 427 (1400)
Pitch Diameter cm (in) 10.5 (4.14)

Inlet Pressure E?- (psi) 6.55 x 10° (95)

Inlet Temperature, K (°R) = 922 (1660)

Exit Pressure (static), % (psi) = 0.109 x 10° (15.8)
Ideal Nozzle Velocity, Cy m/s (ft/sec) = 2,219 (7,281)

%m = 0.192

0

Estimated Efficiency = 0.62

Flow, Kg/sec (1b/sec) = 0.0837 (0.185)

Exit Annular Area, Aa, cm? (1n2) = 33.55 (5.2)

AaNz, e’ x rpm2 (in2 x rpmé) = 210 x 109 (31 x 109)
BEARINGS '

Bore mm (in) 20 (0.787)

DN mm x rpm 1.55 x 106

SHAFT CRITICAL SPEEDS

Not Determined
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pumps and two-stage turbines. At the design point, the turbine bypass flow
is no greater than 20 percent. A bypass around the plug cooling passages,

~ rather than the turbine, could be used if the heat flux from the plug should
prove inadequate to heat all the oxidizer flow.

°  Cycle EX04

The turbomachinery for this cycle is similar to that used for
Cycle EX03 except that both turbines are provided with gaseous hydrogen.
An oxygen seal package similar to that used in the RL10 is required between
the oxidizer pump and its drive turbine.

¢ Cycle GGO3
The turbopumps utilized for this cycle are single-stage, cen-
trifugal, high speed pumps, and hydraulic, turbine driven, Tow speed pumps.
An oxygen seal package is required for the high speed oxidizer pump. The hot
gas turbine is a velocity compounded or Curtis stage.
D. ENGINE COOLING ANALYSIS

1. ITA-Type Module

Cooling analyses conducted early in the program on film-cooled
skirts for both 40:1 and 200:1 nozzles (Figure 83) led to recommended design
points of 21.5% FFC (fuel film cooling) and 24% FFC, respectively, for a
2560°R wall with cycle Tife of 1200. A reexamination of the film cooling
requirements of the 40:1 nozzle was made using the results obtained on
Contract NAS3-20107 (Plug Cluster Module Demonstration Program).

The effect of increasing the module area ratio from 40 to 200
on module film cooling requirements was evaluated using the entrainment
fraction model. There is some uncertainty as to how to apply the entrainment
fraction, k, data obtained with a 40:1 nozzle to a 200:1 design so results
for two representative assumptions were obtained as shown in Figure 83. The
"k vs x" model assumes that the axial entrainment fraction distribution in
the 200:1 nozzle is the same as in the 40:1 nozzle. This assumption yields
maximum nozzle wall temperature about equal to the 40:1 nozzle prediction,
thereby indicating that the film cooling requirements are about the same.

The “k vs x/L" model assumes that the entrainment fraction
correlates with non-dimensional axial position rather than the absolute
value of axial position. This assumption yields high nozzle temperature for
a 200:1 design which means that higher film coolant flow rates are required.

It is believed that the "k vs x/L" model is most Tikely to
represent the entrainment fraction distribution in a 200:1 nozzle because
the entrainment is strongly influenced by wall curvature which tends to
correlate with x/L. Therefore, it is believed that a 2 - 3% FFC percentage
increase would be required if the module area were increased from 40:1 to 200:1.

147



Nozzle

Entrainment
€ Module Fraction
——— 40/1 APS Data

200/1 k vs X
200/1 k vs X/L

3000r-

5000 g~

2500 -

4000 I~

2000

1

Wall Temperature, °R

3000
1500

°K

1

2000

[w]
(=]
o

Ll

Wall Temperature,

—L_’ XLﬁo
| L200

ITA Design

0/F = 5.5

Pc = 20.4 ATM (300 psia)
139°K (250°R) H,

208°K (375°R) 02

Max. Temp. Range (K vs S/L)
200/1 Nozzle

1422°K (2560°R)
Maximum vesirable
Nozzle Temperature

AN ,
Max. Temp.
_;;?\\ 40/1 Nozzle
: (K vs X)
Throat Temp: \\\\'~\\\_
i —“
20 25 30
% FFC

Figure 83. ITA Wall Temperatures Based on Entrainment Fraction Model.

148

1 ¥



The effect of overall module mixture ratio on film cooling
requirements and the parametric relationship between film-cooling-per-
formance loss, mixture ratio, and fuel film cooling percent are shown in
Figure 84. These results were obtained for the ITA engine configuration but
the APS film coolant injection sleeve design was assumed because it is more
efficient (less coolant mixing). The analysis was performed using the HOCOOL
computer program and the post-test entrainment fraction model. The design
criteria used for defining the film coolant requirements are: cyclic life of
1200 cycles (throat limit - includes safety factor of 4), 1% maximum creep
in 10 hour (nozzle limit), 2560°R maximum nozzle temperature, and 1660°R film
coolant injection sleeve temperature (copper material).

2. Regeneratively Cooled Module

Preliminary regenerative cooling analysis of a module with
a 40:1 nozzle area ratio was conducted using the following ground rules:
(1) chamber and nozzle are entirely fuel cooled with no film cooling,
22) chamber pressure is 20.4 atm (300 psia) or 34.0 atm (500 psia),
3) mixture ratio is 5.5, and (4) total cycle 1ife is 1200 cycles. A
zirconium copper chamber with rectangular coolant passages, similar to the
ITA design was used.

Gas-side boundary conditions were based on data generated
in Ref. 18, in which heat fluxes were calculated from gas-side thermocouple
responses by means of a two-dimensional SINDA model. Test hardware was
comparable to the ITA design, i.e., premix injector, identical chamber con-
tour. The present analysis was based on the reactive gas-side model and a
reference temperature equal to the mean of the wall and the recovery tempera-
ture. The correlating factor, C,, was adjusted to make the predicted flux
profile agree with the data of Rgf. 18, as shown on Figure 85.

Coolant side heat transfer was based on the Hess and Kunz
correlation with a constant correlating factor, C;, of 0.0208. The wall
temperature distribution in the coolant correlation was based on the bulk
temperature over the land and external wall and on the centerline wall
temperature over the internal wall. As described in Ref. 23, this formulation
matched the results of two-dimensional SINDA analyses reasonably well.

Channel geometry was not varied extensively. The sixty channel
ITA design, with a channel width of 0.152 cm (0.060 in) was used as a start-
ing point, and when found satisfactory, the channel depth was varied to obtain-
the change in wall temperature with channel depth. In the expansion section,
both constant channel width and constant land width configurations were investi-
gated. Both are satisfactory, but the constant channel width design will be _
excessively heavy, while the constant land width design leaves a large span
across the coolant passage. Although not modeled, a bifurcation to double the
number of channels will reduce both the weight and the span. ’
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0/F, Overall Mixture Ratio

Design Criteria:

Nt
2 1200 cycles

7« 10 hr Tife (1% creep)
1422°K (2100°F) max. nozzle temp.
922°K (1200°F) max. Cu sleeve temp.

Ig = 398 sec

I Values for:
40/1 Nozzle
Amb. Temp. 02/H2

IS = 435 sec

IS = 449 sec

4 L—L | ] ] ——

5 10 15 20 25 ' 30
% of Fuel Film Cooling

K
o
1

Note: Results based on
= Task IV PCMD
Entrainment Fraction Model

s

e = 40/1
Ambient Temp.

ol Pc= 20.4 ATM (300 psia)

AIS, Film Cooling Performance Loss, sec.

5 10 25 30
% of Fuel Film Cooling

Figure 84. Film Cooling Requirements for 1200 Cycle Life at Mixture Ratios
__”from 4 to 7.
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‘Figure 85. Gas-Side Heat Flux Profile.
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Figure 86 shows a partial computer program output for a
0.508 cm (0.20 in) channel depth coflow design in which the channel width is
constant between the injector and a point 8.89 cm (3.5 in) past the throat,
and the land width is constant at 0.508 cm (0.20 in) thereafter.

The results of the analysis are summarized in Figures 87-92
for the 20.4 atm (300 psia) chamber pressure case.

Figure 87 presents the predicted gas-side wall temperature and
temperature drop from gas-side to back-side at the maximum temperature point --
1.27 cm (0.5 in) forward of the throat -- as a function of channel depth for
the coflow design.

Figure 88 shows similar data at the same location in the counter-
flow design. Temperatures and gradients are comparable to those of the co-
flow design. However, at the injector and the gas-side, temperatures are
considerably higher than near the throat, as shown in Figure 89, although
the gradients are much reduced.

The predicted coolant pressure drop for both the coflow and
counterflow design is shown in Figure 90. The loss coefficients at the entrance
and exit are taken to be 0.5 and 1.0 respectively, with the friction drop based
on a surface roughness of 0.000163 cm (0.000064 in).

) The corresponding data for a module operating at a 34 atm (500
psia) chamber pressure is compared in Figure 91 at the injector (forward) end
and near the throat.

From the standpoint of thermal considerations, there is an ample
margin on wall temperature, pressure drop, and flow velocity for the regenera-
tively cooled zirconium copper module with a gas-side wall thickness of 0.152
cm (0.06 in.). Thus, the mechanical design (see Section VI,F) can concentrate
on integration of the module most effectively into the entire system, minimiz-
ing module weight, cost and fabrication complexity.

Nickel and stainless steel chambers were also considered on a
preliminary design basis. Figure 92 shows the maximum wall temperatures pre-
dicted for Nickel-200 as a function of channel depth, for a counterflow 60
channel design. The pressure drops are low and a reduction in wall tempera-
ture appears feasible within a reasonable pressure schedule.

The stainless steel design produced wall temperatures in excess
of 1422°K (2100°F) above the throat for a channel depth of 0.406 cm (0.160 in);
it is not apparent that reasonable temperatures can be achieved without an
extensive design effort.

3. Regeneratively Cooled Plug Nozzle

The geometry of the plug cluster engine analyzed was assumed to
consist of ten 40:1 area ratio modules distributed around a 400:1 area ratio
plug. The configuration is summarized in Figure 93 and Table XXIX.
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1) Coflow

2) 60 Channel Design TWQ‘ZjTWQZ
3) Channel Width 0.152 cm (0.060 in)
4) Data for Max Temperature (1.27 cm

[0.5 in] Forward of Throat)
5) Mat'l: Zirc-Copper
6) Pc = 20.4 atm (300 psia) +

Tint T
(°F) BS
1000 .- (°K)
800 -
ng2
900 /
/(wg:g
o ,
S
= [1<]

700 g. ngZ'TBS

[

’.—.

600
600 ¥ : .
ng3-T1nt
500 & | ’
0.3 0.4 0.5 0.6 0.7 0.8
cm
0.1 0.2 : 0.3

Channel Depth (in)

Figure 87. Predicted Coolant Passage Temperatures, Down Pass (CoF]ow)}Design.
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Figure 88. Predicted Coolant Passage Temperatures, Up-Pass (Counterflow) Design:..
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1) Counterflow
2) 60 Channel Design
) Channel Width 0.152 cm (0.060 in)

3
4) Location 1.27 cm (0.5 in) Forward

of Throat Twg3
5) Mat'l: Zirc-Copper

Twg?

6) P_ = 20.4 atm (300 psia)
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800 L }
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1) Counterflow
2) 60 Channel Design ,
3) Channel Width 0.152 cm (0.060 in)

70 4) Location: Forward End 4 ‘ }
5
6

) Mat'l: Zirc-Copper .
) P. = 20.4 atm (300 psia) Tint 78S
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g
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Figure 89. Injector End Predicted Coolant PassageiTemperatu;es, Up;ﬁass Design.
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1) 60 Channel Design
(atm) 2) Channel Width 0.152 cm
4,05 (0.060 in)

3) P. = 20.4 atm (300 psia)
(psia)
50r
3.0
40
0F 2.0}
[}
(=)
|
a
o Uppass
1 4
20F 2
(7]
8 \
Q. -
ﬁ 1.0 Downpass
1r

0.3 0.4 0.5 0.6 cm 0.7 0.8

0.1 0.2 0.3
Channel Depth (in)

_Figure 90. Predicted Coolant Pressure Drop.
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Counterflow
Channel Depth 0.51 cm (0.2 in)

Pc = 20.4 atm (300 psia) Pc = 34 atm (500 psia)
AP = 2,04 atm (30 psi) AP = 5.58 atm (82 psi)
AT = 223°K (402°F) AT = 194°K (350°F)

At Injector

_ 819 850
778 800°K (1015 (1070)
(940) (980°F)
[ [ ® L
581 579 536 535
(585) (583) (505) (503)

1.27 cm (0.5 in) Forward of Throat

794 825
73 736 (570) (1025)

(823 (865)

381 1'—jasz - 389 L Y 39
(226) (227) (241) (240)

Figure 91. Comparison of Counterflow Design Temperatures at Chamber Pressures
of 20.4 and 34 ATM.

159



—

Counterfliow

60 Channel Design

Channel Width: 0,152 cm 0.060 in

Location 1.27 cm(0.5 in) Forward of Throat
Mat'l: Nickel -200

Gas Side Wall Thk: 0.076 cm (0.030 in)

AP 2.72 atm (40 psia)

Twgs Twgp
Pc = 20.4 atm (300 psia) 1

OO H™EWMN
et St S S e S e St

(°F)
2000 ¢~ R
(°K) Tint TBS

1300 g

1200 -

1100
1500 ¥

Temperature

0.3 0.4 0.5 0.6 0.7 0.8
Channel Depth (cm)
0.1 0.2 0.3
Channel Depth (in)

Figure 92. Predicted Coolant Passage Temperatures, Up-Pass (Counterflow) Design
Using Nickel - 200.
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A heat flux distribution for the plug nozzle was estimated
using a Bartz-type equation for heat transfer coefficient (Ref. 24), and
Cornell data for the base heat flux distribution (Ref. 25), ag indicated 2
on Table XXIX. The heat fluxes esEimated range from 703 kW/mZ (0.43 Btu/in
sec) at the module exit to 85 kW/mc (.052 Btu/in% sec) at the base outer radius.
These heat fluxes were calculated using the mass flux adjacent to the plug
wall along the centerline of a module and circumferential heat flux variations were
neglected. Data relative to the variation in mass flux between modules was not
available; however, it is conceivable that a lower mass flux, normally con-
ducive to a lower heat flux, will exist along the centerline between modules.
On the other hand, it appears that shock phenomena will tend to increase the
plug wall heat flux between modules. Due to these uncertainties, the accuracy
of the estimated heat flux is probably on the order of + 50%. Experimental
plug heat flux data are needed to determine the extent of circumferential
variations and to verify the heat flux magnitude along the module centerline.
The Ref. 25 heat flux data are for a plug cluster engine with zero gap and
are therefore not entirely applicable.

A radiation cooled plug was also considered. The wall tempera-
tures estimated for a radiation cooled plug are listed in Table XXIX.
These temperatures range from 1067-1867°K (1460-2900°F).

Table XXX presents the results of plug energy balance calcula-
tions which yielded coolant outlet temperature for two plug cluster engine con-
figurations: 1) a 40:1 area ratio module and a 400:1 area ratio plug, and 2)
a 200:1 area ratio module and a 400:1 area ratio plug. Oxygen and hydrogen
coolants were considered. For the oxygen cooled case, the entire plug can be
cooled with 1iquid oxygen if the module area ratio is 200:1, but a two-phase
cooling system is required if the module area ratio is 40:1. If all of the hydro-
gen is utilized as a plug coolant, the outlet temperature would range from 40-
106°K (80-190°R) depending on the module area ratio. :

The feasibility of oxygen cooling of the plug cluster engine
depictedin Figure 93 {40:1 module, 400:1 plug) was investigated. The corre-
Tations used to evaluate the oxygen heat transfer coefficient were obtained
from Refs. 26-29 and are summarized in Table XXXI. The estimated critical heat
flux for subcooled and two-phase oxygen is also plotted in Figure 94. These
critical heat flux estimates are a crucial factor in evaluating the stainless
steel coolant channel design and need to be verified experimentally.

®  Counter Flow vs Parallel Flow
] The initial analysis objective was to determine the best
inlet location for the oxygen since it enters the cooling passages as a liquid

and exits as a gas. It was found that the counterflow arrangement indicated in
Figure 93 is best. This is demonstrated on Figures 95 and 96 which show plug
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TABLE XXX - PLUG ENERGY BALANCE CALCULATIONS

e -

£Q Ah

e e plug Kd/kg

“m plug kW (Btu/sec) Coolant (Btu/1b)
40 400 3278 (3109) all 02 237 (102)
40 400 all H2 1302 (560)
40 400 75% H2 1732 (745)
40 400 50% H2 2603 (1120)
40 400 25% H2 5207 (2240)
200 400 1034 (981) all 02 75 (32.2)
200 400 all H2 411 (177)
200 400 75% H2 549 (236)
200 400 50% H2 823 (354)
200 400 25% H2 1646 (708)

(1) Pino2 = 40.8 atm (600 psia), h

w = 13.83 Kg/s (30.48 1b/sec)

PinHZ

= 43.2 atm (635 psia), hin
w = 2.51 Kg/s (5.54 1b/sec)

(2)y p_ .0, =

out

Major Assumptions: 1.

164

) =

34 atm (500 psia), P

in

1

outHZ

T, K(°R) Tout K(°R)

92 (165) 157 (283) (6)
22 (40) 104 (188)

22 (40) 132 (237)

22 (40) 185 (333)

22 (40) 354 (638)

92 (165) 132 (238) (L)
22 (40) 46 (83)

22 (40) 53 (95)

22 (40) 71 (127)

22 (40) 127 (229)

-129 KJ/Kg (-55.4 Btu/1b),

-188 KJ/Kg (-81 Btu/1b),

= 36.4 atm (535 psia)

Plug Twall - 533°K (500°F).

No film cooling effects on plug.

Heat flux proportional to pV at the plug
wall along module ¢ to the 0.8 power.

No circumferential heat flux variation on plug.
Oxygen Tsat = 147°K (265 °R) at 37.4 atm (550 psia).



TTABLE XXXI - OXYGEN HEAT TRANSFER CORRELATIONS
USED FOR THE OXYGEN COOLED PLUG ANALYSIS

Oxygen Heat Transfer Correlations

1. Subcooled Liquid 02 Heat Transfer

a. Forced Convection
ALRC 02 Correlation (Ref. 26) evaluated at typical Tbu]k

and Tam
= 34 atm (500 psia), T = 111°K (200 R}, T = 139°K (250°R}
hd 05/( ) 95 2. 30x10 (1 09x10”%)
h - kH/m -°K (Btu/ln sec °F)
d - cm {in)
oV - Kg/m-s (1b/sec ft%)
b. Burnout or critical heat flux {nucleate-to-film-boiling transition)

based on N204 data and per correlation (Ref. 27):

bge = A+ B VAT, k/me (Btu/in® sec)

VAT

mK/s (ft °F/sec) A B

Y097 (2000 38T (0.6) 71.85 (.00062)

>1097 '(2000) 2451 (1.5) 0.507 (.00017)
¢. Nucleate Boiling: TwL = TSat + ATSH’ (ATSH = 283°K or 50°F)
2. Gas 0, Heat Transfer '

Approximation of ALRC correlation (Ref. 26) prediction for

= 34 atm (500 psia), T = 153°K (275°R) - 2 o . 2 o
ha- 05 s s h kW/m“-°1 (Btu/in“ sec®F)
¢ = 1.82x10° 2(8.65x10"°) [0.7 (T/T,)7°°1 d - cm (in)
(o¥) pvV - Kg/mz-s (1b/sec ftz)

T, T, - °k (°R)
3. Two-Phase 0, Heat Transfer W

a. Film boiling based on Giarratano and Smith Correlation (Ref. 28)

x, quality hoph/Ngas

0 - .01 0.25
0.1 0.35
0.5 0.65
1.0 1.0

b. Burnout or Critical Heat Flux
Based on shippingport correlation for water (Ref. 29)
= 37.4 atm (550 pSla)
8gp = 981. (0.6) =t i 3, kW/m? (Btu/in? sec)

H, = He =-16.5 KJ/Kg (- 7 1 Btu/1b)

0
- 12,9, 0. 395
H He + .724 AHfg [( AHfg

H' = He o+ 724 e [0 - 30 ) ‘ 93/°V ] (Btu/1b)
Mg

c. Nucleate Boiling: Tw] =T + AT

sat sh’ (ATSH = 283°K or SOEF)
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wall temperature at the module exit and at the downstream end of the plug as

a function of coolant oxygen mass flux and the coolant state. At the module
exit (Figure 95) acceptable wall temperature can be maintained by liquid oxygen
cooling with a nucleate boiling of a forced convection mechanism but excessive
Mach number (>0.5) are requ1red for gas. The results plotted on Figure 96
shows that gas cooling is feasible at the downstream end of the plug as a wall
temperature of about 811 °K (1000°F) can be maintained with a coolant Mach
number less than 0.3.

°  Coolant Channel Design

Preliminary design calculations for sizing the cooling chan-
nels of an oxygen cooled (counter flow) plug are summarized in Table XXXII.
A 92°K (165°R§ 1iquid oxygen inlet temperature was assumed.

At the coolant inlet (z = 29.2 cm or 11.5 in), the oxygen is
a subcooled liquid and it is desirable to avoid film boiling. Consequently,
the coolant velocity is governed by critical heat flux consideration. A
0.6 m/s (2 ft/sec) velocity is sufficient to yield 3n adequate b rnout safety
factor (1.5). The required mass flux is 0.07 Kg/cmés (1.0 1b/1n sec).

At the next analysis station (z = 50.8 cm or 20 in), the heat
flux is lower and the oxygen is still significantly subcooled. As a result,
the required velocity is lower 0.37 m/s ?1.2 ft/sec).

At the third analysis point (z = 76.2 cm or 30 in), the oxygen
bulk temperature has reached the saturation temperature (147°K at p =
37.4 atm, or 265°R at p = 550 psia assumed) and bulk boiling is beginning to
occur.

As Tong as the oxygen remains slightly subcooled, nucleate
boiling can be easi]y maintained. However, after a certain amount of bulk
boiling occurs, it is difficult to maintain nucleate boiling on the coolant
channel walls.

For the fourth analysis point, z = 101.6 cm (40 in), the
coolant is 48% vapor and the estimated critical heat flux characteristic
(Figure 94) indicates that reduced mass fluxes are required to maintain
nucleate boiling and avoid film boiling. This is necessary to avoid annular
flow where the 1iquid does not touch the wall. The approach is indicated by
option (a) for the z = 101.6 cm analysis point where the channel area has been
increased by a factor of 5. Options (b) and (c) are fiim boiling designs in
which the wall is cooled to a 811-1367°K (1000-2000°F) temperature by de-
creasing the channel flow area (by a factor of 28-52) so that annular flow does
occur but the gas velocity adJacent to the wall is sufficient to provide the re-
quired cooling.
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At the fifth analysis point, the quality is 84% and it is no
longer possible to maintain nucleate boiling. However, adequate wall tempera-
ture? gan be maintained with the film boiling mode as indicated in options (b)
and (c).

The results obtained for analysis points 3, 4 and 5 show there
are two choices for the coolant channel design in the two-phase region: (1)
a design which includes a two-phase nucleate boiling region, and (2) a design which
does not. The design which does not include two-phase nucleate boiling is con-
sidered most practical for fabrication purposes. A design which does include a
nucleate boiling region would have a lowest pressure drop but would be extremely
difficult to design and fabricate since it would be necessary to first increase
the f}ow area by a factor of _five (decrease the mass flux from 0.035 to 0.007
kg/cm¢ s or 0.5 to 0.1 1b/in2 sec), and then deﬁrease it by a factor of at least
70 (increase mass flux from 0.007 to 0.49 kg/cm¢ s or 0.1 to 7 1b/1‘n2 sec).

Cooling of the plug base region is relatively straight-forward
since it involves only gas-forced convection heat transfer.

° Pressure Drop Estimate

The pressure drop in an oxygen cooled plug was estimated by
assuming that the coolant channels would be designed for fiim boiling in the
two-phase region. The coolant channel geometry and pressure drop calcula-
tions are summarized in Table XXXIII.

The estimated loss was over 47.6 atm (700 psi) which is so large
that it probably rules out oxygen plug cooling as a practical concept. Most
of the pressure drop is estimated for the two phase region where the estimated
friction loss is 39.8 atm (585 psia). The two-phase flow AP was estimated using
the Ref. 30 water data as indicated in Figure 97.

E. BASE PRESSURIZATION ANALYSIS

The early literature, summarized in Section III.C.1, Figures 15 and 16
and Table IV, indicates that only a small relative base flow rate (about 0.2%)
is required for a large area ratio plug nozzle operating in vacuum conditions
where the wake is closed aft of the plug base. Analysis of these data for
vacuum operation reveals that the base pressure, corresponding to the 0.2%
flow, is 2.5 times the static pressure of the exhaust gas on the edge of the
expansion section of the plug. This value is recognized to be the standard
separation criteria (Pe > 0.4 Pambi nt) for Delaval nozzles. (Also given as
Pe 2 0.28 Pappiant fOr high area ratis nozzles in Reference 42.)

Achievement of the optimum base pressure may or may not require a
finite mass flow into the base, the amount presently being determined from ex-
periment (See Table X and Figure 35). Since the amount of flow should be de-
pendent upon both the diameter of the base and the pressure level, an equation
(Eq. 17, Section IV,E.3) was formulated for the parametric analysis using
Aerospike {Ref. 6) data. -



(8€L) 2°0§ :doug Bunssaud [e3o)

9NTd 037003 N3IDAXO

(eseq sapn|ouL)

“ILVWILSI dOY¥a FANSSId - ITIXXX 318YL

(GI1) 8°¢ (z1) 8°0 (L) 2°L (s8) 8°S -- (8G) €7 Lyl< paloo) sey
(129) €°2¥ -- -- (986) 8°6€ (9g) t°¢ (86-0E) €°/¥L-2°9/ P2100) 8seud 2
(¥°2) 2°0 - -- (p°2) 9L° (c0) zoo" (0€-G°11) 2°9.-2°62  PaL00) pLnbL]

(ersd) wye (ersd) wie (etsd) wje  (ersd) wje  (elsd) wje lxdmﬂqaw11 uotbay

‘dv ‘dv dv ‘v “4v u0138207
Le3el uany 31x3 uoL3oLa4 391Ul Letxy bnid
aunjedadual |LeM = 1 YIPLM puet = “
aanjedadwd] y|ng = ap yadag (auuey) = Pp YipiM —uccmcu fuL|00) = M
seg  (082) 961 0 aseg
(9260°) v2° (L2l*) L~ (utw) 6 0oe‘9 (000L) LL8 24 seg (88°5) Sl aseg
(S8L°) /v-0 (9260°) vz- (l2L™) L€ (utw) 6 00£*9 (0OOL) LI8 24 sen (8/2) vt (S1) 8¢ aseg
(€95°) €¥-L (802°) €5 (l2L") LE° v 008°¢ (000L) 18 24 seg  (0£2) 0SL (S°€€) S8 aseg
(€95°) €' L (9260°) v2° (L2L") L€° 6 009 (oo0OL) L18 24 seg (0/2) 0SL (S°€€) S8 (29) (51
=X
(?197) 95°L (5650°) SL° (1217) L€ vL ov8“6 (00OL) LL8 84 wmozg 2 (592) (v1 (9€) L6 (0s) 2L
. C oy
(699°) 69°L (6¥0°) 2L- (L2L") LE° Ll 056°LL (00§L)680L 84 wNm;Q 2 (592) L1 (5°8¢) 86 (ov) 2oL
(08°) 0°2 (6v0") 2L° (6v0") 2L” (2v) 00562 (0002)L9€L 84

(59°) £°L (67) €71 (2) 1§ (0°1) €0z aN -bii -3es (59Z) LvL (5°Lv) SOL (o) 2°9L
(2L7) 8°1 (s7) €1 (27) Ls (0°1) goL gy bul tgns  (s2z) sel (sv) vl (02) 870§
(8°) 0°¢ () et (27) LS (0°1) €0t an - *bt7 tans  (g9L) 26 (6F) tZl (§°LL) 2762

Uryw 7 (uryw p (ur)ywd m (99s Ncw\npv Emmmwswmz 33e3g (oo q (unywd y muwwﬁwog.
mumﬁ“wx but 007 Letxy bnid (7)

s|auuey) so¢ 0'v = M/ :pawnssy ubLsagq [auuey) jue|oo)

172

]



10

8
0 o]
Water Data
P/Pcr = .62
6 ////’
7N
(dp/dL) 2 ph ~ ~N
(dp/dL)Liquid -~ N
4 ~
pd . .
pd Gas-Liquid Point
Calculated for 02
/
2 e ’/<i&_
Estimated for 0, Based
on Water Data
0 1 I J i ﬁ
0 .2 4 .6 .8 1.0

Vapor Quality, wt. %

Figure 97. Two-Phase Pressure Drop Correlation.

173



A

“hase K pbase Base (Eq. 15)

In solving this equation for the flow rate, it is assumed that the flow
pressure is given by

where Pe is the ODE pressure at the engine area ratio.

The performance improvement obtained by a base pressurization correction
using Eq. 15 is seen to be between 0.3 to 2.1% 1 to 10 seconds specific impulse
as shown in Figures 46-50 of Section IV. This improvement seems reasonable when

compared with the 2.4% thrust increase due to base pressurization of the Aero-
spike (see Section IV,E.3.)

The schematics for the various engine cycles utilizing base pressuriza-
tion are given in Figures 61-70 (Section V.B.) In all cases, the performance
improvement was sufficient to justify the additional weight (2 to 5 1bs)
required to achieve pressurization (see Section VI.)

F. CONFIGURATION ANALYSIS

Plug cluster engine configuration layouts were prepared for candidate
cycles utilizing modules with area ratios of 40,100 and 200:1. These layouts
(Section VI.B), in conjunction with the parametric weight analysis (Section V.G.),

and the parametric engine performance (Section IV.E.), led to the selection by
the NASA Project Manager of the configurations:

° ITA Module (ey = 40), 8/D, = 2

°  Minimum Change ITA, 6/De = 2

°  Regeneratively Cooled Modules (ey = 100), 6/De =1
The cycles selected for these configurations were the expander cycle (EX02) with
an RL10 turbopump assembly and a gas generator cycle with a state-of-the-art
technology turbopump design. Both cycles were to utilize an Hp-cooled plug.
G. PARAMETRIC WEIGHT ANALYSIS

For purposes of the parametric weight study, the plug cluster engine was
assumed to be composed of a combination of the following components:

°  Regeneratively Cooled Combustion Chamber (Wee)

°  Regeneratively Cooled Thrust Chamber Nozzle (WTCN)

°  Thrust Chamber Nozzle Extension (WNOZ)

°  Main Injector (WINJ)
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°© Ignition System (WIGN)

°  Main Turbopump (with Gear Box) (WTPA)

®  Main Turbopump (Parallel Turbines) (WTPA)
° Valves and Actuators (WV)

®  Propellant/Gas Lines (WL)

°  Gas Generator (WGG)

® Miscellaneous (Electrical Harness, Instrumentation, Brackets, Engine
Mount, Gimbal (WMISC)

®  Plug Nozzle (WPN)

The engine dry weights do not include:

° Gimbal Actuators and Actuation System

° Engine Controller

Pre-Valves

° Tank Pressurant Heat Exchangers and Associated Equipment

Contingency (a total contingency is normally included in the vehicle
weight statement)

Baseline engine weight statements were established for the expander
and gas generator cycle engines by comparing like components with the RL10
IIB, the single- and double-panel Aerospike, and the Advanced Space Engine.
These baseline weights were revised during the program to conform to the
preliminary conceptual design layouts. The initial component weights utilized
in the parametric analysis, are given in Table XXXIV (see Section VI for re-
vised weights and a detailed breakdown by component).

TABLE XXXIV, PLUG CLUSTER BASELINE WEIGHT SUMMARY FOR PARAMETRIC ANALYSIS

Baseline Weight kg (1b)

Component Expander Cycle Gas Generator Cycle Comments
WCC (per module) : 2.12 (4.68) 2.12 - (4.68) A1l modules
WTCN (per module) 3.2 (7.0 3.2 27.0) Regen Module Only
WNOZ (per module) 1.6 (3.6 1.6 3.6) ITA Module Only
WINJ (per module) 1.88 (4.14) 1.88 (4.14) A1l Modules
WIGN - 9.9 (21.9) 11.9 (26.3) A1l Chambers
WTPA {Gear Box) 31.8 (70.0) 31.8 (70.0) RL10 TPA
WTPA (Parallel Turbines)21.3 (47.0) 21.3 (47.0) A1l Cycles
WV 10.4 (22.9) 10.4 (22.92 Will Vary for GG
WL 17.4 (38.3) 17.4 (38.3 Will Vary for GG
WGG 2.5 (5.6) GG Cycle Only
WMISC 27.4 (60.5) 27.4 (60.5) A11 Cycles
WPN 38.8 (85.5) 38.8 (85.5) A1l Cycles
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With the baseline engine weight established, engine component weight
scaling relationships were derived as a function of thrust, chamber pressure,
and nozzle area ratio. These scaling relationships were used to calculate
the weights over the parametric ranges of interest. The equations, which
were established through geometry considerations and empirical data fits of
historical data (References 23, 31, 32), were modified to obtain the best fit
for a variety of engine types (References 5, 9, 14, 23, 32-34).

The results of the parametric weight analysis are presented in Figures
98 and 99 for chamber pressure of 20.4 and 34 atm respectively. It is seen
that the engine weight for a module area ratio of 200 becomes excessive. For
this reason, configurations with 200:1 modules were not selected for further
study. The inclusion of AGCarb nozzle extensions later in this study, however,
showed that area ratios as high as 500:1 could be utilized.

H. THRUST VECTOR CONTROL ANALYSIS

Preliminary analytical evaluation of four basic thrust vector control
(TVC) concepts for the plug cluster rocket engine was accomplished. The
four concepts are gimbaling, throttling or engine out, hinged panels, and
secondary injection.

The initial evaluation involved an assessment of the moment generating
capability for all the concepts. The required TVC moment generating capability
is identical to that moment which would be generated by a 66.7 KN (15,000 1bf)
thrust engine operating at a gimbaled angle of 4 degrees or 21,280 joules
(188,342 inch-pounds). The analysis and test information contained in Pratt
and Whitney Aircraft Report PWA FR-1013, Reference 4, formed the basis for this
portion of the study. The information was manipulated to yield the lateral
force, the axial force, and the moment producing displacement of the axial
force for the following TVC concepts:

° Gimbaling - The only mode of operation considered is the so-called
hinged motion of a modular engine in a plane which intersects the plug nozzle
centerline. The corresponding moment generating capability is shown in Figure
100 for 1, 2, and 3 hinged modular engines. The required moment of 21,280 joules
(188,342 inch-pounds) can be achieved by this TVC scheme with one module at a
hinge angle of 52 degrees.

°  Throttling or Engine Out - The differential throttling of modules
will result in the moment generating capability shown in Figure 101 for 2, 3,
and 5 throttled modular engines. The required moment can be achieved by
throttling 3 engines to approximately 12% nominal thrust.

°  Hinged Panels - The hinging of a panel or flap consisting of a 60
degree sector of the plug surface Jocated at the upstream end of the plug
nozzle will result in an estimated Tongitudinal force of 71,981 N (16, 182
pounds) for a panel or flap hinge angle of 18 degrees. The assumed relationship
between moment generating capability and hinge angle is shown in Figure 102.
Note that the desired moment can be achieved with an estimated hinge angle of
34 degrees.
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SUMMATION OF MOMENTS DUE TO HINGING

INCH-POUNDS

PLUG LENGTH = 15% OF ISENTROPIC
MDOULE THRUST = (1500 LBF) 6672 N

TILT ANGLE = 170

NUMBER OF MODVLES = 10

TOTAL ENGINE THRUST = (16302 LBF) 72.51 KN
Re = (63.12 IN.) 160 cm

L = (151.2 IN.) 384 cm
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Figure 100. Moment Generating Capability for Hinged Engine Model Concept.
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SUMMATION OF MOMENTS DME TO THROTTLING
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Figure 101.
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SUMMATION OF MOMENTS DUE TO PLUG SURFACE HINGING

INCH-POUNDS

PLUG LENGTH = 15% OF ISENTROPIC
600 OF PLUG SURFACE HINGED

TOTAL ENGINE THRUST = (16302 LBF) 72.51 N
d/Re = .012, FL/FA = .035, Fp = (16182 LBF)
71.98 N @ 180 HINGE ANGLE
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Figure 102. Moment Generating Capability for Hinged Panel Concept.
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° Secondary Injection - The injection of fluids into the supersonic
primary stream produces a shock wave which causes an asymmetrical pressure dis-
tribution on the plug nozzle wall. The resulting laterial force and axial
force displacement characteristics were evaluated for both gas slot injection
at the end of the plug and for gas injection at the outside diameter (OD) of
50 percent of the modules. The moment generating capability for slot injection
is shown in Figure 103. Only slot injection yields the required moment and
this occurs at a relative weight flow of 4.5 percent. Relative weight flow is
defined as the ratio of secondary injection flow to total primary flow converted
to percent.

The next phase of the preliminary evaluation of the four basic TVC con-
cepts involved an estimation of the control hardware characteristics necessary
to achieve the equivalent of the following gimbaled single engine requirements.

° Gimbal angle = 4 degrees
®  Rate = 4 deg/sec
°  Frequency
Response = flat to 5 hertz

Table XXXV contains a tabulation of the estimated control hardware
characteristics. The actuation system estimated weights for hinged modules
were found to be similar for both hydraulic (including pump) and electromechan-
ical systems using historical data from past programs. The throttling, engine
out, and secondary injection systems will require flow control valves which,
in turn, must be operated by an actuation device. The estimated pressure drop
and weight flow requirements were converted to a fluid Ky requirement [Kw = weight
flow/(pressure drop x specific gravity)!/2l. An array of historical daty re-
garding the use of LOX and LH, valves and actuation devices on past engine
programs was likewise arrangeg as a function of Ky and provided the basis for
the estimation of both the weight and envelope dimensions. Electromechanical
actuation was presumed for the valves in this study based upon past actuation
trade studies.

A Summary evaluation of the TVC schemes proceeds as follows:

° Gimbaling - A minimum of four hinged modular engines are required
to achieve pitch and yaw control with a total actuation system weight of
approximately 36.3 Kg (80 pounds). The required maximum module hinge angle is
approximately 53 degrees. There are questions involving the mechanics of
hinging the modules through a large angle that remain to be answered.

° Hinged Panels - A minimum of four hinged panels are required to achieve
pitch and yaw control with a total hydraulic actuation system weight of approxi-
mately 83.5 Kg (184 pounds). The required maximum panel hinge angle of 34
degrees is based upon very little data and more information is necessary to
determine the effects of panel shape, size, location and hinge angle. A 34
degree panel hinge angle raises questions concerning the erosion of the panel

while deflecting the combustion gases.
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SUMMATION OF MOMENTS DUE TO SECONDARY SLOW INJECTION

PLUG LENGTH = 15% OF ISENTROPIC

INJECTION SLOW DIMENSION = 40° CIRCULAR ARC
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Figure 103. Moment Generating Capability for Secondary Injection Concept.
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° Throttling or Engine Qut - A minimum of three deeply throttled engine
modules are required to achieve the required moment in a pitch or yaw plane.
As a result, all ten engine modules must either be operated in a throttled
mode or in an on-off mode to achieve the full pitch and yaw control. In either
case, there will be two modules which will be required to respond to both a
pitch and a yaw command. This overlap of control for two modules is not a
problem if engine out or on-off control is used. In addition, engine out
operation eliminates the potential combustion stability problem associated with
deep throttling of engine modules. The total weight for the ten flow control
valve/actuator combinations is approximately 150 Kg (330 pounds). The average
power required to obtain adequate valve transient response is estimated to be
75 watts per module.

°  Secondary Injection - A minimum of four gas injection slots located
at the plug base are required to achieve pitch and yaw control. The total
weight for the four flow control valve/actuator combinations is approximately
69 Kg (152 pounds). The average power required to obtain adequate valve
transient response is estimated to be 50 watts per slot. Past tests at ALRC
on the Minuteman secondary injection system indicate that the generated side
forces are directly responsive to changes in injectant flow rate for fre-
quencies up to 20 hertz. This concept raises questions concerning the weight
and complexity associated with the hardware necessary to deliver the injectant
to the flow control valve. ,

In conclusion, it appears from this preliminary analysis that hinging
engine modules to achieve the required pitch and yaw control moments would be
the most desirable concept from the standpoint of axial force capability, weight,
and reliability. If weight reductions of 20% are made in the near future through
the use of composite materials, the hinged module approach still appears the
most promising.
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SECTION VI

PRELIMINARY CONCEPTUAL DESIGN

A. OBJECTIVES AND GUIDELINES

Preliminary conceptual designs of selected plug cluster engine systems
were generated based on the information developed in Tasks I-III for film
and regeneratively cooled systems. The detail of the designs allowed the
approximation of complete engine weights from which perturbations or trade-
offs could be conducted to optimize the plug cluster engine.

Tradeoff and sensitivity factors between subsystem operating points,
plug cluster engine geometry, plug cluster engine performance, and installed
engine weight, were established for the nominal configurations of the plug
cluster engine.

An engine component list was prepared and compared with those for
candidate engines in past Space Tug studies to assure that similar components
and requirements were included in the weight statement. A common frame of
reference was thus established for the weight of the plug cluster engine.

Consideration of AGCarb, carbon-carbon cloth, lightweight structures
led to modification of portions of the conceptual designs. An AGCarb
uncooled plug nozzle was investigated in depth. A cluster of large area
ratio scarfed bell nozzles, with AGCarb nozzle extensions from ¢ = 40 to
e = 500, was also investigated.

B. CONCEPTUAL DESIGN

Coqceptuq] design layouts were made for the expander and gas generator
cycle configurations. Typical layouts are shown in Figures 104-106. These
Tayouts contain individual valving for the igniters and two additional main
propellant valves. This number of control elements is more than considered
necessary.for the minimum valve configuration. The selection of the more
gonger:§t1v315%stem is based on the preliminary controls analysis presented
in Section VI,E.

The RL10 turbopump assembly is shown for the expander cycle configura-
tions (Figures 104 and 105), and a parallel turbine state-of-the-art TPA is
shown for the gas generator cycle configuration (Figure 106).

Four different modules are utilized in the conceptual designs:
(1; Integrated Thruster Assembly (ITA), (2) Minimum Modification ITA, and
(3) Regeneratively cooled ITA with both a 40:1 and a 100:1 module area ratio.
These are discussed in Section VI.F.

Three types of fairings are shown in the figures: (1) straight
fairings, which historically have shown the highest performance, (2) contoured
fairings, which appear to add excessive weight, and (3) scarfed nozzles, where
the uncut portion of the nozzle becomes the contoured fairing.
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Detailed discussions concerning the structure, materials and controls
for the conceptual design configurations are given in the following sections.

C. STRUCTURES ANALYSIS

Stress analysis calculations were performed in support of the structural
design of the plug cluster engine configurations. Results of the module
design analysis are reported separately in Section VI.F. The various com-
ponents were designed to provide minimum weight by comparing the known loads
and stresses to stainless steel allowable strength values.and critical buckling
loads. Critical stress modes, such as buckling, tension, and bending were
identified for each component, and the following safety factors were utilized:

Safety Factor on Yield = 1.1 - 1.25
Safety Factor on Ultimate = 1.4
Safety Factor on Buckling = 1.25 - 1.4

Design criteria used in the calculations are:

6672 N (1500 1bf)
68,058 N (15,300 1bf)

Module Thrust
Engine Thrust

Acceleration 0.2 g
Plug Nozzle Temperature 533°K (500°F)
Life 1200 cycles

Pressure Profile (given in Figure 107)
The configuration with labeled structural components is iJlustrated in Figure
108.

An arrangement of brazed tubes and circumferential stiffeners was
found to be the lightest weight structure for the regeneratively cooled plug
nozzle. This arrangement, shown in the sketches of Figure 109, utilizes
five equally spaced stiffeners for an assumed uniform external pressure load
of 0.04 atm (0.6 psi). If it is assumed that all of the radial Toad is
carried by the stiffeners, the total radial load per stiffener is 7784 N
(1750 1b), and the load per unit length is 947 N/m (5.4 1b/in). For a
stiffener of cross section 3.81 cm x 5.08 cm (1.5 in x 2 in), the required
thickness for buckling stability is 0.025 cm (0.01 in). The bending stress
in the tube with a 0.23 m (9 in) span between support is 592 atm (8690 psi).
The buckling margin of safety is 0.2 for the plug wall, where the margin of
safety is defined as

allowable stress : -1
applied stress x safety factor

The 1ightweight module mount ring shown in Figure 110 was designed based
on a required buckling load of 5940 N/m (33.9 1b/in). The buckling margin of
safety of 0.5 and the bending margin of safety of 1.8 are obtained for this
structure.

M.S. =
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Figure 107. Plug Pressure Distribution.
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Module
Mount Ring |

Lightening
Holes

Module

20.3 cm
—— (8 in.)

l .064 cm
5.08 cm (2 in.) -zf;{.OZS in.)
1 (7 in.) ‘
17.8 cm — ™

Section A-A

Figure 110. Lightweight Module Mount Ring.
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The plug torus was designed to serve two functions: (1) distribute
coolant to the plug wall, and (2) serve as the structural member of attaching
the plug to the thrust structure. The minimum wall thickness for a margin
of safety of zero is 0.058 cm. A wall thickness of 0.064 cm (0.025 in) was
selected.

The thrust struts (rod braces) were sized for 950 Tbs compression in
each 1.46 m (57.6 in) long strut. The strut wall thickness was selected as
0.064 cm (0.25 in) for a zero margin of safety.

Both aluminum and phenolic impregnated fiberglass cloth honeycomb
structures were analyzed for the base closure structure. The margin of ]
safety proved to be large, allowing the use of commercially available thick-
nesses. '

D. MATERIALS ANALYSIS

The selection of materials for the plug cluster engine conceptual
design (Figures 2 and 104 are typical) was based on propellant compatibility,
required mechanical properties, and fabricability, with the primary emphasis
being placed on compatibility. A listing of the material selected for each
engine component is given in Table XXXVI.

The requirements of long 1ife, Tow maintenance, postfire condensation
and storage in coastal environments dictate the selection of materials with
high resistance to pitting, crevice and stress corrosion. Design effects such
as galvanic couples and the influence of fabrication, particularly on stress
corrosion cracking susceptibility must be considered.

Hydrogen incompatibility is manifested in metals by a loss of toughness
both with decreasing temperature and hydrogen absorption. The low operating
temperatures and pressures of the engine allow the use of austenitic stainless
steels which are both highly resistant to embrittlement by hydrogen absorption
and possess excellent toughness over the range of service temperatures. The
use of the susceptible nickel base alloys will be limited to the possible use
of an electroformed nickel close-out of the module zirconium copper chamber
liner. Limited data indicate that as-deposited electroformed nickel is sus-
ceptible to hydrogen embrittlement; however, sufficient ductility is retained
in the weaker, annealed condition to allow its use. The remaining selected
materials, i.e., copper and copper alloys, aluminum alloys and titanium alloys
(under 100°F) are highly resistant to hydrogen embrittlement.

Oxygen incompatibility is manifested in metal either by loss of tough-
ness at lower temperatures, reduction of fatigue 1ife or catastrophic oxida-
tion. With the exception of titanium alloys, the alloys anticipated for
hydrogen service will also be used in oxygen. These materials possess ex-
cellent cryogenic toughness, and their ignition temperatures in oxygen are well
above their respective service temperatures. Ignition is not a problem except
where aluminum alloys would be subjected to high energy inputs or where organic
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Component

Module Chamber/Regenerative
Plug Nozzle

Plug Aft End Closure

Plug Wall Stiffener

Plug Support Rods

Engine Support Ring

Thrust Struts

LOX Boost Pump and LH»
Low Speed Pump

Hous ings

Turbine Nozzles
Impeller and Turbine Rotors
Bearings

- Shaft

LH2 High Speed Pump
Turbine Housing
Turbine Rotors
Turbine Nozzles
Pump Housing
Impeller

Bearings

Shaft

LOX Pump

Turbine Housing
Turbine Rotors
Turbine Nozzles
Pump Housing
Impeller
Bearings

Shaft

200

TABLE XXXVI - MATERIAL SELECTION FOR THE PLUG CLUSTER ENGINE CONCEPTUAL DESIGN

Material

Zirconium Copper Liner EF Nickel Close-out
CRES 347 or Carbon-Carbon Composite
Aluminum or Fiberglass Phenolic Honeycomb

CRES 347
CRES 347
CRES 347
CRES 347

A356 Aluminum

6061 T-6 Aluminum
7075 T-73 Aluminum
CRES 440

CRES A-286

CRES 347 Cast

A-286

CRES 347 Cast
5A1-2.55n ELI Titanium
5A1-2.55n ELI Titanium
CRES 440C

A-286

CRES 347 Cast
A-286

CRES 347 Cast

A356 Aluminum

7075 T-73 Aluminum
CRES 440C
CRES-A-286



contaminants could ignite and provide a secondary source of energy to ignite
the metals.

A1l selected non-metallic mater1a1s'wi11 be limited to those which
are acceptable in accordance with MSFC-SPEC-101 and 106.

A fiber reinforced graphite composite is a candidate material for the
plug nozzle. This material’s chemical compatibility with combustion gases
(water vapor and hydrogen) is excellent. Its calculated regression rate,
due to reaction with water vapor, approaches zero at temperatures below 2500°F
and is less than 2 mils/hr at 3000°F. Material regression due to reaction with
hydrogen was measured at 4 mils for a ten hour test period at 3000°F and 4
psia.

E. CONTROLS ANALYSIS

The controls analysis was conducted in two parts: (1) for the fully
regeneratively cooled (modules and plug nozzle) engine and (2) for the engine
utilizing an uncooled plug nozzle. The analysis of the regeneratively cooled
engine (Figure 104) is summarized in the first section. The second section
outlines the results of the study of the engine with an uncooled plug nozzle
(Figure 2) where a minimum weight control system was devised.

1. Control System for Regeneratively Cooled Engine

Engine cycle schematics were prepared to correspond to the
regeneratively cooled conceptual design configurations. The schematics shown
in Figures 111 and 112 are expander and gas generator (GG) cycles. Minor
differences occur in the cooling circuits for different modules (e.g., ITA
and minimum modification ITA).

A preliminary evaluation of the valves and controls required for the
two engine cycle concepts shown in Figures 111 and 112 was performed to pro-
vide a degree of confidence that the defined system schematics could control
the engine. This evaluation was performed in a very broad manner and did not
include any formal analysis of system transients. The basic approach used was
to examine the original schematics for both the expander and GG cycles, identify
potential problem areas, attempt to minimize the control problems by adding,
deleting or relocating controls and then to examine the revised system with
regard to preliminary definition of controls and control modes. With this
approach, the resultant schematics should be representative of what will be
required; however, final definition will require programmed analyses to evaluate
the varied transient conditions that may be encountered.

For both concepts, the engine start would begin with tank head opera-
tion through a cooldown phase followed by a pumped idle mode and then full
thrust operation. Although the basic approach is quite simple and has been
used successfully for other cryogenic, pump fed engines, the use of 10 engine
modules presents some additional considerations regarding location and sequenc-
ing of controls.
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The expander cycle, shown in Figure 111, uses GHy to drive a turbine
which is coupled to both pumps by a gearbox. The oxidizer circuit has a tank
shutoff valve, a single main oxidizer shutoff valve, a check valve (to control
oxidizer tank pressurization gas), and small shutoff valves located at each
module to control igniter flow. The fuel circuit has valves comparable in
function to those in the oxidizer circuit plus a bypass valve that serves to
control the flow through the turbine after the H, has passed through the coolant
passages. Auxiliary sensing devices and an electronic controller will be re-
quired to properly accommodate the various conditions under which the engine
must start and shutdown.

The GG cycle shown in Figure 112 uses hot gas to drive parallel
turbines, each of which is coupled to a pump. The valves in both the fuel
and oxidizer circuits are comparable to those defined for the expander
cycle. In addition to the common valves, a fuel and oxidizer GG valve are
required. Also, the bypass valve is relocated and functions as a throttle
valve to control hot gas flow to the oxidizer turbine.

Based upon the examination of the systems, Table XXXVII was prepared
to show a preliminary definition of the required valves.

For each valve defined, viable options exist dependent upon more
definitive performance requirements. One major variable is the allowable
pressure drop for the valve. The pressure drop could be a driver in selec-
tion of the type of valve, particularly if system weight were critical. The
curves of Figure 113 show the effect of pressure drop on equivalent orifice
diameter for a valve flowing liquid oxygen and a valve flowing GH, with flow
conditions typical of those required for the main propeliant shutoff valves.
As is shown, the change in orifice diameter is very significant below about 20
psi. Since weight is a function of valve size, the final system pressure
schedule could have a very definitive effect on the weight of the required
controls. This also affects the type of valve since valves with different

shutoff elements have different size requirements to provide the same equiva-
lent orifice flow.

Although the basic system schematics are thought to be practical as
depicted, there are questions that cannot be completely resolved by the
limited analysis performed to date. Several of these questions are analyzed
with regard to potential problems and possible options to resolve the pro-
blems.

Start Transient

With various sensing elements, signals and an electronic
controller, a desired engine start should be attainable for a given set
of conditions; however, there is some concern as to whether the same logic
can be applied for all conditions. The effects of variations such as full
vs empty lines, hot vs cold regenerative cooling section, single phase vs
two phase propellants and temperature soakback into valves and turbopumps
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are aspects requiring additional consideration. A more complex control approach.
may be required to assure a smooth start under the varying conditions that could
exist on restarts. Changes that may be required are use of more modulating

or step position controls and start sequence variations that would be selected

as a function of several monitored parameters.

Mixture Ratio Control

The concern about mixture ratio (MR) control is related
primarily to the start and shutdown transients. It is a concern because only
one valve controls flow to all the modules. The need for a flow balanced dis-
tribution system to the modules is apparent.

Even with valves at each module, as is done for the
igniter circuits, MR excursions during the transients could be rather
severe. The MR range would be influenced by propellant conditions, driving
pressure and the sizing of the igniter valves or flow orifices. It seems
reasonable to assume that with a more detailed analysis, this potential problem
could be accommodated by proper orificing or a modulating control in one circuit.

Module Interaction Effects

With the modules clustered around the nozzle, start
timing and interaction effects are a concern. The thrust generated by a module
with just the igniter portion operating would be so Tow that no problem would
result from a start variation. As main module thrust comes up through
idle mode, a variation from side to side could induce a turning moment to the
vehicle. Any moments could be corrected by an attitude control system
or gimbal capability; however, here again the need for a balanced flow and
distribution network is emphasized to minimize the potential effect.

Another aspect of interaction relates to the common
main control valve and multiple feed lines. Any significant pressure pertur-
bation in a module chamber could reflect back into the feed system. The
fluctuations at one module could then effect other modules with various
time lags. Dependent upon line lengths and propellant properties, any
pressure disturbances may be either amplified or attenuated. The potential
for this effect could be reduced by making the system stiffer, i.e., having
higher injector pressure drops, and controlling starts to limit Pc spikes.

Line Cooldown

) Under the tank head and pumped idle mode start the lines
will be chilled. Multi-position main shutoff valves and bypass bleed orifices
are required for this operation.

Propellant Utilization

_ Propellant utilization in the GG cycle could be achieved
quite readily by a special control signal to the throttle valve. On the expander
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cycle, precise control could not be readily achieved with the valves depicted
on the schematic. Some degree of compensation in one direction only could

be accomplished by the turbine bypass valve; however, the control and sensing
Togic required is believed to be complex. A simpler approach may be to make

one of the main propellant shutoff valves capable of mudulation.

Tank Pressurization

The schematics show simple check valves to control the
propellant flow back to the tanks for autogenous pressurization. The
feasibility of this approach is somewhat questionable considering possi-
ble pump discharge pressure variations, check valve crack and reseat
. accuracy, desired range of tank pressure and the early mission conditions
where ullage will be small. An acceptable alternative would be to make
these valves a pressure differential sensing unbalanced poppet arrangement.
This approach could be used with the valve size being comparable to a conven-
tional spring loaded check valve.

Thrust Throttling

Although a throttling requirement is not currently
imposed, a throttling capability could offer an attractive option to some
other vehicle control requirements. The GG cycle could readily accommodate
throttling by making the GG valves modulating rather than on-off. The ex-
pander cycle would probably require the main shutoff valves to have a modulat-
ing capability. This would impose a larger penalty than the GG cycle since
the valves involved are much larger

Other options could be used for a stepped thrust

capability rather than true throttling over a specified range. In addition

to control, as described above using multiposition valves instead of full
modulating valves, an approach of module control would be feasible. By adding
main propellant control valves to groups of modules, groups of 2, 3, or 4
modules could be shutoff or started to change thrust. A similar approach
might be used, with different module groupings, to provide maneuvering moments
without requiring engine gimbaling or use of auxiliary control thrusters.

None of these areas of concern appear to be overwhelming.
However, rather extensive system analyses would be required to assure that
the proper control parameters and control logic are used to provide the desired
performance characteristics over the full range of operating and restart condi-
tions.

1. Control System for Engine With Uncooled Plug

Minimum weight control system schematics were formulated for
both expander cycle and gas generator cycle engines with an uncooled plug
nozzle (Figure 2) These are given in Figures 114 and 115.
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Primary control of the expander cycle (Figure 114) is attained

by use of modulating or multi-position valves in the GH2 tufbine qrive cirguit.
Secondary control, for mixture ratio (MR) and propellant utilization (PU) is
achieved by a modulating valve in the oxidizer circuit downstream of the pump.

A preliminary definition of a start and shutdown sequence
of operations for this expander cycle is given in Table XXXVIII. The

sequence requires use of a controller having ‘computational and logic capabilities

(i.e., microprocessor) rather than a controller having only timers and signal
sequencing capabilities.

Primary control of the gas generator cycle (Figure 115) is
achieved by modulating GG valves. Secondary control for MR and PU is obtained

by the throttle valve which controls hot gas flow to the oxidizer pump turbine.

A sequence of operations for start and shutdown of the
GG cycle is shown in Table XXXIX. The comments relative to the required
controller as discussed for the expander cycle also apply to the GG cycle.

Component weight estimates for the major control components
are listed in Table XL. The total weight for the minimum valve expander
cycle is 23.8 Kg (52.5 1bs), while the corresponding weight for the GG cycle
is 20.6 Kg (45.5 1bs).

F. MODULE DESIGN

Four different modules are utilized in the conceptual designs: (1)
Integrated Thrust Assembly (ITA) shown in Figure 116 and described in Section
111.D.1, (2) Minimum Modification ITA, and (3) Regeneratively Cooled ITA shown
in Figure 117 for both a 40:1 and a 100:1 module area ratio.

The minimum modification ITA utilized a regen cooled nozzle extension
downstream of the regen-film cooled throat section. The fully regen module,
Figure 117, requires no film cooling, and therefore, represents a major
departure from the basic ITA design.

The ITA design has been shown to possess the capability of over
1200 cycles operation at a mixture ratio of 5.5 (Reference 45) Analysis to

estimate the life cycle capability of the regeneratively cooled module design
is as follows:

Design criteria for the structures analysis are:

Coolant Channel Pressure = 38.1 and 66.7 atm (560 and 980 psia).
Chamber Pressure = 20.4 and 34.0 atm (300 and 500 psia).

Coolant Channel Temperatures (given in Figures 87, 88, and 91)
Design goal = 1200 thermal cycles for a 10 hour duration.

Safety Factor on Yield = 1.1.

Safety Factor on Ultimate = 1.4.

Chamber Material = Zirconium Copper.
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TABLE XXXVIII - UNCOOLED PLUG EXPANDER CYCLE OPERATIONS SEQUENCE

Command Element

Start signal

Differential pressure
switch

Ignition monitor

Controller

Temperature sensor

Oxidizer line
pressure

Pc transducer

Controlier

Pc transducer

212

Response Element

Tank shutoff valves

Spark exciter and oxid-
izer igniter solenoid
valve

Controller

Spark exciter

Bypass valve

Checkvalve

Controller

Bypass valve, thrust
control valve

Thrust control valve

Action

Both shutoff valves open; fuel
and oxidizer start flowing.

Spark exciter energized; solenoid
valve opens; fuel and oxidizer
flow in igniter is ignited.

Controller samples all modules
to confirm burning in each igniter.

Spark exciter is de-energized;
igniter burn continues; GH, flows
into chamber thru main injéctor
and combusts; system cooldown
continues.

Pump housing temperature Sensors
reach the set temperature; control-
ler energizes bypass valve to move
from full open to intermediate
open position; controller maintains
lock-out on MR and thrust control
Joops; turbine rotates; pumps

start pumping fuel and oxidizer.

Pump discharge pressure increases
to open oxidizer line checkvalve;
oxidizer flows into main chamber
and ignites with fuel.

Controller samples all chamber
pressures and confirms all have
achieved pre-determined pressure.

Controller commands bypass valve
to move to steady state position
and activates the thrust control
Toop.

With thrust control loop activated,
the low Pc signal causes the thrust
control valve to move toward the
closed position; valve closing
forces rated flow thru the turbine;
Pc overshoot controlled by pre-
programmed valve travel rate.

(1L B



TABLE XXXVIII (cont.)

Command Element Response Element Action
Pc transducer Controller Controller samples all thrusters
to confirm full thrust.
Controller MR valve, oxidizer Upon confirmation of proper Pc
igniter valve the controller de-energizes the

_ ' oxidizer igniter valves and

\ activates the MR control loop;
steady state operation established;
thrust controlled by Pc transducer
acting on the thrust control valve;
MR controlled by PU tank signal
acting on MR valve.

Shutdown involves simultaneous programmed functions, which are executed
by the controlier. The shutdown signal results in deactivation of control loops,
bypass and thrust control valves open, tank shutoff valves close and the MR
valve goes to the nominal position. Upon confirmation of PC decay, the purge
valves are opened to clear oxidizer and fuel bleeds out the injector and base
bleed port. '
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TABLE XXXIX - UNCOOLED PLUG GAS GENERATOR CYCLE OPERATIONAL SEQUENCE

Cornmand Element

Start signal
Differential
pressure switch
Ignition monitor

Controller

Temperature
sensor

Ox line
pressure

Pc transducer

Controller

Pc transducer

Pc transducer

Controller

Response Element

Tank shutoff valves,
throttle valve

Spark exciters, ox.
igniter valves

Controller

Spark exciter

GG valves

Ox checkvalves

Controller

GG valves

GG valves

Controller

Throttle valve, Ox
igniter valves

Action

Shutoff valves open; throttle valve
goes to nominal position; fuel and
oxidizer start flowing.

Spark exciter energized; solenoid
valve opens; fuel and oxidizer flow
and are ignited at thrusters and GG.

Controller samples all modules & GG
to confirm burning in each igniter.

Spark exciter is de-energized; igniter
burn continues; GHy flows thru main
jnjector and combusts; system chilldown
continues.

Pump housing temperature sensors reach
the set temperature; controller com-
mands GG valves to about 50% open
position while maintaining control

loop lock-out; turbine and pumps

rotate; fuel and oxidizer pressure rise.

Pump discharge pressure increases to
open the oxidizer line checkvalves;
oxidizer flows into the main chambers
and ignites with the fuel.

Controller samples all chamber pressures
and confirms all have achieved pre-
determined pressure.

Controller removes thrust control loop
lock-out; MR control loop remains locked
out.

Low Pc signal causes GG valves to move
to the full open position; flow thru
turbines goes to rated flow and thrust
rises to full thrust level.

Controller samples all thrusters to
confirm full thrust.

Controller activates the MR cortrol loop
which lets the throttle valve respond

to tank PU signals; oxidizer igniter
valves are de-energized; steady state
thrust established and controlled by

Pc signals to GG valves.

Shutdown involves simultaneous pre-programmed functions which are

executed by the controller.

The shutdown signal results in deactivation of

control Toops, the throttle valve is commanded to a pre-determined position,
the GG valves are closed at a controlled rate and the tank shutoff valves

close in response to a timer signal.

and initiates an oxidizer purge to clear oxidizer lines.

The controller samples Pc decay

Fuel bleeds out

thru the main chamber and the hot gas out the base bleed and plug wall

ports.
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The estimate of thermal strain in the coolant channel was made using
the equation:

e = K:ea-AT
where K = 2 is a factor based on detailed finite element analyses of similar
structures, a = coefficient of expansion at the average wall temperature,
T.., and AT = gas side temperature ng3 minus cold side temperature Tinpt-

ave

The total strain in the coolant channel is given by the sum of the
thermal and pressure (bending stress) strains. Since the pressure strain
in this case is negligible, the allowable cycles can be read directly from
Figure 118. The calculations for 1ife determination are summarized in
Table XLI. It is seen that in all cases the cycle 1ife for the regeneratively
cooled module is greater than the required 1200 cycles.

TABLE XLI. REGEN COOLED MODULE LIFE CYCLE DETERMINATION

Chamber Channel  Tygg

Pressure  Depth AT Life
atm(psia) cm (in} °K (°F) °K_(°F) 1 Flow Cycles
20.4(300) .38 (.15) 701 (802) 536 (504) .01 Coflow 3400

" .64 (.25) 761 (910) 625 (665) .014 " 2000
20.4(300) .38 (.15) 678 (760) 541 (514) .010 Counterflow 3700

" .51 (.20) 713 (824) 587 (596) .012 " 2700

" .64 (.25) 739 (870) 628 (671) .014 " 1900
34.0(500) .51 (.20) 794 (970) 661 (729) .015 " 1700

Although creep life determination was not included in this study, it
is apparent that there is adequate Tlife for the low magnitude stress conditions
that exist (cf. Reference 45).

G. UNCOOLED PLUG NOZZLE

Preliminary calculations were made for an uncooled plug nozzle con-
figuration using graphite and carbon technology for materials of construction.
AGCarb 101K, a low modulus graphite composite which can be fabricated in
free standing structures, was chosen as a typical candidate material. It
has been used to launch communication satellites. (SVM-7 is the Aerojet
Solid Propulsion Company designation for Apogee Kick Motor used to orbit the
RCA SATCOM, U. S. Domestic Communications Satellite.) This material is fully
characterized and its properties are well understood. AGCarb 5451, another
candidate, is made from a higher modulus, higher density version of AGCarb 101
which provides improved erosion resistance.
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Demonstrated experience with AGCarb is noted in Table XLII. Summary
of selected AGCarb material properties is given in Table XLIII and a typical
density of graphite composite structures varies from 1.45 to 2.20 g/cc, the
higher value being for pyrolytic graphite.

Plug dimensions assumed for the nozzle calculations are 2.84 m (112 in)
diameter by 2.16 m (85 in) diameter by 1.28 m (50 in) length with the geometry
being approximated by a frustum of a cone. If the density of the AGCarb is
taken as 1.45 g/cc, then the nozzle weight is given as 18 Kg (40 1b) for a wall
thickness 0.14 cm (0.055 in), which corresponds to the weight of 45 Kg (99 1b)
of the regeneratively cooled tubular structure described in Section VI.C. (and
Table XLVI).

A structural analysis was performed to determine the required wall
thickness for a plug nozzle with the pressure distribution shown in Figure 107.
A wall thickness of 0.130 cm (0.051 in.) is acceptable for the plug from a
fabrication point of view and this thickness was selected for analysis. Buck-
ling is the critical failure mode, and was, therefore, utilized for deter-
mining the number and placement of required circumferential ring stiffeners.
Four stiffeners are required with K-408 AGCarb and three with K-550D AGCarb.
The circumferential ring stiffeners have square cross sections with dimen-
sions of 2.54, 2.29, 2.03 and 1.91 cm (1, 0.9, 0.8 and 0.75 in), respectively.

A tapered panel section with the thickness varying from 1.02 to 0.25 cm
(0.4 to 0.1 in) was found to be structurally suitable for the nozzle fairing.
Carbon-carbon bonding techniques ensure adequate bonding strength at the
fairing-nozzle interface. '

1. AGCarb Nozzle Cycle Life

The life of the carbon-carbon cloth (AGCarb) plug nozzle
was evaluated using an erosion rate expression of Heddon and Loewe (Reference
43). It is a Hinshelwood-type equation and is based on experimental work 2
with a nuclear reactor grade graphite (density = 1.76 g/cc, sgrface area = 7.8 m /g
at temperatures of 1213 - 1330°K (1724 - 1886°F) and H20 part1a] pressures of
3.4 x 10-% to 1.02 x 10-3 atm (0.005 to 0.015 psia). The equation is:
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TABLE XLIV - MATERIALS AND FABRICATION TECHNIQUE TRADE STUDY

| Candidate Selected | Rejected Comments
Material
AGCarb X Good thermal stability, low erosion, gas compatible, flight tested,
free standing.
Ablative X Too heavy; duration limited
Bulk Graphite X Thermal shock resistance not demonstrated.
Pyrolytic Graphite X Can be used if necessary with AGCarb chamber shell. PG washer
(throat insert only) packs are used on MX and C-4 high pressure solid rocket.
Reinforcement
Precursor v
Rayon, Continuous X Selected for graphite yarn. Demonstrated on SVM6 and SVYM7.
Pan X Higher cost, not demonstrated, lower interlaminar shear, fabrication
Toss greater.
Pitch X New precursor, not demonstrated, fab. technicques not proven
lTow reliability.
Fabric Weave
Plain (square) X Demonstrated, flexible fabric, intermediate strength, best
interlaminar shear.
Harness Satin X Tends to delaminate.

Fabrication - Reinfo

rcement Orientation

2D
Rosette X Demonstrated low cost fabrication techniques.
Shingle X More costly, not demonstrated, primary 2D alternate.
Tape Wrap X Low axfal compression and tensile, not demonstrated as free
standing, low cost fabrication.
Angle Layup (Throat insert) Low cost, method to achieve high density.
kl)}

Orthogonal X Costly, structural advantages not needed, demonstrated on reentry systems.
Cylindrical X Free standing, excellent mechanical properties; not demonstrated,
costly, long process time.

Matrix
Resin Pitch
Low Pressure X Demonstrated, low cost, most fabrication experience.
High Pressure X Costly, high density not needed in chamber.
Chemical Vapor X Not* demonstrated, costly, best 2D interlaminar shear, lower fiber
Deposition Carbon content.
CVD Resin Pitch X More costly than resin/pitch, not demonstrated in flight, some
improvement in shear over straight resin pitch, primary alternate.
Coatings
PG or SIC/PG X Firing time too long for developed and demonstrated coating technology.

Multiple starts requirement not demonstrated.
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= K] ’ CH20 (Mole)
T+ K2 . CH2 g-s

where Ky =5 x 1012 ¢~68,000/RT cc/g-s

Ky = 6.7 x 107 ¢! #200RT ce/mote

CH20 = H20 concentration g/cc

CH2 H2 concentration Mole/cc

T = temperature °K

R = gas constant 1.9872 cal/Mole - °K

This equation was checked with data from Lewis, Floyd and Cowlard
(Reference 44), who investigated various carbons (pyrolytic graphite, vitreous
carbon and erosion- resistant synthetic graphite) at pressures of 1 to 3
atmospheres and surface temperatures of 1500 to 3000°K. The erosion rate
calculated for plug cluster conditions (Pﬁ = 20.4 atm [300 psial and T =
I

1067-1875°K [1460 - 2915°F] - see Table XXIX)
Area Ratio Erosion Rate cm/10 hr (mi1/10 hr)
on Plug Synthetic Graphite Pyrolytic Graphite
40 0.16 (63) .005 (2)
458 3 x 1072 (.010) 8 x 1077 (0.0003)

Examination of the table indicates that pyrolyzed graphite nozzles
are capable of meeting the 10-hour life requirement with ease, while synthetic
graphite nozzles would erode somewhat at the module-plug interface (eM = 10).
The AGCarb nozzle will exhibit properties between those for synthetic graphite
and pyrolytic graphite shown in the table. Should erosion be a problem at the
module interface, a coating of pyrolytic graphite or metal carbide could be

applied.
H. UNCOOLED BELL NOZZLE EXTENSION
The successful application of AGCarb carbon-carbon cloth composite

materials for the plug nozzle structure prompted the investigation of these
materials for uncooled nozzle extensions for the modules.
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The basic module is regeneratively cooled to an area ratio of ¢ = 40.
The AGCarb nozzle extension is attached at this point to extend the area ratio
to ¢ = 500. The surface temperature at the attach point is 1867° (2900°F) As
indicated previously for the plug, the cycle life of the AGCarb is greater
than 10 hours for the environemntal conditions of this study.

Fabrication of the full or scarfed bell nozzle extension is within
the state-of-the-art for this size nozzle (79 to 102 cm [31 to 40 in] exit
diameter). Assembly of the cluster and installation of the base closure is
also readily accomplished. The scarfed bell nozzle assembly forms a fluted
plug with ideal aerodynamic contour, as opposed to the assembly of the same
number of ¢ = 40 modules on an annular plug.

I. WEIGHT ANALYSIS

The baseline plug cluster weights for the expander and gas generator
cycles were established by careful analysis of existing component weights,
scaling equations, and layout drawings (Figures 104 and 106). Revisions to
the component weights were made to incorporate materials and design changes.

1. Module Weight

The existing ITA module weight breakdown {cf. Tables V and XXXIV)
was examined and a 15 percent weight reduction was realized by assuming that
a welded joint would replace line flanges. Elimination of the oxidizer
flange (PN1162901-1), the fuel flange ?PN1162901-2), the fuel inlet line
(PN1162906-1), and the oxidizer inlet line (PN1162885-1) resulted in a weight
savings of 0.52 kg (1.14 1b) chargeable to the module. The heavy injector
head and flange were modified to reduce the weight by 0.23 kg (0.5 1b), and
solid state circuitry was utilized to reduce the ignition system weight from
0.99 kg (2.19 1b) to 0.77 kg (1.69 1b). This weight reduction is reflected
in the plug cluster engine baseline module weight given in Table XLV.

The nozzle extension weight for the regeneratively cooled module
was estimated utilizing the design data from Ref. 35 (p. 705).

TABLE XLV. MODULE WEIGHT ANALYSIS

Module
(9) Baseline Baseline

ITA ITA Module Regen Module
Component Kg (1b) Kg (1b) Kg (1b)
Igniter 0.99 (2.19) 0.77 (1.69) 0.77 (1.69)
Nozzle Extension 1.64 (3.61) 1.64 (3.61) 3.18 (7.00)
Chamber ) 1.56 (3.43) 1.56 (3.43) 1.56 (3.43)
Chamber Line/Torus/Flange 0.56 ({1.24) 0.05 (0.10) 0.05 (0.10)
Injector Assembly 1.88 (4.14) 1.65 (3.64) 1.65 (3.64)

6.63 (14.61) 5.66 (12.47) ~ 7.20 (15.86)
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2. Plug Nozzle/Thrust Structure Weight

The weight of the plug nozzle plus fairings and thrust mount
is given in Table XLVI.

A similar Weight analysis was performed for the uncooled AGCarb
plug nozzle and associated thrust structure. The weights are also summarized
in Table XLVI.

Differences in the weights of the common components for the
regen and uncooled plugs are found in the table. The major difference lies in
the thrust structure assumed for the uncooled plug which is 31.4 kg (16.4 +
15.0) comparied to 22.1 kg (10.2 + 11.9) for the cooled plug nozzle. This
difference indicates the uncertainty in the selection of structure for the
two preliminary designs.

3.  Module AGCarb Nozzle Extension and Base Closure Weight

The AGCarb nozzle extension (e = 40 to & = 500) weight was
calculated for modules operating at both 20.4 and 34.0 atm (300 and 500 psia)
chamber pressures. Geometry data for the individual module and the cluster
configuration are given in Figures 119 and 120.

The procedure for computing the weights was to: (1) calcu-
late surface area (As), (2) assume g wall thickness (t = 0.127 [0.050 in]) and
density (p = 1.45 g/cc [0.052 1b/in°]), and (3) calculate the weight from W = AS
tp. Tapered (0.127 to 0.064 cm thickness) nozzle weights were also calculated.

For the case of scarfed nozzles the surface area reduction
due to scarfing was assemed to be 40% the corresponding suyrface area reduction
for a 15° conical nozzle.

‘The resultant nozzle and base closure weights for the cluster
engines formed by high area ratio bell nozzles are given in Table XLVII.

4. Turbopump Weight

The RL10 turbopump weight (35.9 Kg or 79.1 1b) from Reference
14 was utilized in determining the baseline weight of 31.8 Kg (70 1b) for the
plug cluster engine. A redesign of this pump according to 1977 state-of-the-
art would show a marked reduction in weight.

A para]]el'turbine turbopump assembly based on current state-
of-the-art (Figures 78, 81 and 82) is expected to weigh only 21.3 kilograms
(47 pounds).
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TABLE XLVI - PLUG NOZZLE/THRUST STRUCTURE WEIGHT ANALYSIS

Component

Thrust Ring
Plug Wall
Base Closure
Struts/Plates
Fairings

Total

Regeneratively
Cooled
Plug Nozzle

Uncooled AGCarb
Plug Nozzle

kg (1b)

10.2 (22.5)
44.9 (99.0)
4.6 (10.1)
11.9 (26.2)
14.7 (32.4)

86.3 (190.2)

kg (1b)

16.4 (36.2)
18.6 (41.1)
5.6 (12.3)
15.0 (33.0)
16.1 (35.5)

71.7 (158.1)
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TABLE XLVII - AGCarb NOZZLE EXTENSION AND BASE CLOSURE WEIGHT

FOR PCE FORMED FROM BELL NOZZLES

BASELINE WETGHT

COMPONENT
Pc = 20.4 atm

Nozzle Extension*
(10 Modules)
e = 40 to ¢ = 500 67.1 (148)
Scarfed Nozzle **
(e 40 to ¢ = 500) 40.0 (88.1)
Base Closure 8.7 (19.1)
Weight Effective 75.8 (167.1)
Plug (Unscarfed)
Weight Effective 48.6 (107.2)

Plug (Scarfed)

*Tapered Nozzle 75% of Weight Shown
**Tapered Nozzle 80% of Weight Shown
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5. Valve Weight

The baseline valve weight of 24.] kilograms (53.2 pounds)
was established for the selected cycle (Figure 111) and its required number
of valves by comparison with the weights of corresponding valves of the
candidate Tug engines given in Table XLVIII.

A revised valve weight statement was prepared (see Section VI.E.,
Tab]g Xg) for the uncooled plug and clustered bell systems. The valve list-
ng 15 included in Table XLIX.

6. Line Weight

The 1line weights were determined from the engine layout drawings
(Figures 104 and 106). Minimum wall thicknesses calculated using a safety
factor of 1.5 were a factor of two to ten lower than the wall thickness values
utilized.

The total Tine weight for the baseline expander cycle engine
is 16.15 kilograms (35.6 pounds).

Line weights were reevaluated for the uncooled plug and
clustered bell systems. The expander cycle and gas generator line weights
amounted to 12.7 and 12.3 Kg (28.0 and 27.2 1b), respectively, showing a
20% reduction in weight. The revised line weight breakdown is given in
Table XLIX.

7.  Weight Summary

The baseline plug cluster engine weight, corresponding to
the regeneratively cooled plug nozzle designs, in Figures 104 and 106 are
summarized by component in Table XLVIII. Controls, connecting and miscell-
aneous hardware weight, consistent with that for the candidate Space Tug
engines, are included in the table.

A similar weight breakdown is given in Table XLIX for the
uncooled plug cluster engine, the clustered bell engine, the scarfed bell/
fluted plug cluster engine at two chamber pressures, and the scarfed bell/
fluted plug engine utilizing a gas generator cycle. Note that the GG
cycle reduces engine weight by about 11.3 Kg (25 1b), and that operation
at the higher chamber pressure (34.0 atm [500 psia]) reduces engine weight
by 24.5 Kg (54 1b).

The minimum pTug cluster engine weight appears to be about
181 Kg (400 1b) for the higher pressure engine utilizing a GG cycle. In
general, however, the plug cluster engines weigh more than the candidate
Space Tug engines listed in Table XLVIII. This might be expected due to the
geometrical configuration of the Plug cluster. Every effort has been made
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TABLE XLIX - WEIGHT BREAKDOWN FOR LIGHTWEIGHT PLUG CLUSTER ENGINES

ENGINE: MODEL 11 MODEL 111 MODEL TT1 MODEL IT1 MODEL TII
PLUG CLUSTER CLUSTERED PLUG CLUSTER PLUG CLUSTER PLUG CLUSTER
UNCOOLED PLUG BELL (en=500} (SCARFED BELL) {SCARFED BELL) {SCARFED BELL)
{EXPANDER CYCLE) | (EXPANDER CYCLE) (EXPANDER CYCLE) ﬁﬁﬁﬁENERATORCYCLE) (EXPANDEF CYCLE
Thrust {N) 68,950 67,230 67,230 67,141 67,230
Chamber Pressure (atm) 20.4 20.4 20.4 20.4 33.0
Mixture Ratio 5.5 5.5 5.5 5.5 5.5
Engine Area Ratio 458 895 895 895 895
Engine Diameter (cm) 320 433 433 433 336
Equivalent Engine Length (cm) 85.9 82.3 82.3 82.3 94.2
% Plug Nozzle 15 0 - - -
n 0.914 0.946 0.946 . 0.944 0.950
Igy {seconds) 443.8 463.9 463.9 463.3 465.9
Injector Assembly 16.5 16.5 16.5 16.5 12.8
Thruster Chamber & Primary Nozzle 47.8 . 47.8 47.8 47.8 43.0
Thrust Mount & Gimbal Assy. 31.4 16.4 16.4 16.4 16.4
Nozzle Extension 0 67.1 40.0 40.0 24.4
Plug Nozzle & Fairings 34.7 Q 0 0 0
Base Closure 5.6 8.7 a.7 8.7 5.3
Turbopumps & Mounts 3.8 3.8 31.8 21.3 24.2
Gas Generator or Preburner 4] 0 0 2.5 3.4
Ignition System 7.7 7.7 7.7 7.7 7.7
Lines: Total Weight 12.7 12.7 1.27 12.3 1.1
Ox Lines 4.9 4.9 4.9 4.9 4.4
Fuel Lines 5.6 5.6 5.6 2.0 2.8
Hot Gas Lines 0 0 0 2.0 1.9
Line Supports 2.3 2.3 2.3 2.3 2.0
valves: Total Weight - 28.3 28.3 28.3 25.2 37.8
Oxidizer Inlet Shutoff Valive 3.9 3.9 3.9 3.9 5.1
Fuel Inlet Shutoff Valve 3.9 3.9 3.9 3.9 5.1
Oxidizer MR & PU Control Valve 3.6 3.6 3.6 - 4.9
Oxidizer Injector Check Valve (10) 4.1 4.1 4.1 4.1 5.4
Turbine Bypass Valve 2.7 2.7 2.7 - 3.6
Thrust Control Valve 2.1 2.1 2.1 - 2.8
Tank Pressurizing Valves 0.5 0.5 0.5 0.5 0.6
Solenoid Valves (3) 3.4 3.4 3.4 3.4 4.5
Igniter Valves (Oxidizer} 3.6 3.6 3.6 3.6 4.9
Purge System Check Valves 0.7 0.7 0.7 0.7 0.9
6G Inlet Control Valve (Bipropellant) - - - 2.8 -
GG Ox Throttle Valve - - - 2.2 -
GG Igniter vaive (Oxidizer) - - - 0.2 -
Controls, Connecting & Misc Hdwr 8.8 8.8 8.8 o 8.8 8.0
TOTAL ENGINE WIEGHT (Xg) 225.3 245.8 218.7 207.2 194.1
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TABLE XLIX (cont.)

ENGINES: MODEL 11 MODEL TIT MODEL TIT MODEL II1 MODEL ITI
PLUG CLUSTER CLUSTERED PLUG CLUSTER PLUG CLUSTER PLUG CLUSTER
UNCOOLED PLUG BELL {eM=500) (SCARFED BELL) (SCARFED BELL) (SCARFED BELL)
(EXPANDER CYCLE) | (EXPANDER CYCLE) |(EXPANDER CYCLE) {(GASGENERATORCYCLE )NEXPANDER CYCLE)
Thrust (1bf) 15,500 15,114 15,114 15,094 15,114
Chamber Pressure (psia) 300 300 300 300 500
Mixture Ratio 5.5 5.5 5.5 5.5 5.5
Engine Area Ratio 458 895 B35 895 895
Engine Diameter (in.) 125.9 170.3 170.3 170.3 132.4
Equivalent Engine Length {in.} 33.8 32.4 32.4 32.4 37.1
% Plug Nozzle . 15 0 - - -
n 0.914 0.946 0.946 0.944 0.950
Iy (seconds} 443.8 463.9 463.9 463.3 465.9
Injector Assembly 36.4 36.4 36.4 36.4 28.2
Thruster Chamber & Primary. Nozzle 105.4 105.4 105.4 105.4 94.8
Thrust Mount & Gimbal Assy. 69.2 36.2 36.2 36.2 36.2
Nozzle Extension ’ 0 148. 88.1 88.1 83.9
Plug Nozzle & Fairings 76.6 4] 0 0 -0
Base Closure 12.3 19.1 19.1 19.1 11.6
Turbopumps & Mounts 70. 70. 70. 47. 53.4
Gas Generator or Preburner 0 0 0 5.6 7.5
Ignition System 16.9 16.9 16.9 16.9 16.9
Lines: Total Weight 28.0 28.0 28.0 27.2 24.6
Ox Lines 10.7 - 10.7 10.7 10.8 9.8
Fuel Lines 12.3 12.3 12.3 6.9 6.2
Hot Gas Lines 0 0 0 4.5 L
Line Supports 5. 5. 5. 5.0 4.5
Valves: Total Weight™ 62.5 e 76}tg77 : ;é.s 55.5 23.3
Oxidizer Inlet Shutoff Valve 8.5 8.5 8.5 8.5 1.3
Fuel Inlet Shutoff Valve 8.5 8.5 8.5 8.5 1.3
Oxidizer Injector Check Valve (10) 9.6 9.0 3.0 9.0 12.0
Turbine Bypass Valve 5.9 5.9 5.9 - 7.9
Thrust Control valve 1.6 4.6 4.6 - 6.1
Tank Pressurizing Valves 1.0 1. 1. 1.0 1.3
Solengid Valves (3) 7.5 7.5 7.5 7.5 10.0
Igniter Valves (Oxidizer) 8.0 8.0 8.0 8.0 10.7
Purge System Check Valves 1.5 1.5 1.5 1.5 2.0
GG Inlet Control Valve (Bipropellant) - - - 6.1 -
GG Ox Throttle Valve - - - 4.9 -
GG Igniter Valves (Oxidizer) - - - Q.5 -
Controls, Connecting & Misc Hdwr 19.5 19.5 19.5 19.5 17.6
TOTAL ENGINE WEIGHT (1bm) 496.8 542. 482.1 456.9 428.

235




in this study to use simil
injectors, combustion cham
engines. Advantage was ta
to evaluate the effect of

236

ar engine state-of-the-art technology (turbopumps,
ber, etc.) to provide an equivalent comparison of
ken of the unique configuration of the plug cluster
lightweight uncooled nozzles.

- B



SECTION VII
- PLUG CLUSTER ENGINE OPTIMIZATION

A. OBJECTIVES AND GUIDELINES

Parametric system analyses were conducted to optimize the plug
cluster engine concept for a Space Tug round trip to geosynchronous orbit
mission. The engine design point for the optimization was the baseline
design established in the preliminary design effort. It is consistent
with the guidelines 1listed in Table I.

The payload capability is included using the exchange factors avail-
able from Space Tug system studies. Subsystem Timitations imposed on the
engine design or operation were evaluated.

Points of the study where additional technology will improve the
feasibility of the plug cluster concept as a building block approach
for future applications to advanced space vehicles were summarized.

B. ENGINE DESIGN SPECIFICATION

Specifications for the conventional engine design configurations are
given in Appendix A Tables LXIV through LXX. The specifications are for
engines utilizing expander and gas generator cycles, regeneratively-cooled
and film-cooled modules, module area ratios of 40, and engine operating
pressures of 20.4 and 34 atm. Geometric and performance data given in the
tables were derived from the performance Model 1 presented in Section IV,
and the performance was revised to reflect the Model II results.

In addition to these specifications, similar data are given in the
Appendix Tables LXXI through LXXIV for the uncooled plug configurations.

Specifications for the recommended (optimized) engine configurations,
the plug cluster/scarfed bell engines, are given in Tables L through LIII.
Performance model III was utilized to generate these data.

Some of the effects that can be noticed by examination of the tables
are: (1) an increase in chamber pressure leads to an increase in engine
performance, and a decrease in engine diameter; (2) the gas generator cycle
shows a small (about 0.1%) decrease in engine performance at Pc of 20.4 atm,
a lower pump discharge pressure and a higher turbine operating temperature
than a corresponding expander cycle; (3) the fuel film cooled ITA module
1ead§ to a significant decrease in specific impulse compared to a corres-
ponding regeneratively cooled module; (4) the conventional plug cluster
engine design (Tables LXIV through LXX) does not realize the high area ratio
performance potential; (5) the plug cluster/scarfed bell, Tables L through
LITI (PCE) engine design achieves the high area ratio performance potential
through optimization of the aerodynamic flow contour of the plug nozzle.
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TABLE L - PLUG CLUSTER/SCARFED BELL ENGINE OPERATING SPECIFICATION
EXPANDER CYCLE: REGEN-MODULE

MODEL III
P = 20.4
o

PARAMETER SI UNITS ALTERNATE UNITS

ENGINE
Vacuum Thrust 71.97 kN 16,180 1bf
Chamber Pressure 20.41 atm 300 psia
Vacuum Specific Impulse 463.9 s
Mixture Ratio (0/F) 5.44 (5.50 TCA)
Total Flow Rate 15.82 kg/s 34.88 1bm/s (34.82 TCA)
Oxidizer Flow Rate 13.36 kg/s 29.46-1bm/s
Fuel Flow Rate 2.46 kg/s 5.42 1bm/s
Engine Area Ratio (Ap/AT) 895
Module Area Ratio (Ag/At) 500
Number of Modules 10
Module Gap (&/Dg) 0
Engine Diameter 433 cm 170 in
PTug Base Diameter 246 cm 96.7 in
Engine Length 82.3 cm 32.4 in
Module Chamber Diameter 8.59 cm 3.38 in
Module Throat Diameter , 4.72 cm 1.86 in
Module Eixt Diameter 102 cm 40.2 in
Module Chamber Length 16.51 cm 6.5 in
Module Nozzle Length 164 cm 64.6 in
Module Length 207 cm 81.6 in
Coolant Jacket Flow Rate 2.46 kag/s 5.42 1bm/s
Coolant Jacket AP 2.04 atm 30 psia
Coolant Inlet Temperature 22 K 40 R
Coolant Exit Temperature 246 K 442 R

TURBINES
Inlet Pressure 32.7 atm 480 psia
Inlet Temperature 246 K 442
Gas Flow Rate 1.38 kg/s 3.06 1bm/s
Specific Heat Ratio . 1.40 ~
Molecular Weight 2.02 g/mol
Shaft Horsepower 290 kW 390 hp
Percent Bypass 44

MAIN PUMPS
Oxidizer Pump Flow Rate 13.36 kg/s 29.46 1bm/s
Oxidizer Pump Discharge Pressure 27.2 atm 400 psia
Fuel Pump Flow Rate 2.46 kg/s 5.42 1bm/s
Fuel Pump Discharge Pressure 36.7 atm 540 psia
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TABLE LI - PLUG CLUSTER/SCARFED BELL ENGINE OPERATING SPECIFICATIONS
REGEN-MODULE

EXPANDER CYCLE:

MODEL III
PC = 34.0

PARAMETER ST UNITS

ENGINE
Vacuum Thrust 71.63 kN
Chamber Pressure 34.02 atm
Vacuum Specific Impulse 465.9 s
Mixture Ratio (0/F) 5.44
Total Flow Rate 15.68 kg/s
Oxidizer Flow Rate 13.24 kg/s
Fuel Flow Rate 2.44 kg/s
Engine Area Ratio (Ag/A7) 894
Module Area Ratio (Aq/At) 500
Number of Modules 210
Module Gap (8/Dg) 0
Engine Diameter 336 cm
Plug Base Diameter 191 cm
Engine Length 94.2 cm
Module Chamber Diameter 6.63 cm
Module Throat Diameter 3.66 cm
Module Eixt Diameter 79.5 cm
Module Chamber Length 16.51 cm
Module Nozzle Length 127.6 cm
Module Length 171 cm
Coolant Jacket Flow Rate 2.44 kg/s
Coolant Jacket AP 5.58 atm
Coolant Inlet Temperature 23 K
Coolant Exit Temperature 218 K

TURBINES ,
Inlet Pressure 55.0 atm
Inlet Temperature 218 K
Gas Flow Rate 2.23 Kg/s
Specific Heat Ratio 1.40
Molecular Weight 2.02 g/mol
Shaft Horsepower 506 kW
Percent Bypass 8

MAIN PUMPS
Oxidizer Pump Flow Rate 13.24 kg/s
Oxidizer Pump Discharge Pressure 43.5 atm
Fuel Pump Discharge Pressure 66.8 atm

ALTERNATE UNITS

16,

34.
29. .
.37 Tbm/s

808
392

679

29.

982

100 1bf
500 psia

56 1bm/s
19 Tbm/s

.4 in

.2 in

.1 in

.61 in
.44 in

.3 in

5 1in

.2 in

.2 1in

.37 1bm/s

psia
R
R

psia
R

.92 Tbm/s

hp

19 Tbm/s
psia
psia

(5.50 TCA)
(34.50 TCA)
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TABLE LII - PLUG CLUSTER/SCARFED BELL ENGINE OPERATING SPECIFICATION
GAS GENERATOR CYCLE: REGEN-MODULE

MODEL ITI
P =20.4
o
PARAMETER SI UNITS ALTERNATE UNITS
ENGINE

Vacuum Thrust 72.54 16,310 1bf
Chamber Pressure 20.41 atm 300 psia
Vacuum Specific Impulse 463.3
Mixture Ratio (O/F) 5.33 (5.50 TCA)
Total Flow Rate 15.97 kg/s 34.20 1bm/s (34.82 TCA)
Oxidizer Flow Rate 13.44 kg/s 29.64 1bm/s (29.46 TCA)
Fuel Flow Rate 2.52 kg/s 5.56 1bm/s  (5.36 TCA)
Engine Area Ratio (Ag/AT) 895
Module Area Ratio (Ae/At) 500
Number of Modules 10
Module Gap (&/De) 0
Engine Diameter 433 cm 170 in
Plug Base Diameter 246 cm 96.7
Engine Length 82.3 cm 32.4
Module Chamber Diameter 8.59 cm 3.38 in
Module Throat Diameter 4,72 cm 1.86 in
Module Exit Diameter 102 cm 40.2
Module Chamber Length 16.51 cm 6.5 in
Module Nozzle Length 164 cm 64.6
Module Length , 207 cm 81.6
Coolant Jacket Flow Rate 2.43 kg/s 5.36 1bm/s
Coolant Jacket AP 2.04 atm 30 psia
Coolant Inlet Temperature 22 X .40 R
Coolant Exit Temperature 246 K 442 R

TURBINES
Inlet Pressure 6.53 atm 96 psia
Inlet Temperature 922 X 1,660 R
Gas Flow Rate 0.17 kg/s 0.38 1bm/s
Specific Heat Ratio 1.36
Molecular Weight 3.8 g/mol
Shaft Horsepower 189 kW 254 hp
Percent Bypass 0

MAIN PUMPS
Oxidizer Pump Flow Rate 13.44 ka/s 29.64 1bm/s
Oxidizer Pump Discharge Pressure 27.22 atm 400 psia
Fuel Pump Flow Rate 2.52 kg/s 5.56 1bm/s
Fuel Pump Discharge Pressure 27.2 atm 400 psia

GAS GENERATOR
Chamber Pressure 6.80 atm 100 psia
Combustion Temperature 922 K 1,660 R
Mixture Ratio (O/F) 0.9
Total Flow Rate 0.17 kg/s 0.38 1bm/s
Oxidizer Flow Rate 0.08 kg/s 0.18 1bm/s
Fuel Flow Rate 0.09 kg/s 0.20 1bm/s
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TABLE LIIT - PLUG CLUSTER/SCARFED BELL ENGINE OPERATING SPECIFICATION
GAS GENERATOR CYCLE: REGEN-MODULE

MODEL III
PC = 34.0

PARAMETER ST UNITS

ENGINE
Vacuum Thrust 72.54 kN
Chamber Pressure 34.02 atm
Vacuum Specific Impulse 465.0
Mixture Ratio (O/F) 5.25
Total Flow Rate 15.91 kg/s
Oxidizer Flow Rate 13.36 kg/s
Fuel Flow Rate 2.54 kg/s
Engine Area Ratio (Ap/AT) 894
Module Area Ratio (Ag/At) 500
Number of Modules - 10
Module Gap (&/De) 0
Engine Diameter 336 cm
Plug Base Diameter 191 cm
Engine Length 94.2 cm
Module Chamber Diameter 6.63 cm
Module Throat Diameter 3.66 cm
Module Exit Diameter 79.5 cm
Module Chamber Length 16.51
Module Nozzle Length 127.6 cm
Module Length 171 cm
Coolant Jacket Flow Rate 2.41 ka/s
Coolant Jacket AP _ 5.58 atm
Coolant Inlet Temperature 23 K
Coolant Exit Temperature 218 K

TURBINES
Inlet Pressure 6.46 atm
Inlet Temperature 922 K
Gas Flow Rate 0.26 kg/s
Specific Heat Ratio 1.36
Molecular Weight 3.8 g/mol
Shaft Horsepower 316 kW
Percent Bypass .0

MAIN PUMPS
Oxidizer Pump Flow Rate 13.36 kg/s

Oxidizer Pump Discharge Pressure 43.55 atm
Fuel Pump Flow Rate ' 2.54 kg/s
Fuel Pump Discharge Pressure 47.6 atm
GAS GENERATOR

Chamber Pressure 6.80 atm
Combustion Temperature 922 K
Mixture Ratio (0/F) 0.9

Total Flow Rate 0.26 kg/s
Oxidizer Flow Rate 0.12 kg/s
Fuel Flow Rate 0.14 kg/s

ALTERNATE UNITS

16,310 1bf
500 psia

(5
35.07 1bm/s (34.
29.46 1bm/s (29.

5.61 1bm/s (5

132.4 1in
75.2 in
37.1 in
2.61 in
1.44 in
31.3 in
6.5 in
50.2 in
67.2 in
5.31 Tbm/s
82 psia

42 R

392 R

95 psia
1,660 K
0.57 1bm/s

424 hp

29.46 1bm/s
640 psia

5.61 1bm/s
700 psia

100 psia
1,660 R

.57 1bm/s
.27 1bm/s
.30 1bm/s

(e N e v

241



The engine length given in the tables is equivalent to the engine
Jength reported for the baseline Space Tug candidate engines, which is
measured from the gimbal point at the aft end of the LOX tank. Since
the modules of the plug cluster engine are clustered around the LOX tank
forward of its aft end (Figures 119 and 120), the actual engine length has
no constant reference point, but varies with the engine area ratio, module
area ratio and chamber pressure. In order that a direct comparison could be
made between the various types of propulsion systems, the engine length was
determined from the centerline of the LOX tank, and its equivalent length
from the gimbal point of the baseline Tug was determined.

The longer engines shown for the higher pressure (34 atm) systems are
the result of selecting the higher performing (20% LI) plug. At an equal
percent plug (15% L), the higher pressure engine is shorter.

C. ROUND TRIP GEOSYNCHRONOUS ORBIT MISSION

The baseline Space Tug round trip payload (Wp_) to geosynchronous
orbit is given in Reference 36 as 939 Kg (2070 1b), with a velocity incre-
ment (av) budget of 8,680 m/s (28,478 ft/sec). The useable main engine
propellants amount to 22,629 Kg (49,889 1b), and the burnout weight (Wgo)
is 2617 Kg (5770 1b) when the AP% propellant is 1‘gnored3 The vo]ume o§
the LHy and LOX tanks is 52.39 m (1850 ft3) and 18.12m> (640 ft3), respectively.
For engine mixture ratios other than 6, propellant off-loading must take place
as given in Table LIV.

TABLE LIV. PROPELLANTS AVAILABLE FOR ROUND TRIP MISSION TO GEOSYNCHRONOUS

ORBIT
Mixture Propellant
Ratio LH, L0, 0ffloaded
Kg (1b) Kg (1b) Kg (1b)

4.0 3,233 (7,127) 12,931 (28,508) 6,465 (14,254) LO,
5.0 3,233 (7,127) 16,164 (35,635) 3,232 (7,127) LOy

5.5 3,233 (7,127) 17,780 (39,199) 1,616 (3,563) LO2
6.0 3,233 (7,127) 19,396 (42,762) 0 (0)
7.0 2,771 (6,109) 19,396 (42,762) 462 (1,018) LH,

Solution of Equation 24 gives Wy, the ignition weight (24,720 Kg

or 54,499 1bp), where
W

1
Av = g Is In g—37— (Eq. 24)
Wp * Wgo
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g is the constant (9.807 m/s2 or 32.2 ft/secz), Is is the RL10 specific
impulse (456.5 sec), and aAv, Wp and Wpq are as given above. The equation
can be rearranged and then solved for %Re payload capability of other engines
when the off-loaded propellant (WPO ) is accounted for and the appropriate
specific impulse and engine weight %WE) are utilized.

- W, - W .
Wy, = "1 POL - (wBO - WE [RL10] + WE) (Eq. 25)

PL eAv/gIs
The RL10 engine weight (NE [RL10]) shown in Eq. 25 is 201 Kg (443 1bm).

The round trip payload to geosynchronous orbit for the optimized plug
cluster engine (cM = 500) is given in Table LV. It is seen that off-loading
propellant from the baseline mixture ratio (MR=6) Space Tug design point
reduces the capability of the plug cluster engine. Therefore, the maximum
payload is achieved at an MR of 6.

TABLE LV. ROUND TRIP PLUG CLUSTER (PCE) PAYLOADS TO GEOSYNCHRONOUS ORBIT

PC MR Is . NE wPL SWPL/aIs
atm (psia) Kg'TTE{T_ Kg (1b67_ Kg/s (1bm/sec7
20.4 (300) 5 463.4 219 (482) 547 (1205) 13 (29)

" 5.5 463.9 219 (482) 793 (1749) 14 (31)

" 6 464.4 219 (482) 1041 (2294) 15 (33)
34.0 (500) 5 465.2 194 (428) 595 (1311) 13 (29)

n 5.5 465.9 194 (428) 846 (1865) 14 (31)

n 6 466.6 194 (428) 1098 (2421) 15 (33)
D. TECHNOLOGY REQUIREMENTS

The plug cluster concept appears to offer a unique building block
approach for advanced space vehicles. The status of technology to develop
such an engine is very favorable. The ITA-type modules have been demonstrated
to deliver long Tife (greater than 1200 cycles at a mixture ratio of 5.5). An
existing RL10 turbopump could be used with a 5-hour life, or developed turbo-
pump technology could be applied to a new design. Existing AGCarb carbon-
carbon cloth nozzle technology is available for the high area ratio bell
nozzle extensions. There is an inherent low cost associated with the
utilization of off-the-shelf technology in the development of a plug cluster
engine. :

The feasibility of the plug cluster concept is based upon certain
assumptions and preliminary conceptual designs. Points of the study where
additional technology will improve the feasibility of the concept are
summarized in Table LVI. Thrust vector control considerations are 1isted
in greater detail in Table LVII. :
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E. OPTIMUM PLUG CLUSTER ENGINE

Two plug cluster/scarfed bell engines were selected for comparison
with the Space Tug candidate engines. Both engines utilized regeneratively
cooled modules (ey = 500) and the expander cycle. The plug cluster engine
operating at a chamber pressure of 20.4 atm (300 psia) is designated PCE
300 and its counterpart at higher chamber pressure is PCE 500 and is described
in Table XLIX.
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SECTION VIII
PLUG CLUSTER ENGINE ASSESSMENT

A. OBJECTIVES AND GUIDELINES

The results of the plug cluster engine study were compared with results
from previous Space Tug and Orbit-to-Orbit engine studies involving high
pressure engines using bell nozzles and engines using annular plug (Aero-
spike) nozzles. The comparison was directed toward making a common ground
of reference between the studies with regard to the assumptions and complete-
ness. An assessment of the plug cluster concept was made as a result of
these comparisons.

Specific missions that were considered for the comparison are:

(1) Round trip to geosynchronous orbit.

(2) Placement of payload into geosynchronous orbit.

(3) Retrieval of payload from geosynchronous orbit. :
(4) Placement of payload into planetary or escape trajectory.

B. MISSION EXCHANGE FACTORS

Payloads and payload sensitivities for Space Tug missions are
given in References 1, 2 and 37. These data, however, were derived from
vehicle designs during various stages of the Space Tug studies, and there-
fore, are not entirely consistent. For example, studies to determine the
optimum mixture ratio for the various engine candidates included vehicle
redesign to accommodate the different propellant tank volumes required.

In order to provide a common ground of reference for the engine
comparison, the ideal velocity (av) budget (Reference 36) for each mission
was utilized, and the payload caiculated for the baseline Space Tug in the
manner previously described for the round trip mission (cf. Section VII.C.)
The mission data are summarized in Table LVIII.

To simplify the analysis, the APS (auxiliary propulsion system)
contribution to the ideal velocity was ignored, and ignition weights
were computed using the appropriate form of Equation 24 (Section VII.C.)
The resultant data are given in Table LIX. Equations were developed for
each mission as shown in Table LX. The nomenclature for the equations is
given in Section VII.C and the baseline Space Tug data in that section and
in Tables LVIII, LIX and LX.

Results of the calculations are given in Appendix A (Table LXXV) for
model I plug cluster engines compared to early estimates for the candidate

Space Tug engines. Mission exchange factors (aPL/2Is and aPL/oWE) are also
included in the table.
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Since the compilation of the data in Appendix A (Table LXXV), additional data
have become available on each of the listed engines: (1) further development
of the ASE has led to more realistic weight estimates for the engine, (2)
high area ratio tests have been conducted using the RL10, (3) test data have
shown that the conventional configuration for the plug cluster engine (model
1) does not achieve the high performance predicted, and (4) a redesign of
the plug cluster concept indicates that the high area ratio performance
potential of this system can be achieved.

An attempt was made to compare the Model ITI candidate engines using
the latest empirical data, and also to compare them on the same analytical
basis (i.e., JANNAF Simplified Methodology). A summary of the engine
comparison using the JANNAF simplified methodology for each engine is given
in Table LXI, and the overall summary depicted in Figure 121.

The results of this comparison show that the plug cluster engine concept
derived from a cluster of scarfed bell nozzles offers a competitive payioad
when compared to the previously studied Space Tug engines. By adopting
a zero gap configuration and by utilizing the available vehicle diameter,

_the tradeoff in engine weight with performance becomes favorable, as shown
in Figure 122.

TABLE LX. PAYLOAD EQUATIONS FOR ENGINE COMPARISON

Mission
W W
. _ 1 - "pPOL
Round Trip NPL = ;ZV7§T§,—'— (wBO + AWE) (Eq. 25)
W W Av. /qls
_ I - "POL in
Deploy wPL —é757__7§T§ -e (WBO.+ AWE) (Eq. 26)
out
Av. /gls
e N 1 - ¥poL
(W tOW.) - —————————
Retri W - BO "E Avout/gls
rieve pL = X /gIse (Eq. 27)
1-e in
W, - W v, /gls
o1 POL _ in/9
Interplanetary WL AV ¢/ 91s " Wgs - € (wBO+AwE) (Eq. 28)
e

Where: ANE = WE-WE(RLlo), wKS = Kick Stage Weight + etc. (3984 Kg or

8783 lbm)
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S.I. UNITS

* performance based on JANNAF simplified methodolegy

A Ti\rust/\leight ratio assumed same as for 20,000 by engine (Ref. 27)

*#++Stowed length of deployable nozzle

Figure 121.

RLID 118 PCE 300 PCL 500 ASE
MR 6 [ [ 6
P (atm) 77.2 20.4 3.0 136
€ 205 895 894 400
Y {kg) 20 219 194 1834+
DE {m) .80 4.32 3.35 1.07
LE {m} 1.40 %+ 0.81 0.94 1.28%%*
“XS (s} 460.6 464 .4 366.6 469.3
ng {15/15 ODE) 0.965 0.945 0.949 0.966
PAYLOAD (kg)
Deploy 3740 nz7 3964 4084
Retrieve 1649 721 1R20 1911
Round Trip om 1041 1098 1150
Planetary 4945 5019 5125 5224
5,000
&3 4,500
o > &
< L= <<
S 4.a00 o I
E o 5 N
o
RL10O TIB PCE 300 PCE 500 ASE
* performance based on JANNAT simplified methodology
** Thryst/Weight ratio assumed same 2s for 66,773 N engine (Ref. 27)
***Stowed Tength of deployable nozzle
RLYO 118 PCE 300 PCE 500 ASE
MR 6 [ 6 [
P, (psia) 400 300 500 2000
€ 205 895 894 400
We (1bm) 443 482 428 4044
DE {in.) n 170 132 LY4
Lg (in.) 1 32 37 44
*1g (s) 460.6 464 .4 466.6 469.3
ng (Ig/1g ODE} 0.965 0.945 0.949 0.966
PAYLOAD (Vbm)
Deploy 8245 8436 8740 9003
Retrieve 3135 3794 4013 4212
Round Trip 2207 2294 2421 2535
Planetary 10901 11065 11307 11518
11,000
10,000
>
= g | g
= -
. 9,000 & w
a e g [__
-3 a l
o
S 8.0008% f
& RL10 118 PCE 300 PCE 500 ASE

Space Tug Engine Evaluation
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C. COST ANALYSIS

Engine development cost has been a major selection criteria in
discussions concerning candidate Space Tug and Orbit Transfer Vehicles (0TV).
In fact, the RL10 uprated engines were recommended by both MDAC and Convair
(References 2 and 37) in their Space Tug studies primarily on the basis of
DDTA&E.

Cost data for the RL10 versions, the Aerospike, and the Advanced
Space Engine are given in Table LXII. The estimates were taken from the
Space Tug studies (References 2 and 37). The cost data for the plug
cluster engines given in the table were estimated in several ways summarized
in the following. The initial cost estimate of $0.4M to $0.7M for a plug
cluster engine was made based upon conceptual design layouts. The DDT&E
cost estimate for a 5-year development program was obtained by plotting the
DDT&E costs shown in the table versus chamber pressure. While this plot
showed some scatter due to the widely divergent engine designs, it did
reflect a trend in development cost with chamber pressure, giving some
credence to the selected PCE cost.

TABLE LXII. SPACE TUG ENGINE COST COMPARISON
----------------- (1973 Dollars)-====-===e===

Engine DDT&E Engine Engine Maintenance
$M %M $M/Year
RL10 IIA 13 0.7 0.22
RL10 IIB 50 0.8 0.22
RL10 IV 119 0.9 0.23
A/S 140 1.1 0.17
ASE 154 1.0 0.15
PCE300 52 0.4 0.16
PCE500 60 0.4 0.16

A determination was made of the number of equivalent engines re-
quired during the development program. Comparison with the Space Tug
Storable Engine Study (Reference 16) showed that from 17 to 22 equivalent
engines were required, and that the DDT&E cost was between $41.5M to $70M,
depending upon the cycle chosen. Based on the previously cited costs per
PCE300 fabrication, the manufacturing (plus procurement)

Cost of the DDT&E effort is between $6.8M and $15.4M or from 13 to 30
percent of the total cost. Comparison of these percentages with the

44 percent obtained from the on going OME program indicates that the manu-
facturing/procurement cost is low for this size program. A single engine
cost of $IM would bring the plug cluster development cost percentage in
line with that for OME. This higher figure, however, does not seem reason-
able when the module high technology status is considered.

The DDT&E cost of $52M to $60M is, therefore, seen to represent a
reasonable value when compared with values generated for the other 0TV
candidate engines. The figure also appears to be consistent with previous
ALRC estimates for the development of similar space engines.
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D. LIFE ANALYSIS

Typical engine life projections given for the Space Tug candidate
engines are listed in Table LXIII. A1l of the engines except the RL10 IIB
have identical life requirements if it is assumed that the Aerospike and the
ASE cycle life is 300 times a safety factor of four (1200 cyc]esg. The
Aerospike, however, is also projected to have some scheduled maintenance
and refurbishment after 60 cycles or 2 hours of operation, with a total
engine service 1ife of 50 hours or 1500 cycles (Reference 6).

TABLE LXIII. SPACE TUG ENGINE LIFE COMPARISON

Baseline Tug Aerospike ASE
Life RL10 IIB (Ref. 1) (Ref. 6) (Ref. 39) PCE 300/500
Hours 5 ' 10 10 5*%-10
Cycles 190 300 300 1200

*RLTO Turbopump

Critical components that dictate the minimum life between over-
hauls are the injector, thrust chamber, bearings, seals, and the igniter.
Initial analysis of the low pressure plug cluster engine components indi-
cate that lifetimes greater than those listed in Table LXIII are state-
of-the-art. The plug cluster engine, therefore, should surpass the life
capability of the high pressure engines and will be superior to the RL10
IIB, which utilizes fifteen-year-old technology.
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SECTION IX
CONCLUSIONS

The major conclusions (Figure 123) resulting from the Unconventional
Nozzle Tradeoff Study are:

PLUG CLUSTER FEATURES

©  COMPETITIVE PAYLOAD

© -INCREASED PAYLOAD LENGTH

° DESIGN FLEXIBILITY

°  LONG LIFE

©  EXISTING TURBOMACHINERY

©  DEMONSTRATED MODULES

°©  EXISTING NOZZLE TECHNOLOGY

°  LOW COST

°  LOW PC ENGINE SYSTEM

The major feature of the PCE is that it is capable of delivering a
competitive payload. While verification of the performance is needed, the
performance methodology developed in this program indicates only a sma11

uncertainty.

Another feature of the PCE is the a11owance of 1ncreased payload. length
due to the shorter engine length.

The PCE offers considerable design flexibility, since the capability
to increase or decrease the number of modules (and thrust) is inherent in the
cluster concept. Fail operation features can be provided by the cluster con-
figuration that are not possible with single engine configurations.

Long life has been demonstrated for the ITA modules. While life
verification of the fully regeneratively cooled module is required, sufficient
data have been accumulated to indicate the soundness of the approach.

Another feature of the PCE is that an existing turbopump assembly
could be utilized. Likewise, well developed turbopump technology could be
applied.

Existing AGCarb carbon-carbon cloth nozzle technology is available.
Verification of the greater than 1-hour predicted life for this nozzle is
needed.
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An important feature of the PCE is the inherent low cost associated
with utilizing off-the-shelf technology. Low cost is also inherent in the
operation of low pressure Systems which comprise the PCE. While a cost
analysis should be conducted to verify this favorable feature of the PCE,
there is little uncertainty involved in predicting Tow cost operation for such
a Space Tug system.

This study indicates that the performance of the PCE is competitive
to other Space Tug candidate engines.
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SECTION X
APPENDIXES

CONVENTIONAL ENGINE OPERATING SPECIFICATION

These Engine Operating Specifications are Shown on Tables LXIV Through
LXXV

P IEVEDRHR PASE BASSS BV PR
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TABLE LXIV - PLUG CLUSTER ENGINE OPERATING SPECIFICATION
EXPANDER CYCLE: REGEN-MODULE

MODEL IT PERFORMANCE

PC = 20.4
PARAMETER ST UNITS ALTERNATE UNITS
ENGINE
Vacuum Thrust 68.72 kN 15,451 1bf
Chamber Pressure 20.41 atm 300 psia
Vacuum Specific Impulse 443.8
Mixture Ratio (O/F) 5.44 (5.50 TCA)
Total Flow Rate 15.82 kg/s 34.88 1bm/s (34.82 TCA)
Oxidizer Flow Rate 13.36 kg/s 29.46 1bm/s
Fuel Fiow Rate 2.46 kg/s 5.42 1bm/s
Engine Area Ratio (Ag/AT) 458
Module Area Ratio (Ae/At) 40
Number of Modules 10
Module Gap (&/De) 2
Engine Diameter 319.8 cm 125.9 in
Plug Base Diameter 217.9 cm 85.8 in
Engine Length 85.9 cm 33.8 in
Module Chamber Diameter _ 8.59 cm 3.38 in
Module Throat Diameter 4.72 cm 1.86 in
Module Exit Diameter 29.87 cm 11.76 in
Module Chamber Length 16.51 cm 6.5 1in
Module Nozzle Length 35.46 cm 13.96 1in
Module Length 60.33 cm 23.75 1in
Coolant Jacket Flow Rate 2.46 kg/s.  5.42 1bm/s
Coolant Jacket AP 4.42 atm 65 psia
Coolant Inlet Temperature 22 K 40 R
Coolant Exit Temperature 376 K 677 R
TURBINES
Inlet Pressure 31.6 atm 464 psia
Inlet Temperature 376 K 677 R
Gas Flow Rate 1.05 kg/s 2.32 lbm/s
Specific Heat Ratio 1.40
Molecular Weight 2.02 g/mol
Shaft Horsepower 290 kW 390 hp
Percent Bypass 57
MAIN PUMPS
Oxidizer Pump Flow Rate 13.36 kg/s 29.46 1bm/s
Oxidizer Pump Discharge Pressure 27.2 atm 400 psia
Fuel Pump Flow Rate 2.46 kg/s 5.42 lbm/s
Fuel Pump Discharge Pressure 36.7 atm 540 psia
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TABLE LXV - PLUG CLUSTER ENGINE OPERATING SPECIFICATION
EXPANDER CYCLE: REGEN-MODULE

MODEL II PERFORMANCE

PC = 34.0
PARAWETL:: SIUNITS  ALTERNATE UNITS
ENGINE
Vacuuw Thrust 68.77 15,460 1bf
Chamber Pressure . 34.02 atm 500 psia
Vacusm Specific Imhulse 447.3 s ,
Mixture Ratio (O/F) 5.44 (5.50 TCA)
Tetal Flow Rate 15.68 kg/s 34.56 1bm/s (34.50 TCA)
Oxidizer Flow Rate 13.24 kg/s 29.19 1bm/s
Fuel Flow Rate 2.44 kg/s 5.37 1bm/s
Engine Area Ratio (Ac/AT) 458
Medule Avea Ratio {(Aa/Ay) 40
Nwiber of Modules 10
Module Gop (&/Da) 2
Engine Diameter 247.4 cm 97.4 1in
Plug Base Diameler 168.1 cm 66.2 in
Engine longth 106.2 cm 41.8 in
‘oauic Chamber Dianmcicr 6.63 cm 2.61 in
Fedute Throat Dianter 3.66 cm 1.44 in
Module Exit Diameter 23.11 ¢m 9.10 in
Mocule Chawber lengih 16.51 cm 6.5 in
Module Nozzle Loenach 27.41 cm 10.79 in
Module Length 52.27 cm 20.58 1in
Coclant Jacket ilow Rate 2.44 kg/s 5.37 1bm/s
Cnolant Jacket AP 10.3 atm 152 psia
Coolant Tndct Tempore bae 23 K 42 R
Conlant Lxtt Temperaios | 269 K 485 R
TURBTHFS
Inlet Pressure 55.3 atm 812 psia
Inlet Teiwperature 269 K 485 R
Gas Flow Ratg 2.24 Kg/s 4.94 1bm/s
Specific Heat Ratio 1.40
Melecular VMeicoht 2.02 g/mol
Shafi Horsepower 520 kW 6397 hp
Percent Bypass 8
MATH_PUPS o .
Oxidizer Puap Foow Rote 13.24 kg/s 29.19 1bm/s
Oxidizer Purp Dischaigs Pressure 43.5 atm 640 psia
Fuzl Pump Flow Rate 2.44 kg/s 5.37 1bm/s
Fuel Pump Discharge Pressure 66.8 atm 982 psia
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TABLE LXVI - PLUG CLUSTER ENGINE OPERATING SPECIFICATION

GAS GENERATOR CYCLE:
MODEL 11 PERFORMANCE

P
o

PARAMETER

ENGINE

Vacuum Thrust

Chamber Pressure

Vacuum Specific Impulse
Mjxture Ratio (O/F)

Total Flow Rate

Oxidizer Flow Rate

Fuel Flow Rate

Engine Area Ratio (Ap/AT)
Module Area Ratio (Ag/At)
Number of Modules

Module Gap (8/Dg)

Engine Diameter

Plug Base Diameter
Engine Length

Module Chamber Diameter
Module Throat Diameter
Module Exit Diameter
Module Chamber Length
Module Nozzle Length
Module Length

Coolant Jacket Flow Rate
Coolant Jacket AP
Coolant Inlet Temperature
Coolant Exit Temperature

TURBINES

Inlet Pressure
Inlet Temperature
Gas Flow Rate
Specific Heat Ratio
Molecular Weight
Shaft Horsepower
Percent Bypass

MAIN PUMPS
Oxidizer Pump Flow Rate

= 20.4

REGEN-MODULE

Oxidizer Pump Discharge Pressure 27.

Fuel Pump Flow Rate

Fuel Pump Discharge Pressure

GAS GENERATOR

Chamber Pressure
Combustion Temperature
Mixture Ratio (0/F)
Total Flow Rate
Oxidizer Flow Rate
Fuel Flow Rate

ST UNITS ALTERNATE UNITS
69.27 kN 15,573 1bf
20.41 atm 300 psia

443.2

5.33

15.97 kg/s 35.20 1bm/s
13.44 kg/s 29.64 1bm/s
2.52 kag/s 5.56 1bm/s

458
40
10

2

319.8 cm 125.9 in

217.9 ¢cm 85.8 in
85.9 cm 33.8 in

8.59 cm 3.38 in
4.72 cm 1.86 in
29.87 cm 11.76 in
16.51 cm 6.5 in
35.46 cm 13.96 in
60.33 cm 23.75 1in
2.43 kag/s 5.36 1bm/s
4,42 atm 65 psia
22 K 40 R
376 K 677 R
6.53 atm 96 psia
922 K 1,660 R
0.17 kg/s 0.38 1bm/s
1.36
3.8 g/mol
189 kW 254 hp
0
13.44 kg/s 29.64 1bm/s
22 atm 400 psia
2.52 kg/s 5.56 1bm/s
27.90 atm 410 psia
6.80 atm 100 psia
922 K 1.660 R
0.9
0.17 kg/s 0.38 1bm/s
0.08 kg/s 0.18 1bm/s
0.09 kg/s 0.20 1bm/s

(
(

(
3
2
(

5.
4.
9.
5.

50 TCA)
82 TCA)
46 TCA)
36 TCA)
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TABLE LXVII - PLUG CLUSTER ENGINE OPERATING SPECIFICATION
GAS GENERATOR CYCLE: REGEN-MODULE

MODEL II PERFORMANCE

PC = 34.0
PARAMETER ST UNITS ALTERNATE UNITS
ENGINE
Yieuum Thrust 69.63 kN 15,650 psia
Chanbey Pressure 34.02 atm 500 psia
Vacuum Speciiic Tmlse 446.4
Mixtere Ratio (0/F) 5.25 (5.50 TCA)
Total Flow Rate 15.91 kg/s 35.07 Tbm/s  (34.50 TCA)
Oxidizer Viow Rate 13.36 kg/s 29.46 1bm/s  (29.19 TCA)
Fuel Flow Kate 2.54 kg/s 5.61 1bm/s (5.31 TCA)
Engine Arca Ra*io (Ag/My) 458
Module Area Ratio {As/Aq) : 40
Nurber of HModulces 10
Module Gap (8/Dq) 2
[rginc Diameter 247.4 cm 97.4 in
Piug Base Diameier 168.1 cm 66.2 in
Erngine Longth 106.2 cm 41.8 in
Medule Chamber Diamet:r 6.63 cm 2.61 in
¥odule Throat Diametev 3.66 cm 1.44 in
Module it Diamalor 23.11 cm 9.10 in
Modute Chanber Lesgth 16.51 6.5 in
Fodule Nozzle Lengeh 27.41 ¢cm 10.79 in
Mndule Lendth 52.27 cm 20.58 in
Coolent Jackel I'ow Foic 2.41 kg/s 5.31 1bm/s
Coriant Jdacket AP 10.3 atm 152 psia
Coolant Intei Temporature 23 K 42 R
Coglant Exit Tewpnature 269 K 485 R
TURGINES
Intet Prozsure 6.46 atm 95 psia
Intet Temperatucn 922 K 1,660 K
Gas Fiow Rete 0.26 kg/s 0.57 1bm/s
Specific Heat Ratio 1.36
Meiecular Yeighs 3.8 g/mol
Shaft Horsepowar 316 kW 424 hp :
Percent Bypass 0 ?%‘..
NALN_PUIPS | N S
Gxidizer Pemy Flov Rate 13.36 kg/s 29.46 1bm/s ‘xiﬁaazgé
Oxidizer Pump Disohorae Precsure  43.55 atm 640 psia
Fued P Flow Rate 2.54 kg/s 5.61 1bm/s
Fuel Pump Discharge Pressuce 49 .47 atm 727 psia

6AS GERLRATOR

Chamber Pressure

Combustion Temperattyre 92
Mixture Ratio {0/7)

TJotal Flow Rate

Oxidizer rFlow Rata

Fuel Flow Rate

.80 atm 100 psia
K 1,660 R

kg/s 0.57 1bm/s
.12 kg/s 0.27 1bm/s
.14 kg/s 0.30 1bm/s

QOOO N |
nN
[e,]
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TABLE LXVIII - PLUG CLUSTER ENGINE OPERATING SPECIFICATION
EXPANDER CYCLE: ITA MODULE 16% FFC

MODEL II PERFORMANCE

Pc = 20.4
PARAMET LR SLUNITS  ALTERIATT UNITS
ENGINE
Vacuun Thrust 68.88 kN 15.480 1bf
Chamber Pressure 20.41 atm 300 psia .
Vacuwi Specific lmpulse 431.9 s
Mixture Ratio (0/1) 5.44 (5.50 TCA)
Total [Mow Rate 16.26 kg/s 35.85 1bm/s  (35.79 TCA)
Oxidizer Filow Rate 13.73 kg/s 30.28 1bm/s
Fuel Flow Rate 2.53 kg/s 5.57 lbm/s (5.51 TCA)
Engine Area Ratio (Ag/AT) 458
Lodule Area Ratio (Au/f+) 40
Nunber of Modules 10
Module Gap (5/Dg) 2
fngine Diameter 319.8 cm 125.9 in
Plug Base Diameter 217.9 cm 85.8 in
fngine Length 85.9 cm 33.8 in
rodule Chember Diameter 8.59 cm 3.38 in
Podule Throat Niarcior 4.72 cm 1.86 in
Hodute Lxit Diamoter 29.87 cm 11.76 in
Module Chanseyr Langin 16.51 cm 6.5 in
Module MNozzle Length 35.46 cm 13.95 in
Moduie Length 60.33 cm 23.75 in
Coolant Jackes Flow ate 2.53 kg/s 5.57 1bm/s
Conlant daukot AP 4.08 atm = 60 psia
Coojant Iniat YTempivaiuvre 22 K 40 R
Conlaont txit Tarporature 104 K 188 R
TUREIRES
Inlel Pressure 39.74 atm 584 psia
Inlet Tesmerature . 104 K 188 R
Gas Flow Rete , 2.53 kg/s 5.57 1bm/s
Spacific Heat Ratic 1.40
Molecular HWeioht 2.02 g/mol
Shaft Horsepower 353 kW 474 hp
Peycent Bypass 0
MAIH PUPS
Oxidizer Pump Flow Ratle 13.73 kg/s 30.28 1bm/s
Oxidizer Pump Bischarge Pressive 27.22 atm 400 psia
Fuel Punp Flow Raio ) 2.53 kg/s 5.57 1bm/s
Fuel Pumn Discharus Precsure 44 64 atm 656 psia
ORIGINA
268 OF POo;';; SSGE Is
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TABLE LXIX - PLUG CLUSTER ENGINE OPERATING SPECIFICATION
GAS GENERATOR CYCLE:

PARAMETER
ENGINE

Vecuum Thrust

Chamber Prossure
Vacuum Specivic Tmgutee
Mixture Ratio {Q/F)
Totud Flow Rete
Oxidizar low Rate

Furi Flow Rate

Frigine Area Ratio (Ap/hy)
Hodule Prea Ratio (N-/rq)
Ruiber oi. Modules

Module Cap (4/Dg)

Engine Uiamcter

Pluy Base hianmeter
Ingine lLength

Module Chambeir Diam:ter
Module Threat Diamoter
toduie Exit Diameler
Module Chanber Lenatn
Mocule Nozzle Lenglih
Medule length

Coolant Jackel Finw Rate
Coolunt Jacket Al

Coclant Inlet Temperature
Ceolant Fxat Temperoature

TULRNFS

inlel Prescure
Inlot Tempoeretyre
CGas Flow A.te
Specific licat Patio
Motecutar Helight
Saait Hovsepower
Percent Bypass

MATN PLIPS

Oxidizor Duwap Fligw Do

T

Oxidicor Pump Uischorge Prossure

Fuel Punp Flow Rate

p

Fual Pump Discharg: Pisssure

GAS GFHERATOR

Chanber Presanre
Combustion Temperature
Mixture Ketico (G/17)
Total Flow Paie
Oxidizer Fiow Pate
Fued Flow

P de
[RYeEe]

C

ITA MODULE 16% FFC
MODEL IT PERFORMANCE

= 20.4
ST UNITS ALTERNATE UNITS
69.38 kN 15,596 1bf
20.41 atm 300 psia
431.4 :
5.34
16.40 kg/s 36.15 1bm/s
- 13.81 kg/s 30.45 1bm/s
2.59 kg/s 5.70 1bm/s
458
40
10
2
319.8 cm 125.9 1in
217.9 cm 85.8 in
85.9 cm 33.8 in
8.59 cm 3.38 in
4.72 cm 1.86 in
29.87 cm 11.76 in
16.51 cm 6.50 in
35.46 cm 13.95 in
60.33 cm 23.75 in
2.50 kg/s 5.51 1bm/s
4.08 atm 60 psia
22 K 40 R
104 K 188 R
6.46 atm 95 psia
922 K 1,660 R
0.16 kg/s 0.36 1bm/s
1.36
3.8 g/mol
189 kW 254 hp
0
13.81 kg/s 30.45 1bm/s
27.22 atm 400 psia
2.59 kg/s 5.70 1bm/s
27.56 atm 405 psia
6.80 atm 100 psia
922 K 1,660 R
0.9
0.16 kg/s 0.36 1bm/s
0.08 kg/s 0.17 1bm/s
0.09 kg/s 0.19 1bm/s

(5.50 TCA)
35.79 TCA)
30.28 TCA)
(5.51 TCA)
TR PR
TS R Sy
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TABLE LXX - PLUG CLUSTER ENGINE OPERATING SPECIFICATION
GAS GENERATOR CYCLE: ITA MODULE 16% FFC

MODEL IT PERFORMANCE

PC = 34.0
PARAMCTER SI_UNTTS  ALTLRNATE UNITS
ENGINL
Vacuum Thru:t 69.66 kN 15,660 1bf
Chamber Pressure 34.02 atm 500 psia
Vacuum Specific Impulse 434.6
Mixture Ratio (C/F) 5.26
Total Flow Rate 16.34 kg/s 36.03 1bm/s
Oxidizer Flow Rate 13.73 kg/s 30.27 Tbm/s
Fuel Flow Rale 2.61 kg/s 5.76 1bm/s
Engine Arca Ratio (Ag/AT) 458
Medule Arca Ratio (Ag/hy) 40
Nunber of odules 10
Module Gap (¢/0n) 2
Engine Diameier 247.4 cm 97.4 in
P1ug Base Diancter 168.1 cm 66.2 in
Engine Length 106.2 cm 41.8 in
Mocdule Chanber Uiameter 6.63 cm 2.61 in
Module Threoat Diameter 3.66 cm 1.44 1in
Module Exit Diameter 23.11 cm 9.10 in
Module Chambar Lenqgth 16.51 cm 6.5 in
Module Neozzl: Lennoth 27.41 cm 10.79 in
fiodule Length 52.27 cm 20.58 in
Coclant Jacket Flmw Reto 2.48 kg/s 5.46 Tbm/s
Coolaent Jdackat /P 9.53 atm 140 psia
Coolant Intet Tempoerature 23 K 42 R
Coolant Exit Temp2ratura 97 K 174 R
TURBIKEL
InTet Pressure 6.46 atm 95 psia
Titet Tempervaiure 922 K 1,660 R
Gas Flow Raie 0.26 kg/s 0.57 1bm/s
Specific Heit stiu 1.36
Moiecular Wreignt 3.8 g/mol
Shaft Horsencwer 316 kW - 424 hp
Percent Bypass 0]

RAIN FUMPS
Oxidizcr Pune Flow Rata 13.73 kg/s  30.27 lbm/s
Oxidizer Puup Discharge Pressure 43.55 atm 640 psia
Fuel Pump Fiow Rate 2.61 kg/s 5.76 1bm/s
Fuel Pumn Dischairge Pressure 48.65 atm 715 psia

GMS GENERATOR

Chanber Pressure 6.80 atm 100 psia
Combustion Teuiperature 922 X 1,660 R
Mixture Ratic (Q/F) 0.9

Total Flow Rate 0.26 kg/s 0.57 1bm/s
Oxidizer Fluw Rato 0.12 kg/s 0.27 1bm/s
Fuel Flow Rele 0.14 kg/s 0.30 1bm/s

[ .



TABLE LXXI - PLUG CLUSTER ENGINE OPERATING SPECIFICATION

EXPANDER CYCLE:

MODEL 1T PERFORMANCE

PC = 20.4

PARAMETER
ENGINE

Vacuum Thrust

Chamber Pressure

Vacuum Specific Impulse
Mixture Ratio (0/F)
Total Flow Rate

Oxidizer Flow Rate

Fuel Flow Rate

Engine Area Ratio (AE/ATg
Module Area Ratio (Ae/At
Number of Modules

Module Gap (S/De)

Engine Diameter

Plug Base Diameter
Engine Length

Module Chamber Diameter
Module Throat Diameter
Module Exit Diameter
Module Chamber Length
Module Nozzle Length
Module Length

Coolant Jacket Flow Rate
Coolant Jacket AP
CooTant Inlet Temperature
Coolant Exit Temperature

TURBINES

Inlet Pressure
InTet Temperature
Gas Flow Rate
Specific Heat Ratio
MoTecular Weight
Shaft Horsepower
Percent Bypass

MAIN PUMPS

Oxidizer Pump Flow Rate

Oxidizer Pump Discharge Pressure
Fuel Pump Flow Rate

Fuel Pump Discharge Pressure

ST _UNITS

68.72 kN
20.41 atm
443.8
5.44
15.82 kg/s
13.36 kg/s
2.46 kg/s
458
40
10
2
319.8 cm
217.9 ¢cm
85.9 cm
8.59 cm
4.72 cm
29.87 cm
16.51 cm
35.46 cm
60.33 cm
2.46 kg/s
2.04 atm

32.7 atm
246 K
1.38 kg/s
1.40
2.02 a/mol
290 kW
44

13.36 kg/s
27.2 atm
2.46 kg/s
36.7 atm

REGEN-MODULE /UNCOOLED PLUG

ALTERNATE UNITS

15,451 1bf
300 psia

34.88 1bm/s
29.46 1bm/s
5.42 1bm/s

125.9 in
85.8 1in
33.8 in

3.38 in
1.86 in
11.76 in
6.5 in

13.96 in
23.75 in
5.42 1bm/s
30 psia

442 R

480 psia
442 R
3.76 1bm/s

390 hp

29.46 1bm/s
400 psia

5.42 1bm/s
540 psia
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TABLE LXXIT - PLUG CLUSTER ENGINE OPERATING SPECIFICATION
EXPANDER CYCLE: REGEN-MODULE/UNCOOLED PLUG

MODEL I1 PERFORMANCE

P. = 34.0

PARAMETER : ST UNITS ALTERNATE UNITS

ENGINE
Vacuum Thrust 68.77 kN 15,460 1bf
Chamber Pressure 34.02 atm 500 psia
Vacuum Specific Impulse 447.3
Mixture Ratio (0/F) 5.44 (5.50 TCA)
Total Flow Rate B 15.68 kg/s 34.56 1bm/s (34.50 TCA)
Oxidizer Flow Rate 13.24 kg/s 29.19 1bm/s
Fuel Flow Rate 2.44 kg/s 5.37 1bm/s
Engine Area Ratio (Ag/AT) 458
Module Area Ratio (Ae/At) 40
Number of Modules 10
Module Gap (&/De) 2
Engine Diameter 247 .4 cm 97.4 in
PTug Base Diameter 168.1 cm 66.2 in
Engine Length 106.2 cm 41.8 in
Module Chamber Diameter 6.63 cm 2.61 in
Module Throat Diameter 3.66 cm 1.44 in
Module Exit Diameter 23.11 cm 9.10 1in
Module Chamber Length 16.51 cm 6.5 in
Module Nozzle Length 27.41 cm 10.79 in
Module Length 52.27 cm 20.58 in
Coolant Jacket Flow Rate 2.44 kqg/s 5.37 1bm/s
Coolant Jacket aP 5.58 atm . 82 psia
Coolant Inlet Temperature 23 K 42 R
Coolant Exit Temperature 218 K 392 R

TURBINES
Inlet Pressure 54.98 atm 808 psia
Inlet Temperature 218 K 392 R
Gas Flow Rate 2.23 Kg/s 4.92 tbm/s
Specific Heat Ratio 1.40
Molecular Weight 2.02 g/mol
Shaft Horsepower 506 kW 679 hp
Percent Bypass 15

MAIN PUMPS
Oxidizer Pump Flow Rate 13.24 kg/s 29.19 1bm/s
Oxidizer Pump Discharge Pressure 43.5 atm 640 psia
Fuel Pump Flow Rate 2.44 kg/s 5.37 1bm/s
Fuel Pump Discharge Pressure 64.62 atm 950 psia
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TABLE LXXIIT - PLUG CLUSTER ENGINE OPERATING SPECIFICATION
GAS GENERATOR CYCLL: REGEN-MODULE/UNCOOLED PLUG
MODEL 11 PERFORMANCE

Pc = 20.4
PARAMETER SI UNITS ALTERNATE UNITS

ENGINE
Vacuum Thrust 69.27 kN 15,573 1bf
Chamber Pressure 20.41 atm 300 psia
Vacuum Specific Tmpulse 443.7?
Mixture Ratio (0/F) 5.33 (5.50 TCA)
Total Flow Rate 15.97 kg/s 35.20 1bm/s  (34.82 TCA)
Oxidizer Flow Rate 13.44 kq/s 29.64 1bwm/s  (29.46 TCA)
Fuel Flow Rate ?2.52 kqg/s 5.56 1bm/s (5.36 TCA)
Engine Arca Ratio (Ap/Ay) 458
Module Area Ratio (A./My) an
Number of Modules 10
Module Gap (5/Dp) ?
Engine Diameter 319.8 cm 125.9 in
Plug Base Diameter 217.9 ¢m 85.8 in
Engine Length 85.9 om 3.8 in
Module Chamber Diameter 8.59 ¢m 3.38 in
Module Throat Diameter 4.72 cm 1.86 in
Module Exit Diamcter 79.87 cm 11.76 in
Module Chamber Length 16.51 cm 6.5 in
Module Nozzle Length 35.46 cm 13.96 in
Module Length 60.33 cm 23.75 in
Coolant Jacket Flow Rate 2.43 kg/s 5.36 Tbm/s
Coolant Jacket AP 2.04 atm 30 psia
Coolant Inlet Temperature 22 K 40 R
Coolant Exit Temperature 246 K 442 R

TURBINES
In1ét Pressure 6.53 atm 96 psia
Inlet Temperature 922 K 1,660 R
Gas Flow Rate 0.17 kg/s - 0.38 1bn/s
Specific lleat Ratio 1.36
Molecular Weight 3.8 g/mol
Shaft lorsepower 189 kW 254 hp
Percent Bypass 0 ’

MAIN PUMPS
Oxidizer Pump Flow Rate 13.44 kg/s 29.64 1bm/s
Oxidizer Pump Discharqge Pressure 27.27 atm 400 psia
T'uel Pump Flow Rate 2.52 kq/s 5.56 1bm/s
luel Pump Discharge Pressure 27.22 atm 400 psia

GAS GENERATOR
Chanber Pressure 6.80 atm 100 psia
Conbustion Temperature 922 K 1.660 R
Mixture Ratio (0/T) 0.9
Total I'low Rate 0.17 kg/s .38 Tbn/s
Oxidizer Flow Rate 0.08 kg/s 0.18 1bw/s
Fuel Flow Rate 0.09 kg/s 0.20 Tbn/s
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TABLE LXXIV - PLUG CLUSTER ENGINE OPERATING SPECIFICATION
GAS GENERATOR CYCLE: REGEN-MODULE/UNCOOLED PLUG

MODEL II PERFORMANCE

Pc = 34.0
PARAMETER ST UNITS ALTERNATE UNITS
ENGINE
Vacuum Thrust 69.63 kN 15,650 1bf
Chamber Pressure 34.02 atm 500 psia
Vacuum Specific Imnulse 446.4
Mixture Ratio (0/F) 5.25
Total Flow Rate 15.91 kg/s 35.07 1bm/s
Oxidizer Flow Rate 13.36 kg/s 29.46 1bm/s
Fuel Flow Rate 2.54 kg/s 5.61 1bm/s
Engine Area Ra%io (Ne/AT) 458.
Module Area Ratio (Ag/At) 40
Number of Modules - 10
Module Gap (4/Dg) 2
Engine Diameter 247.4 cm 97.4 in
Plug Base Diameter 168.1 cm 66.2 in
Engine Length ' 106.2 cm 41.8 in
Module Chanmber Uiameter 6.63 cm 2.61 in
Module Throat Diameter 3.66 ¢cm 1.44 in
todule £xit Diamater 23.11 cm 9.10 in
Modute Chamber Leagth 16.51 6.5 1n
Module Nozzle Length , 27.41 cm 10.79 in
Module Length 52.27 cm 20.58 in
Coolant Jacket Flow Rate 2.41 kg/s 5.31 1bm/s
Coolant Jacket AP 5.58 atm 82 psia
Coolant Inlet Temperature 23 K 42 R
Coolant Exit Temp2rature 218 K 392 R
TURBINES
Inlet Pressure 6.46 atm 95 psia
Inlet Temperature 922 K 1,660 K
Gas Flow Rate 0.26 kg/s 0.57 1bn/s
Specific Heat Ratio . 1.36 -
Molecular 'eight 3.8 g/mol
Shaft Horsepower 316 kW 424 hp
Percent Bypass 0
MAIN PUMPS .

Oxidizer Pump Flos Rate 13.36 kg/s 29.46 1bm/s

Oxidizer Pump Discharge Pressure 43.55 atm €40 psia
Fuel Pump Flow Rate 2.54 kg/s 5.61 lbm/s
Fuel Pump Discharge Pressuve 47.63 atm 700 psia

PRAnBRDES A

Chamber Pressurc 6.80 atm 700 psia
Combusiion Temperature 922 K 1,660 R
Mixture Ratio (0/F) 0.9

Total Flow Rate 0.26 kg/s 0.57 1bm/s
Oxidizer Flow Rate 0.12 kg/s 0.27 lbn/s
Fuel Flow Rate 0.14 kg/s 0.30 1bm/s
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