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Abstract

Recent developments of remote sensing techniques which can capture both the

structure and function of the ecosystem provide a more representative view of

the landscape. These unique Earth observations were used to help improve tra-

ditional forestry surveys by providing species-specific land cover classes for

mangrove forests in the Sundarbans East Wildlife Sanctuary. By combining

optical data from WorldView2 (WV2; 2 m pixel) and a canopy height model

derived using radar data from TanDEM-X (TDX; 12 m pixel), we identified

nine mangrove and five non-mangrove classes by following an Iterative Self-

Organizing Data Analysis Algorithm. Three dominant mangrove species

accounted for nearly 50% of the sanctuary. Heritieria fomes disproportionately

covered the largest area at 43%, overturning previous field-based estimates of

Excoecaria agallocha dominance. E. agallocha and Sonneratia apetala, covered

3% and 1.47% of the sanctuary, respectively. Four mixed species classes were

also identified with clear vegetation zonation patterns that trended toward spe-

cies homogeneity with increasing distance from shore. The overall land cover

accuracy (WV2: 89.33%; WV2-TDX: 89.89%), the Kappa Coefficient (WV2:

0.88; WV2-TDX: 0.89) and change statistics between WV2 and WV2-TDX land

cover classifications indicate that the WV2 imagery can separate mangrove

community types without structural data. The combination of the land cover

classifications and the canopy height model indicated that H. fomes were not

only the most dominant forest but also, on average, the tallest (12.3 m) among

the other eight mangrove types. Our large-scale mapping with high resolution

optical and radar platforms can capture subtle changes in mangrove vegetation

and canopy structural gradients more accurately and be used to monitor biodi-

versity changes and Aichi Biodiversity Targets and Indicators, which would

contribute to biodiversity policy updating.
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Introduction

Mangroves are the woody vegetation found in sheltered

coastal transition zones of tropical and subtropical coun-

tries (Alongi 2008). These ecosystems are now a central

concern for rehabilitation, protection, and climate change

mitigation and adaptation due to their unique ecosystem

services and anthropogenic threats they face. The liveli-

hoods of coastal communities are supported by mangrove

ecosystems and provide resources for household materials,

serve as habitats for fish and endangered wildlife, and

help to safeguard communities against cyclones and storm

surge (Kathiresan and Bingham 2001; Kathiresan and

Rajendran 2005; Alongi 2008; Thant et al. 2010; Uddin

et al. 2013). However, in recent decades, there has been

widespread deforestation or clearing of mangrove forests

globally because of agricultural expansion, urbanization,

shrimp farming and overexploitation of timber (Richards

and Friess 2016; Thomas et al. 2017). In concert with

human development, sea level rise, cyclones, and other

natural disturbances can alter floral and faunal species

compositions, vegetation structure and carbon sequestra-

tion potential (Gilman et al. 2008).

International biodiversity conservation programs such

as Aichi Biodiversity Targets 2020 (O’Connor et al. 2015)

are providing new strategies to limit and monitor changes

in critical regions. There are 20 specific targets which

were established by the Convention of Biological Diversity

that aim to halt biodiversity loss (See O’Connor et al.

(2015) for details) with a set of biodiversity indicators

that aim to quantitatively monitor the progress of those

targets (Petrou et al. 2015). Specific Aichi Biodiversity

Targets; 5 – Habitat loss, fragmentation and degradation;

11 – Protect areas; and 14 – Ecosystem services and safe-

guarded can be directly or indirectly monitored using

remote sensing techniques with the support of in situ data

(see Petrou et al. 2015). Essential Biodiversity Variables

such as ecosystem extent and fragmentation, ecosystem

composition, ecosystem function, species traits, and land

cover change are potential indicators for assessing the

progress of these Aichi Biodiversity Targets (Pereira et al.

2013; O’Connor et al. 2015; Vihervaara et al. 2017).

Therefore, the regular evaluation of mangrove species

communities is necessary for conserving mangrove forests,

informing sustainable management, and the reevaluating

regional and national policies (Giri 2016; Thomas et al.

2017).

Field-based inventory monitoring is the desired method

for assessing forested resources. However, mangrove for-

ests and their remote environment settings, complex ter-

rain, dangerous conditions and daily tidal flooding cause

economic and logistic constraints that can be difficult to

overcome (Kamal and Phinn 2011). Considering these

setbacks, remote sensing has played an important role in

augmenting field inventories, by increasing the spatial and

temporal mapping of mangrove areas (See Kamal and

Phinn 2011; Viennois et al. 2016; Shapiro et al., 2015;

Stringer et al. 2015). Over the last few decades, both mul-

tispectral and radar imagery have been used in mapping

regional and global mangrove coverage, measuring man-

grove communities and structure at the local scale, and

estimating other biophysical properties (Giri et al. 2011;

Heumann 2011; Kamal and Phinn 2011; Kuenzer et al.

2011; Lagomasino et al. 2016; Thomas et al. 2017; Bunt-

ing et al. 2018; Lee et al. 2018).

For remote sensing to be considered an asset for Aichi

biodiversity Targets and other similar programs that tra-

ditionally rely on field inventory data, it is necessary to

develop spatially explicit models that represent the vari-

ability, range, and coverage of dominant and mixed spe-

cies vegetation types. Several studies have identified

mangrove species groups using high resolution images.

Very high resolution multispectral satellite images from

WorldView, IKONOS and QuickBird have been used to

map mangrove species at various sites but with a limited

number of species (Wang et al. 2004; Neukermans et al.

2008). Imagery from the WorldView satellite series have

proven more successful to other high resolution satellite

images (e.g. IKONOS, QuickBird and SPOT5) because of

their revisit cycles, geometric accuracy and multispectral

bands (Aguilar et al. 2013; Zhu et al. 2015). Mangrove

species have been mapped with WorldView imagery using

supervised (Heenkenda et al. 2014; Wang et al. 2015;

Viennois et al. 2016) and object-based (Kamal et al. 2015;

Zhu et al. 2015) classification methods that utilize spec-

tral bands, textures and differential spectral features to

differentiate land cover types. Using land cover classifica-

tion methods that combined spectral bands, textural

information and differential spectral features (Wang et al.

2015) performed better on species discrimination than

methods that incorporated only spectral or textural infor-

mation alone (Heenkenda et al. 2014; Wang et al. 2015).

Optical imagery and biophysical spectral indices can

result in saturation effects for dense mangrove forests

and may reduce the accuracy of the overall classification

result (van Ewijk et al. 2014). Combining a canopy

height layer with high spatial resolution multispectral

bands can provide fine-scale information than can better

separate land cover types into dominant and co-domi-

nant mangrove species classes (van Ewijk et al. 2014;

Kamal et al. 2015). Although, vertical structure has been

included in vegetation species classification (van Ewijk

et al. 2014), this technique has been limited for man-

grove ecosystems at large scales because of the scarcity of

spatially explicit canopy height information. Recent

advances in the large-scale mapping of mangrove canopy
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height using interferometric synthetic aperture radar

imagery can be a potential option to help improve man-

grove species classification. Using these advanced tech-

niques, mangrove canopy height has been estimated at a

12 m spatial resolution and an RMSE of less than 2

meters for expansive sites in Mozambique, Mexico and

Bangladesh using TanDEM-X (TDX), a German Space

Agency mission comprised of two satellites flying in for-

mation (Lee and Fatoyinbo 2015; Lee et al. 2015; Lago-

masino et al. 2016).

The aforementioned studies mapping mangrove spe-

cies based on high-resolution imagery were applied in

relatively small areas of primarily restored mangroves

with a limited number of species to map. Furthermore,

many of these studies used only optical imagery and

had a limited discussion of the distribution of species

along physical gradients, a common phenomenon in

mangrove forests. Modifying the application of the high

resolution optical and radar imagery to monitor large,

undisturbed mangroves like the Sundarbans Reserved

Forest is necessary to test the improvement of vegetation

mapping and underlying ecological landscape processes.

In this study, we focused on mangrove land cover classi-

fication of dominant and co-dominant species using

WV2 images and TDX derived canopy height for the

Sundarbans East Wildlife Sanctuary (SEWS), a section of

the larger Sundarbans Reserved Forest in Bangladesh.

The objectives of this study were as follows: (1) to pro-

duce a high resolution map of species functional types

(monitoring indicators of Aichi Biodiversity Targets-

2020) and their associated vertical canopy structure

(structural biodiversity indicator) for mangroves forests

in SEWS, and (2) to combine multispectral and canopy

height data to test the improvements of classification

methods in SEWS.

Materials and Methods

Study area

The Sundarbans Reserved Forest is one of the most

diverse mangrove forests in the world (Rahman et al.

2015b; Islam et al. 2016). The total area of the Sundar-

bans Reserved Forest is 6017 km2 and mangroves occupy

about 69% of the area and the remaining 31% are cov-

ered by water (Fig. 1). The forest is home to 528 species

of vascular plants where 24 species are true mangrove

and 70 species are mangrove associates (Rahman et al.

2015b). The Sundarbans Reserved Forest also has a rich

faunal biodiversity with a total of 1135 recorded species,

including a large community of endangered species like

the Royal Bangal Tiger, the Ganges and Irrawaddy dol-

phins, and saltwater crocodiles (Aziz and Paul 2015).

The forest supports and protects the livelihoods of the

local communities. Because of the rich biodiversity, and

the high socioeconomic and ecological value, the forest

was declared a Ramsar Wetlands Site in 1992 and a

UNESCO World Heritage Site in 1997 (Singh et al.

2010; Abdullah-Al-Mamun et al. 2017; Islam et al.

2018).

The World Heritage Site in Sundarbans Reserved Forest,

is partitioned into three protected areas: Sundarbans West

Wildlife Sanctuary, Sundarbans South Wildlife Sanctuary

and the SEWS (Fig. 1). The three sanctuaries cover a total

of 139 699 ha which is about 23% of the entire Sundar-

bans Reserved Forest (Rahman et al. 2017). In this study,

we concentrated on SEWS within the old sanctuary

boundary that covered 40 768 ha as delineated by the

Bangladesh Forest Department (BFD) in 1997.

In 2010, under the financial support of United State

Agency for International Development, BFD conducted a

forest carbon inventory at 150 mangrove plots. Each plot

was comprised of five, 10 m radius subplots where one

central subplot was surrounded in the cardinal directions

by four additional subplots (Rahman et al. 2015a). Of the

150 plots, nine of them occurred within the SEWS study

region and were used in this study for calibration and

validation (Rahman et al. 2015a). In each of the subplots,

the diameter-at-breast height (DBH) of every tree

(DBH ≥ 10 cm) was measured along with the height of

three tallest trees. Saplings (DBH < 10 cm and

height ≥ 1.37 cm; 3 m radius plot), seedlings

(height < 1.37 cm; 2 m radius plot), palms (4 m radius

plot), shrubs (4 m radius plot), herbs (2 m radius plot),

and lianas were also measured (See Rahman et al. 2015a

for detail). The detailed stand structures of the study site

were given in Table 1 and Table S1.

Remote sensing data processing

For the land cover classification of mangrove species in

SEWS, we used two types of Earth observation: (1) pas-

sive sensor high resolution (2 m spatial resolution) from

WV2 and (2) active sensor for example, TDX Synthetic

Aperture Radar (SAR) images (12 m spatial resolution).

The WV2 imagery provided multispectral information

about land cover types, while the TDX imagery was used

to produce accurate canopy height models for mangrove

forests (Lee et al. 2015; Lagomasino et al. 2016). WV2

imagery was comprised of eight multispectral bands that

cover wavelengths between 430 and 1050 nm. The spec-

tral range of these eight multispectral bands are coastal

blue (400–450 nm), blue (450–510 nm), green (510–
580 nm), yellow (585–625 nm), red (630–690 nm), red

edge (705–745 nm), NIR1 (770–895 nm) and NIR2 (860–
1040 nm) (Rapinel et al. 2014). Three images from
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Figure 1. Position of field inventory plot (black polygon) and Google earth observation point (black circle) at Sundarbans East Wildlife Sanctuary

in Sundarbans Reserved Forest.

Table 1. Structural composition and mean DBH (�SE) of mangrove species at inventory plots (total 9 plots; each of which consist of five 10 m

radius circular subplots) at Sundarbans East Wildlife Sanctuary.

Species Number of tree Basal area (m2 ha�1) Relative abundance (%) Relative dominance (%) Mean DBH (cm)

Heritiera fames 1105 15.75 72.18 72.06 15.30 � 0.14

Excoecaria agallocha 374 4.14 24.43 18.93 13.65 � 0.19

Xylocarpus mekongensis 27 0.61 1.76 2.77 18.60 � 1.51

Sonneratia apetala 9 1.19 0.59 5.44 46.79 � 4.91

Amoora cucullata 8 0.08 0.52 0.35 12.9 � 60.95

Xylocarpus granatum 4 0.06 0.26 0.29 16.38 � 2.26

Unknown species 1 0.01 0.07 0.04 13.00

Avicennia officinalis 1 0.01 0.07 0.04 12.00

Cynometra ramiflora 1 0.01 0.07 0.03 10.00

E. indica 1 0.01 0.07 0.05 14.30

Total 1531 21.86 100.00 100.00 15.12 � 0.14

Stem density (tree/subplot) 34
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December 26, 2015 and one from January 15, 2016 were

acquired from Digital Globe through cad4nasa and the

NextView License Agreement (Neigh et al. 2013). Each

image was radiometrically calibrated for WorldView2

imagery in ENVI to generate a Top-of-Atmosphere reflec-

tance image (ToA). Each calibrated ToA was then passed

on to Fast Line-of-sight Atmospheric Analysis of Hyper-

cubes to account for localized atmospheric effects. After

corrections, the three images representing surface reflec-

tance were mosaicked, and several normalized band ratios

were determined from the multispectral data to provide

additional information into the classification (Equa-

tions 1–4). Band ratios can be helpful in reducing errors

associated with land type classification modeling. The

NDVI-Red Edge (NDVIre) has shown to be a good mea-

sure of biophysical plant traits and has been helpful in

discriminating mangroves from non-mangroves because

of the rapid change in reflectance within the Red-Edge

region (Ahamed et al. 2011; Heenkenda et al. 2014). The

NDVI-Green (NDVIg) has been shown to be less

impacted by atmospheric effects (Gitelson et al. 1996).

We calculated four normalized difference band ratios:

(1) Normalized Difference Vegetation Index (NDVI)

ðNIR1� REDÞ
ðNIR1þ REDÞ (1)

(2) Normalized Difference Vegetation Index (NDVIg)

ðNIR1� GREENÞ
ðNIR1þ GREENÞ (2)

(3) Normalized Difference Vegetation Index (NDVIre)

ðNIR1� REDEDGEÞ
ðNIR1þ REDEDGEÞ (3)

(4) Normalized Difference Vegetation Index (NDVIre2)

ðNIR2� REDEDGEÞ
ðNIR2þ REDEDGEÞ (4)

For this classification scheme, we combined informa-

tion about the land cover types (multispectral and band

ratios) and forest structure (TDX canopy height) to help

distinguish generalized mangrove species types. Using sin-

gle-pass TDX data, Lee and Fatoyinbo (2015) estimated

mangrove canopy height with an accuracy that was com-

parable to airborne lidar. By using a similar method to

Lee and Fatoyinbo (2015), Lee et al. (2015) estimated

large-scale mangrove canopy height across the Sundarbans

using TDX images. The estimated canopy height corre-

lated highly with the field measurement data (R2 = 0.85)

with a root mean square error (RMSE) of 0.77 m which

resulted in a 10% estimation accuracy of the mean forest

height (Lee et al. 2015). In the current study, we used this

canopy height model over our study region within the

SEWS. The 12 m pixel size image was resampled to the

same spatial resolution as the WV2 imagery (2 m). In

total, there were 13 different map layers that were used in

the land cover classification scheme; eight multispectral,

four band ratios, and one canopy height layer.

Unsupervised classification

We used an Iso Cluster Unsupervised Classification algo-

rithm in ArcMap 10.2.1 to cluster similar land cover types

based on all 13 layers (multispectral, band ratios and canopy

height) (Fig. 2). The ISODATA algorithm is a method of

iteration that makes clusters of similar groups into one by

measuring the Euclidean distance between cluster centers

(Dhodhi et al. 1999). In the classification, we set the number

of classes to 50, the minimum class size to 10 and the sample

interval to 5. The classification result returns a one band

image with a numbered set of land cover types.

We assigned a vegetation or other land cover type for

each of the 50 classes from the resultant land cover classifi-

cation. The assignment of land cover types was done manu-

ally using supplemental information from the field

inventory data, field photos, field experience and Google

Earth imagery interpretation. Once all land cover classes

were identified, similar cover types were then aggregated in

a single class. In order to remove pixels that were associated

with shadows or canopy gaps, we applied two majority fil-

ters. To remove small shadows or canopy gaps, the first

majority filter selected the highest occurrence of a land

cover type within a 3-pixel 9 3-pixel kernel. For land cover

types associated with large shadows, we applied an 11-

pixel 9 11-pixel kernel. The larger kernel was only applied

to the canopy shadow land cover class. The 11-pixel 9 11-

pixel kernel filter added the shadows or canopy gap to the

neighboring land cover class. Any additional canopy gaps

or shadows that were still identified were then assigned to

the nearest land cover class. The class assignment and filter-

ing were performed using ENVI (Version 5.2).

Accuracy assessment

We randomly generated 356 points. The dominant land

cover class covered ~45% of the SEWS. We therefore, ran-

domly generated 356 points, in accordance with multino-

mial probability theory, in order to access accuracy with a

95% confidence interval (Congalton and Green 2009). The

randomly generated reference points were confirmed by

visual interpretation of Google Earth imagery collected

during the same time period as the WorldView acquisi-

tions, field photos and expert field knowledge (Congalton

2001; Yu and Gong 2012; Rahman et al. 2015a, 2017).
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Results

Land cover types

A total of 14 land cover classes were identified within the

SEWS using WV2 and TDX imagery. Of these 14 land

types, nine were classified as trees, shrubs and palms

(65.01–65.02%) which included both mangrove and non-

mangrove vegetation (Table 2). The remaining five land

cover types were separated into Grass – Acrostichum aur-

eum and Grass-other classes, (1.17–1.18%) as well as Sand-

bar, Waterbody – Sandbar – Mudflat, and Waterbody

(33.80–33.80%; Table 2). Three of the nine tree/shrub

classes were separated into mangrove classes that were

dominated by a single species: (1) H. fomes, (2) Excoecaria.

agallocha, and (3) Sonneratia apetala. The other five tree/

shrub classes were identified as mixed species types, (4)

H. fomes – E. agallocha, Nypa fruticans – Mixed, (5)

E. agallocha – H. fomes, (6) E. agallocha – N. fruticans, (7)

Avicennia officinalis – E. agallocha, (8) Nypa fruticans –
Mixed (N. fruticans, S. caseolaris, S. apetala, Phoenix palu-

dosa, Hibiscus tiliaceous and Avicennia officinalis) and (9)

Shrubs (Table 2). The spatial distributions of these land

cover classes are shown in Fig. 3. Of the 32 930.77 ha we

mapped within the SEWS, 67.7% was classified as terrestrial

and the remaining 32.3% was classified as aquatic. The

most dominant vegetation type in terms of area was

H. fomes which covered 44.76–44.82% of the total area of

SEWS based on WV2 and WV2-TDX classification maps,

while the next three largest area classes E. agallocha –

Figure 2. Flowchart of the classification method.
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Table 2. Comparison of land cover areas between WV2 and WV2-TDX at Sundarbans East Wildlife Sanctuary.

Land cover type

WorldView 2 (El) WorldView 2 – TanDEM-X (E2)

(El � E2)/E1 (%)Area (ha) Percentage Area (ha) Percentage

Heritiera fames 14761.14 44.82 14741.15 44.76 0.00

Excoecaria agallocha 993.09 3.02 996.02 3.02 0.00

Sonneratia apetala 465.92 1.41 479.50 1.46 �0.03

H. fames – E. agallocha 2086.76 6.34 2090.71 6.35 0.00

E. agallocha – H. fames 2251.32 6.84 2251.38 6.84 0.00

E. agallocha – N. fruticans 200.26 0.61 200.63 0.61 0.00

Avicennia officinalis – E. agallocha 483.61 1.47 485.52 1.47 0.00

Nypa fruticans –Mixed* 145.84 0.44 146.25 0.44 0.00

Shrubs 19.81 0.06 20.40 0.06 �0.03

Grass – Acrostichum aureum 180.20 0.55 181.70 0.55 �0.01

Grass 203.52 0.62 205.90 0.63 �0.01

Sandbar 54.77 0.17 54.58 0.17 0.00

Waterbody – Sandbar – Mudflat 433.21 1.32 439.28 1.33 �0.01

Waterbody 10651.32 32.34 10637.73 32.30 0.00

Total 32930.76 100.00 32930.77 100.00 �0.10

Mixed* = S. apetala, S. caseolaris, A. officinalis, Hibiscus tiliaceous etc.

Figure 3. Comparison of land cover types between WorldView 2 and WorldView 2 – TanDEM-X for the Sundarbans East Wildlife Sanctuary.
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H. fomes, H. fomes – E. agallocha and E. agallocha covered,

6.84%, 6.34% and 3.02%, respectively (Table 2). We found

no significant difference in the area or distribution of the

individual land cover types between the two classification

approaches; WV2 and WV2-TDX. The total difference

between the two maps was 0.10% (Table 2; Fig. 3).

There were clearly noted vegetation community zona-

tions along the shore-perpendicular gradients. In most

cases, stands became more monospecific with increasing

distance from the shore (Fig. 4). For example, from the

canal bank to inland the presence of vegetation types was,

N. fruticans – Mixed followed by E. agallocha – N. fruti-

cans, then either followed by E. agallocha – H. fomes or

H. fomes – E. agallocha, followed by H. fomes or E. agal-

locha (Fig. 4). Several other zones were also found such

as S. apetala or E. agallocha or E. agallocha – H. fomes

followed by H. fomes or E. agallocha – H. fomes and then

followed by E. agallocha or H. fomes (Fig. 4).

From one-way analysis of variance test, we found that

mean canopy height varied significantly among the nine veg-

etation classes (P < 0.05; Fig. S1). According to Tukey Hon-

estly Significant Difference post-hoc test, the canopy height

was significantly different between vegetation classes

(P < 0.05). The canopy height of H. fomes was, on average

(12.30 � 2.93 m) and significantly taller than the other eight

vegetation classes (P < 0.05). Conversely, the Shrubs class

had the shortest canopy height (7.37 � 3.95 m; P < 0.05;

Fig. S1). The canopy height profile exhibited an increasing

trend, shorter to taller, with increasing distance from the

shoreline (Fig. S2). The plot level mean canopy height varied

from 6.58 � 0.56 m to 16.17 � 0.21 m (Table S1).

Accuracy assessment

The overall land cover classification showed a strong agree-

ment between the WV2 and WV2-TDX classification maps

and the reference points, yielding an overall accuracy and

the Kappa Coefficient of 89.33% and 0.88%, and 89.89%

and 0.89%, respectively for WV2 and WV2-TDX based

classifications (Tables S2 and S3). The specific land cover

accuracy, also revealed that there was strong agreement

between most of the land cover types of WV2 and WV2-

TDX and random reference points (Tables S2 and S3).

The Sandbar class had the highest producer’s and user’s

Figure 4. Species zonation at Sundarbans East Wildlife Sanctuary within 50 m transect: (A) from canal bank to inland side; (B) from big river

bank to inland side; (C) from big river bank to inland side.
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accuracy. The most dominant tree species H. fomes, had

similar producer’s accuracy in both WV2 and WV2-TDX-

based classification but slightly lower user’s accuracy in

WV2 than WV2-TDX (Tables S2 and S3). While E. agal-

locha showed the best user’s and producer’s accuracy in

both WV2 and WV2-TDX classification among the tree

species (Tables S2 and S3). In both WV2 and WV2-TDX

classification, S. apetala and N. fruticans – Mixed classes

had lower producer accuracy (Tables S2 and S3).

Discussion

In this study, we applied a hybrid classification schema

for separating mangrove vegetation into individual,

co-dominant, and mixed species classes by combining

high resolution optical (WV2) and radar (TDX) imagery.

The land cover classification was performed using an ISO-

DATA Algorithm and showed a strong agreement with

Google Earth visual interpretations and field inventory

data. Both land cover classifications using either spectral

data only and combining spectral data with canopy height

were able to separate mangrove from non-mangrove,

where together the terrestrial classes covered more than

two-third of the total areas of SEWS (Table 2).

There was little difference between the land cover area

and distribution between the two classifications approaches

(WV2 vs. WV2-TDX). High resolution WV2 bands along

with the four vegetation indices (used in this study), can

separate dominant mangrove species with high accuracy.

This could suggest that the spectral data alone provided

enough information to discriminate between mangrove

land cover classes or that the coarse spatial resolution of

the TDX data cannot resolve differences in vegetation at

the individual species scale within the area of study

(Table 2). A potential reason for the lack of classification

improvement may be a result of TDX canopy model spatial

resolution (12 m). As a rule-of-thumb the potential spatial

resolution of imagery needs to be two-to-five times finer

than the monitored objects (in this case tree canopy; Petrou

et al. 2015). The average number of trees per subplot

(314.59 m2) in our study was 34 which means one species

occupied about 9 m2 areas (Table 1). WV2 can capture the

individual tree canopy but TDX canopy height was aggre-

gated over multiple tree canopies. Despite the lack of

improvement to the classification, the magnitude and the

variability in the canopy structure for each of the vegetation

types was estimated over a large area.

Canopy height imagery from lidar can have a similar

spatial resolution to WV2 imagery and may have a better

potential to improve species classification at fine-scales

(Holmgren et al. 2008). However, the acquisition of air-

borne lidar can be costly for regular acquisitions. High

resolution satellite stereo-imagery from platforms like

WV2, IKONOS, or Cartosat-1 that have been applied to

other mangrove, boreal and temperate forests could be an

efficient approach for regular monitoring (Straub et al.

2013; Neigh et al. 2014; Lagomasino et al. 2016; Persson

and Perko 2016). Despite, the coarser resolution canopy

height that was estimated in the current study, it can still

be useful in biomass and carbon assessments when cou-

pled with field data (Shapiro et al. 2015; Aslan et al.

2016). Using the TDX canopy height, we identified that

when H. fomes occurred in dominate stands the canopy

was taller than when it was found in mixed stands, for

example in case of H. fomes – E. agallocha and E. agal-

locha – H. fomes classes. The reason behind this difference

may be due to the variation of site conditions between

monospecific and mixed stand (Fig. 4; Ewel et al. 1998).

Species dominance in SEWS

The dominant class in SEWS was identified as H. fomes,

which were also reported by Rahman et al. (2017). This dif-

fers from previous reports that indicate that E. agallocha was

more dominant than H. fomes in SEWS (Islam et al. 2014).

The previous inventory was based on a field assessment

using 12 transects of 200 m long with two plots

(20 m 9 50 m): one at 0–50 m (stream side) and another

at 150–200 m (inland or “forest proper”) from shore. Over

this transect distance, our results indicate similar vegetation

communities, N. fruticans – Mixed class (stream side of

canal) and E. agallocha, H. fomes or E. agallocha – H. fomes

or H. fomes – E. agallocha (forest proper). The spatial distri-

bution of species or groups of species in our study reveals

that H. fomes stands are primarily found in the inner-most

parts of almost all islands, far from most transect based

inventories (Fig. 3). Islam et al. (2014) reported that the

near shore site was the most diverse which we also found in

our study. However, their report suggested that the pro-

tected areas were dominated by E. agallocha. Our findings

suggest that ~45% of the total area in the SEWS was covered

by H. fomes while E. agallocha covered only 3% (Table 2

and Fig. 3). Thus, our current approach can overcome some

of the spatial limitations and potential biases of field plot-

based studies and more accurately represent the spatial dis-

tribution of dominant species (overall accuracy; 89.33%)

with the use of high resolution WV2 satellite imagery.

Comparison with other studies

Both the error matrix and visual interpretation reveal that

the classified vegetation type in the present matched well

with randomly sampled observation points and inventory

plots (Tables S2 and S3; Heenkenda et al. 2014). The

overall accuracy of both datasets (WV2: 89.33% and

WV2-TDX:89.89%) in our study, were similar to that of
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Zhu et al. (2015) that report an overall accuracy of 89%

in mapping mangrove species in Chinese mangrove for-

ests using WV2 images. Mapping mangrove at the species

level in Northern Territory, Australia using a supervised

classification also resulted in a high accuracy (89%)

(Heenkenda et al. 2014). Our overall accuracy was also

within the range of overall accuracy (83.78% to 94.40%)

reported by Wang et al. (2015), who combined original

bands, textural features and differential spectral features

of WorldView3 images to identify several mangrove spe-

cies. These studies covered relatively small areas of natural

or restorated sites with clear homogeneous patches and

only a limited number of species delineated. However, in

our study, we covered a large complex natural mangrove

ecosystem (SEWS 32 930.76 ha) within the Sundarbans

Reserved Forest and produced maps with representative

dominant and mixed species types.

Zonation in SEWS

The spatial distribution of species in our study suggested

that there were clear vegetation community zonation pat-

terns that occurred with increasing distance from the

shoreline. For example, from the bank of small river or

canal, we found either Nypa fruticans or mixed stand of

N. fruticans – Mixed, followed by mixed stand of E. agal-

locha – N. fruticans, or E. agallocha – H. fomes or H. fomes

– E. agallocha, which ended up with a monospecific zone

of either E. agallocha or H. fomes (Fig. 4). While the sea-

ward or large river bank forest margins transitioned from

either S. apetala or E. agallocha into monospecific stands

of either E. agallocha or H. fomes, then followed by mixed

stands of E. agallocha – H. fomes, or A. officinalis – E. agal-

locha or H. fomes – E. agallocha which ended up with

monospecific zone of H. fomes (Fig. 4). Our findings con-

trasted with the field-based study on zonation patterns in

Sundarbans Reserved Forest (Ellison et al. 2000). There

they examined 11 blocks by randomly laying out three ran-

dom 200-m transects at each block throughout the whole

Sundarbans Reserved Forest, which also included our study

site. They concluded that there were no specific vegetation

zonation patterns in the Sundarbans Reserved Forest (Elli-

son et al. 2000). The limited number of transects at two

blocks (six transects within 32 930.76 ha) in SEWS, may

not be enough for observing species zonation or the tradi-

tional sampling method of sequential quadrats may not be

in line with the natural distribution or species zoning. The

results presented here highlight that further study is needed

to combine remote sensing with representative transects

and plots in order to provide a more accurate assessment of

protected areas and will be necessary to explore the zona-

tion patterns along with other ecosystem information (Sha-

piro et al. 2015; Stringer et al. 2015).

Confusing classes

Visual interpretation of Google Earth imagery showed

that there were minor misclassifications between Water-

body – Sandbar – Mudflat, S. apetala, E. agallocha, and

Grass – Acrostichum aureum, and N. fruticans – Mixed.

These misclassifications may be a result of the compli-

cated mangrove environment, where the spectral reflec-

tance values measured by WV2 over the mangrove

vegetation can be affected by wet soils, water and atmo-

spheric vapor (Chauvaud et al. 1998; Adam et al. 2010;

Heenkenda et al. 2014). S. apetala was confused primarily

by H. fomes (12%), followed by Grass – Acrostichum aur-

eum, E. agallocha – H. fomes, N. fruticans – Mixed,

Waterbody – Sandbar – Mudflat (Tables S2 and S3).

S. apetala is a pioneer species in Sundarbans and primar-

ily found in newly colonized mudflats and along the

banks of canals and creeks, whereas H. fomes is the cli-

max successional species and was primarily located in the

more stable and interior portions of the islands. However,

in some of these newly formed areas, S. apetala was mis-

classified as H. fomes (Fig. 3). This may have been a

result from shadow effects, because of similar height

structures, or similar spectral signatures (Adam et al.

2010). In its mature state, S. apetala is taller than

H. fomes, but at earlier life stages its height could be simi-

lar to H. fomes. Because there were no distinctions

between these two classes using both WV2 and WV2-

TDX, new methods or further research is needed to

improve the separability between these two classes,

S. apetala and H. fomes. For example, methods that com-

bine both spectral and textural properties of WV images

may help to improve this classification (Wang et al.

2015).

In some cases, we were able to differentiate A. officinalis

(very large tree with wide spread canopy) from the A. offici-

nalis – E. agallocha class and N. fruiticans (usually grows

along the canal bank as large patches) from the N. fruticans

– Mixed class. However, because these species, A. officinalis

and N. fruiticans, were unique in some locations but mixed

in other locations, as confirmed by visual interpretation and

expert knowledge, we combined each of these species into

two different mixed classes, A. officinalis – E. agallocha and

N. fruticans – Mixed, respectively. In the case of N. fruticans

– Mixed, there was some confusion with E. agallocha –
H. fomes (13.04–17.39%) and E. agallocha – N. fruticans

(7.41–8.70%; Tables S2 and S3). The misclassification

between N. fruticans – Mixed and E. agallocha – H. fomes

may have been complicated because of the presence of com-

mon liana or vines over the canopy of these species. A finer

scale resolution canopy height in addition to textural prop-

erties may improve the separability of mangrove species in

future studies.
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Implication for Aichi Biodiversity Targets-
2020 progress assessment

Remote sensing-based monitoring of biodiversity indica-

tors has been recognized at global biodiversity forums like

the Convention of Biological Diversity (O’Connor et al.

2015; Petrou et al. 2015). Our study results could be used

to directly monitor some of the major indicators for

specific Aichi Biodiversity Targets-2020. The main indica-

tors for Target 5 are trends in the extent, condition and

vulnerability of ecosystems, biomes, and habitats (Petrou

et al. 2015). Using WV2, we measured 14 land cover

types of SEWS. These results would provide the informa-

tion of tracking the progress and change in key biomes

and habitats and monitoring management effectiveness

for this protected area (Petrou et al. 2015).

The mangrove species H. fomes is a major component of

the Sundarbans Reserved Forest but it is also an endangered

species according to the IUCN Red List. Aichi Biodiversity

Target 12 aims to prevent the extinction and to improve

the conservation status of threatened species (CBD, 2010).

An improvement of the conservation status means that a

species increases in population and moves into a lower

threat status (CBD, 2010). In our study, we estimated that

H. fomes covered 45% of the SEWS, a much larger area

than previously measured. Using similar mapping tech-

niques, we can not only estimate the location of endangered

plant species, like H. fomes, but can also monitor changes

in their extent. Both aspects of this monitoring will help to

better inform the status of IUCN Red List species and the

management strategies needed to improve conservation.

The canopy height maps with a spatial resolution of

12 m that we generated can be coupled with in situ data

(Rahman et al. 2015a; Aslan et al. 2016) for assessing car-

bon storage. In this way, we can also relate our findings

to the Essential Biodiversity Variables; trends in distribu-

tion, condition, and sustainable ecosystem services for

equitable human well-being (Petrou et al. 2015). These

Essential Biodiversity Variables tie back in to Aichi Biodi-

versity Target 14 – Ecosystem Services Safeguard and 15 –
Ecosystem Resilience enhanced which we show can be

monitored by WV2 and TDX imagery by following our

approach. Thus, similar remote sensing based approaches

that we demonstrated with this study can be instrumental

in the future and continual monitoring, reporting, and

verification of mangrove biodiversity indicators and fine-

scale forest cover changes.

Conclusions

In this study, we combined both high resolution optical

WV2 and TDX canopy height imagery to classify domi-

nant mangrove species and land cover types following an

ISODATA unsupervised approach. Our results showed a

strong agreement with field referenced data and photogra-

phy, visual interpretation with Google Earth, and expert

knowledge. The overall classification accuracy was 89.89–
89.33% with a kappa coefficient range of 0.89–0.88. There
was little improvement in the land cover classifications by

including the coarser scaled height layer. Despite the lack

of improvement in classification accuracy using the height

information, the variability and magnitude of canopy

structure was measured across each of the vegetation

types. The finding of H. fomes as the dominant species in

the SEWS challenged the previous conclusion that

E. agallocha was the dominant species. The canopy height

under each dominant mangrove type will ultimately be

useful in determining aboveground biomass and forest

volume. The method presented here has the potential to

be applied to the entire the Sundarbans Reserved Forest

as well as other mangrove forests. By using WV2 imagery

and spaceborne derived canopy information, we can map

dominant species types, canopy structure and other man-

grove biodiversity indicators over time which will directly

address Aichi Biodiversity Targets-2020.
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Table S2. Error matrix between WV2 derived land cover

class and Google Earth observation point.

Table S3. Error matrix between WV2-TDX derived land

cover class and Google Earth observation point.

Figure S1. TanDEM-X derived mean canopy height

(�SD) across the nine mangrove classes at Sundarbans

East Wildlife Sanctuary. The different letters indicated on

bars are significantly different (P < 0.05) as tested with

Tukey Honestly Significant Difference.

Figure S2. Mangrove canopy height map at 12-m spatial

resolution for the Sundarbans East Wildlife Sanctuary

mangrove forest.

ª 2019 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 149

M. M. Rahman et al. High Resolution Species Map in Sundarbans

https://doi.org/10.3850/s1793924009000169
https://doi.org/10.3850/s1793924009000169
https://doi.org/10.1371/journal.pone.0179302
https://doi.org/10.1016/j.ecoser.2013.07.002
https://doi.org/10.1109/jstars.2016.2553170
https://doi.org/10.1109/jstars.2016.2553170
https://doi.org/10.1016/j.gecco.2017.01.007
https://doi.org/10.1016/j.gecco.2017.01.007
https://doi.org/10.1016/j.rse.2004.04.005
https://doi.org/10.1016/j.rse.2004.04.005
https://doi.org/10.3390/rs8010024
https://doi.org/10.1080/01431161.2011.636081
https://doi.org/10.3390/rs70912192

