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Model validation is the process of determining the degree of accuracy between physical
reality and the model. The result of model validation can either be used to improve the model
through calibration or quantify the model-form uncertainty. This work focuses on providing
the model-form uncertainty through an area metric for a hypersonic cone-slice-flap variable
geometry configuration given uncertainty in both the simulation and experimental data. The
research here compares two different turbulence models for the simulations. For a variable
geometry, performing uncertainty quantification to capture the model-form uncertainty on
every configuration is computationally challenging. This work lays out a procedure that can give
an accurate representation of the model-form uncertainty using a small number of high-fidelity
runs and many low-fidelity runs on multiple configurations. Running this comparison provides
a quantifiable measurement for the accuracy of each turbulence model for this type of design.
The high-fidelity CFD solver used was VULCAN-CFD and the low-fidelity results came from
Cart3D. The experimental data came from the 20-Inch Mach 6 Tunnel located at NASA Langley
Research Center. The present work showed that the using both the Spalart and Allamaras and
Menter Shear-Stress Transport turbulence models overpredicted the drag and lift coefficient,
while underpredicting the pitching moment coefficient. The model-form uncertainty estimate
resulted in up to a 13.6% change in the total uncertainty for the drag coefficient, up to a 57.4%
change in total uncertainty for the lift coefficient, and up to a 100% change in total uncertainty
for the pitching moment coefficient.

Nomenclature

𝑎𝑖 coefficient for 𝑖th basis function
𝐶 coefficient
𝐶𝐷 drag coefficient
𝐶𝐿 lift coefficient
𝐶𝑀 pitching moment coefficient
D deterministic variables
𝑑𝐿 left area metric
𝑑𝑅 right area metric
𝐸 (𝑥) experimental CDF at 𝑥
𝐹 (𝑥) simulation CDF at 𝑥
𝑔𝐿 (𝑥) left CDF distribution
𝑔𝑅 (𝑥) right CDF distribution
ℎ Gaussian process fit model
𝐿 model length (in.)
𝑀 Mach number

𝑁𝑡 number of terms
𝑛 number of random variables
𝑝 order-of-accuracy
𝑞 order of polynomial
𝑈 uncertainty
𝑈𝑔 grid error uncertainty
𝑅𝑒 Reynolds number
𝑅𝑏 model base radius (in.)
𝑅𝑛 nose radius (in.)
SA Spalart and Allmaras turbulence model
𝑆𝑟𝑒 𝑓 model reference area (in.2)
SST Menter Shear-Stress Transport model
𝑌 arbitrary quantity of interest
𝑦+ dimensionless wall distance
𝑋 𝑓 flap leading edge location (in.)
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𝑋𝑠 slice leading edge location (in.)
𝛼 angle of attack (deg)
𝛾 ratio of specific heats
𝜅 Von Kármán’s constant
Ψ𝑖 basis function representing 𝑖th mode

𝜎, 𝑐𝑤2 SA model closure coefficients
𝜎𝑤1, 𝜎𝑤2 SST model closure coefficients
𝜃 𝑓 flap deflection angle (deg)
𝜉 standard random variable

Subscripts
𝐿 left
𝑅 right
𝑆𝐴 aligns with SA turbulence model
𝑆𝑆𝑇 aligns with SST model

Superscripts
𝐶𝑎𝑟𝑡3𝐷 aligns with Cart3D simulation
𝑓 𝑢𝑙𝑙 aligns with the final uncertainty
𝑙𝑜𝑤𝑒𝑟 lower uncertainty bound
𝑛𝑜𝑚𝑖𝑛𝑎𝑙 aligns with nominal value
𝑢𝑝𝑝𝑒𝑟 upper uncertainty bound
𝑉𝑢𝑙𝑐𝑎𝑛 aligns with VULCAN-CFD simulation

I. Introduction
Validation is the process of determining the degree to which a model or simulation is an accurate representation

for the real world within its intended application, whereas verification is the process determining the extent to which
an model and simulation is compliant with its requirements and specifications as detailed in it conceptual models,
mathematical model, or other constructs [1]. One approach to validation is to compare verified numerical solutions with
experimental data for which uncertainty is estimated in both the computational model and experimental data. Including
uncertainty in both experimental data and simulation provides a statistical-based measurement of the model-form
uncertainty. For a variable geometry configuration, performing uncertainty quantification on the simulation of every
geometric arrangement and directly computing the disagreement with the experimental measurements would be
particularly challenging due to the considerable number of computational resources needed for such a study.

The goal of the current work is to present a validation procedure for a variable geometry configuration, with
limited computational resources and numerous sources of uncertainty in the experimental and simulation data. The
cone-slice-flap configuration can be seen in Fig. 1. Previous research has been conducted on similar geometries. [2–5]
However, these studies do not consider multiple turbulence models, flow solvers, and uncertainty sources. Roy et
al. [2, 3] investigated a variable geometry, albeit with less geometrical parameter variation then what is considered in this
work. The proposed validation procedure includes the use of a multifidelity approach to characterize the configuration
geometric space. Additionally, a non-intrusive polynomial chaos surrogate model is used to reduce the computational
burden of forward uncertainty propagation [6].

The cone-slice-flap model was studied experimentally at the 20-Inch Mach 6 Tunnel facility located at NASA
Langley Research Center [7]. The experimental database consisted of force and moment data and stagnation pressure
data measured in a port at the nose of the model. Simulations were performed as three dimensional (3D), calorically
perfect gas flow with a state-of-the-art Reynolds Averaged Navier Stokes (RANS) computational fluid dynamic (CFD)
solver employing two turbulence models. These cases were computed with flow conditions that consisted of unit
Reynolds numbers of 2.5 million/ft and 4 million/ft. An inviscid solver is also considered to enable the multifidelity
analysis approach. Previous work done by White et al. [8], which looked at the same wind tunnel model and experiments
for a single configuration, is leveraged here. Aspects of this previous work, including grid convergence studies of the
CFD models and the experimental uncertainty quantification approach, were carried forward into the present study.

This paper is organized to first present the experimental test that was performed and uncertainty sources in the
following Section II. Section III presents the computational models, initial configuration study, and corresponding
uncertainty sources in the computational models. Section IV presents the uncertainty quantification methodology and
the validation approach when comparing the 20-Inch Mach 6 Wind Tunnel data and CFD uncertainty results. The
results and important findings are discussed in Section V. Finally, the concluding remarks are discussed in Section VI.

II. Experimental Test
An experiment was conducted in the NASA Langley 20-Inch Mach 6 Tunnel to investigate the aerodynamic

characteristics of a cone-slice-flap configuration. The stainless-steel wind tunnel model was a 7-deg half-angle
spherically blunted cone measuring 12 inches in length from the virtual sharp cone tip to the base and featured a
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sliced surface parallel to the centerline axis along with a flap mounted on the slice surface. An illustration of a model
configuration on a sting support is shown in Fig. 1, in an inverted orientation.

Fig. 1 Cone-Slice-Flap wind tunnel model (shown inverted).

The model was designed with several interchangeable parts to investigate the aerodynamic effects of nose radius
(𝑅𝑛/𝑅𝑏), slice leading edge location (𝑋𝑠/𝐿), flap leading edge location (𝑋 𝑓 /𝐿), and flap deflection angle in degrees (𝜃 𝑓 ),
with the slice and flap leading edge locations normalized by the model length, 𝐿 = 12 in., and the nose radius normalized
by the model base radius, 𝑅𝑏 = 1.4734 inches. In total, there were five flap deflection angles, five different flap leading
edge locations, four different planar slice leading edge locations, and four different nose cone radii. These configurations
were interchanged for each experimental run and tested at various wind tunnel conditions. The experimental model
consisted of 33 different combinations of these parameters. The geometric parameters for each configuration tested are
given in Table 1. An exploded view of the model parts is shown in Fig. 2. The run matrix corresponding to the cases
used in the validation work of this paper is located in Table A1 in the Appendix.

Fig. 2 Exploded view of cone-slice-flap wind tunnel model.

A minimum nose radius was specified for the model so that a small pressure orifice could be installed in the blunted
nose. This orifice was used to obtain post-normal-shock stagnation pressure measurements at zero angle of attack so
that the Mach number at the model location in the test section could be determined directly for subsequent calculations
of the flow conditions. The model was sting-mounted through the base on a six-component force balance equipped with
a water-cooling jacket to regulate the balance temperatures in the high-temperature hypersonic flow. Base pressure was
measured using two flush orifices on the model base. The model was tested over an angle of attack range from −4◦ to
+12◦ and at unit Reynolds numbers from 1.0 million/ft to 4.0 million/ft.
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Table 1 Geometrical parameters of each configuration

Configuration 𝑅𝑛/𝑅𝑏 𝑋𝑠/𝐿 𝑋 𝑓 /𝐿 𝜃 𝑓 (deg)
1 0.04 0.65 - 0
2 0.04 0.65 0.80 30
3 0.04 0.65 0.85 15
4 0.04 0.65 0.90 30
5 0.04 0.70 - 0
6 0.04 0.70 0.85 30
7 0.04 0.75 - 0
8 0.04 0.75 0.80 30
9 0.04 0.75 0.90 15
10 0.15 0.65 0.85 15
11 0.15 0.70 0.80 15
12 0.15 0.70 - 0
13 0.15 0.70 0.90 15
14 0.15 0.70 0.90 30
15 0.15 0.75 - 0
16 0.15 0.75 0.85 15
17 0.15 0.75 0.85 30
18 0.30 0.65 - 0
19 0.30 0.65 0.80 30
20 0.30 0.65 0.90 30
21 0.30 0.70 0.85 15
22 0.30 0.75 - 0
23 0.30 0.75 0.80 30
24 0.30 0.75 0.90 30
25 0.04 0.72 0.83 7
26 0.04 0.72 0.83 24
27 0.21 0.72 0.83 7
28 0.21 0.72 0.83 24
29 0.15 0.72 0.88 7
30 0.15 0.72 0.88 24
31 0.21 0.72 0.88 7
32 0.21 0.72 0.88 24
33 0.15 0.70 0.85 15

Uncertainty sources for the experimental measurements were defined in White et al. [8], which include both aleatory
and epistemic uncertainties to describe the systematic and random error in the measurements. The experimental
uncertainties consisted of calibration uncertainties, settling chamber uncertainties, model nose pressure uncertainty, and
transfer distances of the systematic error. Random error is assessed within the wind tunnel by looking at the spread in
repeated runs. For more details regarding the experimental measurement uncertainty refer to White et al. [8].

The uncertainty quantification procedure described by White et al. [8] was employed for each configuration to
capture the 95% experimental uncertainty intervals. The experimental uncertainty for configuration 33 can be seen in
Table 2. Note that the experimental uncertainty is a function of the tested conditions. This uncertainty evaluated here
was used to produce a validation metric for each configuration, shown in Section IV.C.

III. Flow Solvers
For this work, a viscous CFD solver developed at NASA Langley Research Center, Viscous Upwind Algorithm for

Complex Flow Analysis (VULCAN-CFD) [9], was used. VULCAN-CFD is a turbulent, non-equilibrium, finite-rate
chemical kinetics, Navier-Stokes flow solver for either structured, cell-centered, multi-block grids or fully unstructured
grids. The work here also leveraged the inviscid solver Cart3D [10] with adjoint-based grid refinement, which was
developed at NASA Ames Research Center. Cart3D is a scalable, multi-level, linearly-exact upwind solver that uses
domain decomposition to achieve scalability for both steady and time-dependent flows [10]. Within VULCAN-CFD,
two turbulence models were investigated: the one-equation Spalart-Allmaras (SA) model [11] and the two-equation
Menter Shear-Stress Transport (SST) model [12]. In the remainder of this section, geometry modeling assumptions and
grid convergence studies with the RANS CFD calculations are discussed, followed by a listing of uncertainty sources
considered in the modeling.
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Table 2 Configuration 33 95% probability range for the wind tunnel load

𝛼 Uncertainty Variable WT Reading 95% Uncertainty Range

−4◦
𝐶𝐷 0.1069 [0.1051,0.1092]
𝐶𝐿 -0.1118 [-0.1146,-0.1104]
𝐶𝑀 -0.0237 [-0.0252,-0.0233]

0◦
𝐶𝐷 0.0958 [0.0938,0.0977]
𝐶𝐿 0.0101 [0.0084,0.0125]
𝐶𝑀 -0.0083 [-0.0092,-0.0074]

4◦
𝐶𝐷 0.1172 [0.1153,0.1193]
𝐶𝐿 0.1379 [0.1361,0.1403]
𝐶𝑀 -0.0020 [-0.0032,-0.0013]

12◦
𝐶𝐷 0.2558 [0.2541,0.2585]
𝐶𝐿 0.4547 [0.4530,0.4581]
𝐶𝑀 0.0303 [0.0294,0.0316]

A. Geometry Modeling Assumptions
The computational models included a sting attached to the base of the cone-slice-flap geometry to account for sting

effects within the wind tunnel data. A VULCAN-CFD analysis was conducted at multiple wind tunnel representative
conditions to determine where the sting could be truncated and to minimize the computational burden of modeling the
entire sting hardware. This analysis showed a sting length of approximately 6 in. aft from the model base could be used
in CFD calculations, which resulted in less than 0.1% change in the loads. For reference, the wind tunnel model sting
length was, in total, 8.5 in. from the base of the model to the wind tunnel attachment point. Neither the wind tunnel
walls, nor the model support system were modeled [13]. Using the model geometry, tunnel geometry, and knowledge of
the freestream Mach number, isentropic and oblique shock relations predicted that no reflected shocks would impinge
on the model or sting. Additionally, the model was deemed small enough in diameter to remain outside the tunnel wall
boundary layer, based on years of previous testing. All of the CFD results presented have the same reference area of
6.8202 in.2 and reference length of 2.9468 in.

White et al. [8] preformed a grid convergence study on configuration 33, which is in the center of the geometric
space. The grid error for the viscous simulations and Cart3D at configuration 33 can be seen in Table 3. Details
regarding how the grid convergence study was performed for each solver are shown in White et al. [8] The design point
for the grid convergence study was determined such that it has the potential for the highest uncertainty. This grid error
analysis was conducted at the highest angle of attack seen in the wind tunnel, angle of attack of 12◦, and largest nominal
Reynolds number of 4.0 million/ft. These conditions were chosen because they represent a case that would require high
grid resolution and, therefore, yield the largest grid error for a fixed grid. This grid error was used for each configuration
analyzed with VULCAN-CFD. For Cart3D, the grid uncertainty was determined for each configuration using the error
computed from the adjoint solution-based grid refinement. Note that the moment uncertainty is higher due to its value
being close to zero.

Table 3 Configuration 33 grid uncertainty results

𝑈
𝑔

𝐶𝐿
𝑈

𝑔

𝐶𝐷
𝑈

𝑔

𝐶𝑀

Viscous Solvers ± 2.24% ± 0.74% ± 17.70%
Cart3D ± 0.08% ± 0.14% ± 13.2%
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B. Configuration Study
Six configurations are studied here using the high-fidelity viscous flow solver, VULCAN-CFD; the configurations

and boundary conditions are listed in Table 4. For each configuration, VULCAN-CFD used a cold wall boundary
condition of 80◦F (539.67 R) and assumed a calorically perfect gas model with a ratio of specific heats, 𝛾 =1.4. These
configurations were chosen for the high-fidelity analysis given their spread across the design space and the variety
of predicted aerodynamic flow features. To quantify the turbulence parameter uncertainty, selected angles of attack
on each configuration were chosen for a turbulence parameter uncertainty quantification (UQ) study at nominal wind
tunnel conditions; these are circled in Table 4. The low-fidelity solver, Cart3D, was run for every configuration. The
VULCAN-CFD results were also used for anchoring the drag coefficient from Cart3D. Four angles of attack, −4◦, 0◦, 4◦,
and 12◦, were used for anchoring points. Conducting the analysis at four angles of attack helps capture the trends of the
loads on the configuration space and test conditions space for anchoring with the low-fidelity flow solver. The anchoring
methodology is given in detail in Section III.C.

Table 4 Parameter variation and flow solver conditions for the anchoring and UQ analysis. The circled values
represent the cases used for the turbulence parameter UQ study

Configuration 𝑋 𝑓 /𝐿 𝑋𝑠/𝐿 𝑅𝑛/𝑅𝑏 𝜃 𝑓 M Angle of Attack Reynolds Number Total Temperature

1 - 0.65 0.04 0◦ 5.88

-4◦ 3,962,576.17/ft 872.26 R
0◦ 3,946,004.98/ft 873.44 R
4◦ 3,954,795.36/ft 873.39 R
12◦ 3,944,422.22/ft 873.90 R

8 0.80 0.75 0.04 30◦ 5.94

-4◦ 3,998,002.04/ft 872.39 R
0◦ 3,991,847.14/ft 871.60 R
4◦ 3,993,048.52/ft 871.96 R
12◦ 3,993,300.00/ft 871.16 R

10 0.85 0.65 0.15 15◦ 5.93

-4◦ 2,635,724.15/ft 861.51 R
0◦ 2,616,303.65/ft 861.58 R
4◦ 2,613,524.06/ft 862.01 R
12◦ 2,621,850.00/ft 861.14 R

13 0.90 0.70 0.15 15◦ 5.97

-4◦ 4,005,678.88/ft 865.88 R
0◦ 3,984,021.08/ft 863.41 R
4◦ 3,989,582.28/ft 865.02 R
12◦ 3,991,251.85/ft 865.80 R

19 0.80 0.65 0.30 30◦ 5.97

-4◦ 4,018,200.00/ft 865.17 R
0◦ 4,003,800.00/ft 864.78 R
4◦ 4,010,812.40/ft 864.71 R
12◦ 4,001,862.50/ft 865.56 R

22 - 0.75 0.30 0◦ 5.96

-4◦ 4,065,020.99/ft 868.14 R
0◦ 4,072,734.76/ft 862.83 R
4◦ 4,066,312.38/ft 865.12 R
12◦ 4,063,550.00/ft 864.91 R

25 0.83 0.72 0.04 7◦ 5.95

-4◦ 2,761,728.51/ft 864.70 R
0◦ 2,760,282.39/ft 866.55 R
4◦ 2,760,774.83/ft 865.68 R
12◦ 2,758,403.70/ft 867.00 R

33 0.85 0.70 0.15 15◦ 5.94

-4◦ 2,600,200.00/ft 862.04 R
0◦ 2,605,900.00/ft 861.63 R
4◦ 2,600,100.00/ft 863.59 R
12◦ 2,602,800.00/ft 864.08 R

For VULCAN-CFD, the RANS equations were solved with a second-order central differencing scheme for the
viscous terms. The inviscid flux scheme used was the Edwards low-diffusion flux-splitting scheme [14] with a third-order
upwind-based monotone upwind schemes for scalar conservation laws (MUSCL) reconstruction scheme and the van
Leer limiter. Grid wall spacing was selected such that the nominal 𝑦+ was 0.5. Near separation regions and sharp edges,
the maximum 𝑦+ was 3.8. The Courant Friedrichs Lewy (CFL) number started at 0.1 and was increased up to 50, where
it was held until no noticeable changes occurred over 5,000 iterations in the 𝐿2 norm, mass flow rate error, and loads.
Time integration was done via an incomplete lower-upper (LU) factorization scheme. The grid used for VULCAN-CFD
was the medium grid that was described by White et al. [8].
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The wind tunnel conditions for each solver in the UQ study and the wind tunnel data are in Table 4. Because wind
tunnel measurements are not obtained at the exact angle of attack of interest, the intermediate loads at a particular angle
of attack were determined by linearly interpolating the wind tunnel load readings around the angle of attack of interest.
Linear interpolation was used because the data were acquired at 20 samples/s while continually pitching the model at 1
deg/s. The combination of 20 samples/s and a pitch rate of 1 deg/s result in a data sample every 0.05 degrees; therefore,
linear interpolation should yield accurate results.

Cart3D uses a cell-centered finite-volume upwind differencing scheme with Cartesian meshes. For this work,
Cart3D adjoint-based mesh refinement was used to minimize the discretization errors. The analysis was done on a
half-body with Riemann boundary conditions, and nine adaption cycles were performed. Cart3D cases were run on
each of the 33 configurations. The loads predicted by Cart3D were corrected based on the differences with the viscous
solutions, which is described in the next section.

C. Low-Fidelity Anchoring Approach
To account for the discrepancy between the low-fidelity model (Cart3D) and high-fidelity model (VULCAN-CFD),

an anchoring approach was used on the low-fidelity predictions. The lift and moment coefficients from Cart3D lie
within the grid uncertainty error of the VULCAN-CFD data, but the drag coefficient does not for each configuration, as
shown in Fig. 3 for configuration 2. Given this, the anchoring approach is only applied to the drag coefficient to ensure
there is no double counting of uncertainty with this method.

Fig. 3 The lift, moment, and drag coefficients for VULCAN-CFD and Cart3D with grid error included in the
VULCAN-CFD for Configuration 2.

The anchoring approach used a Gaussian process model to account for the geometric configuration and Reynolds
number variations. Gaussian process models have been used heavily throughout the literature for prediction on expensive
simulations [15–18]. A Gaussian process model was built using the MATLAB fit Gaussian process function that
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applied the squared exponential function as the kernel and used the default optimizer for the hyperparameters: sigma,
kernel scale, and standardization [19]. The Gaussian process model was fit using the delta between VULCAN-CFD and
Cart3D drag coefficients, denoted by ℎ𝐶𝐷 ,𝑚 and represented in Eq. (1). The anchoring approach was conducted on both
SA and SST turbulence models.

ℎ𝐶𝐷 ,𝑚

(
𝑅𝑛

𝑅𝑏

,
𝑋𝑠

𝐿
,
𝑋 𝑓

𝐿
, 𝜃 𝑓 , 𝑅𝑒, 𝛼

)
≈ 𝐶𝑉𝑢𝑙𝑐𝑎𝑛

𝐷,𝑚 − 𝐶𝐶𝑎𝑟𝑡3𝐷
𝐷 (1)

Here, 𝑚 ∈ {SA,SST}, 𝑅𝑛

𝑅𝑏
,
𝑋𝑠

𝐿
,
𝑋 𝑓

𝐿
, and 𝜃 𝑓 represent the geometrical variables described in Table 1, and 𝐶𝑉𝑢𝑙𝑐𝑎𝑛

𝐷
,

𝐶𝐶𝑎𝑟𝑡3𝐷
𝐷

, 𝑅𝑒, and 𝛼 represent the drag coefficient for VULCAN-CFD, drag coefficient for Cart3D, Reynolds number,
and angle of attack, respectively. The geometric configurations, Reynolds number, and angles of attack used to fit the
model can be seen in Table 4. This leads to the final drag coefficient for Cart3D being represented by Eq. (2). Notice
that Eq. (2) is equal to the high-fidelity simulation when a configuration from the high-fidelity analysis is evaluated,
because the Gaussian process model built here interpolates through the data used to build the model.

𝐶𝐷,𝑚 = 𝐶𝐶𝑎𝑟𝑡3𝐷
𝐷 + ℎ𝐶𝐷 ,𝑚

(
𝑅𝑛

𝑅𝑏

,
𝑋𝑠

𝐿
,
𝑋 𝑓

𝐿
, 𝜃 𝑓 , 𝑅𝑒, 𝛼

)
(2)

To verify the Gaussian process, a leave-one-out cross validation (LOOCV) method was performed on the Gaussian
process model that was built on the high-fidelity solutions [20]. LOOCV has been used throughout the literature to
verify surrogate modeling and ensure that the model is a good fit for the data [21–24]. The LOOCV method takes the
training input data set, leaves one sample out, and then builds a surrogate on the remaining data. After that a difference
is computed between the predicted value and true value at the sample point left out. The process is repeated for each
sample in the initial training data set and the mean square error is computed for each predicted versus true value. The
LOOCV errors were 3.2358×10−5 and 2.8139×10−5 for the SST and SA Gaussian process models, respectively. Both
errors are sufficiently small, thereby showing that the Gaussian process models built for the additive factor for the
Cart3D drag data were an acceptable fit.

To verify the overall anchoring approach, Eq. (2) was constructed leaving out configuration 25. This configuration
was chosen as the verification case because its geometrical configuration values lie in between the other fixed geometries.
Configuration 25 also has an off-nominal Reynolds number of 2.7 million/ft. Table 5 shows the predicted values from
Eq. (2), true VULCAN-CFD values, the differences, and the percent error between the VULCAN-CFD SA and SST
drag coefficient results and predicted result from Eq. (2) at four angles of attack. All errors in the table are less than
5% and the absolute differences are less than 0.005. This shows that the anchoring approach does an adequate job of
predicting the VULCAN-CFD drag coefficient. For the remaining results in this paper, configuration 25 is included in
the training data unless stated otherwise.

Table 5 Verification of Eq. (2) with configuration 25

𝛼 Eq. (2) SST Eq. (2) SA Vulcan SST 𝐶𝐷 Vulcan SA 𝐶𝐷 SST Diff. SA Diff. % Error SST % Error SA
-4◦ 0.1138 0.1159 0.1175 0.1197 0.0037 0.0038 3.14 % 3.14 %
0◦ 0.0967 0.1039 0.1013 0.1019 0.0046 -0.0020 4.51 % 1.96 %
4◦ 0.1083 0.1095 0.1133 0.1145 0.0050 0.0050 4.37 % 4.34 %
12◦ 0.2189 0.2183 0.2165 0.2197 -0.0025 0.0014 1.15 % 0.64 %

D. Uncertainty Sources
This work considers two types of uncertainties: epistemic and aleatory uncertainty. Epistemic uncertainty is due

to lack of knowledge or incomplete information, whereas aleatory uncertainty refers to uncertainty due to inherent
variability. The rest of this section describes all the uncertainty sources considered and their justification.

Uncertainty sources in the closure coefficients for the two turbulence models were considered in this study. The
uncertainties in the closure coefficients of both the SA and SST models have been studied throughout the literature to
assess simulation uncertainty [25–28]. Uncertainty in the closure coefficients is inherently epistemic due to the lack of
knowledge of turbulence in the flow. Key uncertainty sources identified by Erb et al. were selected for consideration in
this study [25]. These uncertainties were assessed to determine the sensitivities of the various closure coefficients in
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SA and SST models. The analysis conducted by Erb et al. was used due to its similarity to this study in geometry and
freestream Mach number.

For the SA model, the closure coefficients 𝜎, 𝜅, and 𝑐𝑤2 were varied; for more details on the model, refer to Spalart
and Allmaras [11]. For the SST model, the closure coefficients 𝜎𝑤1, 𝜎𝑤2, and 𝜅 were varied; for more detail on the
model, refer to Menter [12]. Descriptions of each closure coefficient can be seen in Table 6. The three uncertainty
parameters were chosen such that they contribute at least 90% to the overall variance in the loads from the study done by
Erb et al. [25]. Given the similarity between this work and that of Erb et al., this work assumed these closure coefficients
will have a similar contribution to the overall uncertainty. Previous work by Schafer et al. [27] gives lower and upper
bounds for each of these uncertain variables in each model, which can be seen in Table 6.

Table 6 Uncertainty sources for the CFD models

Uncertainty Variable Description Classification Lower Bound Upper Bound
𝜅 Von Kármán’s constant epistemic 0.38 0.42

SA Model
𝜎 Turbulent Prandtl number epistemic 0.6 1.0
𝑐𝑤2 Part of 𝑔 function epistemic 0.055 0.3525

SST Model
𝜎𝑤1 coefficient in 𝜔-equation epistemic 0.3 0.7
𝜎𝑤2 coefficient in 𝜔-equation epistemic 0.7 1.0

IV. Uncertainty Quantification and Validation Approach
This section outlines the uncertainty quantification and validation approach used in this study. For the current

study, both epistemic and aleatory uncertainties are considered. To accommodate mixed uncertainties, this work used a
second-order probability analysis approach which was developed by Eldred and Swiler [29]. To handle the computational
burden of this type of approach, non-intrusive polynomial chaos was used as an efficient and accurate means of
propagating the uncertainty through the computational model. The first sub-section will describe the surrogate-based
approach, and the subsequent sub-section will describe the validation methodology that was used to assess the model
discrepancy between the experimental and computational results.

A. Non-intrusive Polynomial Chaos
Polynomial chaos expansion (PCE) is a way of representing a quantity of interest as a function of random variables

using a polynomial expansion [6]. The polynomial expansion gives a spectral representation of the uncertainty that
can represent the response value as a linear combination of orthogonal stochastic or basis functions, Ψ𝑖 , and suitable
coefficients, 𝑎𝑖 , as seen in Eq. (3).

𝑌 (D, 𝜉) =
∞∑︁
𝑖=0

𝑎𝑖 (D)Ψ𝑖 (𝜉) (3)

Here, D represents the deterministic variables, and 𝜉 are 𝑛 independent, standard normal variables. The basis functions
of each random variable are represented by an orthogonal polynomial of order 𝑞 that is determined using the Askey
key [6] and is dependent on the distribution of each variable. For practical applications, Eq. (3) must be truncated to a
limited number of basis functions, 𝑁𝑡 , which leads to Eq. (4).

𝑌 (D, 𝜉) ≈
𝑁𝑡−1∑︁
𝑖=0

𝑎𝑖 (D)Ψ𝑖 (𝜉) (4)

To form a complete basis, the number of terms, 𝑁𝑡 , can be determined by Eq (5).

𝑁𝑡 =
(𝑛 + 𝑞)!
𝑛!𝑞!

(5)

9



Further details on polynomial chaos theory can be seen throughout the literature [30–33].
To obtain a PCE model of the form of Eq. (4), the coefficients 𝑎𝑖 must be computed. Here, a point-collocation

non-intrusive polynomial chaos (NIPC) method was used due to the ease of implementation with black-box functions.
This method has also been used extensively in aerospace applications for improved computational efficiency over other
spectral based approaches [34–39]. The point-collocation NIPC method starts by computing coefficients using a least
squares problem. Given 𝑁𝑡 samples of the random variable 𝜉𝑘 for 𝑘 = 1, . . . , 𝑁𝑡 , the corresponding basis functions,
Ψ𝑖 (𝜉𝑘), and the stochastic process, 𝑌 (D, 𝜉𝑘), given by Eq. (4), was used to find a suitable linear system as shown in
Eq. (6). ©«

𝑌 (D, 𝜉0)
...

𝑌 (D, 𝜉𝑁𝑡
)

ª®®®¬ =
©«
Ψ0 (𝜉0) · · · Ψ𝑁𝑡

(𝜉0)
...

. . .
...

Ψ0 (𝜉𝑁𝑡
) · · · Ψ𝑁𝑡

(𝜉𝑁𝑡
)

ª®®®¬
©«
𝑎0
...

𝑎𝑁𝑡

ª®®®¬ (6)

For this system, 𝑁𝑡 is the minimum number of required samples. If there are more samples, the system in Eq. (6)
is over-determined and can be solved as a least squares problem [40]. The number of samples required beyond the
minimum required is known as the over sampling ratio (OSR). The number of collocation points is determined by
multiplying Eq. (5) by the OSR. For the work here, an OSR of 2 was used to compute a robust solution and to prevent
overfitting as shown in Hosder et al. [38].

B. Configuration Study Uncertainty Quantification Approach
Performing uncertainty quantification on each configuration in the geometrical space would be highly computationally

expensive. To mitigate the computational burden, this work takes a conservative approach to estimate the lift, drag, and
pitching moment coefficient uncertainty for each configuration. This approach used the turbulence parameter plus grid
uncertainty found in each configuration that is circled in Table 4 at the nominal wind tunnel conditions.

The second-order expansion surrogate models were used to quantify the impact of turbulence model closure
coefficient uncertainty in the lift, drag, and moment coefficient. For a second-order surrogate model, with three uncertain
parameters in the turbulence model, 𝑁𝑡 = 30 CFD runs with each turbulence model combination were performed. The
uncertainty was then propagated through the surrogate models for each coefficient using Monte Carlo sampling with
10,000 samples, which was found to be sufficient to converge the epistemic bounds of the uncertainty.

The percent differences of the lower and upper bounds of the uncertainty (model and grid uncertainty) from the
nominal VULCAN-CFD cases for lift, drag, and moment coefficients, which are represented by Eqs. (7) and (8) for the
upper and lower uncertainty and are listed in Table 7, were used.

𝑈
𝑢𝑝𝑝𝑒𝑟

𝐶𝑖 ,𝑚
=


����𝐶𝑢𝑝𝑝𝑒𝑟,𝑉𝑢𝑙𝑐𝑎𝑛

𝑖,𝑚
(1+𝑈𝑔

𝐶𝑖
)−𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑉𝑢𝑙𝑐𝑎𝑛

𝑖

𝐶
𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑉𝑢𝑙𝑐𝑎𝑛
𝑖

���� if 𝐶𝑢𝑝𝑝𝑒𝑟

𝑖,𝑚
> 0����𝐶𝑢𝑝𝑝𝑒𝑟,𝑉𝑢𝑙𝑐𝑎𝑛

𝑖,𝑚
(1−𝑈𝑔

𝐶𝑖
)−𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑉𝑢𝑙𝑐𝑎𝑛

𝑖

𝐶
𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑉𝑢𝑙𝑐𝑎𝑛
𝑖

���� else
(7)

and

𝑈𝑙𝑜𝑤𝑒𝑟
𝐶𝑖 ,𝑚

=


����𝐶𝑙𝑜𝑤𝑒𝑟,𝑉𝑢𝑙𝑐𝑎𝑛

𝑖,𝑚
(1−𝑈𝑔

𝐶𝑖
)−𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑉𝑢𝑙𝑐𝑎𝑛

𝑖

𝐶
𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑉𝑢𝑙𝑐𝑎𝑛
𝑖

���� if 𝐶𝑙𝑜𝑤𝑒𝑟
𝑖,𝑚

> 0����𝐶𝑙𝑜𝑤𝑒𝑟,𝑉𝑢𝑙𝑐𝑎𝑛
𝑖,𝑚

(1+𝑈𝑔

𝐶𝑖
)−𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑉𝑢𝑙𝑐𝑎𝑛

𝑖

𝐶
𝑛𝑜𝑚𝑖𝑛𝑎𝑙,𝑉𝑢𝑙𝑐𝑎𝑛
𝑖

���� else
(8)

Here, 𝐶𝑙𝑜𝑤𝑒𝑟
𝑖,𝑚

is the lower 95% coefficient uncertainty bound found in the UQ study, 𝐶𝑢𝑝𝑝𝑒𝑟

𝑖,𝑚
is the upper 95% uncertainty

bound found in the UQ study, and 𝐶𝑛𝑜𝑚𝑖𝑛𝑎𝑙
𝑖

is the force coefficient calculated using VULCAN-CFD at boundary
conditions stated in Table 4 with 𝑖 ∈ {𝐿, 𝑀, 𝐷} and 𝑚 ∈ {SA,SST}. Given that the models that were run for the full
UQ study span the design space, the approach here assumed that the true combined turbulence parameter and grid
uncertainty will lie within the uncertainties listed in Table 7. Therefore, the approach conservatively assumed that the
maximum uncertainty discrepancy for each lower and upper bound on each coefficient will suffice for the lower and
upper combined grid and turbulence parameter uncertainty bounds for each configuration not used in the UQ study.
Note that the moment coefficient has a larger percentage uncertainty due to the values being close to zero, with the
magnitudes being on the order of 10−2 or smaller.

To construct a predictive model of the uncertainty bounds, a significantly larger amount of CFD analysis would
be required. Since this work focuses on developing the least computationally expensive strategy for UQ on the full
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Table 7 Combined uncertainty values calculated using Eqs. (7) and (8)

Configuration

1 8 10 13 19 22 25 33

𝑈
𝑢𝑝𝑝𝑒𝑟

𝐶𝐿 ,𝑆𝐴
2.41% 2.53% 2.70% 2.79% 2.58% 2.09% 2.47% 2.50%

𝑈
𝑢𝑝𝑝𝑒𝑟

𝐶𝐷 ,𝑆𝐴
2.09% 1.31% 2.39% 2.46% 1.19% 1.26% 3.84% 2.41%

𝑈
𝑢𝑝𝑝𝑒𝑟

𝐶𝑀 ,𝑆𝐴
17.87% 18.47% 19.30% 20.02% 17.98% 17.14% 22.63% 19.05%

𝑈𝑙𝑜𝑤𝑒𝑟
𝐶𝐿 ,𝑆𝐴

2.45% 2.45% 2.79% 2.50% 2.70% 2.80% 6.13% 2.50%

𝑈𝑙𝑜𝑤𝑒𝑟
𝐶𝐷 ,𝑆𝐴

2.27% 1.34% 2.28% 2.94% 1.27% 1.99% 2.66% 1.49%

𝑈𝑙𝑜𝑤𝑒𝑟
𝐶𝑀 ,𝑆𝐴

17.8% 18.65% 18.52% 19.79% 17.84% 18.41% 19.26% 16.78%

𝑈
𝑢𝑝𝑝𝑒𝑟

𝐶𝐿 ,𝑆𝑆𝑇
2.46% 2.60% 2.54% 2.65% 2.85% 2.82% 1.77% 2.85%

𝑈
𝑢𝑝𝑝𝑒𝑟

𝐶𝐷 ,𝑆𝑆𝑇
2.42% 1.59% 4.14% 3.20% 1.85% 2.42% 4.31% 2.88%

𝑈
𝑢𝑝𝑝𝑒𝑟

𝐶𝑀 ,𝑆𝑆𝑇
17.85% 20.28% 20.74% 20.86% 18.14% 18.10% 19.28% 21.03%

𝑈𝑙𝑜𝑤𝑒𝑟
𝐶𝐿 ,𝑆𝑆𝑇

2.60% 2.64% 2.61% 2.28% 3.02% 3.50% 3.70% 2.67%

𝑈𝑙𝑜𝑤𝑒𝑟
𝐶𝐷 ,𝑆𝑆𝑇

2.50% 1.88% 2.88% 4.24% 2.68% 3.07% 4.58% 2.73%

𝑈𝑙𝑜𝑤𝑒𝑟
𝐶𝑀 ,𝑆𝑆𝑇

17.97% 20.74% 20.89% 19.47% 18.02% 18.29% 18.08% 21.86%

configuration study, the more conservative option of using maximum uncertainty bounds is taken. The formulation of
this uncertainty approach is represented by Eq. (9) and the final combined grid and turbulence parameter uncertainty
bounds can be seen in Table 8.

𝑈
𝑢𝑝𝑝𝑒𝑟

𝐶𝑖 ,𝑚
= max

𝑗∈config

(
𝑈

𝑢𝑝𝑝𝑒𝑟

𝐶𝑖 ,𝑚 𝑗

)
and 𝑈𝑙𝑜𝑤𝑒𝑟

𝐶𝑖 ,𝑚
= max

𝑗∈config

(
𝑈𝑙𝑜𝑤𝑒𝑟
𝐶𝑖 ,𝑚 𝑗

)
(9)

Here, config = {1, 8, 10, 13, 19, 22, 33}, 𝑖 ∈ {𝐿, 𝑀, 𝐷}, and 𝑚 ∈ {SA, SST}.

Table 8 Final combined turbulence and grid parameter uncertainty

lower uncertainty upper uncertainty
𝑈𝐶𝐿 ,𝑆𝐴 6.13% 2.79%
𝑈𝐶𝐷 ,𝑆𝐴 2.94% 3.84%
𝑈𝐶𝑀 ,𝑆𝐴 19.79% 22.63%
𝑈𝐶𝐿 ,𝑆𝑆𝑇 3.70% 2.85%
𝑈𝐶𝐷 ,𝑆𝑆𝑇 4.58% 4.31%
𝑈𝐶𝑀 ,𝑆𝑆𝑇 21.86% 21.03%

C. Validation Approach
There are many ways to assess a model for validation, as stated by Oberkampf et al. [41–45]. The area metric that

was proposed by Brune et al. [39] was used for this work. The area metric was chosen for its robustness in handling
model-form uncertainty, when both epistemic and aleatory uncertainties exist, by considering discrepancy at each
probability level.
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The area metric used here extends on Oberkampf et al. [46] previous approaches to measure the disagreement between
both the upper and lower bounding cumulative distribution functions (CDFs) of the prediction and measurement.The
resultants are two metrics, 𝑑𝐿 and 𝑑𝑅, for left and right bounding CDFs, respectively, which are shown in Eq. (10).

𝑑𝐿 =

∫ ∞

−∞
𝑔𝐿 (𝑥)𝑑𝑥, 𝑑𝑅 =

∫ ∞

−∞
𝑔𝑅 (𝑥)𝑑𝑥 (10)

where,

𝑔𝐿 (𝑥) =
{

0 for 𝑥 such that 𝐹𝐿 (𝑥) ≥ 𝐸𝐿 (𝑥)
𝐸𝐿 (𝑥) − 𝐹𝐿 (𝑥) for 𝑥 such that 𝐹𝐿 (𝑥) < 𝐸𝐿 (𝑥)

and

𝑔𝑅 (𝑥) =
{

0 for 𝑥 such that 𝐹𝑅 (𝑥) ≤ 𝐸𝑅 (𝑥)
𝐹𝑅 (𝑥) − 𝐸𝑅 (𝑥) for 𝑥 such that 𝐹𝑅 (𝑥) > 𝐸𝑅 (𝑥)

Here, 𝐹𝐿 and 𝐹𝑅 are the left and right simulation CDF, respectively, and 𝐸𝐿 and 𝐸𝑅, are the left and right experimental
CDF, respectively. The resulting metrics 𝑑𝐿 and 𝑑𝑅 quantify the evidence for disagreement between both the left and
right bounding probability distributions while preserving the range of possible distributions from both the prediction
and measurements. With this metric, the amount of epistemic uncertainty in the measurements is now accounted for in
the metric values. There is still a possibility that one or both values could be zero. A zero value does not imply the
two agree, but rather suggests that there is no evidence for disagreement. The validation metric cannot represent a
reduction in epistemic uncertainty of the simulation. The model-form uncertainty is independent of the input epistemic
uncertainty and, therefore, is not reducible without calibrating the simulation inputs to the same known measurement
inputs. An example of Eq. (10) can be seen in Fig. 4. For more information regarding how this metric is defined, see
Brune et al. [47].

0 1 2 3 4 5
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𝐸𝑅

𝐹𝐿

𝐹𝑅

𝑑𝐿 = 1.5
𝑑𝑅 = 2

Fig. 4 Example of Eq. (10) where predictions have partial overlap with measurements.

V. Results
This section shows comparisons between the wind tunnel and CFD data. Model-form uncertainty was estimated using

the validation methodology described in Section IV.C for the full configuration space, which used the grid uncertainty
and turbulence parameter uncertainty from Sections III.A and IV.B, respectively. The model-form uncertainty is then
presented for each configuration and for each turbulence model.

A. Analysis and Results
The results here utilize the grid uncertainty estimate from Section III.A, the Cart3D anchoring approach defined in

Section III.C, and the combined uncertainty estimate from Section IV.B to capture the model-form uncertainty estimate
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on the entire configuration space. The final bounds used in Eq. (10) for 𝐹𝐿 and 𝐹𝑅 are given by 𝐶𝑙𝑜𝑤𝑒𝑟
𝑖,𝑚

and 𝐶
𝑢𝑝𝑝𝑒𝑟

𝑖,𝑚

seen in Eq. (11), respectively.

𝐶
𝑢𝑝𝑝𝑒𝑟

𝑖,𝑚
=



(
𝐶𝐶𝑎𝑟𝑡3𝐷
𝑖 + ℎ𝐶𝑖 ,𝑚

(
𝑅𝑛

𝑅𝑏

,
𝑋𝑠

𝐿
,
𝑋 𝑓

𝐿
, 𝜃 𝑓 , 𝑅𝑒, 𝛼)

)) (
1 +𝑈

𝑢𝑝𝑝𝑒𝑟

𝐶𝑖 ,𝑚

)
︸                                                                           ︷︷                                                                           ︸

𝐹𝑅

if 𝐶𝐶𝑎𝑟𝑡3𝐷
𝑖

> 0

(
𝐶𝐶𝑎𝑟𝑡3𝐷
𝑖 + ℎ𝐶𝑖 ,𝑚

(
𝑅𝑛

𝑅𝑏

,
𝑋𝑠

𝐿
,
𝑋 𝑓

𝐿
, 𝜃 𝑓 , 𝑅𝑒, 𝛼)

)) (
1 −𝑈

𝑢𝑝𝑝𝑒𝑟

𝐶𝑖 ,𝑚

)
︸                                                                           ︷︷                                                                           ︸

𝐹𝑅

else

𝐶𝑙𝑜𝑤𝑒𝑟
𝑖,𝑚 =



(
𝐶𝐶𝑎𝑟𝑡3𝐷
𝑖 + ℎ𝐶𝑖 ,𝑚

(
𝑅𝑛

𝑅𝑏

,
𝑋𝑠

𝐿
,
𝑋 𝑓

𝐿
, 𝜃 𝑓 , 𝑅𝑒, 𝛼

)) (
1 −𝑈𝑙𝑜𝑤𝑒𝑟

𝐶𝑖 ,𝑚

)
︸                                                                         ︷︷                                                                         ︸

𝐹𝐿

if 𝐶𝐶𝑎𝑟𝑡3𝐷
𝑖

> 0

(
𝐶𝐶𝑎𝑟𝑡3𝐷
𝑖 + ℎ𝐶𝑖 ,𝑚

(
𝑅𝑛

𝑅𝑏

,
𝑋𝑠

𝐿
,
𝑋 𝑓

𝐿
, 𝜃 𝑓 , 𝑅𝑒, 𝛼

)) (
1 +𝑈𝑙𝑜𝑤𝑒𝑟

𝐶𝑖 ,𝑚

)
︸                                                                         ︷︷                                                                         ︸

𝐹𝐿

else

(11)

Here, 𝑚 ∈ {SA, SST}, 𝑖 ∈ {𝐿, 𝐷, 𝑀}, 𝐶𝐶𝑎𝑟𝑡3𝐷
𝑖

is the coefficient from Cart3D, ℎ𝐶𝑖
is defined in Eq. (1) with

ℎ𝐶𝐿
= ℎ𝐶𝑀

= 0, 𝑈𝑙𝑜𝑤𝑒𝑟
𝐶𝑖 ,𝑚

and 𝑈
𝑢𝑝𝑝𝑒𝑟

𝐶𝑖 ,𝑚
come from Eq. (9).

After the new lift, drag, and moment coefficient bounds were computed using Eq. (11), the model-form uncertainty
was found utilizing Eq. (10). The experimental uncertainty was captured for each configuration applying the methodology
described in White et al. [8]. Figure 5 shows examples of the various model-form uncertainty estimates for selected
configurations, angles of attack, and coefficients. Note that in Fig. 5b 𝑑𝑅 = 𝑑𝐿 = 0, because the simulation results
already cover at least 95% of the data. Observing Fig. 5, when 𝑑𝑅 is nonzero then there is underprediction of the CFD
distribution compared to the quantity of interest distribution. Similarly, when 𝑑𝐿 is nonzero there is overprediction of
the CFD distribution compared to the quantity of interest distribution.

Figures 6 show histogram plots of the model-form uncertainty estimates on all the configurations and angles of
attack separated out by coefficient for the SA and SST turbulence models. The plots reveal that there is typically an
overprediction of drag and lift coefficient for both models. This overprediction of the CFD compared to the experimental
results was also seen in configuration 33 which was studied by White et al. [8]. The plots show that for the moment
coefficient there is an underprediction for most of the configurations.

When comparing the SA and SST model-form uncertainty estimates for the drag coefficient, the SA model-form
uncertainty tends to be larger. The SA turbulence model-form uncertainty being larger is due to the combined turbulence
parameter and grid uncertainty for the SST model being larger, as seen in Table 8, which gives a smaller discrepancy
between simulation and experiment. For the lift coefficient, the SST model typically shows a larger model-form
uncertainty; observing Fig. 6. This is due to the combined grid and turbulence parameter uncertainty being larger for the
SA model as shown in Table 8. For the moment coefficient, the SA and SST models show similar trends for 𝑑𝐿 and 𝑑𝑅.
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(a) 𝑑𝐿 is zero and 𝑑𝑅 is nonzero for configuration 21, angle of
attack = −4◦, and SST Model.

(b) 𝑑𝐿 and 𝑑𝑅 are both zero for configuration 12, angle of
attack = 12◦, and SA model.

(c) 𝑑𝐿 is nonzero and 𝑑𝑅 is zero for configuration 21, angle of
attack = 4◦, and SST model.

Fig. 5 SA and SST model-form uncertainty estimate examples for various configurations, angles of attack, and
coefficients.
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(a) 𝑑𝐿 for the drag coefficient (𝑑𝑆𝐴
𝐶𝐷𝐿

and 𝑑𝑆𝑆𝑇
𝐶𝐷𝐿

). (b) 𝑑𝑅 for the drag coefficient (𝑑𝑆𝐴
𝐶𝐷𝑅

and 𝑑𝑆𝑆𝑇
𝐶𝐷𝑅

).

(c) 𝑑𝐿 for the lift coefficient (𝑑𝑆𝐴
𝐶𝐿𝐿

and 𝑑𝑆𝑆𝑇
𝐶𝐿𝐿

). (d) 𝑑𝑅 for the lift coefficient (𝑑𝑆𝐴
𝐶𝐿𝑅

and 𝑑𝑆𝑆𝑇
𝐶𝐿𝑅

).

(e) 𝑑𝐿 for the moment coefficient (𝑑𝑆𝐴
𝐶𝑀𝐿

and 𝑑𝑆𝑆𝑇
𝐶𝑀𝐿

). (f) 𝑑𝑅 for the moment coefficient (𝑑𝑆𝐴
𝐶𝑀𝑅

and 𝑑𝑆𝑆𝑇
𝐶𝑀𝑅

).

Fig. 6 Histogram of 𝑑𝑅 and 𝑑𝐿 for each coefficient using the SA and SST turbulence model.
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Now that the model-form uncertainty estimates have been made, they can be added to the overall uncertainty.
Eq. (12) represents what the final added uncertainty is for lift, drag, and moment coefficient.

𝐶
𝑢𝑝𝑝𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑖 ,𝑚
= 𝐶

𝑢𝑝𝑝𝑒𝑟

𝐶𝑖 ,𝑚
+ 𝑑𝑚𝑜𝑑𝑒𝑙

𝐶𝑖𝑅

𝐶
𝑙𝑜𝑤𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑖 ,𝑚
= 𝐶𝑙𝑜𝑤𝑒𝑟

𝐶𝑖 ,𝑚
+ 𝑑𝑚𝑜𝑑𝑒𝑙

𝐶𝑖𝐿

(12)

Here, 𝑚 ∈ {SA, SST}, 𝑖 ∈ {𝐿, 𝐷, 𝑀}, 𝐶𝑢𝑝𝑝𝑒𝑟

𝐶𝑖
and 𝐶𝑙𝑜𝑤𝑒𝑟

𝐶𝑖
are given by Eq. (11), and 𝑑𝑚𝑜𝑑𝑒𝑙

𝐶𝑖𝑅
and 𝑑𝑚𝑜𝑑𝑒𝑙

𝐶𝑖𝐿
represent the

right and left model-form uncertainty estimates found in Fig. 6 for the corresponding coefficient and turbulence model.
The layout for the full methodology with how everything is combined can be seen in Fig. 7.

Given the new uncertainty estimates from Eq. (12), a comparison of the percent change from the previous uncertainty
compared to the new uncertainty is made. This comparison comes in the form of Eq. (13).

𝑈
𝑢𝑝𝑝𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑖 ,𝑚
=

𝐶
𝑢𝑝𝑝𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑖 ,𝑚
− 𝐶

𝑢𝑝𝑝𝑒𝑟

𝐶𝑖 ,𝑚

|𝐶𝑢𝑝𝑝𝑒𝑟

𝐶𝑖 ,𝑚
| + |𝐶𝑢𝑝𝑝𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑖 ,𝑚
|
· 100

𝑈
𝑙𝑜𝑤𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑖 ,𝑚
=

𝐶
𝑙𝑜𝑤𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑖 ,𝑚
− 𝐶𝑙𝑜𝑤𝑒𝑟

𝐶𝑖 ,𝑚

|𝐶𝑙𝑜𝑤𝑒𝑟
𝐶𝑖 ,𝑚

| + |𝐶𝑙𝑜𝑤𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑖 ,𝑚
|
· 100

(13)

A histogram of all the various percent changes in uncertainty given from Eq. (13) can be seen in Fig.8 for SA and SST
models. The percent change uncertainty shows how much the uncertainty bands have changed when incorporating
model-form uncertainty into the overall uncertainty estimate. If the simulation models are in good agreement with the
experimental data, then there will be a small percent change, otherwise there is a large percent change.

Observing Fig. 8, the moment coefficient tends to have the largest percent change in the uncertainty. This is due to
the moment coefficient values for the cone-slice-flap model configurations being typically closer to zero than the other
coefficients, with the majority of them being of the order of 10−2 or smaller. Due to the moment coefficient values being
close to zero, the highest percentage disagreement between experimental and simulation occurs. The lift coefficient
showed the second highest percent change, which signifies there was more disagreement between the experimental and
simulation data than the drag coefficient.
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Fig. 7 Methodology layout for combined uncertainty and simulation information.
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(a) Percent change of the upper uncertainty for the drag
coefficient (𝑈𝑙𝑜𝑤𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝐷 ,𝑆𝐴
and 𝑈

𝑙𝑜𝑤𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝐷 ,𝑆𝑆𝑇
).

(b) Percent change of the upper uncertainty for the drag
coefficient (𝑈𝑢𝑝𝑝𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝐷 ,𝑆𝐴
and 𝑈

𝑢𝑝𝑝𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝐷 ,𝑆𝑆𝑇
).

(c) Percent change of the upper uncertainty for lift coefficient
(𝑈𝑙𝑜𝑤𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝐿 ,𝑆𝐴
and 𝑈

𝑙𝑜𝑤𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝐿 ,𝑆𝑆𝑇
).

(d) Percent change of the upper uncertainty for lift coefficient
(𝑈𝑢𝑝𝑝𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝐿 ,𝑆𝐴
and 𝑈

𝑢𝑝𝑝𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝐿 ,𝑆𝑆𝑇
).

(e) Percent change of the upper uncertainty for the moment
coefficient (𝑈𝑙𝑜𝑤𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑀 ,𝑆𝐴
and 𝑈

𝑙𝑜𝑤𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑀 ,𝑆𝑆𝑇
).

(f) Percent change of the upper uncertainty for the moment
coefficient (𝑈𝑢𝑝𝑝𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑀 ,𝑆𝐴
and 𝑈

𝑢𝑝𝑝𝑒𝑟, 𝑓 𝑢𝑙𝑙

𝐶𝑀 ,𝑆𝑆𝑇
).

Fig. 8 Histogram of percent change using Eq. (13) for each coefficient of the SA and SST turbulence model on
every configuration.
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VI. Concluding Remarks
A computationally efficient methodology for defining the model-form uncertainty for lift, drag, and pitching moment

coefficients of a variable cone-slice-flap geometry was presented. For the simulation, turbulence parameter uncertainty
was defined for the SA and SST turbulence models. The model-form uncertainty was calculated using a test performed
in the 20-inch Mach 6 Tunnel at NASA Langley Research Center and CFD simulations. The analysis accounted for
systematic and random error in the experimental measurement, and turbulence parameter and grid uncertainty in the
computational fluid dynamic model.

An anchoring approach for the low-fidelity inviscid solver was applied and verified. The low-fidelity solver combined
with the anchoring approach was used to define the aerodynamic coefficients for each tested geometric configuration.
Then a methodology for classifying the turbulence parameter uncertainty was described and used in combination with
the low-fidelity approach to assess uncertainty on the SA and SST turbulence models for each geometrical configuration.
After the uncertainty assessment, a model-form uncertainty estimate using a validation area metric was calculated for
lift, drag, and pitching moment coefficient for each geometrical configuration at four angles of attack.

The results presented here showed that both turbulence models typically overpredict the drag and lift coefficient
and underpredict the pitching moment coefficient. The model-form uncertainty results revealed that each aerodynamic
coefficient had a discrepancy from the experimental data on the magnitude of 0.06 or less. The percent change in the
overall uncertainty with the model-form uncertainty added was 13.6% or less for the drag coefficient and 57.4% or less
for the lift coefficient. For the pitching moment coefficient, the model-form uncertainty percent change was the largest
due to its value typically being very close to zero, but in most cases the uncertainty percent change was less than 80%,
and ranged up to a percent change of 100%.

The methods and work showcased here can be used for future modelers to provide rationale for a particular turbulence
model for a similar hypersonic design. These methods also provide an approach to assess model-form uncertainty when
several geometrical parameters are involved and multiple sources of uncertainty. Future work would be to analyze why
some of the larger discrepancies exist by performing a high-fidelity analysis such as large eddy simulation or direct
numerical simulation.
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Table A1 Experimental run matrix used for CFD validation

Run Configuration Avg. RE Number (1/ft) Avg. Temp. (R) Avg. Mach
14 33 2600184 863.0629 5.975979
15 33 4014056 861.6114 6.001190
19 21 4017854 863.3080 6.004935
22 20 4087121 860.1499 5.992713
27 25 2760870 865.5565 5.979752
28 21 2618370 862.2260 5.971083
29 33 2609984 861.6857 5.973559
30 33 2082136 865.3221 5.952414
32 33 2068412 865.6804 5.953136
36 10 2623250 862.0067 5.966317
38 30 2099974 864.3319 5.956245
40 18 4047786 863.3194 5.989460
42 6 2611496 863.5742 5.979526
44 4 3994897 866.3972 6.006171
48 19 4011204 864.9235 6.000299
50 24 4057977 864.1663 5.994128
52 33 2593244 863.1498 5.980677
56 15 2625462 864.1682 5.971865
58 12 3996742 866.6559 5.997134
60 11 2609310 867.0585 5.975306
62 8 3997935 871.3356 5.994711
64 22 4064160 865.7501 5.986901
68 7 2592508 868.0978 5.965167
72 32 3334126 866.4547 5.978276
75 27 3495482 866.5538 5.991805
76 33 2597165 864.9561 5.985095
77 1 3954594 872.5978 6.004220
79 13 3996239 865.2612 6.004396
83 29 3822988 867.5079 5.993382
85 10 2617437 861.4600 5.975562
90 33 2564287 875.7828 5.977756
92 16 3891240 875.5039 6.009454
97 23 2571185 875.7253 5.968920
99 11 2559256 878.5598 5.971409
103 14 2594274 871.5671 5.968606
105 3 2558822 878.8524 5.967303
107 11 2561023 873.5087 5.984049
109 10 2524722 879.1732 5.988318
117 5 2547381 879.1761 5.975352
120 33 2512536 879.3820 5.991274
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