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Preface

Grain legumes have great potential in alleviating protein hunger and malnutrition 
among resource poor peoples in the developing countries. Besides, grain  legumes 
have symbiotic nitrogen fixing bacteria in root nodules, fix their own  nitrogen, 
thereby reducing, in many situations, the cost of nitrogen inputs by farmers. 
Globally, ~1.1 million grain legume accessions are preserved in various gene banks. 
These genetic resources are the reservoir of several valuable genes/alleles for the 
present and future crop improvement programmes. In view of this, an effort has been 
made to collect and analyse the scattered scientific information on these resources in 
a book form on the current status of genetic and genomic resources of grain legume 
improvement.

The book entitled “Genetic and Genomic Resources of Grain Legume 
Improvement” comprises 12 chapters contributed by the eminent legume curators/
researchers around the world. The first introductory chapter summarizes the land-
mark research on genetic and genomic resources in grain legumes. Each of the sub-
sequent chapters (2–12) mainly deals with aspects related to genetic and genomic 
resources in 11 crops, namely common bean, pea, chickpea, faba bean, cowpea, 
lentil, pigeonpea, peanut, Asian Vigna species, grass pea and horsegram. Each chap-
ter provides a comprehensive account of information on origin, distribution, diver-
sity and taxonomy; erosion of genetic diversity from the traditional areas; status of 
germplasm resources conservation; germplasm evaluation and maintenance; use of 
germplasm in crop improvement; limitations in germplasm use; germplasm enhance-
ment through wide crosses and integration of genetic and genomic resources in 
crop improvement. A complete review of the entire gamut of published work was 
not feasible in this single volume. However, the renowned contributors of individual 
chapters have tried to provide important references on significant research work pub-
lished in the leading international journals/periodicals on different aspects of genetic 
and genomic resources. The editors are extremely grateful to all our eminent authors 
for their outstanding contributions in the preparation of this book. We have also been 
quite fortunate to know them, both academically and personally, and our communi-
cation has been very cordial and friendly during the entire process of preparation of 
this manuscript. We are highly indebted to Professor K.C. Bansal, Director, National 
Bureau of Plant Genetic Resources, Pusa, New Delhi, India for providing necessary 
support and guidance in the preparation of this manuscript. The editors are highly 
indebted to Elsevier Insights for shepherding the book through the editorial pro-
cess with a complete academic approach. Thanks are also due to Ms. Megha Bakshi 
working as Project Assistant with us for her technical inputs during the course of 



xii Preface

compilation, processing and typographical work of all the chapters. Originally, the 
book has been intended for scientists, professionals and graduate students, whose 
interests centre upon genetic and genomic resources management in grain legumes. 
It is hoped that this book will serve as a reference for legume curators/breeders, pol-
icy makers, taxonomists, agronomists, molecular biologists and biotechnologists, 
teachers and students in biology and agriculture.

Editors
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1

Major grain legumes, including common bean, pea, chickpea, faba bean, cowpea, 
lentil, pigeon pea, peanut, Asian Vigna, grass pea and horsegram, occupy consider-
able area under cultivation globally and form important constituents of global diets 
for both vegetarian and nonvegetarian peoples. These grain legumes have the abil-
ity to fix nitrogen, which reduces fertilizer use in agriculture, besides their high 
protein content. Despite this significant role, global production has increased only 
marginally in the past 50 years. The slow production growth, along with increasing 
human population and improved buying capacity, has substantially reduced per cap-
ita availability of grain legumes. Further, production can be enhanced more if the 
loss caused by several biotic and abiotic stresses is minimized. To overcome these 
major constraints, there is a need to identify stable donors in genetic resources for 
discovering useful genes and alleles and designing crops resilient to climate change. 
However, excellent performance has been achieved by applying new approaches for 
germplasm characterization and evaluation like development of core sets, mini-core 
sets, reference sets and trait-specific subsets, etc. In parallel, genomic resources such 
as molecular markers including simple sequence repeats (SSRs), single nucleotide 
polymorphism (SNPs), diversity arrays technology (DArT) and transcript sequences, 
e.g. expressed sequence tags (ESTs) and short-read transcript sequences, have been 
developed for important legume crops. It is anticipated that the use of genomic 
resources and specialized germplasm such as mini-core collection and reference sets 
will facilitate identification of trait-specific germplasm, trait mapping and allele min-
ing for resistance to various biotic and abiotic stresses and also for useful agronomic 
traits. Furthermore, the advent of next-generation sequencing technologies coupled 
with advances in bioinformatics offers the possibility of undertaking large-scale 
sequencing of crop germplasm accessions, so that modern breeding approaches such 
as genomic selection and breeding by design can be realized in the coming future for 
legume genetic enhancement. Here we summarize brief details on the genetic and 
genomic resources research on important grain legumes.

http://dx.doi.org/10.1016/B978-0-12-397935-3.00001-3
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1.1 Common Bean

The common, or kidney, bean (Phaseolus vulgaris L.) is the centrepiece of the 
daily diet of more than 300 million people. It is the most important food legume, 
far ahead of other legumes. Nutritionists characterize the common bean as a nearly 
perfect food, because of its high protein content and high amounts of fibre, com-
plex carbohydrates and other dietary elements. The common bean was domesticated 
more than 7000 years ago in two centres of origin – Meso-America (Mexico and 
Central America) and the Andean region. Over the millennia, farmers grew complex 
mixtures of bean types across various production systems, resulting in a vast array 
of genetic diversity in common beans with a wide variety of colours, textures and 
sizes to meet the growing conditions and taste preferences of many different regions. 
Given current trends in population growth and bean consumption, demand for this 
crop in Latin America, sub-Saharan Africa and even in Europe and other parts of 
the world can be expected to grow in the future. International Centre for Tropical 
Agriculture (CIAT) scientists are convinced that new bean cultivars with higher 
yields, multiple disease resistance and greater tolerance to drought and low soil 
fertility will enable farmers to increase bean productivity and achieve greater yield 
stability. New production technology, together with the bean crop’s wide adaptabil-
ity, will help it remain an attractive option for small-farmer cropping systems. One 
potent source of solutions to problems in bean production is the great genetic diver-
sity available for research and development in the world Phaseolus collection main-
tained at CIAT’s Genetic Resources Unit (GRU) in trust for the Food and Agriculture 
Organization (FAO). The collection includes over 36,000 entries, of which 26,500 
are cultivated Phaseolus vulgaris, about 1300 are wild types of common bean (http://
isa.ciat.cgiar.org/urg/main.do?language=en), and the rest are distant relatives of 
the common bean. CIAT scientists have also created more manageable core collec-
tions. The core collection of domesticated common bean contains about 1400 acces-
sions, while the collection of wild common bean consists of about 100 accessions. 
In recent years bean researchers at CIAT and in national programs of Latin America 
and sub-Saharan Africa have been evaluating the core collection for a wide range 
of useful traits, such as insect and disease resistance and tolerance to low phospho-
rus. Useful materials have been identified and incorporated into breeding programs 
at CIAT and elsewhere.

While focusing mainly on dry beans, CIAT scientists are also working to improve 
the green snap beans. Demand for fresh snap beans for domestic consumption 
or export is growing in Africa, Asia and Latin America, and sales are an excellent 
source of cash income for small farmers. Much of the CIAT’s strategic research on 
dry beans, especially that dealing with diseases and pests, is readily applicable to 
snap beans. Classical breeding within the primary gene pool of common bean has 
given excellent results in the last two decades, with tangible benefits to the farming 
community. More recently, CIAT scientists have begun to integrate various biotech-
nology techniques into problem-solving research on the crop. CIAT scientists have 
succeeded in hybridizing common bean with the distantly related species Phaseolus 

http://isa.ciat.cgiar.org/urg/main.do?language=en
http://isa.ciat.cgiar.org/urg/main.do?language=en
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acutifolius, or tepary bean, which possesses genes for resistance to common bacte-
rial blight (CBB), leafhoppers and drought. The resulting breeding lines have shown 
high levels of resistance to CBB. CIAT researchers have also developed a molecular 
marker–assisted approach to improving beans for resistance to bean golden mosaic 
virus (BGMV) that has cut breeding time and effort by about 60%. The results of 
recent molecular marking and selection work are highly encouraging, demonstrating 
not only the effectiveness of the strategy by the Standing Committee on Agricultural 
Research (SCAR) for selecting BGMV-resistant beans but also its efficiency.

1.2 Pea

Pea (Pisum sativum L.) is one of the world’s oldest domesticated crops. Its area of 
origin and initial domestication lies in the Mediterranean, primarily in the Middle 
East. The range of wild representatives of P. sativum extends from Iran and 
Turkmenistan through Anterior Asia, northern Africa and southern Europe. The 
genus Pisum contains the wild species P. fulvum found in Jordan, Syria, Lebanon and 
Israel; the cultivated species P. abyssinicum from Yemen and Ethiopia, which was 
likely domesticated independently of P. sativum; and a large and loose aggregate of 
both wild (P. sativum subsp. elatius) and cultivated forms that comprise the species 
P. sativum in a broad sense.

Currently, no international organization conducts pea breeding and genetic 
resources conservation, and no single collection predominates in size and diver-
sity. Important genetic diversity collections of Pisum with over 2000 accessions are 
found in national gene banks in at least 15 countries, with many other smaller col-
lections worldwide. A high level of duplication exists between the collections, giv-
ing a misleading impression of the true level of diversity. However, the numbers of 
original pea landraces mainly from Europe, Asia, the Middle East and North Africa/
Ethiopia have not been documented. The much smaller collections of wild relatives 
of pea are less widely distributed; there is more clarity when tracing these acces-
sions to their origin. There are still important gaps in the collections, particularly of 
wild and locally adapted materials, that need to be addressed before these genetic 
resources are lost forever (Maxted, Shelagh, Ford-Lloyd, Dulloo, & Toledo, 2012). 
Many studies have been conducted on Pisum germplasm collections to investigate 
genetic and trait diversity. Several major world pea germplasm collections have been 
analysed by molecular methods and core collections were formed. The key prior-
ity is the collection and conservation of the historic landraces and varieties of each 
country in ex situ gene banks. The overall goal should be to ensure maintenance 
of variation for adaptation to the full range of agro-ecological environments, end 
uses and production systems. Wild peas have less than 3% representation in vari-
ous national collections despite their wide genetic diversity. There is an urgent need 
to fully sample this variation, since natural habitats are being lost due to increased 
human population, increased grazing pressure, conversion of marginal areas to agri-
culture and ecological threats due to future climate change. It is urgent to implement 
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a comprehensive collection of wild relatives of peas representing the habitat range 
from the Mediterranean through the Middle East and Central Asia while these 
resources are still available, since these are likely to contain genetic diversity for 
abiotic stress tolerance. Genetic diversity available in wild Pisum species has been 
poorly exploited. The most attention has been given to P. fulvum as a donor of 
bruchid resistance and source of novel powdery mildew resistance (Er3). Relatively 
few genotypes with high degree of relatedness have been used as parents in modern 
pea breeding programs, leading to a narrow genetic base of cultivated germplasm. 
There are several current efforts to make either genome-wide introgression lines or at 
least simple crosses with the intent of broadening the genetic base. Further investiga-
tions, particularly in the wild P. sativum subsp. elatius gene pool, are of great practi-
cal interest. Molecular approaches will allow breeders to avoid the linkage drag from 
wild relatives and make wide crosses more successful and practical.

1.3 Chickpea

The genus Cicer comprises one cultivated and 43 wild species. Chickpea probably 
originated from southeastern Turkey. Four centres of diversity were identified in the 
Mediterranean, Central Asia, the Near East and India, as well as a secondary cen-
tre of origin in Ethiopia. Further, chickpeas spread with human migration toward the 
west and south via the Silk Route. It is grown and consumed in large quantities from 
Southeast Asia to India and in the Middle East and Mediterranean countries. It ranks 
second in area and third in production among the pulses worldwide. Most produc-
tion and consumption of chickpea takes place in developing countries. It is a true 
diploid and predominantly self-pollinated legume, but cross-pollination by insects 
sometimes occurs. Thirty five of the chickpea wild relatives are perennials and the 
other nine (including the cultivated species) are annuals. Based on seed size and 
shape, two main kinds of chickpea are recognized: the desi type, closer to the puta-
tive progenitor (C. reticulatum), is found predominantly in India and Ethiopia and 
has small, angular, coloured seeds and a rough coat. They have a bushy growth habit 
and blue-violet flowers. The kabuli type, predominantly grown in the Mediterranean 
region, has large, beige-coloured and owl-head-shaped seeds with a smooth seed 
coat. Their plants have a more erect growth habit and white flowers. It is estimated 
that more than 80,000 accessions are conserved in more than 30 gene banks world-
wide (http://apps3.fao.org/wiews/germplasm_query.htm?i_l=EN). The gene bank at 
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India, 
is one of the largest gene banks, holding greater than 20,000 accessions of chick-
pea from about 60 countries. Other major collections (more than 12,000 accessions) 
are held at the National Bureau of Plant Genetic Resources (NBPGR), New Delhi, 
India; International Center for Agricultural Research in the Dry Areas (ICARDA) 
in Aleppo, Syria; Australian Temperate Field Crops Collection, Victoria, Australia; 
the United States Department of Agriculture (USDA); and the Seed and Plant 
Improvement Institute, Iran. Currently there is a reasonable number of wild annual 

http://apps3.fao.org/wiews/germplasm_query.htm?i_l=EN
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Cicer species, but still limited availability of perennial species. Less than 1% of the 
Cicer accessions (conserved in about 10 gene banks worldwide) represent wild spe-
cies. Priority should be given to the conservation of chickpea in primary and sec-
ondary centres of diversity. Cicer genetic resources could be much better utilized. A 
representative core collection (10% of the entire collection) and a mini-core collec-
tion (10% of the core or 1% of entire collection) are being developed at the ICRISAT 
and evaluated extensively for useful traits (Upadhyaya & Ortiz, 2001). However, 
recent advances in plant biotechnology have resulted in the development of a large 
number of molecular markers, genetic and physical maps, as well as the generation 
of expressed sequenced tags, genome sequencing and association studies showing 
marker–trait associations, which has facilitated the identification of quantitative trait 
loci (QTLs) and discovery of genes/alleles associated with resistance to several abi-
otic and biotic stresses, beside agronomic traits.

1.4 Faba Bean

Faba bean (Vicia faba L.) is a major food and feed legume, because of the high nutri-
tional value of its seeds, which are rich in protein and starch. Seeds are consumed 
dry, fresh, frozen or canned. The main faba bean producer countries are China, some 
in Europe, Ethiopia, Egypt and Australia. Geographical distribution and objectives of 
the breeding programs developed for this species therefore reflect where consump-
tion is highest. In relation to the size of the market and in comparison with soybean, 
the faba bean selection programs are few and small. The role of ex situ and on-farm 
collections is even stronger for this crop due to the absence of a natural reservoir of 
wild accessions and to the modernization of agriculture, which progressively phases 
out numerous landraces. Botanic and molecular data suggest that the wild ancestor 
of this species has not yet been discovered or has become extinct. At the world level, 
more than 38,000 accession entries are included in about 37 listed germplasm col-
lections. A large genetic variability has already been identified in V. faba in terms of 
floral biology, seed size and composition, and also tolerance to major biotic and abi-
otic stresses. More knowledge is needed on the interactions of V. faba with parasitic 
and pollinator insects, on traits related to environmental adaptation and impacts on 
nitrogen fixation in interaction with soil rhizobia and on bioenergy potential, which 
strengthens the demand for new and large phenotyping actions. Diversity analysis 
through genotyping is just beginning. The use of amplified fragment length poly-
morphism (AFLP) or SSR markers has allowed genetic resources to be distinguished 
according to their geographical origin and structuring of germplasm collections. 
Conservation of gene sequences among legume species and the rapid discovery of 
genes offer new possibilities for the analysis of sequence diversity for V. faba genes 
and evaluation of their impact on phenotypic traits. Projects that combine genotyp-
ing and phenotyping must be continued on V. faba, so that core collections can be 
defined; these will help in the discovery of genes and alleles of interest for faba bean 
breeders (Rispail et al., 2010).
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1.5 Cowpea

Cowpea (Vigna unguiculata (L.) Walp.) is cultivated widely in the tropics and has 
multipurpose uses: as food for human beings, fodder for livestock and atmospheric 
nitrogen fixers. Cowpea grains rich in protein are consumed in different forms 
in several parts of the tropics. The average grain yield of cowpea in West Africa is 
approximately 492 kg ha−1, which is much lower than its potential yields. This low 
productivity is due to a host of diseases, insects, pests, parasitic weeds, drought, poor 
soils and low plant population density in the farmer’s field. Despite a large num-
ber of cowpea accessions (about 15,000) maintained at the International Institute of 
Tropical Agriculture (IITA), recent studies demonstrated that genetic diversity in cul-
tivated cowpea is low. Researchers, however, found a high level of random ampli-
fied polymorphic DNA marker diversity in landraces from Malawi. However, ex situ 
collection of cowpea and wild Vigna germplasm from different parts of the world 
were assembled in the IITA gene bank. These genetic resources have been explored 
to identify new traits and to develop elite cowpea varieties. Many cowpea varieties 
with high yield potential have been developed and adopted by the farmers. Efforts 
are continuing to develop better-performing varieties using conventional breeding 
procedures, while molecular tools are being developed to facilitate progress in cow-
pea breeding (Agbicodo et al., 2010).

1.6 Lentil

Lentils have been part of the human diet since Neolithic times, being one of the first 
crops domesticated in the Near East. Archaeological evidence reveals that they were 
eaten 9500–13,000 years ago. Lentil colours range from yellow to red-orange to 
green, brown and black. Lentils also vary in size, and are sold in many forms, with 
or without the skins, whole or split. Lentils are relatively tolerant to drought and are 
grown throughout the world. The FAO has reported that the world production of len-
tils primarily comes from Canada, India, Turkey and the United States. About a quar-
ter of the worldwide production of lentils is from India, most of which is consumed 
in the domestic market. Canada is the largest export producer of lentils in the world.

Extensive collections of lentil germplasm now exist in various gene banks around 
the world. This germplasm including wild Lens species has been used in plant intro-
duction strategies and in efforts to widen the potential sources of increasing genetic 
diversity in the breeding programmes of lentil. Improved techniques are emerging 
to overcome hybridization barriers between species, and as a result interspecific 
hybrids have been successfully obtained between species. Several interspecific 
recombinant inbred line populations have been developed. Selected and backcrossed 
lentil lines are currently in advanced yield trial stages, and desirable traits such as 
yield, disease resistance and agronomic traits have been incorporated into cultivated 
lentil especially from Lens ervoides, generating a wider spectrum of variability. 
Secondly, further expansion of the overall pool of germplasm and examination of 
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allelic variation at the nucleotide level will benefit lentil-breeding programmes by 
augmenting phenotype-based variation to further advance cultivar development. 
Genomic resources for lentils are limited now, but this situation is changing rap-
idly as the cost of genotyping has declined. As a result, two successive EST pro-
jects were undertaken under the NAPGEN EST project initiative and an Agricultural 
Development Fund project initiative. It has been emphasized that creation of 
intraspecific and interspecific genetic populations, genetic maps, association maps, 
QTLs and marker-assisted selection technologies for implementation in the breeding 
programme will enhance deployment of genes responsible for traits of interest. The 
economical use of genomic technologies for use in germplasm resource management 
and genetic improvement is on the near horizon.

1.7 Pigeon Pea

Pigeon pea (Cajanus cajan (L.) Millspaugh) is an important grain legume of the 
Indian subcontinent, Southeast Asia and East Africa. More than 85% of the world 
pigeon pea is produced and consumed in India, where it is a key crop for food and 
nutritional security of the people. The centre of origin is the eastern part of pen-
insular India, including the state of Orissa, where the closest wild relatives occur. 
Though pigeon pea has a narrow genetic base, vast genetic resources are available 
for its genetic improvement. The ICRISAT gene bank maintains about 13,216 acces-
sions, whereas the Indian NBPGR bank maintains a total of about 12,900 accessions. 
Evaluation of small-sized subsets such as core (10% of whole collection) and mini-
core (about 1% of the entire collection), developed at the ICRISAT, has resulted 
in identification of promising diverse sources for agronomic and nutrition-related 
traits, as well as resistance to major biotic and abiotic stresses for use in pigeon pea 
improvement programs. Wild relatives of pigeon pea are the reservoir of several 
useful genes, including resistance to diseases, insect pests and drought, as well as 
good agronomic traits, and have contributed to the development of cytoplasmic male 
sterility systems for pigeon pea improvement. Availability of genomic resources, 
including the genome sequence, will facilitate greater use of germplasm to develop 
new cultivars with a wider genetic base.

1.8 Peanut

The domesticated peanut (Arachis hypogaea L.) is an amphidiploid or allotetraploid 
having two sets of chromosomes from two different species, thought to be A. duran-
ensis and A. ipaensis. These likely combined in the wild to form the tetraploid spe-
cies A. monticola, which gave rise to the domesticated peanut. This domestication 
may have taken place in Paraguay or Bolivia, where the wildest strains grow today. 
Certain cultivar groups are preferred for particular uses based on differences in fla-
vour, oil content, size, shape and disease resistance. For many uses, the different 
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cultivars are interchangeable. Most peanuts marketed in the shell are of the Virginia 
type, along with some Valencias selected for large size and the attractive appearance 
of the shell. Spanish peanuts are used mostly for peanut candy, salted nuts and pea-
nut butter. Most runners are used to make peanut butter. Although India and China 
are the world’s largest producers of peanuts, they account for a small part of inter-
national trade, because most of their production is consumed domestically as peanut 
oil. Exports of peanuts from India and China are equivalent to less than 4% of world 
trade. The major producers/exporters of peanuts are the United States, Argentina, 
Sudan, Senegal and Brazil. These five countries account for 71% of total world 
exports. In recent years, the United States has been the leading exporter of peanuts in 
the world.

Further, the number of accessions in the ICRISAT gene bank are about 13,500. 
Most of them have been characterized and evaluated for their reaction to diseases, 
insect pests and other desirable agro-morphological characteristics, leading to iden-
tification of 506 useful genetic stocks. Most of the germplasm is conserved as pods 
or seeds in the gene bank, while rhizomatous Arachis species are conserved as whole 
plants. ICRISAT serves as the world’s largest repository of peanut germplasm and 
has distributed about 60,000 peanut germplasm samples free of cost to the interna-
tional scientific community.

Despite significant progress, peanut genetic resource activities still suffer from 
several limitations in assembly and characterization. The establishment of a peanut 
genetic resources network is proposed to overcome many such limitations. However, 
sufficient numbers of molecular markers that reveal polymorphism in cultivated pea-
nut are available for diversity assessments. In a study, the amount and distribution 
of genetic variation within and among six peanut botanical varieties, as well as its 
partitioning among three continents of origin (South America, Asia and Africa) was 
assessed at 12 SSR loci by means of 10 sequence-tagged microsatellite site primers. 
Discriminant function analysis reveals a high degree of accordance between vari-
ety delimitation on the basis of morphological and molecular characters. Landraces  
from Africa and Asia were more closely related to each other than to those from 
South America. Nei’s unbiased estimate of gene diversity revealed very similar lev-
els of diversity within botanical varieties. Landraces from South America had the  
highest diversity and possessed 90% of alleles, compared with Africa (63%) and 
Asia (67%).

1.9 Asian Vigna

Asian Vigna species constitute an economically important group of cultivated and wild 
species, and a rich diversity occurs in India and other Asian countries. Taxonomically, 
cultigen and conspecific wild forms are recognized in all major cultivated Asiatic 
pulses, mung bean (V. radiata), urd bean (V. mungo), rice bean (V. umbellata) and 
azuki bean (V. angularis) except for moth bean (V. aconitifolia), which has retained a 
wild-type morphology. The cultivated species, V. radiata and V. mungo, are of Indian 
origin. The domestication of V. aconitifolia is also apparently Indian, whereas that 
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of V. angularis and V. umbellata is Far Eastern. The green gram is already a popular 
food throughout Asia and other parts of the world. The present level of its consump-
tion can be expected to increase. The black gram, although very popular in India, is 
less likely to generate sufficient demand to stimulate production significantly outside 
its traditional areas. The azuki bean has generated interest as a pulse outside traditional 
areas of production and consumption, and consumer demand for it could increase in 
the near future. Perhaps the most interesting future exists for rice bean, which has a 
high food value and tolerance to biotic and abiotic stresses. It possibly has the high-
est yielding capacity of any of the Asian Vigna and could become a useful crop, if a 
sizeable consumer demand were built up. Moth bean has a future in India as a pulse 
crop. V. trilobata is probably most useful as a forage crop in semi-arid conditions. The 
fullest possible range of landraces and cultivars needs to be collected and conserved 
together with the conspecific wild-related species. The wild germplasm resources have 
a great potential for widening the genetic base of the Vigna gene pool by interspecific 
hybridization. The available genetic resources with valuable characters will therefore 
be required to make extended cultivation economically attractive.

1.10 Grass Pea

Grass pea presents a fascinating paradox; it is both a lifesaver and a destroyer. It is 
easily cultivated and can withstand extreme environments from drought to flooding. 
However, when eaten as a large part of the diet over a long enough period (which 
is often the case during famine), it can permanently paralyse adults from the knees 
down and cause brain damage in children, a disorder named lathyrism. Grass pea has 
a long history in agriculture. It was first domesticated some 7000–8000 years ago in 
the eastern Mediterranean region and has a history of cultivation in southern parts of 
Europe, North Africa and across Asia. Today it is mostly grown in India, Pakistan, 
Bangladesh and Ethiopia. More recently, grass pea has become popular as a forage 
crop in Kazakhstan, Uzbekistan, South Africa and Australia.

Recently ICARDA at Aleppo, Syria, together with Ethiopian breeders, has under-
taken a project to develop cultivars with low neurotoxin levels. The role of diversity 
in breeding programmes was instantly clear: the toxins found in African and Asian 
grass pea plants are seven times more toxic than Middle Eastern types. The Centre 
for Legumes in Mediterranean Agriculture (CLIMA) in Australia has also recently 
produced a low-toxin grass pea variety. The use of grass pea diversity in breeding 
has shown how the genetic resources of a crop can be used to improve its nutritional 
value for human health. The ICARDA scientists used the diversity found in the 
world’s largest collection of grass pea and its relatives, stewarded at the ICARDA 
seed bank in Syria, with more than 3000 accessions. Large Lathyrus collections 
are also conserved in France, NBPGR in India, Bangladesh and Chile. Despite this 
research, much additional work is needed in order to produce locally adapted, low-
toxin varieties and to distribute these to the farming community. Furthermore, there 
is a need to expand the molecular research work in species identification and their 
proper utilization in grass pea breeding.
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1.11 Horsegram

Horsegram (Macrotyloma uniflorum) is one of the lesser known grain legume spe-
cies. The whole seeds of horsegram are generally utilized as cattle feed. However, 
it is consumed as a whole seed, as sprouts, or as whole meal in India. It is quite a 
popular legume, especially in southern Indian states such as Karnataka, Tamil Nadu, 
Andhra Pradesh, northwestern Himalayan states and Uttarakhand. The chemical 
composition is comparable with more commonly cultivated legumes. Like other leg-
umes, horsegram is deficient in methionine and tryptophan, though it is an excellent 
source of iron and molybdenum. Horsegram is also known to have many therapeu-
tic effects – not scientifically proven – though it has been recommended in ayurve-
dic medicine to treat renal stones, piles, oedema, etc. A total of 1721 accessions of 
horsegram are being conserved in different gene banks of the world. Of these col-
lections, about 95% are conserved at NBPGR, New Delhi, India, and its regional 
research station, Thrissur, Kerala, is designated as an active site for the conservation 
and evaluation of horsegram germplasm. No worthwhile genomic resource informa-
tion on horsegram is available.
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2.1 Introduction

Common bean (Phaseolus vulgaris L.), a legume native to America, is now one of 
the most important crops worldwide. The rich nutritive composition, the different 
forms (fresh, canned, frozen pods or seeds, precooked/ dehydrated seeds,  packaged 
dry seeds) and the versatility in cooking make it an interesting and valuable crop. 
Consumption patterns vary dramatically by geographic regions and among cul-
tures. As a matter of fact, it is cultivated extensively in the five continents and 
spans from 52°N to 32°S latitude, and from near sea level in the continental USA 
and Europe to elevations of more than 3000 m above sea level (asl) in Andean 
South America. According to the Food and Agriculture Organization (FAO), in 
2010 the total world production of all the cultivated common bean species was 
about 23 million tons. American countries produce nearly half of the world’s 
 supply of dry beans: Brazil, USA, Mexico and Central America are the major 
 producers. India, China and Myanmar are the major Asian producers. In Europe, 
cultivation is concentrated in the regions bordering the Mediterranean basin, such 
as the Iberian Peninsula, Italy and the Balkan states, though the production is not 
sufficient to cover the whole demand.

Although far less important than cereals, common bean is a cheap source of vegeta-
ble proteins, calories and micronutrients. Like other legumes, the major limitations are 
the low content of sulphur-amino acids and the presence of antinutritional compounds. 
The main form of consumption is represented by dry seeds, however varieties suitable 
for other consumption forms, such as snap or shell beans, have been developed. Snap 
bean cultivars possess a thick succulent mesocarp and reduced or no fibre in green 
pod walls and sutures, while shell beans are immature seed harvested before complete 
desiccation in the pod. The economic relevance of common bean justifies the efforts 
currently in progress for the release of new varieties suitable to mechanical harvest, 
characterized by resistance to pests and diseases, and of high nutritional quality. In this 
context the European common bean germplasm can play a key role, making available 
to European breeders significant genetic variation useful for further improvement of 
the crop.

http://dx.doi.org/10.1016/B978-0-12-397935-3.00002-5


Genetic and Genomic Resources of Grain Legume Improvement12

2.2  Taxonomy, Origin, Distribution and Diversity of 
Cultivated Phaseolus vulgaris

By 1753 the common bean was so common in the Old World that Linnaeus chose 
the name Phaseolus for this species, naming it P. vulgaris L., and proposed that it 
originated from India. However, the true Old World bean species are Vigna unguicu-
lata (L.) Walp. (cowpea), Vicia faba L. (faba bean) and Lablab purpureus (L.) Sweet 
(hyacinth bean). Of these species, especially V. unguiculata is very similar to common 
bean. Linnaeus considered V. unguiculata as introduced from the New World. These 
confusions led over time to many wrong conclusions about the origin, history and 
classification of beans. Over the past two centuries over 400 species have been named, 
often with poor descriptions or lacking good type specimens. Formerly, differentia-
tions were made between Old World beans, mostly from the genus Vigna, and New 
World beans, from the genus Phaseolus. So though the genus Phaseolus has a com-
plex taxonomic and nomenclature history, this strictly New World genus is diagnosed 
by foliage bearing hooked hairs, keel petals that are laterally and tightly coiled, and 
inflorescence nodes that lack extra floral nectaries. The majority of species, having a 
Neotropical origin, are distributed in the tropics and subtropics of the New World. On 
the basis of current floristic knowledge, there are no Phaseolus species growing wild 
naturally in other parts of the world. The majority of species are concentrated in the 
western mountainous ranges of Mexico (Central America), and in the northern and 
central Andes (South America) between 37° North and 28° South (Debouck, 2000).

Based on evolutionary rate, the genus Phaseolus is approximately six million 
years old, suggesting that this extremely successful group of plants is relatively 
young. The 70 or more Phaseolus species are divided into 15 sections by Freytag 
and Debouck (2002). This classification is partly inconsistent with that of Delgado-
Salinas, Bibler, and Lavin (2006), who recognized two main groups or classes. Clade 
A groups species distributed mostly in Mexico, but also in the southwestern United 
States and Central America, generally growing over 1000 m asl. Clade B species are 
distributed throughout the American continent from the southeast of Canada to the 
Andean region of South America, in lower altitude areas. The five main domesti-
cated species, P. vulgaris L. (common bean), Phaseolus coccineus L. (runner bean), 
Phaseolus polyanthus Grenm., synonym of Phaseolus dumosus Macfad. (year bean), 
Phaseolus acutifolius A. Gray (tepary) and Phaseolus lunatus L. (Lima bean), occur 
among the clade B species, with the first four more closely related.

P. vulgaris (2n = 2x = 22), belonging to the Phaseolus genus (subtribe Phaseolinae, 
tribe Phaseoleae, family Fabaceae), is a member of a plant family that produces pods 
that carry a nutrient-dense high protein seed. Over a time of at least 7000 years, the 
common bean has evolved into a major leguminous crop. Several remains have been 
discovered in the Andes, but also in Mesoamerica (Kaplan & Lynch, 1999). Historical 
and linguistic data support the existence of specific words designating the common 
bean in several native Indian languages (Brown, 2006).

Before domestication, wild P. vulgaris, widely distributed from northern Mexico 
to northwestern Argentina, had already diverged into two major ecogeographical 
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gene pools, each with its own distribution. Moreover, some wild populations from 
Columbia are considered to belong to a transect area (Papa & Gepts, 2003). Wild 
forms of the common bean comprise an additional third gene pool that is located 
in a restricted area between Northern Peru and Ecuador (Debouck, Toro, Paredes, 
Johnson, & Gepts, 1993). These populations are usually considered as the puta-
tive ancestor from which the species P. vulgaris originated, showing the specific 
type I phaseolin, the major seed storage protein considered an evolutionary marker 
(Kami, Velasquez, Debouck, & Gepts, 1995). From this area, wild materials were 
presumably dispersed towards north and south, giving rise to the Mesoamerican and 
Andean gene pools, respectively. An alternative hypothesis of the Mesoamerican 
origin of common bean, most likely located in Mexico and already supported by 
data obtained with multilocus molecular markers by Rossi et al. (2009) and Kwak 
and Gepts (2009), was confirmed on the basis of sequence data by Mamidi et  al. 
(2011). More recently, Bitocchi, Nanni, et al. (2012) sequenced five loci of a large 
collection that included wild common bean accessions from Mesoamerican and 
Andean gene pools as well as genotypes from Northern Peru–Ecuador, character-
ized by the ancestral type I phaseolin. Results present clear evidence, either from 
phylogeny analysis or from the structure of populations, for a Mesoamerican origin 
of P. vulgaris that was most likely located in Mexico. Moreover, these last studies 
strongly support the occurrence of a bottleneck during the formation of the Andean 
gene pool that predated the domestication, as previously proposed by Rossi et  al. 
(2009) on the basis of amplified fragment length polymorphism (AFLP) data on 
wild and domesticated common bean accessions. In the paper by Bitocchi, Nanni, 
et al. (2012) a new scenario is suggested for wild populations from Northern Peru; 
they could represent a relict of wild materials migrating from Central Mexico in 
ancient times.

Domestications from wild beans occurred independently in Mesoamerica and 
Andean South America and gave rise to two major distinct gene pools also within 
the cultivated forms. The occurrence of separate domestication events has been well 
established using multiple approaches, based on morphological and agronomic traits, 
other than biochemical and molecular markers (Chacón, Pickersgill, & Debouck, 2005; 
Gepts, 1988; Koenig & Gepts, 1989; Papa, Nanni, Sicard, Rau, & Attene, 2006). These 
two gene pools are characterized by partial reproductive isolation, thus suggesting a 
process of incipient speciation (Koinange & Gepts, 1992).

The number of domestication events within each gene pool is still debated. 
Generally a single domestication event is thought to have occurred in the Mexican 
state of Jalisco (Kwak, Kami, & Gepts, 2009). A similar conclusion, although 
hypothesized, could not be drawn for the Andean counterpart, due to the lower 
diversity of this material compared to Mesoamerican accessions (Nanni et  al., 
2011; Rossi et  al., 2009). More recently, Bitocchi, Bellucci, et  al. (2013) inves-
tigated the effect of domestication on genetic diversity in both gene pools, 
using nucleotide data from five fragment genes. This study highlighted a single 
domestication event within each gene pool and indicated the Oaxaca valley in 
Mesoamerica and southern Bolivia and northern Argentina as geographical areas 
of common bean domestication.
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Variation within domesticated gene pools arose in part from the already diverged 
wild gene pools and partly from further selection under domestication. As a conse-
quence, ecogeographical races in each of the two gene pools appeared, according 
to morphological traits, agro-ecological adaptation and biochemical markers (Singh, 
Gepts, & Debouck, 1991), and are generally congruent with the population struc-
ture identified by microsatellite markers (Kwak & Gepts, 2009). Cultivars from 
Mesoamerica, consisting of the races Durango, Jalisco and Mesoamerica, usually are 
small- or medium-seeded (>25 g or 25–40 g/100 seed weight, respectively) and have 
S phaseolin type (Figure 2.1). The small-seeded navy and black beans belong to the 
Mesoamerica race, Pinto and Great Northern beans belong to the Durango race, and 
small red and pink beans belong to the Jalisco race.

In a more recent study on race structure within the Mesoamerican gene pool as 
determined by microsatellite markers, the Jalisco and Durango races were found 
more closely related, an expected result due to the similar geographical range from 
which they have originated in Central Mexico (Diaz & Blair, 2006). Based on  
morphological and ecological criteria, the races Nueva Granada, Peru and Chile  
have been identified in the South America counterparts. They have large seeds 
(>40 g/100 seed weight) with T, C, H and A phaseolin patterns (Diaz & Blair, 
2006; Singh et al., 1991). Among them, the race Nueva Granada is the most widely 

Figure 2.1 Characteristics of dry seeds from different races of cultivated common bean. 
Right: Middle American races; left: Andean South American races. 
Source: Photo courtesy of S. P. Singh, University of Idaho, ID, USA.
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cultivated, including the majority of commercial large-seeded kidney cultivars and 
most snap beans. Race Peru includes the yellow beans, race Chile mainly the vine 
cranberry beans.

2.3 Introduction and Dissemination in Europe

At European contact, Amerindian agriculture was based on a group of three major 
crops: maize, squash and beans. Two bean plants climbing on a living stake can 
be seen in the drawing of an indigenous American planting seeds with the aid of 
a digging stick, in the manuscript titled Histoire naturelle des Indes, known as the 
Drake Manuscript (dated about 1586). The illustration, titled ‘The manner and style 
of gardening and planting of the Indians’, also shows multieared maize, a cucur-
bit vine bearing many large round fruits, capsicum pepper and a pineapple. Beans 
were sown in the same hole with maize, and the two crops complemented each other 
both as crops and as food. Maize acts as support of the climbing beans and is nitro-
gen demanding, while beans are nitrogen fixing as a result of Rhizobium symbio-
sis. Furthermore, maize and beans complement each other nutritionally, since maize 
seeds are deficient in the essential amino acid lysine; conversely, bean seed is defi-
cient in the sulphur-containing amino acids (cysteine and methionine). The mixture 
of beans and tortillas (maize pancakes) provided a complete protein food that was 
the basis of Aztec and Mayan diets (Janick, 2011).

The knowledge of the ways through which the common bean was introduced in 
Europe is fragmentary, but it is likely that after the discovery of the Americas many 
introductions were made from many places. It is well known that the two common 
bean gene pools arrived in Europe at different times. If the Mesoamerican com-
mon beans arrived in Europe just after the discovery of America, the Andean coun-
terpart reached Spain in 1528, after the exploration of Peru. Common bean spread 
into Europe in a very short time, probably as a consequence of the high similarity of 
seeds with those of cowpea, V. unguiculata, a legume grown in Europe for millen-
nia. Already in about 1508 the common bean was depicted in France in the prayer 
book of Anne de Bretagne, Queen of France and Duchess of Brittany (Figure 2.2). 
The image of a bean plant was identified by Jussieu (1772) as Phaseolus flore luteo 
and successively by Camus (1894) as the taxon entity P. vulgaris L. (Paris, Daunay, 
Pitrat, & Janick, 2006). The New World plant appears in the festoons of fruits, veg-
etables and flowers including over 170 species of plants, which surround the gor-
geous frescoes painted between 1515 and 1517 by Giovanni Martini da Udine at 
Villa Farnesina in Rome (Caneva, 1992).

The first description of common bean in European herbal references was done 
by Leonhard Fuchs, who reported in De historia stirpium (Fuchs, 1542) that the 
common bean had a climbing habit, white or red flowers, and red, white, yellow, 
skin-coloured or liver-coloured seeds with or without spots (Figure 2.3). However, 
it cannot be excluded that Fuchs reported a combination of traits belonging to both  
P. vulgaris and P. coccineus. Subsequent descriptions were done by Roesslin in 
1550, by Oellinger in 1553 and by Dodonaeus in 1554 (Zeven, 1997). A brief 
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selection of old manuscripts (1493–1774) mentioning P. vulgaris or its synonyms is 
reported by Krell and Hammer (2008).

The beginning of cultivation in Italy is supported by documents that fixed 1532 as 
the year in which the humanist and literate Pierio Valeriano received a bag of bean 
seeds as compensation for his work at the Pope Clemente VII court. The Pope had 
obtained the seeds from the Spanish Emperor Charles V, who ruled some Italian pos-
sessions at that time. After sowing the common bean seeds in his fields located in 
Belluno province (northeastern Italy), Valeriano described the cultivation technique, 
the plant and seed morphology, and the supposed therapeutic properties of seeds in 
his poem ‘De Milacis Cultura’. During the fifteenth and sixteenth centuries, com-
mon bean was introduced from Spain into Portugal, as a consequence of the flourish-
ing commerce of this country with the Spanish region of Galicia (Rodiño, Santalla, 

Figure 2.2 A common bean plant depicted in France in the prayer book of Anne de 
Bretagne, Queen of France and Duchess of Brittany (1508). 
Source: Photo courtesy of Bibliothèque Nationale de France (BnF, Paris, France).



European Common Bean 17

Montero, Casquero, & De Ron, 2001). Historical documents support the introduction 
of Phaseolus seeds from Italy and Spain to the present Hungary, part of the exchange 
of botanical species and scientific information among naturalists (Barona, 2007). 
Fine illustrations and botanical descriptions of Phaseolus plants are present in the 
Stirpium per Pannonia, Austriam etc. (Clusius, 1583) under the names of Phaseolus 
purkircherianus and Phaseolus africanus, tentatively identified as P. lunatus and  
P. coccineus by K. Hammer (pers. commun.). In 1669 common bean was cultivated 
on a large scale in the Dutch province of Zeeland (Van der Groen, 1669), and after 
20 years Valvasor (1689) reported the presence of the pulse in Slovenia. Over time, 
the dissemination across Europe surely occurred through seed exchanges among 
farmers being facilitated by territorial contiguity and similarity of environments.

In the early decades of the sixteenth century, the common beans introduced into 
Europe were surely subjected to selective pressures that gave rise to the loss of part 
of the germplasm carried from America. The driving forces of the genetic erosion 
that occurred in the early times were nature and farmers. Particularly, the ability to 

Figure 2.3 One of the early European images of common bean called Smilax hortensis from 
L. Fuchs’s herbal reference De historia stirpium (Fuchs, 1542). 
Source: Photo courtesy of Biblioteca Riccardiana, Florence, Italy.
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survive in the new environments, the tolerance to long days and the resistance to 
pests and diseases represented important selecting factors. In addition, farmers took 
good care of their precious beans by sowing those having the most desirable fea-
tures such as seed colour and size, resistance to biotic and abiotic stress, and good 
culinary quality. This process produced over the time a myriad of landraces well 
adapted to restricted areas of cultivation distributed in Europe. As a consequence, 
each country selected its own set of landraces able to fulfil the expectations of local 
populations. An example of morphological variation present in Italian common bean 
germplasm is shown in Figure 2.4. In the countries characterized by a high diver-
sification of growing environments, the process of differentiation was more pro-
nounced, so that each region had its own set of landraces. However, only in relatively 
recent times and for some European countries have detailed lists of the cultivated 
landraces been compiled. Authors of the eighteenth and nineteenth centuries men-
tioned the great variation found in Spain (Moreno, Martinez, & Cubero, 1983), and 

Figure 2.4 Seed morphological variation in Italian common bean landraces. 
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Puerta Romero (1961) classified the different cultivars used as traditional food by the 
Spanish on the basis of morpho-agronomic characters. A book describing 472 com-
mon bean landraces cultivated in Italy was published by Comes (1910), while inves-
tigations on the phenotypic variation within 1500 landraces grown in the Netherlands 
were performed by Nijdam (1947).

Starting from 1990s, systematic studies on the European common bean landraces 
have been carried out by recording morphological and agronomical traits, seed qual-
ity traits and phaseolin pattern. This last biochemical marker allows the attribution of 
the landraces to one of the two major gene pools of the crop. The prevalence of the 
Andean types (76%) was first described by Gepts and Bliss (1988) and was confirmed 
by subsequent studies at national (Lioi, 1989; Logozzo et al., 2007; Ocampo, Martin, 
Sanchez-Yelamo, Ortiz, & Toro, 2005; Rodiño et al., 2001) and regional (Escribano, 
Santalla, Casquero, & De Ron, 1998; Limongelli, Laghetti, Perrino, & Piergiovanni, 
1996; Lioi, Nuzzi, Campion, & Piergiovanni, 2012; Piergiovanni, Taranto, Losavio, & 
Pignone, 2006) levels. Within the European germplasm, the distribution of phaseo-
lin types parallels that observed for American genotypes. Types C and T are clearly 
predominant within the Andean gene pool, while type S is prevalent within the 
Mesoamerican one. Evaluations carried out by using DNA-based markers have evi-
denced a very high variation present within the Iberian germplasm. Based on these 
evidences, Santalla, Rodiño, and De Ron (2002) suggested Spain as a secondary diver-
sification centre for the common bean.

It is well known that due to the environmental changes produced by human activi-
ties over time populations of plant and animal species have become small, frag-
mented and isolated. This trend also pertains to the common bean, but a detailed 
analysis of the studies published in the last decade evidences that, though the cul-
tivation of common bean landraces is fragmented and confined to marginal areas, a 
significant number of landraces still survive on farm, mainly in the Iberian Peninsula 
(Moreno et al., 1983) and Italy (Piergiovanni & Lioi, 2010). This means that a sig-
nificant fraction of the common bean variation present at the beginning of the 
twentieth century has been conserved up to present times. Generally, the perpetua-
tion of landrace cultivation is not homogeneous within the countries. For example, 
Galicia appears to be the Spanish region still showing a wide common bean variation 
(Escribano et al., 1998). On the other hand, it is worthy to note that only 60% of the 
landraces grown in Catalonia (Spain) belong to the Andean gene pool, while in the 
rest of Spain 80% of landraces are of Andean origin (Rodrigo, 2000).

As concerns Italy, common bean landraces are still cultivated mainly in hilly 
areas along the Apennine ridge of the central and southern regions, such as 
Basilicata, Lazio and Abruzzo (Limongelli et al., 1996; Piergiovanni et al., 2006). 
Geographical isolation, as well as a lack of good roads until recent times, could 
explain the persistence of landraces in these areas. Unfortunately, it must be 
noticed that frequently landraces are mainly grown by elders for private use and 
only occasionally are sold in local markets. This, in addition to the diffusion of 
intensive agricultural systems based on commercial varieties, exposes the lan-
draces to a high risk of loss in the coming years.
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2.4  Status of Germplasm Resources Conservation  
(Ex-Situ, In-Situ, On-Farm)

It is generally accepted that significant amounts of genetic erosion have occurred and 
are still occurring mainly as consequence of the destruction of ecosystems and habitats 
by several pressure factors. Multiple strategies have been adopted to prevent the loss of 
genetic variation of plant species. One of them is ex situ conservation, which consists 
in the maintenance of germplasm accessions in gene bank facilities to avoid changes 
of genetic structure as well as extinction. Gene banks should not be considered as 
seed museums but as a source of genetic resources available to the user community. 
For a crop like common bean, as well as for its wild relatives, ex situ conservation 
can be carried out by storing seeds for long periods at low temperature and moisture. 
However, some hindrances associated with ex situ conservation can affect the genetic 
integrity of the conserved accessions. For materials preserved as seeds, periodic rejuve-
nation is required to counterbalance the declining of seed viability. Protocols adopted 
worldwide are designed to minimize the possibility that the genetic structure of stored 
samples could be modified by mutations, selection, random drift or accidental contami-
nation. Large Phaseolus germplasm collections were developed to acquire, maintain, 
evaluate, document and distribute germplasm, in order to aid scientists in improving 
the quality and productivity of this crop. These collections stored all over the world 
include genotypes of both domesticated and wild species of Phaseolus. Seed samples 
are generally available on request for research or breeding purposes, with the addition 
of a paper trail for material transfer agreements. In the germplasm bank of the Genetic 
Resources Program of the International Center for Tropical Agriculture (CIAT; Cali, 
Colombia), the largest and most diverse bean collection in the world is preserved. This 
gene bank belongs to the Consultative Group for International Agricultural Research 
(CGIAR) and stores about 36,000 accessions of Phaseolus spp., corresponding to 
44 taxa from 109 countries (http://isa.ciat.cgiar.org/urg/main.do?language=en). The 
largest segment of this collection corresponds to the primary centres of origin in the 
Neotropics, especially Mexico, Peru, Colombia and Guatemala, but there are also 
important segments from Europe and Africa, and to a lesser extent from Asia. A collec-
tion of about 15,000 accessions is housed at the Western Regional Plant Introduction 
Station, Pullman, Washington, USA (http://www.ars.usda.gov/Main/site_main.
htm?docid=9065). The main collections of Phaseolus germplasm in Europe are those 
of the Institut für Pflanzengenetik und Kulturpflanzenforschung (IPK; Gatersleben, 
Germany), with about 9,000 accessions (http://gbis.ipk-gatersleben.de/gbis_i/), and of 
the N.I. Vavilov Research Institute of Plant Industry (VIR; Russia), with about 6,000 
accessions (http://www.vir.nw.ru/data/dbf.htm). Of noteworthy interest is the collec-
tion of wild Phaseoleae – Phaseolinae species held at the National Botanic Garden 
of Meise, Belgium. This collection covers a very wide genetic diversity and currently 
includes 1886 accessions representing 225 taxa of the Phaseoleae tribe, chiefly centred 
on the Phaseolinae subtribe. Phaseolus and Vigna are the best represented genera with 
41 species (712 accessions) and 67 species (978 accessions), respectively (http://www.
br.fgov.be/research/collections/living/phaseolus/). Additionally, smaller collections 

http://isa.ciat.cgiar.org/urg/main.do?language=en
http://www.ars.usda.gov/Main/site_main.htm?docid=9065
http://www.ars.usda.gov/Main/site_main.htm?docid=9065
http://gbis.ipk-gatersleben.de/gbis_i/
http://www.vir.nw.ru/data/dbf.htm
http://www.br.fgov.be/RESEARCH/COLLECTIONS/LIVING/PHASEOLUS/
http://www.br.fgov.be/RESEARCH/COLLECTIONS/LIVING/PHASEOLUS/


European Common Bean 21

are scattered all over the world. All together, these collections represent a substan-
tial source of genetic diversity that is generally freely available for plant genetics and 
breeding research. An overview on the status of the smaller European germplasm 
collections was reported in the Catalogue of Bean Genetic Resources compiled in 
2001 as an initiative of the European Union PHASELIEU project partners (Amurrio, 
Santalla, & De Ron, 2001). Bioversity International, a member of the CGIAR 
Consortium and a partner of FAO of the UN, currently coordinates the European 
Cooperative Programme for Plant Genetic Resources (ECPGR), which helps to ration-
ally and effectively conserve the plant genetic resources. The platform implemented by 
ECPGR allows access to passport data of common bean accessions stored at more than 
20 worldwide gene banks (http://www.ecpgr.cgiar.org/germplasm_databases.html).

In recent decades there has been increasing interest in the use of in situ conserva-
tion for wild relatives of crop species and for crop species themselves. This approach 
is based on the maintenance of the ecosystem as a whole and is the elective strategy 
for preservation of crop wild relatives. In situ conservation of crop plants, specifically 
designed as on-farm conservation, is based on the genetic resources maintenance by 
custodian farmers who continue to grow and use traditional varieties or landraces, 
allowing their evolution to be continued in the environment where they are tradition-
ally cultivated. In this way a source of adapted germplasm is available for plant breed-
ing and other users. The results of a study on the effectiveness of on-farm conservation 
of common bean landraces showed that this type of conservation is really the most 
effective to maintain the diversity present in the original populations (Negri & Tiranti, 
2010). However, it should be kept in mind that on-farm conservation is a complemen-
tary rather than an alternative strategy to gene banks.

Small-scale farming systems such as home garden conservation should also be 
included as a further potential reservoir of agricultural biodiversity. Even in Europe 
some studies document its role in securing crop genetic diversity, shaping the land-
scape and maintaining the cultural heritage of a community (Galluzzi, Eyzaguirre, & 
Negri, 2010). Recently Szabó (2009) proposed the common bean as a model taxon for 
monitoring trends in European home garden diversity. In fact, we still do not know 
adequately the home garden–based diversity for the most important crops.

2.5 Germplasm Evaluation and Use

Knowledge about genetic variation within germplasm collections plays a key role for 
their utilization. Although this task is a complex, expensive and time-consuming exer-
cise, it is one research area that benefits crop improvement, since it supports decisions 
concerning breeding methodology and management of genetic resources. The evalua-
tion of genetic diversity also supports the resource allocation decisions that affect the 
long-term maintenance of germplasm collections. Starting from these considerations, 
it is evident that the collection management requires robust, rapid and cheap methods 
to perform detailed characterizations of stored accessions. It is accepted that passport 
data are not sufficient predictors for evaluating diversity within germplasm collections, 

http://www.ecpgr.cgiar.org/germplasm_databases.html
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because geographical associations could become less clear due to human migrations or 
to seed exchange among farmers that caused genetic material to be carried from one to 
another region.

An important question in germplasm evaluation is the number of markers to be 
used. To be significant, any diversity analysis should be based on the estimation of a 
high number of traits covering the maximum range of phenotypic and genotypic vari-
ation at the same time. Some decades ago, the estimation of genetic variation of stored 
collections was based only on some morpho-agronomic traits and electrophoretic 
protein profiles. In recent years advanced DNA-based methodologies to characterize 
germplasm collections have started to be widely applied. However, the evaluation of 
very large collections, such as that of common bean maintained at CIAT, is feasible 
only for easily scored traits. For these reasons gene bank managers are always seeking 
methodological approaches that would allow analysing the stored collections in a rela-
tively short time and at acceptable costs.

The creation of a core collection, a subset of accessions incorporating a represent-
ative sample of the variation within the whole collection with a minimum of redun-
dancy, allows an increase in the number of traits taken into consideration, especially 
the most investigated ones, such as resistance to pests and diseases, tolerance to spe-
cific pedo-climatic conditions, nutritional value of grains and so on. Since two gene 
pools exist in common bean, studies on the germplasm collections should include sam-
ples from the Middle American and Andean regions or not, according to final aims. 
The effectiveness of this strategy has been evidenced by Skroch, Nienhuis, Beebe, 
Tohme, and Pedraza (1998), who compared the genetic variation present in a core to 
that of the whole collection of Mexican beans at CIAT by using random amplified 
polymorphic DNA (RAPD) markers. Recently, a core collection from a total of 544 
European accessions was developed by using sampling approaches based on both 
information available in the gene bank databases and phaseolin patterns. This first 
attempt at the development of a European core collection will help assess the contri-
bution of the two American gene pools to the European germplasm and their relative 
usefulness for breeding purposes (Logozzo et  al., 2007). Information derived from 
studies on whole or core collections could serve more efficiently the breeders working 
at the selection of improved common bean varieties (Pérez-Vega, Campa, De la Rosa, 
Giraldez, & Ferreira, 2009). In fact, the value of genetic material rests in the character-
istics it possesses, in the worth of the product obtained as a result of its utilization and 
in the contribution it makes to land management and production processes.

An example of the use of stored accessions is the identification in the germplasm 
at CIAT of a wild common bean accession carrying a mutation that prevents the accu-
mulation of all components of lectins, a family of closely related seed storage pro-
teins considered to be antinutritional factors. From this material, bean lines producing 
seeds without lectins were developed with the aim of improving the nutritional char-
acteristics of bean seeds used for both food and feed (Campion, Perrone, Galasso, & 
Bollini, 2009). In lectin-free lines, mutations for reduced phytic acid accumulation in 
the seeds were induced successively. These new lines have more digestible proteins, 
a higher level of free phosphorus and increased bioavailability of bivalent cations 
(Campion, Sparvoli, et al., 2009).
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Another relevant case is the finding within the CIAT germplasm of some wild 
Mexican bean accessions resistant to weevils. The resistance has been associated to 
the presence of a particular class of proteins, the arcelins, components of the mul-
tigene family of lectins. So far, seven arcelin variants have been identified, all in 
wild accessions. Different attempts have been made to breed resistance traits of wild 
common bean into cultivars, and some successful examples have been described 
(Cardona, Kornegay, Posso, Morales, & Ramirez, 1990). Moreover, recently a wild 
accession resistant to both bruchid beetles, the weevil Acanthoscelides obtectus Say 
and the Mexican weevil Zabrotes subfasciatus Bohemian, has been collected in 
Mexico (Zuagg et al., 2013). Thus, common bean wild materials have been confirmed 
to be a useful source of desirable traits for future breeding purposes.

Other than wild materials, landraces are universally considered a good source of 
precious variation. They constitute an important resource for breeders because of 
their considerable genotypic variation and high adaptation to particular environmen-
tal conditions. As a consequence, the wide genetic diversity present in southwestern 
European landraces could be an excellent source for bean breeding, this material 
being unimproved adapted germplasm. The screening of stored landraces can be 
a multitask exercise such as that carried out by Rodiño, Monteagudo, De Ron, and 
Santalla (2009), who studied the variability among common bean lines selected 
from ancestral landraces maintained at the MBG-CSIC gene bank (Pontevedra, 
Spain) to identify groups of lines with superior traits. They found accessions hav-
ing good expression of some pod and seed quality traits that would be appreciated 
by both consumers and producers, lines having notable performances that could be 
used to improve yield and lines showing some tolerance or resistance to pathogens, 
which would be essential for the development of resistant cultivars. In some cases 
the screening is focused on a well-defined objective, such as the search for potential 
resistance sources to anthracnose caused by Colletotrichum lindemuthianum (Sacc 
& Magnus), one of the most devastating diseases of common bean in mild and wet 
areas of northern Spain. Although the screening of the bean collection maintained at 
Villaviciosa (Asturias, Spain) did not allow the identification of resistant accessions, 
some materials showing moderate resistance were found (Ferreira, Campa, Pérez-
Vega, & Giraldez, 2008).

2.6 A Glimpse at Crop Improvement

The genetic basis of the commercial common bean classes is narrow as compared 
to worldwide germplasm, which in contrast shows a wide diversity of seed and pod 
traits, plant growth habit, phenological traits, flowering time, photoperiod sensitiv-
ity, adaptation to different soil types, wide range of resistance to diseases and stress, 
and different nutritional seed quality. The genetic variation of common bean germ-
plasm has been widely used by breeders to further enhance the crop since the late 
nineteenth century and early twentieth century. However, so far a large part of the 
variation observed in gene pools, races and wild relatives has not been used in breed-
ing. The major limitation to its utilization can be attributed to the lack of adaptation 
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of germplasm to new ecological niches, the presence of undesired traits such as seed 
shattering and the time-consuming analysis of progenies.

Due to the economic value of common bean, several breeding programmes 
are presently in progress throughout the world. Breeders freely crossed between 
Mesoamerican and Andean gene pools, as well as among races, although intergene 
pool crosses have had only limited success, suggesting an ongoing process of spe-
ciation (González, Rodiño, Santalla, & De Ron, 2009; Koinange & Gepts, 1992). 
Breeding can also involve gene introgression from additional gene pools. Indeed, 
the secondary and the tertiary gene pools of common bean, covering a range of envi-
ronments from cool moist highlands to hot semi-arid regions, could be an important 
resource for the genetic improvement of common bean, which will increasingly suffer 
from the increase of temperatures and moisture, and from drought periods, as a conse-
quence of climatic changes (Beebe, Rao, Mukankusi, & Buruchara, 2012).

Several species of Phaseolus can be hybridized to common bean. The species 
belonging to its secondary gene pool, such as P. coccineus, P. polyanthus and P. cos-
taricensis Freytag & Debouck, can freely be crossed with each other without embryo 
rescue, particularly when common bean is used as the female parent. P. coccineus 
has been more commonly used in wide crosses with P. vulgaris, especially for traits 
such as cold temperature tolerance, root rot and bean yellow mosaic virus resistance. 
However, hybrid progenies may be partially sterile, preventing the recovery of desired 
stable traits. The tertiary gene pool of common bean comprises P. acutifolius and  
P. parvifolius Freytag; crosses of common bean with these two species are successful, 
but require embryo rescue, and backcrosses to the recurrent common bean parent are 
often required to restore hybrid fertility. Genes for disease resistance have been suc-
cessful moved from P. acutifolius to common bean. Crosses with other species, such 
as P. lunatus, P. filiformis Benth. and P. angustissimus A. Gray have been attempted 
without producing viable hybrid progenies, so these species could be considered the 
quaternary gene pool of common bean (Singh, 2001).

Early maturity, adaptation to higher altitude, upright plant type, high pod qual-
ity and seed yield, and some resistances to diseases such as viruses and rust, insect 
pests, and drought and abiotic constraints such as deficiency of nitrogen, phospho-
rus and zinc or tolerance to aluminium and manganese toxicity have been bred into 
common bean cultivars. Most, if not all, commonly used crop breeding methods have 
been employed with common bean (Beaver & Osorno, 2009). Differences in genetic 
distance among gene pools, races and species dictate specific breeding methods and 
strategies. The results and the efficiency of the different methods applied have been 
the object of some detailed reviews (Graham & Ranalli, 1997; Kelly, 2010; Singh, 
2001). Challenges such as drought, root rot, heat, depleted soils, excessive rainfall 
and new and old pests and diseases pose new breeding targets and require increased 
efforts to address them. To overcome some of the inherent difficulties faced by con-
ventional plant breeding, new biotechnology tools have been developed and are grow-
ing in importance and use. Molecular approaches, such as marker-assisted selection 
(MAS), can support breeders facilitating and accelerating the transfer of desired traits. 
A detailed report on implementation and adoption of MAS in common bean breed-
ing is provided by Miklas, Kelly, Beebe, and Blair (2006), who reported highlighted 
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examples of MAS success in gene pyramiding, rapid and simpler detection, and selec-
tion of resistance genes. Slower progress has been obtained in the improvement of 
nitrogen fixation, insect resistance and tolerance to abiotic stresses. Moreover, pro-
gress in increasing seed yield potential has been only moderately successful, because 
multiple constraints limit bean productivity (Beaver & Osorno, 2009).

In terms of consumer preferences, the most desirable traits are those related to the 
technical and nutritional quality of dry seeds, such as ease of cooking, soft coat tex-
ture, good taste and protein content. Cooking time is certainly one of the factors that 
limit the home consumption of dry bean. Some studies showed that it is an oligogenic 
trait with high genetic variation but also significantly affected by the growing loca-
tion. The recent identification of quantitative trait loci (QTLs), which define the loca-
tion of genes governing this target trait, is the first step in future breeding programmes 
(Garcia et al., 2012).

It should be keep in mind that common bean is most produced and consumed in 
developing countries, where yield is often affected by deficiencies and toxicities 
of minerals in soil. This is the case of aluminium toxicity that negatively affects the 
yield in acid soils of tropic regions. Studies conducted at CIAT have shown that some 
accessions of P. coccineus are more resistant than common bean to aluminium tox-
icity. Butare et  al. (2012) crossed an Al-sensitive common bean with an Al-resistant  
P. coccineus accession, obtaining recombinant inbred lines, among which were prom-
ising resistant common bean genotypes.

Finally, since each region has different agro-techniques, pedo-climatic conditions, 
biotic and abiotic constraints, and consumer preferences, breeding programmes must 
be tailored to the needs of farmers and consumers who will use the new cultivars.

2.7 Biochemical and Molecular Diversity

Electrophoretic analysis of seed storage proteins has proven to be a valuable tool in 
tracing the evolution of crop plants, especially for identification of the wild progenitors 
and gathering additional information on the evolutionary and domestication patterns.

The structural and functional features of phaseolin, the major seed protein of com-
mon bean, make it a useful marker. This protein, accounting for 50% of total protein 
stored in the cotyledons and 35–46% of the total seed nitrogen, is coded by a cluster of 
closely related genes that may arise by successive duplication and diversification from 
an ancestral gene. The divergence processes include insertions, nucleotide substitutions, 
duplications or deletions of repeats (Kami & Gepts, 1994). In addition co- and post-
translational modifications, including cleavage of the signal peptide, different glyco-
sylation of polypeptides (Lioi & Bollini, 1984) and charge variation due to amino acid 
substitution resulted in the formation of slightly heterogeneous phaseolin polypeptides 
in the Mr 54–44 kDa, reflecting genotype divergence.

In a pioneering work by Gepts (1988), phaseolin was used as a marker in describing 
the domestication patterns and worldwide dissemination of common bean. Phaseolin 
electrophoretic analysis of wild and domesticated materials supported the hypothesis of 
multiple domestication events, thought to be the cause of parallel geographic phaseolin 
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variation between wild and cultivated forms. The Mesoamerican domestication gave 
rise to small-seeded S phaseolin cultivated materials, while large-seeded T, C, H and 
A phaseolin were observed in the southern Andes (Koenig, Singh, & Gepts, 1990). 
Moreover, it has been shown that phaseolin is a useful biochemical marker to follow 
the dispersal pathway of common bean from domestication areas into Europe. This 
revealed that the European common beans arose from the introduction of domesticated 
beans from both of the American gene pools. A higher frequency of Andean phaseolin 
types (76%) with respect to Mesoamerican ones (24%) was first recorded in European 
germplasm by Gepts and Bliss (1988). This was successively confirmed by Lioi (1989), 
analysing a large collection of accessions mainly from Italy, Greece and Cyprus. The 
prevalence of Andean types within the European common bean germplasm stored in 
some international gene banks has been recently confirmed by Logozzo et al. (2007), 
who analysed a collection of 544 accessions all from European regions, showing that 
the Andean phaseolin types T (45.6%) and C (30.7%) prevailed over the Mesoamerican 
S type (23.7%). A summary of the results from different studies are reported in Figure 
2.5. Despite a large variation in sample sizes and sampling strategies among these inves-
tigations, the presence of all three major phaseolin types (C, T and S) was observed in 
all the areas considered, suggesting a large seed exchange among the European coun-
tries. Over a total of 1309 European accessions considered, a prevalence of Andean pha-
seolin types at a single-country level was confirmed, with a global 79.6% versus 20.4% 
of Mesoamerican types. Differences in the frequencies of each Andean phaseolin type 
have also been observed. In the countries along the Mediterranean arc such as on the 
Iberian Peninsula, in Italy and the Balkan area, phaseolin C was the most common type. 
Conversely, in accessions from France, Central Europe and Sweden, the T type was 
the prevailing one. A relatively high frequency of Mesoamerican types was observed 
in Central Europe (27%) and France (30%) compared to Mediterranean countries, 
where the frequency is lower, reaching a mean value of 18%. European S types showed 
a larger seed size than those from the centre of domestication. Logozzo et  al. (2007) 
suggested two hypotheses to explain this finding: a preferential introduction of Durango 
and Jalisco races that, among Mesoamerican races, possess larger seeds, or a selection 
towards larger seeds within S types after introduction in Europe.

It has been suggested that crop expansion from America to Europe resulted in a 
reduction of diversity because a strong founder effects due to adaptation to new envi-
ronments and consumer preferences, followed by evolution probably involving hybridi-
zation and recombination between the Andean and Mesoamerican gene pools (Gepts, 
1999). Papa et al. (2006) estimated a loss of diversity around 30% and a low differen-
tiation between the gene pools in Europe, when compared with the differences in the 
Americas, suggesting a combination of greater gene flow or convergent evolution for 
adaptation to European environments. More recently Angioi et al. (2010) using six chlo-
roplast microsatellite (cpSSR) markers, confirmed that European common beans arose 
from both gene pools, but the bottleneck effect of the introduction into Europe might not 
have been so strong. Moreover, they estimated that hybrids between the two gene pools 
occurred at higher frequencies in Central Europe and lower frequencies in Italy and 
Spain. Moreover they suggest that not only some of the countries therein, but the entire 
European continent can be regarded as a secondary diversification centre for P. vulgaris.
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Molecular markers have been shown to be effective indicators for genetic varia-
tion underlying agronomic traits with some advantages over morphological traits, 
such as the ability to distinguish among accessions with similar morphology and dis-
criminate polymorphism over far more loci than isozymes or seed storage proteins. 
Molecular markers span broader genomic areas and present different types of inher-
itance, so they have also been used to better estimate the levels of diversity and to 
understand the effects of migration and selection on the maintenance of polymor-
phism in the European beans. There are several papers on the characterization of 
European germplasm of P. vulgaris using different molecular markers. Some stud-
ies were based on random PCR markers, such as RAPDs (Mavromatis et al., 2010), 
inter-simple sequence repeats (ISSRs) and AFLP (Svetleva et al., 2006; Šustar-Vozlič, 
Maras, Kavornik, & Meglič, 2006). Other molecular markers such as SSR, which are 

Figure 2.5 Distribution (%) of phaseolin type frequencies across Europe. Number in 
parentheses next to the geographical region name refers to sample size. 
Source: Data from Gepts and Bliss (1988), Rodiño et al. (2001), Šustar-Vozlič et al. (2006), 
Logozzo et al. (2007), Pérez-Vega et al. (2009) and Piergiovanni and Lioi (2010).
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more specific in target, were used to assess diversity among landraces (Lioi et  al., 
2005). Moreover, recently some studies were carried out to fingerprint specific lan-
draces using different molecular markers (Lioi et  al., 2012; Paniconi, Gianfilippi, 
Mosconi, & Mazzuccato, 2010).

2.8  The Germplasm Safeguarded Through the  
Attribution of Quality Marks

The crop landraces managed by local communities as part of their farming systems 
have been maintained on farm until today. The persistence of these landraces can be 
associated with the presence of elder farmers, a cultural value for the local communi-
ties, economic and/or geographic isolation of cultivation areas, and utilization in the 
preparation of traditional local dishes, medicinal practices or religious ceremonies. 
Despite the lack of coordinated efforts, these farmers have practiced de facto the on-
farm conservation of genetic resources, adopting a cost-efficient approach as compared 
to the ex situ method. The protection of the autochthonous germplasm in regions where 
agriculture still maintains traditional practices is considered a priority, even though the 
de facto on-farm maintenance cannot guarantee the survival of landraces over time. In 
1997 an International Plant Genetic Resources Institute (IPGRI; Rome, Italy) project 
started to promote the on-farm conservation of locally selected varieties in 10 pilot 
countries (IPGRI, 1997). Successively, a first inventory of on-farm conservation and 
management activities in Europe was compiled by the ‘in situ/on-farm task force’ of 
ECPGR promoted by Bioversity International, formerly IPGRI (Negri et  al., 2000). 
More recently, the European Community (EC) provided new financial resources to 
support the on-farm conservation (commission Directive 2008/62/ECoj 20 June 2008) 
in relation to agricultural landraces and varieties which are naturally adapted to the 
local and regional conditions and threatened by genetic erosion.

Starting in the 1990s the EC set down the rules (EC Reg. n. 2081/92 and 2082/92, 
recently substituted by EC Reg. 510/2006) for the attribution of origin and quality 
marks to local typical products for human consumption (i.e. vegetables, fruits, cere-
als and meat) of the European countries. In this way these products can be easily dis-
tinguished from the commodities belonging to the same category. Three marks were 
introduced: protected designation of origin (PDO); protected geographic indication 
(PGI) and traditional specialities guaranteed. The main difference among them is 
related to how closely the quality specificities of the products are linked to the geo-
graphical area of which they bear the name. Contrary to individual brands, these qual-
ity marks have a collective dimension involving a group of producers that may be 
identified with a geographical reference.

The aim of the EC marks is the creation of a legal framework for the protection and 
promotion of brand names of Europe’s traditional agricultural products and foods. In 
this way, the work of thousands of farmers and artisanal food producers is safeguarded, 
the European Union’s rural heritage is preserved, and the quality and performances of a 
food product carrying the mark are recalled by consumers. As concerns vegetables, fruits 
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and cereals, the attribution of the EC marks to elite ecotypes could sustain their on-farm 
conservation over time, encouraging the farmers to continue their growing. In fact, the 
production of certified products generally assures similar or higher incomes compared to 
modern varieties. The EC marks are attributed on the basis of instances describing deeply 
the history of each ecotype; the connection with a recognizable geographical area; the 
agronomic, nutritional, organoleptic and other peculiarities; and the discrimination of 
these products from the similar commercial ones. The achievement of these objectives 
requires collaboration between researcher institutions with different competences and the 
local communities. The different steps required to obtain the attribution of the European 
quality marks are schematized in Figure 2.6. An example of this road applied to common 

Figure 2.6 Schematic representation of steps required to obtain the attribution of PDO or 
PGI marks. 
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bean ecotypes cultivated in the Basilicata region (southern Italy) was described by 
Piergiovanni and Laghetti (1999). Still today the EC quality marks have been attributed 
to Phaseolus spp. ecotypes grown in five countries (Table 2.1). It is worthy to note that 
some marks have been attributed to a single ecotype (i.e. Fagiolo di Cuneo or Fagiolo di 
Sorana), while others regard a group of them grown in the same geographical area (i.e. 
Judías de el Barco de Ávila, as well as Fagioli di Lamon).

In some European countries other quality marks have been implemented by local 
authorities such as regions, provinces and municipalities, or associations such as Slow 
Food. Some Italian common bean landraces have obtained similar brands such as the 
municipal denomination of origin (De.CO.) assigned to Fagioli di Cortale (Calabria 
region), or the creation of a Slow Food mark for Fagiolo Gialet (Veneto region). The 
benefits of these further initiatives, though focused at the local level, can be described 
in terms of increased income to farmers, safeguarding of precious germplasm and 
maintenance of whole agro-ecosystems, which can be considered an advantage for the 
entire community (Negri, 2011).

2.9  Characterization and Evaluation of Landraces:  
Some Case Studies

2.9.1 Ganxet Bean

The Ganxet bean is a landrace cultivated in Catalonia (Spain) for a long time and is 
the most prestigious among those cultivated in the region (Sánchez, Sifres, Casaňas, & 
Nuez, 2007). Originating in Mesoamerica, it probably reached the Catalan coast in 
the nineteenth century. Ganxet is a white-seeded type, very easily recognizable by a 
marked hooked shape (ganxet means ‘little hook’ in Catalan). The organoleptic proper-
ties, highly appreciated by consumers, can explain the persistence of its cultivation up 
to now (Casaňas et al., 1999). However, the original germplasm has suffered from the 
introgression of other common bean varieties, including new improved varieties intro-
duced in recent times in the territory traditionally devoted to the cultivation of Ganxet. 
Many transitional forms between Ganxet and non-Ganxet beans are presently under 
cultivation in Catalonia, as testified by a very high variation recorded within the germ-
plasm currently used by Catalan farmers (Casaňas et  al., 1999). Variation is mainly 
related to the degree of hook and flatness of seed, while memories describe a much 
more homogeneous germplasm. Understanding the evolutionary history of Ganxet 
represents a model to elucidate the evolution of a landrace sharing the cultivation area 
with other common beans. AFLP and RAPD analyses of Ganxet germplasm carried 
out by Sánchez, Sifres, Casaňas, and Nuez (2008) detected a limited variability among 
the lines representing the Ganxet prototype, while the variability increases as the stud-
ied material moves farther away from the typical seed morphology. The molecular 
markers used by these authors proved that the source of the introgression is mainly the 
Great Northern market class. Populations belonging to this market class are more pro-
ductive than true Ganxet-type lines, so crosses between them tend to be more produc-
tive and for this reason more attractive for farmers (Casaňas et al., 1999).
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This example may be representative of the transformation that other common 
bean landraces have undergone over time. For Ganxet bean, the extremely hooked 
shape of seed can help to ensure the survival of the true landrace, because farmers 
and consumers can easily recognize and reject materials that differ greatly from 
the standard shape. Conversely, for those landraces that do not show easily dis-
tinctive agro-morphological traits, a similar approach cannot be applied and the 

Table 2.1 List of European Common Bean Landraces that Have Obtained a Quality Mark

Country Type of Mark Local Name

Bulgaria Slow Food Presidium Smilyan beansa

France EC PGI Haricot Tarbais (reg. 06.06.2000)
Greece EC PGI Fasolia Gigantes Elefantes Kato Nevrokopiou  

(reg. 21.01.1998)
Fasolia kina Messosperma Kato Nevrokopiou  

(reg. 21.01.1998)
Fasolia Gigantes Elefantes Prespon Florinas  

(reg. 18.07.1998)
Fasolia (Plake Megalosperma) Prespon Florinas  

(reg. 18.07.1998)
Fasolia Gigantes Elefantes Kastorias (reg. 12.08.2003)
Fasolia Vanilies Feneou (reg. 24.05.2012)

Italy EC PGI Fagiolo di Lamon della vallata bellunese  
(reg. 02.07.1996)a

Fagiolo di Sarconi (reg. 02.07.1996)a

Fagiolo di Sorana (reg. 14.06.2002)
Fagiolo di Cuneo (reg. 20.05.2011)

EC PDO Fagiolo Cannellino di Atina (reg. 05.08.2010)
Fagioli Bianchi di Rotonda (reg. 12.03.2011)

Slow Food Presidium Fagiolo Dente di Morto di Acerra
Fagiolo di Controne
Fagioli Badalucco, Conio e Pignaa

Piattella Canavesana di Cortereggio
Fagiolo Badda di Polizzia

Fagiolo di Sorana
Fagiolo Rosso di Lucca
Fagiolo Gialet della Val Belluna

Poland EC PDO Fasola Piȩkny Jaś z Doliny Dunajca (reg. 25.10.2011)
Fasola Wrzawska (reg. 13.01.2012)

EC PGI Fasola Korczynska (reg. 13.07.2010)
Spain EC PGI Judias de el Barco de Avila (reg. 21.06.1996)a

EC PDO Mongeta del Ganxet (reg. 23.12.2011)
Slow Food presidium Ganxet bean

Sweden Slow Food presidium Öland Island brown beansa

Switzerland Slow Food presidium Swiss dried green beansa

aMore than one type.



Genetic and Genomic Resources of Grain Legume Improvement32

discrimination of the traditional landrace prototype from possible hybrids appears to 
be not as easy.

2.9.2 Prespon Florinas and Kastorias Beans

In Greece, common bean is an important crop, cultivated areas being located in the 
northern and central parts of the country, Macedonia, Thrace and Thessaly regions 
(Mavromatis et al., 2010). As for other countries, the autochthonous material has been 
progressively replaced with modern cultivars; only in some areas do farmers continue 
to maintain local landraces. Since presently the demand for organic food is mainly ori-
ented toward products of plant origin, the performances of commercial cultivars and 
Greek landraces grown under organic farming have been evaluated in detail with the 
aim of identifying niche markets able to sustain the on-farm conservation of local com-
mon beans. When organic agro-techniques are applied, landraces and cultivars mainly 
differ in yield component traits, such as seed size and weight, number of pods per plant 
and number of seeds per pod (Mavromatis et  al., 2007, 2010). Although the highest 
values could be expected to be recorded in commercial cultivars, this was not the case. 
In particular, the landraces Kastoria and Xanthi, both from northern Greece, displayed 
very good performances. These results could be issued either on the promising genetic 
traits of these landraces or on the adaptation in organic farming, since landraces are 
traditionally cultivated in family farms without the use of agrochemicals. In addition, 
it has been shown that Kastoria beans have a protein content significantly greater than 
the mean value reported by Escribano, Santalla, and De Ron (1997) for Spanish lan-
draces (28.58% vs 22.6%) (Mavromatis et  al., 2007). With regard to grain quality, 
also some landraces traditionally grown near Prespes lake (Macedonia region) deserve 
particular attention, since their nutritional traits were comparable or better than those 
of commercial cultivars cultivated in the same environment (Ganopoulos, Bosmali, 
Madesis, & Tsaftari, 2012).

PGI quality marks have been awarded to Fassolia Gigantes Prespon Florinas as well 
as to Kastoria beans (Table 2.1), with the aim to sustain the on-farm survival of these 
elite landraces, together with the rural areas where they are grown. In these cases, the 
attribution of European protected designations derived from the high quality of grains, 
a successful combination of genetic characteristics, adaptation to both local micro-
climate conditions and traditional agro-techniques. It is worth underlining that these 
examples could represent a partial answer, without public investments, to the unsolved 
problems related to farmers’ rights and genetic resources management. If it is true that 
landraces are the result of indigenous farmers’ work and, in a sense, belong to a region, 
the attribution of European quality marks should mainly direct economic benefits 
towards the local communities.

2.9.3 Fagiolo del Purgatorio di Gradoli

Where socioeconomic conditions are weak, modern agricultural methods cannot 
be applied and agriculture retains traditional farming traits. The old bean popula-
tions owned by the farmers often show a high genetic variability with undesirable 
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characters like low yields or susceptibility to some pests and diseases. This reduces 
their overall quality, posing serious constraints to their use. Producers feel the need 
for improving the landraces, which, in turn, could affect their genetic structure.

In central Italy a white, small-seeded (100 seed weight <25 g) common bean, 
belonging to the Mesoamerican gene pool, named Fagiolo del Purgatorio, has 
been cultivated since the eighteenth century in Gradoli and Acquapendente, 
Lazio region (Lioi et  al., 2005). The perpetuation of the cultivation of this lan-
drace over time is attributable to the ritual consumption of dishes prepared 
with dry seeds in a lunch for poor people, organized every year during Lent, by 
the brotherhood ‘Confraternità del Purgatorio’ (Piergiovanni & Lioi, 2010). 
Recently, Fagiolo del Purgatorio has been the object of a multidisciplinary 
study. This analysis represents a preliminary action necessary for drawing up 
disciplinary rules for a conservation consortium, as well as for the request of a 
European quality mark. Twenty-three samples representative of the germplasm 
currently used by farmers growing the Fagiolo del Purgatorio were analysed for  
morpho-agronomic traits, biochemical markers (phaseolin and phytohaemaggluti-
nin electrophoretic profiles), molecular markers (AFLP and SSR), seed nutritional 
quality and resistance to pest and diseases (Lioi et al., 2007). Data collected in this 
study showed the existence within the tested germplasm of two nuclei showing dif-
ferences detectable using different methodologies. The characteristic traits of the 
two nuclei were:

a. determinate growth habit, low number of nodes per plant, low yield, high susceptibility to 
bean common mosaic virus (BCMV), phytohaemagglutinin type SG2;

b. semi-determinate growth habit, high number of nodes per plant, high yield, low suscepti-
bility to BCMV, phytohaemagglutinin type MG2.

Figure 2.7 Frequencies (%) of PHA electrophoretic variants (MG2, SG2, and others) 
observed in 12 accessions of the common bean landrace Fagiolo del Purgatorio (Italy). 
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On the basis of SSR and AFLP marker profiles, the Fagiolo del Purgatorio popula-
tions were grouped in two subclusters confirming biochemical and agronomic data and 
suggesting that more than one constitutive nucleus has contributed to the genetic back-
ground of this landrace. Different frequencies of the phytohaemagglutinin electropho-
retic variants (MG2, SG2, and others) observed in 12 Fagiolo del Purgatorio accessions 
are reported in Figure 2.7.

The safeguarding of a landrace characterized by a complex genetic structure, such 
as Fagiolo del Purgatorio, poses some problems. First of all the on-farm conservation 
should be based on a sufficient number of populations to assure the same chances of 
co-evolution to both nuclei in the traditional areas of cultivation. On the other hand, the 
market requirements as well as the constraints to obtain one of the European quality 
marks could encourage the selection of one of the two nuclei, irremediably modifying 
the genetic structure of the landrace.

2.10 Conclusions

The worldwide common bean germplasm is characterized by a high degree of 
genetic diversity. The entire European continent can be regarded as a secondary 
diversification centre, as consequence of five centuries of uninterrupted cultivation 
and unconscious selection, coupled to a capillary diffusion of this crop. Given the 
wide diversification of European common bean germplasm, the overall number of 
accessions stored ex situ and landraces still surviving on farms is remarkable. Taking 
into account the abovementioned studies, only a multidisciplinary approach can 
be fully effective to characterize this precious material and to help plan adequate 
safeguard actions. The creation of an inventory of European landraces could be an 
important goal for the improved safeguarding of landraces and future uses in breed-
ing programmes.
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3.1 Introduction

Of all the legumes, pea has its prominent place in plant biology and particularly in 
genetics, owing to work of J.G. Mendel (1866). Although not fully recognized and sup-
ported internationally, pea remains today one of the most important temperate pulses, 
fodder and vegetable crops and currently ranks second only to common bean as the 
most widely grown grain legume in the world, with primary production in temper-
ate regions and global production of 10.4 million tons in 2011 (Food and Agriculture 
Organization, FAO, 2011). Pea seeds are rich in protein (23–25%), slowly digestible 
starch (50%), soluble sugars (5%), fibre, minerals and vitamins (Bastianelli, Grosjean, 
Peyronnet, Duparque, & Régnier, 1998). On a worldwide basis, legumes contribute 
about one-third of humankind’s direct protein intake, while also serving as an important 
source of fodder and forage for animals and of edible and industrial oils. Peas have a 
wide variety of end uses with leaves, green pods, unripe seed and dry mature seed used 
as food and feed uses include direct grazing, hay and silage. One of the most important 
attributes of legumes is their capacity for symbiotic nitrogen fixation, underscoring their 
importance as a source of nitrogen in both natural and agricultural ecosystems (Phillips, 
1980). Pea, as with other legumes, also accumulates natural products (secondary metab-
olites) such as isoflavonoids that are considered beneficial to human health through anti-
cancer and other health-promoting activities (Dixon & Sumner, 2003).

3.2 Origin, Distribution, Diversity and Systematics

Pea (Pisum sativum L.) is one of the world’s oldest domesticated crops. Archaeological 
evidence dates the existence of pea back to 8000 bc (Baldev, 1988) in the Near East, 
in Europe it has been found since the Stone and Bronze Ages, and in India since 200 
bc. (De Candolle, 1882). Domesticated about 10,000 years ago (Abbo, Lev-Yadun, & 
Gopher, 2010; Ambrose, 1995; De Candolle, 1882; Kislev & Bar-Yosef, 1988; Smartt, 
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1990; Vavilov, 1949; Zohary & Hopf, 2000), pea, among other grain legumes, accom-
panied cereals and formed important dietary components of early civilizations in the 
Middle East and Mediterranean. These regions are also the area of origin and initial 
domestication. Pisum sativum subsp. elatius and subsp. sativum are found naturally in 
Europe, northwestern Asia and south to temperate Africa, while P. fulvum is restricted 
only to the Middle East. Pisum abyssinicum is found in Ethiopia and Yemen (Maxted & 
Ambrose, 2001). Cultivation of pea spread from the Fertile Crescent to today’s Russia, 
and westwards through the Danube valley into Europe and to ancient Greece and Rome, 
which further facilitated its spread to northern and western Europe. In parallel, pea 
was moved eastward to Persia, India and China (Chimwamurombe & Khulbe, 2011; 
Makasheva, 1973). In pea, explosive pod indehiscence and seed dormancy (hard seed-
edness) were probably the greatest barriers to domestication (Smartt, 1990) that had to 
be overcome. Other traits selected during domestication and development of modern 
cultivated forms include a number of characters that are determined by one or a few 
genes, such as a (lack of anthocyanin production) and r (wrinkled seed in garden types), 
which improved palatability, and p and v for the absence of sclerenchymatic tissue in 
pods. Domestication has also resulted in increased seed and pod size in pea (although 
not as markedly as in other crops) with a correlated increase in leaf size and stem 
strength (Swiecicki & Timmerman-Vaughan, 2005; Weeden, 2007).

There are several records of garden peas in the writing of the old Greeks and 
Romans, as well as in the herbal references of several centuries ago. There is discus-
sion on cultivation of pea in ancient India and Egypt (De Candolle, 1882), indicated 
by both linguistic and archaeological evidence. Theofrastus of Greece (died 287 bc) 
records the use of orobos for the vetch, erebinthos, for the chickpea and pisos for the 
pea. Subsequently the transfer of Greeks pisos to Rome, become Pisum, a name passed 
to the English as peason, then pease or peasse, which after the drop of s became the 
universal name among English-speaking people (Mikić, 2012). This interesting paleo-
linguistics study shows roots directly related to traditional Eurasian pulse crops. Pea 
had entered China via India by the first century bc (Makasheva, 1973). We are not cer-
tain when pea cultivation was taken up by Romans, as neither Cato (149 bc) nor Varro 
(27 bc) name pisum, but use more general terms such as pulses or legumes, which are 
known to include lentils and chickpea (Cubero, Perez de la Varga, & Fratini, 2009). 
In the first century bc pea was mentioned by the Romans Collumela, Pliny and Virgil. 
Hybridization studies were done with pea well before Mendel. Knight (1799) began 
his work on hybridization using pea in 1787, publishing the results in 1799. Later Goss 
(1824) noted the phenomena that later Mendel formulated into the principles. The 
domestication of pea has been experimentally tested, both to determine the genetic 
basis, which led to cultivated crop from wild plant (Weeden, 2007) and to research 
wild pea harvesting (Abbo et al., 2010). The so-called domestication syndrome in the 
case of pulses applies to increases in seed size, reduction or elimination of pod shat-
tering, loss of germination inhibition, shoot basal branching, seed toxins and antime-
tabolites (Plitman & Kislev, 1989; Smartt, 1990; Zohary & Hopf, 2000). All together, 
at least 11 loci involved in domestication traits have been identified (Weeden, 2007). 
In addition self-pollination reinforced fertility barriers between wild and cultivated 
populations, facilitating the fixation of desired genotype (Zohary & Hopf, 2000). We 
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know that mutation of A gene (flower colour, seed testa pigmentation) also improved 
seed quality and reduced seed dormancy. Loss of Np increased seed size but reduced 
tolerance to bruchid beetle attack. The recessive r gene allele improved seed qual-
ity (sweetness from higher free sugar at the expense of starch) but reduced seed size. 
Photoperiod response genes Sn and Hr influence or are loosely linked to genes influ-
encing root/shoot ratio (Weeden, 2007).

3.2.1 Phenotypic and Molecular Characterization of Diversity

There are several user-defined classifications of cultivated pea diversity. Four sim-
ply inherited characters determine the main use types of peas within subsp. sativum: 
the presence or absence of pod parchment, flower anthocyanin, leaflet occurrence 
and whether the starch grains in the dry seed are simple or compound (Green, 2008). 
This classification is similar to that proposed by Lehman (1954), except for the afila 
type, which was unknown at that time. There are two other characters used to estab-
lish groups based on their prevalence in cultivated material: the presence/absence of 
tare leaves and marrowfat seeds. Marrowfat seed type has simple starch grains and 
irregularly compressed seeds, often misinterpreted as wrinkled seeds. Early data from 
electrophoretic patterns of albumin and globulin proteins (Waines, 1975), allozymes 
(Hoey, Crowe, Jones, & Polans, 1996) and chloroplast DNA polymorphism (Palmer, 
Jorgensen, & Thompson, 1985) separated P. fulvum as a distinct species and P. sati-
vum as an aggregate of ‘humile’, P. sativum subsp. elatius and P. sativum. Interesting 
chemosystematic studies were made by Harborne (1971) and Pate (1975). Due to their 
widespread occurrence and chemical stability, flavonoids are well accepted as chemical 
markers in plant taxonomy (Gottlieb, 1982). Studies of leaf flavonol glycosides showed 
that P. fulvum contains quercetine 3-glucoside, primitive cultivars from Nepal and 
P. abyssinicum contain kaempferol and quercetine 3-sophoroside, while modern pea 
cultivars contain kaempferol and quercetine 3 (coumaroyl-sophorotrioside). Moreover, 
Harborne (1971) reported that petals of wild peas contain delphinidin, petunidin and 
malvidin 3-rhamnoside-5-glucosides, while petals of garden pea contain in addition 
pelargonidin, cyanidin and peonidin 3-rhamnoside-5-glucosides. Unfortunately, the 
yellow P. fulvum petals were not studied. Importantly the Pisum genus contains the fla-
vonoid phytoalexin pisatin, which is shared with genera in Lathyrus but not found in 
Vicia species (Bisby, Buckingham, & Harborne, 1994). Serological reactions of Pisum 
taxa were done by Kloz (1971) indicating close relationship of all taxa except P.  fulvum 
and P. abyssinicum. He was possibly the first to indicate that P. abyssinicum might 
originated from hybridization between P. sativum subsp. elatius and P. fulvum.

Recent phylogenetic studies based on retrotransposon insertion markers sup-
port the model of P. sativum subsp. elatius as a paraphyletic group, within which 
all P. sativum are nested (Jing et  al., 2005; Jing et  al., 2010; Nasiri, Haghnazari, & 
Saba, 2010; Vershinin, Allnutt, Knox, Ambrose, & Ellis, 2003). The study done by 
Hoey et al. (1996) using morphological, allozyme and RAPD characteristics on a set 
of Ben-Ze’ev and Zohary (1973) accessions resulted in separation of P. fulvum and 
‘southern humile’, while cultivated peas were among P. sativum subsp. elatius acces-
sions. The position of ‘northern humile’ varied between sister groups to cultivated 
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peas and P. sativum subsp. elatius. More recently, studies of ITS sequence variation 
(Polans & Saar, 2002; Saar & Polans, 2000) and histone H1 subtype 5 gene (Zaytseva, 
Bogdanova, & Kosterin, 2012) have supported this. Extensive phylogenetic relation-
ship of pea diversity was reconstructed using both amplified fragment length polymor-
phism (Ellis, Poyser, Knox, Vershinin, & Ambrose, 1998), its derived retrotransposon 
insertion-based marker method, sequence-specific amplification polymorphisms 
(SSAP) (Majeed et al., 2012; Pearce, Knox, Ellis, Flavell, & Kumar, 2000; Vershinin 
et al., 2003), and gene sequences (Jing et al., 2007; Zaytseva et al., 2012). P. fulvum 
and P. abyssinicum formed neighbouring but separate branches, a subset of P. sati-
vum subsp. elatius was positioned between P. fulvum and P. abyssinicum, and further 
branches were found within the cultivated pea. The most recent studies of P. abyssini-
cum placed it between P. fulvum and a subset of P. sativum subsp. elatius (Ellis, 2011; 
Jing et al., 2010; Smýkal et al., 2011; Vershinin et al., 2003) and revealed its very low 
genetic diversity, which could be explained by passage through a genetic bottleneck.

A general feature of molecular phylogenetic analysis of Pisum has been the impact 
of introgression on pea diversity and evolution (Jing et al., 2007). Moreover, high con-
servation between SSAP (Vershinin et al., 2003), retrotransposon insertions (Jing et al., 
2005) and gene-based derived (Jing et  al., 2007) trees was observed, in spite of the 
fact that they derived from different genomic compartments. Another study on relation-
ships among wild Pisum used a combination of mitochondrial, chloroplast and nuclear 
genome markers (Kosterin & Bogdanova, 2008; Kosterin, Zaytseva, Bogdanova, & 
Ambrose, 2010), separating P. fulvum and P. abyssinicum accessions and about half 
of those of wild P. sativum from the rest of the wild and all cultivated P. sativum. The 
distinction within P. sativum coincided with the cytogenetic classes of Ben-Ze’ev and 
Zohary (1973).

3.2.2 Biosystematics and Taxonomy

Pea belongs to the Leguminosae plant family, the third-largest flowering plant fam-
ily, with 800 genera and over 18,000 species (Lewis, Schrirer, Mackinder, & Lock, 
2005). Papilionoideae is the largest subfamily, with 476 genera and about 14,000 spe-
cies. It is estimated that all papilionoids shared a common ancestor around 50 mya, 
which experienced a 50 kb inversion in its chloroplast genome (Doyle et  al., 1997; 
Lavin, Herendeen, & Wojciechowski, 2005). The largest group of papilionoids is 
Hologalegina, with nearly 4000 species in 75 genera. This group includes the large 
galegoid tribes (Galegeae, Vicieae, Trifolieae, etc.), united by the loss of one copy of 
the chloroplast inverted repeat (IR). Tribe Fabeae (syn. Vicieae) contains five genera: 
Lathyrus (grasspea/sweet pea) (about 160 species); Lens (lentils) (4 species); Pisum 
(peas) (3 species); Vicia (vetches) (about 160 species) and monotypic genus Vavilovia 
formosa. Recent comprehensive phylogenetic analysis of 262 species (70%) of Fabeae 
tribe has shown that Pisum and Vavilovia are nested in Lathyrus, the genus Lens is 
nested in Vicia (Schaefer et al., 2012) and as consequence current generic and infrage-
neric circumscriptions do not reflect monophyletic groups and should be revised.

Further, the classification of Pisum based on morphology and karyology has 
changed over time from being considered a genus with five species (Govorov, 1937) 
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to a monotypic genus (Lamprecht, 1966; Marx, 1977). Kupicha (1981) and Davis 
(1970) recognized only two species, P. fulvum and P. sativum, and did not consider 
the third putative species P. abyssinicum. Numerous names have been proposed for 
wild representatives of P. sativum. All Pisum species are true diploid with 2n=2x=14. 
In the review of Yarnell (1962) P. humile and P. sativum were considered conspecific, 
even though they might differ by inversions and translocations. Importantly, the other 
‘species’ such as P. abyssinicum, P. jomardi and P. arvense were also considered con-
specific. Frustratingly, P. abyssinicum, native to Ethiopia and Yemen, has few seed 
accessions available and has been excluded from many Pisum studies, and as a result its 
true taxonomic status is still a matter of debate (Maxted & Ambrose, 2001). Based on 
morphological characteristics, Govorov (1937) labelled it as a separate cultivated spe-
cies, while Makasheva (1979) regarded it as a subspecies. A serious karyological barrier 
for crossing to P. sativum (Ben-Ze’ev & Zohary, 1973) and clear-cut phenotypic dif-
ferences support the view of its species status (Lamprecht, 1963). High genetic homo-
geneity and distinction of P. abyssinicum was revealed by numerous morphological, 
allozyme (Weeden & Wolko, 2001) as well as molecular analyses (Jing et  al., 2005, 
2010; Pearce et al., 2000; Vershinin et al., 2003). Although its origin is not fully under-
stood, it has been proposed that it was domesticated independently some 5000 years 
ago (Jing et al., 2010; Vershinin et al., 2003). The centre of pea genetic diversity is the 
broad area of the Fertile Crescent through Turkey, Syria, Iraq, Israel and Lebanon. It 
extends further east to Central Asia (Iran, Afghanistan, Pakistan and Turkmenistan) 
(Smýkal et  al., 2011). Vavilov (1949) has considered Ethiopia together with the 
Mediterranean countries and Central Asia as primary centres, with Near East second-
ary. Phylogenetically, there are two wild populations variously described as subspecies 
of P. sativum or as species, P. sativum subsp. elatius Bieb. and P. humile Boiss and Noe 
(syn. P. syriacum (Berger) Lehm.) (Ben-Ze’ev & Zohary, 1973). These two wild groups 
are morphologically, ecologically and also genetically distinct. Crossing experiments 
undertaken by Ben-Ze’ev and Zohary (1973) included genotypes of P. sativum subsp. 
elatius, P. humile, P. fulvum and P. sativum to define the primary gene pool as P. sativum 
aggregate including wild P. sativum subp. elatius, a secondary gene pool composed of  
P. fulvum and a tertiary gene pool consisting only of Vavilovia formosa. The domes-
tication of cultivated pea from northern populations of ‘humile’ was proposed by 
Ben-Ze’ev and Zohary (1973), but the source could equally be the ‘northern elatius’ 
(Kosterin et al., 2010; Smýkal et al., 2011). The most used classification is of Maxted 
and Ambrose (2001), to which Vavilovia formosa is added to classify four species; 
namely, P. sativum L., subsp. sativum (includes var. sativum and var. arvense); subsp. 
elatius (Bieb.) Aschers. & Graebn (includes var. elatius, var. brevipedunculatum and  
var. Pumilio), P. fulvum Sibth. & Sm.; P. abyssinicum A. Br.; Vavilovia formosa  
(P. formosum) (Stev.) Fed. This classification, which amends the classification used in 
review paper of Smýkal et al. (2011), will now be used in this chapter.

Since the botanical description of recognized Pisum species and subspecies is 
often lacking or fragmentary, we would like to provide it here in detail.

a. P. sativum subsp. elatius grows as a tall climber (up to 3 m) in humid forested valleys from 
the Caspian coast through the Caucasus to the Mediterranean region, including its islands 
and northern African coast, extending north to the Black Sea coast and Hungarian plains. 
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It is found at altitudes from 0 to 1700 m above sea level (asl) (Maxted & Ambrose, 2001). 
It has large (20–30 mm), often bicolour flowers and long peduncles (2–4× longer than stip-
ules) most often with two flowers (1–3), producing large pods (50–80×10–12 mm). Leaflets 
are two to four paired, ovate-elliptic, entire or subdentate. This subspecies has a chromo-
somal translocation difference from cultivated P. sativum, but it is interfertile, although 
some nucleo-cytoplasmatic conflict has been reported in specific crosses (Bogdanova, 
Galieva, & Kosterin, 2009). Former subspecies pumilio (now as P. sativum subsp. elatius 
var. pumilio) or synonymous P. humile, has shorter internodes (20–40 cm stem length), 
shorter peduncles, smaller (40–45×7–10 mm) often pigmented pods and small flowers (15–
18 mm). It is distributed from the Mediterranean through Turkey, Syria and Israel to Iran 
in steppe habitats. Compare to Pisum subsp. elatius found in higher altitudes, from 700–
1800 m at least in Syria (Maxted & Ambrose, 2001). Comparison of data from the expe-
ditions to Syria and previous herbarium passport data from Turkey reveals differences in 
circumstances. For example, in Syria discrete variation exists in altitude, rainfall and parent 
rock or soil type, correlated with an allopatric association between subsp. elatius and var. 
pumilio. However, in Turkey, where these varieties have been found sympatric, mild and 
overlapping climatic conditions have been reported (Mumtaz, Shehadeh, Ellis, Ambrose, & 
Maxted, 2002).

b. Pisum fulvum is distinguished by its weak slender stems (10–45 cm), one to two paired 
dentate leaflets, peduncle as long as the incised-dentate stipules, usually with single small 
(10–15 mm), yellow to orange flowers. Pods are small (30–40×5–10 mm) and pigmented, 
seeds are dark brown to velvet black with subpapillose testa. Some P. fulvum accessions 
possess amphicarpic character, with basal pods growing into the ground. It grows on open 
arid (300–450 mm annual rainfall) rocky limestone slopes (30–1500 m asl).

c. P. abyssinicum is 30–60 cm tall, with ovate, obtuse, irregularly dentate 4–5 cm long stipules 
up to the top and also along the inner margin, with semicordate acute basal lobes. The stip-
ules are as long as internodes. Peduncles are shorter (1/3 to 1/2) than the stipules at the time 
of flowering, but prolonged thereafter, one-flowered with small flowers. Flowers are pale, 
calyx lobes narrow lanceolate, standard only half open, whitish, wings shorter bright or pale 
purple-red, keel shorter than wings and narrow. Pods 40–50 mm long, with four to six seeds. 
Seeds globular-cubic, brownish red, violet, brown or grayish green. Most with one pair of 
leaflets and branched tendrils. Leaflets ovate, elliptical or obovate, obtuse, mucronulate, 
sharply or incisely dentate except of lower third, 3–4 cm long. Entire plants often have a blu-
ish green colour. P. abyssinicum has been described from Ethiopia and Yemen.

d. Vavilovia formosa (P. formosum) is a perennial herbaceous species. It has long roots and 
underground rhizomes that form an important part of the plant’s biology and are pos-
sibly crucial to its conservation strategy, as they may enable established plants to survive 
(Akopian et al., 2010). The anatomical investigations of stem structure showed that stems 
have lateral wings each with cortical vascular bundle, which are not prominent and hard 
to observe by morphological examination (Zorić et al., 2010). The leaf is compound, with 
small, semisagittate, foliaceous stipules, one pair broad, cuneate-obovate to suborbicular. 
The leaf does not terminate with tendrils, but with mucrolike rachis, similar to that in faba 
bean. The flowers are often solitary, axillary and pedunculate, with small and/or inconspicu-
ous bracts, lacking bracteoles, and having a campanulate calyx, pink or purple in colour and 
likely insect pollinated, albeit with no detailed data available (Atlagić et al., 2010). Pods are 
linear-oblong and dehiscent, 20–35 mm long and bearing from three to five seeds (Davis, 
1970). Seeds are globose or oval and smooth, usually with dark blotches on the surface. 
The geographical distribution of Vavilovia is widespread, but rather limited by its ecol-
ogy. The centre of its range is the central and eastern Caucasus, with a distribution across 
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neighbouring montane areas of Iran, Iraq, Lebanon, Syria and Turkey (Akopian et al., 2010; 
Mikič et al., 2009). Vavilovia is typically found at altitudes of 1500–3500 m in high moun-
tainous areas, on shale or rocky substrates such as loose limestone scree. This enigmatic 
species has received considerable attention recently, both for conservation and diversity 
as well as phylogeny studies (Mikič et  al., 2009, 2013; Oskoueiyan, Osaloo, Maassoumi, 
Nejadsattari, & Mozaffarian, 2010).

3.3 Status of Germplasm Resources Conservation

3.3.1 Conservation of Cultivated Gene Pool

About 98,000 pea accessions are preserved worldwide. The total germplasm col-
lection is much smaller owing to substantial overlap (on an average 20%, but some 
particularly smaller collections are duplicates up to 90%). There are 25 larger collec-
tions preserving pea diversity, holding together around 72,000 accessions. The remain-
ing 27,000 accessions are distributed over 146 collections worldwide. As shown in 
Table 3.1, only 1876 (2%) of these are wild pea relatives, approximately one-quarter 
(24,000) each are commercial varieties, 8500 landraces, while 600 and 6000 repre-
sent breeding and recombinant inbred lines or mutant stocks, respectively (Figure 3.1). 
In the case of true wild Pisum species, there are only 706 P. fulvum, 624 P. subsp.  
elatius, 1562 P. sativum subsp. sativum (syn. P. humile/syriacum) and 540 P. abys-
sinicum accessions (Figure 3.1) preserved ex situ in collections. Moreover, when 
passport data on geographical origin are summarized, there is a large bias (17%) 
towards Western and Central European accessions, as these regions represent mod-
ern pea breeding activities. Substantially less well represented are Mediterranean 
(2.5%), Balkan (2%) regions, Caucasus (0.8%) and Central Asia (2%) centres of 
pea crop domestication and diversity (Table 3.1; Figure 3.2), where higher variation 
can be anticipated. Currently, no international centre conducts pea breeding, since 
International Center for Agricultural Research in the Dry Areas (ICARDA) in Syria 
relinquished the international mandate for genetic conservation of peas, and world-
wide no single collection predominates in size and diversity (Table 3.1). Important 
genetic diversity collections of Pisum with over 1000 accessions are found in national 
gene banks of at least 15 countries (Table 3.1), with many other smaller collections 
worldwide (Smýkal, Coyne, et al., 2008; Smýkal et al., 2012). A high level of dupli-
cation (an estimated 20% on average) exists between the collections, thus reduc-
ing the actual level of diversity. In spite of this overlap, each represents a unique 
assembly. These are dominated by cultivated forms (Table 3.1; Figure 3.1), and 
although wild forms in these collections are highly diverse, they are comparably few 
and inadequately sampled (Ellis, 2011; Smýkal et al., 2011). The much smaller col-
lections of wild relatives of pea are less widely distributed and there is more clarity 
when tracing these accessions to their origin, although precise collection sites are 
often unknown. Furthermore allelic diversity in wild material is unknown. There are 
still important gaps in the ex situ collections, particularly of wild and locally adapted 
materials, which need to be addressed before these genetic resources are lost forever 



Table 3.1 Major Gene Banks Holding Pea Germplasm

Code Country Institute Number of 
Accessions

Web Site Online 
Catalogue

Genotyped Phenotyped Core

VIR Russia N.I. Vavilov Research 
Institute of Plant Industry, 
St. Petersburg

6790 http://www.vir.nw.ru No No No

USDA USA Plant Germplasm 
Introduction and Testing 
Research Station, Pullman

6827 http://www.ars-grin.gov Yes Partly Yes Formed

BAR Italy CNR-Istituto Di Genetica 
Vegetale, Bari

4558 http://www.igv.cnr.it Yes No No

SAD Bulgaria Institute of Plant 
Introduction and Genetic 
Resources, Sadovo

2100 http://www.genebank.
hit.bg

No No Partly

NGB Sweden NordGen, Nordic Genetic 
Resource Centre, Alnarp

2849 http://www.nordgen.org/
sesto

Yes Partly Partly

CGN The 
Netherlands

Centre for Genetic 
Resources, Wageningen

1002 http://www.cgn.wur.nl/pgr/ Yes No No

ATFC Australia Australian Temperate Field 
Crop Collection, Horsham

7432 http://www2.dpi.qld.gov.
au

No Yes Yes Formed

ICARDA Syria International Center for 
Agricultural Research in 
the Dry Areas

6105 http://www.icarda.cgiar.
org

No No No

GAT Germany Leibniz Institute of Plant 
Genetics and Crop Plant 
Research

5343 http://www.ipk-
gatersleben.de

Yes No Yes

ICAR China Institute of Crop Sciences, 
CAAS China

3837 http://icgr.caas.net.cn/cgris No Partly No

http://www.vir.nw.ru
http://www.ars-grin.gov
http://www.igv.cnr.it
http://www.genebank.hit.bg
http://www.genebank.hit.bg
http://www.nordgen.org/sesto
http://www.nordgen.org/sesto
http://www.cgn.wur.nl/pgr/
http://www2.dpi.qld.gov.au
http://www2.dpi.qld.gov.au
http://www.icarda.cgiar.org
http://www.icarda.cgiar.org
http://www.ipk-gatersleben.de
http://www.ipk-gatersleben.de
http://icgr.caas.net.cn/cgris


Table 3.1 Major Gene Banks Holding Pea Germplasm

Code Country Institute Number of 
Accessions

Web Site Online 
Catalogue

Genotyped Phenotyped Core

JIC UK John Innes Centre, Norwich 3567 http://www.jic.ac.uk Yes Yes Yes Formed
WTD Poland Plant Breeding and 

Acclimatization Institute 
Blonie, Radzikow

2896 http://www.igr.poznan.pl Yes No No

INRA France INRA CRG Légumineuse à 
grosses graines, Dijon

8839 http://195.220.91.17/
legumbase

Yes Partly Yes Formed

INIA Spain Instituto Nacional 
de Investigación y 
Tecnología Agraria

1648 http://www.inia.es Yes Partly Partly

ITACyL Spain Instituto Tecnológico 
Agrario de Castilla y 
León

1772 http://www.itacyl.es No Partly Partly Formed

UKR Ukraine Yurjev Institute of Plant 
Breeding, Kharkov

1671 http://www.bionet.nsc.ru No No No

CZE Czech AGRITEC, Research, 
Breeding and Services 
Ltd., Sumperk

1326 http://genbank.vurv.cz Yes Yes Yes Formed

CZE Czech Centre for Research of 
Vegetables and Special 
Crops, Olomouc

1414 http://genbank.vurv.cz/
genetic/resources

Yes No Yes

HUN Hungary Research Centre for 
Agrobiodiversity, 
Tápiószele

1205 http://www.rcat.hu No No No

CAN Canada Plant Gene Resources of 
Canada, Saskatchewan, 
Canada

616 http://www.agr.gc.ca/
pgrc-rpc

No Yes Yes Formed

SRB Serbia IFVCNS, Novi Sad 991 http://www.nsseme.com/
en/

No No No

(Continued)

http://www.jic.ac.uk
http://www.igr.poznan.pl
http://195.220.91.17/legumbase
http://195.220.91.17/legumbase
http://www.inia.es
http://www.itacyl.es
http://www.bionet.nsc.ru
http://genbank.vurv.cz
http://genbank.vurv.cz
http://genbank.vurv.cz
http://www.rcat.hu
http://www.agr.gc.ca/pgrc-rpc
http://www.agr.gc.ca/pgrc-rpc
http://www.nsseme.com/en/
http://www.nsseme.com/en/


Table 3.1 Major Gene Banks Holding Pea Germplasm

Code Country Institute Number of 
Accessions

Web Site Online 
Catalogue

Genotyped Phenotyped Core

ISR Israel Israel Plant Gene Bank, 
ARO Volcani Center

343 http://igb.agri.gov.il Yes Partly Partly

TUR Turkey Aegean Agricultural 
Research Institute, 
Menemen/IZMIR

236 http://www.etae.gov.tr/eng/ No Partly Partly

ARM Armenia Institute of Botany NAS 
RA, Yerevan

19 http://www.sci.am/ No No No

ETH Ethiopia Institute of Biodiversity 
Conservation, Addis 
Ababa

1768 http://www.ibc.gov.et/ No No No

NBPGR India National Bureau of Plant 
Genetic Resources, New 
Delhi

3609 http://www.nbpgr.ernet.in No No Yes

BRA Brazil National Center for 
Vegetable Crops Research 
(CNPH)/EMBRAPA

1958 http://www.cnph.embrapa.
br

No No No

Others (149) FAO report on germplasm 
collections

28,831 http://www.fao.org No No No

Svalbard Global Seed Vault 9670 http://www.croptrust.org Yes No No
TOTAL 98,947

Table 3.1 (Continued)

Code Country Institute Number of 
Accessions

Web Site Online 
Catalogue

Genotyped Phenotyped Core

http://igb.agri.gov.il
http://www.etae.gov.tr/eng/
http://www.sci.am/
http://www.ibc.gov.et/
http://www.nbpgr.ernet.in
http://www.cnph.embrapa.br
http://www.cnph.embrapa.br
http://www.fao.org
http://www.croptrust.org
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49,248

16,91051,450

12,396

4980
All wild (3726)

11,938

Commercial varieties (34%)

Breeding lines (13%)

Landraces (38%)

Mutant stock (2%)

RILs (3.7%)

P. subsp. elatius (0,42%)

P.humile/syriacum (1.2%)

P. transcaucassicum, asiaticum (0.2%)

P. abyssinicum (0.36%)

P. fulvum (0.46%)

Uknown

Figure 3.1 Stratification of pea germplasm collections listed in Table 3.1 by species, 
subspecies and breeding status, with indicated numbers and percentage of total. RILs, 
Recombinant Inbred Lines.
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Western and Central Europe

Balkan

Mediterranean region

Turkey–Syria

Israel– Jordan–Palestine

Caucassus region (Armenia–Georgia–
Azerbaijan)

Central Asia (Iraq–Iran–Turkmenistan–
Pakistan–Afghanistan)

Russia–Ukraine–Kazachstan

India– Nepal–Tibet

China–Mongolia–Japan

Africa (excluding Mediterranean)

Ethiopia–Yemen

Americas

Australia–NZealand–Oceania

Southeast Asia

Figure 3.2 Stratification of pea germplasm collections listed in Table 3.1 (except ETH, 
BRA, UKR due to lack of data) by geographical regions, with indicated numbers of 
accessions. 
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due to native habitats destruction (Maxted et  al., 2010). Several attempts have been 
made at ex situ conservation of Vavilovia, the closest Pisum relative, especially in the 
former USSR, with all of them being unsuccessful likely due to inadequate cultiva-
tion (Makasheva, 1973; Zhukovskyi, 1971). Some success was achieved in the United 
Kingdom (Cooper & Cadger, 1990), but these did not result in the production of new 
seeds or in multiplication of the plants. More promising results were produced in the 
Vavilov Institute during 1974–1981. Some plants survived for years, bloomed and 
even formed fruits with seeds (reviewed in Akopian et al., 2010). Vavilovia has peri-
odically been grown in the Yerevan Botanic Garden since 1940, as well as is being 
recently cultivated in vitro (Akopian et al., 2010; Mikič et al., 2013); nevertheless, this 
particular species in currently vulnerable to habitat destruction and climate change, 
and no seeds have been preserved ex situ to ensure its longer term conservation. 
There is an urgent need to systematically sample the genetic diversity in wild rela-
tives that was only partially captured in the domestication of pea (Ellis, 2011; Smykal 
et al., 2011), since natural habitats are being lost due to increased human population, 
increased grazing pressure, conversion of marginal areas to agriculture and ecological 
threats due to future climate change (Keiša, Maxted, & Ford-Lloyd, 2007; Maxted & 
Kell, 2012). The target areas for comprehensive collection of wild relatives of peas 
include the habitat from the Mediterranean through the Middle East and Central Asia, 
as these are likely to contain genetic diversity for abiotic stress tolerances (Coyne 
et al., 2011). The storing of pea seeds in gene banks (ex situ) is relatively inexpensive 
and effective, consequently it is the most common way to preserve crop diversity. In 
addition to gene banks, botanical gardens offer an ex situ alternative to seed conser-
vation. Gardens have usually held a broad taxonomic range and consequently often a 
limited number of accessions of each species, limiting their effectiveness in the genetic 
conservation. However, major world botanical gardens manage large seed banks (e.g. 
the Millennium Gene Bank managed by the Royal Botanic Gardens at Kew, UK), have 
well managed herbarium collections, are involved in re-introduction programmes and 
have DNA storage facilities (known as DNA banks). The recently funded Svalbard 
Global Seed Vault (Table 3.1) currently preserves 9670 pea accessions, selected from 
several main collections as germplasm backup. Although herbarium and DNA banks 
are relatively of little practical use to conserve diversity, both provide very valuable 
sources to study genetic diversity of crop wild relatives (CWR). Digitization and pub-
lic access of herbarium vouchers allows for the study of morphological traits remotely. 
In the case of wild Pisum as well as its closest allies Vavilovia formosa, such digi-
tized specimen resources exist in the Royal Botanic Gardens at Kew and Edinburgh, 
UK. Both also have good representation of the Eastern Mediterranean and Near East 
(Turkey, Syria, Palestine, Israel) floristic regions. In addition, some valuable col-
lections of Pisum herbarium vouchers are held at Vavilov Institute and Komarov 
Botanical Institute, St. Petersburg, Russia, covering largely the Caucasus and Central 
Asia regions (Smýkal, pers. communication). In addition to botanical gardens, several 
universities, particularly in the Mediterranean region, have useful herbariums. These 
institutions often have the most direct knowledge and access to existing genetic diver-
sity preserved ex situ. Unfortunately there is often an information gap between gene 
banks, botanical gardens and universities.
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3.3.2 Conservation of the Wild Gene Pool

In light of the growing concern over the predicted devastating impact of climate 
change on global biodiversity and food security, coupled with a growing world popu-
lation, taking action to conserve CWR has become an urgent priority. CWR are spe-
cies with a close genetic similarity to crops and many of them have the potential or 
actual ability to contribute beneficial traits to crops, such as resistance to biotic and 
abiotic stresses, besides yielding related characters (Maxted, Shelagh, Ford-Lloyd, 
Dulloo, & Toledo, 2012). There has been no systematic effort to conserve temperate 
crop species in situ either through genetic reserves or on farms. Passive conservation 
of legume species, including pea, exists in several currently protected areas for land-
scape ecosystems in the Mediterranean and Near East regions, which are not intended 
specifically to conserve wild crop relatives. Consequently native legume popula-
tions are susceptible to genetic erosion or even extinction (Maxted, Shelagh, Ford-
Lloyd, Dulloo, & Toledo, 2012). Maxted, van Slageren, and Rihan (1995) was the 
first to proposed establishment of genetic reserves to conserve Vicieae species in situ 
in Syria and Turkey. Three reserves were established within the Global Environment 
Facility project in Turkey (Kaya, Kün, & Güner, 1998). Recently international ini-
tiatives include the Global Environment Facility projects (‘In situ Conservation 
of CWR Through Enhanced Information Management and Field Application’ 
and ‘Design, Testing and Evaluation of Best Practices for in situ Conservation of 
Economically Important Wild Species’), the European Community–funded project 
‘European CWR Diversity Assessment and Conservation Forum (PGR Forum)’, the 
FAO commissioned ‘Establishment of a Global Network for the in situ Conservation 
of CWR: Status and Needs’, the International Union for Conservation of Nature 
(IUCN) Species Survival Commission CWR Specialist Group and the European 
‘In Situ and On-Farm Conservation Network’. The need to address CWR conserva-
tion is also highlighted in international and regional policy instruments, such as the 
Convention on Biological Diversity (CBD), the FAO Global Plan of Action for the 
Conservation and Sustainable Utilization of Plant Genetic Resources for Food and 
Agriculture (PGRFA) (FAO, 1996), the CBD Global Strategy for Plant Conservation, 
the International Treaty on PGRFA, the European Plant Conservation Strategy (Planta 
Europa, 2001), the Global Strategy for CWR Conservation and Use (Heywood, Kell, 
& Maxted, 2008) and most recently the European Strategy for Plant Conservation 
(Planta Europa, 2008). The latter strategy specifically recommends the establishment 
of 25 CWR genetic reserves in Europe and the undertaking of gap analysis of cur-
rent ex situ CWR holdings, followed by filling of diversity gaps. There are a num-
ber of potential approaches to systematic CWR conservation, but each requires the 
precise targeting of CWR diversity that can then be sampled for gene bank storage 
or designation and management as a genetic reserve (Maxted & Kell, 2009). There 
is an extensive literature on gap analysis, which is used to identify areas in which 
selected elements of biodiversity are underrepresented. Maxted, Dulloo, Ford-Lloyd, 
Iriondo, and Jarvis (2008) have adapted the existing methodologies and proposed  
a specific methodology for CWR genetic gap analysis that involves four steps:  
(a) identify priority taxa, (b) identify ecogeographic breadth and complementary 
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hot spots using distribution and environmental data, (c) match current in situ and 
ex situ conservation actions with the ecogeographical data and complementary hot 
spots to identify the gaps and (d) formulate a revised in situ and ex situ conserva-
tion strategy. This methodology has been applied by Maxted and Kell (2009) for 14 
globally important food crop groups including pea. A combined gap analysis was 
undertaken for six legume genera using over 2000 unique georeferenced records; the 
regression analysis undertaken illustrated that none of the countries rich in Pisum 
species can be considered oversampled, with Turkey, the former Soviet Union (par-
ticularly the countries of the Caucasus), Syria, Spain and Greece warranting further  
ex situ collection, as there is a potential for finding additional diversity. In legumes, 
there is considerable evidence for environmental selection pressure on phenologi-
cal traits. Habitats that impose high terminal drought stress select for early flower-
ing and short life cycles as a drought escape mechanism, whereas cool, high rainfall 
habitats select for delayed phenology, allowing more biomass production and sup-
porting a higher reproductive effort. This has been demonstrated in a variety of wild 
and domesticated Mediterranean annuals, including legumes (reviewed in Upadhyaya 
et al., 2011), and confirms that habitat characterization is an essential and useful eco-
physiological tool to explore the mechanisms underlying specific adaptations (Berger 
et al., 2012). A recent Global Environment Facility funded project, ‘Conservation and 
Sustainable Use of Dryland Agrobiodiversity in West Asia’ established two genetic 
reserves in northeast Lebanon at Arsal and Balbak to conserve genetic diversity of 
wild forage legumes, fruit trees, vegetables and cereals. Both sites contain significant 
Cicer, Lathyrus, Lens, Medicago, Pisum and Vicia priority crop species diversity, 
including both P. sativum subspecies and P. fulvum.

3.3.3 Pea Mutant Collections

Pea has a large number of mutant lines, either spontaneous or induced. It has been 
used as a model plant species for experimental morphology and physiology in muta-
genic studies. Numerous morphologically well-described mutants exist, many of them 
being used in genetic mapping. The earliest collection lists 21 pairs of cultivated pea 
lines for contrasting characters covering plant form, foliage, flowers, pods and seeds, 
which were the subject of genetic investigation, held within a collection of 550 culti-
vars (Vilmorin, 1913). Later, Blixt (1972) made a list and linkage group positions of 
169 genes (loci) which occurred spontaneously or were induced. Induced mutagen-
esis has become widespread for the creation of novel genetic variation for selection 
and genetic studies (Blixt, 1972; Lamm, 1951; Lamprecht, 1964) with mutants in 
traits for physiology, chlorophyll, seed, root, shoot, foliage, inflorescence, flowers and 
pods. These genetic analyses contributed to Pisum genus classification. The mutant 
collections have been largely preserved in John Innes Centre (JIC) (585 accessions) 
and Nord Genebank (Blixt & Williams, 1982). Partial duplicates exist at Polish (297) 
and Bulgarian (150 accessions) gene banks (Table 3.1). In addition Murfet and Reid 
(1993) have developed and maintain developmental mutants in Tasmania. There is a 
pea population of 4817 lines newly established by the technique of targeting induced 
local lesions in genomes (TILLING) at Institut National de la Recherche Agronomique 
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(INRA) (Table 3.1). In addition, fast neutron-generated deletion mutant resources 
(around 3000 lines) are available for pea, which have been useful in identifying several 
developmental genes (Hellens et al., 2010; Hofer et al., 2009; Wang et al., 2008).

3.4 Germplasm Characterization and Evaluation

Traditionally germplasm diversity has been assessed by morphological descriptors, 
which remain the only legitimate marker type accepted by the International Union 
for the Protection of New Varieties of Plants. Although morphological traits rep-
resent the action of numerous genes and thus contain high information value, they 
can be unreliable owing to strong environmental influence on traits with low herit-
ability. Several studies using morphological descriptors and agronomic traits have 
been published (Ali, Qureshi, Ali, Gulzar, & Nisar, 2007; Azmat, Ali Khan, Asif, 
Muhammad, & Shahid, 2012; Cupic et al., 2009; Sardana, Mahajan, Gautam, & Ram, 
2007; Sarikamiş, Yanmaz, Ermiş, Bakır, & Yüksel, 2010; Smýkal, Hýbl, et al., 2008). 
As expected a number of traits were found to be strongly correlated, and as a result 
fewer traits were sufficient for evaluating morphological diversity. Principal compo-
nent analysis is used to select characteristics to capture the most variability using the 
lowest number of descriptors. Finally, the morphological characteristics are loaded 
into dummy variables and clustered using various coefficients to reveal germplasm 
structures. In contrast, molecular markers accurately represent the underlying genetic 
variation and now dominate the genetic diversity.

Development of new genomic technologies has increased during the last decade, 
providing previously unforeseen strategies for crop breeding. Countless DNA poly-
morphisms are present among a set of varied genotypes, which can then be custom-
ized into user-friendly molecular markers. Different techniques exploit nucleotide 
polymorphisms that arise from different classes of mutation, such as substitution (point 
mutations), rearrangement (insertions or deletions) or error in replications of tandem-
repeat DNA. Adaptation to breeder-friendly markers has relied on polymerase chain 
reaction (PCR)-based microsatellites or single-nucleotide polymorphism (SNP) mark-
ers because they can be easily employed in cost-effective genotyping of large segregat-
ing populations and germplasm collections (reviewed in Smýkal et al., 2012). For the 
analysis of pea diversity, simple sequence repeats (SSRs or microsatellites) have been 
popular because of their high polymorphism and information content, codominance 
and reproducibility (Baranger et al., 2004; Loridon et al., 2005; Smýkal, Hýbl, et al., 
2008; Zong et  al., 2009). More recently, expressed sequence tag (EST)-derived sim-
ple sequence repeat (eSSR) markers have become an important resource for gene dis-
covery and comparative mapping studies (DeCaire, Coyne, Brumett, & Schultz, 2012; 
Mishra, Gangadhar, Nookaraju, Kumar, & Park, 2012). Alternately, highly abundant 
retrotransposon repeats have been used to reveal diversity, first applied in fingerprint-
ing format of SSAP (Ellis et  al., 1998; Vershinin et  al., 2003) and developed into a 
high-throughput locus-specific genotyping technology based on insertion/deletion of 
Ty1-copia PDR1 element and used for phylogeny and genetic relationship studies, pro-
viding a highly specific, reproducible and easily scorable method (Jing et  al., 2007, 
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2010; Smýkal, Hýbl, et al., 2008; Smýkal et al., 2011). Another class of highly abun-
dant Angela family was identified and used for inter retrotransposon amplified poly-
morphism fingerprinting (Smýkal, 2006; Smýkal, Kalendar, Ford, Macas, & Griga, 
2009). Using these markers, several major world pea germplasm collections have 
been analysed (Cupic et al., 2009; Jing et al., 2005, 2007, 2010; Majeed et al., 2012; 
Martin-Sanz, Caminero, Jing, Flavell, & Perez de la Vega, 2011; Nasiri et al., 2010; 
Sarikamis et al., 2010; Smýkal, Hýbl, 2008, 2011; Zong et al., 2009). The use of ret-
rotransposon insertions for large-scale pea diversity analysis showed good agreement 
with SNPs in 49 genes and SSAP studies (Jing et al., 2007). It was further shown that 
both SSRs and retrotransposon-based insertion polymorphisms (RBIPs) have simi-
larly high polymorphism information content and offer comparable diversity meas-
urements in diversity surveys at the species level (Smýkal, Hýbl, et  al., 2008). This 
was an important finding, as SSRs, in spite of multiple alleles detection, are more dif-
ficult to transfer between labs, while essentially binary RBIPs are simpler. Moreover, 
microsatellites (SSRs) display a much higher mutation rate than the nucleotide sub-
stitution rate (Cieslarová, Hanáček, Fialová, Hýbl, & Smýkal, 2011) and therefore 
suffer from homoplasy (the state when identical alleles have arisen by two or more 
different pathways of descent) in widely diverse material (Ellis, 2011; Smýkal et al., 
2011). Although SSR and RBIP marker types are widespread now, their potential is at 
its limits. With advances in model legume sequencing and genomic knowledge, there 
is a switch to gene-based markers in pea (Aubert et al., 2006; Jing et al., 2007). This 
trend can be expected to further proliferate in line with rapid advances in high-through-
put SNP generation and detection assays (Bordat et  al., 2011; Deulvot et  al., 2010). 
Functionally associated markers (i.e. cDNA/EST) have been developed to uncover and 
tag candidate genes and gene pathways underpinning desirable traits. This has most 
recently been expanded to include whole genome transcriptome analysis. With the 
advent of next-generation sequencing technologies, it will be possible to transfer this 
technology to species with relatively large genomes such as pea. The initial set of pea 
ESTs was developed (Gilpin, McCallum, Frew, & Timmerman-Vaughan, 1997; Künne 
et al., 2005; Liang et al., 2009) and recently a comprehensive transcriptome of pea was 
published (Franssen, Shrestha, Bräutigam, Bornberg-Bauer, & Weber, 2011). Several 
high-throughput pea transcriptome sequencing projects are underway and should pro-
vide a complete set of pea genes. Based on this, a custom 384-SNP array was devel-
oped and used in pea genotypic diversity surveys and mapping (Deulvot et al., 2010). 
In comparison to retrotransposon and microsatellite markers, the rate of SNP marker 
discovery is almost unlimited as sequence data from 80 gene amplicons totalling about 
63.2 kb of sequence in five pea genotypes identified a total of 669 SNP and 84 indels 
(Aubert et al., 2006; Deulvot et al., 2010). On average, one SNP per 94 bp was detected 
(i.e. one in 165 bp in coding regions and one in 60 bp in noncoding regions) (Jing 
et al., 2007). The set of SNP markers using Illumina Veracode genotyping technology 
was used to construct a consensus map which includes 244 SNP markers and placed 
5460 pea unigenes on the consensus map (Bordat et al., 2011). In summary most of 
this knowledge has been applied to characterize the distribution of genetic diversity in 
Pisum (Baranger et al., 2004; Ellis et al., 1998; Jing et al., 2005, 2007, 2010; Majeed 
et  al., 2012; Martin-Sanz et  al., 2011; Pearce et  al., 2000; Sarikamiş et  al., 2010; 
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Smýkal, Hýbl, et al., 2008; Smýkal et al., 2011; Tar’an, Zhang, Warkentin, Tullu, & 
Vandenberg, 2005; Vershinin et  al., 2003; Zong et  al., 2008, 2009) and these give a 
consistent view.

In spite of being a rather small genus with two or three species, Pisum is very 
diverse and its diversity is structured, showing a range of degrees of relatedness that 
reflect taxonomic identifiers, ecogeography and breeding gene pools (Ellis, 2011; 
Smýkal et al., 2011). Upon diversity analysis several core collections were formed, as 
well as trait-focussed cores (Upadhyaya et al., 2011). Recently, joint analysis of several 
large collections by RBIP markers was undertaken (Smýkal et  al., 2011; Jing et  al., 
2010). However, Bayesian Analysis of Population Structure (BAPS) provided posterior 
assignments for K=2–14. Notably, all wild peas (P. fulvum, P. sativum subsp. elatius 
and P. abyssinicum) separated in one cluster, together with accessions of Afghan origin 
(Figure 3.3). Another cluster contained a large proportion of P. sativum subsp. sativum 
accessions of Ethiopian origin. One hundred and forty accessions of Chinese origin 
were distributed more broadly into 7–8 clusters.

It was proposed that the distinct differentiation of the Chinese P. sativum geno-
types may in part reflect the historic isolation of agriculture in eastern Asia from that in 
southern Asia, Europe and northern Africa (Zong et al., 2009). Three relatively distinct 
gene pools of Chinese pea landraces have been differentiated and formed under natural 
and artificial selections. Gene Pool I is typically represented with resources in Inner 
Mongolia and Shaanxi in the north central cropping area boundary of China. Gene 
Pool II comprises landraces from Henan, which is the most northerly and coldest irri-
gated area of winter sowing. Gene Pool III includes the majority of Chinese landraces. 
Resources in this gene pool distribute widely in the large neighbouring cultivated 
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Figure 3.3 Bayesian analysis of population structure partitioning of 5641 pea accessions 
analysed by RBIP loci: (A) 346 wild forms (P. fulvum, P. sativum subsp. elatius, P. abyssinicum), 
(B) 231 accessions of Afghan–Pakistan origin (cultigen) and (C) 165 accessions of Chinese 
origin (cultigen). 
Source: Re-analysed from Smýkal et al. (2011).
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areas, especially in the west and south of China. The distinct differentiation of the three 
gene pools within the Chinese P. sativum genotypes may in part reflect a historic isola-
tion of agriculture between northern and southern China, especially in rain-fed agricul-
ture systems in mountain areas (Zong et al., 2009). The remaining clusters contained 
all cultivated material plus a set of mutant lines.

Recently, the analysis was complemented with addition of further 1518 Pisum 
accessions selected from other major European collections leading to identification 
of further diversity and formulation of the core collection. These results showed that 
wide diversity is captured in cultivated material (Figure 3.3); however, it is possible 
to broaden diversity using wild genotypes, which are often a source for various resist-
ances and exotic traits. Multivariate analysis revealed close genetic relationships within 
cultivated materials, especially modern varieties and breeding lines, while wild mate-
rial provides much of the Pisum genus diversity (Smýkal et al., 2011). Heterogeneity 
is often found within landrace accessions at individual collection sites, which is vulner-
able to genetic erosion due to the small population size per accession and genetic drift 
during regeneration (Cieslarová et al., 2010). Taken together, as in many other inbreed-
ing crops, relatively few genotypes with a high degree of relatedness have been used 
as parents in modern pea breeding programmes, leading to a narrow genetic base of 
cultivated germplasm (Ellis, 2011; Jing et al., 2010; Smýkal et al., 2011).

There are several current efforts to make either genome-wide introgression lines or 
at least simple crosses with the intent of broadening the genetic base. Further inves-
tigations, particularly in the wild Pisum sativum subs. elatius gene pool, are of great 
practical interest. Available molecular DNA methods will allow breeders to avoid the 
linkage drag from wild relatives and make wide crosses more practical and successful.

3.4.1 Sources of Resistance to Abiotic and Biotic Stresses

3.4.1.1 Abiotic Stress

One of the most important abiotic stresses is drought, which can be partly over-
come by manipulation of flowering time, for example to escape the dry period 
which is associated with summer. As mentioned in the developmental genetics sec-
tion, flowering time has been long studied in pea (Murfet & Reid, 1993). In con-
trast, a longer growing season or prolonged rainfall require a longer flowering time 
to ensure proper response. P. sativum subsp. elatius and a subset of pea landraces 
and winter cultivars do not flower at all under short photoperiods, but there is genetic 
diversity for photoperiod requirement in cultivated lines. Up to 10 loci contribute to 
variation related to flowering in pea, with cultivated alleles generally conferring ear-
lier flowering and a reduction in photoperiod response. For practical purposes, the 
genotype Lf Sn hr has been adopted arbitrarily as the ‘wild-type’ genotype (Hecht 
et  al., 2007; Murfet & Reid, 1993; Weller et  al., 2009). Lf was the first pea flow-
ering locus to be cloned and identified as a homolog of the Arabidopsis inflores-
cence identity gene TFL1. However, identification of functional changes in naturally 
occurring variants at Lf across Pisum germplasm has not been documented (Foucher 
et  al., 2003). A ‘functional candidate’ approach has also been used to clone the 
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photoperiod response locus Hr, a major locus controlling flowering time, with reces-
sive hr alleles causing reduction, but not complete loss, of the response to photo-
period (Murfet, 1973). A single functional variant is widespread in pea germplasm 
and likely to underlie many of the flowering time QTL identified in this region of 
LG III. Naturally occurring recessive alleles at Sn locus confer early flowering and 
completely eliminate the photoperiod response, but have a restricted distribution 
within cultivated pea germplasm and may have arisen within a spring (hr) back-
ground. The dominant allele of Hr locus was found in a set of forage cultivars, which 
remain vegetative until a threshold day length of 13 h 30 min is reached. Moreover, 
the flowering allele Hr enhances the capacity of pea photoperiodic lines to produce 
basal laterals, which is often found in primitive accessions of Pisum sativum, P. sati-
vum subsp. elatius and P. fulvum. Cold tolerance has been an important trait in many 
countries with climate suitable for autumn-sown (winter types) pea, such as Western 
Europe. Cold (frost) resistance has been shown to be associated with long photoperi-
odic requirement, in order to delay the switch of vegetative to reproductive meristem 
status until after winter (Lejeune-Henaut et al., 2008). Li, Redden, Zong, Berger, and 
Bennett (2012) used ecogeographical climatic characterization of 240 collection sites 
for 529 pea landraces in China to identify locations with long-term abiotic stresses, 
especially during the reproductive growth phase. This enabled 61 candidate acces-
sions from these stress sites to be prioritized for phenotypic validation to confirm tol-
erances to frost, drought and to high temperatures. ICARDA has also had collection 
missions, which included high elevation sites in Kyrgyzstan, Tajikistan, Georgia and 
Armenia, where peas and other crop landraces were collected. Accessions from these 
locations could also be usefully investigated for potential frost tolerance. An ecogeo-
graphical analysis of collection sites could lead to efficiency in targeting of regions 
for collection of stress-tolerant landraces and of stress-tolerant CWR. Eleven popu-
lations of pea from the ICARDA Pea Germplasm Collection, comprising landraces 
from Mongolia, Poland, Haiti, Uganda, Spain, Eritrea, Colombia, Turkey, Denmark, 
Canada and Estonia were assessed for lethal temperatures (42 to 44°C) and resulted 
in highly significant differences among groups (Mourão, Freitas, Brito, Queiroz, & 
Ferreira, 2010). However, two of the tolerant varieties, Rondo and Progress, did not 
have heat tolerance under sustained exposure in the field in the spring of southern 
Australia. Genetic variation to soil constraints, such as salinity and alkaline/acid-
ity, has been tested in pea (Leonforte, Forster, Redden, Nicolas, & Salisbury, 2012;  
B. Redden, Leonforte, Ford, Croser, & Slattery, 2005), and salinity-tolerant acces-
sions have been identified from Greece and Sha’anxi province in China. These two 
regions were hot spots for the occurrence of salinity tolerance. Sha’anxi was one of 
the first Chinese provinces to develop irrigation systems over 2000 years ago, pos-
sibly leading to areas of soil salinity, but it is not clear why high levels of salin-
ity tolerance are associated with Greece in contrast to other regions with irrigated 
agriculture. As an important but largely neglected factor influencing tolerance to 
suboptimal soil conditions, including drought, root architecture has been carefully 
studied on 330 pea accessions of the USDA core collection, showing large variation 
(McPhee, 2005). PI 261631, an accession from Spain, produced the greatest total 
root length and volume, as well as highest root: shoot weight ratio.
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3.4.1.2 Biotic Stresses

Pea is also adversely affected by a number of fungal, viral and bacterial diseases 
and pests. Although some germplasm collections have been analysed by disease 
and pest occurrence, few examples of systematic testing and further use of resist-
ant/tolerant genotypes have been reported. Such information would be very valuable 
for pea breeding and as such would be best provided in online database descriptors. 
There are several examples of germplasm-wide evaluation for various diseases. A 
set of 474 pea accessions in the Vavilov Institute originating from 28 countries was 
evaluated for morphological and agronomic traits at ICARDA, Syria. To screen pea 
cultivars for resistance to Mycosphaerella blight diseases under field conditions, the 
harvested pea seeds were transferred to Ethiopia, where the disease is endemic. Out 
of 581 lines evaluated, 56 lines were recorded as being promising: 16 possessed good 
agronomic merit, 40 lines with moderate infection levels (scored less than 2.5) were 
recorded as resistant and 17 of these also displayed good agronomic potential, origi-
nating from 10 countries (Priliouk et al., 1999). Another set of 242 Pisum accessions 
largely of Spanish origin were screened for resistance to Pseudomonas syringae pv. 
pisi under controlled conditions. Resistance was found to all races, including race 6 
and the recently described race 8. Fifty-eight accessions were further tested for resist-
ance to P. syringae pv. syringae under controlled conditions, with some highly resistant 
accessions identified (Martín-Sanz, Pérez de la Vega, & Caminero, 2012). Three hun-
dred seventeen accessions largely Pakistanian and Afghan origin have been screened 
for resistance to Erysiphe polygoni or E. pisi, and six genotypes were found highly 
resistant (Ali et al., 2007; Azmat et al., 2012). In case of pea powdery mildew resist-
ance, current cultivars rely on the presence of recessive gene er1, which was first 
reported through screening of germplasm collected in the town of Huancabamba, in 
the northern Peruvian Andes. The er1 locus has been mapped and to aid selection in 
breeding programmes, several molecular markers linked to the er1 locus were devel-
oped (reviewed in Smýkal et al., 2012). Recently, the underlying gene has been identi-
fied (Pavan et al., 2011) using a mutant screen. It would be interesting to conduct allele 
mining in a wider collection of pea germplasm to examine the natural allele diversity 
of this gene. New sources of partial resistance to Fusarium root rot have been identi-
fied in Pisum sativum subsp. elatius var. pumilio (Hance, Grey, & Weeden, 2004) and 
in three out of 44 accessions from the Pisum core collection (Porter, 2010) originating 
from Iran (PI 227258), Ethiopia (PI 226561) and India (PI 175226). Australian culti-
vars and breeding lines were screened for resistance to downy mildew (Perenospora 
viciae) and powdery mildew; of 88 lines tested, 14 displayed good resistance to both 
pathogens (Davidson, Krysinska-Kaczmarek, Kimber, & Ramsey, 2004). One hun-
dred sixty-nine diverse pea germplasm accessions were characterized for agronomic 
performance, Mycosphaerella blight resistance and nutritional profile (Jha, Arganosa, 
Tar’an, Diederichsen, & Warkentin, 2012). Field screening of 165 accessions for resist-
ance to major insect pests, i.e. pea stem fly (Melanagromyza phaseoli), pea leaf miner 
(Chromatomyia horticola) and pod borer (Helicoverpa armigera), was carried out in 
India and 18 accessions were identified with higher resistance to given pests (Mittal 
& Ujagir, 2005). Resistance to viruses has been studied in wider germplasm and 
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sources were found in primitive landraces originating from Iran, Afghanistan, India 
or Ethiopia. Similarly, recessive resistance to pea seed-borne mosaic virus (PSbMV) 
has been identified by Hagedorn and Gritton (1973) in two Ethiopian lines (PI 193586 
and PI 193835), in several accessions from India and was subsequently introduced into 
modern cultivars. The respective gene eIF4E has been identified (Smýkal, Šafárová, 
Navrátil, & Dostálová, 2010) and several allelic variants found while screening germ-
plasm. A study is underway to test germplasm with virological tests as well as to find 
further variation in the broader gene pool (Smýkal, unpublished results).

3.4.1.3 Resistance to Biotic and Abiotic Stresses in the Wild Gene Pool

After the resistance to pea weevil was identified in P. fulvum (Hardie, Baker, & 
Marshall, 1995), with a pod and seed resistance mechanism being implicated 
(Clement, Hardie, & Elberson, 2002), it was attempted to introduce it into cultivated 
pea. Crosses were used to transfer the powdery mildew (Fondevilla, Torres, Moreno, 
& Rubiales, 2007) and bruchid (Byrne, Hardie, Khan, & Yan, 2008) resistances from 
Pisum fulvum into cultivated pea as well as incorporation of PSbMV and Fusarium 
resistances from primitive landraces (McPhee, Tullu, Kraft, & Muehlbauer, 1999; 
Provvidenti, 1990; Provvidenti & Alconero, 1988). The value of wild crop relatives has 
been illustrated by novel Er3 gene, conferring dominant resistance to E. pisi, identi-
fied in Pisum fulvum (Fondevilla et al., 2008). Similarly, Pisum fulvum has been found 
to provide resistance to bruchids (Byrne et  al., 2008; Clement, McPhee, Elberson, 
and Evans 2009) and both traits could be introgressed in cultivated pea germplasm. 
Resistances to Mycosphaerella pinodes and Orobanche crenata have been identified in 
some P. fulvum accessions and crossed into cultivated pea (Fondevilla, ÅVila, Cubero, 
& Rubiales 2005; Rubiales, Moreno, & Sillero 2005). Valuable resistance can be found 
in Lathyrus species of the tertiary pea gene pool (Vaz Patto, Fernández-Aparicio, 
Moral, & Rubiales 2007; Vaz Patto & Rubiales, 2009). However it is difficult to intro-
duce this by conventional method including in vitro culture, embryo rescue or proto-
plast fusion (Ochatt et al., 2004); moreover, it is not known if such resistance is due 
to pathogen–host specialization. The use of wide crosses to source key traits results in 
breeding difficulties as wild-type traits are introduced and crop productivity requires 
many years to be restored by backcrosses. As shown by Byrne (2005), two backcrosses 
are sufficient to restore much of the seed and plant architecture (pod, branching, flow-
ering time), while maintaining a desired introgressed trait.

3.5 Germplasm Maintenance

3.5.1 Pea Core Collections

Core collections can also be focused on particular traits, according to the breed-
ing objectives. One of the greatest variables in this process is the choice of method 
to assess genetic differences among individuals within the wider materials. Once 
established, cores may be screened for traits such as disease reactions and adaptation 
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to new environments and thus to direct germplasm users toward sections of the entire 
 collection for further in-depth assessment (Upadhyaya et al., 2011). Also, cores may 
be used to highlight specific geographic areas for deeper trait mining. Recently devel-
oped Core Hunter software specifically dedicated to addressing the issue of selection 
of accessions into representative core collections of various sizes and based on differ-
ent selection criteria has been applied to establish a European pea core collection based 
on 3020 JIC pea accessions (containing 1200 P. sativum cultivars, 600 traditional lan-
draces and 750 wild Pisum samples, together with genetic stocks and reference lines 
from other collections) previously analysed by Jing et  al. (2010), with an additional 
1518 Pisum accessions selected from other major European collections (Jing et  al., 
2010). This analysis led to the identification of novel genetic materials from north-
ern Pakistan originating from Centre for Genetic Resources (CGN) germplasm (the 
Netherlands) as well as diverse P. abyssinicum accessions from a Polish germplasm 
collection. With the addition of a mini-core collection of pea landraces from China, 
Smýkal et al. (2011) applied BAPS analysis to demonstrate that this added new diver-
sity to Pisum; they also applied two approaches to identify subsets of accessions that 
represent the genetic diversity present in the germplasm. The first combined structural 
and multifactorial analysis. Six accessions strongly assigned to each of these 23 clus-
ters were selected for their high corresponding Q values (corresponding to 138 acces-
sions). These were augmented with the 7 outliers in the multifactorial plot discussed to 
maximize the represented diversity, giving 141 accessions. The second approach used 
the Core Hunter programme (Thachuk et al., 2009), which identified subsets of repre-
sentative accessions on the basis of maximizing average genetic distance. This resulted 
in core collections of size 5%, 10%, 20% and 30% of the original. These selections 
generally overrepresent rare alleles, and a tendency to equalize allele frequencies 
would be expected for methods sampling distinct haplotypes equally. Further improve-
ment to the Core Hunter algorithm has led to the development of an advanced Mixed 
Replica Search algorithm, using minimum (instead of the default mean) distance meas-
ures and simpler heuristics (De Beukelaer, Smykal, Davenport, & Fack, 2012). Further 
work is needed to test and adapt these methods also for phenotypic data.

3.5.2 Genetic Resource Databases

To be able effectively to exploit conserved diversity, it is crucial to know what diver-
sity exists for traits and where it is conserved. There is currently no single universal 
database resource providing worldwide representation for a given crop, including pea 
(Smýkal, Coyne, et al., 2008; Smýkal et al., 2011). However there are several well-
maintained international collection databases which possess information also for 
pea, such as European Cooperative Programme on Plant Genetic Resources, Genetic 
Resources Information Network and Systemwide Information Network for Genetic 
Resources databases. All together, these databases provide information on around 
two million accessions. The deposition and availability of molecular, agronomic and 
morphological trait data is a very critical issue. So far, data held at the national level 
has not been broadly accessible. Searchable databases are indispensable tools for the 
principal clients of gene banks, plant breeders and germplasm enhancement scientists, 
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to search for accessions that meet multitrait criteria such as disease resistance, seed 
weight and grain yield expressions, or even the accessions originating from various 
environments (Lee et  al., 2005). Combining passport, morphological and genotypic 
data of many gene banks will both improve germplasm management and enable 
search/query data exploration for germplasm with multiple traits from a virtual world 
pea collection online (Furman, Ambrose, Coyne, & Redden, 2006; Smýkal, Coyne, 
et  al., 2008; Smýkal et  al., 2011). The value of a gene bank depends on the repre-
sentation of diversity in the species, its characterization for agricultural phenotypes 
and on identification of interesting genes and alleles. Initially only core collections 
are expected to be fully characterized phenotypically and genetically, but a long-term 
goal will be the detailed characterization of germplasm diversity. Inadvertent dupli-
cation of effort can be avoided with full documentation of synonyms of accessions 
and the pathways for sharing germplasm among gene banks. Sharing characterization 
data worldwide maximizes the benefit for all and spreads the cost, provided there is 
agreement on the technology for genotypic characterization and on comparable pro-
tocols for phenotyping. A coordinated effort to characterize germplasm collections 
could be achieved through an international consortium for pea genetic resources, and 
advanced analytical methods allowing three-way testing of diversity of genotypes, 
locations and quantitative traits to provide dynamic characterization of genotypic and 
phenotypic diversity in a molecular/ecogeographic diversity core collection for pea, 
as has been achieved for an azuki bean (Vigna angularis) core collection from China 
(R. J. Redden, Kroonenberg, & Basford, 2012). This approach could be used to study 
adaptation in pea across a range of different ecological locations of countries from the 
Middle East across Central Asia, where pea is a significant crop.

3.5.3 Bioinformatics of Germplasm Evaluation Data Sets

Improvements in marker methods have been accompanied by refinements in compu-
tational methods to convert original data into useful representations of diversity and 
genetic structure. Initial distance-based methods have been challenged by model-
based Bayesian approaches (Beaumont & Rannala, 2004). Incorporation of probabil-
ity, measures of support, accommodation of complex models, and various data types 
make them more attractive and powerful. The utility and complementarity of these 
approaches has been shown (Corander, Waldmann, Marttinen, & Sillanpää 2004; 
Rosenberg, 2002; Smýkal, Hýbl, et al., 2008). While additional computing is needed 
to provide support for distance-based clustering, all these parameters are directly pro-
vided by model-based approaches (Corander et al., 2004; Rosenberg 2002). Another 
very important issue favoring Bayesian approaches is the incorporation and combi-
nation of different data types (Corander, Gyllenberg, & Koski, 2007; Corander & 
Martiinen, 2006; Smýkal, Hýbl, et al., 2008; Smýkal et al., 2011). An agreed inter-
national core set for genetic diversity would provide a useful and powerful resource 
for next-generation markers such as SNPs or whole genome sequencing (WGS) and, 
more importantly, for phenotypic analysis of agronomic traits. The molecularly ana-
lysed major world pea collections and formulated core collections (Table 3.1) might 
act as toolkits for association mapping, a strategy to gain insight into genes and 
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genomic regions underlying desired traits. Recent advances in genomic technology, 
the impetus to exploit natural diversity, and development of robust statistical analysis 
methods make association mapping affordable to pea research programmes (reviewed 
in Smýkal et al., 2012). The ability to map QTLs in collections of breeding lines, lan-
draces or samples from natural populations has potential for future trait improvement 
and germplasm security. The choice of germplasm, extent of genome-wide linkage 
disequilibrium (LD) and relatedness within the population determine the mapping 
resolution, which together with marker density and statistical methods are critical to 
the success of association analysis. Estimates of the rate of LD decay in pea within 
progressively more distantly related accessions tentatively suggest high LD among 
cultivars (Jing et  al., 2007), comparable to rice and maize. This estimate should be 
considered preliminary, but would imply that a greater number of SNPs than cur-
rently available might be required for effective genome-wide association mapping and 
marker-assisted breeding.

With a wide range of approaches now available for genotyping and declining cost 
for WGS, the greatest limitation for gene banks is precise phenotyping, not only for 
descriptive traits, but agriculturally relevant quantitative traits relating to expression of 
yield, crop growth and disease resistance. To increase precision, a single seed should 
be used for self-pollination to provide genetically uniform progeny for genotypic and 
phenotypic analysis. The genetic diversity within landrace accessions is purposely 
neglected, but hopefully compensated for by a wide survey across germplasm diversity. 
This level of precision is desirable if the key alleles of genes for important agronomic 
traits are to be identified, but broad characterization of diversity in pea germplasm can 
be based on a pooled DNA sample and phenotyping done on the bulked landrace mix-
ture. Quantitative trait and disease resistance characterization has generally been done 
in field nurseries and for only one year. Multi-environment analysis of quantitative var-
iation involving multitrait evaluation is far more informative than a single environment 
trial and potentially provides some prediction for performance in other environments 
(Redden et al., 2012). The challenge for gene bank curators is to strategically sample 
collections and maximize information from costly evaluation trials. One approach is to 
use core collections, geographically sub-sampled or sampled using molecular marker 
diversity to characterize species diversity, or to sample based on priority traits. This has 
led to using climatic site descriptors for characterization of natural selection and hence 
abiotic stress response and to provide lists of prospective germplasm with potential tol-
erances to heat, frost and drought stresses (Li et al., 2012). Differential sets of germ-
plasm with specific responses to races of pathogen also can be tested with germplasm 
collections either in controlled inoculations or in different field locations, to evaluate 
genetic diversity for disease resistance.

3.6 Limitations in Germplasm Use

Vast Pisum germplasm collections are accessible (Table 3.1), but their use for 
crop improvement is limited, since accessing genetic diversity is still a challenge. 
Unfortunately, efficient extraction and exploitation of the adaptive variation and 
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valuable traits maintained in gene banks has yet to be fully achieved, though it 
remains a high priority of gene bank managers (Glaszmann, Kilian, Upadhyaya, & 
Varshney, 2010). Traditional methods, which screen large, heterogeneous collections 
for phenotypic variation in agricultural traits, are not only logistically challenging, but 
they may overlook valuable genotypic variation concealed by epistasis in non-elite 
genetic backgrounds (Tanksley & McCouch, 1997). The core collection, a represent-
ative subset of the complete collection that has been optimized to contain maximal 
diversity in a minimal number of accessions, has been the primary solution proposed 
for facilitating the utilization of diverse germplasm collections (Frankel & Brown, 
1984; Brown & Spillane, 1999) as well as trait core collections (Li Ling et al., 2013). 
As suggested also for pea (Smýkal et  al., 2008b), implementing the core collection 
concept through ‘core reference sets’ would allow orchestrated and cost-efficient gen-
otyping as well as integration of extensive phenotypic assessment (Glaszmann et al., 
2010; Upadhyaya et al., 2011). This approach was applied to several grain legumes, 
namely chickpea, pigeon pea, and lentil, by the Generation Challenge Programme 
(GCP) (Upadhyaya et al., 2011). The potential improvement in screening efficiency 
offered by the core collection concept to conventional breeding is equally applicable 
to modern allele mining efforts (Reeves, Panella, & Richards, 2012) to recover use-
ful adaptations from gene banks. Agronomic loci have been identified using a vari-
ety of approaches including mutant screens, QTL analysis, association mapping, and 
genome-wide surveys for the signature of artificial selection. Novel alleles recovered 
at loci of agronomic importance can be integrated into crop breeding programmes 
using conventional or molecular approaches and might be utilized to combat disease, 
to promote yield increases, to produce better storage and nutritional properties, or to 
improve stress tolerance (reviewed in Reeves et al., 2012).

The success of allele mining is dependent on the availability of diverse germplasm 
collections. The majority of allelic variation at any given locus is predicted to occur in 
the wild relatives of a crop and not the crop itself, due to the inevitable loss of varia-
tion at the domestication bottleneck, as shown in numerous recent studies. However, 
utilization of diversity and of trait-specific core collections should accelerate the 
extraction of beneficial adaptations from gene banks by making the exploration of 
large germplasm collections for novel alleles more efficient. Inexpensive genotyping 
has made marker-based core collection optimization popular. New DNA sequenc-
ing and genotyping technologies provide the power to interrogate thousands to mil-
lions of diagnostic polymorphisms, across hundreds to thousands of genotypes, thus 
facilitating the analysis of genetic structure and providing a rational basis to identify 
and select among genotypes. Another form of molecular characterization is allele re-
sequencing in diverse materials, as documented recently in pea flower colour A gene 
(Hellens et al., 2010).

Further, ecogeographical information concerning the materials (ideally included 
in the passport information in germplasm banks, but largely missing) is essen-
tial for locating and identifying unique variants for specific adaptation. Such infor-
mation might be effectively used to uncover alleles of gene of interest through the 
Focused Identification of Germplasm Strategy (FIGS) (Bari et al., 2011). It is likely 
that renewed sampling outside of existing pea collections will still be necessary. The 
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adaptive potential of these materials can also be grasped through accurate description 
of their environments of origin. The availability and quality of ecogeographical/pass-
port information will be the key to a more ecological approach to germplasm manage-
ment (Li Ling et al., 2013).

3.7 Germplasm Enhancement Through Wide Crosses

Plant breeders have tried to use interspecific crosses in the Leguminosae to increase the 
size and diversity of the gene pool. Wide intergeneric legume hybrids have been criti-
cally reviewed by McComb (1975), who concluded that there is insufficient evidence 
for all reported crosses, due to misleading paper titles, confusion of vegetative with 
generic hybrids, the occurrence of patrocliny, and very often misplaced generic bound-
aries. Sobolev and Bugrii (1970), Sobolev, Agarkova, and Adamchuk (1971a, 197lb) 
reported hybrids between Vicia faba and pea with chromosome numbers between 
2n=12 and 16. The most common type, 2n=14, had four satellite chromosomes as in 
the pea karyotype. The non-homologous chromosomes of peas and faba beans formed 
bivalents, which separated to give two groups; Fl hybrids had low fertility and segre-
gated sterile forms. This result is doubtful today in light of unsuccessful hybridiza-
tion attempts between V. faba and any of its closest relatives such as V. narbonesis, 
V. johannies and V. paucijuga. In contrast, a well-documented example of successful 
intergeneric cross has been reported by Golubev (1990) between Vavilovia formosa 
and P. sativum. The hybridization of maternal V. formosa × paternal P. sativum was 
successful, resulting in several normally developed F1 seeds. However, only one pro-
duced a hybrid plant. This plant had several stems, or basal branches, with long inter-
nodes and none of the lateral branches typical for Vavilovia. Its leaves were compound, 
with one pair of leaflets and, instead of the rachis present in Vavilovia, a third and 
smaller leaflet, resembling the trifoliate leaves of Medicago or Trifolium species. This, 
the one and only ever received F1 plant, eventually withered due to chlorosis. However 
a reciprocal combination of maternal P. sativum × paternal V. formosa also resulted 
in one F1 hybrid plant which had much greater height in comparison to both pea and 
Vavilovia and numerous basal and lateral branches. Flowers and pods were produced, 
but the F2 seeds either aborted or remained immature (Golubev, 1990). According to 
unpublished data based upon personal communication from Golubev, the hybridization 
between Vavilovia and its closest relatives, such as P. fulvum, is possible if Vavilovia 
is used as the male parent (Mikič et al., 2009; Akopian et al., 2010). Considering the 
perenniality and winter hardiness of Vavilovia, such an interspecific hybrid could be 
of practical importance. Ochatt et al. (2004) confirmed the strong cross-incompatibil-
ity existing between P. sativum and L. sativus as first described by Campbell (1997), 
while successful although low fertility hybrids were obtained between P. sativum and 
P. fulvum, similarly to Errico, Conicella, De Martino, Ercolano, and Monti (1996). 
Durieu and Ochatt (2000) have also tested protoplast fusion and regeneration of calli 
between pea and Lathyrus. Although the heterokaryons were detected and up to six cell 
divisions were observed, no further growth or plant regeneration could be achieved. 
Although not aimed specifically to produce hybrids for further study, pioneering 
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work of Ben-Ze’ev and Zohary (1973) on crosses among different Pisum species 
and subspecies has not only contributed to taxonomy but also can be considered as 
a first attempt at wider hybridization. Some hybridization barriers were indicated, as 
between some genotypes of ‘P. humile’ there were five bivalents and one quadriva-
lent in meiosis (instead of the normal seven bivalents), indicating translocation differ-
ence. Similarly hybrids between genotypes of ‘P. humile’ and P. sativum subsp. elatius, 
and between ‘P. humile’ and P. sativum, either showed seven bivalents or indicated 
a translocation. Importantly, the F1 hybrids of these crosses were highly fertile and 
produced seeds. Contrary to this, crosses of P. fulvum with P. sativum subsp. elatius,  
‘P. humile’ and P. sativum produced seeds only when P. fulvum was a male parent. The 
F1 hybrids showed a reduction in chiasmata formation, with common univalent and 
multivalents. The hybrids were semi-sterile and produced few seeds. The karyotype of 
P. fulvum differed considerably from the other three taxa (Ben-Ze’ev & Zohary, 1973). 
The synthesis of exotic libraries, such as introgression lines (ILs) and near isogenic 
lines, containing chromosome segments defined by molecular markers from wild spe-
cies in a constant genetic background of the related cultivated species has made the 
use of alien genomes more precise and efficient. Such an approach was pioneered on 
tomato and rice (Gur and Zamir, 2004; McCouch, 2004; Zamir, 2001), and it clearly 
has the potential for genetic improvement of most crop plants from incorporation of 
traits from related wild species and other exotic germplasm sources. Development 
of backcross recombinant inbred lines containing chromosome segments of wild pea  
(P. fulvum WL2140) genome in cultivated pea (P. sativum WL1238 or cv. Terno) 
genetic background defined by molecular markers is currently performed by Smýkal 
and Kosterin (2010). An identical approach has been started with two selected  
P. sativum subsp. elatius accessions (Smýkal, unpublished results). As of autumn 
2012 the project of P. fulvum × P. sativum cross is in BC2–3F2 generations of around 
200 lines and aims to establish a permanent introgression library with characterized 
genomic fragments of wild pea in a defined genetic background. This would allow 
phenotypic characterization of an unlimited number of target traits; coupled with 
molecular tools this will provide the means for final gene identification and its subse-
quent incorporation, pyramiding in desired genotypes ultimately leading to better per-
forming commercial varieties (Upadhyaya et al., 2011).

3.8 Pea Genomic Resources

The standard pea karyotype comprises seven chromosomes: five acrocentric chromo-
somes and two (4 and 7) with a secondary constriction corresponding to the 45S rRNA 
gene cluster. The numbering of pea chromosomes is unconventional in that the larg-
est chromosome, traditionally named Chromosome 1, is actually Chromosome 5 in 
pea and aligns with linkage group (LG) III. The current chromosome naming scheme 
arises from an early attempt to coordinate the names of linkage groups and chromo-
somes (Folkeson, 1990a, 1990b). There is no simple solution to this inconsistency in 
pea, because the two small, submetacentric chromosomes (1 and 2) are statistically 
impossible to distinguish in terms of relative size and arm length ratios, except of in 
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situ hybridization. A set of translocation stocks was generated, but there was consider-
able disagreement about which linkage groups and chromosomes were involved (Hall 
et al., 1997; Lamm & Miravalle, 1995). Pea chromosome names should be redefined, 
but no systematic renaming has been agreed upon. For this reason the chromosome 
numbers and linkage group numbers are referred to using Arabic and Roman numer-
als respectively (1=VI, 2=I, 3=V, 4=IV, 5=III, 6=II and VII=7). Nuclear genome 
size was estimated to be 9.09 pg DNA/2C, which corresponds to the haploid genome 
size (1C) of 4.45 Gbp (Dolezel & Greilhuber, 2010). Recent investigations using 
next-generation sequencing data confirmed the occurrence of highly diverse families 
of repeats and revealed that about 50–60% of pea nuclear DNA is made up of highly 
to moderately repeated sequences. Ty3/gypsy LTR-retrotransposon has been identi-
fied as the main component of the pea repeats. Ogre elements alone were estimated 
to represent 20–33% of the pea genome (Macas, Neumann, & Navrátilová, 2007). Pea 
repeats have been the subject of a number of studies focusing on individual elements; 
some of the satellites provide useful cytogenetic markers, allowing discrimination of 
individual chromosomes (reviewed in Smýkal et  al., 2012). Different types of poly-
morphisms were successively used for genetic mapping studies in pea: morphological 
markers, isozymes, molecular markers like RFLP, RAPD, SSR, EST-based and PCR-
based techniques and, more recently, high-throughput parallel genotyping, resulting in 
a genetic map (reviewed in Smýkal et al., 2012). Later, a pea consensus linkage map 
was built up comprising 239 microsatellite markers (Loridon et al., 2005). These mark-
ers are quite evenly distributed throughout the seven linkage groups of the map, with 
85% of intervals between the adjacent SSR markers being smaller than 10 cM. This 
map was used to localize QTLs for disease resistance as well as quality and morpho-
logical traits. More recently, functional maps, that is composed of genes of known 
function, have been developed (Aubert et al., 2006; Bordat et al., 2011; Deulvot et al., 
2010; Gilpin et  al., 1997; Timmerman-Vaughan, Frew, & Weeden, 2000). The lat-
est consensus map provides a comprehensive view built from data obtained for 1022 
Recombinant Inbred Lines (RILs) belonging to six RIL populations (Bordat et  al., 
2011), providing a framework for translational genomic approaches among legumes. 
The map includes 214 functional markers, representing genes from diverse functional 
classes such as development, carbohydrate metabolism, amino acid metabolism, trans-
port and transcriptional regulation. It also includes 180 SSR, 133 RAPD and three 
morphological markers and is thus intrinsically related to previous maps. However, 
as compared to other economically important food crops, fewer QTL mapping stud-
ies for agronomical traits have been reported in pea (reviewed in Smýkal et al., 2012). 
In order to support comparative legume biology, several databases were developed, 
integrating genetic and physical map data and enabling in silico analysis (reviewed 
in Smýkal et al., 2012). Colinearity of the genome sequences among legumes allows 
faster identification and isolation of genes involved in symbiosis with rhizobia and 
arbuscular mycorrhiza, as well as flowering time control and flower organization 
(reviewed in Smýkal et al., 2012).

Further, inheritance studies of the dehiscent pod character led to the identifica-
tion of three regions. The region on LG III corresponded to the expected position of 
Dpo, a gene known to influence pod dehiscence. A locus on LG V appeared to have 
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a slightly smaller effect on expression of the phenotype. The third region, observed 
only in one cross, had a greater effect than Dpo and was postulated to be yellow pod 
allele at the Gp locus (Swiecicki & Timmerman-Vaughan, 2005; Weeden, 2007). 
Lateral branching was probably suppressed in the pea domestication process, leading 
to currently grown determinate varieties essentially not branching. On the other hand, 
most of the wild Pisum accessions display proliferation of lateral meristems. Several 
genes regulating this process were isolated, with one identified as a novel carotenoid-
derived phytohormone, strigolactone (Gomez-Roldan et  al., 2008). Pea plants were 
original tall climbing vines. In order to minimize lodging, gradually all field pea types 
were selected for shorter vines, owing to a mutation at the Le gene (GA3-oxidase) 
active in gibberellin biosynthesis. Agronomically, the recessive le allele is required in 
the modern dry pea cultivars in combination with the semileafless trait to minimize 
crop lodging. Possibly there was a single introduction of this dwarf le trait for breed-
ing of cultivars (Lester, Ross, Davies, & Reid, 1997). The afila trait, converting all 
leaflets to tendrils, was found in germplasm in the 1950s (Kujala, 1953; Solovieva, 
1955), but its value was not recognized by breeders until the 1970s (Kielpinski & 
Blixt, 1982). Its first application was the development of the fully ‘leafless’ pea ideo-
type within a pea breeding programme at the JIC and the release of the first UK ‘leaf-
less’ cultivar Filby (JI 1768) in 1978. However, the ‘leafless’ trait limited the total 
biomass of plants and the crop itself at low planting densities (Goldman & Gritton, 
1992). The different loci affecting the expression of semileafless and stipule traits 
were described by Berry (1981). Introduction of the afila mutation with retained wild-
type stipules led to the development of semileafless pea cultivars that proved supe-
rior to leafless in photosynthetic capacity, similar to that of the wild type (Snoad & 
Gent, 1976). This is considered perhaps the greatest achievement in pea breeding 
(Duparque, 1996). The significantly increased standing ability of semileafless dwarf 
pea cultivars reduced grain yield losses and the associated reduction in canopy dis-
ease severity increased the interest in cultivating pea as a quality food and feed. Its 
genetic background is well studied and provides breeding and other applied research 
with diverse beneficial possibilities (Mikić et al., 2011).

3.9 Conclusions

We have shown that in spite of being a small genus with two to three recognized 
species, pea is remarkably diverse and existing germplasm collections with approxi-
mately 90,000 accessions capture relatively well genetic diversity of cultivated type, 
yet substantially less in the case of wild materials. Unfortunately pea suffers largely 
from lack of international support, as compare to other grain legumes. There is an 
urgent need to capture and conserve wild pea diversity both in situ and ex situ. The 
genetic diversity of major collections has been revealed by molecular markers and 
led to formulation of several core collections, which facilitate the further phenotypic 
screening and agronomic evaluation. Furthermore, current genomic resources allow 
initiation of association mapping also for pea, linking genetic diversity preserved in 
germplasm with trait manifestation. Only a small part of the enormous potential has 
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been exploited in breeding of biotic and abiotic stresses or novel agronomical traits. 
Current genomic knowledge and technologies can substantially facilitate allele mining 
and its incorporation in desired genetic background. Once agricultural policies recog-
nize again the value of legumes as protein crops as well as nitrogen fixers, as well as 
investing in related research, there should be a bright future also for pea, particularly 
for temperate regions to fill the gap between soybean, chickpea and common beans.
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4.1 Introduction

Chickpea (Cicer arietinum L.) is a self-pollinated true diploid (2n=2x=16) cool 
season leguminous crop that ranks second among food grain legumes in the world 
after common bean (FAOSTAT, 2011). It is grown in a wide range of environments 
in over 50 countries in subtropical and temperate regions of the world, mainly in 
the Indian subcontinent, West Asia, North Africa, the Americas and Australia 
(FAOSTAT, 2011). Based on seed shape, size and colour, two distinct forms of cul-
tivated chickpea are known (Cubero, 1975); namely, the desi type, characterized 
mostly by pink flowers, angular. brown, small seeds with a high percentage of fibre, 
primarily grown in South Asia and Africa; and kabuli type, having white flowers 
and owl-head-shaped, beige, large seeds with a low percentage of fibre, grown in 
Mediterranean countries. A third type, designated as intermediate or pea-shaped, is 
characterized by medium to small size and round, pea-shaped seeds. Kabuli types are 
grown in about two-thirds of chickpea-growing countries, but desi type predominates 
in chickpea production and accounts for about 85%, while kabuli accounts for about 
15% of the world chickpea production.

It is grown primarily for its protein-rich seeds. In addition, chickpea seeds are 
also rich in minerals (calcium, potassium, phosphorus, magnesium, iron and zinc), 
fibre, unsaturated fatty acids, and β-carotene (Jukanti, Gaur, Gowda, & Chibbar, 
2012). Owing to its high nutritional qualities, chickpea is considered one of the most 
nutritious food grain legumes for human consumption, with potential health bene-
fits. For example, high fibre content in chickpea has the ability to lower the cho-
lesterol level as well as prevent blood sugar levels from rising too rapidly after a 
meal, thus making it a healthy food for diabetic patients (McIntosh & Miller, 2001; 
Pittaway et  al., 2006). Further, chickpea does not contain any antinutritional fac-
tors except the raffinose-type oligosaccharides, which cause flatulence (Williams & 
Singh, 1987) and can be neutralized by boiling or mere soaking in water (Queiroz, 
de Oliveira, & Helbig, 2002). Chickpea plant is an efficient symbiotic nitrogen fixer, 
improving soil fertility by fixing atmospheric nitrogen, meeting up to 80% of its 
nitrogen requirement and playing an important role in crop diversification and sus-
tainability of farming systems. However, chickpea is cultivated mostly in marginal 
lands under rain-fed conditions, with low and unstable productivity (Kumar & van 
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Rheenen, 2000). Development of high-yielding, early-maturing cultivars that fit well 
into the short cropping season is one of the major objectives of chickpea improve-
ment programmes. But the narrow genetic base of cultivated chickpea is one of the 
major obstacles to sustaining and improving its productivity and renders the crop 
vulnerable to new biotic and abiotic stresses. The narrow genetic base of chickpea 
is particularly due to the restricted distribution of its wild progenitor, Cicer reticula-
tum, the founder effect associated with domestication, the shift from winter to sum-
mer cropping and the replacement of locally adapted landraces by the genetically 
uniform modern varieties (Abbo, Berger, & Turner, 2003). Plant genetic resources 
comprising landraces, obsolete varieties and crop wild relatives are the reservoirs 
of natural genetic variations, but general reluctance of the breeders to use exotic 
germplasm has severely restricted the introgression of useful variation present in the 
exotic germplasm. This chapter will provide information about the nature and extent 
of chickpea genetic resources conserved across gene banks globally, the pattern of 
diversity in cultivated and wild Cicer species, and various approaches including 
genomic tools to promote utilization of genetic resources to broaden the genetic base 
for sustainable chickpea crop production.

4.2 Origin, Distribution, Diversity and Taxonomy

Chickpea is one of the earliest grain crops domesticated in the Old World at Tell 
el-Kerkh (tenth millennium bc) in Syria, Cayönü (7250–6750 bc), and Hacilar 
(ca 6700 bc) in Turkey, and Jericho (8350–7370 bc) in the West Bank. The earliest to 
date is Tell el-Kerkh, where both Cicer arietinum and its immediate progenitor Cicer 
reticulatum were clearly identified. Since Tell el-Kerkh is at a considerable distance 
from the native lands of the wild chickpea, C. reticulatum in southeast Turkey, it is 
suggested that the domestication took place somewhat earlier than that (Tanno & 
Willcox, 2006). However, the cultivation of chickpea is well documented from 3300 
bc onwards in Egypt and the Middle East (van der Maesen, 1972). Most probably, it 
originated in an area of present-day southeastern Turkey and Syria, where three wild 
annual Cicer species are found, namely, C. bijugum, C. echinospermum and C. retic-
ulatum, closely related to chickpea. From here, chickpea spread with human migra-
tion toward the West and South via the Silk Route (Singh et al., 1997). Four centres 
of diversity have been identified in the Mediterranean, Central Asia, the Near East 
and India, as well as a secondary centre of origin in Ethiopia (Vavilov, 1951).

Presently, Cicer species occur from sea level to over 5000 m near glaciers in the 
Himalayas. The cultivated species C. arietinum is found only in cultivation and can-
not colonize successfully without human intervention. The wild Cicer species occur 
in weedy habitats (fallow or disturbed habitats, roadsides, cultivated fields of wheat, 
places not touched by man or cattle), mountain slopes among rubble and also natu-
rally in inhospitable areas of the Himalayas in India (Chandel, 1984).

Globally, chickpea is grown on about 13.2 million hectare area with a production 
of 11.62 million metric tons and an average productivity of 880.4 kg/ha (FAOSTAT, 
2011). The developing countries account for 90% of the global chickpea cultivation 
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and South and Southeast Asia (SSEA) contribute about 79% of the global chickpea 
production. India is the principal chickpea-producing country, with a 68% share 
in the global chickpea area and production. Other countries producing substan-
tial amounts of chickpea include Australia, Pakistan, Turkey, Myanmar, Ethiopia, 
Iran, Mexico, Canada, USA, Morocco and Yemen (FAOSTAT, 2011). Chickpea is 
the only domesticated species under the genus Cicer, family Fabaceae and subfam-
ily Papilionoideae. Earlier, the genus Cicer was classified in the tribe Vicieae Alef., 
which was later reported to belong to its own monogeneric tribe, Cicereae Alef. 
(Kupicha, 1981). The tribe Cicereae is closer to the tribe Trifolieae, which differs 
from the former in having hypogeal germination, tendrils, stipules free from the 
petiole, and nonpapillate unicellular hairs. The genus Cicer currently comprises 
44 species, including 35 wild perennials, 8 wild annuals and the cultivated annual 
(Muehlbauer, 1993; van der Maesen, 1972) (Table 4.1). The infragenic classifica-
tion of genus Cicer includes two subgenera: Pseudononis and Viciastrum, four sec-
tions, Monocicer, Chamaecicer, Polycicer and Acanthocicer, and 14 series (van der 
Maesen, 1987).

The subgenus Pseudononis is characterized by small flowers (normally 
5–10 mm), subregular calyx, hardly gibbous base, with sublinear, nearly equal 
teeth. It comprises two sections, Monocicer (annuals, with firm erect or horizontal 
stems branched from the base or at middle) and Chamaecicer (annuals or perenni-
als, with thin, creeping, branched stem, and small flowers). The section Monocicer 
is the most important section for chickpea improvement and includes eight annual 
species, namely C. arietinum, C. reticulatum, C. echinospermum, C. judaicum,  
C. bijugum, C. pinnatifidum, C. cuneatum and C. yamashitae. This section is further 
subdivided into three series, Arietina (characterized by imparipinnate leaves, with 
none to small arista), Cirrhifera (leaves ending in a tendril, with short arista) and 
Macro-aristae (leaves imparipinnate, long arista). The second section, Chamaecicer, 
includes one annual species, C. chorassanicum, and one perennial species, C. inci-
sum, and is divided into two series, Annua and Perennia (Kazan & Muehlbauer, 
1991; Muehlbauer, Kaiser, & Simon 1994).

The subgenus Viciastrum (perennials, characterized by medium large flow-
ers, calyx strongly gibbous at the base, with unequal teeth) comprises two sections, 
Polycicer and Acanthocicer. Polycicer (leaf rachis ending in a tendril or a leaflet, 
never a spine) contains 23 perennial species and is divided into two subsections, 
Nano-polycicer (with creeping rhizome, short stem, imparipinnate leaves, weak and 
short arista) and Macro-polycicer (with short rhizome, non-creeping, stems ascend-
ing to 75 cm, firm arista longer than pedicel). Macro-polycicer is further divided into 
six series: (i) Persica (inflorescences 1–2 flowered, flowers 14–15 mm, calyx teeth 
2–4 times the tube, stipules 14–15 mm, half as large as the leaflets, which are in 
2–12 pairs); (ii) Anatolo-persica (inflorescences 1–2 flowered, flowers 20–27 mm, 
calyx teeth short, stipules smaller than the largest leaflets, which are in 4–9 pairs); 
(iii) Europaeo-anatolica (inflorescences 2–5 flowered, bracts foliolate, stipules 
small or up to half as large as the leaflets, which are in 4–8 pairs); (iv) Flexuosa 
(inflorescences 1–2 flowered, bracts minute, stipules much smaller than the leaflets, 
which are in 4–13 pairs); (v) Songarica (inflorescences 1–2 flowered, bracts minute, 



Genetic and Genomic Resources of Grain Legume Improvement84

stipules more or less equal to the largest leaflets, which are in 2–18 pairs) and (vi) 
Microphylla (inflorescences 1–2 flowered, bracts minute, stipules smaller than or 
equal to the largest leaflets, which are in 7–10 pairs). Section Acanthocicer (peren-
nials, with branched stems with woody base, persistent spiny leaf rachis, spiny calyx 
teeth, and large flowers) encompasses nine perennial species and is divided into 
three series: Pungentia (foliate or small spiny stipules), Macrocantha (long spiny 
stipules) and Tragacanthoidea (small, triangular, incised stipules).

4.2.1 Gene Pool

In the genus Cicer, 43 wild species are classified into three gene pools based on their 
crossability status, with the cultivated chickpea following the Harlan and de Wet 
(1971) gene pool concept. The primary gene pool consists of cultivated chickpea, its 
landraces and the progenitor species, C. reticulatum, the species that are freely cross-
able with cultivated chickpea with regular gene exchange. The secondary gene pool 

Table 4.1 List of Various Cicer Species

S. No. Species S. No. Species

Cultivated species
1 Cicer arietinum (Chickpea)

Annual wild Cicer species
1 Cicer reticulatum  5 Cicer pinnatifidum
2 Cicer echinospermum  6 Cicer chorassanicum
3 Cicer judaicum  7 Cicer cuneatum
4 Cicer bijugum  8 Cicer yamashitae

Perennial wild Cicer species
1 Cicer acanthophyllum 20 Cicer macracanthum
2 Cicer anatolicum 21 Cicer microphyllum
3 Cicer atlanticum 22 Cicer mogolatvicum
4 Cicer balcaricum 23 Cicer montbretii
5 Cicer baldshuanicum 24 Cicer multijugum
6 Cicer canariense 25 Cicer nuristanicum
7 Cicer fedtschenkoi 26 Cicer oxyodon
8 Cicer flexuosum 27 Cicer paucijugum
9 Cicer floribundum 28 Cicer pungens
10 Cicer graecum 29 Cicer rassuloviae
11 Cicer grande 30 Cicer rechingeri
12 Cicer heterophyllum 31 Cicer songaricum
13 Cicer incanum 32 Cicer spiroceras
14 Cicer incisum 33 Cicer stapfianum
15 Cicer isauricum 34 Cicer subaphyllum
16 Cicer kermanense 35 Cicer tragacanthoides
17 Cicer korshinskyi Cicer tragacanthoides var. tragacanthoides
18 Cicer laetum Cicer tragacanthoides var. turcomanicum
19 Cicer luteum
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consists of C. echinospermum, a species that is crossable with cultivated chickpea, 
but with reduced fertility of the resulting hybrids and progenies. The tertiary gene 
pool consists of remaining six annual and 35 perennial species that are not readily 
crossable with cultivated chickpea and require specialized techniques for gene trans-
fer into the cultivated background.

4.3 Erosion of Genetic Diversity from the Traditional Areas

The major factors responsible for genetic erosion include replacement of the tradi-
tional varieties, indigenous species and landraces with genetically uniform, high-
yielding, modern cultivars resulting in loss of about three-quarters of the genetic 
diversity of agricultural crops, climate change posing serious threats on crop germ-
plasm, intensive recent development activities, habitat destruction by modern agri-
culture and poor knowledge of germplasm and of its scientific, social, cultural and 
economic importance, resulting in the loss of this treasure. In most of the crops 
including chickpea, only a fraction of the diversity of wild species is stored in the 
existing collections. In gene banks also, many accessions have been lost because of 
improper storage, poor seed viability following introduction and short storage viabil-
ity even in good facilities. Further, much of this diversity is threatened by decades 
of underfunding and neglect as well as by wars and natural disasters. In genus Cicer 
six species, namely C. atlanticum, C. echinospermum, C. floribundum, C. graecum, 
C. isauricum and C. reticulatum, were categorized as rare (R) and were included 
in the 1997 World Conservation Union (International Union for Conservation 
of Nature, IUCN) List of Threatened Plants (Walter & Gillett, 1998). The tertiary 
gene pool species, C. bijugum, has been considered a priority for collection. Due 
to the introduction of high-yielding varieties, a number of landraces carrying vast 
amount of genetic diversity are lost from farmers’ fields in many countries (Berger, 
Abbo, & Turner, 2003). In Georgia, where chickpea is one of the traditional crops, 
local varieties are rarely cultivated today (Akhalkatsi, Ekhvaia, & Asanidze, 2012). 
Dekaprelevich and Menabde (1929) reported that three subspecies and 24 varieties 
were available in western Georgia – Racha-Lechkhumi, Svaneti and Imereti up to 
the 1920s, but in the 1970s the same three subspecies – C. arietinum subsp. medi-
terraneum G. Pop., C. arietinum subsp. eurasiaticum G. Pop., C. arietinum subsp. 
orientalis G. Pop. – and only 6 of 24 varieties – C. arietinum subsp. mediterraneum 
var. ochroleucum A. Kob., C. arietinum subsp. mediterraneum var. rozeum G. Pop., 
C. arietinum subsp. eurasiaticum var. aurantiacum G. Pop., C. arietinum subsp. 
orientalis var. fulvum G. Pop., C. arietinum subsp. orientalis var. rufescens G. Pop. 
and C. arietinum subsp. orientalis var. rufescens brunneopunctatus A. Kob. – were 
in cultivation (Kobakhidze, 1974). In Svaneti also, chickpea was traditionally avail-
able, but by the 1970s only one farmer was sowing it in the Kala community vil-
lage Khe (Zhizhizlashvili & Berishvili, 1980). The genetic erosion of chickpea has 
also been noticed in the Mianwali district of Punjab along the Indus (Ahmad et al., 
1984). Several Cicer species are found in eastern Anatolian deciduous forests in the 
centre of Southwest Asia (Turkey, Iran and Afghanistan), but the high level of habitat 
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conversion and low level of protection in this region is posing a major threat to the 
chickpea genetic diversity and has warranted considerable conservation concerns in 
recent years (Stolton, Maxted, Ford-Lloyd, Kell, & Dudley, 2006).

4.4 Status of Germplasm Resources Conservation

Large-scale collection and conservation efforts have been initiated to protect the crop 
biodiversity, and ex situ gene banks have been established by the Food and Agriculture 
Organization (FAO) and the World Bank for the collection and conservation of plant 
genetic resources. Globally, about 7.4 million germplasm accessions of different 
crops have been collected and/or assembled and conserved in over 1750 gene banks 
(FAOSTAT, 2010). For chickpea, there are a large number of gene banks conserving 
over 98,000 germplasm accessions comprising of landraces, modern cultivars, genetic 
stocks, mutants and wild Cicer species (http://apps3.fao.org/wiews/germplasm_query.
htm?i_l=EN). The major gene banks holding chickpea germplasm are given in Table 
4.2. The RS Paroda gene bank at International Crops Research Institute for the Semi-
Arid Tropics (ICRISAT) has the largest collection: 19,959 accessions of cultivated 
chickpea and 308 accessions of 18 wild Cicer species from 60 countries. These acces-
sions were obtained from donations as well as from collection missions in different 
countries. Other major gene banks holding chickpea germplasm include the National 
Bureau of Plant Genetic Resources (NBPGR) (16,881 accessions), New Delhi, India; 
the International Centre for Agricultural Research in Dry Areas (ICARDA) (13,818 
accessions), Aleppo, Syria; Australian Temperate Field Crops Collection (ATFCC) 
(8655 accessions), Horsham, Victoria; and Western Regional Plant Introduction Station 
(WRPIS), United States Department of Agriculture - Agricultural Research Service 
(USDA-ARS) (6789 accessions), Pullman (Table 4.2). Besides conserving germ-
plasm accessions in these gene banks, duplication agreements have been negotiated for 
safety between gene banks within and outside the Consultative Group on International 
Agricultural Research (CGIAR) system for a majority of crops. At the global level, the 
Svalbard Global Seed Vault will definitely contribute to combating the loss of biological 
diversity, reducing vulnerability to climate change and securing future food production.

4.5 Germplasm Evaluation and Maintenance

The characterization, evaluation and maintenance of germplasm are essential for their 
effective utilization in crop improvement programmes and for efficient management 
of genetic resources. At ICRISAT chickpea germplasm accessions have been char-
acterized and evaluated for various morpho-agronomic traits following the Chickpea 
Descriptors (IBPGR, ICRISAT, & ICARDA, 1993) since 1974. A multidisciplinary 
approach is followed for the characterization and evaluation of chickpea germplasm 
for various biotic and abiotic stresses and for agronomic and nutrition-related traits. 
Besides, germplasm sets are also evaluated jointly with National Agricultural Research 
Systems (NARS) scientists in different countries and more intensively with the 

http://apps3.fao.org/wiews/germplasm_query.htm?i_l%26equals;EN
http://apps3.fao.org/wiews/germplasm_query.htm?i_l%26equals;EN
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Table 4.2 Major Holdings of Chickpea Germplasm in Different Gene Banks of the World

Country Institute Wild  
Accessions

Wild  
Species

Cultivated  
Accessions

Total

Australia Australian Temperate  
Field Crops Collection 
(ATFCC), Horsham,  
Victoria

246 18 8409 8655

Ethiopia Institute of Biodiversity  
Conservation (IBC),  
Addis Ababa

1173 1173

Hungary Institute for Agrobotany  
(RCA), Tápiószele

 9  5 1161 1170

India Indian Agricultural Research  
Institute (IARI), New Delhi

2000 2000

International Crop Research  
Institute for the Semi- 
Arid Tropics (ICRISAT),  
Patancheru

308 18 19,959 20,267

National Bureau of Plant  
Genetic Resources  
(NBPGR), New Delhi

 69 10 16,812 16,881

Iran College of Agriculture,  
Tehran University, Karaj

1200 1200

National Plant Gene Bank  
of Iran, Seed and Plant  
Improvement Institute  
(NPGBI-SPII), Karaj

5700 5700

Mexico Estación de Iguala, Instituto  
Nacional de Investigaciones  
Agrícolas (IA-Iguala), Iguala

1600 1600

Pakistan Plant Genetic Resources 
Institute (PGRP), Islamabad

 89 3 (1) 2057 2146

Russian  
Federation

N.I. Vavilov All-Russian 
Scientific Research  
Institute of Plant Industry  
(VIR), St. Petersburg

2091 2091

Syria International Centre for 
Agricultural Research in Dry 
Areas (ICARDA), Aleppo

270 11 (1) 13,548 13,818

Turkey Plant Genetic Resources  
Department, Aegean  
Agricultural Research  
Institute (AARI), Izmir

 21  4 2054 2075

Ukraine Institute of Plant Production  
n.a. V.Y. Yurjev of UAAS,  
Kharkiv

1021 1021

(Continued)
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NBPGR, New Delhi. About 99% of chickpea germplasm accessions have been char-
acterized for agronomic and morphological traits at ICRISAT. Chickpea has orthodox 
seeds that can be dried to low seed moisture content (about 5–7%) for efficient con-
servation. For conservation of germplasm, a two-tier system is being followed in the 
ICRISAT gene bank. Seeds are dried in cool and dry conditions to reduce the moisture 
content to a desired level (5%±1%) and then stored as active collections in medium-
term storage (at 4°C, 20–30% relative humidity) in aluminium cans and as base col-
lection in long-term storage (at −20°C) after packing in vacuum-sealed aluminium 
foil pouches. The entire chickpea collection consisting of 20,267 accessions is stored 
as active and base collection in the ICRISAT gene bank. A recent monitoring of the 
health of seed conserved for 10–25 years under medium-term storage has indicated 
greater than 85% seed viability for the majority of the accessions. Regeneration is one 
of the most important gene-bank activities, which aims at seed multiplication by main-
taining the genetic integrity of the original sample. Accessions with declining seed via-
bility (less than 75% seed germination) and/or quantity (<100 g) have high priority for 
regeneration. Further, the regeneration of accessions that have low viability is given 
the highest priority over accessions with low seed quantity. Besides, special require-
ments for seed multiplication may arise for accessions requiring safety duplication and 
repatriation. Breeding behaviour of the crop and the sample size are the two key fac-
tors affecting efficient regeneration. Since chickpea is a self-pollinated crop, regenera-
tion is carried out in field without any control on pollination by using at least 80 plants 
for regenerating an accession. Regeneration of cultivated types is carried out in solar-
ized fields during the post-rainy season. Solarization is the process of heating soil by 
covering it with polyethylene sheets during hot summer to control soilborne diseases 
like Fusarium wilt that represent a major limitation on chickpea growth during regen-
eration. Solarization is conducted for at least 6 weeks during the hottest part of the 
year. However, critical accessions of wild Cicer species that need long day length and 
cool weather to grow and produce seeds are regenerated under controlled greenhouse 
conditions (Figure 4.1). Newly acquired germplasm of foreign origin is first grown 
in the post-entry quarantine isolation area under the supervision of the National Plant 
Quarantine Services. Recently, the management practices of different gene banks were 
reviewed to develop the best practices and procedures for chickpea germplasm man-
agement (Upadhyaya et al., 2009; http://cropgenebank.sgrp.cgiar.org/).

Table 4.2 Major Holdings of Chickpea Germplasm in Different Gene Banks of the World

Country Institute Wild  
Accessions

Wild  
Species

Cultivated  
Accessions

Total

USA Western Regional Plant 
Introduction Station, USDA-
ARS, Pullman

205 22 6584 6789

Uzbekistan Uzbek Research Institute of 
Plant Industry (UzRIPI), 
Botanica

1055 1055

Source: http://apps3.fao.org/wiews/germplasm_query.htm?i_l=EN.

Table 4.2 (Continued)

Country Institute Wild  
Accessions

Wild  
Species

Cultivated  
Accessions

Total

http://cropgenebank.sgrp.cgiar.org/
http://apps3.fao.org/wiews/germplasm_query.htm?i_l%26equals;EN
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4.6 Use of Germplasm in Crop Improvement

4.6.1 Status of Germplasm in Chickpea Improvement

Since 1974, the ICRISAT gene bank has distributed about 321,251 chickpea seed 
samples to researchers in 88 countries. The evaluation of chickpea germplasm 
by national programmes has led to the release of 17 accessions directly as varie-
ties in 15 countries. Studies have shown scanty use of germplasm (<1%) in chick-
pea improvement programmes. India has one of the largest chickpea improvement 
programmes and has released 126 chickpea cultivars in the past four decades. 
Surprisingly, 41% of cultivars have Pb 7 as one of the parents, with IP 58, F 8,  
S 26 and Rabat being the most extensively used parents (Kumar, Gupta, Chandra, & 
Singh, 2004). However, ICRISAT, has the largest chickpea germplasm collections; 
our chickpea breeding programme has used 12,887 (586 unique) parents including 
only 91 germplasm lines to develop the 3,548 advanced breeding lines; L 550 and  
K 850 being the most frequently used cultivars (Upadhyaya, Gowda, Buhariwalla, & 
Crouch, 2006). This shows the breeders’ preference for selecting parental genotypes 
from their working collections. Working collections usually exhibit good agronomic 
performance and provide a quick way for the breeders to make steady progress in the 
shortest possible time. Further, the chances of diluting the agronomic performance 

Figure 4.1 Regeneration of wild Cicer species under controlled environmental conditions in 
the greenhouse at ICRISAT, Patancheru, India.
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become higher with the involvement of new germplasm lines (Kannenberg & Falk, 
1995). Thus, the use of parental genotypes from working collections results in recir-
culation of the same germplasm, hence the narrow genetic base of the cultivars. This 
results in genetic vulnerability, which has already caused havoc in the past, such as 
the southern corn leaf blight epidemic in United States of America during 1969–
1970, due to the large-scale use of genetically uniform male sterile lines.

4.6.2 Small Subsets for Enhancing the Utilization of Germplasm

Frankel and Brown (1984) suggested that greater use of germplasm in crop improve-
ment is possible if a small collection representing the diversity of the entire large 
collection is made available to researchers for meaningful evaluation and utiliza-
tion. Frankel (1984) coined the term “core collection” to sample representative vari-
ability from the entire collection. A core collection contains 10% of the accessions 
from the entire collection that capture most of the available diversity in the species 
(Brown, 1989a). Thus, a core collection has a reduced size containing a diverse set 
of germplasm and is representative of the entire collection. Such core collections can 
be evaluated extensively and the information derived could be used to guide the more 
efficient utilization of the entire collection (Brown, 1989b).

4.6.2.1 Core Collection

Using passport information and characterization and evaluation data generated 
over a period of time, a chickpea core collection consisting of 1956 accessions has 
been developed from the global collection of 16,991 accessions from 44 countries 
at ICRISAT (Upadhyaya, Bramel, & Singh, 2001). Similarly, a core collection of 
505 accessions was developed from 3350 chickpea accessions by the scientists at 
the USDA in Pullman, Washington (Hannan, Kaiser, & Muehlbauer, 1994). A kab-
uli chickpea core collection consisting of 103 accessions has been developed at the 
Seed and Plant Improvement Institute (SPII), Karaj, Iran (Pouresmael, Akbari, Vaezi, 
& Shahmoradi, 2009). Recently, a core collection consisting of 158 germplasm 
accessions has been developed for the Ethiopian chickpea germplasm collection at 
ICRISAT (Kibret, 2011) (Table 4.3).

4.6.2.2 Mini-Core Collection

The germplasm collections at the International Agricultural Research Center 
(IARC) gene banks are very large in size such as the International Maize and Wheat 
Improvement Center (CIMMYT) gene bank holding more than 100,000 wheat 
accessions and the International Rice Research Institute (IRRI) gene bank with over 
110,000 rice accessions; hence, the core collections with about 10,000 accessions 
could be unmanageably large and unwieldy, which would restrict its proper evalu-
ation and use by crop breeders. Even at ICRISAT, the chickpea core collection of 
1956 accessions is too large for its meaningful multilocation evaluation. This forced 
the scientists to develop a new strategy to further reduce the size of the core collec-
tion without losing the spectrum of diversity. Upadhyaya and Ortiz (2001) postulated 



Chickpea 91

the mini-core concept following a seminal two-stage strategy for sampling the entire 
and core collections to develop a mini-core collection, which consists of roughly 
10% of the accessions of the core collection (about 1% of the entire collection) rep-
resenting the diversity of the entire collection with minimum loss of diversity. They 
suggested using the core collection as a basis for developing a mini-core collection. 
The first stage in constituting a mini-core collection thus involves developing a rep-
resentative core collection (about 10%) from the entire collection using the availa-
ble information on origin, geographical distribution, characterization and evaluation 
data. The second stage involves evaluation of the core collection for various mor-
phological, agronomic and grain quality traits, and selecting a further set of about 
10% accessions from the core collection. At both the stages, standard clustering pro-
cedures are used to create groups of similar accessions and various statistical tests 
are used to evaluate and validate core and mini-core collections. Following this strat-
egy, a mini-core collection was constituted in chickpea (Upadhyaya & Ortiz, 2001), 
which consists of 211 accessions representing the diversity of over 16,000 accessions 
(Table 4.3). Validation studies of this mini-core collection with the core collection 
and of the core collection with the entire collection revealed that the mini-core and 
core collections represented adequate diversity for most of the traits detected in the 
entire collection and will improve the efficiency of identifying valuable genes in the 
entire large collections for their effective utilization in chickpea improvement pro-
grammes. Another chickpea mini-core collection consisting of 39 accessions has 
been developed at the WRPIS at Pullman, Washington, USA (Biabani et al., 2011).

4.6.2.3 Composite Collection and Reference Set

Large collections of chickpea germplasm are maintained by ICRISAT, India and 
ICARDA, Syria (Table 4.2). As a part of the Generation Challenge Programme 

Table 4.3 Small-Sized Subsets for Chickpea Germplasm

Crop Accessions Subset  
Developed

Accessions  
in Subset

Reference

Chickpea 16,991 Core collection 1956 Upadhyaya  
et al. (2001)

3350 Core collection 505 Hannan et al. (1994)
1002 Core collection 158 Kibret (2011)
N/A Kabuli chickpea  

core collection
103 Pouresmael  

et al. (2009)
1956 Mini-core collection 211 Upadhyaya and  

Ortiz (2001)
482 Mini-core collection 39 Biabani et al. (2011)
N/A Composite collection 3000 Upadhyaya  

et al. (2006)
3000 Reference set 300 Upadhyaya  

et al. (2008a)
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(GCP; http://www.generationcp.org), ICRISAT and ICARDA jointly developed 
a global composite collection of 3000 accessions to capture the global diversity 
available in these two gene banks and other materials such as released cultivars, 
sources of resistance/tolerance to various biotic/abiotic stresses including wild spe-
cies (Tables 4.3 and 4.4) (Upadhyaya et al., 2006). The composite collection, which 
includes core and mini-core collections (Table 4.4), was molecularly profiled using 
48 Simple Sequence Repeat (SSR) markers to study its genetic structure. A total of 
1683 alleles were detected, of which 935 were rare, 720 common and 28 most fre-
quent. The alleles per locus ranged from 14 to 67 and averaged 35; the polymor-
phic information content was from 0.467 to 0.974, averaging 0.854; and the gene 
diversity ranged from 0.533 to 0.974 with an average of 0.869. Kabuli chickpea as 
a group were genetically more diverse than other seed types. Desi and kabuli shared 

Table 4.4 Composition of Global Composite Collections of Chickpea 
Germplasm

Germplasm/Traits No. of Accessions

Accessions from ICRISAT
 Core collection 1956
 Cultivars/breeding lines 39
 Ascochyta blight 13
 Botrytis gray mold 8
 Stunt 8
 Fusarium wilt 50
 Collar rot 9
 Black root rot 8
 Dry root rot 6
 Helicoverpa 16
 Leaf miner 5
 Nematode 8
 Low temperature 12
 High temperature 4
 Drought 10
 Salinity 4
 Early maturity 25
 High protein 10
 Multiseeded pods 7
 Seed size 18
 High-input responsive 4
 Twin pods 8
 Nodulation 8
 Morphological diversity 35
Accessions from ICARDA
 Based on characterization and evaluation data 599
 Based on agro-climatological data 110
 Cicer echinospermum 7 (1 from ICRISAT)
 Cicer reticulatum 13 (2 from ICRISAT)

http://www.generationcp.org
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436 alleles, while wild Cicer shared 17 and 16 alleles with desi and kabuli types, 
respectively. Desi chickpea contained a higher proportion of rare alleles (53%) 
than kabuli (46%), while wild Cicer accessions were devoid of rare alleles. Several 
group-specific unique alleles were also detected as 104 in kabuli, 297 in desi, and 
69 in wild Cicer. Geographically, 114 unique alleles were found each in West Asia 
(WA) and Mediterranean, 117 in SSEA, and 10 in African accessions. The acces-
sions from SSEA and WA shared 74 alleles, while those from Mediterranean shared 
38 and 33 alleles with WA and SSEA, respectively (Upadhyaya et al., 2008a). The 
composite collection was also characterized for qualitative and quantitative traits 
at ICRISAT. A reference set consisting of the 300 genetically most diverse acces-
sions was selected based on SSR markers, qualitative and quantitative traits, and 
their combinations. The reference set based on 48 SSR markers (78.1% alleles) was 
similar to the reference set based on seven qualitative traits (73.5%), whereas the 
reference set based on both captured 80.5% of the alleles of the composite collection 
(1683 alleles) (Upadhyaya et al., 2008b). This demonstrated that both SSR markers 
and qualitative traits were equally effective in sampling allelic diversity.

4.6.3 Trait-Specific Germplasm for Use in Chickpea Improvement

Evaluation of germplasm accessions, especially the small subsets, has resulted in 
the identification of new sources of resistance/tolerance to important biotic/abiotic 
stresses as well as promising accessions for important agronomic traits as follows.

4.6.3.1 Biotic Stresses

Resistance to Diseases
Evaluation of the chickpea mini-core collection resulted in the identification of three 
accessions (ICC 1915, ICC 6306 and ICC 11284) moderately resistant to Ascochyta 
blight, 55 accessions (ICC 1180, ICC 2990, ICC 4533, ICC 4841, ICC 4872 and oth-
ers) to Botrytis gray mold, six accessions (ICC 1710, ICC 2242, ICC 2277, ICC 11764, 
ICC 12328 and ICC 13441) to dry root rot, 21 asymptomatic (ICC 637, ICC 1205, ICC 
1356, ICC 1396, ICC 2065 and others) and 24 resistant (ICC 67, ICC 95, ICC 791, 
ICC 867, ICC 1164 and others) to Fusarium wilt (Pande, Kishore, Upadhyaya, & Rao, 
2006). Combined resistance to Ascochyta blight and Botrytis gray mold was identi-
fied only in one accession, ICC 11284; for Botrytis gray mold and dry root rot in two 
accessions (ICC 11764 and ICC 12328); for Botrytis gray mold and Fusarium wilt 
in 11 accessions (ICC 2990, ICC 4533, ICC 6279, ICC 7554, ICC 7819 and others); 
and for dry root rot and Fusarium wilt in four accessions (ICC 1710, ICC 2242, ICC 
2277 and ICC 13441) (Pande et al., 2006).

Resistance to Insect Pests
The chickpea mini-core collection was evaluated for pod borer (Helicoverpa armig-
era L.) resistance. Five accessions (ICC 5878, ICC 6877, ICC 11764, ICC 16903 
and ICC 18983) had very low leaf-feeding score under detached leaf assay screen-
ing; five accessions (ICC 12537, ICC 9590, ICC 7819, ICC 2482 and ICC 4533) 
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had least larval survival rate and five accessions (ICC 16903, ICC 6877, ICC 3946, 
ICC 11746 and ICC 18983) were identified as the best accessions for lower larvae 
weight, when compared to resistant control cultivar ICC 506-EB (ICRISAT Archival 
Report, 2009). Similarly, evaluation of the chickpea reference set consisting of 300 
accessions identified 13 accessions (ICC 1230, ICC 2263, ICC 3325, ICC 4567, ICC 
5135, ICC 6874, ICC 10466, ICC 11198, ICC 12307, ICC 14831, ICC 15406, ICC 
15606 and ICC 16524) with low H. armigera damage and plant mortality, which 
also exhibited high yield potential under unprotected conditions (ICRISAT Archival 
Report, 2010). Further, one mini-core accession, ICC 4969, has been identified as a 
resistant source for pulse beetle (Callosobruchus maculatus F.) in both free-choice 
and no-choice tests (Erler, Ceylan, Erdemir, & Toker, 2009).

4.6.3.2 Abiotic Stresses

Drought
Drought stress, especially terminal drought stress, is one of the major adverse fac-
tors affecting chickpea production. The importance of an extensive and deep root 
system is well recognized as a means to improve drought tolerance and hence crop 
productivity through enhanced water uptake. Evaluation of chickpea mini-core acces-
sions for the root traits using a cylinder culture system revealed a large genetic vari-
ability among accessions and identified two accessions (ICC 8261 and ICC 10885) 
with high root length density (RLD), six accessions (ICC 13124, ICC 14506, ICCV 
2, ICC 8261, ICC 15333, ICC 7315) with large shoot to root length density ratio (S/
RLD) and several accessions having a deep root system in comparison to the then-
known most drought-tolerant accession, ICC 4958. A kabuli type landrace ICC 
8261, from Turkey, had the most prolific root system, the largest RLD, as well as 
larger biomass allocation into the root system, which could be of high importance 
under severe drought conditions (Kashiwagi et al., 2005). Similarly, evaluation of 50 
large-seeded kabuli germplasm accessions with four control cultivars (KAK 2, JGK 
1, ICCV 2 and ICC 4958) for drought-avoidance root traits identified one accession, 
ICC 17450 (EC 543583) with larger RLD than ICC 4958, which could be utilized for 
a larger-seeded kabuli chickpea improvement programme (Kashiwagi, Upadhyaya, 
Krishnamurthy, & Singh, 2007). Kashiwagi, Krishnamurthy, Upadhyaya, and Gaur 
(2008) also used canopy temperature as a simple screening method to screen for 
drought tolerance and identified ICC 14799 as having the highest relatively cool can-
opy temperature, followed by ICC 867, ICC 3325 and ICC 4958. Similarly, evalua-
tion of 289 chickpea accessions for drought tolerance has identified several promising 
accessions (ICC 2580, ICC 7272, ICCV 92311, ICC 3362, ICCV 95311, ICC 506 
and EC 583311) with high grain yield, high harvest index (HI) and/or pest resistance 
and was to be evaluated further in multilocation trails (Mulwa, Kimurto, & Towett, 
2010). Following field screening techniques, the chickpea mini-core germplasm 
accession ICC 13124 had the highest drought tolerance efficiency, least drought sus-
ceptibility index, the highest HI and minimum reduction in seed yield under drought, 
and was identified as the most drought-tolerant accession for moisture stress condi-
tions (Parameshwarappa & Salimath, 2008; Parameshwarappa et al., 2010). Similarly, 
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evaluation of the chickpea mini-core for drought tolerance index over 3 years iden-
tified five accessions (ICC 867, ICC 1923, ICC 9586, ICC 12947 and ICC 14778) 
as highly drought tolerant (Krishnamurthy, Kashiwagi, Gaur, Upadhyaya, & Vadez, 
2010). Of these five accessions, ICC 867 and ICC 14778 have also been found to 
maintain the coolest canopy temperatures (Kashiwagi et al., 2008).

Water Use Efficiency
The soil plant analysis development chlorophyll meter reading (SCMR) has been 
recognized as a useful measure to estimate leaf chlorophyll content for the plant’s 
nitrogen acquisition capability and is a surrogate trait for selecting genotypes with 
improved nitrogen status leading to improved yield. Kashiwagi, Krishnamurthy, 
Singh, and Upadhyaya (2006) evaluated the chickpea mini-core collection and iden-
tified two accessions, ICC 16374 and ICC 4958, with high and stable SCMR values. 
Similarly, based on transpiration efficiency (TE) and carbon isotope discrimina-
tion (δ13C), promising accessions were identified such as ICC 5337 and ICC 4958 
are having high δ13C under stress condition, and ICC 5337 having the highest TE 
under stress and well-watered conditions. Later, evaluation of the chickpea mini-core 
collection for SCMR identified ICC 4958 as having the best SCMR performance. 
The same genotype, ICC 4958, has also been identified to possess the most pro-
lific and deep root systems as well as the largest relatively cool canopy temperature 
(Kashiwagi et al., 2008), which makes it a unique breeding material for improving 
the acquisition of both soil water and soil nitrogen. Additional accessions with high 
SCMR values, such as ICC 1422, ICC 10945, ICC 16374 and ICC 16903, were also 
identified (Kashiwagi, Upadhyaya, & Krishnamurthy, 2010).

Salinity
Two hundred and eleven chickpea mini-core germplasm accessions and 41 popu-
lar varieties and breeding lines were evaluated under saline conditions (100 mM 
NaCl; pot screening) and 10 highly tolerant accessions (ICC 10755, ICC 13124, ICC 
13357, ICC 15406, ICC 15697 and others) were identified (Serraj, Krishnamurthy, 
& Upadhyaya, 2004). Similarly, 263 chickpea accessions comprising 211 mini-core 
accessions and some lines reported as tolerant to sodicity, popular cultivars and breed-
ing lines, and one cultivar released by the Central Soil Salinity Research Institute 
(CSSRI) for salinity tolerance (CSG 8962) were evaluated under saline conditions 
(80 mM NaCl; pot screening) to identify salinity-tolerant chickpea genotypes based 
on their seed yield under salinity (Vadez et al., 2007). Sixteen salinity-tolerant acces-
sions yielding more than the previously identified salt-tolerant genotype CSG 8962 
were identified. Of these, three accessions, ICC 5003, ICC 15610 and ICC 1431, had 
about 20% higher yield than the tolerant control, CSG 8962. Vadez et al. (2007) also 
reported that the desi genotypes had more salinity tolerance than the kabuli genotypes. 
Recently, Krishnamurthy, Turner, et  al. (2011) also evaluated chickpea germplasm 
accessions including 211 mini-core accessions for salinity tolerance and identified 12 
accessions (ICC 9942, ICC 6279, ICC 11121, ICC 456, ICC 12155 and others), which 
were highly tolerant in both a Vertisol and an Alfisol soil. Of these, one accession, ICC 
9942, had the highest and most consistent seed yield performance in both soil types.
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Heat Tolerance
Evaluation of 35 chickpea germplasm accessions selected from the core collection 
along with a control cultivar, ICCV 92944, for tolerance to heat stress identified ICC 
14346 as the most heat-tolerant germplasm accession, followed by ICC 5597, ICC 
5829, ICC 6121, ICC 7410, ICC 111916, ICC 13124, ICC 14284, ICC 14368 and 
ICC 14653. These accessions were consistently high yielding (>1400 kg/ha) as com-
pared with the control, ICCV 92944 (1333 kg/ha) (Upadhyaya, Dronavalli, Gowda, 
& Singh, 2011). Similarly, Krishnamurthy, Gaur, et al. (2011) evaluated the chickpea 
reference set collection for heat tolerance at two locations (Patancheru and Kanpur) 
in India and identified 18 stable heat-tolerant accessions (ICC 456, ICC 637, ICC 
1205, ICC 3362, ICC 3761 and others).

4.6.3.3 Agronomic Traits

Early Maturity
Chickpea breeding programmes aim at developing early-maturing cultivars espe-
cially to increase crop adaptation by avoiding terminal drought and high temperature 
stress in the sub-tropics. Twenty-eight early-maturing chickpea germplasm acces-
sions (ICC 16641, ICC 16644, IC 11040, ICC 11180, ICC 12424 and others), which 
were similar or earlier than control cultivars Harigantars and ICCV 2 and produced 
about 23% more seed yield as compared to the average of four control cultivars 
(ICCV 2, Harigantars, ICCV 96029 and Annigeri) have been identified (Upadhyaya, 
Dwivedi, Gowda, & Singh, 2007).

Large Seed Size
In chickpea, seed size and colour are important traits for trade purposes. Large-
seeded kabuli cultivars with a 100-seed weight of >40 g have higher consumer 
preference and fetch about three times higher price in the market. Evaluation of 65 
large-seeded kabuli germplasm lines in three sets and across environments identi-
fied the six best large-seeded kabuli chickpea genotypes in three sets having high 
stability. One accession, ICC 14190, a Fusarium wilt–resistant large-seeded (37.4 g 
100-seed weight) landrace from India, ranked first with average yield of 1430 kg/
ha and high productivity (13.64 kg/ha/day). Three accessions, ICC 14194, ICC 7344 
and ICC 7345, were early-flowering, extra-large-seeded types (48.2–54.1 g 100-seed 
weight), with grain yields similar to the best control, L 550. The other two supe-
rior lines were ICC 17452 (54.0 g 100-seed weight) and ICC 19189 (50.7 g 100-
seed weight), both early-flowering, extra-large-seeded types with grain yield similar 
to the control KAK 2. All these accessions exhibited high stability with regression 
value near unity and deviation near zero (Gowda, Upadhyaya, Dronavalli, & Singh, 
2011). Kaul, Kumar, and Gurha (2007) evaluated 150 kabuli chickpea germplasm 
accessions belonging to diverse geographical regions for phenological and morpho-
agronomic traits at Kanpur, India, and identified four large-seeded kabuli accessions, 
ICC 12033, ICC 14199, ICC 14197 and ICC 14203 (46.2–60.2 g 100-seed weight 
and originating from Mexico) having high yield potential of >18 q/ha. In a similar 
study, nine large-seeded accessions (ICC 7345, ICC 11883, ICC 17450, ICC 17452, 
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ICC 17456, ICC 17457, ICC 18591, ICC 19189 and ICC 19195) having 100-seed 
weight ranging from 50.0 to 61.6 g and high yield (1154.4–1708.3 kg/ha) comparable 
to the control cultivar, KAK 2 (35.4 g 100-seed weight and 1359.5 kg/ha yield) have 
been identified for their use in developing new large-seeded kabuli cultivars with a 
broad genetic base (Kashiwagi et al., 2007).

Yield and Component Traits
Evaluation of the chickpea core collection for 14 agronomic traits identified 39 
accessions (19 desi, 15 kabuli and 5 intermediate) performing better for a combina-
tion of agronomic traits such as early maturity, seed size and grain yield (Upadhyaya 
et al., 2007). The most desirable accessions having high seed yield and greater 100-
seed weight than controls are ICC 1836 among the desi type and ICC 5644, ICC 
7200, ICC 8042, ICC 10783 and ICC 11904 among the kabuli type; for early matu-
rity and greater 100-seed weight than controls are ICC 6122, ICC 8474 and ICC 
12197 in desi, ICC 8155, ICC 12034, ICC 14190 and ICC 14203 among kabuli type, 
and ICC 4871 among intermediate type (Upadhyaya et al., 2007). These accessions 
represent new and diverse sources of germplasm for use in breeding programmes 
to develop new chickpea cultivars. Meena et al. (2010) identified six promising and 
diverse accessions, ICC 14778, ICC 6279, ICC 4567, ICC 4533, ICC 1397 and ICC 
12328, for more than one trait for use in chickpea improvement. Further, evaluation 
of the chickpea mini-core collection under three environments identified one acces-
sion, ICC 13124, promising for earliness, large seed size, and high yield per plant 
in all the three environments, and concluded that this accession is best suited for 
cultivation under both rain-fed and irrigated conditions during the post-rainy season 
(Parameshwarappa, Salimath, Upadhyaya, Patil, & Kajjidoni, 2011).

4.7 Limitations in Germplasm Use

Although plant breeders recognize the limitations of working with collections and 
the importance of crop genetic resources, yet they are often reluctant to use these 
resources for several reasons. The main reason for the low utilization of germplasm 
in crop improvement programmes is the lack of information on the large number of 
accessions, particularly for traits of economic importance such as yield, stable resist-
ance/tolerance to biotic/abiotic stresses and nutrition-related traits, which often show 
high genotype × environment interactions and require replicated multilocational 
evaluation. However, the large size of germplasm collections makes it a costly and 
resource-demanding task. Another major reason for the low use of germplasm is the 
apprehensions among breeders about poor adaptability of germplasm and a linkage 
load of many undesirable genes associated especially with utilizing exotic germ-
plasm and wild relatives in crop improvement programmes. While using unknown 
and wild germplasm, comparatively more effort and time is needed to generate 
breeding materials. Further, inadequate linkages between gene banks and germplasm 
users, lack of an informative and user-friendly gene bank database management sys-
tem, restricted access to germplasm collections due to limited seed availability and 
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regulations governing germplasm exchange are the important factors responsible for 
the low use of germplasm in chickpea improvement programmes.

4.8 Germplasm Enhancement Through Wide Crosses

The narrow genetic base of cultivated chickpea is one of the major limitations in 
improving chickpea production and productivity. Further, the global production is 
affected drastically by several biotic and abiotic constraints. Limited genetic vari-
ation present in the cultivated type of chickpea germplasm necessitates the utiliza-
tion of wild Cicer species for germplasm enhancement. Wild Cicer species have 
been extensively screened and several of them have been reported to have very high 
levels of resistance/tolerance to many biotic and abiotic stresses, which includes 
resistance to Ascochyta blight (Collard, Ades, Pang, Brouwer, & Taylor, 2001; 
Croser, Ahmad, Clarke, & Siddique, 2003; Pande, Ramgopal, et  al., 2006; Rao, 
Reddy, & Bramel, 2003; Singh, Hawtin, Nene, & Reddy, 1981; Singh & Reddy, 
1993; Stamigna, Crino, & Saccardo, 2000), Botrytis gray mold (Pande, Ramgopal, 
et  al., 2006; Rao et  al., 2003; Stevenson & Haware, 1999), Fusarium wilt (Croser 
et al., 2003; Infantino, Porta-Puglia, & Singh, 1996; Rao et al., 2003), Helicoverpa 
pod borer (Sharma, Chen, & Muehlbauer, 2005), drought (Croser et  al., 2003; 
Kashiwagi et al., 2005; Toker, Canci, & Yildirim, 2007), cold (Berger et al., 2012; 
Croser et al., 2003; Singh, Malhotra, & Saxena, 1990; Singh, Malhotra, & Saxena, 
1995; Toker, 2005) and drought and heat (Canci and Toker, 2009). Besides resist-
ant/tolerant sources, wild Cicer species harbour beneficial alleles/genes for high seed 
protein (Rao et  al., 2003; Singh & Pundir, 1991) and improvement of agronomic 
traits in cultivated chickpea. Keeping in view the importance of wild Cicer species, 
most of the chickpea improvement programmes emphasize utilizing wild species to 
develop new cultivars with a broad genetic base. Of the eight annual wild Cicer spe-
cies, only C. reticulatum is readily crossable with cultivated chickpea resulting in 
a fertile hybrid, whereas for exploitation of the remaining seven annual wild Cicer 
species for chickpea improvement, specialized techniques such as application of 
growth hormones, embryo rescue, ovule culture and other tissue culture techniques 
have been suggested by various researchers (Badami, Mallikarjuna, & Moss, 1997; 
Lulsdorf, Mallikarjuna, Clarke, & Tar’an, 2005; Mallikarjuna, 1999; Mallikarjuna & 
Jadhav, 2008). Utilization of the C. reticulatum accession ILWC 119 in a crossing 
programme has resulted in the development of two cyst–nematode-resistant chick-
pea germplasm lines: ILC 10765 and ILC 10766 (Malhotra, Singh, Vito, Greco, & 
Saxena, 2002). Promising high-yielding lines with good agronomic and seed traits, 
such as early flowering and high 100-seed weight, have also been obtained from 
crosses involving C. reticulatum and C. echinospermum with cultivated chickpea 
(Jaiswal, Singh, Singh, & Singh, 1986; Malhotra et al., 2003; Singh, Gumber, Joshi, 
& Singh, 2005; Singh, Jaiswal, Singh, & Singh, 1984; Singh & Ocampo, 1997; 
Upadhyaya, 2008). High-yielding cold-tolerant lines with high biomass have been 
obtained from C. arietinum × C. echinospermum crosses (ICARDA, 1995). Using 
various techniques, interspecific hybrids have been produced between C. arietinum 



Chickpea 99

and C. judaicum (Singh, Singh, Asthana, & Singh, 1999; Verma, Ravi, & Sandhu, 
1995; Verma, Sandhu, Rrar, & Brar, 1990), C. arietinum × C. pinnatifidum (Badami 
et al., 1997; Mallikarjuna, 1999; Mallikarjuna & Jadhav, 2008; Verma et al., 1990), 
C. arietinum × C. cuneatum (Singh & Singh, 1989), and C. arietinum × C. bijugum 
(Singh et al., 1999; Verma et al., 1990) to exploit the possibility of introgression of 
desirable alien genes from these wild Cicer species into the cultivated chickpea. 
These interspecific hybrids have contributed significantly towards the development 
of genomic resources for chickpea improvement. From C. arietinum × C. judaicum 
cross, a pre-breeding line IPC 71 having a high number of primary branches, more 
pods per plant and green seeds has been developed for use in chickpea improvement 
programmes (Chaturvedi & Nadarajan, 2010).

4.9 Chickpea Genomic Resources

Average chickpea productivity is less than 1 t ha–1, which is much less than its 
potential, 6 t ha–1 (Singh, 1985). Biotechnological tools can help to increase chick-
pea productivity by using the marker-assisted selection (MAS) approach in breed-
ing programmes (Varshney, Graner, & Sorrells, 2005; Varshney, Nayak, May, & 
Jackson, 2009). Trait mapping provides the first step to employ MAS in breeding 
programmes. Recent developments in genomics technology have helped to explain 
the mechanism of complex traits controlling chickpea productivity and the genetic 
architecture of traits of economic importance to accelerate breeding programmes. A 
number of marker-trait associations have been identified in chickpea along with the 
dense genetic maps which have allowed MAS to become a routine in breeding pro-
grammes (Kulwal, Thudi, & Varshney, 2011; Varshney, Hoisington, & Tyagi, 2006). 
A huge amount of genomic and genetic resources developed by ICRISAT in collabo-
ration with partners have regularly been used in accelerating the genomic and breed-
ing application to increase chickpea productivity. Since 2005, ICRISAT has regularly 
been focussing on the development of molecular markers, construction of compre-
hensive genetic and consensus maps, identification of marker-trait associations and 
Quantitative Trait Loci (QTLs), and initiation of molecular breeding for various dis-
ease resistance and drought tolerance in chickpea.

4.9.1 Molecular Markers and Genotyping Platforms

A number of marker systems have been introduced recently, such as hybridization-
based diversity arrays technology (DArT) and sequence-based single nucleotide 
polymorphism (SNP) markers. These marker systems can easily be automated and 
provide medium- to high-throughput genotyping. Still, microsatellite (SSR) mark-
ers are the marker of choice for geneticist and breeders. SSRs are highly polymor-
phic, multi-allelic and codominant in nature; therefore suitable for genotyping the 
germplasm with a narrow genetic base and for segregating populations (Gupta & 
Varshney, 2000). Development of SSRs was mainly dependent on the screening 
of size-selected genomic and cDNA libraries, but recently in silico approaches of 
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mining the expressed sequence tags (ESTs) and Bacterial Artificial Chromosome 
(BAC)-end sequences have also become popular for the identification of genic 
SSRs (Varshney, Glaszmann, Leung, & Ribaut, 2010). To supplement the chickpea 
genomics, more than 2000 SSR markers (Table 4.5) have been developed in the past 
few years using various approaches including genomic DNA libraries (Gaur et  al., 
2011; Nayak et  al., 2010), cDNA libraries (Varshney, Hiremath, et  al., 2009) and 
454/FLX transcript reads (Garg, Patel, Tyagi, & Jain, 2011; Garg, Patel, Jhanwar, 
et al., 2011; Hiremath et al., 2011). On the other hand, a new set of 487 functional 
markers including EST-SSRs, Intron-targeted primers (ITP), expressed sequence tag 
polymorphisms and SNPs have been developed by the National Institute of Plant 
Genome Research (NIPGR), New Delhi, India (Choudhary, Gaur, Gupta, & Bhatia, 
2012).

ICRISAT in collaboration with DArT Pty Ltd., Australia, has also developed 
another marker resource namely DArT arrays representing 15,360 features (Table 
4.5) for chickpea (Varshney et al., 2010). This set has regularly been used for diver-
sity studies and saturating linkage maps (Thudi et  al., 2011). These arrays showed 
very little polymorphism when screened on the elite chickpea germplasm (Thudi 
et al., 2011), and the parental genotypes of mapping populations showed only 35% 
polymorphism when screened with these DArT arrays. This suggests that DArT 
arrays are not cost-effective to screen the cultivated chickpea germplasm. Another 
type of marker system, SNP, is gaining popularity in several crop species due to its 
genome-wide distribution, abundance, flexibility of automation and amenability to 
high throughput. For identification of SNP, three different approaches were used. 
First, RNA sequencing approach was used to sequence the parents of mapping popu-
lation. Alignment of these short reads led to identification of thousands of SNPs. The 
second approach focussed on the allele-specific sequencing of parental genotypes 
using conserved orthologous sequence markers and led to identification of 768 SNPs 
(Table 4.5). In the third approach, 220 candidate genes were sequenced on 2–20 gen-
otypes and 1893 SNP were identified based on allele-specific sequencing (Gujaria 
et  al., 2011). In total, a large number of SNPs were identified and made available 
for use in chickpea improvement. To use these SNPs in breeding programmes and 
other applications, selection of an appropriate genotyping platform is very impor-
tant. University of California – Davis in collaboration with its partners has developed 
Illumina GoldenGate assays for 768 SNPs. These GoldenGate assays are cost-
effective only when dealing with large number of SNPs to genotype a large number 
of samples. However, where fewer markers are required for genotyping, another gen-
otyping platform, BeadXpress based on VeraCode technology, suits well. Therefore, 
VeraCode assay for 96-plex SNP (Table 4.5) has been developed at ICRISAT to be 
used on Illumina’s BeadXpress system (R. K. Varshney, unpublished data). Another 
SNP genotyping platform, KASPar, developed by KBiosciences (www.kbioscience.
co.uk), provides a flexible and cost-effective assay for SNP genotyping. ICRISAT 
has developed 2068 KASPar assays (Table 4.5) in chickpea (Hiremath et al., 2012).

In recent years, next-generation sequencing (NGS) technologies have been 
adapted by researchers to produce a huge amount of sequencing data at very low cost 
and in less time. In chickpea, two NGS approaches 454 and Illumina were used for 

http://www.kbioscience.co.uk
http://www.kbioscience.co.uk
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characterization of the chickpea transcriptome. Sanger sequencing was used to gen-
erate the EST from drought- and salinity-stress-challenged cDNA libraries. 454/FLX 
sequencing was undertaken to generate 435,018 transcript reads (Table 4.5), which 
were used along with the Sanger ESTs to improve the chickpea transcript assem-
bly (Hiremath et  al., 2011). In a similar study, National Institute of Plant Genome 
Research (NIPGR) generated a hybrid assembly with 34,760 tentative consensus 
sequences (Garg, Patel, Jhanwar, et  al., 2011). Recently, a transcriptome of a wild 
chickpea, C. reticulatum (genotype PI 489777) with 37,265 C. reticulatum tenta-
tive consensus (CrTC) was reported using GS-FLX Roche 454 NGS technology 
(Jhanwar et  al., 2012). Previously, the higher cost and need for time and expertise 
were the main constraints in whole-genome sequencing, but recent advancements 
in NGS technologies have allowed initiating genome sequencing at very low cost 
and less time. Very recently, ICRISAT in collaboration with Beijing Genomics 
Institute (BGI), Shenzhen, China and other international collaborators reported the 
draft whole-genome shotgun sequence of CDC Frontier, a kabuli chickpea variety 
(Varshney et  al., 2013). Along with the genome sequence, resequencing of 90 cul-
tivated and wild chickpea accessions has also been reported. An effort to sequence 
ICC 4958, a desi landrace, has also been initiated at NIPGR, New Delhi. These 
resources can be used for chickpea improvement through molecular breeding and to 
explain chickpea genome diversity and domestication events.

4.9.2 Genetic Maps and Trait Mapping

A first step in crop improvement using molecular breeding/genomics-assisted breeding 
is the discovery of marker-trait association between the trait of interest and a genetic 
marker. However, QTL analysis has suffered severely from the lack of saturated 
genetic maps. Large-scale genomic resources developed by ICRISAT and partners 
during the last 5 years have been used for the construction of comprehensive/con-
sensus genetic maps in chickpea. An interspecific reference mapping population has 
been developed from a cross, ICC 4958×PI 489777 and used for generating genetic 

Table 4.5 Summary of Genomic Resources in Chickpea 
Developed at ICRISAT, India

Resource Number

SSRs Approx. 2000
SNPs 9000
DArTs 15,360
GoldenGate assays 768 SNPs
KASPar assays 2068 SNPs
VeraCode assays 96 SNPs
Sanger ESTs Approx. 30,000
454/FLX reads 435,018
TUSs 103,215
Illumina reads (million reads) >108 (4 parents)
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maps (Upadhyaya, Thudi, et al., 2011). The first genetic map in chickpea was devel-
oped on this reference population (ICC 4958×PI 489777) using markers like Random 
Amplified Polymorphic DNA (RAPD), Amplified Fragment Length Polymorphism 
(AFLP) and very few SSR markers. To saturate this map, a high-density chickpea 
genetic map with 1291 loci has been developed by Thudi et  al. (2011). This map 
comprises a range of markers starting from BES-SSRs (157), genic molecular mark-
ers (145), DArT (621) and earlier published legacy markers (368), spanning a total 
of 845.56 cM across eight linkage groups (LG) with an average marker distance of 
0.65 cM. The number of markers on each LG ranged from 68 (LG 8) to 219 (LG 3). 
Genetic maps constructed using the gene-based markers are referred to as transcript 
maps. In chickpea, a transcript map with 126 genic molecular markers, including 
53 CAPS-SNPs, 55 EST-SSRs and 18 CISR loci has been developed (Gujaria et al., 
2011). In another study using the same reference population, an advanced linkage map 
spanning 1497.7 cM with 406 loci including 177 gene-based markers and 126 genomic 
SSRs (gSSRs) has been developed (Choudhary et al., 2012). Recently, KASPar assays 
have been adopted for SNP genotyping and been used to develop a second-genera-
tion genetic map with 1328 loci including 625 Chickpea KASPar Assay Markers 
(CKAMs), 314 TOG-SNPs and 389 already published markers with an average inter-
marker distance of 0.59 cM (Hiremath et al., 2012).

Besides interspecific mapping populations, several intraspecific mapping popu-
lations have also been developed to identify the markers associated with Fusarium 
wilt (Sharma, Winter, Kahl, & Muehlbauer, 2004; Sharma et  al., 2005), Ascochyta 
blight (Anbessa, Taran, Warkentin, Tullu, & Vandenberg, 2009; Iruela et  al., 2007) 
and drought. For drought tolerance in chickpea, ICRISAT has developed two 
intraspecific mapping populations (ICC 4958×ICC 1882 and ICC 283×ICC 8261) 
(Chamarthi et  al., 2011). Both populations were used for the construction of SSR-
based genetic maps comprising 240 and 170 loci, respectively. QTL analysis using 
the extensive phenotyping data revealed a genomic region that harbours QTLs for 
several root-related and other drought tolerance–related traits contributing approxi-
mately 35% of the phenotyping variation. Therefore, this genomic region has been 
targeted for introgression in elite chickpea lines to enhance drought tolerance using 
the marker-assisted backcross (MABC) approach.

4.9.3 Molecular Breeding

Once the QTLs for trait of interest are identified, the next step is to use this informa-
tion in a crop improvement programme using genomic-assisted breeding for devel-
oping superior lines with better response to stress and high yield. With the recent 
development in NGS technology, it has become common practice to use molecular 
markers for phenotype prediction and selection of progenies for the next generation 
in breeding (Varshney et al., 2012). Several genomics-assisted breeding approaches, 
namely MABC, marker-assisted recurrent selection (MARS) and genomic selec-
tion have regularly been used in crop improvement programmes. MABC focusses 
on the introgression of the QTL and/or genomic region associated with the trait(s) of 
interest from a donor parent into an elite recurrent parent using molecular markers 
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(Hospital, 2005). This approach leads to the generation of near-isogenic lines (NILs) 
containing only the major gene/QTL from the donor parent, while retaining the 
whole genome of the recurrent parent (Gupta, Kumar, Mir, & Kumar, 2010). MABC 
can also be used for gene pyramiding, where different genes for the same trait or for 
different traits are accumulated in one background.

In chickpea, ICRISAT has been working on two MABC programmes. The first 
initiative, supported by the CGIAR GCP and the Bill & Melinda Gates Foundation, 
focusses on improved drought response in elite chickpea lines. Efforts have been 
made to introgress the genomic region harbouring QTLs for several drought-
related traits into JG 11 genetic background from the germplasm accession, ICC 
4958. BC3F4 lines have been generated and were evaluated under both rain-fed 
and irrigated conditions in India, Ethiopia and Kenya in the main crop season dur-
ing 2011–2012. Results of the first-year field trial were very encouraging: the BC 
lines possessed the RLD of the donor parent with the seed quality and yield of the 
recipient parents. BC lines showed 6–11% higher yield in the rain-fed condition, 
while in the irrigated condition, the gains were up to 24%. The success story of JG 
11 inspired several institutes, such as Indian Institute of Pulses Research (IIPR), 
Kanpur and Indian Agricultural Research Institute (IARI), New Delhi from India, 
Egerton University, Kenya, and Ethiopian Institute of Agricultural Research (EIAR), 
Ethiopia, to start MABC programmes for introgressing this genomic region from 
ICC 4958 into the leading varieties of different regions.

In an another initiative, sponsored by the Department of Biotechnology (DBT), 
Government of India, ICRISAT in collaboration with Jawaharlal Nehru Krishi 
Vishwavidyalaya (JNKVV) of Jabalpur, Mahatma Phule Krishi Vidyapeeth (MPKV) 
of Rahuri and ARS-Gulbarga has been working on gene pyramiding of resistance to 
two races (foc1 and foc3) for Fusarium wilt (FW) and two QTLs conferring resist-
ance to Ascochyta blight (AB). Efforts have been initiated for introgression of resist-
ance to FW from WR 315 and resistance to AB from ILC 3279 into elite chickpea 
cultivars (C 214, JG 74, Pusa 256, Phule G12 and Annigeri-1) from different agro-
climatic zones through MABC. Presently, homozygous BC3F4 lines are available for 
preliminary evaluation for resistance to FW and AB.

4.10 Conclusions

The presence of enormous genetic variation and the means to exploit such vari-
ability is the key to success of crop improvement programmes. Large collections of 
chickpea germplasm comprising landraces and wild Cicer species have been con-
served in various gene banks worldwide, representing a large spectrum of diversity 
in the genus Cicer. Development and evaluation of small subsets such as core and 
mini-core collections have resulted in the identification of trait-specific germplasm 
accessions for important abiotic and biotic stresses as well as for agronomic and 
nutrition-related traits, which results in the enhanced utilization of genetic resources 
for developing broad-based climate-resilient chickpea cultivars. Besides cultivated 
type germplasm, new sources of variability for traits of interest exists in wild Cicer 
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gene pools, which can be exploited using widespread hybridization techniques. 
Promising lines having resistance genes and good agronomic performance have 
been developed from crosses involving cultivated and wild Cicer species. Further, 
recent advances in plant biotechnology in combination with the traditional breeding 
approaches, coupled with genomics and transgenic technologies, provide new tools 
to exploit the genes locked up in cross-incompatible secondary and tertiary gene 
pools. The availability of genomic resources such as the development of molecular 
markers, genetic and physical maps and the generation of expressed sequenced tags 
(ESTs), genome sequencing and association studies revealing marker-trait associa-
tions has facilitated the identification of QTLs and discovery of genes associated 
with tolerance/resistance to abiotic and biotic stresses including agronomic traits. 
These advancements in chickpea genomic resources can assist in identifying and 
tracking allelic variants associated with beneficial traits and identifying desirable 
recombinant plants with the markers of interest, which will accelerate the chickpea 
improvement programmes.
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5

5.1 Introduction

Faba bean (Vicia faba L.) is grown worldwide under different cropping systems as a 
dry grain (pulse), green grains/pods and a green-manure legume. Faba bean contrib-
utes to the sustainability of cropping systems through

● its ability to contribute nitrogen (N) to the system by biologically fixing N2;
● diversification of production systems leading to decreased diseases, pests and weed build-

up, and potentially increased biodiversity;
● its capacity to reduce fossil energy consumption;
● providing food and feed rich in protein (Jensen, Peoples, & Hauggaard-Nielsen, 2010).

Faba bean is cultivated under rainfed and irrigated conditions and is distributed 
in more than 55 countries. The harvested area is 2.56 million ha and 4.56 million 
tons of dry grains are produced. Asia and Africa accounted for 72% of the area and 
80% of the production of dry faba bean grains (FAOSTAT, 2012). Faba bean remains 
in short supply in some countries. For example, Morocco imports around 9% of its 
annual needs to supplement its present production of 153,000 tons. Egypt imports 
around 43% of its annual needs to add to the present production of 297,620 tons. 
Globally, faba bean production showed a decline of 41%, from 5.4 million tons in 
1961–62 to 3.2 million tons in the period of 1991–1993. This was followed by an 
increase of 33%, to 4.25 million tons, in the period of 2008–2010. However, up 
to today, the overall production is dominated by landraces, despite a number of 
improved varieties having been released by various national breeding programs. The 
major reasons for the decline in production were the susceptibility of landraces and 
cultivars to different biotic and abiotic stresses. Among biotic stresses, Orobanche 
crenata is a major factor in the declining production in North African countries like 
Morocco. Faba bean necrotic yellow virus (FBNYV) was the major cause of dis-
appearance of faba bean from middle Egypt. Additionally, 3.5 million ha sown to 
faba bean in the period 1961–1963 in China declined to 0.95 million ha in the period 
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of 2008–2010. This reflects a general trend, observed since the 1960s, of increas-
ing reliance by farmers on N fertilizers rather than legumes as a source of N input 
(Crews & Peoples, 2004) and the effects of recurrent and severe droughts. In many 
countries, faba bean has been subjected continuously to various biotic and abiotic 
stresses, which have led to genetic erosion among the landraces grown around the 
world. Despite the 0.3 million ha gain observed since the period of 1991–1993 and 
the overall decline of cultivated area from its peak value, the grain yield increased 
from 980 kg/ha in the period of 1961–1963 to 1700 kg/ha in the period of 2008–2010 
(FAOSTAT, 2012), a yield gain of 15.4 kg/ha/year (Figure 5.1). This clear increase 
in yield is a result of the replacement of old cultivars with new improved varieties. 
Therefore, the clear fluctuation in area and the drastic effects of different biotic and 
abiotic stresses have resulted in a reduction in genetic diversity among traditional 
landraces.

5.2 Origin, Distribution, Diversity and Taxonomy

Faba bean was domesticated with the beginning of agriculture in the Fertile Crescent 
of the Near East following the Neolithic era around 9000–10,000 BC. Subsequently, 
its cultivation has spread around the world (Cole, 1970; Tanno & Willcox, 2006). 
The centre of diversity area includes Iraq, Iran, Georgia, Armenia, Azerbaijan, Syria 
and Turkey (Maxted, 1995). Cubero (1973, 1974) postulated that there are different 
routes radiating from the Near East to Europe and other parts of the world. The first 
could be across Anatolia to Greece and other Mediterranean regions towards Europe. 
The second could begin at the Nile delta and move towards the coastal areas to the 
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Maghreb and Iberian lands. The third could be along the River Nile to Abyssinia, 
now known as Ethiopia. The last could be from Mesopotamia to India. Secondary 
centres of diversity are postulated to have occurred in Afghanistan and Ethiopia. 
However, Ladizinsky (1975) reported the origin to be in Central Asia. According 
to Muratova (1931) and Maxted (1995), the centre of origin for the genus Vicia is 
southeastern Europe and southwestern Asia. Trait analyses have distinguished two 
groups: the small-seeded forms in southwestern Asia, including India, Afghanistan 
and adjoining regions of Bukhara and Kashmir, and large-seeded forms in the west. 
The Eastern group is very ancient and can be traced back to Neolithic agriculture. 
This group has the greatest number of endemic forms and the greatest diversity of 
characteristics, having many specific traits that are lacking in other groups (few pairs 
and many pairs of leaflets and grey-green colour, presence of tender and of course 
pod valves, a wide range of variation in maturity period, size, colour and shape of 
seeds, dimensions of leaflets, height and branching of stem, etc.). This group is 
found over a large area (from Spain to the Himalayas) (Muratova, 1931). Recent 
archeological findings at Tell El-Kerkh, northwest Syria, indicate a date of origin 
for faba bean domestication during the late 10th millennium BC (Tanno & Willcox, 
2006). All these data point to southwestern Asia as the principal centre of origin 
of V. faba. The earliest archaeological findings of major types come from Iraq and 
are dated at around 1000 AD (Schultze-Motel, 1972). The migration of faba bean 
towards South America, especially the Andean region, probably occurred in the fif-
teenth century and was helped by Spanish and Portuguese travellers. This resulted 
in development of Peruvian and Bolivian landraces displaying a large variability in 
seed size, colour and shape (Duc et al., 2010). According to Zheng, Wang, and Zong 
(1997), faba bean (V. faba var. major) was first introduced to the northern part of 
China from the Middle East 2100 years ago through the Silk Road. However, a faba 
bean seed image on ancient pottery was found in a historical site in the Guanghe 
county of Gansu province in northern China (spring sowing area) in 1973, which 
was dated to between 4000 and 5000 years ago (Ye, Lang, Xia, & Tu, 2003). Faba 
bean grain fossils indicated that faba bean has been grown in southern China (win-
ter sowing area) for more than 4000–5000 years (Ye et  al., 2003). China is likely 
to be another secondary centre of diversity for faba bean, especially the Chinese 
winter gene pool, which has been reproductively isolated from the European and 
West Asian gene pools (Zong et al., 2009). Bond and Crofton (1999) described the 
development of winter faba beans in the nineteenth century in Europe. These were 
bred from Russian and French small-seeded, winter-hardy populations. The major 
geographical regions for faba bean cultivation are East Asia (34%), East Africa 
(20%), Central and West Asia and North Africa (CWANA; 18.8%), Europe (12.7%), 
Australia (6.3%) and Latin America (7.3%). In East Africa, Ethiopia is the major 
producer of summer-sown faba bean, cultivating 0.52 million ha in the highlands 
and producing 0.62 million tons. In the CWANA region, Morocco, Egypt, Sudan and 
Tunisia are the main producers, growing winter-sown faba bean on 0.48 million ha 
and producing 0.76 million tons (FAOSTAT, 2012). Faba bean consumption is pri-
marily in East Asia, East Africa and West Asia and North Africa (WANA), where 6 
of the 10 top producing countries are found. The temperate and herbaceous genus, 
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Vicia L. is a member of the legume tribe Vicieae of the Papilionoideae (Frediani, 
Maggini, Gelati, & Cremonini, 2004). Vicia comprises 166 annual or perennial spe-
cies (Allkin, Goyder, Bisby, & White, 1986) distributed mainly in Europe, Asia and 
North America but also extending to the temperate regions of South America and 
tropical Africa (Maxted, 1993). Maxted, Callimassia, and Bennett (1991) divided 
the genus into two subgenera, Vicilla and Vicia (Kupicha, 1976). The two subgenera 
can be distinguished using the following characters: stipule nectary, peduncle length, 
style type, keel shape, legume and canavanine (Kupicha, 1976). Maxted (1993) clas-
sified the subgenus Vicia into 9 sections, 9 series, 38 species, 14 subspecies and 
22 varieties. V. faba has suffered very little intraspecific differentiation as substan-
tiated by the studies showing the presence of a partial incompatibility system; this 
is stronger in the central European populations studied, weak (to various degrees) 
in the Spanish ones, and absent in at least one population of the paucijuga group 
(Cubero, 1974). Cubero (1973) postulated four botanical groups of faba bean: major, 
minor, equina and paucijuga (Table 5.1).

5.2.1 Genetic Diversity in Faba Bean

The morphological and agronomic characterization of 900 accessions of faba bean 
held in the ICARDA gene bank at Tel Hadya experimental station, Syria, during 
the 2010–11 season (Table 5.2) showed limited degrees of variation for most of the 
qualitative and quantitative traits. The highest variation was recorded for first (low-
est) pod length, the number of seeds per plant and 100-seed weight, which could 
be confounding effects of different botanic groups and would indicate a low genetic 
diversity within the cultivated faba bean groups. However, the use of amplified 
fragment length polymorphism (AFLP) (Zong et  al., 2009) and simple sequence 
repeat (SSR) markers (Wang et al., 2012) have allowed genetic resources to be dis-
tinguished according to their geographic origin and the structuring of collections. 
Combined genotyping and phenotyping activities must continue on V. faba so that 
core collections can be defined. These will help in the discovery of new genes and 
alleles of interest for breeders. The AFLP markers were used to study the genetic 

Table 5.1 Seed and Pod Characteristics of the Four Botanical Groups of V. faba

Botanical Group Seed Weight and Shape Pod Characteristics

Major SWa≥100 mg
Very plate

Small to large (from 2 to 10 
seeds)

Plate, thick, nondehiscent pods
Equina 50<SW<100 mg

Plate
Medium size, 3–5 seeds
Plate

Minor 30<SW<50 mg
Cylindrical to rounded form

Small with 3–4 seeds, 
cylindrical form

Paucijuga 20<SW<30 mg
Rounded to elliptical form

Very small, dehiscent or 
nondehiscent types

aSW, average seed weight.
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diversity among a large set (n=79) of inbred lines of recent elite faba bean cultivars 
of Asian, European (northern and southern) and North African origin. These inbred 
lines were analysed using 8 selected AFLP primer combinations and produced 477 
polymorphic fragments (Zeid, Schoen, & Link, 2003). The genetic diversity of 1000 
faba bean accessions, comprising 505 accessions from the ICARDA global collec-
tion, 250 accessions from Instituto de Agricultura Sostenible and 245 accessions 
from Institut National de la Recherche Agronomique (INRA), was assessed using 
16 SSR markers. Pozarkova et  al. (2002) developed 25 SSRs in faba bean from a 
nonenriched library VffJF01, which was screened with a mix of (CTTT)n, (ACT)n, 
(AAG)n, and (AAC)n probes. Further, the development of 41 novel EST-SSR mark-
ers for Pisum sativum showed 53.7% of these markers could be transferred to the 
related species, V. faba (Xu et al., 2012). ICARDA, under the Generation Challenge 
Program (GCP), has also developed a new set of 100 SSRs, which are being used to 
characterize the faba bean collections representing genetic variation of the species. 
The primary results using 18 SSRs showed 10.6% heterozygosity (unpublished data, 
Table 5.3).

Table 5.2 Mean, Range and Coefficient of Variation for Morphologic and Agronomic Traits 
Measured on 900 Accessions Evaluated at Tel Hadya Station During the 2010–11 Season

Trait Mean Range Coefficient of  
Variation

Leaflet size  6.07 Min. 1–Max. 9 21.96
Leaflet shape  2.31 Min. 2–Max. 6 20.62
Number of leaflets per leaf  5.10 Min. 4–Max. 6 14.63
Stem thickness  6.14 Min. 1–Max. 10 18.17
Branching from basal node  3.87 Min. 1–Max. 6 22.22
Stem pigmentation at flowering  4.09 Min. 1–Max. 7 33.52
Number of flowers  

per inflorescence
 4.09 Min. 3–Max. 6 14.67

Flower ground colour  1.09 Min. 1–Max. 5 48.04
Wing petal colour  2.99 Min. 0–Max. 3  5.76
Pod surface reflectance  1.64 Min. 1–Max. 2 29.42
Pod distribution on stem  1.77 Min. 1–Max. 2 23.53
Days to 50% flowering 110.35 Min. 97–Max. 135  7.82
Days to 90% maturity 163.89 Min. 148–Max. 187  5.74
First (lowest) pod height (cm)  18.20 Min. 2–Max. 150 54.06
Number of nodes with pods  1.89 Min. 1–Max. 2 16.82
Number of pods per plant  13.68 Min. 0–Max. 48 48.67
Pod length (cm)  78.33 Min. 0–Max. 151 26.25
Pod width  10.93 Min. 1–Max. 21 24.09
Pod shape  1.27 Min. 1–Max. 12 44.11
Number of seeds per pod  2.15 Min. 0–Max. 4.4 23.17
Number of seeds per plant  29.28 Min. 4–Max. 141 52.31
Hundred-seed weight  84.00 Min. 0–Max. 205.48 55.04
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5.3  Erosion of Genetic Diversity from the Traditional  
Areas

The following information could indicate past and ongoing erosion of faba bean lan-
draces in their various locations.

● Worldwide reduction of the cultivated area of faba bean as shown by the data compiled 
from FAO. Figure 5.1 lists the global annual harvested area, yield and production of faba 
bean and shows a reduction of 50% of the overall area since 1961. This reduction in area 
could be accompanied by a loss of some landraces, which in turn could be reflected in the 
change or loss of alleles because of a reduced population size and shrinking in number of 
distinct habitats or environments (Figure 5.1). In Morocco, the area allocated to faba bean 
has been reduced by 50% following infestation by the Orobanche parasitic weed, which 
has compelled farmers to abandon faba bean cultivation and replace the prevailing suscep-
tible landraces with newly developed cultivars. In middle Egypt, FBNYV devastated the 
crop in 1992, which has led to the complete disappearance of all types of faba bean lan-
draces and cultivars (Katul et al., 1993; Makkouk et al., 1994)

● Replacement of old landraces with new resistant/tolerant cultivars or by other species. In 
addition to improved agricultural practices, the observed increase in average yield could 
result from the increased adoption of modern varieties, replacing traditional landraces; this 
could be another indicator of the genetic erosion of this crop. In Egypt, 20 varieties have 

Table 5.3 Summary of Genotyping 1000 Faba Bean Accessions with 18 Microsatellite 
Primers

Primer Name Max (bp) Min (bp) Range (bp) Heterozygocity (%)

A110-1 245 117 129  8.28
F112-1 308 250 57  2.12
E115-1 300 211 89  8.92
E114-1 306 219 86 14.12
C7-1 250 204 46 12.10
O25-JF1-AG2 217 145 71 28.13
A105-1 329 248 81 16.77
G114-1 137 92 44 11.15
A102-1 254 146 108 27.28
A9 301 250 60  17.3
O23-GA1154 252 176 76 12.21
O13-GA3 237 150 87 11.57
F117-1 250 197 53  9.98
F11-1 307 266 40  2.34
E109-1 282 194 88  7.01
A117-1 214 171 44  6.37
A116-1 300 239 61  2.76
O3-GATA2 198 128 70  6.48
A109-1 240 176 64  2.76
Average 256.9 185.0 72.0  10.6
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been released since 1980 with a 30% adoption rate. In China, the cultivar Yundou 147, 
released from a K0285 × ILB8047 cross, is estimated to account for more than 30% of 
the faba bean acreage in Yunnan province. Several varieties replacing the old landraces in 
different regions have been released by various Chinese academies (Bao Shiying, personal 
communication).

● Surveys undertaken by ICARDA within the dry-land agrobiodiversity project, includ-
ing four countries of the Fertile Crescent – Jordan, Lebanon, Syria and the Palestinian 
Authority – showed that the landraces of several field crops (cereals and food legumes) 
were replaced by introduced fruit tree species, such as apples, cherries and olive (Mazid, 
Shideed, & Amri, 2006).

5.4 Status of Germplasm Resources Conservation

ICARDA safeguards the largest collection of faba bean worldwide (32% of the total 
world collection). This global collection conserves materials from 71 countries with 
a high percentage of unique accessions. A total of 8628 of these accessions com-
prise the international collection held in trust for the global community. The collec-
tion held at ICARDA also conserves over 6000 accessions of other Vicia species, 
including about 3000 accessions of wild species of Vicia. The accession type and 
source data in Table 5.4 provide an indication of the uniqueness of the collections. 
Collections with a high percentage of wild relatives, landraces and materials origi-
nally collected by ICARDA are most likely to encompass unique accessions prior-
itized in a rational global system.

Table 5.4 Gene Banks with More Than 500 Faba Bean Accessions

Country/City Organization No. of Accessions

Australia/Victoria DPI 2445
Bulgaria/Sadovo IIPGR 692
China/Beijing CAAS 5200
Ethiopia/Addis Ababa PGRC 1118
France/Dijon INRA 1900
Germany/Gatersleben Genebank IPK/ 1920
Italy/Bari Genebank 1876
Morocco/Rabat INRA 1715
Netherlands/Wageningen DLO 726
Poland/Poznam IOPG-PAS 1258
Poland/Radzikow PBAI 856
Portugal/Oeiras INRB-IP 788
Russia/St Petersburg VIR 1881
Spain/Córdoba IFAPA 1091
Spain/Madrid CNR 1622
Syria/Aleppo ICARDA 10,045
USA/Pullman USDA 750
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5.5 Germplasm Maintenance

Maintenance and evaluation of any species depends on its reproductive system. 
Faba bean is an entomophilic and partially cross-pollinated legume. The reproduc-
tive system follows a mixed mating model in the major populations. The outcross-
ing rate varies widely among cultivars and locations (Gasim, Abel, & Link, 2004; 
Suso, Pierre, Moreno, Esnault, & Le Guen, 2001). Much of its pollination depends 
on wild vectors (Bond & Kirby, 1999; Pierre, Suso, Moreno, Esnault, & Le Guen, 
1999). Most of the data on faba bean gene flow were from experiments by Bond 
and Pope (1974) and Link and von Kittlitz (1989). The methods used for faba bean 
germplasm maintenance and genetic resources multiplication and regeneration are 
based on preventing the effect of insect pollinators. The use of insect-proof cages 
is one efficient technique applied in faba bean germplasm maintenance. However, 
in addition to being an expensive system to prevent intercrossing in this crop, this 
technique has limited capacity and is advisable only for small sets (Hawtin & Omar, 
1980). It also increases the inbreeding depression of faba bean, affecting the yield 
potential of different cultivars (Drayner, 1959). When breeding programs are manag-
ing a large number of samples with large seed numbers per sample, it is not advis-
able to use the isolation cages, as the cost will be very high, their use will be very 
difficult to manage and there is yield reduction through inbreeding depression. The 
techniques developed for the maintenance of germplasm are based on an adequate 
gene flow between different faba bean plots and the isolated crop used. Link and 
von Kittlitz (1989) used seed and hilum colour marker genes to measure gene flow. 
Allozyme and isozyme markers and different experimental genotypes have been 
used to measure the patterns of variation of gene flow in small plots of a field of 
germplasm multiplication (Suso, Gilsanz, Duc, Marget, & Moreno, 2006). In order 
to reduce gene flow among plots, a combination of isolation by a distance of 3 m and 
pollination barriers using Brassica napus L. and Triticosecale reduced intercross-
ing between adjacent plots by more than 95% (Robertson & Cardona, 1986). Suso, 
Nadal, Román, and Gilsanz (2008) assumed that planting a border surrounding the 
faba bean plots is more efficient than using a noncultivated area between two adja-
cent plots. At ICARDA, collections and improved germplasm were maintained in 
two different ways. A small sample derived from single plant selection is maintained 
in insect-proof cages and large-seed germplasm is maintained in isolation in the open 
field using Brassica or Vicia narbonesis as border crops. For large seed multiplica-
tion, a faba bean field has to be far away – at least 50–100 m – from any other faba 
bean plot or farmer’s field or experimental site to ensure the seed purity.

5.6 Use of Genetic Diversity in Faba Bean Breeding

Faba bean breeding is carried out by only a few research institutes; the main opera-
tional breeding programs are found at:

● International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria
● The Instituto de Investigación y Formación Agraria y Pesquera de Andalucía (IFAPA), Spain
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● Institut National de la Recherche Agronomique (INRA), Rennes, France
● University of Adelaide, Australia
● Yunnan Academy for Agricultural Science (YAAS), China
● Field Crop Research Institute (FCRI), Egypt
● Institut National de la Recherche Agronomique de Tunisie (INRAT), Tunisia
● Ethiopian Institute for Agricultural Research (EIAR), Ethiopia
● Institut National de la Recherche Agronomique (INRA), Morocco
● Field Crop Research Institute (FCRI), Sudan.

The regional research program on faba bean was started officially in 1972 at Arid 
Land Agriculture Development (ALAD), Lebanon, to fulfil the needs of the WANA 
region. The program, based at Tel Amara in the Bekaa Valley, got underway in 
1973 with significant financial support provided by the International Development 
Research Centre (IDRC), Canada, in cooperation with the Agricultural Research 
Institute (ARI) of Lebanon. The identification of lines resistant to major diseases was 
made in collaboration with the University of Manitoba. When the civil war broke out 
in Lebanon in 1975, the program continued for a while and then moved to Syria. In 
1976, the program was developed in Egypt through the Ford Foundation office in 
Cairo. By 1977, ALAD had transmuted into ICARDA, the base had moved from the 
Bekaa to Aleppo (Geoffrey Hawtin, personal communication).

5.6.1 Breeding for Abiotic Stresses

The major abiotic stresses affecting faba bean production are terminal drought, frost 
and heat. Drought, an interval of water deficiency leading to a significant reduction 
in yield, is widely considered to be the most important environmental constraint to 
crop productivity (Borlaug & Dowswell, 2005, chap. 2; Fischer & Turner, 1978). 
Faba bean is reputed to be more sensitive to water deficits than other grain leg-
umes (Amede & Schubert, 2003; McDonald & Paulsen, 1997). In many production 
regions in the Mediterranean basin, the crop is seldom if ever irrigated and gener-
ally relies on stored soil moisture and current rainfall for its growth and develop-
ment (Sau & Mínguez, 2000). Variation in the amount and distribution of rainfall 
is generally considered the major reason for variability in the grain yield of faba 
bean (Abdelmula, Link, Kittlitz, & von Stelling, 1999; Bond et al., 1994; Siddique, 
Regan, Tennant, & Tomson, 2001). In drought-prone regions of North and East 
Africa, a shortage of water, especially during the flowering period, can cause a dras-
tic reduction in yield. Terminal drought is one of the important constraints to faba 
bean production in regions like Ethiopia and Morocco, where the crop is largely 
grown under rainfed conditions. Several elite lines were identified as drought toler-
ant, like ILB 938/2 in the ICARDA germplasm collection (Khan, Link, Hocking, & 
Stoddard, 2007; Khan, Paull, Siddique, & Stoddard, 2010).

Extreme low temperature is one of the abiotic constraints for growing autumn-
sown faba beans in cool temperate climates. Winter hardiness is a complex trait 
which depends not only on frost tolerance but also on tolerance to other abiotic 
stresses (e.g. saturation level of water in the soil, frost-drought) and biotic constraints 
(e.g. snow mold). To overcome this constraint, experiments under controlled condi-
tions have been conducted for several crop species, revealing that frost tolerance is a 
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major component of winter hardiness (Arbaoui, Balko, & Link, 2008; Link, Balko, 
& Stoddard, 2010). Sources of resistance to cold are Cote d’Or 1 (an inbred line 
derived from the winter-hardy French landrace Cote d’Or) and BPL4628 (an inbred 
line derived from the Chinese line in the ICARDA germplasm collection) (Arbaoui 
et al., 2008). The breeding program at ICARDA identified different lines with toler-
ance to frost damage. In addition, the screening for winter hardiness of more than 
5200 entries from the Chinese gene banks led to the identification of a few sources 
for cold tolerance. Likewise, extreme heat is the major threat to faba bean production 
in south Egypt, Sudan, and the Ethiopian lowlands. Artificially induced terminal heat 
stress can significantly reduce yield and the yield components of faba bean geno -
types (Ahmed, 1989; Abdelmula & Abuanja, 2007). This adverse effect could be 
attributed mainly to high temperature during the vegetation period, which checked 
growth and led to the development of a small, short-stemmed crop with few branches 
and pods. Abdelmula and Abuanja (2007) concluded that the genotype C.52/1/1/1 
could be used to improve heat tolerance in faba bean and make it possible to extend 
production to the nontraditional areas of Sudan.

5.6.2 Breeding for Biotic Stresses

More than five foliar diseases caused by Ascochyta blight, chocolate spot, rust, 
powdery mildew, Cercospora leaf spot, different root rot complexes, nematodes, 
Orobanche and a large number of viruses affect the production and productiv-
ity of faba bean (Sillero et  al., 2010). In North and East Africa, the major biotic 
stresses are, Ascochyta blight, black root rot, bruchids, chocolate spot and rust 
(Bayaa, Kabakebji, Khalil, Kabbabeh, & Street, 2004). Other biotic stresses include 
Orobanche (Khalil, Kharrat, Malhotra, Saxena, & Erskine, 2004; Maalouf et  al., 
2011) and different types of viruses, like bean yellow mosaic virus (BYMV), pea 
enation mosaic virus, bean leaf roll virus (BLRV), FBNYV, true broad bean mosaic 
virus, broad bean mottle virus, and broad bean stain virus (Bond et al., 1994; Saxena, 
1991; van Leur, Kumari, Makkouk, & Rose, 2006). O. crenata can reduce the yield 
of faba bean in infested areas by up to 90%. The estimated average yield losses due 
to O. crenata in Morocco ranged from 7% to 80% depending on the level of infes-
tation (Gressel et  al., 2004). Around 78% of the Moroccan faba bean fields were 
infested by Orobanche (Mesa-García & García-Torres, 1991). Orobanche-tolerant 
lines have been developed in faba bean (Khalil & Erskine, 1999; Khalil, Kharrat, 
et al., 2004; Maalouf et al., 2011). Efforts have been focused on identifying sources 
of resistance/tolerance to Ascochyta blight, chocolate spot, rust and Orobanche 
(Bayaa et  al., 2004; Hanounik & Roberston, 1989; Khalil, Bayaa, Malhotra, 
Erskine, & Saxena, 2004; Khalil, Kharrat, et al., 2004; Maalouf, Ahmed, Kabakebji, 
Kabbabeh, & Street, 2009; Maalouf, Ahmed, Nawar, Khalil, & Bayaa, 2012; 
Maalouf et  al., 2010, 2011), at ICARDA and in other advanced research institutes 
(Bernier & Conner, 1982; Bond et al., 1994; Rashid & Bernier, 1984, 1986). Among 
the breeding lines resistant to rust developed at ICARDA are ILB403, ILB411, 
ILB420, ILB 431, ILB 479, ILB 490, ILB 866, ILB 919, ILB 938, Reina Blanca ILB 
249/803/80, ILB 249/804/40, ILB 938, ILB 159-1, ILB 159-4, BPL 710, BPL 1179, 
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BPL 7, BPL 8, BPL 260, BPL 261, BPL 263, BPL 309, BPL 406, BPL 417, BPL 
427, BPL 490, BPL 484, BPL 524,BPL 533, BPL 539, BPL 552, BPL 554, BPL 567, 
BPL 571, BPL 573, BPL 576, BPL 588, BPL 604, BPL 610, BPL 627, BPL 649, 
BPL 663, BPL 665, BPL 667, BPL 680, BPL 640, BPL 643 and BPL 702 (Bernier 
& Conner, 1982; Bond et al., 1994; Khalil, Nassib, & Mohammed, 1985; ICARDA, 
1987; Rashid and Bernier, 1984, 1986). As regards pathogenic diversity, several races 
of U. viciae-fabae have been identified. Using established reference sets (Conner and 
Bernier, 1982; Emeran, Sillero, & Rubiales, 2001) the highest virulence was identi-
fied in the Egyptian populations. The evidence of the physiologic specialization in 
U. viciae-fabae described above suggests that the use of single resistance genes in 
cultivars would not likely result in long-term rust control. So it is a major need to 
search for strategies to prolong durability. Complete resistance is common (Khalil 
et al., 1985; Rashid & Bernier, 1984, 1991; Sillero, Moreno, & Rubiales, 2000).

Ascochyta blight is caused by the fungus Ascochyta fabae. It is a common disease 
that causes yield losses of up to 90% in susceptible cultivars when environmental 
conditions are favourable for disease development (Hanounik & Roberston, 1989). 
The fungus infects all the above-ground plant parts including the seeds. Sexual repro-
duction allows new virulence combinations and, as a consequence, the pathogen may 
respond over time to selection exerted by the introduction of host resistance genes. 
Physiological specialization between pathogen isolates and host genotypes has been 
described in the A. fabae – faba bean pathosystem (Ali & Bernier, 1985; Avila et al., 
2004; Hanounik & Roberston, 1989; Kharbanda & Bernier, 1980; Kohpina, Knight, 
& Stoddard, 1999; Rashid, Bernier, & Conner, 1991), which is problematic in breed-
ing, making it necessary to evaluate segregating breeding materials against a range 
of isolates to ensure good success. Among the faba bean lines identified as resistant 
to Ascochyta blight are BPL 74, BPL 460, BPL 471, BPL 472, BPL 646, BPL 818, 
BPL 2485, ILB 1814, 14434-2, 14434-3, 15025-2, 15035-1, 15041-2, BPL 2485-1, 
BPL 2485-2, ERF-3-14, BPL 230, BPL 266, BPL 365, BPL 465, ILB 752, L83118, 
L83120, L83124, L83125, L83127, L83129, L83136, L83142, L83149, L83151, 
L83155, L83156, L82001, L831818-1, Line 224, ILB 757 Ascot, V-46, V-47, V-165, 
V-175, V-494, V-1122, V-1220, ILB 1414 and ILB 6561 (Bond et al., 1994; Hanounik 
& Roberston, 1989; Lawsawadsiri, 1995; Maurin & Tivoli, 1992; Ramsey, Knight, & 
Paull, 1995; Rashid et al., 1991; Sillero, Avila, Moreno, & Rubiales, 2001).

Chocolate spot is especially severe in humid areas and reported to be the cause 
of heavy reductions in yields in places, such as Morocco, Tunisia, Egypt, Ethiopia, 
China, and United Kingdom. The faba bean lines resistant to chocolate spot are 
BPL 74, BPL 460, BPL 471, BPL 472, BPL 646, BPL 818, BPL 248, 14434-2, 
14434-3, 15025-2, 15035-1, 15041-2, BPL 2485-1, BPL 2485-2, BPL 230, BPL 
266, BPL 365, BPL 465, ILB 752, L83118, L83120, L83124, L83125, L83127, 
L83129, L83136, L83142, L83149, L83151, L83155, L83156, L82001, L831818-1, 
Sel.97Lat.97 132-1, Sel.97Lat.97 132-3 (Bayaa et  al., 2004; Kharrat, Le Guen, & 
Tivoli, 2006). Little is known about the mechanism of resistance to Botrytis. There is 
a need to establish differential lines and then use these to evaluate the virulence of a 
collection of isolates of diverse origin, under the same environmental conditions, for 
the major diseases and broomrapes that attack faba bean.
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In addition, more than 180 new sources for resistance to chocolate spot, 
Ascochyta blight and rust were identified at ICARDA under heavy soils infested by 
a mixture of the most virulent pathogens collected in Syria. Lines with combined 
resistance have been developed at ICARDA and sent to different national agricul-
tural research systems to observe the response of the resistant lines to different races 
in varying environments. In the last 5 years, 70 lines with resistance to chocolate 
spot and 70 lines with resistance to Botrytis were sent to different national agricul-
tural institutes to evaluate their resistance under their specific races and environ-
ments. National breeding programs, mainly in Morocco, Sudan and Syria, selected 
28 promising lines (Maalouf et al., 2012). In Ethiopia, the major disease problems 
were chocolate spot, rust and root rots. Several varieties with a high-level resistance 
to chocolate spot, derived directly or indirectly from the ICARDA breeding pro-
gram, were released by EIAR. In addition, because of the high prices of faba bean 
in Ethiopia, farmers are expanding faba bean production on vertisols that are con-
fronted with root rots favoured by stagnant water. Through extensive collaborative 
research, EIAR researchers have released several high-yielding faba bean varieties 
through direct selection from the germplasm supplied by ICARDA. Among the faba 
bean varieties released with good levels of disease resistance are ‘Moti’ (ILB 4432 
x Kuse-2-27-33); ‘Gebelcho’ (ILB 4726 x ‘Tesfa’); ‘Obsie’ (ILB 4427 x CS20DK) 
and ‘Walki’ (ILB 4615 z Bulga 70). The variety ‘Walki’ was developed for water-
logged areas and is gaining popularity in the central highlands of Ethiopia. Viruses 
that infect faba bean crop are not host species-specific; they can affect a range of 
food and pasture legumes as well as numerous weeds. A ‘green bridge’ between 
cropping seasons is apparently necessary for the transmission of viruses. The other 
means of virus survival is seed transmission, which is almost absent or not of eco-
nomic importance for faba bean viruses (van Leur et  al., 2006). Because of the 
uncertainty of virus epidemics and the lack of virus control options, growers can 
perceive viruses as a higher risk than fungal diseases. However, some inbred lines 
such as 2N23, 2N65, 2N85, 2N101, 2N138, 2N295 and 2N425 were reported in 
Canada some decades ago as sources of resistance to BYMV, but only one of them, 
line 2N138, was highly resistant to the necrotic strain of this virus (Gadh & Bernier, 
1984). ICARDA has identified different accessions resistant to BLRV (BPL 756, 
BPL 757, BPL 758, BPL 769, BPL 5278 and BPL 5279), and resistant to BYMV 
(BPL 1351, BPL 1363, BPL 1366 and BPL 1371) (Bond et  al., 1994; Kumari & 
Makkouk, 2003; Robertson, Singh, Erskine, & Abd El Moneim, 1996).

Efforts to breed faba bean resistant to Orobanche have resulted in the release of 
cultivars with useful levels of incomplete resistance combined with a degree of toler-
ance (Cubero, Moreno, & Hernandez, 1992; Cubero, Pieterse, Khalil, & Sauerborn, 
1994; Kharrat, Abbes, & Amri, 2010; Khalil & Erskine, 1999; Khalil, Kharrat, et al., 
2004; Maalouf et  al., 2011). The resulting resistance, which might be based on a 
combination of resistance mechanisms, is more likely to last longer than resistance 
based on a single gene (Perez-de-Luque, Lozano, Moreno, Testillano, & Rubiales, 
2007; Rubiales et  al., 2006). Little resistance to O. crenata was available in faba 
bean until the appearance of the Egyptian line F402 (Nassib, Ibrahim, & Khalil, 
1982). Some accessions with moderate to low levels of resistance and/or tolerance 
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have been reported (Table 5.4), but the first significant finding of resistance was the 
identification of family 402 derived from a 3-year cycle of individual plant selec-
tion in an F7 from the cross (Rebaya 40 x F216) made at ICARDA (Cubero et al., 
1994). Different cultivars have been developed from this cross (Giza 402, BPL 2210, 
Baraca, Lines 18009, 18015, 1835, Cairo 241, Cairo 348, Cairo 2, Line 402/294, 
Lines 402/29/84, 674/154/85, L3-4, Line X-843, Giza 429, Giza 674, Giza 843, ILB 
4347, ILB 4357, ILB 4360, Bader, XBJ 90.03-16-1-1-1, Misr1 and Misr2 (Abbes, 
Kharrat, Delavault, Simier, & Chaibi, 2007; Abdalla & Darwish, 1994, 1996; Cubero 
et  al., 1992; Hanounik, Jellis, & Hussein, 1993; Khalil & Erskine, 1999; Khalil, 
Kharrat, et al., 2004; Kharrat & Halila, 1994; Nassib et al., 1982; Saber et al., 1999; 
ter Borg et al., 1994)).

5.6.3 Breeding for Antinutritional and Nutritional Components

The nutritional value of faba bean has been traditionally attributed to its high protein 
content, which ranges from 20% to 37%, (Crépon et al., 2010; Santidrián, Sobrini, 
& Larralde, 1981). Most of these proteins are globulins (60%), albumins (20%), glu-
telins (15%) and prolamins (Cubero, 1984). Additionally, faba bean is also a good 
source of sugars, minerals (Ca, Mg, Fe and Zn), vitamins (B-complex, vitamin C, 
and vitamin A) (Sobrini, Santidrian, & Larralde, 1982). Thus, the chemical analy-
sis of this legume reveals a 50–60% carbohydrate content, which is mainly starch. 
Faba bean is rich in tannins and two glucosidic aminopyrimidine derivatives, V and 
C, which generate the redox aglycones divicine (D) (2,6-diamino-4,5-dihydroxypy-
rimidine) and isouramil (I) (6-amino-2,4,5-trihydroxypyrimidine), respectively, upon 
hydrolysis of the beta-glucosidic bond between the glucose and hydroxyl group at 
C-5 on the pyrimidine ring. Faba bean also contains high amount of ascorbate and 
varying amounts of l-DOPA glucoside (Arese & De Flora, 1990). Small children 
and old people are at high risk because their gastric juice is less acidic and the 
beta-glycosidase of the bean is not inactivated. In normal red blood cells, oxidized 
glutathione (GSH) is rapidly regenerated by a metabolic cycle in which glucose-
6-phosphate dehydrogenase (G6PD) is an essential component. G6PD deficiency is 
widespread in humans.

5.7 Germplasm Enhancement Through Wide Crosses

The wild ancestor of faba bean remains unknown and no successful interspecific 
crosses with other Vicia species have been made (Hanelt, Schäfer, & Schultze-Motel, 
1972; Muratova, 1931). The closest species to V. faba is considered to be V. pliniana 
(Trabut) Murat from Algeria (Muratova, 1931). Differences from V. faba in morpholog-
ical characters, such as broad arillus, the anatomical structure of seed coat and its weak 
swelling, allowed Muratova to classify it as an independent species, V. pliniana. Pods 
of this wild form, which has slightly different morphology from that of V. faba, were 
used for cooking (Trabut, 1911). Another presumed ancestor is the paucijuga type, 
which was found by the traveller Slagintwein in Tibet and Pendjub (Alefeld, 1866). 
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Hopf (1973) proposed that V. narbonensis L. is a probable wild ancestor of V. faba. 
These two species have many morphological similarities and coincide in their distribu-
tion. However, Ladizinsky (1975) argued against considering V. narbonensis and other 
wild species as immediate ancestors of the cultivated V. faba. Although V. narbonensis, 
V. johannis and V. bithynica all cross well with each other and many attempts to cross 
V. faba with any of its relatives have failed to produce viable hybrids (Bond, Lawes, 
Hawtin, Saxena, & Stephens, 1985; Cubero, 1982; Hanelt & Mettin, 1989).

Hybridization between V. faba bean and V. narbonesis was tried by Roupakias 
(1986). Fertilized embryo sac development and pod growth were studied in one  
V. faba cultivar, one V. narbonensis population, and their reciprocal crosses. The 
initial development of endosperm and embryo was at least 4 days faster in V. nar-
bonensis than in V. faba. Pods and ovules also developed faster in V. narbonensis 
than in V. faba. The growth rate of the hybrid pods followed the growth rate of the 
mother species, but was slower than that of the pods from selfed flowers. In the cross  
V. narbonensis × V. faba, the ovules stopped growing 9 days after pollination, while 
in the reciprocal cross they stopped growing 15 days after pollination. Hybrid embryo 
sacs from V. faba × V. narbonensis were aborted before they reached the stage of 
256 endosperm nuclei or 200 embryo cells. Selfed V. faba embryo sacs reached 
this stage <9 days after pollination. In the reciprocal cross, the embryo sacs were 
aborted before they reached the stage of 128 endosperm nuclei or 80 embryo cells. 
Selfed V. narbonensis embryo sacs reached this stage at the fourth day after polli-
nation. Given that at these stages the embryo has <200 cells, it was concluded that 
an in-ovule embryo culture technique should be developed to obtain viable hybrid 
plants. Molecular investigations have indicated the independence of V. faba and its 
large genetic difference from the V. narbonensis complex (Przybylska & Zimniak-
Przybylska, 1997; Raina & Ogihara, 1994; van de Ven et al., 1993). Restriction frag-
ment length polymorphism (RFLP) data has divided the Vicia gene pool into the 
species narbonensis, peregrinae and faba, which is in good agreement with the clas-
sification by Maxted et al. (1991). However, it has also been suggested that V. faba is 
more closely aligned to species from the genus Hypechusa and the genus Peregrinae 
than to those in the V. narbonensis complex (van de Ven et al., 1993).

5.8 Faba Bean Genomic Resources

A composite map of the V. faba genome based on morphological markers, isozymes, 
seed protein genes and microsatellites was constructed by Román et al. (2004). The 
map incorporates data from 11F2 families for a total of 654 individuals all sharing 
the common female parent Vf 6. The integrated map is arranged in 14 major linkage 
groups (LGs; 5 of which were located in specific chromosomes). These LGs included 
192 loci and cover 1559 cM with an overall average marker interval of 8 cM. By join-
ing data of a new F2 population segregating for resistance to Ascochyta, and broom-
rape, other traits of agronomic interest were revealed. The combination of trisomic 
segregation, linkage analysis among loci from different families with a recurrent par-
ent and the analysis of new physically located markers has allowed the establishment 
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of a V. faba map with wide coverage. This map provides an efficient tool in breeding 
applications, such as disease-resistance mapping, quantitative trait loci (QTL) analy-
ses and marker-assisted selection (MAS). Comparative genomics and synteny analysis 
with closely related legumes will reveal new candidate genes and selectable markers 
for use in MAS. Ellwood et al. (2008) used 151 intron-targeted amplified polymor-
phic (ITAP) markers to construct a comparative genetic map of the faba bean. Linkage 
analysis revealed 7 major and 5 small LGs, 1 pair and 12 unlinked markers. Each 
LG was composed of 3–30 markers and varied in length from 23.6 cM to 324.8 cM. 
However, the high number of LGs compared to the number of chromosomes may be 
because faba bean possesses one of the largest genomes among cultivated legumes 
(~13,000 Mbp). The map spanned a total length of 1685.8 cM (Ellwood et al., 2008).

One hundred and four of the 127 mapped markers in the 12 LGs, which were pre-
viously assigned to Medicago truncatula genetic and physical maps, were found in 
regions syntenic between the faba bean and M. truncatula genomes. However, chro-
mosomal rearrangements were observed that could explain the difference in chro-
mosome numbers between faba bean, lentil and M. truncatula. Multiple polymerase 
chain reaction (PCR) amplicons and comparative mapping were suggestive of small-
scale duplication events in faba bean. They provided a preliminary indication of finer 
scale macro-synteny between M. truncatula, lentil and faba bean. Markers originally 
designed from genes on the same M. truncatula bacterial artificial chromosomes 
(BACs) were found to be grouped together in corresponding syntenic areas in lentil 
and faba bean (Ellwood et al., 2008), which may facilitate a more efficient selection 
of new cultivars free of antinutritional compounds.

5.8.1 Current QTLs Available in Faba Bean

Díaz-Ruiz et  al. (2010) used 165 F6 recombinant inbred lines (RILs) to identify 
genetic regions associated with broomrape resistance in three environments across 
two locations in 2003–2004. Two hundred and seventy-seven molecular markers 
were assigned to 21 LGs (9 of them assigned to specific chromosomes) that covered 
2856.7 cM of V. faba genome. The composite interval mapping (CIM) on the F6 map 
detected four QTLs controlling O. crenata resistance (Oc2–Oc5) in three different 
environments. Oc2 and Oc3 were found to be associated with O. crenata resistance 
in at least two of the three environments, while the remaining two, Oc4 and Oc5, 
were only detected in Córdoba-04 and Mengíbar-04 and seemed to be environment 
dependent. Six QTLs for Ascochyta blight resistance in faba bean were identified by 
Avila et al. (2004) by using an F2 population from the cross between the inbred lines 
29H (resistant) and Vf136 (susceptible). The six QTLs detected were named Af3–
Af8. Af3 and Af4 were effective against Ascochyta isolates. Af5 was the only effec-
tive against isolate CO99-01, while Af6, Af7 and Af8 were only effective against 
isolate L098-01. Af3, Af4, Af5 and Af7 were revealed in both leaves and stems. In 
contrast, Af6 was only effective in leaves and Af8 only in stems.

Genetic improvement by MAS has been carried out with success in several leg-
ume crops, such as soybean, common bean and pea. However, in other species, such 
as faba bean, it is still in its early stages. Use of molecular markers in faba bean 
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breeding for resistance to broomrape, Ascochyta blight, rust and chocolate spot is 
underway, and promising results have been obtained. Gutierrez et al. (2006) identi-
fied markers linked to the nutritional value of seed tannins and V&C content. Three 
F2 populations, involving lines with zero tannin genes (zt-1 and zt-2) and with the 
zero vicine–convicine mutant (vc−=line1268), have been analysed by the group at 
IFAPA. Bulked segregant analysis (BSA) was used to identify random amplified 
polymorphic DNA (RAPD) markers linked to these genes and the RAPD fragments 
associated with tannin and V&C content have been transformed into more consist-
ent sequence-characterized amplified regions (SCARs) (Gutierrez, Avila, Moreno, 
& Torres, 2008; Gutierrez, Avila, Rodriguez-Suarez, Moreno, & Torres, 2007). The 
cleaved amplified polymorphic sequence (CAPS) and SCAR markers linked in the 
coupling and repulsion phase to zero tannin and low V&C content can be used to 
introgress the appropriate alleles and help in developing cultivars with low V&C 
content and improved nutritional value, avoiding the cost and difficulties of the 
chemical determination of these products.

5.9 Conclusions

Faba bean is one of the oldest crops grown by man and is used as a source of protein 
in human diets, as fodder and a forage crop for animals, and for available nitrogen for 
the biosphere. Despite its importance in food, feed and farming systems, the area under 
cultivation has declined drastically and useful genetic variation has been lost. However, 
the available genetic materials conserved at various gene banks need to be main-
tained and critically evaluated for their use in breeding programs. The useful genetic 
variations identified for key stresses should be used to develop cultivars with multiple 
resistances, in order to attain stable yields. Advanced biotechnical tools accelerate the 
process of selection for resistance to major traits of interest; ICARDA is developing 
appropriate RILs for this purpose. In addition, a number of mapping studies have iden-
tified QTLs controlling different traits for the major biotic and abiotic stresses in faba 
bean as well as for quality and determinate types (Torres et al., 2010). These advanced 
studies should lead to promising results, but are still insufficient for MAS because of 
the limited saturation of the genomic regions bearing putative QTLs. This fact makes 
it difficult to identify the most tightly linked markers and to accurately determine the 
position of the QTLs (Torres et  al., 2010). More efforts are needed to better under-
stand the complexity of resistance mechanisms in pests and the broad adoption of new 
improvements in marker technology integrated with comparative mapping and func-
tional genomics (Dita, Rispail, Parts, Rubiales, & Singh, 2006; Rispail et al., 2010).

References

Abbes, Z., Kharrat, M., Delavault, P., Simier, P., & Chaibi, W. (2007). Field evaluation of the 
resistance of some faba bean (Vicia faba L.) genotypes to the parasitic weed Orobanche 
foetida Poiret. Crop Protection, 26, 1777–1784.

http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref1
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref1
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref1


Faba Bean 129

Abdalla, M. M. F., & Darwish, D. S. (1994). Breeding faba bean for orobanche tolerance at 
Cairo University. In A. H. Pieterse, J. A. C. Verkleij, & S. J. ter Borg (Eds.), Biology and 
management of orobanche: Proceedings of the 3rd International Workshop on Orobanche 
and Related Striga Research (pp. 450–454). Amsterdam, Netherlands: Royal Tropical 
Institute.

Abdalla, M.M.F. & Darwish, D.S. (1996). Investigations of faba beans, Vicia faba, L.: Cairo 2 
and Cairo 241, two new Orobanche tolerant varieties. In Proceedings of the 7th conference 
of agronomy, Mansoura University, Mansoura, Egypt, 9–10 September 1996, pp. 187–201.

Abdelmula, A.A. & Abuanja, I.K. (2007). Genotypic responses, yield stability, and associa-
tion between characters among some of Sudanese faba bean (Vicia faba L.) genotypes 
under heat stress. In Proceedings of the conference utilization of diversity in land use sys-
tems: Sustainable and organic approaches to meet human needs, University of Kassel-
Witzenhausen and University of Göttingen, Witzenhausen, Germany, 9–11 October 2007, 
pp. 1–7.

Abdelmula, A. A., Link, W., Kittlitz, E., & von Stelling, D. (1999). Heterosis and inheritance 
of drought tolerance in faba bean, Vicia faba L. Plant Breeding, 118, 458–490.

Ahmed, M.E.M. (1989). Responses of faba bean to water and heat stress. M.Sc. Thesis. 
Khartoum, Sudan: University of Khartoum.

Arbaoui, M., Balko, C., & Link, W. (2008). Study of faba bean (Vicia faba L.) winter hardi-
ness and development of screening methods. Field Crops Research, 106, 60–67.

Alefeld, F. (1866). Genus Vicia. Landwirtschaftliche flora. Berlin, Germany: Wiegandt and 
Hempel.

Ali, F. H., & Bernier, C. (1985). Evaluation of components of resistance of Ascochyta fabae 
on faba beans. Phytopathology, 75, 962.

Allkin, R., Goyder, D. J., Bisby, F. A., & White, R. J. (1986). Names and synonyms of spe-
cies and subspecies in the Vicieae [Issue 3]. Southampton, UK: Biology Department, 
University of Southampton.

Amede, T., & Schubert, S. (2003). Mechanisms of drought resistance in grain legumes. I. 
Osmotic adjustment. Ethiopian Journal of Science, 26, 37–46.

Arese, P., & De Flora, A. (1990). Pathophysiology of hemolysis in glucose-6-phosphate dehy-
drogenase deficiency. Seminars in Hematology, 27, 1–40.

Avila, C. M., Satovic, Z., Sillero, J. C., Rubiales, D., Moreno, M. T., & Torres, A. M. (2004). 
Isolate and organ-specific QTLs for Ascochyta blight resistance in faba bean (Vicia faba 
L.). Theoretical and Applied Genetics, 108(6), 1071–1078.

Bayaa, B., Kabakebji, M., Khalil, S., Kabbabeh, S., & Street, K. (2004). Pathogenicity of 
Syrian isolates of Ascochyta fabae Speg. and Botrytis fabae Sard. and sources of resist-
ance to both pathogens in a germplasm collection from central Asia and Caucasia 
European Association for Grain Legume Research-AEP (Ed.), Legumes for the benefit 
of agriculture, nutrition and the environment: Their genomics, their products, and their 
improvement (p. 308). Dijon, France: INRA. Proceedings of the 5th European conference 
on grain legumes.

Bernier, C. C., & Conner, R. L. (1982). Breeding for resistance to faba bean rust. In G. Hawtin 
& C. Webb (Eds.), Faba bean improvement (pp. 251–257). The Hague, Netherlands: 
Martinus Nijhoft Publishers.

Bond, D. A., & Crofton, G. R. A. (1999). History of winter beans in the UK. Journal of the 
Royal Agricultural Society of England, 160, 200–209.

Bond, D. A., Jellis, G. J., Rowland, G. G., Le Guen, J., Robertson, L. D., Khalil, S. A., et al. 
(1994). Present status and future strategy in breeding faba beans (Vicia faba L.) for resist-
ance to biotic and abiotic stresses. Euphytica, 73, 151–166.

http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref2
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref2
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref2
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref2
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref2
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref3
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref3
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref4
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref4
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref5
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref5
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref6
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref6
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref7
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref7
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref7
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref8
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref8
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref9
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref9
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref10
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref10
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref10
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref11
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref11
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref11
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref11
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref11
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref11
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref11
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref12
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref12
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref12
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref13
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref13
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref14
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref14
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref14


Genetic and Genomic Resources of Grain Legume Improvement130

Bond, D. A., & Kirby, E. J. M. (1999). Anthophora plumipes (Hymenoptera: Anthophoridae) 
as a pollinator of broad bean (Vicia faba major). Journal of Agricultural Research, 38, 
199–203.

Bond, D. A., Lawes, D. A., Hawtin, G. C., Saxena, M. C., & Stephens, J. S. (1985). Faba 
bean (Vicia faba L.). In R. J. Summerfield & E. H. Roberts (Eds.), Grain legume crops  
(pp. 199–265). London, UK: William Collins Sons Co. Ltd.

Bond, D. A., & Pope, M. (1974). Factors affecting the proportions of cross-bred and selfed 
seed obtained from field bean (Vicia faba L.) crops. Journal of Agricultural Science, 83, 
343–351.

Borlaug, N. E., & Dowswell, C. R. (2005). Feeding a world of ten billion people: a 21st century 
challenge. In R. Tuberosa, R. L. Phillips, & M. D. Gale (Eds.), The wake of the double 
helix: From the green revolution to the gene revolution: Proceedings of an international 
congress, University of Bologna, Italy, 27–31 May 2003. Bologna, Italy: Avenue Media.

Cole, S. (1970). The neolithic revolution. London, UK: Trustees of the British Museum of 
Natural History.

Crépon, K., Marget, P., Peyronnet, C., Carrouee, B., Arese, P., & Duc, G. (2010). Nutritional 
value of faba bean (Vicia faba L.) seeds for feed and food. Field Crops Research, 115, 
329–339.

Crews, T. E., & Peoples, M. B. (2004). Legume versus fertilizer sources of nitrogen: ecologi-
cal tradeoffs and human needs. Agriculture, Ecosystems and Environment, 102, 279–297.

Cubero, J. I. (1973). Evolutionary trends in Vicia faba. Theoretical and Applied Genetics, 
43(2), 59–65.

Cubero, J. I. (1974). On the evolution of Vicia faba L. Theoretical and Applied Genetics, 45, 
47–51.

Cubero, J. I. (1982). Interspecific hybridization in Vicia. In G. Hawtin & C. Webb (Eds.), Faba 
bean improvements (pp. 91–108). The Hague, Netherlands: Martinus Nijhoff Publishers.

Cubero, J. I. (1984). Problems and perspectives in breeding for protein content in Vicia faba. 
FABIS Newsletter – Faba Bean Information Service, 9, 1–9.

Cubero, J. I., Moreno, M. T., & Hernandez, L. (1992). A faba bean (Vicia faba L.) cultivar 
resistant to broomrape (Orobanche crenata Forsk.). In P. Plancquaert (Ed.), Proceedings 
of the 1st European conference on grain legumes, Angers, France, 1–3 June 1992 (pp. 
41–42). Paris, France: L’association Europeenne des Proteagineux.

Cubero, J. I., Pieterse, A. H., Khalil, S. A., & Sauerborn, J. (1994). Screening techniques and 
sources of resistance to parasitic angiosperms. Euphytica, 74, 51–58.

Conner, R. L., & Bernier, C. C. (1982). Host range of Uromyces viciae-fabae. Phytopathology, 
72, 687–689.

Díaz-Ruiz, R., Torres, A. M., Satovic, Z., Gutierrez, M. V., Cubero, J. I., & Román, B. (2010). 
Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across 
environments and generations. Theoretical and Applied Genetics, 120(5), 909–919.

Dita, M. A., Rispail, N., Parts, E., Rubiales, D., & Singh, K. B. (2006). Biotechnology 
approaches to overcome biotic and abiotic stress constraints in legumes. Euphytica, 147, 
1–24.

Drayner, J. M. (1959). Self- and cross-fertility in field beans (Vicia faba L.). Journal of 
Agricultural Science, 53, 387–403.

Duc, G., Bao, S. Y., Baum, M., Redden, B., Sadiki, M., Suso, M. J., et al. (2010). Diversity main-
tenance and use of Vicia faba L. genetic resources. Field Crops Research, 115, 270–278.

Ellwood, S. R., Phan, H. T., Jordan, M., Hane, J., Torres, A. M., Avila, C. M., et al. (2008). 
Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of 
genome structure with Lens culinaris. BMC Genomics, 9, 380.

http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref15
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref15
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref15
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref16
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref16
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref16
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref17
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref17
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref17
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref18
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref18
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref18
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref18
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref19
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref19
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref20
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref20
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref20
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref21
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref21
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref22
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref22
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref23
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref23
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref24
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref24
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref25
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref25
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref26
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref26
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref26
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref26
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref27
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref27
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref28
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref28
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref29
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref29
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref29
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref30
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref30
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref30
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref31
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref31
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref32
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref32
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref33
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref33
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref33


Faba Bean 131

Emeran, A. A., Sillero, J. C., & Rubiales, D. (2001). Physiological specialisation of Uromyces 
viciae-fabae European Association for Grain Legume Research-AEP (Ed.), Towards the 
sustainable production of healthy food, feed and novel products (p. 263). Paris, France: 
European Association for Grain Legume Research-AEP. Proceedings of the 4th European 
conference on grain legumes, 8–12 July 2001, Cracow, Poland.

FAOSTAT,  (2012). World statistics on faba bean. Rome, Italy: Food and Agriculture 
Organization of the United Nations. Available at: <http://faostat.fao.org/>.

Fischer, R. A., & Turner, N. C. (1978). Plant productivity in the arid and semiarid zone. 
Annual Review of Plant Physiology, 29, 277–317.

Frediani, M., Maggini, F., Gelati, M. T., & Cremonini, R. (2004). Repetitive DNA sequences 
as probes for phylogenetic analysis in Vicia genus. Caryologia, 57, 379–386.

Gadh, I. P. S., & Bernier, C. C. (1984). Resistance in faba bean (Vicia faba) to bean yellow 
mosaic virus. Plant Diseases, 68, 109–111.

Gasim, S., Abel, S., & Link, W. (2004). Extent, variation and breeding impact of natural cross-ferti-
lization in German winter faba beans using hilum colour as marker. Euphytica, 136, 193–200.

Gressel, J., Hanafi, A., Head, G., Marasas, W., Obilana, B., Ochanda, J., et al. (2004). Major 
heretofore intractable biotic constraints to African food security that may be amenable to 
novel biotechnological solutions. Crop Protection, 23, 661–689.

Gutierrez, N., Avila, C. M., Duc, G., Marget, P., Suso, M. J., Moreno, M. T., et al. (2006). 
). CAPs markers to assist selection for low vicine and convicine contents in faba bean 
(Vicia faba L.). Theoretical and Applied Genetics, 114, 59–66.

Gutierrez, N., Avila, C. M., Moreno, M. T., & Torres, A. M. (2008). Development of SCAR 
markers linked to zt-2, one of the genes controlling absence of tannins in faba bean. 
Australian Journal of Agricultural Research, 59, 62–68.

Gutierrez, N., Avila, C. M., Rodriguez-Suarez, C., Moreno, M. T., & Torres, A. M. (2007). 
Development of SCAR markers linked to a gene controlling absence of tannins in faba 
bean. Molecular Breeding, 19, 305–314.

Hanelt, P., & Mettin, D. (1989). Biosystematics of the genus Vicia L. (Leguminosae). Annual 
Review of Ecological Systems, 20, 199–223.

Hanelt, P., Schäfer, H., & Schultze-Motel, J. (1972). Die Stellung von Vicia faba L. in der 
Gattung Vicia L. und Betrachtungen zur Entstehung dieser Kulturart. Kulturpflanze, 20, 
263–275.

Hanounik, S. B., Jellis, G. J., & Hussein, M. M. (1993). Screening for resistance in faba bean. 
In K. B. Singh & M. C. Saxena (Eds.), Breeding for stress tolerance in cool-season food 
legumes (pp. 97–106). Aleppo, Syria: ICARDA.

Hanounik, S. B., & Roberston, L. D. (1989). Resistance of faba bean germplasm to blight 
caused by Ascochtya fabae. Plant Disease, 73, 202–205.

Hawtin, G., & Omar, M. (1980). Estimation of out-crossing between isolation plots of faba 
beans. FABIS Newsletter – Faba Bean Information Service, 25, 36–39.

Hopf, M. (1973). Fruhe Kulturpflanzen aus bulgarien. Jahrbuch des Romisch-Germanischer 
Zentralmuseums Mainz, 20, 1–47.

International Center for Agricultural Research in the Dry Areas (ICARDA),  (1987). Faba 
bean pathology progress report 1986–1987: Food legume improvement program. Aleppo, 
Syria: ICARDA.

Jensen, E. S., Peoples, M. B., & Hauggaard-Nielsen, H. (2010). Faba bean in cropping sys-
tems. Field Crops Research, 115, 203–216.

Katul, L., Vetten, H. J., Maiss, E., Makkouk, K. M., Lesemann, D. E., & Casper, R. (1993). 
Characterization and serology of virus-like particles associated with faba bean necrotic 
yellows. Annals of Applied Biology, 123, 629–647.

http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref34
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref34
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref34
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref34
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref34
http://faostat.fao.org/
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref36
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref36
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref37
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref37
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref38
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref38
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref39
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref39
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref40
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref40
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref40
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref41
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref41
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref41
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref42
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref42
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref42
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref43
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref43
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref43
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref44
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref44
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref45
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref45
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref45
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref46
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref46
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref46
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref47
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref47
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref48
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref48
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref49
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref49
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref50
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref50
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref50
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref51
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref51
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref52
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref52
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref52


Genetic and Genomic Resources of Grain Legume Improvement132

Khalil, S., Bayaa, B., Malhotra, R. S., Erskine, W., & Saxena, M. C. (2004). Breeding for 
combined resistance to chocolate spot (Botrytis fabae Sard.) and Ascochyta blight 
(Ascochyta fabae Speg.) diseases in faba bean (Vicia faba L.) European Association for 
Grain Legume Research-AEP (Ed.), Legumes for the benefit of agriculture, nutrition and 
the environment: Their genomics, their products, and their improvement. Paris, France: 
Dijon, France. INRA. Proceeding of the 5th European conference on grain legumes/2nd 
international conference on legume genomics and genetics, 7–11 June 2004.

Khalil, S., & Erskine, W. (1999). Breeding for Orobanche resistance in faba bean and lentil. In 
J. I. Cubero, M. T. Moreno, D. Rubiales, & J. C. Sillero (Eds.), Resistance to broomrape: 
The state of the art (pp. 63–76). Seville, Spain: Junta de Andalucia.

Khalil, S., Kharrat, M., Malhotra, R., Saxena, M., & Erskine, W. (2004). Breeding faba bean 
for Orobanche resistance. In R. Dahan & M. El-Mourid (Eds.), Integrated management of 
orobanche in food legumes in the near east and North Africa (pp. 1–18). Aleppo, Syria: 
ICARDA. Proceedings of the expert consultation on IPM for orobanche in food legume 
systems in the near East and North Africa, Rabat Morocco, 7–9 April 2003.

Khalil, S. A., Nassib, A. M., & Mohammed, H. A. (1985). Identification of some sources of 
resistance to diseases in faba beans. II – Rust (Uromyces fabae). FABIS Newsletter – 
Faba Bean Information Service, 11, 18–20.

Khan, H. R., Link, W., Hocking, T. J., & Stoddard, F. L. (2007). Evaluation of physiological 
traits for improving drought tolerance in faba bean (Vicia faba L.). Plant and Soil, 292, 
205–217.

Khan, H. R., Paull, J. G., Siddique, K. H. M., & Stoddard, F. L. (2010). Faba bean breed-
ing for drought-affected environments: a physiological and agronomic perspective. Field 
Crops Research, 115, 279–286.

Kharbanda, P. D., & Bernier, C. C. (1980). Cultural and pathogenic variability among isolates 
of Ascochyta fabae. Canadian Journal of Plant Pathology, 2, 139–142.

Kharrat, M., Abbes, Z., & Amri, M. (2010). A new faba bean small seeded variety Najeh 
tolerant to Orobanche registered in the Tunisian catalogue. Tunisian Journal of Plant 
Protection, 5, 125–130.

Kharrat, M., & Halila, M. H. (1994). Orobanche species on faba beans (Vicia faba L.) in 
Tunisia: problems and management. In A. H. Pieterse, J. A. C. Verkleij, & S. J. ter Borg 
(Eds.), Biology and management of orobanche (pp. 639–643). Amsterdam, Netherlands: 
Royal Tropical Institute. Proceedings of the third international workshop on orobanche 
and related Striga research.

Kharrat, M., Le Guen, J., & Tivoli, B. (2006). Genetics of resistance to 3 isolates of Ascochyta 
fabae on faba bean (Vicia faba L.) in controlled conditions. Euphytica, 151, 49–61.

Kohpina, S., Knight, R., & Stoddard, F. L. (1999). Variability of Ascochyta fabae in South 
Australia. Australian Journal of Agricultural Research, 50, 1475–1481.

Kumari, S. G., & Makkouk, K. M. (2003). Differentiation among bean leaf roll virus suscepti-
ble and resistant lentil and faba bean genotypes on the basis of virus movement and mul-
tiplication. Journal of Phytopathology, 151, 19–25.

Kupicha, F. K. (1976). The infrageneric structure of Vicia. Notes from the Royal Botanic 
Garden. Edinburgh, 34, 287–326.

Ladizinsky, G. (1975). Seed protein electrophoresis of the wild and cultivated species of sec-
tion faba of Vicia. Euphytica, 24, 785–788.

Lawsawadsiri, S. (1995). Ascochyta fabae. PhD Thesis. Adelaide, Australia: University of 
Adelaide.

Link, W., Balko, C., & Stoddard, F. L. (2010). Winter hardiness in faba bean: Physiology and 
breeding. Field Crops Research, 115, 287–296.

http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref53
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref53
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref53
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref53
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref53
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref53
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref53
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref54
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref54
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref54
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref55
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref55
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref55
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref55
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref55
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref56
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref56
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref56
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref57
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref57
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref57
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref58
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref58
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref58
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref59
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref59
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref60
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref60
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref60
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref61
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref61
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref61
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref61
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref61
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref62
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref62
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref63
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref63
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref64
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref64
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref64
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref65
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref65
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref66
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref66
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref67
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref67


Faba Bean 133

Link, W., & von Kittlitz, E. (1989). Rate of cross-fertilization between single plants and 
between plots. FABIS Newsletter – Faba Bean Information Service, 25, 36–39.

Maalouf, F., Ahmed, S., Kabakebji, M., Kabbabeh, S., & Street, K. (2009). Breeding faba 
bean for resistance to chocolate spot: Oral presentation to fungal diseases session. 
Beirut, Lebanon: Arab Society for Plant Protection and National Council for Scientific 
Research. 10th Arab congress of plant protection, 26–30 October 2009.

Maalouf, F. S., Ahmed, S., Kabakebji, M., Khalil, S., Abang, M., Kabbabeh, S., et al. (2010). 
Sources of multiple resistances for key foliar disease of faba bean: Poster presented at 
the 5th international conference on food legumes/7th European conference on grain leg-
umes. Antalya, Turkey: European Plant Science Organization. 26–30 May 2010.

Maalouf, F., Ahmed, S., Nawar, M., Khalil, S., & Bayaa, B. (2012). Breeding faba bean for 
Ascochyta blight resistance: Proceedings of the 3rd international ascochyta workshop, 
22–26 April 2012. Córdoba, Spain: University of Córdoba, Institute of Sustainable 
Agriculture, Institute of Agricultural and Fishery Research and Training. p. 43.

Maalouf, F., Khalil, S., Ahmed, S., Akinnola, N., Kharrat, M., Hajjar, S., et al. (2011). Yield 
stability of faba bean lines under diverse broomrape prone production environments. 
Field Crop Research, 124, 288–294.

Makkouk, K. M., Rizkallah, L., Madkour, M., El-Sherbeiny, M., Kumari, S. G., Amriti, A. W., 
et al. (1994). Survey of faba bean (Vicia faba L.) for viruses in Egypt. Phytopathologia 
Mediterranea, 33, 207–211.

Maurin, N., & Tivoli, B. (1992). Variation in the resistance of Vicia faba to Ascochyta fabae in 
relation to disease development in field trials. Plant Pathology, 41, 737–744.

Maxted, N. (1993). A phenetic investigation of Vicia L. subgenus Vicia (Leguminosae-
Vicieae). Botanical Journal of the Linnean Society, 111, 155–182.

Maxted, N. (1995). An ecogeographical study of Vicia subgenus Vicia: Systematic and ecoge-
ographic studies on crop genepools 8. Rome, Italy: International Plant Genetic Resources 
Institute. Available at: <http://pdf.usaid.gov/pdf_docs/PNABU773.pdf/>.

Maxted, N., Callimassia, M. A., & Bennett, M. D. (1991). Cytotaxonomic studies of east-
ern Mediterranean Vicia species (Leguminosae). Plant Systematics and Evolution, 177, 
221–234.

Mazid, A., Shideed, K., & Amri, A. (2006). Status of and threats to on-farm agrobiodiversity 
and its impact on rural livelihoods in dry areas of West Asia: Dryland agrobiodiversity 
report. Aleppo, Syria: ICARDA.

McDonald, G. K., & Paulsen, G. M. (1997). High temperature effects on photosynthesis and 
water relations of grain legumes. Plant and Soil, 196, 47–58.

Mesa-García, J., & García-Torres, L. (1991). Status of Orobanche crenata in faba bean in the 
Mediterranean region and its control. Options Méditerranéennes Série Séminaires, 10, 
75–78.

Muratova, V. S. (1931). Common beans (Vicia faba L.). Bulletin of Applied Botany, Genetics 
and Plant Breeding Supplement, 50, 1–298.

Nassib, A. M., Ibrahim, A. A., & Khalil, S. A. (1982). Breeding for resistance to Orobanche. 
In G. Hawtin & C Webb (Eds.), Faba bean improvement (pp. 199–206). The Hague, 
Netherlands: Martinus Nijhoft Publishers.

Perez-de-Luque, A., Lozano, M. D., Moreno, M. T., Testillano, P. S., & Rubiales, D. (2007). 
Resistance to broomrape (Orobanche crenata) in faba bean (Vicia faba): cell wall 
changes associated with pre haustorial defensive mechanisms. Annals of Applied Biology, 
151, 89–98.

Pierre, J., Suso, M. J., Moreno, M. T., Esnault, R., & Le Guen, J. (1999). Diversite et efficacite 
de l’entomofaune pollinisatrice (Hymenoptera: Apidae) de la féverole (Vicia faba L.) sur 

http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref68
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref68
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref69
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref69
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref69
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref69
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref70
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref70
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref70
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref70
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref71
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref71
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref71
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref71
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref72
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref72
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref72
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref73
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref73
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref73
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref74
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref74
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref75
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref75
http://pdf.usaid.gov/pdf_docs/PNABU773.pdf/
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref77
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref77
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref77
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref78
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref78
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref78
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref79
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref79
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref80
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref80
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref80
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref81
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref81
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref82
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref82
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref82
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref83
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref83
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref83
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref83
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref84
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref84


Genetic and Genomic Resources of Grain Legume Improvement134

deux sites, en France et en Espagne. Annales de la Société entomologique de France, 
35(Supplément), 312–318.

Pozarkova, D., Koblizkova, A., Román, B., Torres, A. M., Lucretti, S., Lysak, M., et al. (2002). 
Development and characterization of microsatellite markers from chromosome 1-specific 
DNA libraries of Vicia faba. Biologia Plantarum, 45, 337–345.

Przybylska, J., & Zimniak-Przybylska, Z. (1997). Electrophoretic seed albumin patterns and 
species relationship in Vicia sect. faba (Fabaceae). Plant Systematics and Evolution, 198, 
179–194.

Raina, S. N., & Ogihara, Y. (1994). Chloroplast DNA diversity in Vicia faba and its close wild 
relatives: implications for reassessment. Theoretical and Applied Genetics, 88, 261–266.

Ramsey, M., Knight, R., & Paull, J. (1995). Ascochyta and chocolate spot resistant faba beans 
(Vicia faba L.) for Australia: Proceedings of the 2nd European conference on grain leg-
umes. (pp. 164–165). Copenhagen, Denmark: European Association for Grain Legume 
Research.

Rashid, K. Y., & Bernier, C. C. (1984). Evaluation of resistance in Vicia faba to two isolates of 
the rust fungus Uromyces viciae-fabae from Manitoba. Plant Disease, 68, 16–18.

Rashid, K. Y., & Bernier, C. C. (1986). The genetics of resistance in Vicia faba to two races 
of Uromyces viciae-fabae from Manitoba. Canadian Journal of Plant Pathology, 8, 
317–322.

Rashid, K. Y., & Bernier, C. C. (1991). The effect of rust on yield of faba bean cultivars and 
slow-rusting populations. Canadian Journal of Plant Science, 71, 967–972.

Rashid, K. Y., Bernier, C. C., & Conner, R. L. (1991). Genetics of resistance in faba bean 
inbred lines to five isolates of Ascochyta fabae. Canadian Journal of Plant Pathology, 13, 
218–225.

Rispail, N., Kalo, P., Kiss, G. B., Ellis, T. H. N., Gallardo, K., Thompson, R. D., et al. (2010). 
Model of legumes to contribute to faba bean breeding. Field Crops Research, 115, 
253–269.

Robertson, L. D., & Cardona, C. (1986). Studies on bee activity and outcrossing in increase 
plots of Vicia faba L.. Field Crops Research, 15, 157–164.

Robertson, L. D., Singh, K. B., Erskine, W., & Abd El Moneim, A. M. (1996). Useful genetic 
diversity in germplasm collections of food and forage legumes from West Asia and North 
Africa. Genetic Resources and Crop Evolution, 43, 447–460.

Román, B., Satovic, Z., Pozarkova, D., Macas, J., Dolezel, J., Cubero, J. I., et al. (2004). 
Development of a composite map in Vicia faba, breeding applications and future pros-
pects. Theoretical and Applied Genetics, 108(6), 1079–1088.

Roupakias, D. G. (1986). Interspecific hybridization between Vicia faba L. and Vicia narbone-
sis L.: Early pod growth and embryo-sac development. Euphytica, 35, 175–183.

Rubiales, D., Perez-de-Luque, A., Fernandez-Aparicio, M., Sillero, J. C., Román, B., Kharrat, 
M., et al. (2006). Screening techniques and sources of resistance against parasitic weeds 
in grain legumes. Euphytica, 147, 187–199.

Saber, H. A., Omer, M. A., El-Hady, M. M., Mohmoud, S. A., Abou-Zeid, N. M., & Radi, M. 
M. (1999). Performance of a newly-bred faba bean line (X-843) resistant to Orobanche in 
Egypt. In J. Kroschel, M. Abderahibi, & H. Betz (Eds.), Advances in parasitic weed con-
trol at on-farm level. Vol. II: Joint action to control orobanche in the WANA region (pp. 
251–257). Weikersheim, Germany: Margraf Verlag.

Santidrián, S., Sobrini, F. J., & Larralde, J. (1981). Problemas que plantea la utilizaci6n de 
habas desde el punto de vista de la nutrición. Revistas de la Institución Príncipe de 
Viana, 1, 95–103.

http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref84
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref84
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref85
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref85
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref85
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref86
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref86
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref86
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref87
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref87
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref88
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref88
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref88
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref88
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref89
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref89
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref90
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref90
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref90
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref91
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref91
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref92
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref92
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref92
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref93
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref93
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref93
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref94
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref94
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref95
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref95
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref95
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref96
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref96
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref96
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref97
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref97
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref98
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref98
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref98
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref99
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref99
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref99
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref99
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref99
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref100
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref100
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref100


Faba Bean 135

Sau, F., & Mínguez, M. I. (2000). Adaptation of indeterminate faba beans to weather and man-
agement under a Mediterranean climate. Field Crops Research, 66, 81–99.

Saxena, M. C. (1991). Status and scope for production of faba bean in the Mediterranean 
countries. Options Méditerranéennes Série Séminaires, 10, 15–20.

Siddique, K. H. M., Regan, K. L., Tennant, D., & Tomson, B. D. (2001). Water use and water 
use efficiency of cool season grain legumes in low rainfall Mediterranean-type environ-
ments. European Journal of Agronomy, 15, 267–280.

Sillero, J., Avila, C. M., Moreno, M. T., & Rubiales, D. (2001). Identification of resistance to 
Ascochyta fabae in Vicia faba germplasm. Plant Breeding, 120, 529–531.

Sillero, J. C., Moreno, M. T., & Rubiales, D. (2000). Characterization of new sources of resist-
ance to Uromyces viciae-fabae in a germplasm collection of Vicia faba. Plant Pathology, 
49, 389–395.

Sillero, J. C., Villegas-Fernandez, A. M., Thomas, J., Rojas-Molina, M. M., Emeran, A. A., 
Fernandez-Aparicio, M., et al. (2010). Faba bean breeding for disease resistance. Field 
Crops Research, 115, 297–307.

Sobrini, F. J., Santidrian, S., & Larralde, J. (1982). Effect of tannin content of Vicia faba seeds 
on the growth and nutritive value. FABIS Newsletter – Faba Bean Information Service, 5, 
32–35.

Suso, M. J., Pierre, J., Moreno, M. T., Esnault, R., & Le Guen, J. (2001). Variation in out-
crossing levels in faba bean cultivars: role of ecological factors. Journal of Agricultural 
Science, 136, 399–405.

Suso, M. J., Gilsanz, S., Duc, G., Marget, P., & Moreno, M. T. (2006). Germplasm manage-
ment of faba bean (Vicia faba L.): Monitoring intercrossing between accessions with 
inter-plot barriers. Genetic Resources and Crop Evolution, 53, 1427–1439.

Suso, M. J., Nadal, S., Román, B., & Gilsanz, S. (2008). Vicia faba germplasm multiplication 
floral traits associated with pollen-mediated gene flow under diverse between-plot isola-
tion strategies. Annals of Applied Biology, 152, 201–208.

Schultze-Motel, J. (1972). Die archaologischen reste der ackerbohne, Vicia faba L. und die 
genese de art. Kulturpflanze, 19, 321–358.

Tanno, K., & Willcox, G. (2006). The origins of cultivation of Cicer arietinum L. and Vicia 
faba L.: Early finds from Tell el-Kerkh, north-west Syria, late 10th millennium B.P.. 
Vegetation History and Archaeobotany, 15, 197–204.

ter Borg, S. J., Willemsen, A., Khalil, S. A., Saber, H. A., Verkleij, J. A. C., & Pierterse, A. H. 
(1994). Field study of the interaction between Orobanche crenata Forsk. and some lines 
of Vicia faba. Crop Protection, 13, 611–616.

Trabut, L. (1911). L’indegenat de la Flore en Algeria. Bulletin de la Société Nationale 
Africaine, 7(15), 1–7.

Torres, A. M., Avila, C. M., Gutierrez, N., Palomino, C., Moreno, M. T., & Cubero, J. I. 
(2010). ). Marker-assisted selection in faba bean (Vicia faba L.). Field Crops Research, 
115, 243–252.

van de Ven, W. T. G., Duncan, N., Ramsay, G., Phillips, M., Powell, W., & Waugh, R. (1993). 
Taxonomic relationships between V. faba and its relatives based on nuclear and mito-
chondrial RFLPs and PCR analysis. Theoretical and Applied Genetics, 86, 71–80.

van Leur, J. A. G., Kumari, S. G., Makkouk, K. M., & Rose, I. A. (2006). Viruses on faba bean 
in north-east Australia and strategies for virus control. In C. Avila, J. I. Cubero, M. T. 
Moreno, M. J. Suso, & A. M. Torres (Eds.), Proceedings of the international workshop 
on faba bean breeding and agronomy, Seville, Spain, 25–27 October 2006 (pp. 129–131). 
Córdoba, Spain: Junta de Andalucía.

http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref101
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref101
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref102
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref102
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref103
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref103
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref103
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref104
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref104
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref105
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref105
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref105
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref106
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref106
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref106
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref107
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref107
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref107
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref108
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref108
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref108
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref109
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref109
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref109
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref110
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref110
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref110
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref111
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref111
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref112
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref112
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref112
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref113
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref113
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref113
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref114
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref114
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref115
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref115
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref115
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref116
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref116
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref116
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref117
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref117
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref117
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref117
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref117


Genetic and Genomic Resources of Grain Legume Improvement136

Wang, H., Zong, X., Guan, J., Yang, T., Sun, X., Yu, M., et al. (2012). Genetic diversity and 
relationship of global faba bean (Vicia faba L.) germplasm revealed by ISSR markers. 
Theoretical and Applied Genetics, 124, 789–797.

Xu, S. C., Gong, Y. M., Mao, W. H., Hu, Q. Z., Zhang, G. W., Fu, W., et al. (2012). 
Development and characterization of 41 novel EST-SSR markers for Pisum sativum. 
American Journal of Botany, 99(4), 149–153.

Ye, Y., Lang, L., Xia, M., & Tu, J. (2003). Faba beans in China. Beijing, China: China 
Agriculture Press, in Chinese.

Zeid, M., Schoen, C., & Link, W. (2003). Genetic diversity in recent elite faba bean lines 
using AFLP markers. Theoretical and Applied Genetics, 107, 1304–1314.

Zheng, Z., Wang, S., & Zong, X. (1997). Food legume crops in China. Beijing, China: China 
Agriculture Press, in Chinese.

Zong, X, Liu, X., Guan, J., Wang, S., Liu, Q., Paull, J. G., et al. (2009). Molecular varia-
tion among Chinese and global winter faba bean germplasm. Theoretical and Applied 
Genetics, 118, 971–978.

http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref118
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref118
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref118
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref119
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref119
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref119
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref120
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref120
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref121
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref121
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref122
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref122
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref123
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref123
http://refhub.elsevier.com/B978-0-12-397935-3.00005-0/sbref123


Genetic and Genomic Resources of Grain Legume Improvement. DOI: 
© 2013 Elsevier Inc. All rights reserved.2013

http://dx.doi.org/10.1016/B978-0-12-397935-3.00006-2

Cowpea
Ousmane Boukar, Ranjana Bhattacharjee, 
Christian Fatokun, P. Lava Kumar and Badara Gueye
International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria

6

6.1 Introduction

Cowpea is probably the most commonly grown and consumed legume in the dry 
savanna regions of sub-Saharan Africa (SSA). Because of its drought tolerance abil-
ity, it is well adapted to the dry savanna, where the bulk of the crop is produced suc-
cessfully. It is mostly grown by small-scale farmers in their fields in association with 
cereals, such as millets, sorghum, maize and groundnut. The West African subre-
gion contributes to about 95% of global cowpea production (Food and Agriculture 
Organization, 2012). Nigeria alone produced over 2.24 million metric tons in 
about 2.52 million ha followed by Niger with 1.77 million metric tons produced in  
5.57 million ha (FAO, 2012). Brazil is another country where a high volume of cow-
pea is produced and consumed. In 2011 the country produced about 822,000 metric 
tons in 1.6 million ha at an average yield of 525 kg ha−1, which is about 11% higher 
than the average yield in SSA farmers’ fields. According to the FAO (http://www.
faostat.org), the world cowpea grain production has increased from about 1.3 mil-
lion metric tons in the 1970s to over 5 million metric tons in the 2000s. However, 
annual consumption of cowpea in Nigeria is over 3.0 million tons, whereas the 
country produces about 2.6 million tons. Baseline studies on cowpea in western and 
central Africa, which account for 75% of the total world production, have projected 
that demand will grow faster at the rate of 2.68% in each year than supply at 2.55% 
annually over the period of 2007 to 2030 in the subregion (Abate, 2012). The mean 
grain yield of cowpea in a typical SSA farmer’s field is about 495 kg ha−1, much 
lower than what is obtained under experimental conditions (FAO, 2012). The low 
grain yield is caused by a number of biotic and abiotic factors. Cowpea is susceptible 
to many insects and pests such as aphids in the seedling stage, flower bud thrips at 
flowering stage, maruca pod borer and a complex of pod-sucking bugs at flower-
ing and podding stages. Bruchid (Callosobruchus maculatus) can cause significant 
loss to cowpea seeds in storage. Each of these insects is capable of causing signifi-
cant reduction in the grain yield and thereby farmers’ income. Apart from insects and 
pests, there are fungal, bacterial and viral diseases that afflict the crop in field and 
reduce yield (Allen, Thottappilly, Emechebe, & Singh, 1998; Emechebe & Lagoke, 
2002). Through cowpea breeding activities, several improved cowpea lines and vari-
eties have been developed and released to farmers in different countries. These lines 
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and varieties have been characterized by extra early, early or medium maturity, dual 
purpose, i.e. grain and fodder producing, Striga and Alectra resistance, drought toler-
ance and resistance to some diseases such as bacterial blight. Some other germplasm 
lines were identified with >30% protein in the grains (Boukar et al., 2011). As a result 
of this, cowpea is commonly referred to as ‘poor man’s meat’, especially among the 
inhabitants of rural areas and urban slums of western and central Africa. The grains 
are processed into different types of food products, such as kosai or akara, moi moi. 
Green immature cowpea pods are harvested and sold in local markets for consump-
tion as a vegetable. Cowpea leaves are also known to contain a high amount of protein 
and minerals, such as calcium, phosphorus and vitamin B (Maynard, 2008). Further, 
in the present global scenario with the regularly expanding need for varietal improve-
ment, there is an urgent need for the systematic collection, conservation, characteriza-
tion, evaluation and utilization of germplasm for both the present and posterity.

6.2 Origin, Distribution, Diversity and Taxonomy

Cowpea (Vigna unguiculata (L.) Walp.), a true diploid (2n = 2x = 22) species, 
belongs to the family Leguminosae, tribe Phaseoleae, genus Vigna, and section 
Catiang (Verdcourt, 1970). The genus Vigna comprises about 85 species, which 
Marechal, Mascherpa, and Stainier (1978) divided into seven subgenera, namely 
Ceratotropis, Haydonia, Lasiocarpa, Macrorhycha, Plectotropis, Sigmoidotropis and 
Vigna. The Asiatic Vigna includes green gram (Vigna radiata), black gram (Vigna 
mungo) and rice bean (Vigna umbellata) of the subgenus Ceratotropis, whereas 
cowpea along with its cross-compatible wild relatives are in a subgenus of Vigna. 
Taxonomic relationships between the members of Vigna species, based on restriction 
fragment length polymorphism (RFLP) markers, confirmed the distinctness of bam-
bara groundnut (V. subterranea), cowpea along with members of section Catiang, 
Asiatic Vigna species and those belonging to subgenus Plectotropis (Fatokun, 
Danesh, Young, & Stewart, 1993). The study also revealed that members of subgenus 
Plectotropis, which include V. vexillata, are closer taxonomically to those belong-
ing to section Catiang. According to Baudoin and Marechal (1988), V. vexillata is 
an intermediate type between the African and Asiatic Vigna species. Despite the 
phylogenetic proximity of V. vexillata and cowpea, there exists a strong barrier to 
cross compatibility between them (Fatokun, 2002). Most members of the Vigna spe-
cies are true diploid with 2n = 2x = 22 chromosome numbers (Marechal et al., 1978). 
However, some species, such as V. ambacensis Bak. f., V. heterophylla, V. reticu-
lata Hook. f. and V. wittei Bak. f., have 2n = 2x = 20 chromosome numbers, while  
V. glabrescens has 2n = 4x = 44 chromosomes and is the only known amphidiploid in 
the subtribe Phaseolinea (Verdcourt, 1970). The progenitor of cowpea is V. unguic-
ulata var. spontanea (formerly var. dekindtiana), whose habitat has been found in 
all lowland areas of SSA, outside the high rain forests and deserts. However, south-
ern Africa has been suggested as the centre of origin for wild cowpea (Padulosi & 
Ng, 1997). According to these workers, the area from Namibia through Botswana, 
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Zambia, Zimbabwe, Mozambique, Republic of South Africa and Swaziland repre-
sents the highest genetic diversity and most primitive forms of wild V. unguiculata. 
The researchers further reported that some primitive wild cowpea relatives, such 
as V. unguiculata var. rhomboidea, var. protracta, var. tenuis and var. stenophylla, 
are found mainly in the Transvaal region of South Africa. The restricted distribu-
tion of these primitive forms of wild cross-compatible cowpea relatives in this part 
of southern Africa provides strong evidence that the region is probably the centre 
of origin of wild cowpea. The existence of substantial variation among traditional 
cowpea varieties grown by the farmers in western and central Africa confirms that 
the region is the possible centre of diversity for cowpea. The crop would have been 
growing in this area over a long period of time, during which a number of mutants 
and recombinants would have arisen and accumulated in germplasm lines and farm-
ers’ varieties. The oldest evidence that cowpea existed in West Africa was obtained 
from carbon dating of specimens from the Kimtampo rock shelter in central Ghana 
(Flight, 1976). Cultivated cowpea is divided into four cultivar groups, namely 
Biflora, Sesquipedalis, Textilis and Unguiculata (Ng & Marechal, 1985). Cowpea 
belongs to culti-group unguiculata, while the yard-long bean or asparagus bean 
belongs to sesquipedalis. Cowpea and yard-long bean cross readily and the progeny 
from these crosses are fertile and viable. While cowpea is grown mainly for its dry 
grains in SSA, South and Central America, southern USA and Europe, the yard-long 
bean is commonly grown in Southeast Asia for long green fleshy pods consumed 
as a vegetable. It is interesting to note that in SSA, where cowpea has its centre of 
origin, the pods are short with crowded seeds, while the yard-long bean found com-
monly in India and some southeast Asian countries have long pods that are fleshy 
and with seeds sparsely distributed. It has been further suggested that the yard-long 
bean has evolved in Asia from cowpea following deliberate selection by farmers in 
the region for plants with long pods that are consumed as a vegetable.

6.3 Erosion of Genetic Diversity from the Traditional Areas

The development of new crop varieties and their widespread adoption by farmers is a 
major factor responsible for genetic erosion. In addition, agricultural intensification, 
changes in land use planning, pests and pathogens, increased human population, land 
degradation and changes in the environment such as climate change may also con-
tribute to genetic erosion. There has not been a concerted research effort aimed at 
understanding the population dynamics of cowpea and its wild relatives. However, a 
number of breeders are engaged in the development of new improved cowpea vari-
eties, which generally perform better than farmers’ own varieties/landraces. It is 
therefore reasonable to expect that with the passage of time, these improved varieties 
will replace farmers’ varieties, which quite often are traditional varieties and have 
not undergone any breeding efforts. Farmers who have adopted improved varieties 
still plant, though in small areas, their traditional varieties, which seem to meet their 
culinary and some other special needs. Studies carried out in some parts of northern 
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Nigeria on adoption of new cowpea varieties showed that many farmers embrace the 
improved varieties because of their superior grain yield as compared with farmers’ 
varieties, particularly in areas where Striga gesnerioides has become endemic. About 
72% and 81% of cowpea farmers in Borno and Kano states of Nigeria have adopted 
one or more improved varieties, respectively (Amaza, 2011). These new varieties are 
mostly resistant to Striga and some other biotic stresses. Farmers are able to access 
the seeds of these new improved varieties through extension personnel, NGOs and 
researchers. However, farmer-to-farmer seed diffusion has also helped in some com-
munities to spread improved cowpea varieties in the region. In addition, breeders 
now engage farmers in their breeding efforts by practising farmer participatory vari-
ety selection. This practice exposes farmers to the better performing new lines that 
are being selected, thereby enhancing their early and wider adoption. With current 
trends, most cowpea farmers in SSA may adopt planting of the new higher yielding 
varieties while discarding their traditional lines. This may result in the loss of farm-
ers’ traditional varieties if they are not collected soon and conserved in gene banks. 
Van de Wouw, van Hintum, Kik, van Treuren, and Visser (2010) have also stated, 
following a review of literature on the subject, that genetic erosion of crops has been 
associated with the introduction of modern varieties. These researchers have opined 
that it is not yet clear whether an active breeding programme with many new releases 
contributes to maintaining a certain level of diversity or is countereffective and has-
tens a potential process of genetic erosion. They concluded that the threat of genetic 
erosion due to modernization of agriculture is most probably highest for crops no 
breeders are interested in. The threat of genetic erosion to cowpea due to introduc-
tion of modern farming techniques may not be very serious at present since farm-
ers still grow their traditional varieties in many SSA communities. Adoption of new 
varieties by farmers has so far not attained the level that calls for special attention. 
Besides widespread adoption of new improved varieties, pressure on available suit-
able farmland in the various communities may lead to loss of cowpea germplasm.

6.4 Status of Germplasm Resources Conservation

Given the importance of genetic resources conservation, IITA is committed to the 
collection and conservation of cowpea germplasm. The conservation activity started 
in the mid 1970s with the establishment of the IITA gene bank. Collection was car-
ried out through several plant exploration missions in more than 30 countries, dona-
tions from or exchange with national programmes, individual scientists, IBPGR and 
the University of Gembloux. The IITA Genetic Resource Center (GRC) maintains 
in its ex situ collections more than 15,100 accessions of cultivated and more than 
1900 accessions of wild relatives. The main cowpea wild species available in IITA 
collections include: V. dekindtiana, V. vexillata, V. spontanea, V. tenuis, V. protracta, 
V. baoulensis and V. stenophylla. The collection missions for cowpea and wild Vigna 
started in 1972 and 1976, respectively. The cowpea collections maintained at IITA 
have about 64% of their germplasm from Africa with 39% from Nigeria. In addition, 
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the collection consists of 23% germplasm from India and 6% from the United States. 
More than 96% of the wild relatives were collected from Africa, of which 32% are 
from Nigeria, 8% from South Africa, 6% from Botswana and 5% from each of the 
following countries: Cameroon, Niger, Malawi, Tanzania and Congo. In addition to 
IITA cowpea collections, which represent the world’s largest collection, major world 
collections of cowpea are also maintained at USDA (Griffin, Georgia) and UCR 
(Riverside, California) with 7146 accessions from 50 countries and 4876 accessions 
from 45 countries, respectively. About 200 wild species are also available in these 
gene banks. There are a considerable number of duplicates in all these major cow-
pea world collections. About 10,323 (65%), 1393 (20%) and 1639 (34%) accessions 
are estimated to be unique in IITA, USDA and UCR, respectively (Ehlers, personal 
communication). To ensure safe duplication of cowpea accessions, IITA has also sent 
about 11,761 and 10,921 accessions of cowpea to Svalbard (Norway) and Saskatoon 
(Canada), respectively, for long-term conservation. In addition, 1517 accessions of 
wild Vigna were sent to Svalbard and 1564 to Saskatoon for the same purpose.

6.5 Germplasm Evaluation and Maintenance

The genetic resource centre (GRC) has been characterizing and evaluating the cow-
pea germplasm maintained in the gene bank for its agro-morphological traits, includ-
ing resistance to major biotic and abiotic stresses. About 52 and 56 descriptors have 
been developed for cultivated cowpea and wild Vigna, respectively. In collaboration 
with breeders, entomologists and pathologists of the institute, germplasm accessions 
were evaluated for insect pest and disease resistance. From 1984 to 1988 more than 
8500 accessions of cowpea were evaluated for resistance to Maruca pod borer and 
pod-sucking bugs, more than 4000 accessions for resistance to flowering thrips and 
bruchid and several hundred accessions for resistance to virus diseases. Many traits 
have been used in genetic studies and have identified over 200 genes (Fery, 1985; 
Fery & Singh, 1997; Singh & Matsui, 2002) that control important characters includ-
ing plant pigmentation; plant type; plant height; leaf type; growth habit; photosen-
sitivity and maturity; nitrogen fixation; fodder quality; heat and drought tolerances; 
root architecture; resistance to major bacterial, fungal and viral diseases; resistance 
to root-knot nematode; resistance to aphid, bruchid and thrips; resistance to para-
sitic weeds such as S. gesnerioides and A. vogelii; pod traits; seed traits and grain 
quality. To characterize the cowpea germplasm well, a core collection of about 2062 
accessions was defined based on geographical, agronomical and botanical descrip-
tors (Mahalakshmi, Ng, Lawson, & Ortiz, 2007). A mini-core set of 374 accessions 
was further defined that are being used intensively in several cowpea breeding pro-
grammes. Currently, GRC is characterizing about 270 additional accessions of wild 
cowpea relatives, using both agro-morphological descriptors and molecular tools. 
The main objectives of GRC are to evaluate the entire cowpea germplasm for pri-
ority traits and complete the agro-morphological description of wild Vigna acces-
sions. Primary production constraints, which will be targeted, include drought and 
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heat stresses, insects (flower thrips, pod-sucking bugs, cowpea aphid), diseases (viral, 
fungal, bacterial and nematode) and Alectra and Striga parasitic weeds. With the recent 
advances in high-throughput single nucleotide polymorphism (SNP) genotyping, 
germplasm diversity characterization and collection management (elimination of dupli-
cates, identification of core sets) will be conducted to take advantage of the opportu-
nity to enhance cowpea production and productivity through molecular advances.

6.6 Use of Germplasm in Crop Improvement

6.6.1 Resistance to Bacterial Blight

Bacterial blight, caused by Xanthomonas campestris pv. vignicola [Burkholder] is 
a serious disease that causes appreciable yield loss in cowpea. It is the most wide-
spread disease and has been reported from the different countries where cowpea is 
grown (Emechebe & Florini, 1997). The best way to control this disease would be 
developing varieties that are resistant and beneficial to the farmers. One of the tradi-
tional farmers’ varieties, Danila, has been found to be resistant to bacterial blight. It 
has been used as the parent in crosses with other lines for transferring resistance to 
the improved varieties and breeding lines. Bacterial blight resistant lines have been 
selected from the advanced segregating populations resulting from such crosses.

6.6.2 Resistance to Virus Diseases

Virus diseases caused significant yield reduction in the susceptible cowpea cul-
tivars. Cowpea is susceptible to over 140 viruses, about 20 different virus species 
are known to naturally infect cowpea around the world and be capable of economic 
damage (Hampton, Thottappilly & Rossel, 1997; Taiwo & Shoyinka, 1998). At 
least 15 of these viruses are transmitted through cowpea seeds. The most economi-
cally important virus species infecting cowpea in SSA include Blackeye cowpea 
mosaic virus (genus, Potyvirus), Cucumber mosaic virus (genus, Cucumovirus), 
Cowpea aphid-borne mosaic virus (genus, Potyvirus), Cowpea mottle virus (genus, 
Carmovirus), Cowpea mosaic virus (genus, Comovirus), Southern bean mosaic virus 
(genus, Sobemovirus) and Cowpea golden mosaic virus (genus, Begomovirus). They 
cause mosaic, mottling, necrosis and stunting, ultimately affecting seed production. 
Mixed infection with more than one virus is frequent in cowpea. Infection with mul-
tiple viruses results in much more severe symptoms and dramatic reduction in yield 
(Taiwo, Kareem, Nsa, & Hughes, 2007). Virus diseases are best controlled through 
the use of resistant varieties. Resistance to two potyviruses was found in germ-
plasm accessions, namely TVu401, TVu1453 and TVu1948, and in advanced breed-
ing lines, IT82D-885, IT28D-889 and IT82E-60 (Gumedzoe, Rossel, Thottappily, 
Asselin, & Huguenot, 1998). In addition, recent studies identified multiple virus 
resistance and tolerance to three virus species in breeding lines IT98K-1092-1 and 
IT97K-1042-3 (Ogunsola, Fatokun, Boukar, Ilori, & Kumar, 2010). Cowpea varie-
ties with resistance to multiple virus infection are yet to be found. At IITA, research 
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work continues to identify durable resistant cowpea varieties and also determine the 
genetic determinants of virus resistance in cowpea germplasm.

6.6.3 Tolerance to Flower Bud Thrips

Flower thrips (Megalurothrips sjostedti) cause considerable grain yield loss in cow-
pea, if it is not controlled by spraying with appropriate insecticides. The insects suck 
young flower buds which then abort prematurely. Browning of stipules and short-
ening of peduncles are the symptoms of damage. However entomologists have 
screened some of the available germplasm lines for resistance to flower thrips. A 
line TVu 1509 was found to exhibit a fairly good level of tolerance to flower thrips. 
The improved breeding line TVx 3236, which showed tolerance to flower thrips, 
was derived from a cross between TVu 1509 and Ife Brown. Another local line from 
Ghana called ‘sanzi’ has been found to be resistant to flower bud thrips.

6.6.4 Tolerance to Drought and Heat

Cowpea is comparatively tolerant to drought. Despite this characteristic, however, 
drought can still cause considerable yield loss. Efforts have been made to screen 
cowpea germplasm to identify lines with better drought tolerance than the currently 
available varieties. According to Watanabe, Hakoyama, Terao, and Singh (1997), 
some germplasm lines, especially TVu 11979 and TVu 14914, were consistently 
highly drought tolerant under real field conditions. Research has been intensified in 
recent times to develop cowpea varieties with enhanced level of drought tolerance. 
This led to the evaluation of over 1280 germplasm lines under drought stress condi-
tion in the field and screen-house. Following evaluation, some additional lines have 
been reported as potential parents in the development of new improved breeding lines 
with drought tolerance (Fatokun, Boukar, & Muranaka, 2012). Drought can occur 
early in the season, mid-season or at the podding stage of crop development. Studies 
have shown that cowpea plants can show drought tolerance at the vegetative stage 
(Singh & Matsui, 2002) and reproductive stage (Hall et al., 2003). Some cowpea lines 
exhibit stay-green characteristic, also referred to as delayed leaf senescence (DLS), 
which can help plants to tolerate mid-season and terminal drought (Hall et al., 2003).

6.6.5 Seed Coat Colour and Texture

Most of the traditional cowpea varieties in SSA have white or light brown seed coats. 
In different communities of consumers preference can be for brown, red or white seed 
coat colour. Cowpea consumers in southwestern parts of Nigeria prefer brown-seeded 
grains, while in Ghana some consumers choose red grains when consuming cowpea 
and rice cooked together. Cowpea cultivars with black seed coat are not preferred in 
Africa, whereas in Cuba and some other Latin American communities, black-seeded 
cowpea is most preferred. Cowpea grains with rough coat texture are preferred by many 
consumers, because they soak up water and cook faster. It is also easier to remove the 
rough textured seed coat when processing cowpea grains into some food products.
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6.6.6 Resistance to Aphids, Maruca and Other Insect Pests

Several of the cultivated cowpea germplasm lines in the gene bank have been evalu-
ated for resistance to insect pests, but none was found to have the desired level of 
resistance to maruca pod borer and pod-sucking bugs. Few accessions of the wild 
Vigna species have also been screened for resistance to insect pests of cowpea. Many 
accessions of V. vexillata were found to show high levels of resistance to pod-suck-
ing bugs, storage weevil and moderate resistance to maruca pod borer (Singh, Jackai, 
Thottappilly, Cardwell, & Myers, 1992). The dense hairs found on the different parts 
of V. vexillata have been associated with resistance to pod-sucking bugs and pod 
borer (Oghiakhe, Jackai, Makanjuola, & Hodgson, 1992). In addition, Striga does 
not attack the plants of V. vexillata, while their edible tuberous roots also enhance 
drought tolerance. V. vexillata should therefore be a good source of desirable genes 
that could be beneficial to the cultivated cowpea. Some efforts have been made to 
cross cowpea and V. vexillata, but these efforts have not been successful because of 
a strong barrier to compatibility between them (Fatokun, 2002). This has constituted 
a major limitation to the transfer of desirable genes present in the wild V. vexillata to 
cultivated background. The strong barrier to cross compatibility between V. vexillata 
and cowpea necessitated the development of transgenic plants.

6.7 Limitations in Germplasm Use

The genetic resource of over 15,000 accessions of cultivated cowpea in the global 
gene bank of IITA is conserved for the international community. Besides cultivated 
cowpea germplasm, there are also some accessions of wild relatives conserved in the 
gene bank at IITA, which could be used for widening the genetic base of cultivated 
varieties through pre-breeding. Progress in the development of improved crop vari-
eties that are better in performance depends on the availability of germplasm with 
desired traits. Some of these cowpea wild relatives have been evaluated for their 
potentials in terms of genes that may be desirable in cowpea improvement. However, 
the basic need for exploiting the wild relatives is its cross compatibility with cul-
tivated cowpea. It is possible that some of the available wild cowpea lines belong 
to the same or different gene pools. The subspecies or varieties that constitute the 
primary and secondary gene pools for cowpea are not yet well defined. Cross com-
patibility studies have shown that lines which can hybridize successfully with cul-
tivated species are found only among members of the subspecies unguiculata, i.e. 
those belonging to section Catiang in the genus Vigna.

6.8 Germplasm Enhancement Through Wide Crosses

Cowpea has an intrinsically narrow genetic base and that situation limits breeders’ 
progress today (Hall, Singh, & Ehlers, 1997). The low level of genetic diversity was 
also revealed when RFLP markers were used to differentiate between a cowpea line 



Cowpea 145

(IT-84S-2246-2) and a wild relative V. unguiculata ssp. dekindtiana (TVNu 1963), in 
which only about 22% of 400 genomic clones hybridized were polymorphic between 
them (Fatokun, Danesh, Young, et al., 1993). Some wild relatives have been screened 
for certain agro-morphological traits that are desired in cultivated varieties for widen-
ing the genetic base. The genes sought from these wild lines include those that confer 
resistance to insect pests, especially maruca pod borer, pod-sucking bugs, bruchids 
and aphids, among others. Hanchinal, Goud, Habib, and Bhumannavar (1976) evalu-
ated three wild Vigna species, namely V. vexillata, V. unguiculata var. cylindrica 
and V. parviflora, for resistance to the pod borer Cydia ptychora Meyr. There are 
not many reports in the literature on the use of wild cowpea relatives for the genetic 
improvement of cultivated varieties. The relatively low level of utilization of wild 
cowpea relatives in the development of improved cowpea varieties may be due to 
some factors such as linkage drag, in which some undesirable genes may be closely 
linked to the desirable ones. Such linkages may be difficult to break and this may 
prolong the time needed for the development and release of the improved variety.

6.9 Cowpea Genomic Resources

6.9.1 Genetic Diversity

With the development of biochemical-based analytical techniques and molecu-
lar markers, several studies were undertaken to characterize genetic variation in 
domesticated cowpea and its wild ancestors, as well as their relationships, in order 
to complement early analysis using morphological and physiological traits (Ehlers 
& Hall, 1996; Fery, 1985; Perrino, Laghetti, Spagnoletti, & Monti, 1993). All types 
of molecular markers were used to characterize DNA variation patterns within culti-
vated cowpea and closely related wild species. These include allozymes (Panella & 
Gepts, 1992; Pasquet, 1993, 1999, 2000; Vaillancourt, Weeden, & Barnard, 1993), 
seed storage proteins (Fotso, Azanza, Pasquet, & Raymond, 1994), chloroplast 
DNA polymorphism (Vaillancourt & Weeden, 1992), RFLP (Fatokun, Danesh, 
Young, et  al., 1993), amplified fragment length polymorphisms (AFLP) (Fang, 
Chao, Roberts, & Ehlers, 2007; Fatokun, Young, & Myers, 1997; Tosti & Negri, 
2002), DNA amplification fingerprinting (DAF) (Simon, Benko-Iseppon, Resende, 
Winter, & Kahl, 2007; Spencer et  al., 2000), random amplified polymorphic DNA 
(RAPD) (Ba, Pasquet, & Gepts, 2004; Diouf & Hilu, 2005; Fall, Diouf, Fall-Ndiaye, 
Badiane, & Gueye, 2003; Mignouna, Ng, Ikea, & Thottapilly, 1998; Nkongolo, 2003; 
Xavier, Martins, Rumjanek, & Filho, 2005; Zannou et  al., 2008), simple sequence 
repeats (SSRs) (Ogunkanmi, Ogundipe, Ng, & Fatokun, 2008; Uma, Hittalamani, 
Murthy, & Viswanatha, 2009; Wang, Barkley, Gillaspie, & Pederson, 2008; Xu 
et al., 2010), cross species SSRs from Medicago (Sawadogo, Ouédraogo, Gowda, & 
Timko, 2010), inter-simple sequence repeats (Ghalmi et  al., 2010) and sequence 
tagged microsatellite sites (STMS) (Abe, Xu, Suzuki, Kanazawa, & Shimamoto, 
2003; Choumane, Winter, Weigand, & Kahl, 2000; He, Poysa, & Yu, 2003; Li, 
Fatokun, Ubi, Singh, & Scoles, 2001). All these studies have contributed greatly 
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to the understanding of cowpea genome organization and its evolution. In general, 
molecular taxonomic procedures confirmed early classifications based on classi-
cal taxonomic criteria, such as morphological and reproductive traits (Fatokun, 
Danesh, Young, et  al., 1993; Kaga, Tomooka, Egawa, Hosaka, & Kamijima, 1996; 
Vaillancourt & Weeden, 1992; Vaillancourt et al., 1993). In addition to the taxonomic 
classification, these studies led to the use of genetic variation to identify duplicates or 
genetic contamination in gene bank or breeding programmes. Through the manipula-
tion of the molecular marker technologies, several authors have detected low levels of 
polymorphism in cowpea (Badiane et al., 2004; Diouf & Hilu, 2005; Li et al., 2001; 
Tosti & Negri, 2002). They attributed this finding to the result of a genetic bottleneck 
induced by a single domestication event in cowpea, in addition to the inherent nature 
of the self-pollination mechanism (Badiane et al., 2012). The total genetic diversity 
in cultivated cowpea reported from these studies was lower than that reported in 
many other crops (Doebley, 1989).

6.9.2 Genetic Linkage Mapping

The development of molecular markers has also provided an opportunity to con-
struct linkage maps in cowpea. Fatokun, Danesh, Menancio-Hautea, and Young 
(1993) have developed the first comprehensive linkage map for cowpea using a map-
ping population of 58 F2 plants, derived from a cross between an improved culti-
var IT84S-2246-4 and a wild relative TVu 1963 (V. unguiculata ssp. dekindtiana). 
This first map was based on 87 random genomic and 5 cDNA RFLPs, 5 RAPDs and 
some morphological traits representing 10 linkage groups (LGs) spanning 680 cM, 
although cowpea has a chromosome number of n=11. The resolution of the map 
was approximately 7.0 cM between loci. This map has also been used to locate two 
quantitative trait loci (QTLs) accounting for 52% of the variation in seed weight 
(Fatokun, Menancio-Hautea, Danesh, & Young, 1992). The markers flanking these 
QTLs in cowpea were the same as those identified for seed weight QTLs in mung 
bean (V. radiata). This map also comprised two markers associated with aphid resist-
ance genes in cowpea (Myers, Fatokun, & Young, 1996). The second genetic link-
age map of cowpea was constructed using 94 F8 recombinant inbred lines (RILs) 
derived from a cross between two cultivated genotypes IT84S-2049 and 524B 
(Menéndez, Hall, & Gepts, 1997). This map consisted of 181 loci, comprising 133 
RAPDs, 19 RFLPs, 25 AFLPs and 3 each of morphological and biochemical mark-
ers. These markers are assigned to 12 LGs spanning 972 cM with an average distance 
of 6.4 cM between markers. Two traits, earliness and seed weight, were mapped 
to LGs 2 and 5, respectively. Seed weight is significantly associated with a RAPD 
marker. Ouédraogo, Gowda, Jean, Close, and Ehlers (2002) improved this map 
based on segregation of various molecular markers (AFLP, RFLP, RAPD) and resist-
ance traits (resistance to S. gesnerioides race 1 and 3, resistance to CPMV, CPSMV, 
BICMV, SBMV, Fusarium wilt, and root-knot nematode). Using 27 selective primer 
combinations, an additional 242 new markers were used in this mapping popula-
tion and mapped in different LGs of an improved map. The resulting map con-
sisted of 11 LGs spanning a total of 2670 cM, with an average distance of 6.43 cM 
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between markers. A large portion of LG1 was discovered, mainly composed of 54 
AFLP markers. In this new genetic map, the previously recognized LGs were simply 
expanded in size by the addition of new markers. A third genetic map of cowpea was 
reported using 94 F8 RILs derived from the inter-subspecific cross between IT84S-
2246-4, an improved cowpea line and TVu 110-3A, a wild relative (Vigna unguicu-
lata spp. dekindtiana var. pubescens) (Ubi, Mignouna, & Thottappilly, 2000). This 
map spans 669.8 cM of the genome and comprises 80 mapped loci (77 RAPD and 
3 morphological loci), making 12 LGs with an average distance of 9.9 cM between 
marker loci. QTLs for several agronomical and morphological traits, including  
days to flowering, days to maturity, pod length, seeds/pod, leaf length, leaf width, 
primary leaf length, primary leaf width, and the derived traits such as leaf area  
and primary leaf area were mapped in this genetic linkage map.

Through the Tropical Legumes I project of the Generation Challenge Program at 
the University of California, Riverside, cowpea genomics activities are being con-
ducted and the tools developed will be used in cowpea breeding programme. A high-
throughput SNP genotyping platform based on Illumina 1536 GoldenGate Assay 
was developed and has resulted in 1375 SNPs with 89.55% success rate. These SNPs 
were applied to develop a high-density SNP consensus map based on the genotyp-
ing of 741 members of six RILs populations derived from the following crosses: 
524B×IT84S-2049, CB27×24-125B-1, CB46×IT93K-503-1, Dan Ila×TVu-7778, 
TVu-14676×IT84S-2246-4 and Yacine×58-77. The resulting consensus map con-
tained 928 SNP markers on 619 unique map positions distributed over 11 LGs, cov-
ering a total genetic distance of 680 cM (Muchero, Ehlers, et  al., 2009; Muchero, 
Diop, et  al., 2009). The resolution of this map is an average marker distance of 
0.73 cM, or 1 SNP per 668 kbp considering the cowpea genome to be 620 Mbp.

More recently, a 1536 SNP assay was applied to 13 breeding populations con-
sisting of 11 RILs (from UCR–US, IITA–Nigeria, ISRA–Senegal, ZAAS–China) 
and 2 F4 populations (from UCR) to generate a high-quality consensus genetic 
map (Lucas et  al., 2011). The 11 RILs were derived from the following crosses, 
namely CB27×UCR 779, CB27×IT97K-566-6, 524B×IT84S-2049, Yacine×58-77, 
CB27×IT82E-18, Sanzi×Vita 7, CB46×IT93K-503-1, TVu14676×IT84S-2246-4, 
CB27×24-125B-1, Dan Ila×TVu-7778 and LB30#1×LB1162 #7. The two F4 
populations are obtained from the crosses of IT84S-2246×Mouride and IT84S-
2246×IT93K-503. A total of 1293 individuals from 13 breeding populations were 
used to construct this consensus genetic map, which possesses 1107 EST-derived 
SNP markers (856 bins). This new map has 33% more bins, 19% more markers and 
an improved order compared to the consensus genetic map constructed using 6 RILs 
and 741 individuals (Muchero, Ehlers, et al., 2009).

6.9.3 Molecular Breeding

The application of DNA marker technologies in cowpea improvement has been very 
slow, when compared to many other crops. Most of the available reports in the litera-
ture on the use of molecular markers in cowpea are for taxonomic relationships and 
genetic linkage mapping, as described in the above sections. In these genetic maps, 
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several QTLs and markers associated with genes of interest have been identified. 
Marker-assisted selection (MAS) could be used to accelerate the selection procedure 
and increase the selection efficiency in cowpea cultivar development. RFLPs with 
only a limited number of markers could not be used in QTL identification (Fatokun 
et  al., 1992; Fatokun, Danesh, Menancio-Hautea, et  al., 1993; Fatokun, Danesh, 
Young, et  al., 1993; Menendez et  al., 1997; Myers et  al., 1996). Although RAPD 
markers were used in several genetic diversity studies (Ba et al., 2004; Badiane et al., 
2004; Diouf & Hilu, 2005; Menendez et al., 1997; Mignouna et al., 1998), their use 
in MAS is limited by its poor level of reproducibility. AFLPs were found to be the 
most attractive and useful, and were used successfully in many studies (Boukar, 
Kong, Singh, Murdock, & Ohm, 2004; Coulibaly, Pasquet, Papa, & Gepts, 2002; 
Fatokun et  al., 1997; Ouédraogo, Gowda, et  al., 2002; Ouédraogo, Maheshwari, 
Berner, St-Pierre, & Belzile, 2001; Ouédraogo, Tignegre, Timko, & Belzile, 2002; 
Tosti & Negri, 2002). Unfortunately, their use required more skill and they could 
not be used in a breeding programme. Two sequence characterized amplified region 
(SCAR) markers, SEACT/MCTM83/84 (Boukar et al., 2004) and 61R (E-ACT/M-
CAA) (Timko, Gowda, Ouédraogo, & Ousmane, 2007), derived from AFLP markers 
associated to Striga resistance offered an opportunity for MAS in cowpea. The latter 
SCAR was further improved into a SCAR marker called Mahse2 (Timko, personal 
communication), recently identified as 61R-M2 (Ouédraogo, Ouédraogo, Gowda, & 
Timko, 2012).

With the current generation of consensus genetic linkage maps, a genomic frame-
work is established for QTLs identification, map-based cloning, and assessment of 
genetic diversity, association mapping and applied breeding in MAS schemes. These 
new developments in cowpea research build a strong basis for molecular breeding in 
cowpea. Areas of potential application include comparative genomics, quantitative 
trait characterization, and map-based cloning. Establishing synteny with crops like 
soybean will help in the exploitation of considerable progress made in basic gene 
discovery and gene regulation in these crops. Initial studies related to QTL and trait-
linked markers (drought tolerance, foliar thrips, stem blight, bacterial blight, root-
knot nematode, etc.) are being reported (Agbicodo et  al., 2010; Muchero, Diop, 
et al., 2009; Muchero, Ehlers, et al., 2009). Modern breeding of cowpea is ready to 
use tools such as whole genome assembly, MAS and association mapping to com-
plement and strengthen the progress achieved by conventional breeding. A MAGIC 
population is also under development that will be an invaluable community resource 
for trait discovery and breeding as well.

6.9.4 Genetic Transformation

As discussed in the previous section on use of germplasm in cowpea improvement 
programmes, high levels of resistance to several insects and diseases exist in wild 
species, but cross incompatibility with cultivated species is the biggest bottleneck 
preventing the transfer of genes into cultivated cowpea. Genetic transformation was 
suggested as one of the most important approaches to overcome these limitations. 
Several procedures for plant transformation in cowpea were attempted. The transfer 
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of genes from one species to another using genetic engineering techniques requires 
(a) the setting up of effective bioassays for discovering resistant genes for specific 
pests, (b) the use of those bioassays to search through the plant, fungal, animal, and 
microbial kingdoms for suitable genes and (c) the understanding of insects’ physi-
ological and biochemical systems that are vulnerable to resistant genes (Monti, 
Murdock, & Thottappilly, 1997). However, transformation by Agrobacterium tume-
faciens (Garcia, Hille, & Goldbach, 1986a,b) or embryo imbibition with or without 
subsequent electroporation (Akella & Lurquin, 1993; Penza, Akella, & Lurquin, 
1992) has contributed to the development of transgenic cowpea calli or chimeric 
plantlets from leaf discs, auxiliary buds, or embryos. However, attempts to produce 
mature transgenic plants failed in all these cases (Kononowicz et al., 1997). Authors 
have reported the development of transformation systems using either micropro-
jectile bombardment or Agrobacterium cocultivation that seem to have given some 
promising results. The coculturing of de-embryonated cotyledons with A. tumefa-
ciens resulted in selection of four plants on hygromycin. Muthukumar, Mariamma, 
Veluthambi, and Gnanam (1996) avoided the callus regeneration route. Stable trans-
formation was confirmed by Southern analysis in only one of the transgenic plants, 
whose seeds unfortunately failed to germinate. Similarly, Sahoo, Sushma, Sugla, 
Singh, and Jaiwal (2000) succeeded in producing transgenic shoots but could not 
show evidence of stable integration. Using microprojectile bombardment (biolis-
tics), several researchers achieved the introduction of foreign DNA into cowpea 
leaf tissues and embryos and obtained high levels of transient expression of the 
ß-glucuronidase (gus) transgene, but were unable to regenerate plantlets from the 
transformed cells (Kononowicz et  al., 1997). Identical results were obtained when 
using electroporation of embryos with plasmid DNA (Akella & Lurquin, 1993). 
Ikea, Ingelbrecht, Uwaifo, and Thottappilly (2003) used the biolistic approach and 
observed transformation in cowpea, but no evidence of stable transformation with 
transmission of transgenes to progeny was provided. Popelka, Gollasch, Moore, 
Molvig, and Higgins (2006) reported the first genetic transformation of cowpea and 
stable transmission of the transgenes to progeny. Their system used cotyledonary 
nodes from developing or mature seeds as explants and a tissue culture medium lack-
ing auxins in the early stages, but including the cytokinin BAP at low levels dur-
ing shoot initiation and elongation. Other parameters used included the addition of 
thiol compounds during infection and coculture with Agrobacterium and the use of 
bar gene for selection with phosphinothricin. These authors have now reported the 
development of cowpea with the Bt gene being field-tested during the last 3 years in 
Nigeria, Burkina Faso and Ghana. Chaudhury et al. (2007) have reported a transfor-
mation efficiency of 0.76%, better than the 0.05–0.15% obtained by Popelka et al. 
(2006). These researchers also used cotyledonary nodal explants as Popelka’s group 
did, but they wounded the nodal cells by stabbing them with a sterile needle prior to 
Agrobacterium infection. In addition, they introduced a second selection regime at 
the rooting stage, which was described as a very important procedure in the trans-
formation of V. mungo L. (Saini, Sonia, & Jaiwal, 2003). Recently Ivo, Nascimento, 
Vieira, Campos, and Aragão (2008), using biolistic methods, reported the first work 
on the use of this method of gene transfer leading to the development of transgenic 
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plants. The transformation efficiency obtained by this group is 0.9%. Obembe (2009) 
cited much higher transformation efficiencies of 1.64–1.67% which have been 
obtained recently by Sahoo’s group in India.

6.10 Conclusions

A large amount of cowpea germplasm of both cultivated and wild species has been 
collected and is being preserved in the global gene bank at IITA Nigeria. However, 
the genetic materials conserved at different gene banks need to be maintained nicely 
and evaluated for their use in breeding programmes. The useful variability detected 
for key biotic stresses should be used to develop suitable cultivars with multiple 
resistances to attain stable yield. In recent years tremendous progress has been made, 
including completion of whole genome sequencing of cowpea (Timko et al., 2008), 
which in combination with genomic information from model legumes and bioin-
formatics tools should make it possible to dissect genes that govern agronomically 
important traits. Advances have also been made in the area of genetic transforma-
tion, which could be used to understand the gene regulations and also to develop 
transgenic products. In addition, numerous genomic resources such as EST and tran-
scriptome sequence data sets are available, which in combination with advances in 
next-generation sequencing technology could be applied to develop novel strategies 
to identify key genes of targeted traits for further marker-assisted breeding.
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7.1 Introduction

Lentil ranks among the oldest and most appreciated grain legumes of the Old 
World (Smartt, 1990). Worldwide, production has increased over the last few dec-
ades (FAO, 2010); however, direct and indirect human activities have posed immi-
nent threats to the integrity of the genetic diversity of indigenous germplasm 
in many areas of the world, including the Mediterranean region, Western Asia, 
Ethiopia and the Indian subcontinent. Approximately 37,000 accessions have been 
collected and are conserved ex situ by national and international gene banks. The 
genus Lens Miller is part of the family Fabaceae (Leguminosae). It is placed vari-
ously in either subfamily Faboideae, tribe Fabeae (Soltis et al., 2011), or in subfam-
ily Papilionaceae, tribe Vicieae (Sonnante, Hammer, & Pignone, 2009). Lentil is an 
annual, self-pollinating, diploid (2n  = 2x  = 14) species with an estimated genome 
size of 4063 Mbp/C (Arumuganathan & Earle, 1991). In this chapter, the genetic and 
genomic resources of lentil are reviewed. We discuss the origin, distribution, diver-
sity and taxonomy. We also address the conservation, evaluation and maintenance of 
germplasm and its uses and limitations in crop improvement.

7.2 Origin, Distribution, Diversity and Taxonomy

Lentil is one of the eight founder grain crops that started agriculture in Southwest 
Asia (the Levant) during the Pre-Pottery Neolithic period, some 11,000–10,000 years 
ago (Weiss & Zohary, 2011). The Levant includes most of modern Lebanon, Syria, 
Jordan, Israel, Palestinian Authority, Cyprus, Turkey’s Hatay Province and some 
regions of Iraq or the Sinai Peninsula areas that are now confirmed by the archaeobo-
tanical record. Described as the ‘richest sites’, these sites include c. 10,200–9550 BP 
Tell Aswad, Syria; c. 10,200–8700 BP Tell Abu Hureyra, Syria; c. 10,250–9500 BP 
Jericho, Palestine; c. 10,600–9900 BP Çayönü, Turkey; c. 9600–8800 BP Ali Kosh, 
Iran; c. 10,400–9450 BP Yiftah’el, northern Israel; c. 9450–9300 BP Jarmo, Iraq;  
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c. 9250–9000 cal BP Tell Ramad, Syria; c. 8200–7800 cal BP Hacilar, Turkey 
and c. 8350–7750 BP Tepe Sabz, Deh Luran Valley, Iran (Weiss & Zohary, 2011). 
However, these archaeological remains do not provide direct diagnostic traits (such 
as indehiscent pod) to determine the origin of lentil domestication, though lentil seed 
size suggests selection.

Lentil derivation has not always been clear, as Zohary noted in his seminal pub-
lication (1972). The accepted dogma until 1973 proposed by Barulina (1930) put 
the origin of lentil cultivation between the Hindu Kush and the Himalaya. Further, 
Kislev and Bar-Yosef (1988) suggested lentils as the earliest domesticated plants 
in the Near East based on the presence of pulses among the charred plant remains 
retrieved from archaeological sites, but cautioned that there was not sufficient evi-
dence to support this intriguing claim. This may not be the case, as wheat, but not 
lentil, was found at Nevali Çori in southeastern Turkey, a 10,500-year-old archaeo-
logical site (Balter, 2007). However, two large samples of lentil were found about 
11,000 BP in Jerf el Ahmar, Syria, and Netiv Hagdud, near Jericho (Weiss, Kislev, & 
Hartmann, 2006). Morphological change can no longer be held as the first indication 
of domestication; rather, a long period of increasingly intensive human management 
typically precedes the manifestation of archaeologically detectable morphological 
change in managed crops (Zeder, 2011). Further, agriculture in the Near East arose 
in the context of broad-based systematic human efforts of cultivating plant resources 
(Zeder, 2011). There is a current controversy over slow or fast rate (duration) of the 
process of domestication (Allaby, Fuller, & Brown, 2008; Balter, 2007; Heun, Abbo, 
Lev-Yadun, & Gopher, 2012). Domestication took place across the entire Fertile 
Crescent during a period of dramatic post-Pleistocene climate and environmen-
tal change, with a range of resources being manipulated by humans (Zeder, 2011). 
Ladizinsky (1987) suggested the ‘pulse domestication before cultivation’ model for 
lentil based on the identification of free germinating genotypes among wild legume 
populations that must have predated any cultivation experiments. A fast rate of plant 
domestication is supported by biological evidence of Near Eastern wild and domes-
ticated lentil (Abbo, Lev-Yadun, & Gopher, 2011). Initial domestication of lentils 
occurred in southeastern Turkey or northern Syria based on genetic and archaeologi-
cal evidence (Ladizinsky, 1979b; 1993; 1999). Lentil as a crop spread quickly from 
here into the southern Levant; however, a separate southern Levantine domestication 
cannot be ruled out (Weiss et al., 2006). Zohary (1999) hypothesized a monophyletic 
origin and tethered this theory to lentils being ‘very likely taken into cultivation only 
once or – at most – a very few times’, but did not consider published allozyme data 
(Ladizinsky, Cohen, & Muehlbauer, 1985; Pinkas, Zamir, & Ladizinsky, 1985).

Allozymes were the first biomarker in support of polyphyly in crops such as len-
tils (Allaby et al., 2008). Recent studies based on data of eight founder species sug-
gest that domestication happened in a small region of the southern Levant (Sonnante 
et  al., 2009). Further, botanical, genetic and archaeological evidence points to a 
small core area of domestication in present-day southeastern Turkey and northern 
Syria, near the Tigris and Euphrates rivers (Sonnante et  al., 2009). Alo, Furman, 
Akhunov, Dvorak, and Gepts (2011) concluded that the study of wild and cultivated 
lentil further supports the hypothesis of a polycentric origin of domestication. Abbo 
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et al. (2012) cautioned that ‘only detailed phylogenetic studies of representative col-
lections of wild and domesticated forms can determine the place of origin and their 
phylogeny’.

Wild Lens taxa are widely distributed in the Mediterranean basin; it was thought 
that only in Aegean and southwestern Turkey do the distributions of wild taxa over-
lap (Ferguson, Acikgoz, Ismail, & Cinsoy, 1996) (Figure 7.1). Maxted, Hargreaves 
et  al. (2010) performed an in situ and ex situ gap analysis using taxonomic, eco-
logical, geographic and conservation information for 672 wild Lens collated from 
ICARDA (International Center for Agricultural Research in the Dry Areas) and 
GBIF (Global Biodiversity Information Facility) data sets as well as data sets col-
lected by the authors over 25 years. Gap analysis, a process by which the distribu-
tion of taxon and vegetation types are compared, assists in identifying biodiversity 
to protect either in situ or ex situ (Scott et al., 1993). Maxted’s gap analysis refined 
the regions of highest Lens species richness (three to four species) to the Crimea 
Peninsula and along southeastern Turkey through the eastern Mediterranean coun-
tries of Syria, Jordan, Israel and Palestinian Authority (Figure 7.1). Regions with two 
species include Mediterranean Spain, Mediterranean Balkans, Albania, Greece and 
western Turkey (Maxted, Kell et al., 2010).

Lens culinaris ssp. orientalis (Boiss.) Ponert has an eastern distribution from 
Turkey, Cyprus and Palestine across to Uzbekistan. Lens culinaris subsp. odemensis 
(Ladiz.) M.E. has a more restricted distribution in the east, extending from Turkey 
southwards to Syria and Palestine (Ferguson, Maxted, Slageren, & Robertson, 2000). 
A single population of Lens culinaris subsp. tomentosus (ladiz.) M.E. has been 
found in Libya. Lens ervoides (Brign.) Grande has a broad distribution from Spain 
to Ukraine and south to Jordan. Outlier populations have also been found in Ethiopia 
and Uganda. Lens nigricans (M. Bieb.) Godr. grows in diffuse small colonies 
on stony hillsides and shallow rocky soils in pine forest clearings (Zohary, 1972).  
L. nigricans has a western distribution from Spain to Turkey and south to Morocco 
(Ferguson et al., 1996) and east to Crimea and the eastern shore of the Mediterranean 
Sea (Zohary, 1972). Lens lamottei (Czefr.) grows in Morocco (van Oss, Aron, &  
Ladizinsky, 1997). It is only in Aegean and southwestern portions of Turkey that the 
distributions of all wild taxa overlap. Unfortunately, Turkey, like other Mediterranean 
countries, is suffering the rapid loss of many of its valuable genetic resources. 
These resources, which have the potential to provide useful genetic material for 
plant breeding efforts, are being eroded primarily by habitat destruction (Solh &  
Erskine, 1981). Ferguson et  al. (1996) noted ‘the poor competitive ability and 
palatability of Lens species, together with the fact that they occur in small disjunct 
populations, intensifies this threat’.

Molecular diversity evaluations of ex situ germplasm collections include studies 
completed with DNA-based markers, such as random amplified polymorphic DNA 
(RAPDs), inter-simple sequence repeats (ISSRs), amplified fragment length poly-
morphisms (AFLPs) and simple sequence repeats (SSRs). Studies of national col-
lections tend to be smaller in terms of genotypes and number of accessions sampled. 
Two studies of Ethiopian lentil accessions, one using ISSR markers alone and the 
other using nine morphological and four ISSR markers of 10 accessions including  



Figure 7.1 Map location of the wild Lens species and subspecies held by the USDA ARS, Pullman, WA, USA. Maxted’s gap analysis will be 
helpful to fill out the lentil CWR in this national collection (Maxted, Kell et al., 2010). 
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L. culinaris varieties revealed useful variations, where the average gene diversity was 
0.2734 (Fikiru, Tesfaye, & Bekele, 2010, 2011). A similarly sized study was con-
ducted on six Bangladeshi lines using 10 RAPD markers, where the average gene 
diversity was 0.0552 (Hoque & Hasan, 2012). Larger studies have been published 
for Bangladeshi, Italian and Indian lentil germplasm collections. Ten RAPDs were 
used on 19 lines and seed protein profiles of 144 accessions were used to character-
ize and collected from Bangladesh (Sultana & Ghafoor, 2008). However, 14 Italian 
lines were studied using 31 traits measured over environments, including 9 agro-
morphological, 5 post-harvest seed traits, seed protein profiles and 16 SSR mark-
ers, which uncovered exploitable diversity (Zaccardelli et al., 2012). A second Italian 
study looked at 19 agronomic traits of 28 Italian landraces over environments and 
studied the genetic diversity using AFLPs (Torricelli et al., 2012). Datta et al. (2011) 
examined 30 Indian lines with 39 SSRs using cross-genera legume markers.

Further, international germplasm collection molecular diversity is presented in 
three published studies. Central Asia and Caucasian cultivated lentil germplasm were 
genotyped with five SSR markers and clustered into six groups (Babayeva et  al., 
2009). Fourteen newly reported SSR markers were used to examine the molecular 
diversity of 109 accessions including both cultivated lines and wild Lens species 
(Hamwieh, Udupa, Sarker, Jung, & Baum, 2009). They found that the wild acces-
sions were rich in alleles (151 alleles) compared to cultigens (114 alleles). These 
lines also clustered into two groups, one cultivated and the other wild germplasm. 
The largest study published to date consisted of 133 domesticated lentil and 175 wild 
lentil accessions conducted by ICARDA using 22 cross-genera SSR markers (Alo 
et  al., 2011). Structure analysis revealed eight haplotype groups (K=8) (Pritchard, 
Stephens, & Donnelly, 2000). All groups consisted of one taxon except one, which 
had all taxa except domesticated Lens (Alo et  al., 2011). Linkage disequilibrium 
(LD) was calculated and varied across the individual groups, with the higher LD in 
the cultivated lines as found in other domesticated crop species.

However, other biochemical genetic diversity research has been conducted on len-
til genetic resources. Examples include a study on the diversity of lentil seed starch 
and complex carbohydrates, where the diversity discovered invites researchers, 
especially breeders, to exploit the variability uncovered (Chibbar, Ambigaipalan, & 
Hoover, 2010). Two studies have looked at the seed protein profiles of 144 acces-
sions, mainly landraces of Pakistan (Sultana, Ghafoor, & Ashraf, 2006) and 14 cul-
tivars of Turkey (Yüzbaşioğlu, Açik, & Özcan, 2008). Both studies have identified 
useful diversity. The lentil seed proteome was determined for two Italian landraces; 
multivariate analysis of 145 differentially expressed protein spots demonstrated that 
52 proteins are required to discriminate (Ialicicco et al., 2012). Taxonomically, lentil 
holds an intermediate position between Vicia and Lathyrus. Zohary (1972) reported 
five species of cultivated L. culinaris Medikus. [L. esculenta Moench] and four wild 
species: Lens monbretti (Fisch. & May) Davis and Plitm. [L. kotschyanum (Boiss.) 
Nab.; L. kotschyaya (Boiss.) Alef.]; Lens nigricans (Bieb.) Godr. [Ervum nigri-
cans Bieb.]; Lens ervoides (Brign.) Grande [L. lenticula (Schreb,) Alef.] and Lens 
orientalis (Boiss.) Hand.-Mazz. During that time, all the morphological evidence 
indicated five lentil species. L. monbretti (Fisch. & Mey.) is morphologically and 
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cytologically different from the other Lens species and was moved back to the genus 
Vicia (Ladizinsky & Sarker, 1982). Pinkas et al. (1985) proposed five Lens species, 
namely L. culinaris, L. orientalis, L. odemensis, L. ervoides and L. nigricans, based 
on allozyme divergence. Hoffman, Soltis, Muehlbauer, and Ladizinsky (1986) pro-
posed two species and five taxa, namely L. culinaris with three subspecies Lens 
culinaris subsp. culinaris, Lens culinaris subsp. orientalis and Lens culinaris subsp. 
odemensis; L. nigricans with two subspecies L. nigricans subsp. nigricans and  
L. nigricans subsp. ervoides. Ladizinsky updated the Lens taxa (1997) and defined four 
species by reducing L. orientalis to a subspecies and creating two new Lens species, 
namely L. lamottei Czefr. and L. tomentosus Ladiz. Chloroplast DNA marker variation 
briefly concluded there are six species in the Lens taxa (van Oss et al., 1997).

Further molecular phylogeny analysis both clarifies and confuses Lens taxonomy 
regarding species and subspecies. From the period between 1979 and 2005, numer-
ous studies focussed on the phylogeny of Lens using the molecular tools of various 
marker classes, including isozymes (Ferguson, Newbury, Maxted, Ford-Lloyd, &  
Robertson, 1998; Hoffman et  al., 1986; Ladizinsky, 1979a), restriction fragment 
length polymorphism (RFLPs) (Havey & Muehlbauer, 1989), RAPDs (Abo-Elwafa, 
Murai, & Shimada, 1995; Ahmad, Fautrier, Burritt, & McNeil, 1997; Ahmad & 
McNeil, 1996; Sharma, Dawson, & Waugh, 1995), AFLPs (Sharma, Knox, & Ellis, 
1996). Fortunately, all the studies indicate that Lens culinaris spp. orientalis is the 
closest progenitor of cultivated lentil.

Ferguson et al. (2000) proposed the taxonomy of four species, reducing L. odemen-
sis and L. orientalis to subspecies of L. culinaris based on morphological, isozyme 
and RAPD marker data combined (Table 7.1). The contemporary literature is fraught 
with differing interpretations of the exact number of taxa and splits (e.g. Tahir, Båga, 
Vandenberg, & Chibbar, 2012). The taxonomy is understandably difficult given the close 
relationships between the Lens taxa (Ferguson et al., 2000). This taxonomic description 
for Lens is accepted by the USDA for use in GRIN. This study is given heavy weight by 
the taxonomic community as it combines the molecular characterization with botanical 
descriptors of the species and subspecies for the classification of the herbarium samples.

Table 7.1 The Latest Taxonomy of Lens Comprising Seven Taxa Split into  
Four Species (Ferguson et al., 2000)

GRIN Taxonomya Gene Poolb

Lens culinaris Medik. Primary
 Lens culinaris subsp. culinaris Primary
 Lens culinaris subsp. odemensis (Ladiz.) Primary
 Lens culinaris subsp. orientalis (Boiss.) Ponert Primary
 Lens culinaris subsp. tomentosus (Ladiz.) M.E. Primary
Lens ervoides (Brign.) Grande Secondary/tertiary
Lens lamottei Czefr. Secondary/tertiary
Lens nigricans (M. Bieb.) Godr. Secondary/tertiary

aGermplasm Resources Information Network: http://www.ars-grin.gov/cgi-bin/npgs/html/tax_search.pl.
bTullu, Bett et al. (2011) and Tullu, Diederichsen et al. (2011).

http://www.ars-grin.gov/cgi-bin/npgs/html/tax_search.pl
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Gene-based phylogenic studies of the Lens taxa were conducted from 1994 to 
2012 using genes favoured by the botanic taxonomists for studying plant evolution 
across the plant kingdom.

Muench, Slinkard, and Scoles (1991) and Mayer and Soltis (1994) both examined 
chloroplast RFLPs, while the 1994 study looked at far more accessions. Both told the 
same story as mentioned in Table 7.1 except that subspecies tomentosus was not rep-
resented. Similarly, studies using RFLPs of ITS region of ribosomal DNA (Mayer &  
Bagga, 2002; Sonnante, Galasso, & Pignone, 2003) resulted in some differences 
at the time of divergence, but not grouping. Recent sequencing data will continue 
to shed light on the species and taxa status of Lens (Schaefer et al., 2012). Finally, 
using maximum likelihood and Bayesian phylogeny analysis based on six chloro-
plast gene sequences (rbcL, matK, trnL/trnL-trnF, trnS-trnG, psbA-trnH) and one 
nuclear gene sequence (ribosomal ITS) of the legume tribe Fabae finds Lens nested 
in the middle of the Vicia clade. Lens diverged from its nearest Vicia ancestors 14.9–
12.6 million years ago. The sequence data of these seven genes also confirmed the 
monophyly origin of Lens and that Lens culinaris spp. orientalis is the closest pro-
genitor of cultivated lentil. The authors suggested that based on sequence analysis 
lentil may be placed within the Vicia genera (Schaefer et al., 2012).

7.3 Biosystematics

Of course the most interesting question is which species or subspecies is the progeni-
tor of cultivated L. culinaris. Zohary and Hopf (1973) ruled out L. monbretti based 
on taxonomy. Using Zohary and Hopf (1973) species classification also ruled out 
L. ervoides and L. nigricans based on species distribution and suggested Lens culi-
naris subsp. orientalis, as it manifested the closest morphological similarity to culti-
vated lentil. Cubero et al. (2009) suggested that ‘some populations of orientalis were 
unconsciously subjected to automatic selection’ in the region of southern Turkey to 
northern Syria and gave rise to L. culinaris. The strongest evidence to date is the data 
provided by the phylogenetic study based on sequencing seven genes, which sup-
ports the morphological data of Lens culinaris subsp. orientalis as the progenitor of 
cultivated lentil (Schaefer et al., 2012).

7.4 Status of Germplasm Resources Conservation

7.4.1 Ex Situ Conservation

The world collection is held by ICARDA; most of the other national collections hold 
some portion of subsets of this collection and vice versa (Table 7.2). ICARDA also 
holds the largest collection of the wild Lens accessions from 46 countries (Furman, 
Coyne, Redden, Sharma, & Vishnyakova, 2009; Table 7.3). It is difficult to determine 
exactly the overlap, duplication or redundancy due to the lack of consistent access to 



Genetic and Genomic Resources of Grain Legume Improvement164

databases, lack of cross-reference to other gene bank accession identification within 
databases (i.e. accession names/numbers) and lack of data per se (Potan, 2009; Tullu, 
Diederichsen, Suvorova, & Vandenberg, 2011). The Australian Temperate Field Crops 
Collection (ATFCC) database has made the most progress in cross-referencing by 
name/number identification across national gene banks including the world lentil col-
lection at ICARDA and is available by request (Redden, personal communications at 
ATFCC). Fortunately, the world crop genetic resources community is addressing the 
database issue directly through efforts within the Consultative Group on International 
Agricultural Research (CGIAR) system, through Bioversity International, through 
conferences, particularly the conference series International Symposium on Genomics 
of Plant Genetic Resources and white papers under development by the Global Crop 
Diversity Trust (http://www.croptrust.org/). One white paper developed was the 

Table 7.2 The World Ex Situ Lens Collection Held by the ICARDA with Significant Lens 
Germplasm with Other National Gene Bank Collections of 2000+ Accessions

Institution Accessions Website

ICARDAa 10,822 http://www.icarda.org/
ECPGRb 4598 http://www.ecpgr.cgiar.org/germplasm_databases.html
Indiac 7712 http://www.nbpgr.ernet.in/
ATFCCd 5254 http://www.dpi.vic.gov.au/
USDA ARSe 3187 http://www.ars-grin.gov/npgs/
Iranf 3000 http://en.spii.ir/seSPII/
Russian Federationg 2556 http://www.vir.nw.ru/

(modified from Tullu, Bett et al., 2011; Tullu, Diederichsen et al., 2011).
aInternational Center for Agricultural Research in the Dry Areas, Aleppo, Syria.
bEuropean Cooperative Program for Plant Genetic Resources includes Russian Federation.
cNational Bureau of Plant Genetic Resources (NBPGR), New Delhi, India.
dAustralian Temperate Field Crops Collection, Horsham, will be consolidated into the new Australian Grains Gene Bank, 
Horsham, Victoria, Australia.
eUnited States Department of Agriculture, Agricultural Research Service, Pullman, WA, USA.
fSeed and Plant Improvement Institute (SPII), Karaj, Iran.
gN.I. Vavilov All-Russian Scientific Research Institute of Plant Industry (VIR), St. Petersburg, Russia.

Table 7.3 Wild Lens Conserved Ex Situ with the World Collection Held 
by ICARDA and One National Gene Bank of USDA ARS NPGS

Taxon USDA ICARDA

Lens culinaris ssp. orientalis 92 268
Lens culinaris ssp. odemensis 8 65
Lens culinaris ssp. tomentosus 0 11
Lens ervoides 61 166
Lens lamottei 0 10
Lens nigricans 37 63
Total 198 583

http://www.croptrust.org/
http://www.icarda.org/
http://www.ecpgr.cgiar.org/germplasm_databases.html
http://www.nbpgr.ernet.in/
http://www.dpi.vic.gov.au/
http://www.ars-grin.gov/npgs/
http://en.spii.ir/seSPII/
http://www.vir.nw.ru/
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‘Global Strategy for the Ex Situ Conservation of Lentil (Lens Miller) (2008)’ which 
includes a goal to assemble passport data on major pulses, including lentil, from col-
lections worldwide into a single database linked with geographical information sys-
tem (GIS) data. While not the largest lentil collection by far, the USDA ARS stands 
out in the accessibility of its database and seed samples and will be used as an exam-
ple of a national database in comparison with the world collection (Table 7.3). Recent 
collections include two plant explorations in Crimea and Ukraine. Diederichsen, 
Rozhkov, Korzhenevsky, and Boguslavsky (2012) collected genetic resources of crop 
wild relatives (CWR) including eight wild Lens species and Bockelman (1999) col-
lected one each of L. ervoides and L. nigricans accessions.

7.4.2 In Situ Conservation

The number of accessions preserved ex situ from the regions of origin and diversity 
has been increasing. Seed has been collected from each taxon and used in further 
study to determine within-population diversity. This will help to establish the poten-
tial of in situ conservation for wild Lens species (Ferguson & Robertson, 1996). 
Unfortunately, many areas of greatest interest for in situ conservation (e.g. Turkey 
and other Mediterranean countries) are suffering from rapid loss of invaluable 
genetic resources due to habitat destruction (Solh & Erskine, 1981). The relatively 
poor competitive ability and high palatability of Lens species, together with the fact 
that they occur in small disjunct populations, intensifies this threat (Ferguson et al., 
1996). Important areas to target for in situ conservation include west Turkey for  
L. nigricans, southeast Turkey, northwest Syria, south Syria and Jordan for L. culi-
naris ssp. orientalis, south Syria for L. culinaris ssp. odemensis and the coastal 
border region between Turkey and Syria stretching along the Syrian coast for  
L. ervoides (Ferguson, Ford-Lloyd, Robertson, Maxted, & Newbury, 1998).

7.5 Germplasm Evaluation and Maintenance

Cultivated lentil experienced a genetic bottleneck with low amounts of molecular 
variation in the lentil germplasm collections (Alo et  al., 2011; Alvarez, García, & 
Pérez de la Vega, 1997; Ferguson et al., 2000; Ford, Pang, & Taylor, 1997; Mayer &  
Soltis, 1994; Muench et  al., 1991). Erskine, Sarker, and Ashraf (2011) used traits 
of flowering time and yield to reconstruct the genetic bottleneck of lentil into south 
Asia. Nonetheless, useful variation in cultivated lentil has led to significant breeding 
advances. Future genetic gains will be dependent on introgressing useful alleles from 
landraces and other wild Lens relatives for widening the genetic base of cultivated 
species. Lentil evaluation descriptors were published in 1985 by the International 
Board for Plant Genetic Resources (now Bioversity International) and ICARDA 
(IBPGR, 1985). Abiotic and biotic stress resistance screening are summarized in 
Table 7.4. Several studies have been conducted and published on multilocational tri-
als of landrace accessions for agronomic (descriptor) traits. Lentil core and compos-
ite collections allow for the sampling of diverse lines and provide an efficient method 
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Table 7.4 Sources of Foreign Genes from the Landraces and Wild Relatives for  
Introgression into Lentil

Useful Trait(s) Wild Relative References

Anthracnose 
resistance

L. ervoides, L. lamottei, 
L. nigricans

Tullu et al. (2006), Tullu, Banniza, Taran, 
Warkentin, and Vandenberg (2010), 
Fiala, Tullu, Banniza, Séguin-Swartz, 
and Vandenberg (2009), Vail and 
Vandenberg (2011) and Vail, Strelioff, 
Tullu, and Vandenberg, (2012)

Ascochyta blight 
resistance

L. ervoides, L. culinaris ssp. 
orientalis, L. odemensis, 
L. nigricans, L. lamottei

Bayaa et al. (1994), Nguyen, Taylor, 
Brouwer, Pang, and Ford (2001) and 
Tullu et al. (2006, 2010)

Colletotrichum 
truncatum 
resistance

L. culinaris Buchwaldt, Anderson, Morrall, Gossen, 
and Bernier (2004) and Shaikh et al. 
(2012)

Stemphylium 
blight

L. ervoides, L. culinaris ssp. 
orientalis, L. tomentosus, 
L. nigricans, L. odemensis, 
L. lamottei

Podder, Banniza, and Vandenberg (2012)

Fusarium wilt 
resistance

L. culinaris ssp. orientalis, 
L. ervoides

Bayaa et al. (1995), Gupta and Sharma 
(2006) and Mohammadi, Puralibaba, 
Goltapeh, Ahari, and Sardrood (2012)

Powdery mildew 
resistance

L. culinaris ssp. orientalis, 
L. nigricans

Gupta and Sharma (2006)

Rust resistance L. culinaris ssp. orientalis, 
L. ervoides, L. nigricans, 
L. odemensis

Gupta and Sharma (2006)

Drought 
tolerance

L. odemensis, L. ervoides, 
L. nigricans

Hamdi and Erskine (1996)

Cold tolerance L. culinaris ssp. orientalis Hamdi, Küsmenoĝlu, and Erskine (1996)
Heat tolerance L. culinaris Roy, Tarafdar, Das, and Kundagrami 

(2012)
Yield attributes L. culinaris ssp. orientalis Gupta and Sharma (2006)
Resistance to 

Orobanche
L. culinaris, L. ervoides, 

L. odemensis,  
L. orientalis

Fernández-Aparicio, Sillero, Pérez-
De-Luque, and Rubiales (2008) and 
Fernández‐Aparicio, Sillero, and 
Rubiales (2009)

Resistance to 
sitona  
weevils

L. odemensis, 
L ervoides, L. nigricans, 
L. culinaris ssp. orientalis

El-Bouhssini, Sarker, Erskine, and Joubi 
(2008)

Resistance 
to bruchid 
weevils

L. culinaris ssp. orientalis, 
L. nigricans, L. lamottei

Laserna-Ruiz, De-Los-Mozos-Pascual, 
Santana-Méridas, Sánchez-Vioque, and 
Rodríguez-Conde (2012)

Source: Adapted from Kumar et al. (2011). Taxonomic designations are those of the authors.
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for finding sources of new traits (Furman, 2006; Simon & Hannan, 1995). The 
USDA lentil core collection of 287 L. culinaris accessions was characterized for phe-
nology, morphology, biomass and seed yields over two seasons (Tullu, Kusmenoglu, 
McPhee, & Muehlbauer, 2001). Thirty landraces of Pakistan were evaluated for flow-
ering and yield components also over two seasons to determine diversity for breed-
ing strategies (Tyagi & Khan, 2011). Morphological and phenological variation was 
also assessed in 310 accessions of the wild relatives of lentil (Ferguson & Robertson, 
1999). ICARDA has established a composite collection of 1000 accessions to repre-
sent genetic diversity and the agro-climatological range of lentil and this will be used 
for intensive phenotyping and genotyping purposes (Furman, 2006).

Lentil is a naturally self-pollinated species due to its cleistogamous flowers 
(Wilson, 1972) and usually has <0.8% natural cross pollination (Wilson & Law, 
1972). Outcrossing in lentil depends on cultivar, location and year, and varies within 
cultivars (Horneburg, 2006). For regeneration and backup storage, bioversity recom-
mends a base collection of accessions in long-term storage used for regeneration, an 
active collection in less stringent conditions accessible for distribution and a security 
backup collection at a different location (Engels & Visser, 2003). Similarly, a guide 
is published for regeneration guidelines of lentil (Sackville Hamilton & Chorlton, 
1997). Lentil seed can be stored for relatively long periods of time at −18°C 
(Walters, Wheeler, & Grotenhuis, 2005). Seed handling conditions from harvest to 
storage temperature and relative humidity are critical components affecting seed lon-
gevity (Walters, Wheeler, & Stanwood, 2004). Long-term storage temperatures are 
an important (neglected) factor given conventional seed bank temperatures (Li & 
Pritchard, 2009).

7.6 Use of Germplasm in Crop Improvement

The wild relatives of lentil are a dynamic resource of unique genes/alleles that are 
not present in cultivated lines. Many economically important traits, such as resist-
ance to biotic and abiotic stresses, are not currently represented in L. culinaris ssp. 
culinaris, but are found in the wild relatives. Introgression of these useful genes will 
greatly enhance the genetic base of cultivated lentil. Deploying these genes from the 
secondary and tertiary gene pools frequently requires techniques of embryo rescue 
and tissue culture. Initial development of lentil varieties was via single plant selec-
tion within landraces. Landraces are defined by their historical origin, recognizable 
identity, lack of formal genetic improvements, high genetic diversity, local adapta-
tion and association with traditional farming systems (Villa, Maxted, Scholten, & 
Ford-Lyod, 2006). Lentil landraces have existed since domestication and over time 
have genetically responded to selection pressures of biotic and abiotic stresses. 
Cultivars developed from pure-line selection within landraces include Uthfala 
(Sarker, Rahman, Rahman, & Zaman, 1992), Laird (Slinkard & Bhatty, 1979), Eston 
(Slinkard, 1981), ILL 5582 (Idlib 1; Jordan 3; El Safsaf 3 and Baraka) (Erskine, 
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Saxena, & Malhotra, 1996), Bichette (Sakr et  al., 2004), Crimson (Muehlbauer, 
1991) and Ozbek (Aydoğan et al., 2008).

Germplasm lines derived from pure-line selection of landraces have also played 
a prominent role as a source of novel alleles in traditional breeding programs. For 
example, Uthfala (Barimasur-1=ILL 5888) was used as a parent in Bangladesh to 
develop varieties with improved resistance to Fusarium wilt and Ascochyta blight 
(Sarker, Erskine, Hassan, Afzal, & Murshed, 1999). Nonelite germplasm has been 
used extensively as parents in mapping populations developed to identify sources of 
resistance to Stemphylium blight (Saha, Sarker, Chen, Vandemark, & Muehlbauer, 
2010a), Fusarium vascular wilt (Eujayl, Erskine, Bayaa, Baum, & Pehu, 1998; 
Hamwieh et  al., 2005), Anthracnose (Tullu, Buchwaldt, Warkentin, Taran, & 
Vandenberg, 2003), Aschochyta blight (Ford, Pang, & Taylor, 1999; Taylor, Ades, & 
Ford, 2006; Tullu et al., 2006) and lentil rust (Kant, Sharma, Sharma, & Basandrai, 
2004; Saha, Sarker, Chen, Vandemark, & Muehlbauer, 2010b). They have also been 
used to study the earliness and plant height (Tullu, Tar’an, Warkentin, & Vandenberg, 
2008) and cold tolerance (Eujayl, Erskine, Baum, & Pehu, 1999; Kahraman et  al., 
2004). Genetic resources of lentil’s wild relatives have become recognized as the 
source of many economically useful genes (Table 7.4, modified from Kumar, Imtiaz, 
Gupta, & Pratap, 2011) and will contribute to the success of breeding new cultivars 
adapted to major biotic and abiotic stresses.

7.7 Limitations in Germplasm Use

Issues to be addressed in terms of limitations of lentil germplasm use are access, pre-
cise phenotypic data, breeding efficiencies and available diversity preserved ex situ 
and in situ.

The first issue is access. Lentil is covered by the Convention on Biological 
Diversity (CBD, 1994) and the International Treaty for Plant Genetic Resources of 
Food and Agriculture (IT-PGRFA or IT, 2004). These treaties are part of the evolv-
ing standards that regulate access to genetic resources and define benefit sharing 
(Ghijsen, 2009). In 2006 a standard material transfer agreement (SMTA) was agreed 
for the IT, in which the requirements for access to the genetic resources of the 64 
food, feed and forage crops, including lentil (annex I of IT) was established and the 
ways of benefit sharing are enumerated (Ghijsen, 2009). Lentil germplasm is freely 
available from the world collection held by ICARDA under the SMTA set in place 
by the 2006 IT treaty and is now used by some national gene banks. For example, 
requesters of germplasm from CGIAR centres such as ICARDA accessioned with 
USDA in GRIN after 2006 must agree to the SMTA stipulations. However, lentil 
germplasm donated or collected and directly accessioned in GRIN is not covered by 
SMTA, nor is CGIAR material received prior to 2006. Breeders must have efficient 
methods and gene-based methods to introduce positive new alleles locked in nonelite, 
unadapted or wild germplasm held ex situ or in situ or not yet collected. New meth-
odologies such as genomic selection and genome-wide association studies have 
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created opportunities for breeders to mine lentil germplasm for needed genes/alleles. 
Currently, lentil suffers from one of the poorest genomic resources of the top six grain 
legumes in production. Not unexpectedly, this is currently changing at an exponential 
rate (Varshney, Close, Singh, Hoisington, & Cook, 2009). Additionally, recent meet-
ing reports of transcriptomes of diversity panels, single nucleotide polymorphisms 
(SNPs) discovered, dense gene-based maps (Sharpe et al., 2013), single nucleotide 
polymorphism (SNP) panels, a 10X lentil bacterial artificial chromosome (BAC) 
library and high-throughput genomic sequencing (Bett, personal communication) will 
soon put lentil in the realm of published genomic resources for crop improvement.

Tremendous lentil genetic diversity is currently unavailable either in ex situ 
or under in situ conservation. This treasure of lentil germplasm is held in popula-
tions poorly or incompletely sampled or even completely unsampled wild lentil 
taxa. This gap not only limits the use, it renders precious genetic diversity inacces-
sible and vulnerable to erosion or extinction. Fortunately, this is well recognized, 
and international efforts led by the Bioversity organization are in progress to con-
duct gap analyses (Scott et  al., 1993) on CWR including lentil and develop com-
prehensive strategies for wild relative germplasm conservation (Maxted, Kell, 
Ford-Lloyd, Dulloo, & Toledo 2012). Grain legume gap analysis (Maxted et  al., 
2012) illustrates how existing georeferenced passport data associated with acces-
sions of Lens species from ICARDA and GBIF (http://www.gbif.org/) can be used 
to identify gaps in current ex situ conservation and develop a more systematic in situ 
conservation strategy. It might be expected that all of the species closely related to 
crops have already been well sampled, but some that are the closest CWR of the 
crops, such as Lathyrus amphicarpos, La. belinensis, La. chrysanthus, La. hirti-
carpus, Medicago hybrida, Lens culinaris subsp. tomentosus (Maxted et al., 2012), 
have fewer than 10 samples conserved ex situ. It is evident that wild Lens species 
provide an invaluable gene source for the improvement of lentil cultivars (Maxted & 
Bennett, 2001).

7.8 Germplasm Enhancement Through Wide Crosses

The domesticated lentil, Lens culinaris subsp. culinaris, is readily crossable with 
the wild Lens culinaris subsp. orientalis (Fratini, Ruiz, & Pérez de la Vega, 2004; 
Gupta & Sharma, 2007; Muehlbauer, Weeden, & Hoffman, 1989; Vaillancourt & 
Slinkard, 1993; Vandenberg & Slinkard, 1989; Singh et  al., 2013) and the wild 
Lens culinaris subsp. odemensis (Abbo & Ladizinsky, 1991; Singh et  al., 2013). 
The resulting hybrids are fertile or partially fertile, as a result of chromosome rear-
rangements (Abbo & Ladizinsky, 1991). The same holds true for crosses between 
L. ervoides and L. nigricans (Abbo & Ladizinsky, 1991). However, almost all 
hybrids abort within 2 weeks in crosses between L. ervoides and L. nigricans and 
all L. culinaris subspecies (Ladizinsky, Braun, Goshen, & Muehlbauer, 1984). Also 
reported were rare hybrid seeds, which were albino and died shortly after germina-
tion (Abbo & Ladizinsky, 1991).

http://www.gbif.org/
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Interspecific crosses within the genus Lens generally abort and embryo rescue 
techniques are necessary to recover hybrids (Tullu, Bett, Saha, Vail, & Vandenberg, 
2011). The first lentil embryo rescue protocol (Cohen, Ladizinsky, Ziv, & 
Muehlbauer, 1984) allowed the recovery of interspecific hybrids between the culti-
vated lentil and L ervoides and L. nigricans. Later, using the same embryo culture 
technique, Ladizinsky et  al. (1985) again obtained hybrids of the cultivated lentil 
with L. ervoides. Fratini and Ruiz (2006, 2011) successfully recovered interspecific 
hybrids between the cultivated lentil and L. odemensis, L. ervoides and L. nigricans 
using embryo rescue techniques. ‘The in vitro culture procedure to rescue interspe-
cific hybrid embryos consists of at least four different stages: (i) in ovule embryo 
culture, (ii) embryo culture, (iii) plantlet development and finally (iv) the gradual 
habituation to ex vitro conditions of the recovered interspecific hybrid plantlets’ 
(Fratini & Ruiz, 2011). Viable interspecific hybrids were also obtained between 
the cultivated lentil and L. odemensis, L. ervoides and L. nigricans without the use 
of embryo rescue by applying gibberellic acid after pollination (Ahmad, Fautrier, 
McNeil, Burritt, & Hill, 1995).

7.9 Lentil Genomic Resources

Unlike major crops, genomic resources for lentil have lagged behind (Varshney 
et al., 2009), effectively preventing the application of genomics to characterize len-
til germplasm and mine the cultivated and wild accessions for novel new alleles. 
Leveraging genomics model species such as Medicago truncatula has assisted lentil 
(Alo et al., 2011; Gepts, 2012; Gupta et al., 2012; Choi, Luckow, Doyle, & Cook, 
2006; Choi et al., 2004; Phan et al., 2007; Zhu, Choi, Cook, & Shoemaker, 2005). 
However recent reductions in the costs of developing the much more effective len-
til-specific genomic resources will result in better gene-specific characterization of 
lentil germplasm. Several transcriptomes have been developed and the sequences 
available through gene banks, first by researchers in Australia (Kaur et  al., 2011) 
and now also in Canada (Bett, 2012). Kaur et al. (2011) used their transcriptome to 
identify gene-specific microsatellites (expressed sequence tag (EST)-SSRs) and Bett 
(2012) used their transcriptomes from eight lentil lines to identify SNPs. Bett (2012) 
have developed 8533 SNP assays (Illumina) and KASPar SNP assays (KBiosystems) 
for characterizing lentil germplasm, while Tanyolac (2013) reported the further 
development of 1095 high-quality Illumina SNP assays for lentil.

Using high-throughput gene-based assays will now allow for association mapping 
and eventually genome-wide association studies using lentil germplasm collections 
(Rafalski, 2010). Conditions for this to move forward include the completion of the 
structure of underlying relationships in germplasm collections and uncovering the 
LD found in cultivated lentil and in the lentil wild relatives. Several curated data-
bases are under development to improve the access to useful information regarding 
genomic data of gene banks (Table 7.5). Finally, the question put forth last century 
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by Tanksley and McCouch (1997) has now been answered: there are now genome-
wide association studies to effectively mine and deploy positive alleles from germ-
plasm collections for efficient lentil crop improvement.

7.10 Conclusions

The opportunities for lentil improvement through the use of collected germplasm 
appear to be quite good. Future improvements and discoveries of useful varia-
tion speak to the need for continuing to collect for ex situ preservation in addition 
to in situ reserves, so that natural selection can continue, given the environmen-
tal challenges predicted during climate change (Yadav, Redden, Hatfield, Lotze-
Campen, & Hall, 2011). Lentil CWR have been proven to provide for needed 
genetic diversity for crop improvement and to counteract biotic and abiotic stresses 
besides agronomic performance, and their conservation ex situ and in situ is para-
mount (Maxted et al., 2012). Kilian and Graner (2012) reviewed the deployment of 
next-generation sequencing technologies for the analysis of plant genetic resources, 
in order to identify patterns of genetic diversity, map quantitative traits and mine 
novel alleles from the vast amount of genetic resources maintained in gene banks 
worldwide. In the near future, lentil will be completely sequenced, providing the 
necessary reference sequence upon which massive resequencing of diverse lines 
and wild germplasm can commence, similar to the efforts in rice and other crops. 
Resequencing 50–100 germplasm lines allows for the precise movement of posi-
tive wild alleles to cultivated phenotypes (Xu et  al. 2011) and genomic selection 
(Jannick, Lorenz, & Iwata, 2010). Genomic selection combined with high-through-
put phenotyping will also create efficiencies in moving new positive alleles to 
advanced breeding populations and lines (Cabrera‐Bosquet, Crossa, von Zitzewitz, 
Dolors Serret, & Araus, 2012).

Table 7.5 Web-Based Databases Containing Lentil Genetic and Genomic Data

Databases Website Tools

LISa http://lencu.comparative-legumes.org/ GBrowse sequenced legumes  
and other legumes

KnowPulseb http://knowpulse2.usask.ca/portal/ GBrowse with lentil track
CSFL genomec http://coolseasonfoodlegume.org/ GBrowse with lentil track
IBPd http://www.integratedbreeding.net/ Lentil crop and genomic 

information (under 
construction)

aLegume Information System, National Center for Genome Resources, Santa Fe, NM, USA.
bKnowPulse, hosted by University of Saskatchewan Pulse Crop Research Group.
cCool Season Food Legume Genome Database, hosted by Washington State University.
dIntegrated Breeding Platform (Varshney et al., 2012).

http://lencu.comparative-legumes.org/
http://knowpulse2.usask.ca/portal/
http://coolseasonfoodlegume.org/
http://www.integratedbreeding.net/
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8.1 Introduction

Pigeon pea [Cajanus cajan (L.) Millspaugh] is a short-lived perennial shrub that is 
traditionally cultivated as an annual grain legume crop in tropical and subtropical 
regions of the world. It is known by various names, such as red gram and congo 
bean (English), tur and arhar (Hindi), guand (Portuguese), gandul (Spanish), poid 
d’Angole and poid de Congo (French) and ervilba de Congo in Angola, and is grown 
primarily as a food crop. Dry whole seed and dehulled and split seed (dhal) are 
used for cooking various dishes. Besides its use as a food crop, there are also for-
age, fodder, fuel and medicine uses. The crushed dry seeds are fed to animals, while 
the green leaves form a quality fodder. In rural areas, dry stems of pigeon pea are 
used for fuel, thatching, basket-making, etc. The plants are also used to culture lac 
insects. Pigeon pea has a deep root system which helps it to withstand drought, and 
is grown on mountain slopes to bind the soil and reduce soil erosion. Due to its deep 
root system, pigeon pea offers little competition to associated crops and is therefore 
extensively used in intercropping systems with cereals, such as millets, sorghum and 
maize; it also provides a good means to improve fertility in fallows. In a cropping 
season, the plants fix about 40 kg/ha atmospheric nitrogen and add valuable organic 
matter to the soil through fallen leaves (up to 3.1 t/ha of leaf dry matter) (Rupela, 
Gowda, Wani, & Ranga Rao, 2004). Its roots help in releasing soil-bound phos-
phorus to make it available for plant growth. Pigeon pea seed protein content (on 
average approximately 21%) compares well with that of other important grain leg-
umes. Owing to several unique characteristics and benefits, pigeon pea has become 
an ideal crop for sustainable agricultural systems in rainfed areas. Because of the 
large temporal variation (90–300 days) for maturity, four major durations for pigeon 
pea varieties exist: extra short (mature in <100 days), short (100–120 days), medium 
(140–180 days) and long duration (>200 days). Each group is suited to a particular 
agro-ecosystem, which is defined by altitude, temperatures, latitude and day length. 
Invariably, the traditional pigeon pea cultivars and landraces are long duration types 
and grown as intercrops with other more early maturing cereals and legumes. Extra 
short and short varieties have the potential for inclusion as sole crop into rotation 
as an alternative to rice within the rice–wheat systems of the Indo-Gangetic Plain 

http://dx.doi.org/10.1016/B978-0-12-397935-3.00008-6
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in Asia, especially during periods of water shortage, price incentives and problems 
of soil fertility. Further, pigeon pea production is affected by several biotic and 
abiotic stresses. Among biotic factors, important diseases such as sterility mosaic, 
Fusarium wilt (FW), Phytophthora blight, root rot, stem canker and Alternaria 
blight in the Indian subcontinent; wilt and Cercospora leaf spot in eastern Africa 
and witches’ broom in the Caribbean and Central America cause considerable yield 
losses. The distribution of these diseases is geographically restricted. For example, 
sterility mosaic disease (SMD), the most important disease of Indian subcontinent, is 
not found in eastern Africa. Similarly witches’ broom is absent from the two major 
pigeon pea-growing regions, the Indian subcontinent and eastern Africa. Besides dis-
eases, the seeds and other parts of the plant are fed upon by many insects, with over 
200 species having been recorded in India alone. Some of these insects cause suf-
ficient crop losses to be regarded as major pests, but the majority are seldom abun-
dant enough to cause much damage, or are of sporadic or localized importance, and 
regarded as minor pests. The pod-damaging insects (pod borers and pod fly) cause 
significant yield losses in pigeon pea and therefore are the most important pests of 
this crop.

8.2 Origin, Distribution, Diversity and Taxonomy

The name pigeon pea was first reported from Barbados, where the seeds were used 
to feed pigeons (Plukenet, 1692). There are several theories about the true origin of 
pigeon pea (reviewed in Saxena, Kumar, Reddy, & Arora, 2003). However, based 
on the range of genetic diversity of the crop in India, Vavilov (1951) concluded that 
pigeon pea originated in India. Several authors considered eastern Africa to be the 
centre of origin of pigeon pea, as it occurs there in wild form. However, based on 
the large diversity among the crop varieties, the presence of several related wild spe-
cies, including the progenitor species, linguistic evidence and wide usage in daily 
cuisine, most of the researchers have agreed on India as the original home of pigeon 
pea. India is now unequivocally accepted as the primary centre of origin and Africa 
as the secondary centre of origin of pigeon pea (De, 1974; Royes Vernon, 1976; van 
der Maesen, 1980). Most probably in the nineteenth century, immigrants from India 
introduced the crop into East Africa (Hillocks, Minja, Nahdy, & Subrahmanyam, 
2000). Thereafter, pigeon pea moved into the Nile valley, then into West Africa and 
eventually to the Americas (Odeny, 2007). It is now widely grown in the Caribbean 
region. Further, Reddy (1973) and De (1974) also postulated that the genus Cajanus 
probably originated from an advanced Atylosia (now reclassified as Cajanus) spe-
cies through single gene mutation. It is now well known that this advanced species 
is C. cajanifolius, the most probable progenitor of pigeon pea, found only in India. 
Besides C. cajanifolius, 16 species of Cajanus, including cultivated species C. cajan, 
occur in India.

At present, pigeon pea is cultivated in the tropical and subtropical areas between 
30°N and 30°S latitude on 4.71 million hectares with an annual production of 3.69 
million metric tons and productivity of 783 kg/ha (FAOSTAT, 2010). The pigeon 
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pea is widely grown in the Indian subcontinent, which accounts for about 88% of 
the global pigeon pea production. The major pigeon pea-growing countries in the 
region are India followed by Myanmar and Nepal. India alone represents about 75% 
of the area and about 67% of the global pigeon pea production. Africa, including 
major pigeon pea-growing countries, such as Malawi, Kenya and Uganda, accounts 
for about 11% of the global production. The Americas and the Caribbean pro-
duce about 1% of the total pigeon pea of the world (Table 8.1). Pigeon pea is often 
cross-pollinated, with an insect-aided natural out-crossing range from 20% to 70% 
(Saxena, Singh, & Gupta, 1990), with chromosome number 2n=2x=22 and genome 
size 1C = 858 Mbp. It belongs to the family Leguminosae, subfamily Papilionoideae, 
tribe Phaseoleae and the subtribe Cajaninae. The tribe Phaseoleae comprises many 
edible bean species (Phaseolus, Vigna, Cajanus, Lablab, etc.) of which the mem-
bers of subtribe Cajaninae are well distinguished by the presence of vesicular glands 
on the leaves, calyx and pods. Currently, 11 genera are grouped under the subtribe 
Cajaninae, including Rhynchosia Lour., Eriosema (DC.), G. Don, Dunbaria, W. & 
A. and Flemingia Roxb. ex Aiton, but the cultivated pigeon pea C. cajan is the only 
domesticated species in Cajaninae. The word ‘Cajanus’ is derived from a Malay 
word ‘katschang’ or ‘katjang’ meaning pod or bean. The members of the earlier 

Table 8.1 Major Pigeon Pea-Growing Countries of the World

Continent Country Area (ha) Productivity 
(kg/ha)

Production 
(tonnes)

Asia Bangladesh 811 951 772
India 3,530,000 696 2,460,000
Myanmar 581,200 1246 724,200
Nepal 21,296 875 18,647
Pakistan 0 0
Philippines 684 1244 851

Africa Burundi 1900 1000 1900
Comoros 540 592 320
Democratic Republic of the Congo 10,139 582 5901
Kenya 158,746 650 103,324
Malawi 190,437 1013 193,005
Uganda 98,200 947 93,000
United Republic of Tanzania 75,000 733 55,000

America Bahamas 230 565 130
Dominican Republic 23,461 1068 25,070
Grenada 640 765 490
Haiti 7200 333 2400
Jamaica 723 1036 749
Panama 4400 447 1969
Puerto Rico 344 755 260
Trinidad and Tobago 1300 769 1000
Venezuela (Bolivarian Republic of) 1900 789 1500

World 4,709,151 783 3,690,488



Genetic and Genomic Resources of Grain Legume Improvement184

Singh-1630323 978-0-12-397935-3 00008

genus Atylosia closely resemble the genus Cajanus in vegetative and reproductive 
characters. However, they were relegated to two separate genera mainly on the basis 
of the presence or absence of seed strophiole. In 1980, van der Maesen revised the 
taxonomy of both the genera and merged the genus Atylosia into Cajanus follow-
ing systematic analysis of morphological, cytological and chemotaxonomical data, 
which indicated the congenicity of the two genera (van der Maesen, 1980). The 
revised genus Cajanus currently comprises 18 species from Asia, 15 species from 
Australia and 1 species from West Africa. Of these, 13 are found only in Australia, 
8 in the Indian subcontinent, and 1 in West Africa, with the remaining 14 species 
occurring in more than 1 country. Based on growth habit, leaf shape, hairiness, struc-
ture of corolla, pod size and presence of strophiole, van der Maesen (1980) grouped 
the genus Cajan into six sections. The 18 erect species were placed under three sec-
tions: seven species in section Atylosia, nine species in section Fruticosa and two 
species in section Cajanus, which consists of the cultivated pigeon pea along with its 
progenitor, C. cajanifolius. Eleven climbing and creeping species were arranged in 
two sections, section Cantharospermum (5) and section Volubilis (6); the remaining 
three trailing species were classified under section Rhynchosoides. Three Cajanus 
species have been further subdivided into botanical varieties: C. scarabaeoides var. 
pedunculatus and var. scarabaeoides; C. reticulatus var. grandifolius, var. reticula-
tus, and var. maritimus; and C. volubilis var. burmanicus and var. volubilis.

On the basis of success in hybridization between pigeon pea and its wild relatives, 
van der Maesen (1990) placed cultigens in the primary gene pool, all 10 cross-com-
patible species C. acutifolius, C. albicans, C. cajanifolius, C. lanceolatus, C. latise-
palus, C. lineatus, C. reticulatus, C. scarabaeoides, C. sericeus and C. trinervius in 
the secondary gene pool, and the cross-incompatible species C. goensis, C. heynei, 
C. kerstingii, C. mollis, C. platycarpus, C. rugosus, C. volubilis and other Cajaninae 
such as Rhynchosia Lour., Dunbaria W. and A., Eriosema (DC.) Reichenb in the ter-
tiary gene pool.

8.3 Erosion of Genetic Diversity from the Traditional Areas

The contribution of landraces as source material for crop improvement has been sub-
stantial. In the past, most released pigeon pea varieties have been developed through 
selection from landraces. To meet the challenges in crop improvement, efforts were 
made to widen the genetic base by collecting and conserving germplasm across the 
world before it is lost forever, which led to the assembly of large collections at the 
national and international gene banks. The gene bank at the International Crops 
Research Institute for the Semi-Arid Tropics (ICRISAT), serving as a world reposi-
tory for genetic resources of its mandate crop including pigeon pea, holds 13,771 
accessions from 74 countries. Landraces and wild relatives are the best sources of 
resistance to the biotic and abiotic stresses and contribute towards food security, 
poverty alleviation, environmental protection and sustainable development. Plant 
genetic resources (PGR) are finite and vulnerable to erosion due to the severe threats 
to world food security of replacement of landraces/traditional cultivars by modern 
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varieties, natural catastrophes such as droughts, floods, fire hazards, urbanization 
and industrialization, and habitat loss due to irrigation projects, overgrazing, mining 
and climate change (Upadhyaya & Gowda, 2009). Therefore, there is an urgent need 
to assess the existing collection to identify geographical, trait-diversity and taxonom-
ical gaps for planning future collection strategies for pigeon pea.

8.4 Status of Germplasm Resources Conservation

The CGIAR consortium represents the largest concerted effort towards collecting, 
preserving and utilizing global agricultural resources. CGIAR holds nearly 760,000 
samples of the estimated 7.4 million accessions of different crops preserved glob-
ally (FAOSTAT, 2010). There are a number of gene banks conserving the pigeon pea 
germplasm worldwide. ICRISAT has the global responsibility of collecting, con-
serving and distributing the pigeon pea germplasm comprising of landraces, mod-
ern cultivars, genetic stocks, mutants and wild Cajanus species. It contains 13,216 
accessions of cultivated pigeon pea and 555 accessions of wild species in the genus 
Cajanus from 60 countries. The collection includes 8315 landraces, 4830 breeding 
materials, 71 improved cultivars and 555 wild accessions. This is the single largest 
collection of pigeon pea germplasm assembled at any one place in the world. India 
is the major contributor with 9200 accessions. These accessions came from dona-
tions as well as from collecting missions launched in different countries. Other major 
gene banks holding pigeon pea germplasm are the National Bureau of Plant Genetic 
Resources (12,900 accessions), New Delhi, India; All India Coordinated Research 
Project on Pigeon pea (5195 accessions); NBPGR Regional Station Akola (2268 
accessions), India; Indian Agricultural Research Institute (IARI; 1500 accessions), 
New Delhi and the National Gene Bank of Kenya, Crop Plant Genetic Resources 
Centre (1380 accessions), Muguga, Kenya (Table 8.2).

Table 8.2 Major Gene Banks Holding Pigeon Pea Germplasm

Country Institute Wild Cultivated Total

Australia Australian Tropical Crops and Forages Genetic 
Resources Centre

352 406 758

Brazil Embrapa Recursos Genéticos e Biotecnologia 3 279 282
Colombia Centro Internacional de Agricultura Tropical 623 135 758
Ethiopia International Livestock Research Institute 539 143 682
India All India Coordinated Research Project on 

Pigeon pea
5195 5195

Indian Agricultural Research Institute 1500 1500
ICRISAT 555 13,216 13,771
National Bureau of Plant Genetic Resources 41 12,859 12,900
Regional Station Akola, NBPGR 2268 2268

(Continued)
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8.5 Germplasm Characterization and Evaluation

Germplasm collection is of little value unless it is characterized, evaluated and 
documented properly to enhance its utilization in crop improvement. A multidisci-
plinary approach is followed at ICRISAT gene bank; the data generated in various 
disciplines are fed to the pigeon pea germplasm characterization database. The char-
acterization was done at the ICRISAT Research Farm in Patancheru on 18 qualita-
tive characters (plant vigor, growth habit, plant pigmentation, stem thickness, flower 
base colour, streak colour, streak pattern, flowering pattern, pod colour, pod shape, 
pod hairiness, seed colour pattern, primary seed colour, secondary seed colour, seed 
eye colour, seed eye colour width, seed shape and seed hilum) and 16 quantitative 
characters were recorded following the ‘Descriptors for Pigeon pea’ (IBPGR & 
ICRISAT, 1993). Observations on all qualitative and six quantitative characters (days 
to 50% flowering, days to 75% maturity, 100-seed weight, harvest index, shelling 
percentage and plot seed yield) were recorded on a plot basis. Observations on the 
remaining 10 quantitative traits (leaf size, plant height, number of primary, second-
ary and tertiary branches, number of racemes, pod bearing length, pods per plant, 
pod length, seeds per pod) were recorded on three representative plants from each 
plot. To realize the true potential of the accessions and to facilitate the selection of 
genotypes by researchers, sets of selected pigeon pea germplasm, such as core and 
mini-core collections, were evaluated for important agronomic characters at different 
locations in India and several other countries in Africa during suitable seasons.

8.5.1 Diversity in the Collection

To study the geographical patterns of diversity in the collection, data of 14 qualitative 
and 12 quantitative traits of 11,402 accessions from 54 countries were analysed. The 
accessions were grouped based on geographical proximity and similarity of climate 
(Reddy, Upadhyaya, Gowda, & Singh, 2005; Upadhyaya, Pundir, Gowda, Reddy, 

Table 8.2 Major Gene Banks Holding Pigeon Pea Germplasm

Country Institute Wild Cultivated Total

Indonesia National Biological Institute 200 200
Kenya National Genebank of Kenya, Crop Plant 

Genetic Resources Centre – Muguga
92 1288 1380

Nepal Nepal Agricultural Research Council 228 228
Philippines Institute of Plant Breeding, College of 

Agriculture, University of the Philippines, Los 
Baños

629 629

Thailand Thailand Institute of Scientific and Technological 
Research

201 201

Uganda Serere Agriculture and Animal Production 
Research Institute

200 200

Table 8.2 (Continued)
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& Singh, 2005). Large variation was observed in the entire collection for important 
agronomic traits (Table 8.3). The range of variation for quantitative traits in respect 
to the different regions was maximum for group AS 4 (south India, Maldives and 
Sri Lanka) and minimum for germplasm accessions from Europe and Oceania. 
The region AS 4 encompasses the area of the primary centre of diversity of pigeon 
pea; therefore, the high variation in the germplasm from that region is not surpris-
ing (Upadhyaya et  al., 2005). The accessions from Africa were of longer duration, 
tall and producing large seeds. Accessions from India had medium plant height, high 
pod number, medium duration and high seed yield. Accessions from Oceania were 
conspicuous in their short growth duration, short height, few branches, small seeds 
and low seed yield. Shannon–Weaver diversity index (H′) (Shannon & Weaver, 1949) 
indicates that the accessions from AS 6 (Indonesia, Philippines and Thailand) had the 
highest pooled H′ for qualitative traits (0.349 + 0.059) and accessions from Africa 
the highest for quantitative traits (0.613 + 0.006) (Upadhyaya et al., 2005). African 
accessions also had highest pooled H′ (0.464 + 0.039) over all the traits. The acces-
sions from Oceania had the lowest pooled H′ (0.337 + 0.037). The H′ values across 
the regions were highest for primary seed colour (0.657 + 0.050) followed by flower 
streak pattern, seed protein content and shelling percentage, whereas it was lowest 
for flowering pattern (0.087 + 0.026). A hierarchical cluster analysis conducted on 
the first three PC scores (92.28% variation) resulted in three clusters. Cluster 1 com-
prised accessions from Oceania (60 accessions), cluster 2 comprised accessions from 
AS 1–5 containing 9648 accessions and cluster 3 comprised accessions from Africa, 
America, Caribbean countries, Europe and AS 6 containing 1694 accessions (Figure 
8.1) (Upadhyaya et  al., 2005). Semi-spreading growth habit, green stem colour, 
indeterminate (NDT) flowering pattern and yellow flower were predominant among 
the qualitative traits. Primary seed colour had maximum variability; orange colour 

Table 8.3 Range of Variation for Important Agronomic Traits 
in the World Collection of Pigeon Pea at ICRISAT Gene Bank, 

Patancheru, India

Character Mean Minimum Maximum

Days to 50% flowering 133.5 52 237
Days to 75% maturity 192.1 100 299
Plant height (cm) 177.9 39 310
Primary branches (no.) 13.5 1 107
Secondary branches (no.) 31.3 0 145.3
Tertiary branches (no.) 8.8 0 218.7
Racemes per plant (no.) 150.3 6 915
Pod length (cm) 5.7 2.5 13.1
Pods per plant (no.) 287.3 9.3 1819.3
Seeds per pod (no.) 3.7 1.6 7.2
100-seed weight (g) 9.3 2.7 25.8
Seed protein (%) 21.3 13 30.8
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followed by cream were the two most frequent second colours in the collection. At 
ICRISAT a large number of pigeon pea accessions were tested for biotic and abiotic 
stresses and promising sources for resistance were identified.

8.6 Germplasm Maintenance

The ICRISAT gene bank ensures maintenance of germplasm at international stand-
ards and the continued availability of good-quality seeds of its mandate crops for 
research and development globally. Maintenance of germplasm includes main-
tenance of seed viability and seed quantity in the gene bank. Seed viability and 
quantity of germplasm accessions in medium-term store are monitored at regular 
intervals. Accessions are regenerated when the seed viability is below 85% and/
or seed quantity <100 g in medium-term store. Regeneration is the crucial pro-
cess in gene bank management. Accessions with poor quality are given top prior-
ity. Objectives for regeneration include maximizing seed quality, optimizing seed 
quantity and maintaining the genetic integrity of accessions. Pigeon pea floral biol-
ogy favors self-pollination. However, it is considered an often cross-pollinating spe-
cies without crossing ranging from 20 to 70%, due to visits by bees (Saxena et al., 
1990). Therefore, it is essential to preserve the accessions’ integrity using effec-
tive pollination control methods. Controlling pollination is the most crucial part of 
the regeneration process. Methods to control pollination include: bagging individ-
ual plants, growing accessions in isolation, growing barrier crops, growing under 
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Figure 8.1 Dendrogram of 11 regions in the entire pigeon pea germplasm based on scores of 
the first three principal components (92.3% variation). 
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insect-proof cages, ‘polyhouses’, etc. But the most common procedure is covering 
individual plants using muslin cloth bags and growing accessions under insect-proof 
cages (Figure 8.2). The pollination control method of growing accessions under 
insect-proof cages was three times cheaper than the traditional method of bagging 
individual plants. However, the regeneration cost depends largely on method of pol-
lination control, availability and cost of materials in local markets, labour wages, 
quantity of seed required per accession in one cycle of regeneration, type of material 
to be regenerated, etc. Due to increased seed yield per plant, we can minimize the 
regeneration frequency (Reddy, Upadhyaya, Reddy, & Gowda, 2006). Minimizing 
the regeneration requirement of each accession can reduce maintenance costs of 
the total collection. Therefore, pigeon pea germplasm accessions are grown under 
insect-proof cages for regeneration at ICRISAT Research Farm, Patancheru, dur-
ing the rainy season. In order to minimize the damage to the nylon net used for the 
cages by reducing the vegetative growth, particularly plant height, accessions are 
sown later during the crop season, during the first week of August, in Alfisol fields. 
Remanandan, Sastry, and Mengesha Melak (1988) reported that sowing pigeon pea 
in Alfisols close to the shortest day of the year results in reduced plant height. Each 
accession is grown on a single 9-m-long ridge, spaced 75 cm apart. Plant to plant 
spacing is 25 cm, accommodating about 72 plants in 36 hills. Adequate plant pro-
tection measures are taken inside the cage to reduce damage by pests and diseases.  

Figure 8.2 Field view of growing pigeon pea germplasm under insect-proof cages for 
regeneration. 
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At maturity, individual plants are harvested and an equal quantity of seeds from each 
plant is bulked to reconstitute the accession.

8.6.1 Regeneration of Wild Pigeon Pea Germplasm

Seeds of almost all species require scarification by making a small cut to the seed 
coat to improve water absorption and germination. Seeds are treated with Thiram or 
any other appropriate fungicide and initially sown in small cups or pots and trans-
planted to the field when they have three to four leaves. Climbers, such as C. albi-
cans, C. mollis and C. crassus, are provided support using bamboo sticks or iron 
poles. At maturity, pods from individual plants are harvested and threshed, and seeds 
are cleaned. An equal quantity of seed from each plant is bulked to reconstitute an 
accession (Upadhyaya & Gowda, 2009).

8.6.2 Documentation

All information, such as method of viability test, initial viability, seed quantity, as 
well as the year of regeneration, pollination control method used, regeneration site, 
accession, field number, accession verification, number of plants harvested and seed 
quantity obtained are recorded and documented (Upadhyaya & Gowda, 2009).

8.7 Use of Germplasm in Crop Improvement

The small subsets, such as core and mini-core collections, are now international pub-
lic goods and used by scientists globally. Many national programmes have shown 
interest in the mini-core collection and ICRISAT has supplied 19 sets of pigeon pea 
mini-core to National Agricultural Research Systems (NARS) in India (17), UAE (1) 
and USA (1). Using the mini-core collection, scientists at ICRISAT and NARS part-
ners have identified several promising sources for agronomic, nutritional, biotic and 
abiotic traits (Upadhyaya, Dronavalli, Gowda, & Singh, 2012).

8.7.1 Biotic Stresses

8.7.1.1 Resistance to Diseases

Evaluation of a mini-core collection has resulted in the identification of six acces-
sions (ICP 6739, ICP 8860, ICP 11015, ICP 13304, ICP 14638 and ICP 14819) 
resistant to FW (Sharma et al., 2012) and 24 accessions (ICP 3451, ICP 6739, ICP 
6845, ICP 7869, ICP 8152, ICP 8860, ICP 9045, ICP 11015, ICP 11059, ICP 11230 
and others) resistant to SMD (Sharma et al., 2012).

8.7.1.2 Resistance to Insects

Evaluation of a mini-core collection has resulted in the identification of 11 acces-
sions (ICP 7, ICP 655, ICP 772, ICP 1071, ICP 3046, ICP 4575, ICP 6128, ICP 
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8860, ICP 12142, ICP 14471 and ICP 14701) reported moderately resistant to pod 
borer (damage rating 5.0 as compared to 9.0 in ICPL 87) under unprotected con-
ditions, and also had no wilt incidence as compared to 38.2% wilt in ICP 8266 
(ICRISAT Archival Report, 2010).

8.7.2 Abiotic Stresses

8.7.2.1 Waterlogging

Evaluation of a pigeon pea mini-core collection resulted in the identification of 23 
accessions (ICP 1279, ICP 4575, ICP 5142, ICP 6370, ICP 6992, ICP 7057 and 
others) recorded tolerant to waterlogging conditions (Krishnamurthy, Upadhyaya, 
Saxena, & Vadez, 2011).

8.7.2.2 Salinity

Evaluation of a pigeon pea mini-core collection resulted in the identification of 16 
accessions (ICP 2746, ICP 3046, ICP 6815, ICP 7260, ICP 7426, ICP 7803, ICP 
8860 and others) selected for tolerance to salinity (Srivastava, Vadez, Upadhyaya, & 
Saxena, 2006).

8.7.3 Agronomic Traits

Evaluation of a pigeon pea mini-core collection resulted in the identification of 
eight accessions (ICP 1156, ICP 9336, ICP 14471, ICP 14832, ICP 14900, ICP 
14903, ICP 15068 and ICP 16309) for early flowering (<85 days); three accessions 
(ICP 13139, ICP 13359 and ICP 14976) for large seed size (>15g/100 seed); one 
accession (ICP 8860) for more primary branches (>29) and three accessions (ICP 
4167, ICP 8602 and ICP 11230) for high pod number per plant (>200 pods/plant) 
(Upadhyaya, Yadav, Dronavalli, Gowda, & Singh, 2010).

8.7.4 Nutritional Traits

Evaluation of a pigeon pea mini-core collection resulted in the identification of six 
accessions (ICP 4575, ICP 7426, ICP 8266, ICP 11823, ICP 12515 and ICP 12680) 
for high seed protein (>24%); eight accessions (ICP 4029, ICP 6929, ICP 6992, 
ICP 7076, ICP 10397, ICP 11690, ICP 12298 and ICP 12515) for high seed iron 
(>40 ppm) and four accessions (ICP 2698, ICP 11267, ICP 14444 and ICP 14976) 
for high seed zinc (>40 ppm).

8.8 Limitations in Germplasm Use

Very few germplasm accessions (<1%) have been used by plant breeders in crop 
improvement programmes (Upadhyaya, 2008). A large gap exists between availability 
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and actual utilization of the germplasm. This was true both in the international pro-
grammes (CGIAR institutes) as well as in the national programmes. Extensive use 
of fewer and closely related parents in crop improvement could result in vulnera-
bility of cultivars to pests and diseases. The main reason for low use of germplasm 
in crop improvement programmes is the lack of information on the large number 
of accessions, particularly for traits of economic importance, which display a great 
deal of genotype×environment interaction and require multilocation evaluation. To 
overcome the difficulties with large collections, ICRISAT scientists have developed 
a ‘core collection’ consisting of 1290 accessions (about 10% of entire collection), 
representing the genetic variability of the entire collection (Reddy et al., 2005).

When the entire collection is over 10,000 accessions, developing a core collection 
will not solve the problem of low use of germplasm, as even the size of the core col-
lection would be unwieldy for meaningful evaluation and convenient exploitation. To 
overcome this, a seminal two-stage strategy was followed. The first stage involves 
developing a representative core collection (about 10%) from the entire collection 
using all the available information on origin, geographical distribution, and charac-
terization and evaluation data of accessions. The second stage involves evaluation 
of the core collection for various morphological, agronomic and quality traits, and 
selecting a further subset of about 10% accessions from the core collection. Thus, 
the mini-core collection contains 10% of the core or approximately 1% of the entire 
collection and represents the diversity of the entire collection (Upadhyaya & Ortiz, 
2001). In pigeon pea, a mini-core collection consisting of 146 accessions was con-
stituted by evaluating a core collection of 1290 accessions for 34 morpho-agronomic 
traits (Upadhyaya, Reddy, Gowda, Reddy, & Singh, 2006). Due to their greatly 
reduced size, mini-core collections provide an easy access to the germplasm collec-
tions and scientists can evaluate the mini-core collection easily and economically for 
traits of economic importance.

8.9 Germplasm Enhancement Through Wide Crosses

Narrow genetic diversity in cultivated germplasm has hampered the effective utili-
zation of conventional breeding as well as development and utilization of genomic 
tools, resulting in pigeon pea being often referred to as an ‘orphan crop legume’. 
A number of wild Cajanus species, especially those from the secondary gene pool 
which are cross-compatible with cultivated pigeon pea, have been used for the 
genetic improvement of pigeon pea. The most significant achievement is the devel-
opment of unique cytoplasmic nuclear male sterility systems (CMS). The CMS sys-
tems have been developed with cytoplasm derived from cultivated and wild Cajanus 
species. The A1 cytoplasm is derived from C. sericeus (Ariyanayagam, Nageshwara, 
& Zaveri, 1995). The CMS lines derived from this source are temperature sensitive 
and the male sterile lines restore fertility under low temperature conditions (Saxena, 
2005). The A2 cytoplasm derived from C. scarabaeoides (Saxena & Kumar, 2003; 
Tikka, Parmar, & Chauhan, 1997) is a stable source of CMS but the fertility res-
toration (fr) is not consistent across environments, making it unsuitable for hybrid 
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seed production. A3 cytoplasm derived from C. volubilis (Wanjari, Patil, Manapure, 
Manjaya, & Manish, 2001) has a poor-quality fr system. The A4 cytoplasm derived 
from C. cajanifolius (Saxena et al., 2005) is stable across environments with a good 
fr system and has been used to develop the world’s first commercial pigeon pea 
hybrid, ICPH 2671 (Saxena et al., 2013). The A5 cytoplasm derived from C. cajan 
(Mallikarjuna & Saxena, 2005) is still under development. The A6 cytoplasm has 
been derived from C. lineatus and at present this CMS source is in BC5F1 generation 
with a perfect male sterility maintenance system available (Saxena, Sultana et  al., 
2010). The studies on A7 CMS system derived from C. platycarpus are in progress. 
Recently, the A8 CMS system derived from C. reticulatus has also been developed, 
but the detailed studies on this CMS system are in progress at ICRISAT.

Wild Cajanus species, especially, C. scarabaeoides, C. acutifolius, C. platycar-
pus, C. reticulates, C. sericeus and C. albicans have been reported to have resistance 
to pod borer, Helicoverpa armigera (Rao, Reddy, & Bramel, 2003; Sharma, Sujana, 
& Rao, 2009; Sujana, Sharma, & Rao, 2008). At ICRISAT, utilization of C. acuti-
folius as the pollen parent has resulted in the development of advanced generation 
population having resistance to pod borer (Mallikarjuna, Sharma, & Upadhyaya, 
2007), variation in seed colour and high seed weight. Evaluation of wild Cajanus 
species has identified accessions having resistance to Alternaria blight (Sharma, 
Kannaiyan, & Saxena, 1987), Phytophthora blight (Rao et al., 2003), sterility mosaic 
virus (Kulkarni et al., 2003; Rao et al., 2003), pod fly (Rao et al., 2003; Saxena et al., 
1990), pod fly and wasps (Sharma, Pampapathy, & Reddy, 2003), root-knot nema-
todes (Rao et al., 2003; Sharma, 1995; Sharma, Remanandan, & Jain, 1993; Sharma, 
Remanandan, & McDonald, 1993), and tolerance to salinity (Rao et  al., 2003; 
Srivastava et  al., 2006; Subbarao, 1988; Subbarao, Johansen, Jana, & Rao, 1991), 
drought (Rao et al., 2003), and photoperiod insensitivity (Rao et al., 2003).

Besides for CMS systems and as resistant/tolerant sources for biotic/abi-
otic stresses, utilization of wild Cajanus species has also contributed significantly 
towards the improvement of agronomic performance and nutritional quality of cul-
tivated pigeon pea. Some wild Cajanus species, namely C. scarabaeoides, C. seri-
ceus, C. albicans, C. crassus, C. platycarpus and C. cajanifolius, have higher seed 
protein content (average 28.3%) compared to pigeon pea cultivars (24.6%) (Singh & 
Jambunathan, 1981). A high protein line, ICPL 87162, was developed from the cross 
C. cajan×C. scarabaeoides (Reddy et al., 1997). This line contains 30–34% protein 
content compared to the control cultivar (23% protein). Breeding lines with high pro-
tein content have also been developed from C. sericeus, C. albicans and C. scar-
abaeoides. Utilization of wild Cajanus species has resulted in the development of 
several lines, such as HPL 2, HPL 7, HPL 40 and HPL 51, having high protein and 
high seed weight (Saxena, Faris, & Kumar, 1987). Recently, scientists at ICRISAT 
have generated segregants with high seed weight from the crosses between cultivated 
pigeon pea and C. acutifolius. Using wild Cajanus species, viable hybrids have been 
produced between pigeon pea and C. platycarpus (Mallikarjuna & Moss, 1995), C. 
reticulatus var. grandifolius (Reddy, Kameswara Rao, & Saxena, 2001), C. acuti-
folius (Mallikarjuna & Saxena, 2002) and C. albicans (Subbarao, Johansen, Kumar 
Rao, & Jana, 1990).
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8.10 Pigeon Pea Genomic Resources

Pigeon pea breeders have developed varieties with several attributes with a major 
focus on productivity traits and as a result diversity has been lost in the elite gene 
pool; subsequently yield levels in pigeon pea have been stagnant during the last six 
decades. In order to meet future challenges and to enhance the yield levels, genom-
ics interventions are required to identify the genes or quantitative trait loci (QTLs) 
responsible for resistance or tolerance to various economically important traits. A 
large amount of genomic and genetic resources have been developed by ICRISAT in 
collaboration with partners and have regularly been used in accelerating the genom-
ics and breeding applications to increase the efficiency of pigeon pea improvement 
programmes. ICRISAT scientists have developed a number of marker systems and 
genetic linkage maps and identified marker-trait associations for a few important 
traits. Recently complete genome sequencing of pigeon pea has been accomplished 
(Varshney et al., 2012).

8.10.1 Mapping Populations

Genetic diversity among elite pigeon pea cultivars is very low (Saxena, Sultana et al., 
2010) and hence selection of crossing parents is the most crucial step. In order to 
select a diverse set of parents, simple sequence repeats (SSRs) genotyping of elite 
cultivars was performed and a number of intraspecific biparental mapping popula-
tions, segregating for FW, SMD and fr have been developed (Saxena, Prathima et al., 
2010; Saxena, Saxena, Kumar, Hoisington, & Varshney, 2010). One interspecific 
[ICP 28 (C. cajan)×ICPW 94 (C. scarabaeoides)] mapping population has also been 
developed (Saxena et al., 2012).

8.10.2 Molecular Markers

Recently several marker systems have been developed and used in pigeon pea 
(Table 8.4). Prior to PCR technologies, restriction fragment length polymorphisms 
(RFLPs) (Sivaramakrishnan, Seetha, & Reddy, 2002), protein isoforms and phe-
notypes were used. However, these markers present challenges for large-scale 
throughput because they are labour intensive, require large amounts of starting mate-
rial (genomic DNA or protein) and are less informative as compared to the mod-
ern marker systems. The vast majority of markers now used for pigeon pea are 
PCR based, with the majority being microsatellite markers (SSR) (Bohra et  al., 
2011; Burns, Edwards, Newbury, Ford-Lloyd, & Baggott, 2001; Odeny et al., 2007; 
Saxena, Prathima et al., 2010; Saxena, Saxena, Kumar et al., 2010; Saxena, Saxena, 
& Varshney, 2010). Other potential marker systems, such as random amplified pol-
ymorphic DNA (RAPD) markers (Malviya & Yadav, 2010), single strand confor-
mation polymorphisms (SSCPs) (Kudapa et  al., 2012), amplified fragment length 
polymorphisms (AFLPs) (Panguluri, Janaiah, Govil, Kumar, & Sharma, 2006) and 
DArT (Yang et al., 2006, 2011) are also in use. By using an SSR-enriched library, 
several genomic DNA libraries enriched for di- and tri-nucleotide repeat motifs 
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(CT, TG, AG, AAG, TCG, etc.) were also generated (Burns et al., 2001; Odeny et al., 
2007; Saxena, Saxena, & Varshney, 2010). This approach involving SSR marker 
development has provided only 36 SSRs; however, subsequently SSRs were devel-
oped from bacterial artificial chromosome (BAC) end sequences (BESs) and found 
more effective. SSR development from BAC ends avoids the need for prior infor-
mation about the repeat motifs within a species and offers genome-wide coverage. 
After examining 87,590 pigeon pea BESs, a total of 18,149 SSRs were identified in 
14,001 BESs representing 6590 BAC clones. Excluding the mononucleotide repeats, 
a total of 3072 primer pairs were synthesized and tested (Bohra et  al., 2011). The 
recent advent of affordable high-throughput technology for single nucleotide poly-
morphisms (SNPs), together with the reduction in sequencing costs, is resulting in a 
shift to SNP markers for trait mapping and association studies (Thudi, Li, Jackson, 
May, & Varshney, 2012). It is expected that within a couple of years the marker-
based studies will be dominated by SNP markers. Three approaches were used for 
the identification of SNPs in pigeon pea. In the first approach, Illumina sequencing 
was carried out on parental genotypes of mapping populations of pigeon pea. RNA 
sequencing of 12 pigeon pea genotypes resulted in 128.9 million reads for pigeon 
pea (Kudapa et al., 2012). Alignment of these short reads onto transcriptome assem-
bly (TA) has provided a large number of SNPs. The second approach, allele-specific 
sequencing of parental genotypes of the reference mapping population of pigeon pea 
using conserved orthologous sequence (COS) markers, has provided 768 SNPs for 
pigeon pea (Table 8.4). As a result, a large number of SNPs has become available for 
pigeon pea and cost-effective genotyping platforms have been developed.

Table 8.4 Available Genomic Resources in Pigeon Pea

Resource References

Simple sequence repeats 29,000 Raju et al. (2010), Saxena, Sultana 
et al. (2010), Bohra et al. (2011), 
Dutta et al. (2011) and Varshney 
et al. (2012)

Single nucleotide polymorphisms 
(SNPs)

35,000 Saxena et al. (2012) and Varshney 
et al. (2012)

GoldenGate assays 768 SNPs Unpublished
KASPar assays 1616 SNPs Saxena et al. (2012)
Single feature polymorphisms (SFPs) 1131 Saxena et al. (2011)
Diversity arrays technology (DArT) 

markers
15,360 Yang et al. (2011)

Sanger ESTs ~20,000 Raju et al. (2010) and Dubey et al. 
(2011)

454/FLX reads 496,705 Dubey et al. (2011)
Tentative unique sequences (TUSs) 21,432 Dubey et al. (2011)
Illumina/454 reads (million reads) >160 Dubey et al. (2011), Dutta et al. 

(2011) and Kudapa et al. (2012)



Genetic and Genomic Resources of Grain Legume Improvement196

Singh-1630323 978-0-12-397935-3 00008

8.10.3 Genotyping the Germplasm Collection

A composite collection of 1000 accessions was developed and profiled using 20 
SSR markers. Analysis of molecular data for 952 accessions detected 197 alleles, of 
which 115 were rare and 82 common. Gene diversity varied from 0.002 to 0.726. 
There were 60 group-specific unique alleles in wild types and 64 in cultivated. 
Among the cultivated accessions, 37 unique alleles were found in NDT types. 
Geographically, 32 unique alleles were found in Asia 4 (southern Indian provinces, 
Maldives and Sri Lanka). Only two alleles differentiated Africa from other regions. 
Wild and cultivated types shared 73 alleles, DT (determinate) and NDT shared 10, 
DT and wild shared 4, and the NDT and wild shared 20 alleles. Wild types as a 
group were genetically more diverse than cultivated types. NDT types were more 
diverse than the other two groups based on flowering pattern (DT and SDT: semi-
determinate). Reference sets consisting of the 300 most diverse accessions based 
on SSR markers, qualitative traits, quantitative traits and their combinations were 
formed and compared for allelic richness and diversity. A reference set based on SSR 
data captured 187 (95%) of the 197 alleles of the composite collection. Another ref-
erence set based on qualitative traits captured 87% of the alleles of the composite 
set. This demonstrates that both SSR markers and qualitative traits were equally effi-
cient in capturing the allelic richness and diversity in the reference sets (Upadhyaya 
et al., 2008).

8.10.4 Linkage Maps and Trait Mapping

The first generation pigeon pea linkage map or reference map was developed using 
DArT markers for an interspecific mapping population (ICP 28×ICPW 94) of 79 F2 
individuals. The map is available in male and female forms, a total of 121 unique 
DArT maternal markers were placed on the maternal linkage map and 166 unique 
DArT paternal markers were placed on the paternal linkage map. The length of these 
two maps covered 437.3 cM and 648.8 cM, respectively (Yang et al., 2011). Another 
version of reference linkage map consisted of 239 SSR markers and spans 930.90 cM 
(Bohra et  al., 2011). An interspecific mapping population (ICP 28×ICPW 94) rel-
atively bigger in size (167 F2s) was used for developing a comprehensive genetic 
map comprising 875 SNP loci (Saxena et al., 2012). The total length of this map was 
967.03 cM with an average marker distance of 1.11 cM. This linkage map was a con-
siderable improvement over the previous pigeon pea genetic linkage maps using SSR 
and DArT markers.

Construction of genetic maps for intraspecific mapping populations has also been 
performed and a total of six SSR-based intraspecific genetic maps were developed 
by using six F2 mapping populations (Bohra et  al., 2012; Gnanesh et  al., 2011). 
Furthermore, all six intraspecific genetic maps were joined together into a single 
consensus genetic map providing map positions to a total of 339 SSR markers at 
map coverage of 1059 cM (Bohra et al., 2012). A few trait association efforts have 
been reported in pigeon pea for SMD and fr by using F2 mapping populations. For 
instance, six QTLs explaining phenotypic variations in the range of 8.3–24.72% 
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(Gnanesh et  al., 2011) for SMD and a total of four large effect QTLs explaining 
up to 24% of phenotypic variations for fr in pigeon pea (Bohra et  al., 2012) were 
identified.

8.10.5 Transcriptomic Resources

To characterize the pigeon pea transcriptome, two NGS technologies, namely 454- 
and Illumina together with Sanger sequencing technology have been used. By using 
Sanger sequencing technology on FW and SMD, challenged cDNA libraries for 
pigeon pea 9888 expressed sequence tags (ESTs) were developed (Raju et al., 2010). 
To improve these transcriptomic resources further, 454/FLX sequencing was under-
taken on normalized and pooled RNA samples collected from >20 tissues, generat-
ing 494,353 transcript reads for pigeon pea (Dubey et  al., 2011). Cluster analysis 
of these transcript reads with Sanger ESTs generated at ICRISAT, as well as those 
available in the public domain, provided the first transcript assembly (TA) of pigeon 
pea (CcTA v1) with 127,754 transcriptional units (Dubey et al., 2011). 494,353 454/
FLX transcript reads generated from Asha genotype and 128.9 million Illumina 
reads generated from 12 genotypes were analysed together with 18,353 Sanger ESTs 
and 1.696 million 454/FLX transcript reads (Dutta et al., 2011) with improved algo-
rithms. As a result, an improved TA in pigeon pea referred to as CcTA v2, compris-
ing 21,434 contigs, has been developed (Kudapa et al., 2012) (Table 8.4).

8.10.6 Genome Sequence

NGS (Illumina) was used to generate 237.2 Gbp of sequence that, along with Sanger-
based BAC-end sequences and a genetic map, was assembled into scaffolds repre-
senting about 73% (605.78 Mb) of the 833 Mbp pigeon pea genome size. Genome 
analysis has resulted in the identification of 48,680 pigeon pea genes. High levels of 
synteny were observed between pigeon pea and soybean as well as between pigeon 
pea and Medicago truncatula and Lotus japonicas.

The genome sequence was also searched for the presence of tandem repeats and 
a total of 23,410 SSR primers were designed. Transcript reads from 12 different 
pigeon pea genotypes were aligned with the genome assembly for the identifica-
tion of SNPs. As a result 28,104 novel SNPs were identified across 12 genotypes 
(Varshney et al., 2012). These developed resources will be used for germplasm char-
acterization and to facilitate the identification of the genetic basis of important traits.

8.11 Conclusions

The narrow genetic base of pigeon pea, coupled with its susceptibility to a number 
of biotic and abiotic stresses, necessitates the use of diverse genetic resources for 
its improvement. Though a large number of germplasm accessions are conserved 
in different gene banks globally, only a small fraction (<1%) has been used in crop 
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improvement programmes. The availability of trait-specific germplasm accessions 
will provide an opportunity for breeders to use new sources of variations in develop-
ing new cultivars with a broad genetic base. The utilization of wild Cajanus species 
has contributed significantly to the genetic enhancement of pigeon pea by provid-
ing resistance/tolerance to diseases, insect pests and drought, as well as good agro-
nomic traits. The major contribution of wild relatives includes the development of 
diverse and unique CMS systems for pigeon pea improvement. The availability of 
rich genomic resources including genome sequence will further accelerate marker-
assisted breeding for pigeon pea improvement.
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9.1 Introduction

Domesticated peanut (A. hypogaea L.), sometimes called groundnut, is an allotetra-
ploid (2n=4x=40) species that is widely grown in tropical and subtropical regions 
of the world. The crop is cultivated in more than 100 countries and has an average 
production of 35.5 million tonnes annually (FAO, 2009). China is the largest pea-
nut producer, followed by India, United States and Nigeria. The seed is rich in oil 
(40–60%) and protein (20–40%), which makes it a high-energy seed. Most of the 
world production is crushed for oil, whereas in the United States more than 60% 
of production is consumed as edible products. The average yield of the peanut crop 
ranges from 0.43 t/ha in Africa to 3.54 t/ha in North America, with a world average 
of 1.35 t/ha (Dwivedi et  al., 2007). Disease epidemics and drought are major con-
straints to peanut production in all production areas. Several species of the genus 
have been consumed for their seeds, but only A. hypogaea is economically impor-
tant today. However, several wild species (most notably A. glabrata and A. pintoi) 
are utilized for grazing (Hernandez-Garay, Sollenberger, Staples, & Pedreria, 2004; 
Magbanua et  al., 2000), and A. repens is used as a ground cover in residential 
areas and roadsides in subtropical and tropical regions. The primary interest in wild 
species of Arachis has been for utilizing sources of disease and insect resistances 
for crop improvement because of the extremely high levels of resistance in many of 
the species.

Until the early 1900s, peanut was mostly consumed in the United States in the 
shell as a roasted product; in most countries this remains the primary method of 
human consumption. Peanut butter was marketed in the late 1890s as a nutritious and 
healthy food and by 1899 several brands of peanut butter were marketed (Hammons, 
1982). The market further expanded at about the same time with the popularity of 
peanut candy and penny-in-the-slot peanut machines. Commercialization of peanut 
products led to mechanical diggers in the early 1900s and once-over combines in the 
1940s (Hammons, 1982).

The domesticated peanut is plagued by many disease and insect pests, with early 
leaf spot (Cercospora arachidicola Hori), late leaf spot (Cercosporidium personatum 
(Berk & M.A. Curtis) Deighton) and rust (Puccinia arachidis Speg.) being the most 
widespread and destructive. The three diseases can result in 70% or more yield loss 
(Subrahmanyam, Williams, McDonald, & Gibbons, 1984). Additional diseases are 
important on a regional scale and many cause significant yield losses, for example 

http://dx.doi.org/10.1016/B978-0-12-397935-3.00009-8
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tomato spotted wilt virus, sclerotinia blight (Sclerotinia minor Jagger), southern stem 
rot (Sclerotium rolfsii Sacc.) and Cylindrocladium black rot (Cylindrocladium cro-
talariae (Loos) Bell and Sobers). The most important insect problems in peanut on 
a global scale are aphids, thrips, jassids and Spodoptera species (Isleib, Wynne, & 
Nigam, 1994). Other insects are more regional, such as termites, millipedes, ants and 
white grubs.

Although not resulting in yield losses, aflatoxin (caused by Aspergillus spp.) is a 
serious problem due to human health issues. Aflatoxin is most prevalent during peri-
ods of drought stress, which occurs often in most production areas. Allergens also 
are a major commercialization problem because of the increasing percentage of the 
population that has anaphylactic reactions after consuming peanuts. Peanut allergens 
are caused by 2S, 7S and 11S protein families that comprise the seed storage pro-
teins. Unfortunately, all peanut products with the exception of very highly purified 
oil will cause allergic reactions in susceptible individuals.

9.2 Origin, Distribution, Diversity and Taxonomy

9.2.1 Arachis Species

Arachis species are distinguished from most other taxa by having a peg and geo-
carpic reproductive development. As opposed to other Papilionoid legumes, the 
ovary is at the base of the hypanthium rather than being enclosed by the petals. After 
fertilization there are three to four cell divisions and then the embryo is quiescent 
until after it is carried into the soil by a peg. The embryo reinitiates development 
after the pod is formed. In wild species, the peg can grow to more than a meter in 
length and individual pods are usually separated along the peg. This specialized type 
of reproductive development has led to seed survival because they are planted in the 
soil, but at the same time, dispersal is restricted to a few meters. Species in differ-
ent sections of the genus also have evolved mechanisms to survive in harsh environ-
ments, for example tuberoid roots, tuberiform hypocotyls or rhizomes. Wild peanut 
species are adapted to a wide range of environments from xerophytic forests, to 
partially flooded areas, to grasslands and subtropical forests. They grow from sea 
level in Brazil to about 1450 m in elevation in the foothills of the Andes Mountains 
in Argentina. However, they are most frequently associated with savannah-like 
regions. Most Arachis species have a spreading habit, but a few grow upright (e.g. 
A. paraguariensis).

Eighty species have been described in Arachis (Krapovickas & Gregory, 1994; 
Valls & Simpson, 2005) (Table 9.1), and they are divided into nine sections based 
on morphology and cross-compatibility relationships (Figure 9.1). Additional spe-
cies are expected to be named as new materials and are collected in South America. 
Many species in different sections have overlapping distributions, but strong hybridi-
zation barriers have evolved to reproductively isolate taxa.

The earliest reports of chromosome numbers in Arachis were by Kawakami 
(1930) who reported that A. hypogaea is tetraploid (2n=4x=40). A few years later 
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Table 9.1 Arachis Species Identities

Type specimen

Section and Species 2n Collectora No.

Section Arachis

batizocoi Krapov. & W.C. Gregory 20 K 9505
benensis Krapov., W.C. Gregory & C.E. Simpson 20 KGSPSc 35005
cardenasii Krapov. & W.C. Gregory 20 KSSc 36015
correntina (Burkart) Krapov. & W.C. Gregory 20 Clos 5930
cruziana Krapov., W.C. Gregory & C.E. Simpson 20 KSSc 36024
decora Krapov., W.C. Gregory & Valls 18 VSW 9955
diogoi Hoehne 20 Diogo 317
duranensis Krapov. & W.C. Gregory 20 K 8010
glandulifera Stalker 20 St 90-40
gregoryi C.E. Simpson, Krapov. & Valls 20 VS 14960
helodes Martius ex Krapov. & Rigoni 20 Manso 588
herzogii Krapov., W.C. Gregory & C.E. Simpson 20 KSSc 36030
hoehnei Krapov. & W.C. Gregory 20 KG 30006
hypogaea L. 40 Linn. 9091
ipaensis Krapov. & W.C. Gregory 20 KMrFr 19455
kempff-mercadoi Krapov., W.C. Gregory & C.E. 

Simpson
20 KGPBSSc 30085

krapovickasii C.E. Simpson, D.E. Williams,  
Valls & I.G. Vargas

20 WiSVa 1291

kuhlmannii Krapov. & W.C. Gregory 20 KG 30034
linearifolia Valls, Krapov & C.E. Simpson 20 VPoBi 9401
magna Krapov., W.C. Gregory & C.E. Simpson 20 KGSSc 30097
microsperma Krapov., W.C. Gregory & Valls 20 VKRSv 7681
monticola Krapov. & Rigoni 40 K 8012
palustris Krapov., W.C. Gregory & Valls 18 VKRSv 6536
praecox Krapov., W.C. Gregory & Valls 18 VS 6416
schininii Valls & C.E. Simpson 20 VSW 9923
simpsonii Krapov. & W.C. Gregory 20 KSSc 36009
stenosperma Krapov. & W.C. Gregory 20 HLK 410
trinitensis Krapov. & W.C. Gregory 20 Wi 866
valida Krapov. & W.C. Gregory 20 KG 30011
villosa Benth. 20 Tweedi 1837
williamsii Krapov. & W.C. Gregory 20 WiCl 1118

Section Caulorrhizae

pintoi Krapov. & W.C. Gregory 20 GK 12787
repens Handro 20 Otero 2999

Section Erectoides

archeri Krapov. & W.C. Gregory 20 KCr 34340
benthamii Handro 20 Handro 682

(Continued)
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Table 9.1 Arachis Species Identities

Type specimen

Section and Species 2n Collectora No.

brevipetiolata Krapov. & W.C. Gregory 20 GKP 10138
cryptopotamica Krapov. & W.C. Gregory 20 KG 30026
douradiana Krapov. & W.C. Gregory 20 GK 10556
gracilis Krapov. & W.C. Gregory 20 GKP 9788
hatschbachii Krapov. & W.C. Gregory 20 GKP 9848
hermannii Krapov. & W.C. Gregory 20 GKP 9841
major Krapov. & W.C. Gregory 20 Otero 423
martii Handro 20 Otero 174
oteroi Krapov. & W.C. Gregory 20 Otero 194
paraguariensis
 ssp. paraguariensis Chodat & Hassl. 20 Hassler 6358
 ssp. capibarensis Krapov. & W.C. Gregory 20 HLKHe 565
porphyrocalyx Valls & C.E. Simpson 18 VSPtWiSv 13271
stenophylla Krapov. & W.C. Gregory 20 KHe 572

Section Extranervosae

burchellii Krapov. & W.C. Gregory 20 Irwin, Maxwell 
& Wasshausen

21163

lutescens Krapov. & Rigoni 20 Stephens 255
macedoi Krapov. & W.C. Gregory 20 GKP 10127
marginata Gardner 20 Gardner 3103
pietrarellii Krapov. & W.C. Gregory 20 GKP 9923
prostrata Benth. 20 Pohl 1836
retusa Krapov., W.C. Gregory & Valls 20 VPtSv 12883
setinervosa Krapov. & W.C. Gregory 20 Eiten & Eiten 9904
submarginata Valls, Krapov. & C.E. Simpson 20 SiW 3729
villosulicarpa Hoehne 20 Gehrt SP47535

Section Heteranthae

dardani Krapov. & W.C. Gregory 20 GK 12946
giacomettii Krapov., W.C. Gregory, Valls & C.E. 

Simpson
20 VPzV1W 13202

interrupta Valls & C.E. Simpson 20 VPiFaSv 13082
pusilla Benth. 20 Blanchet 2669
seridoensis Valls, C.E. Simpson, Krapov & R. Veiga 20 VRSv 10969
sylvestris (A. Chev.) A. Chev. 20 Chevalier 486

Section Procumbentes

appressipila Krapov. & W.C. Gregory 20 GKP 9990
chiquitana Krapov., W.C. Gregory & C.E. Simpson 20 KSSc 36027
hassleri Valls & C.E. Simpson 20 SvPiHn 3818
kretschmeri Krapov. & W.C. Gregory 20 KrRa 2273

(Continued)

Table 9.1 (Continued)
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Table 9.1 Arachis Species Identities

Type specimen

Section and Species 2n Collectora No.

lignosa (Chodat and Hassl.) Krapov. & W.C. Gregory 20 Hassler 7476
matiensis Krapov., W.C. Gregory & C.E. Simpson 20 KSSc 36014
pflugeae C.E. Simpson, Krapov & Valls 20 VOlSiS 13589
rigonii Krapov. & W.C. Gregory 20 K 9459
subcoriacea Krapov. & W.C. Gregory 20 KG 30037
vallsii Krapov. & W.C. Gregory 20 VRGeSv 7635

Section Rhizomatosae

Ser. Prorhizomatosae
 burkartii Handro 20 Archer 4439
Ser. Rhizomatosae
 glabrata 40
 var. glabrata Benth. Riedel 1837
 var. hagenbeckii Benth. (Harms ex. Kuntze) F.J. Herm. Hagenbeck 2255
nitida Valls, Krapov & C.E. Simpson 40 VMPiW 14040
pseudovillosa (Chodat & Hassl.) Krapov. & W.C. 

Gregory
40 Hassler 5069

Section Trierectoides

guaranitica Chodat & Hassl. 20 Hassler 4975
tuberosa Bong. ex Benth 20 Riedel 605

Section Triseminatae

triseminata Krapov. & W.C. Gregory 20 GK 12881

Source: From Krapovickas and Gregory (1994); Upadhyaya et al., (2005).
aCollectors: B, Banks; Bi, Bianchetti; Cl, Claure; Cr, Cristobal; Fa, Faraco; Fr, Fernandez; G, Gregory; Ge, Gerin;  
H, Hammons; He, Hemsy; Hy, Hn, Heyn; K, Krapovickas; Kr, Kretchmere; L, Langford; M, Moss; Mr, Mroginski;  
Ol, Oliveira; P, Pietrarelli; Pi, Pizarro; Po, Pott; Pt, Pittman; R, Rao; Ra, Raymon; S, Simpson; Sc, Schinini; Si, Singh;  
St, Stalker; Sv, Silva; V, Valls; Va, Vargas; Ve, Veiga; Vl, Valente; W, Werneck; Wi, Williams. Others, as listed.

Table 9.1 (Continued)

the chromosome behaviour and morphology were reported by Husted (1936). 
Gregory (1946) reported the first chromosome number of a wild species (A. 
glabrata) as 2n=4x=40 and also observed diploid species (2n=2x=20). Not until 
2005 were species having 18 chromosomes discovered (Penaloza & Valls, 2005). 
Most species in the genus are diploid, but tetraploids exist in sections Arachis and 
Rhizomatosae, and several species in sections Arachis and Erectoides are aneuploid 
(2n=2x=18). Polyploidy is believed to have evolved independently in sections 
Arachis and Rhizomatosae (Smartt & Stalker, 1982), and Nelson, Samuel, Tucker, 
Jackson, & Stahlecker-Roberson (2006) concluded that polyploidy evolved multiple 
times within section Rhizomatosae. Tallury et al. (2005) reported molecular evidence 
that indicates the diploid section Rhizomatosae species (only one known) did not 
give rise to the tetraploids. Because A. glabrata will hybridize with species of both 
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sections Erectoides and Arachis, Smartt and Stalker (1982) concluded that two dip-
loids from sections Erectoides and Arachis likely hybridized and spontaneously dou-
bled in chromosome number.

Krapovickas and Gregory (1994) concluded that Erectoides, Extranervosae, 
Heteranthae, Trierectoides and Triseminatae are ‘older’ sections, while Arachis, 
Caulorrhizae, Procumbentes, and Rhizomatosae are more ‘recent’ in origin. The larg-
est group is section Arachis, which includes the cultivated species, one other tetraploid 
(A. monticola), 26 diploid (2n = 2x = 20) and three aneuploid (2n = 2x = 18) species.

9.2.2 Arachis hypogaea

Cultivated peanut is a New World crop that was widely distributed throughout 
much of South America in pre-Columbian times. A. hypogaea evolved from two 
diploid species of section Arachis approximately 3500 years ago in the southern 
Bolivia to northern Argentina region of South America (Gregory, W.C., Gregory, 
M.P., Krapovickas, Smith, & Yarbrough, 1973). Because of the narrow genetic 
base of the domesticated species, it most likely evolved from a single hybridiza-
tion event, and the genome has been highly conserved (Young, Weeden, & Kochert, 
1996). Domesticated peanut is taxonomically a member of section Arachis and 
will hybridize with other species in the group, with the possible exceptions of 
A. glandulifera (D genome) and the aneuploid (2n = 2x = 18) species. The species is 

Arachis

2n = 40

2n = 20

Sectional Relationships

A. hypogaea

Diploid and
aneuploid spp.

Rhizomatosae

Procumbentes Caulorrhizae

Heteranthae

Extranervosae TriseminataeTrierectoides

Erectoides
Diploid and aneuploid spp.

Figure 9.1 Sectional designations of Arachis and crossing relationships. 
Source: After Krapovickas and Gregory (1994).
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highly diplodized, although multivalents occur at a low frequency (Stalker, 1985). 
At least five secondary constriction types are found among different varieties of the 
species (Stalker & Dalmacio, 1986), which indicates that chromosome evolution 
has occurred. A. duranensis (A genome) and A. ipaensis (B genome) are believed 
to be the diploid progenitors of the cultivated peanut (Calbrix, Beilinson, Stalker, & 
Neilson, 2012; Jung et  al., 2003; Kochert et  al., 1996; Seijo et  al., 2004). Further, 
according to an analysis of cytoplasmic genes A. duranensis was the female parent 
in the original hybrid (Hilu & Stalker, 1995). Secondary centres of diversity devel-
oped in South America and tertiary centres in Africa (Gregory et al., 1973; Smartt & 
Stalker, 1982). The species has evolved into two subspecies and six botanical varie-
ties (Table 9.2). The subspecies are in large part separated morphologically based on 
the presence or absence of flowers on main stem and regularly alternating vegetative 
and reproductive nodes on branches.

Table 9.2 Arachis hypogaea Subspecific and Varietal Classification

Botanical 
Variety

Market Type Location Traits

hypogaea Bolivia, Amazon No flowers on the main stem; 
alternating pairs of floral and 
reproductive nodes on lateral 
branches; branches short; 
relatively few trichomes

Virginia Large seeds; less hairy
Runner Small seeds; less hairy

hirsuta Peruvian runner Peru More hairy
fastigiata Flowers on the main stem; 

sequential pairs of floral and 
vegetative axes on branches

Valencia Brazil Little branched; curved branches
Guaranian
Goias
Minas Gerais
Paraguay
Peru
Uruguay

peruviana Peru, NW Bolivia Less hairy, deep pod reticulation
aequatoriana Ecuador Very hairy, deep pod reticulation; 

purple stems, more branched, erect
vulgaris Spanish Brazil More branched; upright branches

Guaranian
Goias
Minas Gerais
Paraguay
Uruguay

Source: After Stalker and Simpson (1995).
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The tetraploids of section Arachis (A. hypogaea and A. monticola) are completely 
cross compatible and belong to the same biological species. Whether A. monticola 
is a progenitor or wild escape from cultivation has not been resolved, but cytologi-
cally it is more similar to the Spanish types which are more advanced in evolutionary 
terms than other A. hypogaea types (Stalker & Dalmacio, 1986; Stalker & Simpson, 
1995).

The cultivated peanut has a more upright growth habit, shorter branches, sup-
pressed hypanthium length, stronger and shorter pegs and pods with the internode 
between seeds that is suppressed when compared to wild species of the genus 
(Stalker & Simpson, 1995). The most primitive A. hypogaea types have alternating 
inflorescences, main stems without flowers, prostrate growth habits and long lateral 
branches, are late maturing and have hairy leaves, two-seeded pods with a beak and 
small seeds with a long dormancy period (Stalker & Simpson, 1995). Standardized 
descriptor criteria have been published in the United States (Pittman, 1995) and at 
the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) 
(IBPGR and ICRISAT, 1992). These descriptors have been used to evaluate most of 
the ICRISAT collection, whereas less than 20% of the US core collection has been 
assessed.

Spanish and Portuguese explorers carried the peanut to Africa, the Pacific Islands 
and Asia. There is also evidence that Chinese explorers carried peanut to Asia in 
pre-Columbian times from the coast of Peru (Mathews, 1983). Peanut was most 
likely introduced to the United States with the slave trade when ships stopped on 
the northern coast of Brazil to take on supplies before their voyage north. A small-
seeded peanut with a runner habit was the first type successfully cultivated in the 
southeast United States (Hammons, 1982). The centre of origin for Spanish types is 
the Guarani region of Argentina, Paraguay and southern Brazil (Hammons, 1982). 
This type was introduced into the United States from Spain in the early 1870s. The 
Valencia type spreads from Paraguay and central Brazil (Krapovickas, 1969) and 
was apparently introduced from Spain to the United States from Valencia, Spain; 
the name continues to be used for the botanical and market types. The origin of the 
large-seeded Virginia peanut is not clear, but Gregory, Krapovickas, and Gregory 
(1980) associated it to the Bolivian and Amazonian geographical regions. The cur-
rently grown Virginia-type peanut is believed to be a chance hybrid between a runner 
type (that was typical of peanuts introduced from Africa into the southeast United 
States) and an unidentified large-seeded genotype (Hammons, 1982). Seeds of varie-
ties hypogaea, vulgaris and fastigiata have been exchanged widely by peanut breed-
ers across continents, but other varieties have rather limited distributions.

Four market types have been designated in the United States as follows:

1. Runner (subspecies hypogaea var. hypogaea), with small to medium seeds that range from 
550 to 650 mg/seed. The runner market class has become the dominant type grown in the 
United States, with about 80% of the total production. They have a long growing season of 
120 or more days and have a highly indeterminate growth habit. In general, the runners are 
higher yielding than other market types.

2. The Virginia market class (subspecies hypogaea var. hypogaea) has large to very large 
seeds. They have a long growing season and require more soil calcium than the other types 
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of peanut. A premium is paid for the large seeds in the marketplace and they are generally 
consumed as in-shell or salted products. Virginia peanuts account for about 15% of the US 
production.

3. Spanish (subspecies fastigiata var. vulgaris) peanuts have a similar seed size to run-
ner types, but yields are generally lower and they only account for 4% of the US market. 
However, they are the preferred type on a global scale, where mechanization is not avail-
able for harvest because of their short growing season and bunch growth habit. Spanish 
types are mostly consumed as peanut candy or salted nuts.

4. Valencia (subspecies fastigiata var. fastigiata) types usually have three or more seeds and 
are sold in the shell. They are very sweet as compared to other varieties. However, as a 
group they are highly susceptible to leaf spots, and yields can be greatly suppressed by dis-
eases. Isleib, Holbrook, and Gorbet (2001) conducted a pedigree analysis of US cultivars 
and illustrated that the germplasms from both A. hypogaea subspecies are in the lineage of 
most modern cultivars.

Although none of the early molecular marker studies with A. hypogaea were very 
informative (Bertioli et al., 2011 for review), simple sequence repeat (SSR) markers 
have promise to investigate variation within the cultivated species. Several thousands 
of microsatellite markers have been developed (Barkley et al., 2007; Krishna et al., 
2004; Nagy et al., 2012; Tang et al., 2007; Varshney et al., 2009) and have been used 
to group the varieties (Jiang et al., 2007; Kottapalli, Burow, M., Burow, G., Burke, & 
Puppala, 2007). The molecular studies generally confirmed the morphological divi-
sions of varieties in the species. However, varieties peruviana and aequatoriana 
accessions grouped more closely with the subspecies hypogaea, which conflicts with 
their placement into subspecies fastigiata (Cunha et al., 2008; Freitas, Moretzsohn, & 
Valls, 2007). Only a few accessions of peruviana and aequatoriana were available 
for study, and the results may be an artifact of sample size (Bertioli et al., 2011).

9.3 Genomic Affinities and Speciation

The first published attempt at interspecific hybridization in the genus was between 
the two tetraploids A. hypogaea (section Arachis) and A. glabrata (section 
Rhizomatosae) (Hull & Carver, 1938), but no hybrids were obtained. Krapovickas 
and Rigoni (1951) later hybridized A. hypogaea with A. villosa var. correntina and 
the F1s were vigorous but sterile. The cultivated peanut has since been hybridized 
with most species in section Arachis. Similar to other genera which have polyploid 
series, crosses are usually more successful when A. hypogaea is used as the female 
parent. The triploid interspecific hybrids usually have 10 bivalents and 10 univalents, 
but trivalents are also observed, which indicates that some chromosome homology 
exists between the A and B genomes. Earlier cytological research identified one 
significantly smaller chromosome (termed ‘A’ chromosome) in species of section 
Arachis and a unique chromosome that had a large secondary constriction (termed 
‘B’ chromosome) in the species A. batizocoi (Husted, 1936). Hybridization between 
diploid species was first reported between A. duranensis and A. villosa var. corren-
tina (Raman & Kesavan, 1962) and meiosis was regular. Later studies indicated that 
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hybrids between the species having the small chromosome pair were partially fer-
tile to fertile and most will produce F2 seeds; however, hybrids between the species 
with the small chromosome and A. batizocoi are sterile (Stalker & Simpson, 1995). 
Thus, the terminology ‘A’ and ‘B’ genome was used in peanut to describe the two 
genomes. Because the cultivated peanut has one significantly smaller chromosome 
and a chromosome with a secondary constriction, it was described as an allotetra-
ploid with AABB genomes. Stalker, Dhesi, Parry, and Hahn (1991) crossed a series 
of species designated as having the A genome with A. batizocoi and found that F1s 
had many univalents, and bivalents were loosely associated. Hybrids between either 
A or B genome species with A. glandulifera (D genome) also have many univa-
lents and are sterile (Stalker et  al., 1991). Thus, there is a considerable amount of 
cytological differentiation between the three genomes. Gregory, M.P. and Gregory, 
W.C. (1979) conducted an extensive hybridization programme using 91 Arachis col-
lections and reported cross-compatibility relationships among species. Their results 
indicated that hybridization between species in the same section is more successful 
than crosses between sections, and F1s of intersectional crosses were highly sterile. 
To overcome crossing barriers, complex hybrids have been attempted (Gregory, M.P. 
& Gregory, W.C. 1979; Stalker, 1981), but fertility was not restored. Thus, intro-
gression to A. hypogaea by conventional hybridization is believed to be restricted 
to members of section Arachis. Even within section Arachis there can be difficulties 
obtaining interspecific hybrids due to genomic and/or ploidy differences.

Based on cross-compatibility data, Smartt and Stalker (1982) and Stalker (1991) 
concluded that genomic groups have evolved in the genus that mostly follow sec-
tional designations (Am – Ambinervosae, T – Triseminatae, C – Caulorrhizae, EX 
– Extranervosae, and E – Erectoides, R – Rhizomatosae, and A, B and D – Arachis). 
The B genome was recently divided into B, F and K genomes by Seijo et al. (2004) 
and Robledo and Seijo (2010). Based on rDNA loci and chromosomes with cen-
tromeric heterochromatin, Robledo, Lavia, and Seijo (2009) described three kar-
yolotypic subgroups within the A genome and grouped the cultivated peanut with  
A. duranensis, A. villosa, A. schininii and A. correntina. Other studies support plac-
ing A. hypogaea closely with A. duranensis (Bravo, Hoshino, Angelici, Lopes, 
& Gimenes, 2006; Calbrix et  al., 2012; Cuc et  al., 2008; Koppolu, Upadhyaya, 
Dwivedi, Hoisington, & Varshney, 2010; Milla, Isleib, & Stalker, 2005; Moretzsohn 
et al., 2004). The chromosomes of species with a B genome are karyologically more 
diverse than those with an A genome (Fernandez & Krapovickas, 1994; Seijo et al., 
2004). The B genome does not have centromeric heterochromatin and includes  
A. ipaensis (the B component of A. hypogaea), A. magna, A. gregoryi, A. valida and 
A. williamsii (Robledo & Seijo, 2010; Seijo et al., 2004). The D genome species is 
more distantly removed from A. hypogaea than other species of section Arachis. 
Also, molecular analysis indicated that the aneuploids in section Arachis are more 
closely related to the B and D genome species than to A genome species (Tallury 
et  al., 2005). Evolution is apparently continuing in section Arachis at a rapid pace 
and multiple translocations have been observed in diploid accessions of A. duran-
ensis (Stalker, Dhesi, & Kochert, 1995) and A. batizocoi (Guo et al., 2012; Stalker 
et al., 1991). At least five different secondary constriction types have been observed 



Peanut 213

in A. hypogaea, which were most likely from translocation events (Stalker & 
Dalmacio, 1986), and this species is also evolving cytologically. Analyses of species 
in sections other than section Arachis have been infrequent. Stalker (1985) reported 
that the two diploid section Erectoides species A. rigonii × A. paraguariensis 
hybrids had many univalents, and Krapovickas and Gregory (1994) later placed these 
species in different sections. Intersectional hybrids were reported by Mallikarjuna 
(2005), who used in vitro techniques, but the hybrids have not been used for cultivar 
development.

In addition to morphological and cross-compatibility studies, molecular investiga-
tions have been used to better clarify the understanding of phylogenetic relationships 
among peanut species. Most of these investigations have involved species in section 
Arachis because of the importance of A. hypogaea. Many molecular systems have 
been utilized, including isozymes (Lu & Pickersgill, 1993; Stalker, Phillips, Murphy, 
& Jones, 1994), seed storage proteins (Bianchi-Hall, Keys, & Stalker, 1993; Liang, 
Luo, Holbrook, & Guo, 2006; Singh, Krishnan, Mengesha, & Ramaiah, 1991), 
restriction fragment length polymorphisms (RFLPs) (Kochert, Halward, Branch, 
& Simpson, 1991; Paik-Ro, Smith, & Knauft, 1992), amplified fragment length 
polymorphisms (AFLPs) (Milla et al., 2005); SSRs (He et  al., 2005; Hong et  al., 
2010; Hopkins et  al., 1999; Nagy et  al., 2012), randomly amplified polymorphic 
DNA (RAPDs) (Halward, Stalker, Larue, & Kochert, 1992; Hilu & Stalker, 1995; 
Lanham, Fennell, Moss, & Powell, 1992) and in situ hybridization (Raina & Mukai, 
1999). All of the studies have indicated that the cultivated peanut has significantly 
less molecular variation than diploid species, which supports the hypothesis that  
A. hypogaea originated from a single hybridization event. Additionally, there has 
been little or no apparent introgression from the diploid species to A. hypogaea 
(Kochert et al., 1996).

As opposed to the cultivated species, large amounts of molecular variation have 
been documented among wild species of the genus. Although there have been dif-
ferences observed among marker systems regarding species relationships, and 
there remain questions about species positions in sectional groupings (Friend, 
Quandt, Tallury, Stalker, & Hilu, 2010), the molecular data generally fits the sec-
tional relationship model proposed by Krapovickas and Gregory (1994). However, 
questions remain about several sections. For example, Hoshino et  al. (2006) used 
microsatellites to evaluate species in the nine peanut accessions, and while most 
species grouped as expected, several species in the Procumbentes grouped with spe-
cies from section Erectoides, and others clustered into sections Trierectoides and 
Heteranthae. Galgaro, Lopes, Gimenes, Valls, and Kochert (1998) also indicated 
that species in section Heteranthae did not group together. Friend et  al. (2010) 
conducted a more comprehensive investigation of Arachis species and also found 
that sections Extranervosae, Triseminatae and Caulorrhizae each separated into 
distinct groups based on trnT-trnF sequences; but species in sections Erectoides, 
Heteranthae, Procumbentes, Rhizomatosae and Trierectoides formed a major line-
age. Species in section Arachis grouped into two major clades, with the B and D 
genome species plus 18 chromosome aneuploids being in one group and the A 
genome species in the other.
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9.4 Erosion of Genetic Diversity from the Traditional Areas

Genetic diversity in A. hypogaea has dramatically decreased in most areas where pea-
nut is cultivated because improved cultivars are replacing landraces (Williams, 2001). 
The trend has accelerated since Williams’s (2001) review of peanut genetic conser-
vation efforts. Wild species diversity also continues to decline as native habitats are 
destroyed at a rapid pace due to urbanization, farmers opening new areas for cultiva-
tion, excessive grazing and other human activities. Genetic losses are most dramatic 
in Brazil and Bolivia, but occur in all areas where Arachis species are found.

In an analysis of the distribution of Arachis species using 2175 observations of 
wild species locations in conjunction with modeling based on climatic adaptation to 
extrapolate geographical distributions of species, Jarvis et al. (2003) concluded that 
wild peanut species potentially inhabit 5 million km2 (with 364,000 km2 having four 
or more species growing sympatrically). Like many other genera, most of the spe-
cies accessions acquired were found along roads, which leaves vast areas of South 
America unexplored for peanut germplasm. The authors predicted gaps in collec-
tions and investigated species distributions and land use. Based on restricted ranges 
of individual species and land use pressures by human activities, several species 
were identified as being under threat of extinction, including A. archeri, A. setiner-
vosa, A. marginata, A. hatschbachii, A. appressipila, A. villosa, A. cryptopotamica,  
A. helodes, A. margna and A. magna. Other species are poorly represented in collec-
tions (i.e. where only one or a few accessions are maintained), for example A. mon-
ticola, A. ipaensis, A. cruziana, A. williamsii, A. martii, A. pietrarelli and A. vallsii. 
Other species, such as A. burkartii, A. triseminata, A. tuberosa and A. dardani, have 
experienced significant reductions in range due to agriculture land use (Jarvis et al., 
2003). Their study suggested that priority for ex situ conservation efforts should be 
in areas southeast of Cuiaba, Brazil and around San Jose de Chiquitos in Bolivia.

9.5 Status of Germplasm Resources Conservation

Peanut germplasm has been collected in South America for a long time. There 
was a concentrated effort beginning in the 1950s to systematically acquire Arachis 
genetic resources. The first major collection trips were in 1959 and 1960 by W.C. 
Gregory (North Carolina State University), A. Krapovickas (Instituto de Botánica 
del Nordeste, Argentina) and J.R. Pietrarelli (Estación Experimental INTA Manfredi, 
Argentina), followed by two additional expeditions by W.C. Gregory during 1961 
and 1967, and then one in 1968 by R.O. Hammons (USDA, GA) and W.R. Langford 
(USDA, GA). Thirty-five additional collection trips were made to collect both cul-
tivated and wild peanuts between 1976 and 1992 (Stalker & Simpson, 1995) and 
several more since that time. National scientists in Argentina and Brazil have greatly 
expanded their national collections since 2000, but materials have remained in coun-
try. In situ conservation of genetic resources was not a high priority in peanut dur-
ing the twentieth century because ex situ conservation was well funded and a large 
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number of collection trips to South America resulted in many hundreds of new acces-
sions of both cultivated and wild peanut species. However, in situ conservation efforts 
have increased in Brazil during recent years (J.F.M. Valls, personal communication).

Collection and exchange of unimproved peanut germplasm was unrestricted 
prior to implementation of the Convention on Biological Diversity in 1993. The 
Convention was ratified by 179 countries; since then, laws restricting access to 
genetic resources have been widely implemented (Williams, K.A. & Williams, D.E. 
2001). This is important to peanut because the nations in South America, where 
much of the diversity for cultivated peanut and all of the wild species exist, have 
restricted collection and export of peanut. The Andean Pact also was implemented 
in 1996 whereby five countries (Bolivia, Colombia, Ecuador, Peru and Venezuela) 
established strict provisions to restrict germplasm access. This pact has had a sig-
nificant negative impact on conservation of peanut genetic resources (Williams, K.A. 
& Williams, D.E. 2001). Although not an Andean Pact nation, Brazil also imple-
mented very strict constraints for collecting and exchanging germplasm for both 
the international and national Brazilian scientists. Since the pacts were signed in the 
1990s, germplasm exchange from South America has been very limited. The excep-
tion is cultivated landraces in Ecuador, which were obtained during the late 1990s 
(Williams, K.A. & Williams, D.E. 2001).

A memorandum of understanding was signed by the USDA and ICRISAT to 
facilitate germplasm exchange (Shands & Bertram, 2000), whereby both institu-
tions agreed not to claim ownership or intellectual property rights on exchanged 
germplasm. This is important because ICRISAT is the international centre for peanut 
genetic resources. Likewise, when germplasm is passed through the USDA to state or 
private institutions the same policy applies (Williams, K.A. & Williams, D.E. 2001).

Priorities for future collection of A. hypogaea are the landraces found in Central 
and South America, Africa, Asia and China, where the primitive types are being 
replaced by elite cultivars (Stalker & Simpson, 1995). More specific collection pri-
orities were presented by Valls, Ramanatha, Simpson, and Krapovickas (1985) 
for Arachis species in Brazil (which are still valid today), including (i) the north-
west state of Mato Grosso; (ii) the states of Acre, Rondonia, Maranhao, Ceara, Rio 
Grande do Norte and Paraiba, the northwest region of Goias and the northern region 
of Piaui and (iii) the southeast Amazon region of Brazil. Collection in Uruguay is 
also a priority. In addition, areas such as eastern Bolivia and northwestern Paraguay 
are undercollected for Arachis species (Williams, 2001). For cultivated peanut, the 
northern and western areas of Brazil, Colombia, Venezuela and the Guyanas have 
not been systematically collected, and many areas in Mexico, Bolivia and Ecuador 
are undercollected (Williams, 2001). Accessions of varieties hirsuta, peruviana and 
aequatoriana are poorly represented in germplasm collections and priority needs to 
be placed to obtain additional materials of these types. Both India and China have 
excellent plant improvement programmes; improved cultivars have taken over most 
of the production areas while at the same time replacing traditional cultivars. Much 
of the traditional genetic diversity in Asia has already been lost (Williams, 2001).

A. hypogaea genetic resources are preserved at multiple locations; Pandey et al. 
(2012) summarized information about these collections. The largest single collection 
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is at ICRISAT, where 15,445 accessions are held from 93 countries (Upadhyaya, 
Ferguson, & Bramel, 2001). Other large collections are held by the National Bureau 
of Plant Genetic Resources (NBPGR) in India (14,585 accessions); the Directorate 
of Groundnut Research Junagarh (DGRJ) in India, where 9024 accessions are main-
tained; the Oil Crops Research Institute (OCRI) in China (8083 accessions) and the 
US Department of Agriculture with 9917 accessions, of which approximately half 
are unimproved landraces collected in South America (Holbrook, 2001). Additional 
collections are held by other institutions in the United States, Brazil and Argentina. 
There is significant duplication of accessions among all of the above-mentioned 
institutions because germplasm exchange has been extensive since the mid 1970s.

Collection priorities of A. hypogaea at ICRISAT are based on the numbers of 
accessions collected in a particular region, combined with diversity studies of mor-
phological and molecular data (Upadhyaya, Ferguson, et  al., 2001). Although the 
primary centre of diversity of cultivated peanut is northern Argentina and southern 
Bolivia, the regions are represented by only 368 and 444 accessions, respectively, 
in the ICRISAT collection (Upadhyaya, Ferguson, et al., 2001). A large part of their 
collection was obtained from the Indian subcontinent and several African countries 
(Upadhyaya, Ferguson, et al., 2001); there remain significant gaps in the collection 
in Asia and Africa. Priority areas designated by ICRISAT include Bolivia, Argentina, 
Brazil, Paraguay, Peru, Uruguay, Ecuador, Laos, China, Angola, Madagascar, 
Namibia and South Africa. Also, the varieties aequatoriana, hirsute and peruviana 
are under-represented at ICRISAT.

By the year 2000, more than 3400 Arachis species accessions were documented 
as seeds, plants or herbaria specimens (Stalker, Beute, Shew, & Isleib, 2002). New 
species have been discovered and preserved in germplasm collections in Argentina, 
Brazil, United States, ICRISAT and the International Centre for Tropical Agriculture 
(CIAT) (Simpson, 1991; Valls et  al., 1985). With a few exceptions (e.g. Argentina 
and Brazil), conservation within the country has not been a priority (Williams, 
2001). Presently, about 1300 Arachis species accessions are available in germplasm 
collections as plants or seeds (Stalker et  al., 2002). The largest wild species col-
lections are located at Embrapa Recursos Genéticos e Biotecnologia, Brazil (1200 
accessions), Texas A&M University (1200 accessions); the USDA (607 accessions); 
ICRISAT (477 accessions); IBONE (472 accessions) in Argentina and at North 
Carolina State University (428 accessions) (Pandey et  al., 2012). Duplication also 
exists among collections for Arachis species, and approximately 800 entries are 
maintained in the United States (Stalker & Simpson, 1995).

9.6 Germplasm Maintenance and Evaluation

9.6.1 Maintenance

9.6.1.1 Arachis hypogaea

Maintenance of the domesticated collection is rather straightforward except for han-
dling large numbers of accessions. However, many of the accessions are susceptible 
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to tomato spotted wilt virus and other diseases, and seed regeneration is highly prob-
lematic in areas where there is a prevalence of diseases that kill susceptible geno-
types. When accessions are introduced into the United States, they are quarantined 
in the greenhouse before being taken to the field for larger increases. Accessions 
are stored at −18°C in vacuum sealed packets for 15–20 years before regeneration. 
Many accessions in the US collection were introduced as seed mixtures, so large 
plots are needed to maintain variation at the original gene frequencies. Although pea-
nut is classified as a self-pollinated species, outcrossing occurs where bees are preva-
lent. Virginia types have lower outcrossing rates (1–3%) than Valencia types, which 
can be as high as 8% (Knauft, Chiyembekeza, & Gorbet, 1992). This can be prob-
lematic in breeding or seed-increase nurseries.

9.6.1.2 Arachis Species

Maintenance of the Arachis species is more difficult than for A. hypogaea and is 
accomplished either in the greenhouse or field. Stalker and Simpson (1995) reported 
that about 28% of the accessions in cultivation are maintained vegetatively because 
of poor seed set and nearly 25% of the species from which seed can be obtained 
under nursery conditions have fewer than 50 seeds in storage. The situation has 
not significantly changed since 1995. Especially problematic for long-term preser-
vation are perennial accessions that produce rhizomes or tubers, which include all 
the species in sections Rhizomatosae and Extranervosae because they produce very 
few seeds under cultivation. Other species such as A. guaranitica and A. tuberosa go 
into a permanent dormancy when seeds are dried, but seeds of A. tuberosa have been 
maintained for nearly 2 years when stored in moist sphagnum moss at room temper-
ature (Stalker & Simpson, 1995). Light quality and day length also have significant 
effects on reproduction and seed development in peanut.

The field nursery system used for the Arachis species at North Carolina State 
University is to initially germinate seeds in the greenhouse and then transplant acces-
sions into small blocks where peanut has not previously been grown. Plant blocks 
are separated by 5–10 m in all directions, and cross-compatible types are not planted 
in adjacent plots within or between rows. The planting scheme also avoids the prob-
lem of pegs growing into plots of other accessions. Harvest is completed by sifting 
the soil in plots to recover pods. In large part because regeneration of Arachis species 
requires a large amount of land, very sandy soil and intensive labour, very few inves-
tigators regenerate the Arachis species collection in the field even though many more 
seeds can be obtained than in greenhouses. Because of the difficulties associated 
with propagating many of the Arachis species, either in the field or in greenhouses, 
many accessions have been lost in collections. Thus, it is critical that multiple loca-
tions be used to maintain the wild species of peanut to assure preservation of the 
genetic resources.

9.6.2 Evaluation

Several review articles have been published that summarize genetic resources of 
the domesticated peanut and related Arachis species (Dwivedi et al., 2003; Dwivedi 
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et  al., 2007; Holbrook & Stalker, 2003; Isleib & Wynne, 1992; Singh & Simpson, 
1994; Stalker & Simpson, 1995; and Tillman & Stalker, 2009), so only a brief review 
will be presented in this chapter. Standards for evaluation of peanut also have been 
published by IBPGR and ICRISAT (1992) and the USDA (Pittman, 1995).

Most of the US A. hypogaea collection has been evaluated for resistance to early 
and late leaf spots and rust (see Holbrook & Stalker, 2003 for review) and few other 
traits. Moderate levels of resistance have been identified in the A. hypogaea col-
lection, but extremely high levels of resistance apparently do not exist in the germ-
plasm collection for most of the important peanut pathogens (Stalker & Moss, 1987; 
Stalker & Simpson, 1995). However, extremely high levels of resistance to both dis-
eases and insects have been identified in Arachis species (see Stalker & Moss, 1987 
for review). Although large numbers of accessions have been evaluated for agronom-
ically useful traits in the USDA and ICRISAT collections, relatively few accessions 
have been utilized by breeders for cultivar development in the United States (Isleib 
et al., 2001).

The greatest evaluation efforts of peanut have been at ICRISAT and Dwivedi et al. 
(2007) summarized their research at ICRISAT. One hundred forty-three accessions 
were found resistant to peanut rust (Mehan, Reddy, Vidyasagar Rao, & McDonald, 
1994); 54 were resistant to late leaf spot (Subrahmanyam et  al., 1995); 10 were 
resistant to Aspergillus flavus infection and two accessions did not produce aflatoxin 
after infection (Mehan, 1989; Mehan, McDonald, Ranakrishna, & Williams, 1986) 
and 154 were resistant to groundnut rosette virus (Subrahmanyam, Anaidu, Reddy, 
Kumar, & Ferguson, 2001). Mehan et al. (1986) also identified four Arachis species 
that are resistant to aflatoxin production. No resistance was identified for peanut strip 
virus (PStV) in the cultivated collection (Prasad Rao et  al., 1991). Subrahmanyam 
et al. (2001) found 12 Arachis species accessions to be immune to groundnut rosette 
virus. A. diogoi was the only species identified with no infection to peanut bud necro-
sis virus (Subrahmanyam et al., 1995); this species is also the only one with immu-
nity to tomato spotted wilt virus. None of 7000 accessions screened for peanut clump 
virus (PCV) had useful resistance, whereas four Arachis accessions of A. kuhlmannii, 
A. duranensis and A. ipaensis were immune. ICRISAT scientists also have evaluated 
Arachis species for late and early leaf spots and they identified highly resistant mate-
rials (Upadhyaya, Ferguson, et al., 2001).

Insect resistance was identified for jassids (Empoasca kerri Pruthi), thrips (Thrips 
palmi Karny), aphids (Aphis craccivora Koch), leaf minor (Aproaerema modicella 
Deventer) and termites (Odontotermes spp.). Several accessions were identified with 
multiple resistances for insects (Upadhyaya, Ferguson, et  al., 2001). Wrightman 
and Ranga Rao (1994) reported several Arachis species with high levels of resist-
ance to pests, including entries in A. duranensis, A. cardenasii, A. paraguariensis 
and A. pusilla. Researchers at ICRISAT evaluated about 8000 accessions for oil con-
tent and 5501 accessions for protein content and found 66 lines with more than 50% 
oil and 125 lines with more than 30% protein (Upadhyaya, Ferguson, et al., 2001). 
Nageswara Rao, Udaykumar, Farquhar, Talwar, and Prasad (1995) evaluated crop 
growth rate, water use efficiency and assimilate partitioning. Because of the large 
sizes of the collections, core collections have been developed to facilitate evaluation 
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for diseases and other agronomic traits. Holbrook, Anderson, and Pittman (1993) 
analysed morphological and geographical distributions of the USDA germplasm 
collection and developed a core collection represented by 831 accessions. This core 
collection has four of the six varieties of A. hypogaea; the remaining two (peruvi-
ana and aequatoriana) need to be added. The core collection has been evaluated for 
all of the US descriptors. Upadhyaya, Ortiz, Bramel, and Singh (2001) developed a 
larger core collection from the ICRISAT germplasm, comprising 1704 accessions. 
Jiang et  al. (2008) also developed a Chinese core collection with 576 accessions. 
Mini-core collections, representing approximately 10% of the US and ICRISAT 
core collections, were then developed as a subset to facilitate evaluation research. 
There are 112 accessions in the US mini-core (Holbrook & Dong, 2005) and 184 
in the ICRISAT mini-core (Upadhyaya, Bramel, Ortiz, & Singh, 2002). Jiang et al. 
(2010) developed a mini-core of the Chinese core collection with 298 accessions. 
Dwivedi, Puppala, Upadyaya, Manivannan, and Singh (2008) also developed a core 
collection for the Valencia-type peanuts. Evaluations of the US core collection have 
identified new sources of resistance for Cylindrocladium black rot and early leaf 
spot (Isleib, Beute, Rice, & Hollowell, 1995), tomato spotted wilt virus (Anderson, 
Holbrook, & Culbreath, 1996), root-knot nematode (Meloidogyne arenaria (Neal) 
Chitwood) and preharvest aflatoxin contamination (Holbrook, Bruniard, Moore, & 
Knauft, 1998), rhizoctonia limb rot (Rhizoctonia solani Kuhn) (Franke, Brenneman, 
& Holbrook, 1999), Sclerotinia blight (Sclerotinia minor Jagger) and pepper spot 
(Leptosphaerulina crassiasca (Sechet) Jackson and Bell) (Damicone, Jackson, 
Dashiell, Melouk, & Holbrook, 2003). In addition, the mini-core has been evaluated 
for traits that are expensive to analyse such as for microsatellite markers (Kottapalli 
et  al., 2007; Wang et  al., 2011) and oil content (Wang, Barkley, Chinnan, Stalker, 
& Pittman, 2010). Germplasm evaluations of the core accessions at ICRISAT iden-
tified accessions with early maturity (Upadhyaya, Reddy, Gowda, & Singh, 2006), 
tolerance to low temperatures (Upadhyaya, Ortiz, et  al., 2001) and drought toler-
ance (Upadhyaya, Mallikarjuna Swamy, Goudar, Kullaiswaym, & Singh, 2005). 
Importantly, the US core collection was evaluated for usefulness for identifying 
additional germplasm in the entire collection by extrapolating core collection data 
for late leaf spot to the entire collection. Holbrook and Anderson (1995) found that 
evaluating the core collection is a good indicator of late leaf spot resistance in the 
entire collection.

9.7 Use of Germplasm in Crop Improvement

Plant introductions have been important to peanut production, in large part for resist-
ance to diseases such as Sclerotinia blight, root-knot nematode and tomato spotted 
wilt virus (Isleib et al., 2001). Most of the runner market types can be traced back to 
four ancestors that were used in early breeding programmes, including the two vari-
ety hypogaea lines Dixie Giant and Basse and the two variety vulgaris lines Small 
White Spanish and Spanish 18-38 (Isleib et al., 2001). The ancestry of the Virginia 
market class included those four lines and a large-seeded selection of Jenkins Jumbo 
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in the Florida programme. Basse (PI 203396) was introduced from Gambia and is 
in 32 of 41 runner-type cultivars (as of 2000) and was the source of late leaf spot, 
tomato spotted wilt virus and southern stem rot (Sclerotium rolfsii Sacc.) resistance 
in runner-type cultivars. PI 109839 was collected from Venezuela in 1935 and is the 
source of early leaf spot resistance in most cultivars. In all, 13 plant introductions 
were in the pedigrees of most US cultivars before 2000 (Isleib et al., 2001). Seven 
introductions serve as the basis of Spanish-type cultivars (Isleib et al., 2001). Most 
runner- and Virginia-type peanuts have a mixture of subspecies hypogaea and variety 
vulgaris and to a lesser extent from variety fastigiata.

Only 119 cultivars were released in theUnited States (276 worldwide) before 
2000 (Isleib et  al., 2001; Paterson et  al., 2004). Hammons (1976) and Knauft and 
Gorbet (1989) characterized the peanut crop as being genetically vulnerable to dis-
ease and insect pests. Historically, only a few cultivars have dominated the produc-
tion areas, especially in the southeast (Isleib et al., 2001). For example, during the 
2012 growing season, there were 13 runner, 2 Spanish, 11 Virginia and 1 Valencia 
market type cultivars grown in the United States. However, Georgia-06G accounted 
for 65.6% of the runner production and 50.7% of the total US peanut production 
area. One Spanish cultivar accounted for 80% of this market type production. Four 
cultivars had more than 10% of the production area of the Virginia market type, with 
Bailey having 30.5%. Thus, the US germplasm base remains rather narrow. In other 
countries there is also a predominance of one or a few cultivars being grown across 
large production regions, and many of these are replacing lower yielding landraces.

9.8 Limitations in Germplasm Use

Peanut breeding is largely accomplished by the public sector breeders, which have 
relatively small programmes as compared to large, privately owned seed companies. 
Hybridization is a laborious process because individual flowers need to be emas-
culated and then hand-pollinated, after which one or sometimes two seeds are pro-
duced. High temperatures or low humidity can significantly decrease fertilization 
percentages. The peanut has a long generation time (120–150 or more days), so at 
most there can be two plant generations per year in a breeding programme. Utilizing 
genetic materials in different market classes can result in poor quality or unaccepta-
ble seed or pod traits at the breeder’s location. For example, the Spanish types have 
a shorter growing season, which is important in areas where early frost will damage 
the crop, but they are lower yielding than materials in the runner and Virginia market 
classes; Spanish peanuts are also more susceptible to tomato spotted wilt virus, leaf 
spots and other diseases. Crosses among the market classes can increase diversity but 
also cause problems with market quality and reduce yield potential.

The most important limitation to germplasm use in peanut is identifying lines 
with sufficiently high levels of resistance to utilize for crop improvement. Land 
resources and personnel have not been available for systematic evaluation of the US 
germplasm collection for many disease and insect resistances or other agronomic 
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traits, so a limited number of genotypes have been utilized in breeding programmes. 
Further, most ‘resistant’ A. hypogaea accessions have only moderate levels of resist-
ance, many of which express multigenic inheritance and are difficult to incorporate 
into elite breeding materials. Other sources of resistance are extremely difficult to 
evaluate in field plots (such as aflatoxins and diseases caused by soil-borne fungi). 
Although high levels of resistance to immunity have been identified in wild species, 
only members of section Arachis will hybridize with A. hypogaea, and even in this 
group there are barriers to germplasm use.

9.9 Germplasm Enhancement Through Wide Crosses

Because the domesticated peanut is an allotetraploid with two genomes and the 
species being utilized for introgression are diploids, sterility barriers result from 
ploidy differences and genomic incompatibilities between the species. Traits of 
interest from Arachis species have been difficult to follow in progenies of interspe-
cific hybrids because of low population sizes and high sterility levels in progenies. 
Utilizing molecular markers associated with traits of interest may help overcome 
many of these problems, but unfortunately only few molecular markers have been 
available to enhance selection efficiency. Introgression from Arachis species to A. 
hypogaea appears to be in large blocks (Garcia, Stalker, & Kochert, 1995; Nagy 
et al., 2012) rather than as single genes or small chromosome segments. Thus, link-
age drag of undesirable traits can restrict the use of genetic resources.

The first peanut cultivar released from interspecific hybridization was from 
a cross between A. hypogaea and the second tetraploid species in section Arachis 
(A. monticola Krapov. & Rigoni). Biologically, A. monticola could be considered 
a weedy subspecies of A. hypogaea. Spancross was released by Hammons (1970); 
Tamnut 74 was later released by Simpson and Smith (1975). Neither of these cul-
tivars had phenotypic characters that could be identified as being derived from the 
wild species, which is not surprising because A. monticola has most of the same dis-
ease and insect problems as found in A. hypogaea.

Several methods have been utilized to create populations of fertile A. hypogaea 
interspecific hybrids and restore plants to the tetraploid level. First, hybrids can be 
made by crossing A. hypogaea with diploids to produce triploid (3x=30) F1s, after 
which cuttings can be colchicine-treated to restore fertility at the hexaploid (6x=60) 
level. Many triploids will also produce a few seeds through the fusion of unre-
duced gametes, especially if they are placed in the field for long periods of time. 
Backcrossing the hexaploids with A. hypogaea results in pentaploids (5x=50) that 
are usually vigorous but partially sterile. Additionally, they produce few flowers 
and are difficult to use in the crossing programmes, but they sometimes yield a few 
seeds and the ploidy level stabilizes at the tetraploid level. A major problem with this 
scheme has been the few seeds produced at the hexaploid and pentaploid levels; the 
lack of selection methods during the semi-sterile generations for traits of interest has 
resulted in tetraploid lines without traits of interest for crop improvement. Hundreds 
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of tetraploid progenies have been recovered with many diploid species, but to date, 
no useful germplasm has resulted from backcrossing hexaploids with A. hypogaea. 
Although backcrossing hexaploids with diploids will theoretically drop the chro-
mosome number to the tetraploid level in one generation, these 6x × 2x crosses (or 
reciprocals) have not produced viable progenies.

An alternative method to backcrossing hexaploids with the cultivated species is 
to allow 6x plants to self-pollinate and, by selecting fertile progenies, a few plants 
may spontaneously lose chromosomes and stabilize at the 40-chromosome level. 
The loss of chromosomes appears to be infrequent and random, but the advan-
tage of this procedure is associating chromosomes in different species at a high 
ploidy level which can increase the frequency of recombination. For example, after  
A. hypogaea × A. cardenasii hexaploids were selfed for five generations they pro-
duced 40-chromosome progenies that were highly variable for seed size, colour and 
other morphological traits (Company, Stalker, & Wynne, 1982). Garcia et al. (1995) 
analysed introgression from A. cardenasii to A. hypogaea with RFLPs and found 
wild species-specific markers on 10 of 11 linkage groups on the diploid RFLP map 
developed by Halward, Stalker, and Kochert (1993). Most of the introgression (88%) 
was apparently in the A genome of A. hypogaea, with the remaining 12% in the B 
genome. Germplasm lines have been released from this cross with resistance to early 
leaf spot, nematodes and several insect pests (Stalker et al., 2002; Stalker & Lynch, 
2002; Isleib et al., 2006). The cultivar Bailey was released after utilizing these lines 
as sources of multiple disease resistances (Isleib et al., 2010).

A second method to introgress germplasm from diploid species to A. hypogaea 
is to first double the chromosome number of the diploid species to the tetraploid 
level. This method has the advantage of avoiding several generations of mostly ster-
ile hybrids. Further, recovering tetraploids is much faster than by going through the 
triploid–hexaploid procedure; autotetraploids generally have low vigour and when 
annual species are used they are short-lived. Ideally, A and B genome species would be 
hybridized at the diploid level and then the chromosomes doubled to produce AABB 
genome allopolyploids to be crossed with the cultivated species. However, chromo-
some doubling of the sterile AB genome diploids can be problematic. Examples of 
success with this methodology are TxAG-6 and TxAG-7 (Simpson, Nelson, Starr, 
Woodard, & Smith, 1993) which originated from the complex hybrid 4×[A. bati-
zocoi (B genome)×(A. cardenasii (A genome)×A. diogoi (A genome))]. TxAG-6 
had very good nematode resistance, but also significant linkage drag, which resulted 
in low yields and poor seed and pod quality. RFLP markers linked to the nematode 
gene conferring resistance were used to select favourable genotypes. The nematode-
resistant cultivars COAN (Simpson & Starr, 2001) and NemaTAM (Simpson, Burrow, 
Patterson, Starr, & Church, 2003) were released by introgressing genes from TxAG-6.  
By using SSR markers, Nagy et  al. (2012) showed that recombination was greatly 
reduced in the chromosome area where the nematode-resistant gene is located, due to a 
large introgressed segment from the wild species that comprised one-third to one-half 
of a chromosome in hybrids. The same procedure resulted in release of the nematode-
resistant cultivar Tifguard (Holbrook, Timper, Culbreath, & Kvien, 2008), but it was 
highly susceptible to tomato spotted wilt virus and production has been limited.
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9.10 Peanut Genomic Resources

9.10.1 Tool Development

Molecular research with peanut began in the 1980s with the analysis of proteins and 
isozymes variation in A. hypogaea, but there was little variation observed. In con-
trast, large amounts of variation exist in Arachis species for these marker systems. 
The same trend was found for RFLPs, RAPDs and AFLPs (see Stalker, Weissinger, 
Milla-Lewis, & Holbrook, 2009 for review). Prior to 2005, there were only a few 
hundred markers available for peanut. AFLPs were the first molecular marker sys-
tem used to differentiate closely related peanut cultivars (Herselman, 2003), and 
Moretzsohn et  al. (2005) later used SSR markers to separate the cultivated lines. 
Large-scale SSR marker development was initiated in Asia and the United States, 
and more than 6000 SSR markers are now available (see Pandey et  al., 2012 for 
review). Pandey et  al. (2011) also developed a set of 199 highly informative SSR 
markers that should be widely used in breeding programmes. A 20 SSR marker set 
was developed to analyse 300 cultivated accessions by Upadhyaya et  al. (2002), 
which should serve as a useful reference for future molecular research with peanut.

DArT markers were developed in a cooperative programme between research-
ers in Australia, India, France and Brazil with about 15,000 markers (Pandey et al., 
2012). Analysis of diploid and tetraploid species indicated that there was a moderate 
level of polymorphism in the diploids (Kilian, 2008; Varshney, Glaszmann, Leung, 
& Ribaut, 2010), but they are not highly useful for analysing the tetraploid genome. 
Thus, like other types of markers, they may be useful for gene introgression research 
but not for cultivar development. More than 2000 SNPs have been discovered 
at the University of Georgia (Pandey et  al., 2011; Guo et  al., 2012), and Illumina 
GoldenGate SNP arrays have been developed for diploid peanuts. Unfortunately, 
because of homology between the A and B genomes in diploids, the arrays may not 
be highly useful for analysis of A. hypogaea (Pandey et al., 2011).

9.10.2 Molecular Maps of Peanut

Several molecular maps have been produced in peanut with different marker sys-
tems. The first map used RFLPs and utilized variation between the diploid species 
A. stenosperma × A. cardenasii, where a total of 117 RFLP markers were mapped 
into 11 linkage groups (Halward et  al., 1993). Moretzsohn et  al. (2009) and Guo 
et al. (2012) compared linkages on A and B genome maps and found a considerable 
amount of homology. The first tetraploid map was created by using progenies of a 
cross between A. hypogaea and the interspecific hybrid TxAG-6, where 383 mark-
ers were mapped (Burow, Starr, Simpson, & Paterson 1996). A summary of the 22 
published maps to date using RFLPs, AFLPs, SSRs, SNPs, SCAR and CAPS mark-
ers can be found in Pandey et al. (2012). All but one of the maps has fewer than 400 
markers (range 12–449). Nagy et  al. (2012) published a more saturated map hav-
ing 2319 SNP, SSR and single-stranded DNA conformation polymorphism (SSCP) 
markers for a cross between two A. duranensis accessions. Guo et  al. (2012) then 
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compared high-density A and B genome maps and found a large amount of synteny, 
but also several inversions, translocations and other chromosomal structural changes. 
The data also has been used to develop markers closely associated with a nematode 
resistance gene (Nagy et al., 2010). For the domesticated peanut, several maps have 
been developed using SSRs (see Pandey et  al., 2011) and most recently Qin et  al. 
(2012) made an integrated A. hypogaea map.

9.10.3 Transcriptome Resources

Expressed sequence tag (EST) development is an alternative for developing gene-
based markers and for identifying genes for expression of traits. To date, 246,733 
ESTs are in the public domain at the National Center for Biotechnology Information 
(http://www.ncbi.nlm.nih.gov/). The ESTs have been developed from a variety of 
plant tissues including seeds (57.6%), leaves (19.0%) and roots (23.2%), and range 
in length from 37 to 2038  bp (Pandey et al., 2012). Non-public ESTs also have been 
developed, most notably at the University of Georgia, where more than 350 MB 
of transcript sequences from 17 A. hypogaea genotypes resulted in about one mil-
lion ESTs. A consensus transcription assembly was developed with 211,244 contigs 
(Pandey et  al., 2012). Guimarães et  al. (2011) developed 743,232 additional ESTs 
by using the diploid species A. duranensis and A. stenosperma, which were placed 
under stresses due to C. personatum and water deficit. From these ESTs they pro-
duced 39,626 unigenes that were annotated for the species, and since the parents 
were the same ones as used for a reference map by Moretzsohn et al. (2005) it is a 
highly valuable genetic resource.

9.10.4 Whole Genome Sequences

The peanut genome is complex due to its allopolyploid nature. The genome size is 
large, with 2.9 pg DNA per haploid genome, about 27% highly repetitive DNA and 
37% middle-repetitive DNA (Paterson et al., 2004). A Peanut Genome Consortium 
(PGC) (http://www.peanutbioscience.com/peanutgenomeproject.html) has been 
formed to address the technical problems and to develop a strategy to sequence the 
peanut genome. Parallel sequencing of diploid progenitor species will be neces-
sary to sort out the A and B genomes present in A. hypogaea. This is a multinational 
effort not only to develop a sequenced genome, but also to develop tools that can be 
utilized by breeders for cultivar development. It is anticipated that the domesticated 
peanut will be sequenced and the information made available within a few years.

9.10.5 Linking Agronomic Traits with Markers

To date, the number of genes associated with molecular markers in peanut is small, 
but the large number of molecular markers becoming available has great potential for 
utilizing in a crop improvement programme. Bertioli et al. (2003) described numer-
ous linkages of resistant genes in peanut. Pandey et  al. (2012) listed quantitative 
trait loci (QTLs) for some of the important traits found in the cultivated peanut. Chu 

http://www.ncbi.nlm.nih.gov/
http://www.peanutbioscience.com/peanutgenomeproject.html
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et al. (2011) outlined a breeding scheme to utilize marker-assisted selection (MAS) 
to pyramid nematode resistance and the high oleic acid trait in peanut cultivars, and 
the system has greatly increased efficiency for developing breeding lines. In addition 
to markers being useful for associating with specific traits, they also may be useful 
for following introgression from Arachis species to A. hypogaea. This is important 
because recombination between the cultivated genomes and those of other species 
is rare, thus restricting selection for desired traits in interspecific hybrid derivatives 
(Holbrook & Stalker, 2003). Guimarães et al. (2010, 2011) identified eight genes in 
A. stenosperma roots that provide resistance to M. arenaria; QTLs for resistance to 
late leaf spot also have been identified (Leal-Bertioli et al., 2009) in section Arachis 
species.

9.11 New Sources of Genetic Diversity

9.11.1 Targeting Induced Local Lesions in Genomes

Targeting Induced Local Lesions in Genomes (TILLING) is a method developed to 
find genes of interest in a mutant population of a species through reverse genetics. 
By screening DNA sequence changes in the gene of interest, mutants can be detected 
and evaluated for its effect on phenotypes. To discover genes influencing peanut 
allergens a TILLING population was developed from the cultivar Tifrunner (Knoll 
et  al., 2011). Gene knockouts for genes encoding Ara h 1 and Ara h 2 (seed stor-
age protein genes) and for the FAD2 gene that is involved in conversion of oleic to 
linoleic acid were discovered. However, each of the 2S, 7S and 11S seed storage pro-
teins of peanut are produced by gene families; Calbrix et al. (2012) reported 10, 13 
and 10 subgroups, respectively, for the three protein classes. Thus, knockouts of sin-
gle genes may reduce allergen problems, but will not eliminate them.

9.11.2 Peanut Transformation

Ozias-Akins et  al. (1993) reported the first successful transformed peanut plant. 
Micro-bombardment has been the technique most commonly used in peanut, and 
several genes have been transferred conferring disease resistance (Dar, Reddy, 
Gowda, & Ramesh, 2006; Higgins, Hall, Mitter, Cruickshank, & Dietzgen, 2004; 
Magbanua et al., 2000; Ozias-Akins & Gill, 2001; Yang, Singsit, Wang, Gonsalves, 
& Ozias-Akins, 1998). However, efficiency levels are low and the process takes 
many months to obtain a mature plant (Egnin, Mora, & Prakash, 1998). Cheng, 
Jarret, Li, Aiqiu Xing, and Demski (1996) used Agrobacterium-mediated transforma-
tion on a Valencia-type peanut, but the technique apparently does not work on other 
genotypes. To date, biolistic methodologies are the most reliable in peanut, and sin-
gle constructs can be inserted into the peanut genome. Improved lines with tomato 
spotted wilt virus (Yang et  al., 1998) and Sclerotinia (Chenault, Maas, Damicone, 
Payton, & Melouk, 2009) resistances have been produced, but the regulatory process 
of germplasm release for consumption has thus far prevented commercialization.
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9.12 Conclusions

A large amount of peanut germplasm of both cultivated and wild species has been 
collected and is being maintained at multiple international locations. Gaps exist in 
the collection for cultivated materials as well as wild species. Newly discovered 
materials are currently unavailable to the international community because of germ-
plasm collection and distribution restrictions imposed by countries where peanut is 
found. Eighty species have been named, and additional ones will be described in the 
future. Improved cultivars are replacing landraces, and the genetic variability of cul-
tivated peanut is rather narrow in most production regions.

Crossing relationships are generally known in Arachis, although there remain 
questions about the origins of the tetraploid species in section Rhizomatosae and 
biosystematic relationships of species in several other sections. Although more than 
15,000 lines of A. hypogaea are in germplasm collections, relatively few entries are 
in the pedigrees of improved cultivars. Wild species have great potential for improv-
ing disease and insect resistance, though genomic and ploidy level differences cause 
sterility problems when hybridizing with A. hypogaea. Progress has been made to 
incorporate genes from Arachis species into improved cultivars. Molecular research 
has lagged behind many other crop species, in large part due to a lack of significant 
amounts of variation in the cultivated species, but new marker systems such as sim-
ple sequence repeats have promise for enhancing genetic resources.
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10.1 Introduction

The genus Vigna is a large pantropical genus with 82 described species distributed 
among 7 subgenera, namely Ceratotropis, Haydonia, Lasiospron, Macrorhyncha, 
Plectotropis, Sigmoidotropis and Vigna, and 150 species (Maréchal, Mascherpa, & 
Stainer, 1978; Tomooka, Vaughan, & Moss, 2002). Among pulse crops, Vigna is a 
large genus that belongs to tribe Phaseolae of the family Papilionaceae. Among the 
subgenera of the genus Vigna only the subgenus Ceratotropis has its centre of spe-
cies diversity in Asia. The subgenus Ceratotropis currently consists of 16 (Verdcourt, 
1970) to 17 (Maréchal et  al., 1978; Tateishi, 1985) recognized species, which are 
naturally distributed across Asia and thus are often called Asiatic or Asian Vigna 
(Singh et al., 2006). Tomooka et al. (2002) describes 21 species of Asian Vigna, 8 
of which are used for human food or animal feed. This is in contrast to the African 
Vigna (the subgenus Vigna) of which, of the 36 species, only 2 species have been 
domesticated (Maréchal et  al., 1978) and the closely related genus Phaseolus of 
the New World that consists of about 50 species, of which only 5 are cultivated 
(Debouck, 2000). The Asian Vigna were initially classified as the genus Phaseolus 
by de Candolle (1825). Later on, Verdcourt (1970) limited the use of Phaseolus 
exclusively to those American species that have a tightly coiled style and pollen 
grain lacking coarse reticulation. As a consequence, Asian Vigna was classified as 
a subgenus, Ceratotropis (Maréchal et  al., 1978). The comparative taxonomic sys-
tem of Maréchal et al. (1978) and that of Tateishi (1985) are shown in Table 10.1. 
The revision of subgenus Ceratotropis by Tateishi (1985) is the most comprehen-
sive one to date (Tomooka, Egawa, & Kaga, 2000). The eight cultivated species of 
the subgenus Ceratotropis as described by Tomooka et al. (2002) are Vigna radiata 
(green gram or mung bean), V. mungo (black gram or urd bean), V. angularis (small 
red bean or azuki/adzuki bean), V. umbellata (rice bean or red bean), V. aconitifolia 
(moth bean), V. reflexopiloxa var. glabra (Creole bean), V. trilobata (wild bean) and 
V. trinervia (Tooapée).

The last three species are of minor importance and V. trilobata can perhaps be 
regarded as a semidomesticate. The Asian Vigna are considered to be recently 
evolved and morphological differentiation between taxa is limited (Baudoin & 
Maréchal, 1988).The five main cultivated species of Asian Vigna belonging to the 
subgenus Ceratotropis are closely related, characteristically small-seeded and dis-
tinguished on the basis of seedling type. The first and second leaves are sessile in 
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Table 10.1 Species and Infraspecific Taxa of the Asian Vigna, Subgenus Ceratotropis, 
Recognized by Maréchal et al. (1978) and Tateishi (1985)

S. No. Maréchal et al. (1978) S. No. Tateishi (1985)

 1. V. aconitifolia (Jacquin) Maréchal  1. V. aconitifolia (Jacquin) Maréchal
 2. V. angularis (Willdenow) Ohwi & 

Ohashi
var. angularis
var. nipponensis (Ohwi) Ohwi & 
Ohashi

 2. V. angularis (Willdenow) Ohwi & 
Ohashi
var. angularis
var. nipponensis (Ohwi) Ohwi & 
Ohashi

 3. V. dalzelliana (O. Kuntze) Verdcourt  3. V. dalzelliana (O. Kuntze) Verdcourt
 4. V. exilis Tateishi
 5. V. grandiflora (Prain) Tateishi

 4. V. hirtella Ridley  6. V. hirtella Ridley
 5. V. khandalensis (Santapau) 

Raghavan & Wadhwa
 7. V. khandalensis (Santapau) 

Raghavan & Wadhwa
 6. V. minima (Roxburgh) Ohwi & 

Ohashi
 8. V. minima (Roxburgh) Ohwi & Ohashi

ssp. gracilis (Prain) Tateishi
ssp. minima
var. minima
var. minor (Matsumura) Tateishi
ssp. nakashime (Ohwi) Tateishi

 7. V. rikiuensis (Ohwi) Ohwi & Ohashi
 8. V. nakashimae (Ohwi) Ohwi & 

Ohashi

 9. V. mungo (L.) Hepper  9. V. mungo (L.) Hepper
var. mungo var. mungo
var. silvestris Lukoki, Maréchal 
& Otoul

var. silvestris Lukoki, Maréchal 
& Otoul

10. V. nepalensis Tateishi
10. V. radiata (L.) Wilczek

var. radiata
var. sublobata (Roxburgh) 
Verdcourt
var. setulosa (Dalzell) Ohwi & 
Ohashi

11. V. radiata (L.) Wilczek
var. radiata
var. sublobata (Roxburgh) 
Tateishi

11. V. glabrescence Maréchal, Mesherpa 
& Stainier

12. V. reflexo-pilosa Hayata 12. V. reflex-pilosa Hayata
subsp. glabra (Roxburgh) Tateishi
subsp. reflexo-pilosa

13. V. stipulacea (Lamarck) Tateishi
14. V. subramaniana (Babuex Raizada) 

Tateishi
13. V. trilobata (L.) Verdcourt 15. V. trilobata (L.) Verdcourt

16. V. trinervia (Heyne ex Wight et Arnott)
Tateishi

var. trinervia
var. bourneae (Gamble) Tateishi

14. V. bourneae Gamble

(Continued)
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V. radiata and V. mungo and have epigeal cotyledons, whereas V. angularis and V. 
umbellata have petiolate and hypogeal cotyledons (Maekawa, 1995). V. aconitifolia 
has intermediate seedling type with epigeal cotyledons and petiolate first and sec-
ond leaves (Baudet, 1974). Tateishi (1996) used seedling characteristics to recognize 
three subgroups s. str. in the subgenus Ceratotropis, namely (i) the mung bean group 
s. str., (ii) the azuki bean group s. str. and (iii) V. aconitifolia group with interme-
diate seedling characteristics. Taxonomically, cultigens and their conspecific wild 
forms are recognized in all the species except V. aconitifolia (Table 10.2) (Lukoki, 
Maréchal, & Otoul, 1980; Maréchal et  al., 1978; Tomooka et  al., 2000). However, 
Dana (1998) reported a wild form of V. aconitifolia (V. aconitifolia var. silvestris) 
also. Pods of domesticated species of Vigna have reduced dehiscence and seeds are 
nondormant. Both day-neutral and short-day genotypes are found in all the species. 
Chromosome complements in Vigna species are 2n=2x=22 with exception of V. gla-
brescens (2n=4x=44). Chromosome rearrangements play a significant role in the 
genetic differentiation of Asian Vigna species (Biswas & Dana, 1975, 1976; Dana 
1966a, 1966b; Machado, Tai, & Baker, 1982; Satyan, Mahishi, & Shivashankar, 
1982; Sen & Ghosh, 1961). Even the two closest relatives, V. radiata and V. mungo, 
have some structural differentiation of their genomes. The wild related species and 
other cultigens of Vigna do not form a particularly extensive or accessible gene pool 

Table 10.2 Domesticated Asian Vigna Species and their Wild Relatives

Species Cultigen Wild form Distribution of wild forms

V. angularis var. angularis var. nipponensis Himalayas, northern Myanmar, China, 
Korea, Japan

V. mungo var. mungo var. silvestsis India, Myanmar
V. radiata var. radiata var. sublobata East Africa, Madagascar, Asia, New 

Guinea, Australia
V. umbellata var. umbellata var. gracilis East India, Thailand, Indochina, China
V. aconitifolia var. aconitifolia var. silvestris Pakistan, India

Source: Data from Tomooka et al. (2000) and Singh et al. (2006).

Table 10.1 Species and Infraspecific Taxa of the Asian Vigna, Subgenus Ceratotropis, 
Recognized by Maréchal et al. (1978) and Tateishi (1985)

S. No. Maréchal et al. (1978) S. No. Tateishi (1985)

15. V. umbellata (Thunberg) Ohwi & 
Ohashi

17. V. umbellata (Thunberg) Ohwi and 
Ohashi

var. umbellata
var. gracilis (Prain) Maréchal, 
Mesherpa and Stainier

16 V. malayana M.R. Henderson
17. V. popuana Baker F.

Source: Tomooka et al. (2000) and Singh et al. (2006).

Table 10.1 (Continued)
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(Smartt, 1990). Lawn (1995) proposed that the Asian Vigna consists of three more or 
less isolated genepools, based on cross-compatibility studies which correspond with 
groups based on seedling characters proposed by Tateishi (1996), as follows:

Gene pool (Lawn, 1995): angularis-umbellata; radiata-mungo; aconitifolia-trilobata
Group (Tateishi, 1996): Azuki bean s.str.; mung bean s. str.; V. aconitifolia.

10.2 Origin, Distribution and Diversity

The Asian Vigna have been domesticated in Asia from the Indian subcontinent to 
the Far East (Smartt, 1990). Records of Asian Vigna from 3500 to 3000 BC were 
found in archaeological sites at Navdatoli in Central India (Jain & Mehra, 1980). 
Mung bean or green gram (Vigna radiata syn. Phaseolus aureus Roxb.; P. radiatus 
L.) has been considered to have been domesticated in India (Vavilov, 1926). Other 
authors have supported his theory based on the morphological diversity (Singh, 
Joshi, Chandel, Pant, & Saxena, 1974), existence of wild and weedy types (Chandel, 
1984; Paroda & Thomas, 1988), and archaeological remains (Jain & Mehra, 1980) 
of mung bean in India. Wild forms of mung bean, V. radiata var. sublobata, show 
a wide area of distribution stretching from Central and East Africa, Madagascar, 
through Asia and New Guinea, to northern and eastern Australia (Tateishi, 1996). 
Mung bean is the most widely distributed among the six Asian Vigna species. It is of 
immense importance because of its adaptation to a short growing season, low water 
supply and poor soil fertility conditions. It is widely cultivated throughout South 
and Southeast Asia, including India, Pakistan, Bangladesh, Sri Lanka, Myanmar, 
Thailand, Philippines, Laos, Cambodia, Vietnam, Indonesia, Malaysia, South China 
and Taiwan. It is also grown to a lesser extent in many parts of Africa, the United 
States especially in Oklahoma and has been recently introduced in parts of Australia. 
In India green gram is mainly grown in the states of Orissa, Andhra Pradesh and 
Maharashtra. It is a photo- and thermosensitive crop. The best temperature for its 
cultivation is 30–35  °C with good atmospheric humidity. The wild V. radiata var. 
sublobata occurs in the Tarai Mountains, sub-Himalayan tract and sporadically in 
the western and eastern peninsular tracts of India (Arora & Nayar, 1984). Jain and 
Mehra (1980) indicated two races of V. sublobata (L.) Philipp, one closer to mungo, 
the other to V. radiata. Reciprocal differences were found in most of the interspe-
cific crosses. Tomooka, Lairungreang, Nakeeraks, Egawa, and Thavarasook (1991, 
1992) revealed the geographical distribution of growth types, seed characters and 
protein types in mung bean landraces collected from throughout Asia. In South and 
West Asia, mung bean strains characterized by small seeds with various seed col-
ours, including black, brown and green mottled with black and showing diverse 
growth habit and protein types were distributed. In the Southeast Asian countries, 
mung bean strains characterized by various sizes of seed with shiny green seed testa 
were distributed, showing tall plants with a high branching habit, late maturity and 
simple protein type composition. In East Asia, mung bean strains characterized by 
medium-sized dull green seed testa were distributed, showing short plants with an 
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early maturity, low-branching habit and relatively diverse (similar to that of West 
Asia) protein types.

Black gram or urd bean (Vigna mungo syn. Phaseolus mungo) is also an impor-
tant pulse crop of India. Black gram is widely adapted both to semi-arid and subtropi-
cal areas. The primary centre of origin of urd bean is India, with a secondary centre 
in Central Asia. Reference to it in Vedic texts such as Kautilya’s ‘Arthasasthra’ and 
in ‘Charak Samhita’ lends support to the presumption of its origin in India. India is 
the largest producer and consumer of black gram in the world. It has spread to other 
tropical areas in Asia, Africa and America. Distribution of black gram is compara-
tively restricted to wet tropics. It is abundantly grown in India, Pakistan, Sri Lanka, 
Myanmar and some parts of Southeast Asia, parts of Africa and America. In the West 
Indies it is grown mainly as a green manure crop. Black gram is a rich protein food, 
containing about 26% protein, or almost three times that of cereals. Black gram sup-
plies a major share of the protein requirement of the vegetarian population in the 
country. The biological value improves greatly when wheat or rice is combined with 
black gram because of the complementary relationship of the essential amino acids, 
such as arginine, leucine, lysine, isoleucine and valine phenylalanine. In addition to 
being an important source of human food and animal feed, it also plays an impor-
tant role in sustaining soil fertility by improving soil physical properties and fixing 
atmospheric nitrogen. Also, it being a drought-resistant crop, it is suitable for dryland 
farming and predominantly used as an intercrop with other crops.The wild form of V. 
mungo is V. mungo var. silvestris (Chandel, 1984; Smartt, 1990). In India, wild forms 
are widely distributed in the Konkan belt of the Western Ghats and in Khandala. Black 
gram is basically a tropical crop, but it is grown in both winter and summer in India.

Moth bean (Vigna aconitifolia syn. Phaselous aconitifolius Jacq.) is an impor-
tant legume crop of arid and semi-arid regions. Its wild form has been designated 
as V. aconitifolia var. silvestris (Dana, 1998). Moth bean is found growing wild in 
Pakistan, India and Myanmar and from the Himalayas in the north to Sri Lanka in 
the south. On this basis, it is considered to be native to India, Pakistan and Myanmar 
(Rachie & Roberts, 1974). In cultivated form it has spread to China, Indonesia, 
Malaysia, Africa and the southern United States. It is widely grown in the Indian 
subcontinent, Japan, Malaysia, Hong Kong, Singapore and particularly Thailand. 
In India it is grown in Rajasthan, western Uttar Pradesh, Punjab, Gujarat, Madhya 
Pradesh, Maharashtra and Karnataka. It is the most important pulse crop in 
Rajasthan. Amongst Vigna species, V. aconitifolia is undoubtedly the most drought 
tolerant and is commonly grown in arid and semi-arid regions, especially in the 
northwestern desert region of the Indian subcontinent.

Rice bean [Vigna umbellata syn. Phaseolus calcaratus Roxb., Vigna calcarata 
(Roxb.) Kurz., Azuki a umbellata (Thund.) Owhi.], also known as red bean, climb-
ing mountain bean and oriental bean, is considered to have originated in South and 
Southeast Asia, where it is a multipurpose crop. Its wild form (V. umbellata var. 
gracilis) is found in the Himalayas and central China to Malaysia. The cultivated 
forms seem to have originated from the wild populations occurring in the Indian 
subcontinent (Chandel & Pant, 1982). It is cultivated in India, China, Korea, Japan, 
Myanmar, Malaysia, Indonesia, Philippines, Indonesia, Mauritius, Fiji, Bangladesh, 
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Sri Lanka and Nepal (Purseglove, 1974; Rachie & Roberts, 1974). Rice bean is a 
short-day plant in India, grown predominantly in the northeastern region, particularly 
in Assam, Meghalaya, Manipur and to a limited scale in the eastern peninsular tract 
(Chhota Nagpur region, Bihar and parts of Orissa), western peninsular tracts (par-
ticularly the southern hills) and the subtemperate hilly region (Himachal Pradesh and 
Uttarakhand). Azuki or adzuki bean [Vigna angularis syn. Phaseolus mungo L. var. 
angularis, Phaseolus radiatus L. var. aurea Prain, Phaseolus angularis W.F. Wight, 
Dolichos angularis Wild. Azukia subtrilobata (Fr. et Sav.) Y. Takah., Azukia angula-
ris (W.) Ohwi.], also known as small red bean, is a multipurpose food legume. The 
origin of azuki bean is not clear, but it probably originated in Asia. Its wild types 
(V. angularis var. nipponensis) have been found from northern Honshu in Japan to 
Nepal. In the southern latitudes, V. angularis var. nipponensis occurs in mountain 
areas. It is recorded in China, India, Korea, Myanmar and Taiwan. It is cultivated 
in China, Korea, Japan, Taiwan and eastern Russia for human food. It was intro-
duced into the United States, Angola, India, Kenya, New Zealand, Zaire, Belgium 
and Argentina. Azuki bean is reported to be a short-day plant that performs best 
under warm and dry conditions. Wild V. trilobata is found from the Himalayas to Sri 
Lanka, and also in Myanmar, Malaysia, China, Pakistan, Afghanistan and Ethiopia. 
But in India it is cultivated only as a cover crop and for fodder. The tribal people of 
India eat seeds gathered from wild plants.

10.3 Genetic Resource Management

10.3.1 Exploration and Collection

In India, the systematic plant exploration and collection work was initiated as early 
as the 1940s with the establishment of the Plant Introduction unit in the Division of 
Botany, Indian Agriculture Research Institute (IARI), New Delhi. This ultimately 
developed into the National Bureau of Plant Genetic Resources (NBPGR) which 
gave great impetus to germplasm augmentation and conservation of Vigna species. 
The earliest efforts to collect mung bean landraces from all over India and Myanmar 
were made in 1925 (Bose, 1939). Concerted efforts to collect all Vigna species were 
made to collect the available landraces from various states of India during the late 
1960s and early 1970s under the PL-480 project operative at IARI. About 2600 germ-
plasm accessions have been collected from different agro-ecological areas (Malik 
et al., 2001). The areas explored include the whole of Gujarat and Rajasthan; parts of 
Bihar, Punjab, Madhya Pradesh, Uttar Pradesh, Himachal Pradesh, Andhra Pradesh, 
Orissa, Jammu and Kashmir, Haryana except the central zone; the northeastern, west-
ern and coastal regions of Maharashtra; southern districts of Karnataka and eastern 
Kerala; and major areas of Tamil Nadu. Most of the accessions assembled have the 
determinate growth habit. Wide variation was observed in seed size. The accessions 
with bold seeds were mainly collected from Maharashtra and Madhya Pradesh and 
those with more number of seeds per pod from Haryana, Rajasthan Bihar, Gujarat 
and Jammu and Kashmir. Likewise, in black gram, about 3000 germplasm accessions 
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were collected (Malik et al., 2001). Areas surveyed include Uttar Pradesh, northern 
and southern Bihar, Madhya Pradesh except southeastern parts; Vidharba, south-
ern and interior coastal Maharashtra, and parts of Himachal Pradesh, Punjab and 
Rajasthan. Other areas explored include Mysore, Tamil Nadu, Jammu & Kashmir, 
Goa, Karnataka, Manipur, Tripura, Nagaland, Kerala, Orissa, Rajasthan, Bihar, 
Haryana, Sikkim, West Bengal and Lakshadweep. Desired plant types were found in 
collections from Maharashtra, Gujarat, the southern and western parts of Orissa and 
Madhya Pradesh, while collection from western Rajasthan, the northeastern tract of 
Sikkim and the eastern Himalayan region generally have bold seeds.

In moth bean, a total of 1956 accessions have been assembled by NBPGR. 
The collection represents material largely from the states of Rajasthan, Gujarat, 
Maharashtra, Karnataka, western Uttar Pradesh, Punjab, Haryana and Madhya 
Pradesh. Moth bean collections possessed variation in growth habit, leaf location and 
pod and seed colour. The collections made from Rajasthan and Gujarat seems to be 
more promising. In India, intensive collection efforts from 1971 until now resulted 
in the assembly of 983 accessions of rice bean at NBPGR. These include primi-
tive cultivars/landraces primarily from the northeastern region and parts of Orissa, 
Bihar and West Bengal. Since 1971, several wild forms were also collected from the 
Khasi and Jaintia hills, Meghalaya; Shimla hills and Chamba in Himachal Pradesh, 
and Western Ghats (Arora, Chandel, Pant, & Joshi, 1980; Chandel, 1981). The 
exploration and collection efforts were undertaken in several countries in South and 
Southeast Asia and sizeable germplasm collections have been assembled particularly 
in Philippines, Indonesia and China. Attempts have also been made to build up the 
germplasm collection in Japan, Nepal and Sri Lanka (Singh et al., 2006).

Limited exploration and germplasm collection efforts have been made for azuki 
bean. Systematic collections need to be undertaken to assemble the entire diver-
sity available in the region, particularly from Korea, China and Japan. Only 151 
accessions comprising both indigenous and exotic germplasm have been collected 
by NBPGR. In India, the areas surveyed are parts of Himachal Pradesh and Uttar 
Pradesh. Intensive efforts to collect wild forms of rice bean were initiated during 
1971 (Arora et  al., 1980; Chandel, 1981). Between 1974 and 1994 intensive sur-
veys were made in 33 districts of 7 states, namely Gujarat, Rajasthan, Maharashtra, 
Madhya Pradesh, Bihar, Orissa and West Bengal, and wild Vigna species, namely  
V. aconitifolia var. silvestris, V. dalzelliana, V. hainiana Babu, Gopin. & S.K. 
Sharma, V. khandalensis, V. mungo var. silvestris, V. radiata var. setulosa, V. radiata 
var. sublobata and V. trilobata were collected (Dana, 1998). More explorations were 
conducted by NBPGR and other collaborators in parts of the Eastern and Western 
Ghats, central tracts of Orissa, Maharashtra, Rajasthan, Kerala, Tamil Nadu, Khasi 
hills, Himachal Pradesh hills, Uttarakhand hills, Jammu & Kashmir and the north-
eastern hill region (Bisht et  al., 2005). The collected germplasm comprised Vigna 
trilobata, V. radiata var. sublobata, V. vexillata (L.) A. Rich., V. mungo var. silvestris, 
V. dalzelliana, V. capensis (L.) Walp., V. khandalensis (V. grandis), V. pilosa Baker, V. 
wightii Benth. Ex Bedd., V. bourneae, etc. About 200 accessions of wild Vigna spe-
cies are presently being maintained at NBPGR Regional Station, Thrissur (Kerala), 
India. Under international programmes, grain legume crops including Vigna species 
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were also collected from Russia, Mali, Nigeria, Malawi and Zambia during 1977–
1980. Systematic exploration and collection of wild Asian Vigna species have been 
conducted by Japan in collaborations with Thailand, Sri Lanka and Vietnam since 
1989. Accessions of wild species collected are maintained in the gene bank of the 
Ministry of Agriculture, Forestry and Fisheries, Japan (Singh et al., 2006).

10.3.2 Germplasm Introduction

The NBPGR has introduced substantial germplasm accessions, including trial mate-
rial (Singh, Chand et al., 2001) of pulse crops from over 50 countries in the last two 
to three decades. In mung bean, several promising accessions were introduced with 
high grain yield, uniform and synchronized maturity, long pod with shiny seed coat, 
large seeds, resistance to biotic and abiotic stresses, and adaptation and appropriate 
maturity for different seasons from AVRDC (Taiwan), Thailand and Bangladesh. 
Some of the useful exotic germplasm accessions of black gram include promising 
genetic stocks with high yield potential, resistance to diseases and high value for 
quality traits introduced from AVRDC. Further, some promising introductions were 
made in rice bean from the United States (Gautam et al., 2000). Some accessions of 
rice bean procured from Taiwan had high yield, wide adaptability and drought resist-
ance. In azuki bean, a few accessions were introduced which possessed long pods 
and high grain yield. Emphasis was also given to the introduction of wild and related 
species of Vigna from France, Germany, Italy, Japan, Nigeria and the United States 
(Gautam et al., 2000). In general, South and Southeast Asia are very rich in genetic 
diversity of Asian Vigna species. India has also supplied the germplasm of Vigna 
species to various countries for research purposes.

Various international and national gene banks maintaining wide diversity of 
Vigna species are: International Center for Agriculture Research in the Dry Areas 
(ICARDA), Aleppo, Syria; Asian Vegetable Research and Development Centre 
(AVRDC), Shanhua, Taiwan; International Institute for Tropical Agriculture 
(IITA), Ibadan, Nigeria; Bogor Research Institute for Food Crops (BORIF), 
Bogor, Indonesia; Commonwealth Scientific and Industrial Organization (CSIRO), 
Canberra, Australia; Malang Research Institute for Food Crops (MARIF), Malang, 
Indonesia; National Plant Genetic Research Institute (NPGRI), University of 
Philippines, Los Banos, Philippines, and US Department of Agriculture (USDA), 
Southern Regional Plant Introduction Station, Georgia, and NBPGR.

10.3.3 Germplasm Evaluation

The germplasm accessions of mung bean maintained at NBPGR, New Delhi, have 
been systematically characterized and information is well documented for both 
qualitative and quantitative sets of descriptors (Bisht, Mahajan, & Kawalkar, 1998; 
Kawalkar et  al., 1996). Variation in different qualitative traits, namely growth 
habit, branching pattern, twining tendency, raceme position, pod pubescence and 
seed colour have been documented. The range of variation observed in major agro-
nomic traits is given in Table 10.3. A representative core set of 152 accessions has 



Table 10.3 Mean Range for Quantitative Traits of Vigna Species

Character Mung bean Urd bean Moth bean Rice bean

Days to 50% flowering 44.51 (33.00–78.00) 55.00 (41.00–73.00) 63.73 (32.00–84.00) 89.26 (62.00–123.00)
Day to 80% maturity 77.37 (53.00–104.00) 93.00 (67.00–130.00) 82.84 (57.00–105.00) 148.05 (95.00–180.00)
Plant height (cm) 84.10 (17.50–115.20) 94.47 (34.90–157.62) 26.45 (11.68–49.30) 147.46 (62.40–372.50)
Primary branches 3.14 (1.00–7.00) 4.12 (2.8–7.7) 6.09 (1.58–12.00) 5.15 (3.00–13.00)
Clusters/ plant (no.) 8.53 (3.00–28.00) 20.98 (9.00–73.67) 20.98 (9.00–73.67) 36.37 (9.00–124.00)
Post/ cluster (no.) 3.87 (2.58–7.5) 3.34 (2.18–6.97) 2.89 (1.49–7.67) 3.80 (2.00–7.00)
Pod plant (no.) 14.7 (2.80–50.10) 27.05 (2.18–76.95) 49.52 (24.83–128.33) 113.07 (38.00–296.00)
Pod length (cm) 6.59 (3.70–10.00) 4.71 (3.34–6.22) 3.95 (2.20–5.30) 10.11 (7.60–12.80)
Seeds per pod (no.) 10.86 (2.20–14.60) 6.51 (4.29–12.44) 6.75 (2.00–10.00) 9.11 (7.00–12.00)
100-seed weight (g) 3.15 (2.00–5.20) 3.03 (1.87–4.90) 2.90 (1.50–4.60) 8.35 (4.70–21.40)
Yield/plant (g) 3.55 (0.50–8.50) 3.75 (0.90–9.10) 6.17 (1.55–19.08) 22.35 (2.70–73.00)

Source: Data from Singh et al. (2006).
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been developed from 1532 well-characterized Indian mung bean accessions, with 
the primary objective of effective germplasm utilization (Bisht, Mahajan, & Patel, 
1998). This set has also been used for genetic enhancement in mung bean as the 
initial starting material (Bisht et  al., 2004). Improved mung bean cultivars have 
a narrow genetic base that limits yield potential and are poorly adapted to varying 
growth conditions in different agro-ecological conditions. The genetic potential of 
landrace germplasm accessions in the gene banks therefore needs better exploita-
tion. At NBPGR, genetic enhancement/pre-breeding studies in mung bean have 
been initiated involving diverse parents mainly from the cultivated gene pool, using 
the Bureau’s core collection as starting material. Germplasm enhancement aims at 
widening the genetic base of breeding materials by transferring desired genes from 
unimproved germplasm into enhanced varieties. Mild and decentralized selected 
material is maintained in target sites across the country. A total of 102 progenies 
were finally advanced to F5 for further selection and use by the breeders in National 
Agricultural Research System. The genetic potential of a few selected enhanced 
progenies with desired plant types and better yield traits were reported by Bisht et al. 
(2004). The study clearly demonstrates the potential of germplasm accessions con-
served in gene banks for use in large-scale base-broadening efforts in mung bean. 
The AVRDC in Taiwan maintains 5616 accessions of mung bean. These accessions 
are characterized and available for exchange and utilization. The accessions have 
diversity in morphological traits in relation to geographical regions (Chen, Cheng, 
Jen, & Tsou, 1999). Taiwan is also in the process of developing representative core 
collections of mung bean germplasm.

About 400 accessions of urd bean were characterized and evaluated at NBPGR. A 
high range of variability was observed for different agro-morphological traits (Singh, 
Kumar et al., 2001). Most of the accessions have semi-erect growth habit, medium 
terminal leaf length, medium petiole length, green and pubescent leaves, determi-
nate growth pattern, black seed colour and oval seed shape. Wide variability was 
also observed in quantitative characters like days to 50% flowering, days to maturity, 
number of pods per cluster, number of pods per plant, number of seeds per pod, 100-
seed weight and yield (Table 10.3).

About 2000 accessions of moth bean were characterized and evaluated at NBPGR 
Regional Station, Jodhpur (Singh, Kumar et al., 2001). A wide range of variation was 
observed for yield and other growth characters in moth bean, as given in Table 10.3. 
The varieties showed a wide variation in nodulation and nitrogenase activity (Rao, 
Venkateswarlu, & Henry, 1984). Varietal differences exist for resistance to insect 
pests and diseases (Dabi & Gour, 1988). A wide range of variation was also observed 
for quality characters (Singh et  al., 1974). Three promising accessions, namely 
PLMO39, PLMO55 and IC8851, have been identified amongst germplasm evaluated 
at NBPGR, Regional Station, Jodhpur. A wide range of variation for different agro-
morphological attributes, biochemical constituents, and disease and pest reaction 
was reported among 690 accessions of rice bean studied for 36 descriptors (Arora, 
1986; Arora et  al., 1980; Chandel, Joshi, Arora, & Pant, 1978; Chandel, Joshi, & 
Pant, 1982; Negi et al., 1998; Singh et al., 1974). Accessions of rice bean exhibited 
wide variation for important agronomic traits (Table 10.3). Early maturing types 
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were available in the material collected from Assam, India. The taller genotypes 
were observed from Orissa, profusely branched types from Mizoram and Manipur, 
types with more number of seeds per pod from Meghalaya and Mizoram, and collec-
tions with higher number of pods per peduncle, bold seeds and high grain yield from 
Manipur. The germplasm from Manipur possessed genotypes with several specific 
desirable traits. A high degree of polymorphism was noticed in the seed colour of 
rice bean. Several landraces had black, red, cream, violet, purple, maroon, brown, 
chocolate or mottled grains with greenish, brownish or ash grey background. A rare 
uniform light green colour occurred in a few accessions from the Mao hills border-
ing Manipur and Nagaland (Chandel, Arora, & Pant, 1988; Negi et al., 1998; Sarma, 
Singh, Gupta, Singh, & Srivastava, 1995).

Distinct seed coat colour groups in rice bean germplasm had considerable varia-
tion in epicotyl colour, shape and size of leaves, plant height, flowering time, flower 
colour, seed weight and protein content among the groups (Sastrapradja & Sutarno, 
1977). However, there was not much variation in characters occurring within each 
group of seed coat colour. Evaluation of azuki bean germplasm was undertaken in 
Korea from 1985 to 1987, and 800 accessions were evaluated for 68 descriptors. 
Variability has been recorded for growth habit, time of maturity and seed colour. 
Early maturing cultivars are strictly bushy and mostly erect, while late maturing 
types are highly viny and branched, and some are decumbent.

Diversity in morphological characters of 206 accessions of 14 wild Vigna species 
from India was assessed. Of these, 12 species belonged to Asian Vigna in the sub-
genus Ceratotropis and two were V. vexillata and V. pilosa, belonging to subgenus 
Plectotropis and Dolichovigna, respectively (Bisht et al., 2005). Data on 71 morpho-
logical traits, both qualitative and quantitative, were recorded. Data on 45 qualitative 
and quantitative traits exhibiting higher variation were subjected to multivariate anal-
ysis for establishing species relationships and assessing the pattern of intraspecific 
variation. Of the three easily distinguishable groups in the subgenus Ceratotropis, 
all the species in the mungo-radiata group except V. khandalensis, namely V. radiata 
var. sublobata, V. radiata var. setulosa, V. mungo var. silvestris and V. hainiana, 
showed greater homology in vegetative morphology and growth habit. The species, 
however, differed in other plant, flower, pod and seed characteristics. Intraspecific 
variation was higher in V. mungo var. silvestris populations and three distinct clus-
ters could be identified in multivariate analysis. V. umbellata showed more similarity 
to V. dalzelliana than V. bourneae and V. minima in the angularis-umbellata (azuki 
bean) group. Intraspecific variation was higher in V. umbellata than other species in 
the group. In the aconitifolia-trilobata (moth bean) group, V. trilobata populations 
were more diverse than V. aconitifolia. The cultigens of the conspecific wild species 
were more robust in growth, with large vegetative parts and often of erect growth 
with a three- to fivefold increase in seed size and seed weight, except V. aconitifolia, 
which has retained the wild-type morphology to a greater extent. More intensive col-
lection, characterization and conservation of species diversity and intraspecific varia-
tions, particularly of the close wild relatives of Asian Vigna with valuable characters, 
such as resistance to biotic/abiotic stresses and more pod-bearing clusters per plant, 
assumes great priority in crop improvement programmes.
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10.3.4 Germplasm Conservation

Vigna species have orthodox seeds that can be dried and stored for a long period 
with minimum loss of viability. A total of 10,551 accessions of various Vigna spe-
cies comprising mung bean (3704), urd bean (3131), moth bean (1486), rice bean 
(2045) and azuki bean (185) have been stored at −18°C in the long-term repository 
of the national gene bank at NBPGR, New Delhi. The world germplasm collections 
of mung bean, urd bean, moth bean, rice bean, azuki bean are maintained at various 
institutes worldwide (Table 10.4). Green gram germplasm accessions are maintained 
by more than 35 institutions globally, with a total holding of more than 25,000 acces-
sions. AVRDC, Taiwan, maintains 5616 accessions of mung bean. Limited germ-
plasm accessions of moth bean are also available in countries, such as Bangladesh, 
Belgium and Kenya. Active collections are being maintained at NBPGR, mung bean 
and urd bean at Akola (Maharastra), moth bean at Jodhpur (Rajasthan), rice bean at 
Bhowali (Uttarakhand), Shillong (Meghalaya) and Shimla (Himachal Pradesh). The 
working collections of Vigna species are also maintained at the Indian Institution of 
Pulse Research (IIPR), Kanpur, India and its coordinating centres (Asthana, 1998).

10.3.5 Germplasm Registration

Four accessions each of mung bean and urd bean and two accessions each of moth 
bean and rice bean have been registered and maintained at NBPGR (Table 10.5).

10.3.6 Germplasm Documentation

NBPGR has done characterization and preliminary evaluation of over 5000 acces-
sions of Vigna species and published seven catalogues or monographs on moth 
bean (3), mung bean (2) and rice bean (2). The ICAR Research Complex for North-
eastern Region, Meghalaya, India has also brought out a bulletin on rice bean (Sarma 
et al., 1995). A catalogue describing the mung bean and urd bean collection main-
tained by the Division of Tropical Crops and Pasture, CSIRO, Australia, has been 
published by Imrie, Beech, and Thomas (1981). Subsequently, a germplasm cata-
logue of 6093 AVRDC accessions of mung bean and other Vigna species according 
to various descriptors has been published (Tay, Huang, & Chen, 1989). To generate a 
standardized and uniform database, a minimal set of descriptors of agri-horticultural 
crops has been proposed by NBPGR (Mahajan, Sapra, Srivastava, Singh, & Sharma, 
2000) to characterize and evaluate the accessions of mung bean, urd bean, moth 
bean, rice bean and azuki bean.

10.4 Germplasm Utilization

Genetic resources are the basic raw material for crop improvement. Before 1960, most 
of the improved varieties were direct selections of germplasm collected from differ-
ent agro-climatic regions within and outside the country. Several high-yielding varie-
ties conferring resistance/tolerance to biotic and abiotic stresses have been developed 



Table 10.4 Registered Germplasm of Vigna Species in the National Gene Bank at the NBPGR

S. No. National 
identity

Donor 
identity

INGR 
No.

Year Pedigree Developing Institute Novel Unique Features

Mung bean
1 IC296679 Pentafoliate 97003 1997 LM 696×ML33 CCSHAU, Hisar Pentafoliate with five small leaflets
2 IC296771 BSN-1 00011 2000 Nagpuri Local OUAT, Bhubaneswar High seed weight, extra long pod and 

high protein content
3 IC0589309 IPM 205-7 11043 2011 IPM 02-1×EC398889 IIPR, Kanpur, Uttar Pradesh For super early maturity
4 IC0589310 IPM 409-4 11044 2011 PDM 288×IPM 03-1 IIPR, Kanpur, Uttar Pradesh Extra early maturity in different genetic 

background

Urd bean
1 IC553269 NA 07028 2007 Pant Urd-30 SVBPUA&T, Meerut Brown pod and yellow seed
2 IC296878 Amp 36-13 02008 2002 Amphidiplod of K 

851×MCK-2/
interspecific hybrid

CCSHAU, Hisar Dwarf semi-erect with ground pod-
bearing habit

3 NA VBG-09-012 11045 2011 V. mungo ADT 3×V. 
mungo var. silvestris

NPRC, Vamban, 
Pudukkottai, Tamil Nadu

Multipod formation at base of peduncle, 
leaf axils and base of clusters

4 NA VBG-04-014 11046 2011 Vamban 1×V. mungo var. 
silvestris

NPRC, Vamban, 
Pudukkottai, Tamil Nadu

Unique plant type

Moth bean
1 IC296803 CZM-32 01024 2001 Mutant of moth bean 

variety Jadia
CAZRI, Jodhpur Drought tolerant

2 IC432859 RMM-12 04095 2004 RMO-40 CAZRI, Jodhpur Single stem, early maturity, high influx 
of sodium ions in root from soil

Rice bean
1 IC0589127 PRR 2007-1 11020 2011 Naini X PRR 9402 GBPUA&T, Ranichauri, 

Uttarakhand
Narrow leaf, early maturity, determinate 

growth habit
2 IC0589128 PPR 2007-2 11021 2011 PRR 2×PRR 9301 GBPUA&T, Ranichauri, 

Uttarakhand
Narrow leaf, early maturity
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Table 10.5 Germplasm Holding of Asian Vigna at Main Centres Worldwide

Country Institute/Centre Accessions

Green gram
Bangladesh Bangladesh Agricultural Research Institute (BARI), Gazipur 

Plant Genetic Resources Centre, Bangladesh Agricultural 
Research Institute, Gazipur

498
85

Colombia Corporación Colombiana de Investigación Agropecuaria 
(CORPOICA), Palmira, Valle

135

Denmark Plant Genetic Resources Unit, Crop Improvement Division, 
Ministry of Agriculture, Kabul

280

Germany Gene Bank, Institute for Plant Genetics and Crop Plant 
Research (IPK), Gatersleben

61

India National Bureau of Plant Genetic Resources (NBPGR), New 
Delhi

3704

Indonesia Centre for Biology, Indonesian Institute of Sciences, Research 
and Development, Bogor Research Institute for Legumes and 
Tuber Crops (RILET), Malang

100
867

Japan Department of Genetic Resources, National Institute of 
Agrobioliological Resources (NIAB), Tsukuba-gun, Ibaraki-
ken

124

Kenya National Gene Bank of Kenya, Crop Plant Genetic Resources, 
Kikuyu

311

Nepal Nepal Agricultural Research Council (NARC), Lalitpur, 
Kathmandu

56

Nigeria International Institute of Tropical Agriculture (IITA), Ibadan 79
Pakistan Pakistan Agriculture Research Council, PGRI/NARC, 

Islamabad
754

Philippines National Plant Genetic Research Institute (NPGRI), IPB/
University of Philippines, Los Banos, Laguna

6869

Russian 
Federation

N.I. Vavilov Research Institute of Plant Industry (VIR), St 
Petersburg, Russian Federation

727

Taiwan Asian Vegetable Research and Development Centre (AVRDC), 
Shanhua

5616

USA Southern Regional Plant Introduction Station, USDA-ARS-
SAA, Griffin, GA

3891

Vietnam Food Crops Research Institute, Hai Duong 161
National Gene Bank Vietnam Agricultural Sciences 200
Institute of Agriculture Sciences of South Vietnam, Ho Chi 

Minh City
400

Black Gram
Bangladesh Bari, Gazipur 339

Plant Genetic Resources centre, Bangladesh Institute, Gazipur 106
Colombia Centro de Investigación La Selva, (CoRPOICA), Rionegro 

Antioquia
108

India NBPGR, New Delhi 3131
Nepal NARC, Lalitpur Kathmandu 83

(Continued)
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Table 10.5 Germplasm Holding of Asian Vigna at Main Centres Worldwide

Country Institute/Centre Accessions

Pakistan Pakistan Agriculture Research Council, PGRI/NARC, 
Islamabad

693

Russian 
Federation

VIR, St Petersburg 210

Taiwan AVRDC, Shanhua 481
USA Southern Regional Plant Introduction Station, USDA-ARS, 

Griffin, GA
300

Moth Bean
India Indian Grassland and Fodder Research Institute (IGFRI), Jhansi, 

Uttar Pradesh NBPGR, New Delhi
727

Kenya National Gene Bank of Kenya, Crop Plant Genetic Resources, 
Kenya

47

Russian VIR, St Petersburg 48
Federation
Taiwan AVRDC, Taiwan, Province of China 28
USA Southern Regional Plant Introduction Station, USDA-ARS, 

Griffin, GA
57

Rice Bean
China Institute of Crop Genetic Resources (CAAS), Beijing, China 1363
India NBPGR, New Delhi 1486
Indonesia Centre of Biology, Indonesian Institute of Sciences Research 

and Development, Bogor
100

Nepal NARC, Kathmandu 124
Philippines National Plant Genetic Resources Laboratory, IPB/UPLB 

College, Laguna
170

Taiwan AVRDC, Shanhua 72
USA Southern Regional Plant Introduction Station, USDA-ARS-

SAA, Griffin GA
41

Azuki Bean
Japan Iwate Agriculture Experiment Station, Morioka-shi, Iwate-ken 214

Tokachi Agriculture Experiment Station, Tokachi 2500
Germplasm Storage Centre, NIAB, Tsukuba 142

Taiwan AVRDC, Shanhua 125
China Institute of Crop Germplasm Resources, CAAS Beijing 3736
India NBPGR, New Delhi 185
Korea Plant Genetic Resources Research Programme 1212
Philippines National Plant Genetic Resources Laboratory, IPB/UPLB 

College, Laguna
161

Russian 
Federation

VIR, St Petersburg 140

USA Southern Regional Plant Introduction Station, Georgia 301

Sources: FAO (1998), IPGRI Directory of Germplasm Collections, Singh et al. (2006). Figures of NBPGR updated as of 
31 March 2012.

Table 10.5 (Continued)



Genetic and Genomic Resources of Grain Legume Improvement252

by using the germplasm resources. A large number of varieties have been developed 
in green gram in India. The earlier varieties were developed through selection. Type 
1 is the first variety developed through selection from Muzaffarpur (Bihar) in 1948. 
Shining mung 1, Amrit, Panna, Co 1, Co 2, Khargone 1, Krishna 11 are some of the 
important varieties developed through this method. Since the 1960s, hybridization has 
been used to achieve variability. ‘Type 44’ is the first variety of green gram devel-
oped through hybridization (Type 1×Type 49) in Uttar Pradesh, and was released in 
1962. Interspecific hybridization of green gram and black gram was attempted in the 
1990s to develop early maturing, disease-resistant varieties. Three such varieties were 
released in India, including Pang Mung 4 (Type 44×UPU 2), HUM 1 (PHUM 1×Pant 
U 30) and IPM 99–125 (Pant mung 2×AMP 36). Through mutation breeding, over a 
dozen green gram varieties have been developed. Dhauli is the first mutant variety of 
green gram released in 1979 from Orissa Agricultural University and Technology. The 
other varieties include Co 4, Pant Moong 2, TAP 7, BM 4, MUM 2, LGG 407, LGG 
450, TARM 1, TARM 2 and TARM 18, etc. The important varieties of green gram and 
their suitability to different agro-climatic zones and seasons are given in Table 10.6.

Table 10.6 Improved Varieties of Green Gram Recommended for Various Agro-Climatic 
Zones of India

Zone Varieties

Northwestern Plains 
Zone (Punjab, 
Haryana, Western 
Uttar Pradesh, 
Himachal Pradesh, 
Jammu & Kashmir)

Type 44 (year round), Pusa Baisakhi (Z), PS 16 (Z), PS 7 (Z), 
Vamban 1 (spring), K 851 (S,Z), SML 32 (Z), Pusa 9072 (Z), PS 
10 (Z), SML 668 (Z), Pant Moong 2,ML 267 (K), ML 337 (K), 
Pant Moong-3 (K), S 8 [Mohini (K)], Ganga 8 (K), Medium & 
Late: Varsha, Shining moong 1, RS 4, R 288–8, ML 1, ML 5, 
ML 9, T 51, Early: Pant Moong 1, ML 9, ML 131, Pusa 105

Northeastern Plains 
Zone (Eastern Uttar 
Pradesh, Bihar, 
Orissa, West Bengal, 
Assam)

Basant [PDM 84-143 (K,S], PDM 11 (Z), K 851 (S,Z), HUM 12 
[(Z) Malviya Janchetra], Pusa 9531 (S), PDM 54 (K, Z), TARM 
1 (S), PS 16 (K,Z), MG 368 (S), PDM 90239 (Z), Pusa Baisakhi 
(Z), Sunaina (Z), PDM 199 (Z), Panna [B105 (Z)], PS 10 (Z), 
PS 7 (Z), PDM 84–139 (Samrat (Z)], ML 337 (K), Pant Mung 
4 [UPM 92-1(K)], S 8 (K), Sonali (E), Pant Moong 1 (E), Pant 
Moong 2 (E), Koperagaon, (M&L), Amrit, BR 2 (M & L), B1 (E)

Central Zone (Madhya 
Pradesh, Gujarat, 
Maharashtra)

PDM 11 (S), Pant Mung 5 (Z), Pusa 9531 (Z), HUM-1 (S), HUM 2 
(Z), Pusa Baisakhi (R), PS 16 (Z), BM4 (K), PS 16 (K), Mohini 
(K), Gujarat 2, Sabarmati, Gujarat 12, Khargaon 1, Jalgaon 781, 
Krishna 11

Peninsular Zone 
(AP, Tamil Nadu, 
Karnataka, Kerala)

PDM 84–143 [Basant (K)], ML 337 (K), OUM-11-5 [Kamdeva 
(K)], PDM 54 (K), Jawahar 5 (K), PS 16 (K), Jawahar 45 
(K), K 851 (K), Mohini (K), LGG 456 (R), Pusa 9072 (R), 
Pusa Baisakhi (R), TARM 1 (S), Malviya Jyoti [HUM 1(S)], 
Koperagaon, Kondaveedu, KM 1, KM 2, PDM 1, PDM 2, ADT 
2, Co 2, Co 4, Co 65, Paiyur 1

Source: www.nsdl.niscair.res.in
S: Spring; Z: Zaid (March to June); R: Rabi (Winter); K: Kharif (Rainy season), E: Early; M & L: Medium & Late.

http://www.nsdl.niscair.res.in
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Mung bean is highly susceptible to yellow mosaic virus (YMV) in the north-
west and northeast plain zones, causing a yield loss of about 15–20%. The selection 
of YMV-resistant varieties is a must for economical green gram cultivation. Some 
of the resistant varieties include: Pant Mung 1, Pant Mung 2, Pant Mung 3, Pang 
Mung 4, Narendra Mung 1, PDM 11, PDM 54, PDM 139, M 267, ML 337, ML 
613, Basant, Samrat, HUM 1, HUM 2 and Pusa 9531. Powdery mildew (PM) also 
causes significant yield losses in green gram. TARM 1, TARM 2, TARM 18, CoG 4 
are some of the PM-resistant varieties. Pusa 105, Kamdeva, ML 131 are resistant to 
both PM and YMV. A mung bean variety Keumseongnogdu has been bred in Korea 
that has multiple disease resistance and high yield potential (Lee et  al., 1998). At 
AVRDC, the major thrust is on the improvement of mung bean germplasm enhanced 
for quality, including increased sulphur-containing amino acids and high yield under 
farmers’ field conditions. Over 60 improved varieties have been developed in black 
gram in India since the 1950s. Selection from local material has contributed over 
50% of the improved varieties. T9 is the first variety developed from Bareilly local 
in Uttar Pradesh (1948). Some other varieties developed through selection include 
T 27, T 65, T 77, Khargone 3, Mash 1-1, Mash 2, Naveen, ADT 1, D 6–7, D 75, 
Co 2, Co 3, etc. These varieties were later used in hybridization to develop high-
yielding and disease-resistant varieties. KM 1 (G 31×Khargone 3) and ADT 2 (AB 
1–33×ADT 1) are the first hybrids developed in black gram. Mutation breeding has 
also been used to develop six varieties in black gram to date. Co 4 is the first mutant 
black gram developed at Coimbatore in 1978. Other black gram varieties evolved 
through mutation include Manikya, TAU-1, TAU-2, TAU-4 and TAU-94-2. The 
important and improved varieties recommended for different agro-climatic zones of 
India are given in Table 10.7.

Several varieties in the past were developed in moth bean through single plant 
selections from local material (Singh & Thomas, 1970), which include B18-54 and 
B15-54 in Rajasthan; Nadiad 8-3-2 and Jagudan 9-2, Yawel 12-1 and Dhulia 3–5 in 
Maharashtra, and types 4301, 4312 and 4313 in Uttar Pradesh. Kumar and Rodge 
(2012) listed improved varieties of moth bean for different cropping regions of 
Rajasthan (Table 10.8).

The improved varieties of rice bean are listed in Table 10.9 along with their 
salient features. In addition, cultivars K1 and K16 developed in West Bengal hav-
ing a forage yield of 250–300 q/ha were found suitable for growing in West Bengal, 
Orissa, Tripura, Manipur, Meghalaya, Assam, Arunachal Pradesh, Kerala, Andhra 
Pradesh and Bihar (Rai & Patil, 1979). Tremendous possibilities exist for developing 
better cultivars through interspecific hybridization, such as V. umbellata×V. angu-
laris, using embryo culture (Ahn & Hartmann, 1978) and V. radiata×V. umbellata 
(Rushid, Smartt, & Haq, 1987).

Lumpkin and McClary (1994) reviewed the breeding and genetics of azuki bean. 
In Japan, breeding of azuki bean was initiated as early as 1894 (Konno & Narikawa, 
1978; Takahashi, 1917). A significant achievement in azuki bean breeding has also 
been made in Korean Republic and Taiwan. No improved cultivar so far has been 
released in India. Wide hybridization has been attempted among Vigna spp., aiming 
to incorporate certain characters, such as mung bean yellow mosaic virus (MYMV) 
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resistance from V. mungo to radiata, and disease and insect resistance from V. umbel-
lata to V. radiata (AVRDC, 1974). Successful hybridization between V. radiata 
and V. glabrescens resulted in four pure lines carrying moderate resistance to thrips 
(AVRDC, 1990). Tomooka et al. (2000) listed useful traits that could be transferred 
from V. mungo to V. radiata, such as resistance to diseases and insect pests, tolerance 
to adverse environments, non-shattering and high methionine content.

10.5 Limitations in Germplasm Use

The Asian Vigna species are very sensitive to photoperiod and temperatures, and 
these two variables have a very high bearing on the plant type and its adaptability 
in all these crops. Tickoo, Gajraj, and Manji (1994) elaborated this aspect in greater 
detail in the context of mung bean. Jain (1975) has argued that grain legumes as a 
group are still undergoing domestication. Not long ago in the cultivation history of 

Table 10.7 Improved Varieties of Black Gram Recommended for Various  
Agro-Climatic Zones of India

Zone Varieties Rabi Spring

Northwestern Zone 
(Punjab, Haryana, 
Rajasthan, 
Western Uttar 
Pradesh, 
Himachal 
Pradesh, Jammu 
& Kashmir)

T 9, T 65, PS 1, Pant U 35, Pant 
U 19, UG 218, Mash 48, Kulu 
4, HPU-6, Pusa 1, WBU 108 
(Sharda), IPU 94-1 (Uttar), 
Krishna

PDU 1, KU 
300

Northeastern Zone 
(Eastern Uttar 
Pradesh, Bihar, 
West Bengal, 
Orissa, Assam)

T 9, T 65, PS 1, T 27, T 77, T 22, 
T 127, Pant U 19, Pant U-30, 
BR 68, Kalindi (B76), Naveen, 
Azad Urad 2, Uttar, DPU-88-
31(Neelam)

Azad urd 1, 
UG 606, 
PDU 1 
(Basant 
Bahar)

Central Zone 
(Madhya 
Pradesh, Gujarat, 
Maharashtra)

T 9, Pusa 1, Khargone 3, Gwalior 
2, D 6–7, D 75, Mash 48, Pusa 
U 30, Ujjain-4, Barka (RBU 
38), TPU-4, TU 94-2, VB 3

PDU 1

Peninsular Zone 
(Andhra 
Pradesh, Tamil 
Nadu, Kerala, 
Karnataka)

T9. WBG 26. Pusa 1, ADT 1, 
Khargone 3. ADT 2, PDM 2, 
Co 2 CO 3, Co 4, Co 5, Pant U 
30, Mash 35-5, KM 2, Sharda, 
VB 3, Warangal 26

LBG 17 
(Krishnayya), 
LBG 685, 
LBG 402, 
Prabhava), 
LBG 623, 
LBG 645

Source: www.nsdl.niscair.res.in

http://www.nsdl.niscair.res.in


Table 10.8 Improved Varieties of Moth Bean Suitable for Different Cropping Regions in Rajasthan, India

Average 
Rainfall* 
(mm)

Region/
District

Cropped 
Area* (000 
ha)

Productivity* 
(kg/ha)

Varieties (Year of 
Release)

Maturity Important Traits (days)

170–200 Churu 293.00 470 FMO-96 (1996) 58–59 Erect upright and synchronized growth
Jaisalmer 170.00 121 CAZRI Moth-3 (2003) 60–62 Erect and synchronized growth, escapes YMV 

and seed yield 700–800 kg/ha
200–250 Bikaner 283.00 215 RMO-40 (1994) 61–62 Less biomass erect growth and seed yield 

600–750 kg/ha
Barmer 208.00 194 RMO-225 (1999) 64–65 Field tolerance to YMC, synchronized growth 

and seed yield 650–700 kg/ha
250–300 Ganganagar 0.23 446 CAZRI Moth-3 60–62 –

Hanumangarh 39.00 417 RMO-435 (2002) 64–65 Leaves dark green and seed yield 600–650 kg/ha
300–350 Jodhpur 159.00 251 CAZRI-Moth-2 (2002) 66–68 First variety from hybridization, dark green 

colour, seed yield 800–1200 Kg/ha
Nagaur 215.00 218 RMO-435 RMo-257 

(2005)
64–65 –

63–65 Good for seed and fodder, seed yield 600–
650 kg/ha

350–450 Sikar 0.93 289 CAZRI-Moth-1(1990) 73–75 Inputs responsive, natural source of YMV, seed 
yield 500–550 kg/ha

Pali 0.32 239
Jalore 0.32 470

Source: Data from Kumar and Rodge (2012).
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these crops, and even today in most areas of the growing countries, these crops are 
being grown under conditions not very much different from those of their wild rela-
tives. Under conditions of low input management, the evolution has been for the sur-
vival of the crop species itself rather than for grain yield from the breeders’ point of 
view. The silver lining has been the evolution of the symbiotic relationship of these 
crops with the nitrogen-fixing Rhizobia, and the subsequent high protein content of 
their seeds. However, it will always be debatable whether the evolution of symbiosis 
in grain legumes is a curse or a blessing. Other characters, such as indeterminate 
growth habit, photo- and thermoinsensitivity, low harvest index, shattering of ripe 
pods, seed hardiness and zero seed dormancy, have all evolved more via natural than 
human selection (Tickoo et al., 1994).

Further, information on intraspecific diversity, particularly in mungo-radiata com-
plex, is lacking. Information on intraspecific diversity is essential for effective use of 
wild species germplasm in crop improvement programmes. The use of wild relatives 
as sources of new germplasm is well established in breeding programmes for crop 
improvement on a worldwide level, yet the efficiency of introduction of useful traits 
from wild germplasm, such as disease resistance and other agronomic characters into 
elite cultivars, varies greatly. Wild Vigna species have great potential for use in crop 
improvement programmes. Bruchids are a serious pest of grain legumes during stor-
age. A wild mung bean accession, V. radiata var. sublobata was reported by AVRDC 
to be highly resistant to the bruchid Callosobruchus chinensis (L.) (Talekar, 1994). 
MYMV has been a major problem in mung bean. The wild species V. radiata var. 
sublobata is an important source for incorporating resistance to MYMV into culti-
vated varieties (Singh, 1994). In addition to the landraces and cultivars, the wild spe-
cies therefore need to be collected, characterized and conserved carefully for use in 
crop improvement programmes.

In common with most grain legume crop species, the wild related species do 
not form a particularly extensive or accessible genetic resource. Many of the wild 
related species, such as V. radiata var. sublobata, V. mungo var. silvestris, V. khan-
dalensis, V. trilobata, and V. hainiana, are gathered for their ripe seeds, which are 

Table 10.9 Rice Bean Cultivars Released and Notified at the National Level in India

S. No. Cultivar Year Area of Adoption Salient Features

1. RBL1 1987 Punjab Free from storage insects, YMV 
resistant

2. RBL6 1991 Northwest and 
Northeast regions

High yielding, early maturity, 
resistant to disease and pests, 
photosensitive or insensitive

3. PRR1 1996 Uttaranchal hills High yielding, black seeded, 
medium maturity

4. PRR2 1997 Northwest hills High yielding, yellow seeded, long 
pods, high protein (20.5%)

Source: Data from Singh et al. (2006).
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boiled and eaten by the tribal/local communities during famines. Their overexploita-
tion has threatened their occurrence in natural habitats. More variability in wild con-
specific forms is to be collected, characterized and conserved carefully in addition 
to the fullest range of landraces and cultivars. Greater exploitation of the conspe-
cific wild species with valuable characters is necessary to make extended cultivation 
economically attractive (Smartt, 1990). Some populations of V. mungo var. silvestris, 
V. radiata var. sublobata and V. radiata var. setulosa with valuable characters, such 
as more pod-bearing clusters and pods per cluster, have great agronomic potential 
for use in crop improvement programmes beside the resistance/tolerance to biotic 
stresses (Bisht et al., 2005). Sources of resistance available in V. radiata var. sublo-
bata (Singh, 1994) need to be exploited more vigorously with help from biotechno-
logical tools.

10.6 Vigna Species Genomic Resources

In recent years isozymes, random amplified polymorphic DNA (RAPD), restriction 
fragment length polymorphism (RFLP), amplified fragment length polymorphism 
(AFLP) and sequence tagged microsatellite site (STMS) markers have helped to 
enhance development of genome maps in various pulse crops. The analyses based 
on isozymes (Jaaska & Jaaska, 1990), four types of proteinase inhibitors (trypsin 
and chymotrypsin inhibitors, subtilisin and cysteine proteinase inhibitors; Konarev, 
Tomooka, & Vaughan, 2002), RAPD (Kaga, 1996; Tomooka, Lairungreang, & 
Egawa, 1996) and RFLP (Kaga, 1996) have confirmed that the azuki bean, mung 
bean and aconitifolia groups are distinct. Using RFLP, bruchid resistance gene has 
been mapped in a wild relative of V. radiata spp. sublobata in accession TC 1966 
(Young et  al., 1992). RAPD, RFLP and AFLP analyses of released cultivars and 
advanced lines revealed moderate to low levels of polymorphism. Principal com-
ponent analysis showed a high degree of genetic similarity among the cultivars, 
due to the high degree of commonality in their pedigree and narrow genetic base 
(Karihaloo, Bhat, Lakhanpaul, Mahapatra, & Randhawa, 2001).The transfor-
mation process is generally reported to be difficult in legumes; however, a highly 
efficient transformation system has been developed for azuki bean (Sato, 1995). 
The genome size of species in the subgenus Ceratotropis are among the small-
est for legumes, ranging from 470 to 560 Mbp for mung bean (Arumuganathan & 
Earle, 1991).Young, Danesh, Menancio-Hautea, and Kumar (1993) used RFLPs to 
map genes in mung bean that confer partial resistance to the PM fungus, Erysiphe 
polygoni. The results indicated that putative partial resistance loci for PM in mung 
bean can be identified with DNA markers, even in a population of modest size ana-
lysed at a single location in a single year.

Menancio-Hautea et al. (1993) investigated genome relationships between mung 
bean (V. radiata) and cowpea (V. unguiculata) based on the linkage arrangement 
of RFLP markers. A common set of probes derived from cowpea, common bean 
(Phaseolus vulgaris), mung bean and soybean (Glycine max) PstI genomic libraries 
were used to construct the genetic linkage maps. Results indicated that nucleotide 
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sequences are conserved, but variations in copy number were detected and several 
rearrangements in linkage orders appeared to have occurred since the divergence of 
the two species. Entire linkage groups were not conserved, but several large linkage 
blocks were maintained in both genomes. A genetic linkage map with 86 F2 plants 
derived from an interspecific cross between azuki bean (V. angularis, 2n=2x=22) 
and rice bean (V. umbellata, 2n=2x=22) was developed by Kaga, Ishii, Tsukimoto, 
Tokoro, & Kamijima (2000). Based on the lineage of the common mapped mark-
ers, 7 and 16 conserved linkage blocks were found in the interspecific map of azuki 
bean×V. nakashimae and mung bean map, respectively. Although the present map is 
not fully saturated, it may facilitate gene tagging, quantitative trait locus (QTL) map-
ping and further useful gene transfer for azuki bean breeding.

Lambrides, Lawn, Godwin, Manners, and Imrie (2000) reported two genetic link-
age maps of mung bean derived from the cross Berken ACC 41. Segregation dis-
tortion occurred in each successive generation after F2. The regions of distortion 
identified in the Australian maps did not coincide with regions of the Minnesota 
(USA) map. A simple and rapid method for isolating microsatellite loci in mung 
bean V. radiata based on the 5′-anchored PCR technique revealing 23 microsatel-
lite loci and 6 cryptically simple sequence repeats (SSRs) was reported by Kumar, 
Tan, Quah, and Yusoff (2002). These markers should prove useful as tools for detect-
ing genetic variation in mung bean varieties for germplasm management and cross-
breeding purposes. Humphry, Magner, McIntyre, Aitken, and Liu (2003) identified a 
major locus conferring resistance to the causal organism of PM, Erysiphe polygoni 
DC, in mung bean (Vigna radiata L. Wilczek) using QTL analysis with a popula-
tion of 147 recombinant inbred individuals. To generate a linkage map, 322 RFLP 
clones were tested against the two parents and 51 of these were selected to screen 
the mapping population. The 51 probes generated 52 mapped loci, which were used 
to construct a linkage map spanning 350 cM of the mung bean genome over 10 link-
age groups. Using these markers, a single locus was identified that explained up to 
a maximum of 86% of the total variation in the resistance response to the pathogen.

Construction of the first mung bean (V. radiata L. Wilczek) bacterial artificial 
chromosome (BAC) libraries was reported by Miyagi et  al. (2004). These BAC 
clones were obtained from two ligations and represent an estimated 3.5 genome 
equivalents. This correlated well with the screening of nine random single-copy 
RFLP probes, which detected on average three BACs each. These mung bean clones 
were successfully used in the development of two PCR-based markers linked closely 
with a major locus conditioning bruchid (Callosobruchus chinesis) resistance. These 
markers will be invaluable in facilitating the introgression of bruchid resistance 
into breeding programmes, as well as the further characterization of the resistance 
locus. Basak, Kundagrami, Ghose, and Pal (2004) developed a YMV-resistance-
linked DNA marker in V. mungo from populations segregating for YMV reaction. 
This was the first report of YMV-resistance-linked DNA marker development in any 
crop species using segregating populations. This YMV-resistance-linked marker is of 
potential commercial importance in resistance breeding of plants. Han et al. (2005) 
constructed a genetic linkage map from a backcross population of (V. nepalensis×V. 
angularis)×V. angularis consisting of 187 individuals. This moderately dense 
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linkage map equipped with many SSR markers will be useful for mapping a range of 
useful traits, such as those related to domestication and stress resistance. The map-
ping population will be used to develop advanced backcross lines for high-resolution 
QTL mapping of these traits.

A black gram linkage map was developed by Chaitieng et  al. (2006) and com-
pared with azuki bean. The study suggested that the azuki bean SSR markers can be 
widely used for Asian Vigna species and the black gram genetic linkage map will 
assist in improvement of this crop. Prakit, Seehalak, and Srinives (2009) reported 
the development and characterization of genic microsatellite markers for mung bean 
by mining a sequence database, and the transferability of the markers to Asian Vigna 
species. A total of 157 markers were designed upon searching for SSR in 830 tran-
script sequences. Cross-species amplification in 19 taxa of Asian Vigna using 85 
primers showed that amplification rates varied from 80% (V. aconitifolia) to 95.3% 
(V. reflexo-pilosa). These mung bean genic microsatellite markers will be useful to 
study genetic resource and conservation of Asian Vigna species. Souframanien and 
Gopalakrishna (2006) generated a recombinant inbred line mapping population (F8) 
by crossing V. mungo (cv. TU 94-2) with V. mungo var. silvestris, and they screened 
for MYMV resistance. The ISSR marker technique was employed to identify mark-
ers linked to the MYMV resistance gene. The ISSR8111357 marker was identified 
and validated using diverse black gram genotypes differing in their MYMV reac-
tion. The marker will be useful for the development of MYMV-resistant genotypes in 
black gram. Swag et al. (2006) isolated and characterized new polymorphic micro-
satellites in mung bean (V. radiata L.). The newly developed markers are currently 
utilized for diversity assessment within the mung bean germplasm collection of the 
Korean gene bank.

Kaga Isemura, Tomooka, and Vaughan (2008) studied the genetics of domestica-
tion of azuki bean. Genetic differences between azuki bean (V. angularis var. angu-
laris) and its presumed wild ancestor (V. angularis var. nipponensis) were resolved 
into QTLs for traits associated with adaptation to their respective distinct habits. 
A genetic linkage map constructed using progenies from a cross between Japanese 
cultivated and wild azuki beans covers 92.8% of the standard azuki bean link-
age map. Domestication of azuki bean has involved a trade-off between seed num-
ber and seed size: fewer but longer pods and fewer but larger seeds on plants with 
shorter stature in cultivated azuki bean being at the expense of overall seed yield. 
Genes found related to germination and flowering time in cultivated azuki bean may 
confer a selective advantage to the hybrid derivatives under some ecological condi-
tions and may explain why azuki bean has evolved as a crop complex in Japan. A 
genetic linkage map of black gram with 428 molecular markers was constructed by 
Gupta, Souframanien, and Gopalakrishna (2008) using an F9 recombinant inbred 
population of 104 individuals. The population was derived from an intersubspecific 
cross between a black gram cultivar, TU94-2, and a wild genotype, V. mungo var. 
silvestris. The current map is the most saturated map for black gram to date and is 
expected to provide a useful tool for identification of QTLs and for marker-assisted 
selection of agronomically important characters in black gram. Tuba, Gupta, and 
Datta (2010) identified markers tightly linked to the genes responsible for resistance 
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which will be useful for marker-assisted breeding for developing MYMV and 
PM-resistant cultivars in black gram. To make progress in genome analysis of the 
Asian Vigna cultigens, genetic linkage maps for azuki bean (V. angularis), mung 
bean (V. radiata), black gram (V. mungo) and rice bean (V. umbellata), among the 
fully domesticated Vigna species in Asia have been constructed using mapping popu-
lations between cultigens and their presumed wild ancestors mainly based on azuki 
bean genomic SSR markers (Kaga et al., 2010, www.gene.affrc.go.jp/pdf/misc/%20
international-WS_14_33.pdf). Newly developed cowpea genomic SSR markers and 
soybean EST-SSR markers have been integrated into the mung bean linkage map. 
Simultaneously, a detailed comparative genome map across four Asian Vigna species 
based on these linkage maps was constructed. Comparison of the order of common 
azuki bean SSR markers and RFLP markers on the linkage maps allowed detection 
of high-level macro-synteny among genomes of the four Asian Vigna species. The 
Asian Vigna comparative map is being used to develop a comparative map between 
Asian Vigna and soybean. Preliminary comparative approaches using sequence infor-
mation of azuki bean, cowpea and soybean SSR markers on the mung bean link-
age map could suggest presumed syntenic regions between mung bean and soybean. 
Although much more information is required to test the colinearity of markers, seg-
mentations of soybean linkage block are frequently observed at most mung bean 
linkage groups. Further efforts are, however, needed to make steady progress on the 
establishment of a genomic base for the Asian Vigna by collaboration in order to uti-
lize the gene and sequence information of soybean in Asian Vigna through compara-
tive genome analysis.

Isemura, Kaga, Tabata, Somta, and Srinives (2012) analysed the genetic differ-
ences between mung bean and its presumed wild ancestor for domestication-related 
traits by QTL mapping. A genetic linkage map of mung bean was constructed using 
430 SSR and EST-SSR markers from mung bean and its related species, and all these 
markers were mapped onto 11 linkage groups spanning a total of 727.6 cM. The pre-
sent mung bean map is the first map where the number of linkage groups coincided 
with the haploid chromosome number of mung bean. In total 105 QTLs and genes 
for 38 domestication-related traits were identified. The useful QTLs for seed size, 
pod dehiscence and pod maturity that have not been found in other Asian Vigna spe-
cies were identified in mung bean, and these QTLs may play an important role as 
new gene resources for other Asian Vigna species. The results provide a foundation 
that will be useful for improvement of mung bean and related legumes.

10.7 Conclusions

Asian Vigna species constitute an economically important group of cultivated and 
wild species, and a rich diversity occurs in India and other Asian countries. The five 
species of Asian pulses belonging to genus Vigna are closely related and are char-
acteristically small seeded. The green gram is a popular food throughout Asia and 
other parts of the world, and its level of consumption can be expected to increase. 
The black gram, although very popular in India, is less likely to generate sufficient 

http://www.gene.affrc.go.jp/pdf/misc/%20international-WS_14_33.pdf
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demand to stimulate production significantly outside its traditional areas. The azuki 
bean has generated interest as a pulse outside traditional areas of production and 
consumption; consumer demand for it could increase in the near future. Perhaps the 
most interesting future exists for rice bean, which has a high food value and toler-
ance to biotic and abiotic stresses. It possibly has the highest yielding capacity 
of any of the Asian Vigna and could become a useful crop if a sizeable consumer 
demand were built up. Moth bean has a future in India as a pulse crop. Vigna tri-
lobata is probably most useful as a forage crop in semi-arid conditions. The full-
est possible range of landraces and cultivars needs to be collected and conserved 
together with the conspecific wild related species. The wild germplasm resources 
have a great potential for widening the genetic base of Vigna gene pool by inter-
specific hybridization. The available genetic resources with valuable characters will 
therefore be required to make extended cultivation economically attractive.
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11.1 Introduction

Grass pea (Lathyrus sativus L.) is one of the hardiest but most underutilized crops 
for adaptation to fragile agro-ecosystems, because of its ability to survive under 
extreme climatic conditions such as drought, water stagnation and heat stress. It is 
an annual cool-season legume crop of economic and ecological significance in South 
Asia and sub-Saharan Africa, and to a limited extent in Central and West Asia, North 
Africa (CWANA), southern Europe and South America. It is grown mainly for eating 
purposes in India, Bangladesh, Nepal, Pakistan and Ethiopia, and for feed and fodder 
purposes in other countries (Campbell, 1997; Kumar, Bejiga, Ahmed, Nakkoul, & 
Sarker, 2011; Siddique, Loss, Herwig, & Wilson, 1996). Grass pea grains are a good 
protein supplement (24–31%) to the cereal-based diet of poor people in areas of its 
major production (Aletor, Abd-El-Moneim, & Goodchild, 1994). Globally, the area 
under grass pea cultivation is estimated at 1.50 million ha, with annual production 
of 1.20 million tonnes (Kumar, Bejiga et al., 2011). The crop has not attained much 
progress, due to the limited research on genetic and genomic resources available for 
grass pea in the gene banks of world. The knowledge that the excessive consumption 
of grass pea can lead to a neurological disorder in humans has further discouraged 
adaptive research on this orphaned crop. Therefore, conservation and sustainable 
use of genetic resources are of paramount importance for grass pea improvement. 
In this review, we discuss the present status of the genetic and genomic resources of 
Lathyrus and their importance in crop improvement.

11.2 Origin, Distribution, Diversity and Taxonomy

Grass pea is believed to have originated and become domesticated in the 
Mediterranean region and later spread to other continents. Vavilov (1951) described 
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Central Asia and Abyssinia as the centres of origin. However, archaeological evi-
dence revealed that its cultivation began in the Balkan Peninsula in the early Neolithic 
period. Kislev (1989) believed it originated in Southwest and Central Asia, later 
extending into the eastern Mediterranean region. Charred seeds of Lathyrus species 
were unearthed during excavation in Israel; it is believed that the seeds were carried 
to the Levant from the Aegean, in the Bronze Age, by traders or with Philistine immi-
grants (Mahler-Slasky & Kislev, 2010). However, the natural distribution of L. sativus 
is completely obscured by cultivation, making it difficult to precisely locate its cen-
tre of origin. The lack of morphological differences between wild and domesticated 
populations presumably arose from the dual-purpose use of L. sativus (grain and for-
age) in those areas to which it is native. The small-seeded accessions and subacces-
sions are primitive types with hard seeds, while selection for forage use has resulted in 
landraces with broad leaves, pods and seeds but low seed yield in the Mediterranean 
region. Grass pea underwent further diversification and domestication in the Near East 
and North African region. Diversity of Lathyrus species is found in Europe, Asia and 
North America, and extended to South America and East Africa, but the main centre of 
diversity remains primarily in the Mediterranean and Irano-Turanian regions (Kupicha, 
1981). It is adapted to temperate regions but can also be found at high altitudes in trop-
ical Africa. The genus contains many restricted endemic species present in all conti-
nents except Australia and Antarctica (Kupicha, 1981). The ecogeographic distribution 
of all but a few Lathyrus species is poorly understood, particularly those in the section 
Notolathyrus that are endemic to South America. There is a need for a detailed eco-
geographic study of the whole genus if it is to be effectively and efficiently conserved 
and utilized for grass pea genetic improvement. The most widely cultivated species 
for human consumption is L. sativus. Other species which are grown for forage and/
or grain purposes are L. cicera, L. ochrus, L. clymenum, L. tingitanus, L. latifolius and  
L. sylvestris (IPGRI, 2000). However, L. cicera is cultivated in Greece, Cyprus, Iran, 
Iraq, Jordan, Spain and Syria, and L. ochrus in Cyprus, Greece, Syria and Turkey 
(Saxena, Abd El Moneim, & Raninam, 1993). Some other species, like L. hirsutus and 
L. clymenum, are cultivated as minor forage or fodder crops in southern United States 
and Greece (Sarker, Abd El Moneim, & Maxted, 2001). Some species, such as L. odo-
ratus, L. latifolius and L. sylvestris, are grown as ornamental crops.

The genus Lathyrus, along with Vicia, Lens, Pisum, and Vavilovia, belongs to 
the tribe Vicieae of the subfamily Papilionoideae. The precise generic boundaries 
between these genera have been much debated, but the oroboid species are consid-
ered to form a bridge between Lathyrus and Vicia (Kupicha, 1981). There are about 
187 species in the genus Lathyrus (Allkin, Goyder, Bisby, & White, 1983, 1986). 
The taxonomic classification proposed by Kupicha (1983) dividing these species 
into 13 sections has been accepted, but the phylogenetic relationships among sec-
tions and species require further detailed investigation involving morphological, bio-
chemical, cytogenetic and molecular markers (Table 11.1). Based on morphology 
and taxonomy, Lathyrus species are classified into five groups: Clymenum, Aphaca, 
Nissolia, Cicerula and Lathyrus. The first four groups are composed of annual spe-
cies, whereas the remaining species, mostly perennials, are assigned to progres-
sively smaller, more numerous and better-defined sections (Asmussen & Liston, 
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1998; Bässler, 1966, 1973, 1981; Czefranova, 1971; Kenicer, Kajita, Pennington, 
& Murata, 2005; Kupicha, 1983). Based on morphological characters, Asmussen 
and Liston (1998) summarized the evolution of taxonomic identification of genus 
Lathyrus. On the basis of crossability relationships, Lathyrus species have been 
grouped into primary, secondary and tertiary gene pools (Jackson & Yunus, 1984; 
Kearney, 1993; Kearney & Smartt, 1995; Yunus & Jackson, 1991). The primary 
gene pool of Lathyrus is limited to cultivars, landraces and escapes from cultivation, 
while the secondary gene pool includes L. chrysanthus, L. gorgoni, L. marmoratus,  
L. pseudocicera, L. amphicarpus, L. blepharicarpus, L. chloranthus, L. cicera, 
L. hierosolymitanus and L. hirsutus. The remaining species are included in the  

Table 11.1 Classification and Distribution of the Genus Lathyrus

Section Species Important Species Geographical Distribution

Orobus 54 Europe, West and East Asia, 
Northwest Africa, North 
and Central America

Lathyrostylis 20 Central and Southern 
Europe, West Asia, 
Northwest Africa

Orobon 1 Anatolia, Caucasia, Crimea, 
Iran

Lathyrus 33 L. annuus, L. cicera, L. sativus, 
L. sylvestris, L. tingitanus, 
L. tuberosus, L. gorgoni, 
L. hirsutus, L. latifolius, L. 
odoratus, L. rotundifolius, L. 
blepharicarpus

Europe, Canaries, West 
and Central Asia, North 
Africa

Pratensis 6 L. pratensis Europe, West and Central 
Asia, North Africa

Aphaca 2 L. aphaca Europe, West and Central 
Asia, North Africa

Clymenum 3 L. clymenum, L. ochrus Mediterranean
Orobastrum 1 Mediterranean, Crimea, 

Caucasia
Viciopsis 1 Southern Europe, Eastern 

Anatolia, North Africa
Linearicarpus 7 Europe, West and Central 

Asia, North and East 
Africa

Nissolia 1 Europe, West and Central 
Asia, Northwest Africa

Neurolobus 1 West Crete
Notolathyrus 23 Temperate South America, 

Southeast USA

Source: Kupicha (1983).
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tertiary gene pool, which can only be exploited for crop improvement purpose with 
the help of bridging species and tissue culture techniques. The progenitor of L. sati-
vus remains unknown, but several Mediterranean candidate species, namely L. cic-
era, L. marmoratus, L. blepharicarpus and L. pseudocicera, qualify as candidates 
since they resemble the cultigens morphologically. However, L. cicera is the most 
probable progenitor of L. sativus as it is morphologically and cytogenetically closest 
to the cultivated species (Jackson & Yunus, 1984; Hopf, 1986).

11.3 Cytotaxonomy and Genomic Evolution

Most species in the genus Lathyrus are true diploids (2n=2x=14 chromosomes) 
with some degree of variation in karyotype (Campbell, 1997; Ozcan, Hayirlioglu, & 
Inceer, 2006; Rees & Narayan, 1997; Yunus, 1990). There are a few polyploid spe-
cies among the perennials including hexaploid (L. palustris, 2n=6x=42 chromo-
somes) and tetraploid (L. venosus, 2n=4x=28 chromosomes) (Darlington & Wylie, 
1995; Narayan & Durrant, 1983). Natural and induced autopolyploids have also been 
reported in L. sativus, L. odoratus, L. pratensis and L. veosus (Khawaja, Sybenga, & 
Ellis, 1997). Polyploid and aneuploid plants reported in Lathyrus species showed the 
same basic chromosome number (Broich, 1989; Khawaja, 1988; Murray, Bennett, & 
Hammett, 1992). This reveals that a conserved basic chromosome number remains 
a common phenomenon in Lathyrus with polyploidy as rare exception (Kalmt & 
Wittmann, 2000; Seijo & Fernandez, 2001). Within the species, variation has been 
reported in chromosome size, centromere location and the number, size and loca-
tion of secondary constrictions, in spite of the identical number of chromosomes 
(Barpete, Parmar, Sharma, & Kumar, 2012; Battistin & Fernandez, 1994; Broich, 
1989; Fouzard & Tandon, 1975). Variation in chromosome size is often the result 
of amplification or deletion of a chromatin segment during species diversification. 
Intra- and interspecific variations in chromosome size indicate marked variation 
in the amount of DNA affecting the complement size; a high percentage of DNA 
is moderately repetitive (Rees & Narayan, 1997). The nuclear 2C DNA amount is 
reported to be in the range of 13.8–15.6 pg in L. sativus (Ali, Meister, & Schubert, 
2000; Nandini, Murray, O’Brien, & Hammett, 1997). There are reports of variation 
in DNA content involving euchromatin and heterochromatin, as well as repetitive 
and nonrepetitive DNA sequences (Battistin, Biondo, & May, 1999). Despite this 
stability in chromosome number, large variations in chromosome size have played 
an important role in the genomic evolution of Lathyrus species, which are associated 
with a fourfold variation in 2C nuclear DNA amount (Narayan & Rees, 1976).

11.4 Phylogenetic Relationships and Genetic Diversity

Several methods have been used to study the phylogenic relationships among differ-
ent Lathyrus species including morphological traits (Shehadeh, 2011), crossability 
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(Yunus, 1990), karyotype analysis (Battistin & Fernandez, 1994; Murray et  al., 
1992; Schifino-Wittman, Lan, & Simioni, 1994), chromosome banding and in situ 
hybridization (Murray et  al., 1992; Unal, Wallace, & Callow, 1995) and molecu-
lar markers (Badr, ElShazly, ElRabey, & Watson, 2002; Ceccarelli, Sarri, Polizzi, 
Andreozzi, & Cionini, 2010; Croft, Pang, & Taylor, 1999). Yunus (1990) estab-
lished phylogenetic relationships among Lathyrus species by crossability studies. 
Ali et al. (2000) found that karyotype features reflect well the phylogenetic relation-
ships among Lathyrus species belonging to different sections proposed by Kupicha 
(1983). Isozyme patterns on 18 accessions of five Lathyrus species allowed an unex-
pected grouping between L. pubescens and L. sativus (Schifino-Wittmann, 2001). By 
using the storage protein gene sequences, de Miera, Ramos, and Pe´rez de la Vega 
(2008) showed that L. sativus, L. annuus, L. cicera and L. tingitanus, all belonging 
to section Lathyrus, formed a monophyletic group, while L. latifolius of the same 
section is included in the group formed by L. clymenum and L. ochrus of the sec-
tion Clymenum. Asmussen and Liston (1998) conducted a detailed investigation of 
Lathyrus to date which allowed a review of the classification proposed by Kupicha 
(1983). Kenicer et al. (2005) used nuclear ribosomal and chloroplast DNA to study 
the systematics and biogeography of 53 Lathyrus species. The results supported gen-
erally the recent classification based on morphological characters and resolved the 
clades between Lathyrus and Lathyrostylis sections, but questioned the monophyly 
of the section Orobus sensu (Kupicha, 1983). These studies have also brought some 
suggestions of the geographic origin of different species. Ceccarelli et  al. (2010) 
used satellite DNA to show the close phylogenetic relationship between L. sylvestris 
and L. latifolius, confirming the results of Asmussen and Liston (1998) using chloro-
plast DNA study.

Further, molecular approaches have been increasingly applied to plant systemat-
ics and phylogenetics to elucidate relationships between allied taxa (Soltis, Soltis, & 
Doyle, 1992). Molecular diversity analysis supported a close phylogenetic proxim-
ity between L. sativus and L. cicera based previously on morphological and hybridi-
zation studies (Jackson & Yunus, 1984; Kupicha, 1983; Yunus & Jackson, 1991). 
Chtourou-Ghorbel, Lauga, Combes, and Marrakchi (2001) concluded that random 
amplified polymorphism DNA markers (RAPDs) are equivalent to restriction frag-
ment length polymorphisms (RFLPs) in assessing the genetic diversity of Lathyrus 
species belonging to the sections Lathyrus and Clymenum. Recently, six amplified 
fragment length polymorphism (AFLP) markers along with 47 morphological char-
acters were used to clarify the taxonomic and phylogenetic relationships within and 
between the sections and the species of the genus Lathyrus, subjecting 184 acces-
sions belonging to 9 predefined sections and 144 originating from the Mediterranean 
basin and Caucasus, Central and West Asia regions (Shehadeh, 2011). The results 
showed that the sections Aphaca, Clymenum, Lathyrostylis and a large part of the 
Lathyrus section could be differentiated either by using morphological characters or 
AFLP markers. Genetic diversity of numerous Lathyrus species has been assessed 
with DNA markers in addition to morphological analyses (Belaid, Chtourou-
Ghorbel, Marrakchi, & Trifi-Farah, 2006; Chtourou-Ghorbel et al., 2001; Croft et al., 
1999; Lioi et  al., 2011; Shehadeh, 2011). Different levels of diversity have been 
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detected in different species using isozymes (Ben-Brahim, Salho, Chtorou, Combes, 
& Marrakcho, 2002; Kiyoshi, Toshiyuki, & Blumenreich, 1985), RFLPs (Chtourou-
Ghorbel et  al., 2001), RAPDs (Barik, Acharya, Mukherjee, & Chand, 2007; Croft 
et  al., 1999), chloroplast DNA restriction sites (Asmussen & Liston, 1998) and 
AFLPs (Badr et  al., 2002). Chowdhury and Slinkard (2000) studied genetic diver-
sity in 348 accessions and subaccessions of L. sativus from 10 geographical regions 
using polymorphism for 20 isozymes. They observed the closest genetic distance 
between populations from the Near East and North Africa. Populations from South 
Asia and Sudan–Ethiopia, though geographically widely separated, exhibited a 
closer genetic distance from each other than from other regions.

11.5  Erosion of Genetic Diversity from the  
Traditional Areas

Genetic diversity of Lathyrus has experienced serious genetic erosion, largely as a 
result of intensification of agriculture, overgrazing, decline of permanent pastures 
and disappearance of sclerophyll evergreen trees, as well as maquis and garrigue 
shrub vegetation in the Mediterranean region (Maxted & Bisby, 1986, 1987). Many 
weedy Lathyrus species are associated with traditional farming systems that are also 
disappearing rapidly throughout the region. Most of the dry lands of the CWANA 
region are also subject to the adverse effects of climate change, which is amplify-
ing the biodiversity loss. Turkey used to have the richest diversity area of Lathyrus 
and was reported to cultivate L. sativus, L. cicera, L. clymenum, L. hirsutus and L. 
ochrus (Cetin, 2006; Davis, 1970; Genc & Sahin, 2001; Tosun, 1974). The absence 
of L. cicera and L. ochrus among the encountered species in the recent exploration 
in Turkey clearly indicates that the cultivated Lathyrus materials had been exposed 
to genetic erosion during the last 50 years (Basaran, Asci, Mut, Acar, & Ayan, 2011). 
In South Asia, the generic diversity of Lathyrus has suffered a great deal from the 
government policy of ban on its sale, causing serious erosion of landraces from the 
region. There has been a growing interest among germplasm curators for in situ and 
ex situ conservation of plant genetic resources. In situ conservation, whether in a nat-
ural reserves or on farms, has so far not been adopted for Lathyrus species, except 
for an initial attempt in Turkey in the Kaz Dag, Amanos and Ceylan Pínner region 
(Ertug & Tan, 1997). Maxted (1995) proposed the establishment of sites for reserves 
for Vicieae species in Syria and Turkey, but these ideas have not yet been initiated. 
There is an urgent need to make encouraging steps to establish reserves both for the 
wild species of Lathyrus and on-farm projects to conserve the ancient landraces of 
cultivated species in the region. The GEF-ICARDA regional project on ‘conserva-
tion and sustainable use of dryland agro-biodiversity’ concluded that natural habitats 
in most of the monitoring areas surveyed in Jordan, Lebanon, Palestine and Syria 
are under severe threat by overgrazing and habitat destruction (Amri et  al., 2005), 
resulting in the recommendation of areas for in situ conservation of wild relatives of 
cereals and legumes including Lathyrus. Many annual Lathyrus species are weedy 
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species of disturbed land, making them very vulnerable to changes in human activity 
such as changes in agricultural practice, increased or decreased stocking levels and 
application of herbicides. With the limited adoption of new cultivars, it is believed 
that landraces of grass pea are still widely grown by farmers under harsh conditions 
in spite of the drastic reduction in area under its cultivation. Traditional cultivation 
of L. cicera is disappearing rapidly in the Mediterranean basin, but one area where 
cultivation is maintained is in the Djebel Al-Arab of southern Syria, which needs 
on-farm conservation in place. Conservation initiatives for the wild Lathyrus species 
need to be expedited before potentially valuable sources of genetic variability are 
permanently lost (Gurung & Pang, 2011).

11.6 Status of Germplasm Resources Conservation

Sporadic attempts were made in the past to conserve the genetic diversity of the 
genus Lathyrus using ex situ and in situ methods. Recently, conservation of Lathyrus 
genetic resources has attracted more attention because of their future role under the 
climate change scenario. The Global Crop Diversity Trust (GCDT) in collaboration 
with ICARDA has developed a long-term conservation strategy for the major food 
legumes including Lathyrus (GCDT, 2009). In the regional strategies, Lathyrus was 
given lower priority compared to the major crop species such as cereals. In South 
Asia it ranked 22nd of the top 24 highest priority crop species and in Ethiopia 19th 
of the 21 highest priority crop species. In the rest of the world it ranks as of only 
negligible value.

Past explorations have led to large ex situ collections of Lathyrus germplasm in 
different national and international gene banks (Arora, Mathur, Riley, & Adham, 
1996; Mathur, Alercia, & Jain, 2005; Panos, 1940, 1957; Panos, Sotiriadis, & Fikas, 
1961; Zalkind, 1933, 1937). Recent compilation of the Lathyrus germplasm collec-
tions in different countries indicated 463 accessions in Algeria, 1001 in Australia, 
2432 in Bangladesh, 31 in Cyprus, 96 in Ethiopia, 4387 in France, 445 in Germany, 
307 in Hungary, 2580 in India, 36 in Jordan, 149 in Nepal, 130 in Pakistan, 1240 in 
Russia, 307 in Spain and 529 in USA (Mathur et al., 2005). India has 2720 acces-
sions of grass pea in the national gene bank at New Delhi and 2604 accessions of 
active collections at Indira Gandhi Krishi Vishwavidyalaya, Raipur (Pandey et  al., 
2008). Currently, there are 586 accessions in the grass pea collection maintained at 
the Institute of Biodiversity Conservation in Ethiopia (Girma & Korbu, 2012). Of 
these, 560 accessions are maintained under long-term storage. The grass pea collec-
tion in the Ethiopian gene bank contains predominantly 45% accessions from the 
Shewa region (Shiferaw, Pe, Porceddu, & Ponnaiah, 2011). Thus, it would be useful 
to increase representative samples from other regions to capture the maximum diver-
sity. The Lathyrus database produced as a result of the Lathyrus global conservation 
strategy contains around 23,000 accessions with main collections held by University 
of Pau in France, ICARDA, NBPGR and Genetic Resources Center in Bangladesh 
(Tables 11.2 and 11.3). Global collection at ICARDA represents 45 species from 45 
countries. This collection is unique because 45% and 54% of the accessions are wild 
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relatives and landraces, respectively, mainly of L. sativus, followed by L. cicera and 
L. ochrus. Furthermore, it is necessary to study the genetic diversity of the available 
collections in order to understand their full utilization potential and possible gaps 
(Maxted, Guarino, & Shehadeh, 2003). ICARDA has characterized more than 60% 
accessions for main descriptors (Robertson & Abd-El-Moneim, 1997).

A comprehensive global database of Lathyrus species originating from the 
Mediterranean basin, Caucasus, Central and West Asian regions has recently been 
developed using accessions of the major gene banks and information from eight her-
baria in Europe. This global Lathyrus database was used to conduct gap analysis to 
guide future collection missions and in situ conservation efforts for 37 priority spe-
cies. The results showed the highest concentration of priority species in the countries 
of the Fertile Crescent, France, Italy and Greece. The region extending from south 

Table 11.2 Major Ex Situ Lathyrus Collections in the World

Country Total  
Accessions

Wild  
Relatives

Landraces Breeding 
Materials

ICARDA 3327 45% 54% 0.1%
France 4477 n.a. n.a. n.a.
India 2619 3% 85% 12%
Bangladesh 1841 – 100% –
Chile 1424 n.a. n.a. n.a.
Australia 986 28% 39% 19%
Russia 848 43% 30% 18%
Canada 840 10% 90% –
USA 669 n.a. n.a. n.a.
Ethiopia 588 2% 75% 25%
Germany 568 40% n.a. n.a.
Spain 543 n.a. n.a.
Algeria 437 n.a. n.a.
Hungary 394 1% 22% n.a.
Spain 377 14% 86% –
Bulgaria 368 1.6% 80%. n.a.
Turkey 363 94% n.a. n.a.
Nepal 164 – 100% –
Armenia 157 98%. 1% 1%
Pakistan 130 n.a. n.a. n.a.
Portugal 199 5%. 30% n.a.
China 80 n.a. n.a. n.a.
Azerbaijan 66 47% 33%. 20%.
Czech Republic 52 75% – 25%
Greece 47 – 2% 98%
Slovakia 47 – 87% 13%
Cyprus 31 – 100% –
Poland 10 – – 100%

Source: Shehadeh (2011).
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central Turkey, through the western Mediterranean mountains of Syria to the north-
ern Bekaa valley in Lebanon, and precisely the area around the Lebanese/Syrian 
border near the Tel Kalakh region in Homs, was identified as the hot spot for estab-
lishing genetic reserves. The gap analysis for ex situ conservation shows that only 6 
of the 37 priority species are adequately sampled, showing a need for more collec-
tion missions in the areas and for collecting closely related wild species of Lathyrus. 
Six priority species have no ex situ collections, requiring targeted collection mis-
sions. An ecogeographic survey revealed that conservation efforts need to be focused 
on L. sativus, L. cicera and L. ochrus and other species over the whole of their native 
distribution (GCDT, 2009; Hawtin, 2007). The Near East and North Africa exhibited 
the greater genetic diversity. Thus, countries of this region should be explored further 
for the additional genetic variability of grass pea (Table 11.4).

11.7 Germplasm Evaluation

Evaluation of Lathyrus germplasm has been undertaken sporadically for differ-
ent traits to identify useful donors for important parameters including low ODAP 
content, appropriate phenology and high biomass including yield-related traits 
(Campbell et  al., 1994; Grela, Rybinski, Klebaniuk, & Mantras, 2010; Hanbury, 

Table 11.3 Present Status of Ex Situ Lathyrus Collections in Major Gene Banks

Species Institute

AARI ATFC ICARDA IPK IBEAS W-6

L. annuus 44 6 68 2 0 3
L. chrysanthus 1 1 3 0 0 0
L. cicera 90 141 182 63 785 31
L. clymenum 1 10 2 25 0 20
L. gorgoni 27 6 60 2 0 1
L. hierosolymitanus 22 13 104 1 0 4
L. hirsutus 2 9 17 8 0 16
L. Latifolius 0 1 1 13 326 10
L. marmoratus 4 0 33 0 0 0
L. ochrus 1 85 136 46 0 23
L. odoratus 2 3 3 6 0 23
L. pseudocicera 8 1 65 1 0 0
L. sativus 17 572 1627 170 2382 222
Other Lathyrus sp. 300 172 698 108 984 111
Total 519 (32) 1020 (42) 3001(44) 445 4477 (6) 464 (23)

Numbers in brackets indicate the number of other Lathyrus species conserved. 
AARI, Aegean Agricultural Research Institute, Menemen, Turkey; ATFC, Australian Temperate Field Crop collection, 
Horsham, Australia; IBEAS, IBEAS, Université de Pau et des Pays de l’Adour, Pau, France; W-6, Western Regional Plant 
Introduction Station, Pullman, Washington, USA; ICARDA, International Center for Agricultural Research in the Dry 
Areas, Syria; IPK, Institut fur Pflanzengenetik und Kulturpflanzenforschung (IPK), Getersleben, Germany. 
Source: Shehadeh (2011).



Genetic and Genomic Resources of Grain Legume Improvement278

Sarker, Siddique, & Perry, 1995; Kaul, Islam, & Humid, 1986; Pandey, Chitale, 
Sharma, & Geda, 1997; Pandey, Kashyap, Geda, & Tripathi, 1996; Pandey et  al., 
1995; Pandey et  al., 2008; Sharma, Kashyap, Chitale, & Pandey, 1997). A total of 
1082 accessions belonging to 30 species were evaluated for 21 descriptors and agro-
nomic traits at ICARDA (Robertson & Abd-El-Moneim, 1997). The results have 
shown a wide range of variability for various traits (Table 11.5). For ODAP content, 
studies have shown a wide range of variation within the existing germplasm, ranging 
from 0.02% to 2.59% (Table 11.6). Hanbury, Siddique, Galwey, and Cocks (1999) 
reported a range of 0.04–0.76% for ODAP content in a set of 503 accessions pro-
cured from ICARDA. Pandey et  al. (1997) reported a range of 0.128–0.872% for 
ODAP content among 1187 accessions. A detailed catalogue of grass pea germplasm 
comprising characterization and evaluation information on 63 traits for 1963 acces-
sions has recently been published in India (Pandey et  al., 2008). A wide range of 
variability was observed for all the traits of interest, such as crop duration, plant 
height, pods per plant, seeds per pod, seed weight, biomass score, seed yield and 
ODAP content (0.067–0.712%). Some of the accessions having <0.1% ODAP 
are IPLY9, Prateek, AKL 19, BioL202, BioL203, Ratan, No. 2203 and No. 2208. 
Kumar, Bejiga et al. (2011) also screened 1128 accessions of L. sativus and found 
a wide range (0.150–0.952%) for ODAP content. Only two accessions, IG118563 
(0.150%) and IG64888 (0.198%), had low ODAP content. Multi-location evaluation 
of grass pea germplasm at ICARDA between 1999 and 2006 indicated the maxi-
mum variability for ODAP content in Ethiopian germplasm (Table 11.7). Grass pea 
germplasm from Ethiopia and the Indian subcontinent is generally high in ODAP 
(0.7–2.4%) as compared to 0.02–1.2% in germplasm from the Near East (Abd-El-
Moneim, Van-Dorrestein, Baum, & Mulugeta, 2000). A recent study by Gutierrez-
Marcos, Vaquero, de Miera, and Vences (2006) on 2987 individuals belonging to 110 

Table 11.4 Possible Gaps in Global Lathyrus Ex Situ Conservation

Country L. sativus L. cicera L. ochrus

Egypt + +
Iraq + +
Iran + +
Tunisia + +
Greece +
Turkey +
Russia Black Sea Coast and Volga-Kama region
Iraq Kurdish area
Bangladesh Syleth area (high altitude)
India Northeast and Eastern parts
Ethiopia High altitude areas, recently opened by roads
Afghanistan Northeast and Central part
Spain Almeria (Andalucía) and Murcia

Source: GCDT (2009).



Table 11.5 Variability for Agro-morphological Traits in Major Lathyrus Species Evaluated at ICARDA, Aleppo, Syria

Trait L. cicera L. ochrus L. sativus

Mean Min Max Mean Min Max Mean Min Max

Days to 50 % flowering 123.9 115 136 120 115 145 126 119 142
Days to 90% maturity 163.9 156 181 157 149 184 173.8 145 189
Days to 90% podding 128.3 122 148 124 118 154 137.5 122 154
Plant height (cm) 35.4 24.1 49.8 34.7 23 48 41.1 5 60
Height to first flower (cm) 8.1 2.4 13.2 13 7 19 9.2 3 17
Seeds per pod 3.8 2.3 9.6 4.6 3.32 5.7 3.1 1.48 6.5
Harvest index (%) 33.8 12.7 52 36.2 12.7 48.6 19.5 1.9 54.7
1000-seed weight (g) 83.1 13.9 116.7 121.3 57.2 156.3 86.8 34.5 225.9
Seed yield (kg/ha) 1120 117 2030 815 105 1454 445 29 1406
Biomass yield (kg/ha) 3101 635 4972 2221 726 3741 2167 516 5200
Straw yield (kg/ha) 2578 488 3067 1406 564 2499 1722 440 3861
ODAP content (%) 0.160 0.030 0.220 1.400 0.460 2.500 1.300 0.020 2.400
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different global samples revealed considerable genetic diversity in grass pea collec-
tions throughout the world.

Wild crop gene pool is a rich reservoir of rare alleles. Therefore, efforts have been 
made to evaluate wild relatives to identify zero ODAP genetic resources (Jackson & 
Yunus, 1984). Assessment of ODAP in wild relatives indicated that none of the spe-
cies is free from ODAP (Aletor et al., 1994; Hanbury et al., 1999; Siddique et al., 
1996). However, on average, the ODAP concentration in L. cicera is lower com-
pared to L. sativus (Table 11.8). Hanbury et  al. (1999) observed the lowest ODAP 
in L. cicera (0.18%) followed by L. sativus (0.39%) and L. ochrus (1.01%). Aletor 
et  al. (1994) reported four to five times lower ODAP content in L. cicera (0.13%) 
than in L. ochrus (0.56%) and L. sativus (0.49%). Similarly, Abd-El-Moneim et al. 
(2000) reported ranges of 0.02–2.40% in L. sativus, 0.03–0.22% in L. cicera and 
0.46–2.50% in L. ochrus. Eichinger, Rothnie, Delaere, and Tate (2000) screened 
Lathyrus germplasm using capillary electrophoresis and found that L. cicera is con-
sistently low in ODAP as compared to L. sativus and L. ochrus. Evaluation of 142 
accessions of L. cicera at ICARDA during 2009 showed a range of 0.073–0.513% 
for ODAP content, which is much lower than the cultivated species. Therefore, L. 

Table 11.6 Genetic Variation for ODAP Content in Grass Pea Germplasm

Country/
Institution

Number of 
Accessions

ODAP (%) in Seeds References

Minimum Maximum

Bangladesh – 0.450 1.400 Kaul et al. (1986)
Bangladesh 116 0.040 0.780 Sarwar, Malek, Sarker, and 

Hassan (1996)
China 73 0.075 0.993 Campbell et al. (1994)
Ethiopia 150 0.149 0.916 Tadesse and Bekele (2003)
India (IARI) 576 0.100 2.590 Nagarajan and Gopalan 

(1968)
India (IARI) 1500 0.150 0.300 Jeswani, Lal, and 

Shivprakash (1970)
India (IARI) 643 0.100 0.780 Somayajulu, Barat, 

Prakash, Mishra, and 
Shrivastava (1975)

India (IARI) 1000 0.200 2.000 Leakey (1979)
India (IGKV) 1187 0.128 0.872 Pandey et al. (1995, 1996)
India (IGKV) 1963 0.067 0.712 Pandey et al. (2008)
ICARDA 81 0.020 0.740 Robertson and Abd-El-

Moneim (1997)
ICARDA 1128 0.150 0.952 Kumar, Bejiga et al. (2011)
Australia 503 0.040 0.760 Hanbury et al. (1999)
Chile 76 0.180 0.520 Tay, Valenzuela, and 

Venegas (1999)
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Table 11.7 Geographical Distribution of ODAP Content in Grass Pea Germplasm Evaluated 
at ICARDA During 1999–2006

Country of 
Origin

Accessions 
Evaluated

ODAP Content (%) Environments

Minimum Maximum Mean

Bangladesh 317 0.376 0.699 0.482 18
Ethiopia 98 0.067 0.848 0.341 21
Nepal 47 0.403 0.531 0.487 13
Pakistan 62 0.336 0.517 0.466 13
Europea 115 0.198 0.908 0.458 2

aAlso includes accessions from Central Asia.

Table 11.8 Variation in ODAP Content in Different Lathyrus Species

Species ODAP (%) Content No. of 
Accessions

Country Reference

Minimum Maximum Mean

L. sativus 0.15 0.87 n.a. – China Yu (1995)
L. cicera 0.07 0.10 n.a. – China Yu (1995)
L. sativus 0.04 0.76 0.39 407 Australia Hanbury et al. 

(1999)
L. cicera 0.08 0.34 0.18 96 Australia Hanbury et al. 

(1999)
L. ochrus 0.64 1.35 1.01 32 Australia Hanbury et al. 

(1999)
L. sativus 0.33 0.57 0.49 36 Syria Aletor et al. 

(1994) and 
El-Haramein, 
Abd-El 
Moneim, 
and Nakkoul 
(1998)

L. cicera 0.09 0.16 0.13 16 Syria Aletor et al. 
(1994) and 
El-Haramein 
et al. (1998)

L. ochrus 0.48 0.63 0.56 16 Syria Aletor et al. 
(1994) and 
El-Haramein 
et al. (1998)

L. sativus 0.15 0.95 0.47 1128 Syria Kumar, Bejiga 
et al. (2011)

L. cicera 0.07 0.51 0.30 141 Syria Kumar, Bejiga 
et al. (2011)
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cicera accessions hold promise as a source of low ODAP content in grass pea breed-
ing programmes.

11.8 Use of Germplasm in Crop Improvement

Significant efforts have been directed towards genetic improvement of grass pea in 
India, Canada, Bangladesh, Ethiopia and Nepal during late 1970s and at ICARDA 
since 1989. Breeding efforts are mostly focused on three species, L. sativus, L. 
cicera and L. ochrus, and to a lesser extent L. clymenum, with an aim to improve 
grain yield, biomass, resistance to biotic and abiotic stresses and most importantly 
to reduce the neurotoxin from its seeds. A conventional breeding approach has 
resulted in development of high-yielding low ODAP varieties (Table 11.9). In India, 
Pusa 24, Prateek and Mahateora, with low ODAP and high yield, were developed 
through intraspecific hybridization. In Bangladesh, low ODAP and high-yielding 
varieties BARI Khesari 1 and BARI Khesari 2 were developed for commercial cul-
tivation. At ICARDA, several breeding lines with <0.1% ODAP concentration 
were bred, which have led to the release of BARI Khesari 3 in Bangladesh, Wasie 
in Ethiopia and Ali Bar in Kazakhstan. In Canada, a low ODAP (0.03%) line, LS 
8246 was released for fodder and feed purposes. In Australia, two varieties, Ceora 
and Chalus, were released for diversification of the wheat-based system. Mutation 
breeding has also been occasionally employed to create additional genetic variability 
in order to develop zero/low ODAP varieties (Talukdar, 2009). Two varieties, namely 
Poltavskaya in the former USSR and Bina Khesari 1 in Bangladesh, were devel-
oped through mutation breeding using Ethyl methane sulphonate (EMS) (0.01%) 
and gamma rays (250 Gy), respectively. Somaclonal variation can also contribute to 
the development of varieties with low ODAP (Mehta, Ali, & Barna, 1994; Mehta  

Table 11.9 Improved Varieties of Grass Pea Released for Cultivation in Different Countries

Country Improved Varieties

Australia Ceora, Chalus
Bangladesh Bari Khesari 1, Bari Khesari 2, Bari Khesari 3, Bina Khesari 1
Bulgaria Strandja
Canada LS 82046
Chile Luanco-INIA
Ethiopia Wasie
Kazakhstan Ali Bar
India Pusa 24, Prateek, Ratan, Mahateora
Nepal CLIMA 2 pink, 19A, 20B, Bari Khesari 2
Pakistan Italian
Poland Derek, Krab
Turkey Gurbuz 2001
Russia Poltavskaya
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& Santha, 1996; Santha & Mehta, 2001). Ratan is released as a variety in India from 
selection in the somaclonal variation. More efforts are needed to exploit the genetic 
diversity existing within species of grass pea gene pools.

11.9 Limitations in Germplasm Use

The problem of genetic resources is not only the size but also the lack of systematic 
characterization, evaluation and existence of duplicates that hinder their effective use 
in breeding programmes. The core set has been proposed to overcome the problem 
of limited use of genetic resources (Frankel & Brown, 1984). Core sets of Lathyrus 
species were identified to develop manageable subsets that capture most of the vari-
ation from the original dataset of 2674 accessions belonging to 31 Lathyrus species. 
Among modifications, development of mini-core sets has been proposed to address 
the concern of limitation in germplasm use, in particular the use in relation to the 
trait of interest (Upadhyaya, Bramel, Ortiz, & Singh, 2002). However, mini-core sets 
may not be needed at present for grass pea, as the global collection is estimated at 
only 3360 accessions. For adaptive traits, core and mini-core collections may not 
capture the needed diversity (Gepts, 2006; Pessoa-Filho, Rangel, & Ferreira, 2010). 
As an alternative to the core, the Focused Identification of Germplasm Strategy 
(FIGS) approach is developed, which is a trait-based approach with high probability 
of identification of desired genetic material. The FIGS approach has been applied in 
Lathyrus at ICARDA to derive a heat- and drought-tolerant subset based on maxi-
mum temperature and aridity index. These subsets with manageable size and higher 
probability of finding the desired traits will allow linking conservation with utiliza-
tion of genetic resources and reduce the pressure to frequently regenerate species 
with cross-pollination, as is the case with grass pea.

11.10 Germplasm Enhancement Through Wide Crosses

Over the years, ICARDA has collected and conserved 1555 accessions of 45 wild 
Lathyrus species from 45 countries in its global germplasm repository (Kumar, 
Bejiga et  al., 2011). These species may play an important role in the genetic 
improvement of the cultivated species. For example, a toxin-free gene has been 
identified in L. tingitanus, which can be used to develop toxin-free grass pea vari-
eties (Zhou & Arora, 1996). Lathyrus species such as L. ochrus and L. clymenum 
(Sillero, Cubero, Fernández-Aparicio, & Rubiales, 2005) and L. cicera (Fernández-
Aparicio, Flores, & Rubiales, 2009; Fernández-Aparicio & Rubiales, 2010) are 
identified as possessing resistance to Orobanche which is not available within the 
cultivated germplasm. L. cicera is also a good source for earliness and cold toler-
ance. However, alien gene transfer has hardly been attempted in grass pea in spite of 
the success of interspecific hybridization between L. sativus and two wild Lathyrus 
species (L. cicera and L. amphicarpus) with viable seeds (Addis & Narayan, 2000; 
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Davies, 1957, 1958; Khawaja, 1988; Yunus, 1990). Yunus (1990) crossed 11 wild 
species with L. sativus and found viable seeds only with L. cicera and L. amphi-
carpus. Other species formed pods but did not produce fully developed viable seeds 
(Kearney, 1993; Yamamoto, Fujiware, & Blumenreich, 1989; Yunus, 1990). Some 
other successful interspecific hybrids reported in the genus Lathyrus were L. annuus 
with L. hierosolymilanus (Hammett, Murray, Markham, & Hallett, 1994; Hammett, 
Murray, Markham, Hallett, & Osterloh, 1996; Yamamoto et  al., 1989); L. articu-
latus with L. clymenus and L. ochrus (Davies, 1958; Trankovskij, 1962); L. cicera 
with L. blepharicarpus, L. gorgoni, L. marmoratus and L. pseudocicera (Kearney, 
1993; Yamamoto et  al., 1989); L. gorgoni with L. pseudocicera (Kearney, 1993; 
Yamamoto et al., 1989); L. hirsutus with L. odoratus (Davies, 1958; Khawaja, 1988; 
Trankovskij, 1962; Yamamoto et  al., 1989); L. marmoratus with L. blepharicarpus 
(Kearney, 1993; Yamamoto et al., 1989); L. odoratus with L. belinenesis (Hammett 
et  al., 1994, 1996); L. rotundifolius with L. tuberosus (Marsden-Jones, 1919) and  
L. sylvestris with L. latifolius (Davies, 1957). From the information available on 
crossing, fertility and chromosome behaviour of the hybrids, it may be concluded 
that breeding strategies involving alien genetic transfer for the improvement of grass 
pea are possible through the readily crossable species L. cicera and L. amphicar-
pus and any other gene transfer technology involving other species will have to be 
assisted by biotechnology tools (Ochatt, Durieu, Jacas, & Pontecaille, 2001).

11.11 Grass Pea Genomic Resources

Considerable progress has been made in recent years in developing genomic 
resources in food and model legumes (Kumar, Pratap et al., 2011). However, in 
grass pea only a few reports on genomic resource development are available, 
apparently because of the large genome size and poorly characterized germplasm 
set (Lioi et al., 2011; Ponnaiah, Shiferaw, Pe, & Porceddu, 2011; Shiferaw et al., 
2011). Molecular markers, such as inter-simple sequence repeat (ISSR), RAPDs, 
sequence tagged site (STS), RFLP and AFLP, have been developed and used to 
examine the genetic variation and phylogenetic relationships within the genus 
Lathyrus (Badr et  al., 2002; Barik et  al., 2007; Belaid et  al., 2006; Chtourou-
Ghorbel et al., 2001; Croft et al., 1999; Skiba, Ford, & Pang, 2003; Tavoletti & 
Iommarini, 2007). In Lathyrus, only 15 SSR primers were reported earlier (Lioi 
et al., 2011; Shiferaw et al., 2011). Recently, 300 expressed sequence tag-simple 
sequence repeats (EST–SSR) primer pairs were identified and loci characterized 
for size polymorphism among 24 grass pea accessions (Sun et al., 2012). Among 
them 117 SSR loci were monomorphic and 44 SSR loci were polymorphic. 
These novel markers will be useful and convenient to study the gene mapping 
and molecular breeding in grass pea. In terms of plant resources for functional 
genomic studies, various mapping populations including recombinant inbred 
lines (RILs), Near isogenic lines (NILs) and Targeting induced local lesions in 
genomes (TILLING) populations are critically needed for trait–marker associa-
tion and gene inactivation/deletion studies.
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11.12 Conclusions

The success of genetic resources in improving the crop lies in the manner in which 
we harness the wealth of allelic diversity provided by nature and currently warehoused 
in gene banks. Until now, only modest success has been made through conventional 
breeding methods in utilizing these resources. Recent developments in biotechnology 
indicate that there is a tremendous opportunity to realize the potential variability con-
served in various gene banks of the world. The genus Lathyrus is well placed to help 
face the challenges posed by climate change because of the genetic resources available 
for crop improvement. Coordinated efforts to collect and conserve Lathyrus crop spe-
cies have been initiated in the last 10–15 years and have gained momentum with the 
development of a grass pea conservation strategy as part of the Global Crop Diversity 
Trust and Bioversity International. Furthermore, it is necessary to study the genetic 
diversity of the available collections systematically in order to understand their full 
potential. Proper documentation of all passport, characterization and evaluation infor-
mation needs to be improved through the development of Lathyrus catalogues to avoid 
duplicates and to ensure the easy use of genetic resources. In the last few years there has 
been a growing emphasis on the characterization of germplasm collections by molec-
ular markers, which has served to enhance the use of germplasm collections in crop 
improvement via plant breeding. This also aids the management of collections them-
selves, through an improved understanding of the relationships between accessions and 
underlying patterns of diversity. Issues like whether or not genetic variation is being 
lost with progressive domestication or how the variation is distributed among popula-
tions can also be addressed by genetic diversity analysis. Further research is needed to 
expand on the use of molecular markers in species identification. Much more efforts 
are needed to augment the genetic resources of both cultivated and wild lines for the 
genetic improvement through conventional as well as by contemporary approaches. A 
key goal is to solve the problem of ODAP content in grass pea.
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12.1 Introduction

Horsegram (Macrotyloma uniflorum (Lam.) Verdcourt (Syn., Dolichos uniflorus 
Lam., Dolichos biflorus auct. non L.)) is a pulse and fodder crop native to Southeast 
Asia and tropical Africa, but the centre of origin of cultivated species is consid-
ered to be southern India (Vavilov, 1951; Zohary, 1970). The name Macrotyloma is 
derived from the Greek words makros meaning large, tylos meaning knob and loma 
meaning margin, in reference to knobby statures on the pods (Blumenthal & Staples, 
1993). It is a true diploid having chromosome number 2n=2x=20. It is cultivated in 
India, Myanmar, Nepal, Malaysia, Mauritius and Sri Lanka for food purposes and 
in Australia and Africa primarily for fodder purposes (Asha et al., 2006). The lim-
ited use of dry seeds of horsegram is due to its poor cooking quality. However, it 
is consumed as soups and sprouts in many parts of India (Sudha, Mushtari Begum, 
Shambulingappa, & Babu, 1995). Owing to its medicinal importance and its capabil-
ity to thrive under drought-like conditions, the US National Academy of Sciences 
has identified this legume as a potential food source for the future (National 
Academy of Sciences, 1978). India is the only country cultivating horsegram on a 
large acreage, where it is used as human food. However, horsegram is a versatile 
crop and can be grown from near sea level to 1800 m. It is highly suitable for rain-
fed and marginal agriculture but does not tolerate frost and waterlogging. It is a 
drought-tolerant plant and can be grown with rainfall as low as 380 mm. Leaf dis-
eases and root rot are major production constraints in high rainfall areas. Being a 
leguminous crop, it adds nitrogen to the soils where it grows, thus improving the soil 
fertility. The protein content in cultivated horsegram is reported to be 16.9–30.4% 
(Patel, Dabas, Sapra, & Mandal, 1995). It also has high lysine content, an essen-
tial amino acid (Gopalan, Ramashastri, & Balasubramanyan, 1989). Horsegram is 
also rich in phosphorus, iron and vitamins such as carotene, thiamine, riboflavin, 
niacin and vitamin C (Sodani, Paliwal, & Jain, 2004). It is known to contain many 
medicinal and therapeutic benefits, although many of them are yet to be proven 
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scientifically. It can be an ayurvedic medicine, used to treat edema, piles, renal 
stones, and so on. It has polyphenols that have high antioxidant properties, molyb-
denum that regulates calcium intake and iron that helps in transporting oxygen to 
cells and forms part of haemoglobin in blood (Murthy, Devaraj, Anitha, & Tejavathi, 
2012; Ramesh, Rehman, Prabhakar, Vijay Avin, & Aditya, 2011). Horsegram is rich 
source of Haemagglutinin, which is an agent or substance responsible for red blood 
cells and agglutinate. Chaitanya et al. (2010) proved that the seeds of M. uniflorum 
are endowed with significant antiurolithiatic activity. Certain tests have proven that 
lipids extracted from horsegram are known to heal rats with peptic ulcers (Jayaraj, 
Tovey, Lewin, & Clark, 2000). With the continuously expanding need for suitable 
cultivar development, there is an urgent need for systematic collection, evaluation 
and utilization of genetic resources for both the present and posterity.

12.2 Origin, Distribution, Diversity and Taxonomy

The origin of horsegram is not clearly mentioned in the literature. Though wild mem-
bers of M. uniflorum exist in both Africa and India (Verdcourt, 1971), its centre of ori-
gin as cultivated plant is regarded as India (Purseglove, 1974; Smartt, 1985; Vavilov, 
1951; Zohary, 1970). Arora and Chandel (1972) have been more specific in arguing that 
the primary centre of origin and use of M. uniflorum var. uniflorum as a cultivated plant 
is southwestern India. Mehra and Magoon (1974), on the other hand, suggest that M. 
uniflorum has both African and Indian gene centres. The other varieties, var. stenocar-
pum and var. verucosum, are basically of African origin, although a wild or long natu-
ralized form is found in northeastern Australia (Bailey, 1900). The region of maximum 
genetic diversity is considered to be in the Old World tropics, especially the southern 
part of India and the Himalayas (Zeven and de Wet, 1982). But some studies consider it 
as a plant native to African countries. It was probably domesticated in India, where its 
cultivation is known since prehistoric times and it is still an important cultivated crop. 
Nowadays horsegram is cultivated as a low-grade pulse crop in many Southeast Asian 
countries, such as India, Bangladesh, Myanmar, Sri Lanka and Bhutan. It is also grown 
as a forage and green manure in many tropical countries, especially in Australia and 
Africa, but it is unclear to what extent it is currently grown. The wild relatives of horse-
gram are reported mainly in Australia, Papua New Guinea, Africa and India. There is 
no report that horsegram is cultivated as a pulse crop, in central, eastern and southern 
Africa where it occurs wild. (Blumenthal, O’Rourke, Hidler & Williams, 1989).

Horsegram is a slender, twining annual herb with cylindrical tomentose stems. As 
a pure crop it cannot stand due to its weak stem and forms a dense mat of 30–60 cm 
height, but in association with cereals as a mixed crop it may climb on the com-
panion species to a height of 60–110 cm. It has trifoliate leaves, 7–10 mm long 
 persistent stipules and 3–7 cm long petiole. Leaflets are ovate, rounded at base, acute 
or slightly acuminate, commonly 3.5–7.5 cm long, 2–4 cm broad, length and breadth 
ratio of 1.5–2.5. Flowers are short, sessile or subsessile10–12 mm long, two- to four-
flowered axillary racemes, greenish yellow with a vinous spot on the standard. Calyx 
is tomentose with 2–3 mm long tube, and the lobes are lanceolate setaceous, 3–8 mm 
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long. Standard is oblong, slightly emarginate at the summit, 9–10.5 mm long, 
7–8 mm broad, with two linear appendages about 5 mm long, wings 8–9.5 mm long 
as long as the keel. Ovary is appressed with dense white hairs, style attenuate and 
stigma surrounded by a ring of short dense hairs. Pods are stipitate, slightly curved, 
tomentose, 4.5–6 cm long and about 6 mm broad. Seeds are usually six or seven per 
pod, 6–8 mm long, 4–5 mm broad, pale fawn, sometimes with faint mottles or with 
small scattered black spots and hilum placed centrally (Purseglove, 1974).

Initially horsegram was included in the genus Dolichos by Linnaeus but Verdcourt 
(1980) reorganized the different species formerly assigned to Dolichos and assigned 
the genus Macrotyloma to horsegram. The style, standard and pollen characteristics 
distinguish Macrotyloma from Dolichos (Verdcourt, 1970). Most of the wild species 
of the genus are restricted to Africa but some wild species have also been reported 
in Asia and Australia. M. uniflorum is the only cultivated species grown in the 
Indian subcontinent. The horsegram plant belongs to the kingdom Plantae, subking-
dom Tracheobionta, division Magnoliophyta and class Magnoliopsida. The genus 
Macrotyloma (Wight & Arn.) Verdc. – Macrotyloma of family Fabaceae – consists 
of about 25 wild species having the chromosome numbers 2n=2x=20 and 2n=2x=22 
(Allen, O.N. & Allen, E.K. 1981; Lackey, 1981).

Within M. uniflorum, four varieties have been distinguished:

1. var. uniflorum: pods 6–8 mm wide; wild in southern Asia and Namibia, widely cultivated in 
the tropics as a cover and forage crop.

2. var. stenocarpum (Brenan) Verdc.: pods 4–5.5 mm wide; shortly stiped and with more or 
less smooth margins, leaflets pubescent; occurring in central, eastern and southern Africa 
and in India, up to 1700 m altitude in grassland, bushland and thicket, often on sandy soils 
and in disturbed locations; cultivated in Australia and California (the United States).

3. var. verrucosum Verdc.: pods 4–5.5 mm wide; distinctly stiped and with obscurely to mark-
edly warted margins, leaflets pubescent; occurring in eastern and southern Africa up to 
550 m altitude in grassland and thicket.

4. var. benadirianum (Chiov.) Verdc.: pods 4–5.5 mm wide; shortly stiped and with slightly 
warted margins, leaflets densely velvety; occurring in East Africa (Somalia, Kenya) at sea 
level on sand dunes and thin soils on coral rag.

The geographical distribution of different species is provided in Table 12.1. It effec-
tively nodulates with nitrogen-fixing bacteria of the Bradyrhizobium group (Brink, 2006).

12.3  Erosion of Genetic Diversity from the  
Traditional Areas

The quest for increasing food production and the ensuing success achieved in major 
crops has increased the thrust and expectations to repeat the success in other minor 
crops. Variability refers to heterogeneity of alleles and genotypes with their atten-
dant morphotypes and phenotypes. Genetic erosion implies that disappearance of 
genetic variability in a population is altered so that the net change in diversity is 
negative. Considerable genetic erosion started in the early 1960s due to changes in 
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cropping pattern and induction of new crops in the Indian farming system. However, 
population growth, urbanization, developmental pressures on the land resources, 
deforestation, changes in land use patterns and natural disasters are contributing to 
considerable habitat fragmentation and destruction of the crops and their wild rela-
tives. Horsegram is a neglected crop cultivated by poor and marginal farmers in 
tribal localities and drought-prone areas of India (Jansen, 1989). There are no con-
certed efforts for varietal developments reported from any part of the world, bar-
ring some isolated efforts in a few research institutions in India. Therefore, genetic 
erosion is not attributable in this case to the diffusion of high-yielding varieties to 
replace the landraces. Rather, the main cause of genetic is the cultivation of commer-
cial crops in the horsegram–growing areas.

12.4 Status of Germplasm Resources Conservation

Horsegram is an important pulse crop of Indian sub-continent; therefore, the efforts 
to conserve the germplasm at global level are also lacking. Therefore, most of the 

Table 12.1 Geographical Distribution of Macrotyloma Species

S. No. Species Name Area of Distribution

1 Macrotyloma africanum (Wilczek) Verdc. Africa
2 Macrotyloma axillare (E.Mey.) Verdc. Africa and Australia
3 Macrotyloma bieense (Torre) Verdc. Africa
4 Macrotyloma biflorum (Schum. & Thonn.) Hepper Africa
5 Macrotyloma brevicaule (Baker) Verdc. Africa
6 Macrotyloma ciliatum (Willd.) Verdc. Asia and Africa
7 Macrotyloma coddii Verdc. Africa
8 Macrotyloma daltonii (Webb) Verdc. Africa
9 Macrotyloma decipiens Verdc. Africa
10 Macrotyloma densiflorum (Baker) Verdc. Africa
11 Macrotyloma dewildemanianum (Wilczek) Verdc. Africa
12 Macrotyloma ellipticum (R.E.Fr.) Verdc. Africa
13 Macrotyloma fimbriatum (Harms) Verdc. Africa
14 Macrotyloma geocarpum (Harms) Marechal & 

Baudet
Africa

15 Macrotyloma hockii (De Wild.) Verdc. Africa
16 Macrotyloma kasaiense (R. Wilczek) Verdc. Africa
17 Macrotyloma maranguense (Taub.) Verdc. Africa
18 Macrotyloma oliganthum (Brenan) Verdc. Africa
19 Macrotyloma prostratum Verdc. Africa
20 Macrotyloma rupestre (Baker) Verdc. Africa
21 Macrotyloma schweinfurthii Verdc. Africa
22 Macrotyloma stenophyllum (Harms) Verdc. Africa
23 Macrotyloma stipulosum (Baker) Verdc. Africa
24 Macrotyloma tenuiflorum (Micheli) Verdc. Africa
25 Macrotyloma uniflorum (Lam.) Verdc. Asia, Africa and Australia
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conservation work was undertaken by Indian Institutes. The Germplasm Resources 
Information Network (GRIN) of the US Department of Agriculture (USDA) has 
conserved only 35 accessions of horsegram in its gene bank. Protabase, responsible 
for germplasm conservation for African countries, has 21 accessions at the National 
Gene Bank of Kenya, Crop Plant Genetic Resources Centre, Kenya Agricultural 
Research Institute (KARI), Kikuyu, Kenya. The Australian Tropical Crops and 
Forages Genetic Resources Centre, Biloela, Queensland has 38 accessions of horseg-
ram germplasm (Brink, 2006). Only the National Bureau of Plant Genetic Resources 
(NBPGR) in New Delhi has a systematic collection of this important legume. 
The efforts to collect and conserve the horsegram germplasm started way back in 
the 1970s with the inception of the PL480 scheme (a scheme under collaboration 
between Indian Council of Agricultural Research (ICAR) and the USDA project on 
food security in Haiti, using Public Law 480), and since then germplasm has been 
collected from almost all the horsegram–growing areas. Under different exploration 
and collection programmes, a total of 1627 accessions of horsegram have been col-
lected and maintained at different satellite stations of NBPGR.

12.5 Germplasm Evaluation and Maintenance

Horsegram is being treated as a orphan crop therefore much attention has not been 
paid to the systematic evaluation of germplasm, except maintaining it in the gene 
banks. There are only a limited number of accessions conserved in the gene banks 
worldwide. Ex situ conservation by different countries is given in Table 12.2. In 
India, a total of 1627 accessions of horsegram are conserved in the national gene 
bank, and out of these 1161 accessions were characterized during 1999–2004. 
Latha (2006) made some observations while studying on agro-morphological traits 
in Indian Dolichos germplasm that yield and yield component traits in general 
showed that all promising lines with higher seed yield are of long duration type. 
The seed yield per plant ranged from 0.22 to 7.31 g in short duration type, from 
0.27 to 7.07 g in medium duration and from 0.21 to 11.86 g in long duration type. 
Rana (2010) also observed variability in qualitative characteristics and revealed 
that growth habit ranged from semi-erect to vine types, leafiness between sparse 
and abundant, leaf pubescence from puberulant to densely pubescent and stem 

Table 12.2 Ex Situ Conservation at Different Gene Banks of the World

S. No. Country Name of the Organization Accessions

1. India National Bureau of Plant Genetic Resources, 
New Delhi

1627

2 The United States Germplasm Resources Information Network  
of US Department of Agriculture

35

3 Australia Tropical Crops and Forages Genetic  
Resources Centre, Biloela, Queensland

38

4 Kenya National Gene Bank of Kenya, Crop Plant 
Genetic Resources Centre, KARI, Kikuyu

21
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colour between green and purple. However, range in variability was maximum in 
pod and seed colour. Mature pod colour varied from straw, tan, cream, light brown, 
brown, dark brown to brownish black. The plant height ranged from 17 to 145 cm 
and primary branches per plant varied from 1.0 to 9.8 in number. Other yield 
component traits such as pods per plant (4–148), pod length (3.07–6.17 cm), 100-
seed weight (0.92–4.10 g) and biological yield (0.21–11.86 g) revealed variabil-
ity. NBPGR has published a catalogue with details of 11 economically important 
traits of 1426 accessions. During the Kharif (autumn) of 1984–1990, about 506 
accessions at New Delhi and 920 accessions at NBPGR satellite research station 
Akola were characterized and documented on the basis of evaluation data for vari-
ous qualitative and quantitative traits (Patel et al., Dabas, Sapra & Mandal, 1995). 
The Vivekanand Parvartiya Krishi Anusandhan Sansthan (VPKAS), Almora, has 
evaluated 10 lines for agro-morphological traits (Mahajan et  al., 2007). Chahota, 
Sharma, Dhiman, and Kishore (2005) evaluated 63 horsegram accessions pro-
cured from NBPGR, Phagli, Shimla for 12 agro-morphologic characters at CSK 
Himachal Pradesh Agricultural University, Palampur. Kulkarni and Mogle (2011) 
and Kulkarni (2010) evaluated 22 germplasm lines for different agronomic traits 
and identified five high-yielding genotypes. Sudha et  al. (1995) and Subba Rao 
and Sampath (1979) evaluated horsegram lines for various nutritional and anti-
nutritional factors (Table 12.3). An attempt was made by Prakash, Channayya 
Hiremath, Devarnavdgi & Salimath (2010) to assess the genetic divergence among 
100 lines collected from different parts of Karnataka, using Mahalanobis D2  
statistics. D2 is the distance between the different clusters having lines. In addi-
tion, considerable numbers of studies have been conducted on various aspects of 
the crop by several researchers (Dobhal & Rana, 1994a, 1994b; Jayan & Maya, 
2001; Joshi, Chikkadevaiah, & Shashidhas, 1994; Lad, Chavan, & Dumbre, 1999; 
Patil, Deshmukh, & Singh, 1994; Savithriamma, Shambulingappa, & Rao, 1990; 
Nagaraja, Nehru, & Manjunath, 1999; Sharma, 1995; Tripathi, 1999).

Table 12.3 Evaluation of Germplasm by Different Institutes for Agro-Morphological Traits

S. No. Name of the Institute Number of 
Germplasm 
Accessions 
Evaluated

Year of 
Evaluation

References

1 National Bureau of Plant 
Genetic Resources,  
New Delhi, India

1426 1984–1990 Patel et al. (1995)

2 NBPGR, New Delhi, India 22 2005 and 2006 Latha, (2006)
3 Parvartiya Krishi Anusdhan 

Kendra Almora, India
10 2007 Mahajan et al. 

(2007)
4 Himachal Pradesh Agricultural 

University, Palampur, India
63 2005 Chahota et al. 

(2005)
5 Commerce and Science 

College Jalna, India
22 2011 Kulkarni (2010)
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12.6 Use of Germplasm in Crop Improvement

New plant resources need to be exploited in order to meet the growing needs of human 
society, which incidentally has depended on only a small portion of plant wealth. 
Accordingly, many of underutilized plants have the potential for improving agriculture 
in various ways and have great potential for exploitation in view of the value of their 
economic products (Bhag & Joshi, 1991). Although a lot of germplasm has been col-
lected from different parts of the world and conserved in the national gene banks of 
different countries, very little effort has been made to improve this plant as a commer-
cial crop. The lack of efforts both at institutional and governmental levels has under-
mined the importance of this crop. The evaluation and documentation of germplasm 
have not been updated in many countries, so the utilization of germplasm could not 
be taken up by the concerned breeders. In India, there are about 1800 accessions of 
horsegram germplasm, of which only 912 lines have been evaluated and documented. 
The genetic improvement of horsegram has been undertaken at just a few institutions 
in India, but no improvement programme is in place at the global level.

In India, the cultivars released for cultivation are region specific and do not hold 
promise for commercial agriculture, as the plant types contain many weedy traits, 
such as twining and indeterminate growth habit, asynchronous and delayed maturity 
and photosensitivity. Sufficient diversity is available for different traits as revealed 
by germplasm evaluation data, but effort are lacking to develop ideal cultivars or to 
introgress desirable traits scattered in different genotypes. Hybridization studies con-
ducted between photosensitive and day neutral varieties with black and brown col-
oured seeds revealed that photoperiod response is a qualitative trait that is controlled 
by at least two genes. In case of inheritance of seed colour, the black seed colour 
was observed to be dominant over brown. Two genes in polymeric gene action were 
found to control seed colour (Sreenivasan, 2003). Most of the horsegram varieties 
released for cultivation in different states in India originated from the local germ-
plasm following their effective and specific evaluation. The varieties developed in 
different states (Table 12.4) include BR 5, BR 10 and Madhu from Bihar; HPK-2 
and HPK-4 from Himachal Pradesh; PDM 1 and VZM 1 from Andhra Pradesh; 

Table 12.4 Improved Varieties Released by Different States in India for Cultivation

S. No. Variety Place of Release

1 BR 5, BR 10 and Madhu Bihar
2 HPK-4 and VLG 1 Himachal Pradesh
3 PDM 1 and VZM 1 Andhra Pradesh
4 K82 and Birsa Kulthi Jharkhand
5 S27, S8, S39 and S1264 Orissa
6 Co-1, 35-5-122 and 35-5-123 Tamil Nadu
7 Hebbal Hurali 2, PHG 9 and KBH 1 Karnataka
8 Maru Kulthi, KS 2, AK 21 and AK 42 Rajasthan
9 VLG 1 Uttarakhand
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K82 and Birsa Kulthi from Jharkhand; S27, S8, S39 and S1264 for Orissa; Co-1, 
35-5-122 and 35-5-123 from Tamil Nadu; Hebbal Hurali 2, PHG 9 and KBH 1 from 
Karnataka; Maru Kulthi, KS 2, AK 21 and AK 42 from Rajasthan and VLG 1 from 
Uttarakhand. Some of the improved varieties developed through single plant selec-
tion from the bulk collected included Co-1. No 35-5-122 and 123.  Hebbal Hurali 1 
and 2 were developed by the single plant selection (Kumar, 2005).

The nonavailability of important traits in the germplasm has encouraged many 
workers to induce desirable traits by using gamma radiation and chemical mutants. 
Gupta, Sharma, and Rathore (1994) induced variability for seed yield per plant, 
biological yield per plant, pods per plant, pod length, seeds per pods and 100-seed 
weight. Jamadagani and Birari (1996) developed three photo-insensitive mutants 
by irradiating a photosensitive variety Dapali-1 with 20 kR. Ramakanth, Setharama, 
and Patil (1979) attempted to induce mutation following treatment with five doses 
of gamma rays. Chahota (2009) treated HPKC-2, a promising line, with a 25-kR 
dose of gamma radiation and succeeded in inducing important agronomic traits in 
horsegram. Wild forms of horsegram have also been reported in the Western Ghats, 
especially in the wildlife sanctuaries. Macrotyloma ciliatum (Willd.) Verdc. is found 
in Tamil Nadu (Mathew, 1983; Nair & Henry, 1983) and Andhra Pradesh (Pullaiah 
& Chennaiah, 1997). Macrotyloma sar-garhwalensis is a wild relative of horsegram 
found in the Central Himalayas of India (Gaur & Dangwal, 1997). It is a non-twining 
annual herb with a high protein content of 38.35%, which can be utilized in the 
breeding programmes for the improvement of protein content (Negi, Yadav, Mandal 
& Bhandari, 2002). Macrotyloma axillare and M. africanum, the two other species of 
this genus, have also shown potential as forage plants.

12.7 Germplasm Enhancement Through Wide Crosses

Horsegram is cultivated as a pulse crop only in the Indian subcontinent, whereas in 
rest of the world, it is cultivated as a feed and fodder crop for animals. In pastures and 
grasslands broadcasting of seeds is done to improve the grass quality. The major bot-
tleneck in the improvement of this crop is the lack of variability at the morphological 
as well as molecular level. Therefore, wide hybridization could be a useful tool to cre-
ate additional variability for broadening its base. Though the genus Macrotyloma con-
sists of more than 25 species, there is no report regarding the evaluation of these wild 
species for desirable traits. Morris (2008) compared M. uniflorum with M. axillare 
and described a set of descriptors to differentiate these species. Evaluation of few 
wild species of Macrotyloma has been undertaken at the CSK, Himachal Pradesh 
Agricultural University, Palampur, India, to initiate a systematic hybridization pro-
gramme involving cultivated and wild species to transfer desirable traits from M. 
axillare and Macrotyloma sar-garhwalensis to cultivated background. M. axillare 
has many desirable traits such as high number of pods per plant, high seed yield 
per plant and tolerance to cold and drought conditions (Staples, 1966, 1982). The 
cultivated species of M. uniflorum is infected by a number of diseases, particularly 
in high rainfall areas, such as Anthracnose, Cercospora leaf spot, Fusarium wilt, 
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rust, Pellicularia root rot and Aschochyta blight. Though the M. axillare is reported 
to have resistance against many diseases hybridization between M. uniflorum and 
M. axilare resulted in juvenile flowering in the first year of F1 plant, hence prolong-
ing the breeding process.

12.8 Horsegram Genomic Resources

The horsegram plant is considered unsuitable for commercial cultivation due to 
the presence of many undesirable traits, such as longer days to maturity accompa-
nied by asynchrony, photosensitivity and indeterminate growth habit. However, 
some work on the development of suitable ideotype is being conducted at CSK, 
Himachal Pradesh Agricultural University, Palampur since 1995. Various breeding 
techniques are being used to improve the plant type. Furthermore, it was felt that 
before embarking on a breeding programme, the information on genetics of different 
traits of interest is also an important aspect to combine important characters in the 
well-adapted genetic backgrounds. The lack of genomic information in M. uniflorum 
in particular and Macrotyloma genus in general is another hurdle for its systematic 
breeding.

The legume family has been divided into three subfamilies, namely Casalpinieae, 
Mimosoideae and Papilionoideae. Most of the economically important legumes are 
members of the monophylotic subfamily paplionoideae, which is further divided 
into four clades; clade phaseoloids have important warm-season legumes such as 
Glycine, Phaseolus, Vigna, Cajanus and Macrotyloma species (Doyle & Luckow, 
2003; Gept et  al., 2005). There is complete genomic information available for the 
two model legumes, Medicago truncatum and Arabidopsis, but that may not be very 
useful in horsegram due to its distance from the warm-season grain legumes, as they 
are in another clade. The recently sequenced Cajanus cajan genome can act as the 
model plant for these orphaned warm-season legume crops. Therefore, sequence 
information available in C. cajan can be crucial in understanding comparative 
genomics of horsegram. Marker resources can also be used for constructing link-
age maps and identifying genomic regions linked to traits of agronomic value. Such 
cross-species genetic information may be very important for ‘orphan crops’ such 
as horsegram that have limited or no genomic resources available. Intron-targeted 
amplified polymorphism (ITAP) markers among various legumes have a very high 
degree of transferability rate and have been used to prepare linkage maps of Lupinus 
albus (Phan, Ellwood, Adhikari, Nelson, & Oliver, 2006). Similarly a consensus 
genetic map of cowpea has been developed from the genetic information available in 
Glycine and Phaseolus species (Wellington et al., 2009). Some preliminary work in 
this direction has been initiated at CSK, Himachal Pradesh Agricultural University, 
Palampur to study the transferability of genomic Simple Sequnce Repeats (SSR) 
markers of related legume species to prepare a framework genetic linkage map of 
horsegram. This map will help to initiate a scientific breeding programme or marker-
assisted selection to develop improved plant types of horsegram.
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12.9 Conclusions

Horsegram is an important pulse crop of the Indian subcontinent; therefore, collec-
tion and systematic evaluation work on the germplasm are confined to India only. A 
total of 1721 accessions of horsegram are being conserved in different gene banks 
around the world. Of these collections, about 95% are conserved in the NBPGR, 
New Delhi, and its regional research station. Regional Reserch Station of NBPGR, 
Thrissur, Kerala, has been designated as the active site for the conservation and eval-
uation of horsegram germplasm amassed in Indian gene banks. All these accessions 
need proper characterization and evaluation to enable their exploitation in a horseg-
ram breeding programme. Molecular markers provide precise information on genetic 
diversity and help in more rapid breeding gain when it used in Markers Assisted 
Selection (MAS). But unfortunately, in spite of its medicinal importance and drought 
tolerance, the potential of this crop has not been realized by the government, nor at 
the institutional levels. Very few researchers have explored its phenotypic and bio-
chemical diversity, while diversity at the DNA level is totally lacking and no molecu-
lar markers has been developed in this crop to date.
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