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Abstract
Little millet (Panicum sumatrense Roth. Ex. Roem. & Schult.), a member of the

grass family Poaceae, is native to India. It is nutritionally superior to major cere-

als, grows well on marginal lands, and can withstand drought and waterlogging

conditions. Two-hundred diverse little millet landraces were characterized to assess

variability for agronomic and nutritional traits and identify promising accessions.

Highly significant variability was found for all the agronomic and grain nutrient traits.

Accessions of robusta were high yielding whereas those of nana were rich in grain

nutrients. About 80% of the accessions showed consistent protein and zinc (Zn) con-

tents whereas iron (Fe) and calcium (Ca) contents were less consistent (29.5 and

63.5%, respectively) over 2 yr. Promising trait-specific accessions were identified for

greater seed weight (10 accessions), high grain yield (15), high biomass yield (15),

and consistently high grain nutrients (30) over 2 yr (R2 = .69–.74, P ≤ .0001). A few

accessions showed consistently high for two or more nutrients (IPmr 449 for Fe, Zn,

Ca, and protein; IPmr 981 for Zn and protein). Five accessions (IPmr 855, 974, 877,

897, 767) were high yielding and also rich in Ca. Consumption of 100 g of little mil-

let grains can potentially contribute to the recommended dietary allowance of up to

28% Fe, 37% Zn, and 27% protein. Multilocation evaluation of the promising acces-

sions across different soil types, fertility levels, and climatic conditions would help

to identify valuable accessions for direct release as a cultivar or use in little millet

improvement.

1 INTRODUCTION

Crop and dietary diversity by including climate-resilient

and nutrient-rich underutilized crops can potentially con-

Abbreviations: DAS, days after sowing; DV, daily value; RDA,

recommended daily allowance per 100 g; SNP, single nucleotide

polymorphism.
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tribute to sustainable development goals (SDGs) in over-

coming malnutrition and hunger in a changing climate sce-

nario (Vetriventhan & Upadhyaya, 2019). The widespread

occurrence of malnutrition and changing consumer pref-

erences toward healthy foods underline the importance of

bringing back the neglected, underutilized, but traditionally

important crops such as small millets into the food bas-

ket for food and nutritional security. Small millets are a
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group of small-seeded cereal crops belonging to the grass

family Poaceae. Small millets include finger millet [Eleusine
coracana (L.) Gaertn.], foxtail millet [Setaria italica (L.) P.

Beauv.], proso millet (Panicum miliaceum L.), barnyard mil-

let [Echinochloa crus-galli (L.) P. Beauv. and Echinochloa
colona (L.) Link], kodo millet (Paspalum scrobiculatum L.),

little millet (Panicum sumatrense Roth. Ex. Roem. & Schult.),

teff [Eragrostis tef (Zucc.) Trotter], fonio (Digitaria exilis
Stapf and D. iburua Stapf.), Job’s tears (Coix lachrymal-jobi
L.), guinea millet [Brachiaria deflexa (Schumach.) C.E.Hubb.

ex Robyns, = Urochloa deflexa (Schumach.) H.Scholz], and

browntop millet [Brachiaria ramosa (L.) Stapf. = Urochloa
ramosa (L.) T.Q. Nguyen]. Small millets are known for their

climate-resilient features, including diverse adaptation, less

water requirement, lesser affected by insect pests and diseases,

and the minimum vulnerability to environmental stresses

(Bandyopadhyay et al., 2017; Goron & Raizada, 2015; Saxena

et al., 2018; Vetriventhan et al., 2020).

Little millet is one of the small millets, and a native crop of

India (de Wet et al., 1983). Little millet is distributed in India,

Pakistan, Sri Lanka, Nepal, Myanmar, Thailand, China, the

Philippines, and Indonesia as a weed and/or wild plant, and it

is cultivated as cereal crop India, and also in Nepal, Pakistan,

Sri Lanka, eastern Indonesia, and Myanmar (Hiremath et al.,

1990; ICRISAT & FAO, 1996) [https://uses.plantnet-project.

org/en/Panicum_sumatrense_(PROSEA)]. Essentially all of

the little millet production occurs in India, with a production

of 0.12 Mt on 0.26 Mha as of 2018 (Bhat et al., 2018). Current

production represents a substantial decline over historical lev-

els, where small millets were planted in 7.56 Mha in the period

1951–1955, reducing to 1.86 Mha by 2011–2015 (http://www.

aicrpsm.res.in/Reports.html). The decline is mainly due to a

major shift in diet preferences from traditional millets to other

major cereals (rice [Oryza sativa], wheat [Triticum aestivum],

and maize [Zea mays]) and other commercial crops (Eliazer

Nelson et al., 2019; Padulosi et al., 2015). Another reason for

the decline could be difficulty in de-hulling (removal of husk

from grains). However, there are now effective de-hulling and

processing equipment available that enable easy processing

(Padulosi et al., 2015). Currently, the demand for little millet

and other small millets has increased, underlining the neces-

sity of directing more research and development towards these

crops for improving food and nutritional security.

Little millet can produce considerably higher grain yield

even under limited water supply on marginal lands. It has

several agronomic advantages including diverse adaptation

with high water-use efficiency, salt and waterlogging toler-

ance, and is less prone to insect pests and diseases (Ganapathy,

2017; Kalaisekar et al., 2017; Matsuura et al., 2016; Upad-

hyaya et al., 2015). Besides these climate-resilient features,

various studies conducted over a period of time on little mil-

let show that these grains are a good source of energy, protein,

fiber and minerals, and are particularly rich in iron (Fe= 1.26–

Core Ideas
∙ Little millet is one of the small millets that belong

to the Poaceae, or grass family.

∙ This crop is nutritionally superior to the major

cereals but can grow well on marginal lands.

∙ Landrace accessions showed significant variation

in both grain yield and nutritional traits.

∙ Promising germplasm for grain yield and nutrients

can support little millet improvement.

9.3 mg per 100 g) and dietary fiber (7.7%) compared to rice

(Fe = 0.65–1.02 mg per 100 g; dietary fiber = 2.8–4.4 g per

100 g), wheat (Fe = 1.77 mg per 100 g; dietary fiber = 11.2 g

per 100 g; Longvah et al., 2017; Saleh et al., 2013), and it can

easily substitute rice-based food recipes. Due to its high fiber

and mineral content, little millet grains are increasingly being

used as an ingredient in multigrain and gluten-free cereal

products. Altogether, little millet can serve as a potential alter-

native and supplement crop for crops and dietary diversity

to achieve food, feed, and nutritional security for sustainable

agriculture and healthy lives.

Germplasm is the basic requirement to drive a robust breed-

ing program. Globally, only a limited number of little millet

accessions (about 3,000) have been conserved in genebanks

compared to other major crops, and a majority of them are in

India (Upadhyaya et al., 2015). The cultivated accessions of

little millet consist of two races: nana and robusta, and four

subraces: laxa and erecta in the race nana, and laxa and com-
pacta in the race robusta, based on plant and panicle charac-

teristics (de Wet et al., 1983). Accessions of the race nana
produce plants with decumbent to almost prostrate culms

that become erect at flowering, erect and open with strongly

branched inflorescence (subrace laxa) or with the inflores-

cence branches sometimes clumped at the time of maturity

(subrace compacta). Accessions of the race robusta produce

erect culms with large, strongly branched, erect and open

inflorescences (laxa) or compact and curved inflorescences

(compacta; de Wet et al., 1983). The genebank at ICRISAT,

India, conserves 473 landrace accessions, representing the

races and their subraces of little millet (http://genebank.

icrisat.org/). Since little millet is a highly self-pollinating crop

and hybridization is a difficult task because of small flo-

ret size, a selection from the high yielding accessions can

also be tested under multiple locations for their adaptation

for their release as cultivars. In India, the majority (63%)

of released varieties of little millet are through the selec-

tion from the existing landraces. Extensive evaluation of the

conserved germplasm for grain yield and other important

traits can potentially contribute to little millet improvement.

However, there are only a few studies that have investigated

https://uses.plantnet-project.org/en/Panicum_sumatrense_(PROSEA
https://uses.plantnet-project.org/en/Panicum_sumatrense_(PROSEA
http://www.aicrpsm.res.in/Reports.html
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http://genebank.icrisat.org/
http://genebank.icrisat.org/
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variability in the germplasm of little millet for morpho-

agronomic (Arunachalam et al., 2005; Nirmalakumari et al.,

2010; Selvi, Nimalakumari, & Subramanian, 2015) and grain

nutrient traits (Chandel et al., 2014; Selvi, Nirmalakumari, &

Senthil, 2015), and using a few landraces or limited to a partic-

ular locality. In this study, 200 little millet landraces were eval-

uated to assess variability for agronomic and grain nutritional

traits and to identify promising accessions for direct release

as a cultivar or use in crop improvement programs to develop

high-yielding and nutritionally dense cultivars.

2 MATERIALS AND METHODS

2.1 Plant material and experimental details

The materials for this study consisted of 200 little millet lan-

drace accessions. In our previous study, we have developed

a core collection of little millet using the morpho-agronomic

traits based cluster analysis, and from each cluster, about 10%

of accessions were selected to constitute a core collection of

56 accessions (Upadhyaya et al., 2014). In this study, all the

56 accessions of the core collection were included, and the

additional accessions were randomly chosen from the cluster

information that was used to constitute core collection. These

200 accessions represent the diversity of the entire collec-

tion of 473 little millet accessions conserved at the ICRISAT

genebank. Country and race-wise number of accessions used

in this study are presented in Supplemental Table S1. The

200 accessions represent 52% (65 accessions) and 40% (135

accessions) of the entire accessions of the race robusta (126

accessions) and nana (334 accessions), respectively conserved

at ICRISAT genebank. Country-wise, the majority of the col-

lection site were from India (196), and a few were from Myan-

mar (2), Sri Lanka (1), and Syria (1). The 196 accessions

from India originated (collection site) from 13 states, mostly

Andhra Pradesh (26%), Maharashtra (25.5%), and Odisha

(16.5%), whereas accessions from other states were repre-

sented by <10%. Figure 1 shows the collection sites of little

millet accessions (103) with known geographical coordinates.

The final set of 200 accessions represent both the races (67.5%

nana and remaining were robusta) and subraces (erecta and

laxa of race nana and compacta and laxa of race robusta; Sup-

plemental Table S1).

The field experiments were conducted on red soils (alfisols)

during the rainy season in 2015 and 2016 at ICRISAT, Hyder-

abad, Telangana, India (17˚ 30′ N latitude, 78˚ 15′ E longi-

tude, altitude 545 m above msl), following the α-design in two

replications. Accessions were sown in the third week of July

in both years. Each accession occupied a single row of 4-m-

length ridge (plot) with a spacing of 60 cm between ridges

and plant-to-plant spacing of approximately 10 cm resulting

in about 40 plants per accession. Fertilizers were applied at

the rate of 20 kg N2 ha−1 and 50 kg P2O5 ha−1 as basal dose

and 45 kg N2 ha−1 as a top dressing. Irrigation, hand weeding,

and plant protection measures were provided as needed. The

local climate of the study area is semi-arid with an average

rainfall of 728 mm in 2015 and 1,238 mm in 2016; 73% of

rains were received during the cropping period (July to Oct.)

in 2015 and 83% in 2016. The maximum temperature varied

from 26.4 to 40.8 ˚C in 2015 and from 24.6 to 38.8 ˚C in 2016,

and the minimum temperature varied from 16.4 to 26.6 ˚C in

2015 and from 13.6 to 25.0 ˚C in 2016 during the crop period.

2.2 Data collection

2.2.1 Morpho-agronomic traits

The data on four qualitative and 15 agronomic traits were

recorded following the descriptors of Panicum sumatrense
(IBPGR, 1985). The data on all qualitative traits (plant pig-

mentation: pigmented and green; growth habit: erect, erect

geniculate, and decumbent; inflorescence shape: arched lax,

contracted arched, contracted stiff, diffuse open, elliptic com-

pact, open lax, and open stiff; seed color: cinnamon brown,

dark brown, dark olive green, grey-brown, light olive green,

and straw) were recorded on a plot basis. The agronomic traits,

namely days to 50% flowering, days to maturity, grain yield,

and straw yield were recorded on a plot basis, whereas plant

height, basal tillers number, culm thickness, flag leaf blade

length, flag leaf blade width, flag leaf sheath length, inflores-

cence length, inflorescence lowest primary branch length, and

inflorescence primary axis nodes number were recorded on

five randomly selected plants in a plot. The 100-seed weight

of each accession was estimated from the bulked seeds of each

accession. Grain yield and straw yield per plot were estimated

only in 2016, because in 2015 the crop was damaged due to

lodging because of rain at maturity. The measure of grain and

straw (dry weight) yields per plot were converted into grain

and straw yields kg ha−1, respectively. Harvest index was esti-

mated by dividing the grain yield kg ha−1 by the total biolog-

ical yield (grain yield plus straw yield) of each accession.

2.2.2 Estimating grain nutrient content

Grain samples of 200 accessions, replicated twice in both

years, were harvested at maturity from each plot of 4-m

length. Bulk grain samples (whole grain, unhusked) of each

accession (10 g) were washed for a few seconds using dis-

tilled water and dried in a hot air oven for 2 h at 40 ˚C to

remove dust and metal particles in the samples to estimate

grain protein, Ca, Fe, and Zn content at the Charles Renard

Analytical Laboratory, ICRISAT, India. Nitric acid–hydrogen

peroxide digestion of grain samples was conducted and grain
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F I G U R E 1 Geographical distribution of little millet accession (103) with known geographical coordinates

Ca, Fe, and Zn content in the digests were analyzed using

Inductively Coupled Plasma Optical Emission Spectrometry

(ICP-OES; Wheal et al., 2011). The Sulfuric acid–selenium

digestion method was used to estimate total protein in which

total nitrogen (N) was estimated in grain samples using Skalar

Autoanalyzer, and protein percentage was calculated as N%

times 6.25 conversion factor (Sahrawat et al., 2002).

2.3 Statistical analyses

The data on 15 agronomic and four grain nutritional traits

were analyzed for each rainy season individually and pooled

of two rainy seasons following α-design using GenStat 17th

edition (https://www.vsni.co.uk/). Homogeneity of error vari-

ance between years for all agronomic and grain nutrient traits

was tested following Bartlett’s test (Bartlett, 1937). Broad-

sense heritability (h2
b) was estimated for agronomic and grain

nutrient traits, and traits were categorized as low (<.30), mod-

erate (.30 to .60), and high (>.60). Means of the agronomic

and grain nutrient traits were compared among races using

the Newman–Keuls test (Keuls, 1952; Newman, 1939) using

the R package “agricolae” (Felipe de Mendiburu, 2019). Cor-

relation coefficients and the Shannon–Weaver diversity index

(Hʹ; Shannon & Weaver, 1949) were estimated using GenStat

17th edition (https://www.vsni.co.uk/). Gower’s phenotypic

distance matrix (Gower, 1971) was constructed using data

on qualitative, agronomic, and grain nutrient traits of both

the years together. We used high-quality single nucleotide

polymorphism (SNP) markers data developed in our previ-

ous study on 165 accessions (Johnson et al., 2019) and esti-

mated modified Roger’s distance (MRD) matrix (Goodman

& Stuber, 1983). Then, the phenotype and SNP-based dis-

tance matrices were merged by taking the average pair-wise

distance of both matrices using the “fuse()” function in the

R package “analogue” (Simpson & Oksanen, 2020). The

https://www.vsni.co.uk/
https://www.vsni.co.uk/
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base R function “hclust” was used for Ward.D2 hierarchical

clustering (R Core Team, 2018), and the R package named

“dendextend” was used for visualization of the dendrogram

(Galili, 2015). The correlation between the phenotype and

SNP-based distance was assessed by Mantel’s test (Mantel,

1967). The promising trait-specific accessions for high grain

yield, straw yield, greater seed weight, and grain nutrient-rich

accessions were identified. The accessions were considered

consistent for grain nutrients when the difference between 2

yr for a given trait was ≤ the average least significant differ-

ence (LSD) of both years (Vetriventhan & Upadhyaya, 2019).

Further linear regression (R2) between years were performed

following ‘lm’ function using ‘stats’ package in R (R Core

Team, 2018).

2.4 Estimating percentage daily value

Percent Daily Value (DV) of nutrients from 100 g of little mil-

let grain on a dry weight basis was calculated based on the

amount of a particular nutrient present in little millet that con-

tributes to Recommended Dietary Allowance (RDA) of the

nutrients for an Indian adult male and female per 100 g of

consumption (ICMR, 2010). The DV was calculated by using

the formula below:

%DV = (amount of nutrient per 100 g of grain∕RDA)100

The % DV for Fe is 17 mg d−1 for men and 21 mg d−1 for

women; for Zn 12 mg d−1 for men and 10 mg d−1 for women;

for Ca 600 mg d−1 for men and women; and for protein 60 g

d−1 for men and 55 g d−1 for women (ICMR, 2010).

3 RESULTS

3.1 Analysis of variance and heritability

The analysis of variance following α-design showed that

genotypes differed significantly for all the agronomic and

grain nutrient traits (Table 1), indicating the presence of sig-

nificant variability in little millet germplasm. Homogeneity

of variance test (Bartlett, 1937) revealed that the error vari-

ances between 2 yr were heterogeneous for all the agronomic

traits and grain nutritional traits, except days to maturity,

inflorescence longest primary branch length, and protein

content. Thus, individual year data were used separately to

assess variability and to identify consistently performing

promising trait-specific accessions. The h2
b estimates were

high (>.60) for all the agronomic traits in both the years,

except for basal tillers number and flag leaf blade width that

showed moderate heritability in 2015. All four grain nutrients

showed high h2
b in both the years, ranging from .88 for Zn

to .94 for Ca in 2015, and .82 for Ca to .88 for Fe in 2016

(Table 1).

3.2 Variability for qualitative traits

In the full set, the most predominant classes of qualitative

traits were green plant pigmentation (89%), erect growth habit

(56%), open lax (28%), and contracted arched (25%) inflores-

cence shapes, and cinnamon brown (29.5%) and straw (27.5%)

seed colors (Table S2). However, considerable differences

were observed among races and subraces for all the qualitative

traits, except plant pigmentation. Green plant pigmentation

was the more predominant class in both the races, their sub-

races, and in the full set. The subrace erecta of race nana was

characterized by erect growth habit (86.2%), contracted stiff

inflorescences (89.6%), with largely cinnamon brown (37.9%)

and straw (27.6%) seed colors, whereas the subrace laxa
was characterized by erect growth habit (43.3%), decumbent

(28.3%) and erect geniculate (26.4%) growth habits, open lax

(44.3%) and arched lax (33.0%) inflorescence shapes with five

different seed colors in high frequencies (15 to 22.6%). Sub-

races of race robusta had higher frequencies of erect plants,

contracted arched inflorescence shape, and cinnamon brown

and straw-colored seeds. The Hʹ index of the full set across

qualitative traits was 0.51, and the race nana had a higher Hʹ

value (0.48) than robusta (0.38; Supplemental Table S3). The

subraces of laxa in both the races had the highest Hʹ value in

comparison with the other two subraces across traits. The Hʹ

ranged from 0.15 (plant pigmentation) to 0.74 (inflorescence

shape) in the entire set, whereas subrace laxa of both races had

high H’ values for inflorescence shape and seed color (Sup-

plemental Table S3).

3.3 Variability for agronomic traits

On average, little millet accessions matured 5-d later and

17-cm taller in 2015 (maturity in 85 d after sowing [DAS],

plant height 145 cm) than in 2016 (maturity in 80 DAS, plant

height 128 cm; Table 2). Races nana and robusta differed

significantly from each other for all the agronomic traits in

both years. Accessions of robusta matured late (116 DAS in

2015, 107 DAS in 2016) and produced tall plants (169 cm

in 2015, 152 cm in 2016) with thick culm (7.3 mm in 2015,

7.9 mm in 2016) and produced high grain (1,523 kg ha−1)

and straw (dry weight, 8,972 kg ha−1) yields compared to

nana (Table 2). Accessions of nana were early maturing (85

DAS in 2015, 80 DAS in 2016) and produced short plants

(134 cm in 2015, 116 cm in 2016) with thin culm (4.2 mm in

2016 and 4.8 mm in 2016) and low grain (1,229 kg ha−1) and

straw (4,276 kg ha−1) yields, whereas average seed weight of

nana (0.22 g) was significantly greater than robusta (0.19 g;
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T A B L E 1 Mean sum of square, least significant difference (LSD), coefficient of variation (CV%) and heritability in a broad sense (h2
b) for

agronomic traits and grain nutritional traits of little millet germplasm evaluated in the 2015 and 2016 rainy seasons, ICRSAT, Hyderabad, India

2015 2016

Trait
Genotype mean
sum of square LSD.05 CV h2

b

Genotype
mean sum of
square LSD.05 CV h2

b

% %

Days to 50% flowering, d 666.8** 6.3 5.4 .98 417.4** 6.5 5.7 .97

Days to maturity, d 666.7** 6.8 3.4 .98 575.8** 9.0 5.1 .96

Plant height, cm 1,481.6** 15.1 5.2 .96 1,381.7** 14.3 5.6 .96

Basal tillers number 7.6** 3.6 18.3 .58 15.6** 4.1 20 .72

Culm thickness, mm 7.2** 1.1 10.2 .96 6.9** 1.2 10.3 .94

Flag leaf blade length, mm 1,782.9** 46.9 8.4 .70 2,549.0** 40.2 6.7 .84

Flag leaf blade width, mm 2.2** 2.0 9.3 .57 16.6** 2.4 11.8 .91

Flag leaf sheath length, mm 296.6** 16.6 7.4 .78 450.9** 17.5 8.3 .83

Inflorescence length, mm 1,874.1** 48.8 8.1 .68 3,591.3** 34.5 5.6 .91

Inflorescence lowest primary branch length,

mm

1,500.1** 32.5 8.8 .83 1,728.4** 39.5 10.9 .77

Inflorescence primary axis nodes number 7.6** 2.6 9.4 .78 25.1* 3.2 9.7 .90

100-seed weight, g 0.003** 0.029 6.9 .91 0.003** 0.03 6.8 .93

Grain yield, kg ha−1 NRa NR NR NR 33,6447** 535 20.4 .71

Straw yield, kg ha−1 NR NR NR NR 2,216,6347** 2,850 24.5 .90

Harvest index NR NR NR NR 0.01** 0.1 22.7 .78

Iron, mg kg−1 128.1** 7.2 10.6 .91 64.5** 5.7 9.2 .88

Zinc, mg kg−1 25.0** 3.4 6.1 .88 26.7** 4.1 6.9 .84

Calcium, mg kg−1 2511.2** 25.8 6.7 .94 1,111.0** 28.4 9 .82

Protein, % 9.4** 1.9 8.5 .91 5.1** 1.7 7.6 .86

aNR, not recorded.

*Significant at the .05 probability level.

**Significant at the .01 probability level.

Table 2). The subrace compacta and laxa of the race robusta
differed significantly for plant height and inflorescence length

in both years and for straw yield in 2016, whereas subraces

of the race nana did not differ significantly from each other

in both the years for all the agronomic traits (Supplemental

Table S4). Subrace laxa of race robusta produced tall plants,

long inflorescences, and high straw yield compared to subrace

compacta. The H’ varied from 0.45 (days to 50% flowering)

to 0.64 (flag leaf blade width) in 2015, and from 0.51 (days to

50% flowering) to 0.63 (inflorescence length) in 2016 (Sup-

plemental Table S3); races and subraces also had a similar

range.

3.4 Variability for grain nutrient content

Little millet accessions showed large variability for all the

four grain nutrients as evidenced from the estimates of range

(Fe = 17.6–58.0 mg kg−1 in 2015, 18.4–47.6 mg kg−1 in

2016; Zn = 19.4–36.9 mg kg−1 in 2015, 22.0–39.5 mg kg−1

in 2016; Ca = 105.7–389.7 mg kg−1 in 2015, 92.1–194.1 mg

kg−1 in 2016; and protein = 6.0–15.6% in 2015, 6.4–14.6 in

2016) in the full set. Similar mean grain nutrient contents were

observed in both the years for Fe (33.0 mg kg−1 in 2015, 30.7

mg kg−1 in 2016), Zn (28.5 mg kg−1 in 2015, 29.6 mg kg−1 in

2016), and protein (11.1% in 2015, 11.5% in 2016), whereas

Ca content in 2015 was higher (189.6 mg kg−1) than in 2016

(144.8 mg kg−1). The frequency distribution and performance

of each accession in individual years are presented in Figure 2.

Among the races, nana and its subraces had significantly high

Fe, Zn, and protein than the race robusta and its subraces in

both years, whereas for Ca content, both races and their sub-

races did not differ significantly in both the years (Table 2).

Subraces within each race did not differ significantly from

each other for all the four-grain nutrient content (Supplemen-

tal Table S4). Shannon diversity analysis revealed high diver-

sity in the little millet accessions, in the full set, and each race

and subrace (Supplemental Table S3).
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F I G U R E 2 Histogram and line graph of grain Fe (mg kg−1), Zn (mg kg−11), Ca (mg kg−1), and protein (%) in little millet accessions evaluated

during 2015 and 2016 rainy seasons at ICRISAT, Hyderabad, India

Note: Only a few accessions were visible in the line graph and the remaining were not visible

3.5 Correlation coefficients

Grain yield (kg kg−1) was estimated only during 2016,

whereas in 2015, the crop was damaged due to rain result-

ing in lodging and shattering. The bulk seeds harvested were

used for grain nutrient analysis. Grain yield showed signifi-

cant positive correlations with most agronomic traits, whereas

basal tillers number showed a significantly negative correla-

tion with grain yield (Table 3). Grain yield showed signifi-

cant negative correlations with grain Fe, Zn and protein, while

nonsignificant with Ca (Table 3; Supplemental Figure S1).

Correlation between grain Fe and Zn were significantly posi-

tive (Table 3; Supplemental Figure S1). Calcium, Fe, Zn, and

protein were significantly and positively correlated in 2015,

whereas Ca in 2016 showed nonsignificant correlations with

Fe and Zn and negatively significant correlation with pro-

tein. Correlation coefficients between years were highly sig-

nificant and positive for all the nutrient traits (Fe = .594,
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F I G U R E 3 Relationship between grain yield with grain nutrients (a–d), and between iron and zinc (e, f) of little millet germplasm, evaluated

during 2015 and 2016 rainy seasons at ICRISAT, Hyderabad, India

P ≤ .0001; Zn = .696, P ≤ .0001; Ca = .421, P ≤ .0001; and

protein = .767, P ≤ .0001).

Correlations among agronomic and grain nutrient traits

within each race revealed that the most significant associa-

tions in nana were not significant in robusta, and vice versa

for a few traits (Supplemental Table S5). The important traits,

namely days to 50% flowering, days to maturity, inflorescence

length, and inflorescence lowest primary branch length were

significantly positively correlated with grain yield in the race

nana, whereas they showed nonsignificant associations in

the race robusta. Race-wise, the relationship between grain

yield and grain nutrients, and between Fe and Zn contents

of little millet germplasm are presented in Figure 3. Calcium

content in both the races showed nonsignificant association

with grain yield in the entire set as well as in the race nana and

robusta; grain yield in the race robusta showed nonsignificant

correlation with Fe and Zn contents, but it was significantly

associated in accessions of race nana. Protein content in both

races showed a negative correlation with grain yield (Figure 3;

Supplemental Table S5).

3.6 Genetic distance and population
structure

Average phenotype-based Gower’s distance among acces-

sions in the full set (n = 200) was 0.238 and varied from 0.061

(between IPmr 996 and IPmr 1058, both belong to the race

robusta subrace compacta) to 0.511 (between IPmr 889 that

belongs to the race robusta subrace laxa and IPmr 718 that

belongs to the race nana subrace laxa; Table 4). The SNP-

based distance matrix was estimated for 165 accessions for

which SNP data is available (Johnson et al., 2019). The SNP-

based distance varied from 0.201 (between IPmr 1002 and

IPmr 993) to 0.664 (IPmr 1016 and IPmr 713), both the pairs

belong to the race robusta, but different subraces. The least

diverse pair of accessions, IPmr 1002 and IPmr 993, were col-

lected from Odisha, whereas the highly diverse pair was col-

lected from Maharashtra (IPmr 1016) and Telangana (IPmr

713). The combined distance considering both the phenotypic

and SNP-based distances range from 0.157 (between IPmr

984 and IPmr 758) to 0.531 (between IPmr 841 and IPmr 449).
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The least diverse pair of accessions, IPmr 984 and IPmr 758,

both belong to the race nana and subrace laxa, collected from

Maharashtra and Bihar, respectively; while the most diverse

pair of accessions IPmr 841 and IPmr 449, belong to race

robusta subrace compacta and race nana subrace laxa, respec-

tively. Similar trends of within and among race distances were

observed in all the three types of distance (phenotypic, SNP

and combined), where the average distance between acces-

sions of the races nana and robusta was higher than that of

average distance among accessions within races (Table 4).

The Mantel’s test between the phenotypic and SNP-based

matrices indicated a highly significant correlation (r = .249, P
≤ .0001). Ward’s clustering using combined distance matrices

of both phenotypic and SNP-based data revealed two major

clusters, C-I and C-II, that correspond to two races of lit-

tle millet, nana and robusta, respectively (Figure 4). Sub-

races within each race did not show clear grouping. Clustering

was also performed separately for phenotypic (Supplemen-

tal Figure S2) and SNP data (Supplemental Figure S3), and

both revealed two major clusters that differentiated both the

races.

3.7 Promising germplasm resources

3.7.1 Agronomic traits

Greater seed weight and high grain yield are important agro-

nomic traits for little millet improvement. In the full set, 42

accessions had significantly, and consistently greater seed

weight compared to the trial mean of 0.22 (+ LSD) in both

years; however, the top 10 accessions (IPMr 807, 825, 983,

417, 808, 738, 741, 814, 1069, 1063) were selected after con-

sidering grain yield together with greater seed size (Table 5).

Promising accessions for greater seed weight mostly belong

to the race nana of subrace laxa, from the southern states of

India (Andhra Pradesh, Tamil Nadu and Karnataka; Table 5).

For grain yield, 15 accessions (IPMr 1036, 1040, 891, 862,

1042, 1035, 712, 855, 991, 1000, 974, 877, 875, 1006, 699)

were identified that produced significantly higher grain yields

(1,781 to 2,476 kg ha−1) compared to the trial mean of

1,240 kg ha−1 (Table 5). High yielding accessions mostly

belonged to race robusta (12 accessions) and matured in 88

to 124 DAS and were mostly from the states of Odisha (5)

and Andhra Pradesh (5), whereas the remaining were from

Telangana (2), Maharashtra (1), and Chhattisgarh (1).

3.7.2 Grain nutrient content

Considerable differences were observed between years for

grain nutrient content indicating the influence of genotype,

year, and their interactions. Thus, many accessions that had

F I G U R E 4 The hierarchical clustering of little millet accessions

using combined distance matrix, obtained from both phenotype and

single nucleotide polymorphism (SNP)-based distances, following

Ward’s method. Accessions name color code: blue, robusta; red, nana.

The black color in the bars adjacent to the dendrogram represents the

subrace of the corresponding accession

significantly high grain nutrient in one year did not show sim-

ilar performance during another year. Therefore, it is impor-

tant to identify consistently nutrient-rich accessions in both

years (Table 6). The accessions were considered consistent

when the difference between years for a given trait was ≤ the
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average LSD of both years (Vetriventhan & Upadhyaya,

2019). For Fe, differences of up to 38 mg kg−1 were found

between years, and 127 accessions were found consistent (R2

= .69, P ≤ .0001) with differences between the years < .5 mg

kg−1, and three accessions (IPmr 964, 725, 449) were found

to be consistently significantly high in both the years. For Zn,

differences of up to 10 mg kg−1 were found, and 159 acces-

sions were found to be consistent (R2 = .74, P ≤ .0001) with

differences between the years ≤3.8 mg kg−1, including 11

accessions with significantly higher Zn content (IPmr 901,

1065, 414, 62, 977, 817, 844, 1008, 981, 449, 900; Table 6).

For Ca, differences up to 120 mg kg−1 between years were

observed and 59 of them were consistent (R2 = .70, P ≤ .0001)

with ≤27.1 mg kg−1 differences between years; none of the

accession was found to be significantly high in both the years.

Therefore, those accessions significantly high in Ca content

in 2016 (as grain nutrient content in 2016 were significantly

lower than in 2015) and consistent with 2015 were identified

as promising for calcium rich accessions. This includes 12

accessions (IPmr 855, 974, 877, 897, 767, 985, 838, 1021,

449, 992, 840, 737). Protein content in both the years had dif-

ferences of up to 4%, and 163 accessions had ≤1.8% differ-

ences between years which were considered consistent (R2 =
.73, P ≤ .0001), and nine of them (IPmr 740, 998, 945, 985,

452, 980, 981, 449, 718) were found to have significantly and

consistently higher protein content (13.2 to 15.6%) in both

years (Table 6). Altogether, 30 accessions were identified for

grain nutrient content, including three, 11, 12, and nine acces-

sions for Fe, Zn, Ca, and protein content, respectively, a few

of them were consistent for two or more nutrients, and grain

yield ranged from 484 to 2,052 kg ha−1 (Table 6).

3.7.3 High biomass

Little millet accessions, particularly those belonging to the

race robusta, produced high biomass in general. In total, 42

accessions produced significantly high straw yield (8,640 to

16,433 kg ha−1) and produced grain yields of 539 to 2,476 kg

ha−1, of which the top 15 accessions (IPMr 913, 1037, 699,

1036, 997, 897, 1069, 1040, 891, 700, 1057, 993, 866, 902,

881) that yielded 12,396 to 16,433 kg ha−1 straw (dry weight)

were identified as high biomass yielding (Table 5). These high

biomass yielding accessions matured in 112 to 134 DAS in

2015 and 98 to 126 DAS in 2016, except IPmr 913 which took

177 DAS in 2015 and 157 DAS in 2016. Figure 5 shows high

grain and biomass yielding accessions.
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F I G U R E 5 Little millet germplasm (left) IPmr 1037 (high biomass) and (right) IPmr 1040 (high biomass and grain yield)

3.8 Percent daily value (DV) of little millet
consumption

The selected 30 accessions as promising for grain nutrient

contents were used for estimating %DV contribution per 100 g

grain. The % DV of 30 accessions varied from 10.5 to 28.0%

for Fe, 18.3 to 36.8% for Zn, 13.0 to 27.4% for protein,

whereas the % DV for Ca was very low with an average of

3%. Accessions with consistently high Fe content contribute

up to 27.6% DV, accessions with consistently high Zn content

contribute up to 36.8%, and those with consistently high pro-

tein content contribute up to 27.4% of RDA (Supplemental

Table S6).

4 DISCUSSION

Characterization and evaluation of germplasm open the doors

for their effective utilization in crop improvement. Little mil-

let germplasm accessions used in this study were highly

diverse for all the agronomic and grain nutritional traits and

also showed high heritability. The two races of little millet

differed significantly for all the agronomic and grain nutrient

content. Subraces within each of the races did not differ signif-

icantly for agronomic traits (except subrace compact and laxa
of the race robusta that differed significantly for plant height

and inflorescence length), and grain nutrient content, whereas

they showed variation for qualitative traits particularly inflo-

rescence shape, based on which these races and subraces were

formed (de Wet et al., 1983). Therefore, correlation analysis

considering racial structure can provide interesting informa-

tion. For example, grain and straw yields showed a highly sig-

nificant and positive correlation with days to maturity in the

full set; however, that relationship was not similar when we

assessed them individually race-wise. An increase in matu-

rity duration resulted in increased straw yield in both races,

but an increase in maturity did not result in high grain yield in

the race robusta, whereas increased grain yield was observed

with increasing maturity in nana. This is because accessions

of the race nana were mainly early maturing with short plants,

thin culm, and produced low grain and straw yields, whereas

accessions of robusta were late maturing and produced tall

plants with thick culm, high grain, and straw yields. Early

maturing accessions (race nana) could be utilized for late sow-

ing during the late onset of monsoon whereas late-maturing

accessions (race robusta) could be utilized for growing during

timely monsoon to obtain considerably high grain and straw

yields.

Diversity assessment either using morpho-agronomic traits

or genomic data can provide useful information about the

structure of the population. However, combining both pheno-

typic and genomic data can complement each other to reveal

a better understanding of crop diversity. Here we assessed

pairwise distance among little millet accessions separately

using phenotypic data and SNP data and combined of both

the data. Little millet germplasm was considerably diverse

with an average phenotypic, SNP-based and combined pair-

wise distance of 0.238, 0.513, and 0.376, respectively and the
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race robusta was slightly more diverse than nana. The Ward’s

clustering of both phenotypic and SNP data and combination

of both the data revealed two major groups that correspond

well with two races of little millet, whereas subraces within

each race did not show clear grouping, indicating that little

millet diversity is structured by race.

Dietary deficiency of micronutrients, particularly Fe and

Zn, and also macronutrients such as Ca and protein, have been

reported to be a grave public health problem (Beto, 2015;

Govindaraj et al., 2019; Minocha et al., 2017). Millets, includ-

ing pearl millet (Pennisetum glaucum) and small millets, are

reported to have considerably high grain nutrients compared

to major cereals (Saleh et al., 2013). In little millet, there are

only a few studies on grain nutrient traits estimation, using

a few landraces or limited to a particular locality (Chandel

et al., 2014; Selvi, Nirmalakumari, & Senthil, 2015). (Chan-

del et al., 2014) reported Fe (32.20–35.1 mg kg−1), Zn (30.30–

33.00 mg kg−1) and protein (7.96–10.66%) content in four

genotypes of little millet. In this study, grain nutrient con-

tent assessed using whole grains showed a large variation for

grain Fe, Zn, Ca, and protein content. In our previous study on

little millet, dehulling resulted in a slight but nonsignificant

increase in Fe, Zn, Ca, and protein contents when compared

to the whole grain (Vetriventhan, unpublished data, 2021).

Dehulling requires considerable time and manpower, and it

causes variation in nutrient loss among test entries. Therefore,

whole grains could be utilized for screening the large number

of germplasm. The race nana was found to have high grain Fe,

Zn, and protein contents, whereas Ca content was similar in

both the races. Our previous studies on grain nutrient assess-

ment of proso millet germplasm indicated that the race ovatum
of proso millet was found to have considerably higher grain

nutrients (Fe, Zn, Ca, and protein) than other races (Vetriven-

than & Upadhyaya, 2018), whereas no significant differences

were observed for grain nutrients among three races of kodo

millet germplasm (Vetriventhan & Upadhyaya, 2019). Aver-

age Fe (33.0 mg kg−1 in 2015, 30.7 mg kg−1 in 2016), Zn

(28.5 mg kg−1 in 2015, 29.6 mg kg−1 in 2016), and pro-

tein (11.1% in 2015; 11.5% in 2016) contents in little mil-

let accessions studied here were greater than in finger mil-

let germplasm (Fe 29.3 mg kg−1, Zn 19.9 mg kg−1, protein

7.3%; Upadhyaya et al., 2011a), and Ca content in little millet

(189.6 mg kg−1 in 2015, 144.8 mg kg−1 in 2016) was com-

parable to that in proso millet (165 mg kg−1; Vetriventhan &

Upadhyaya, 2018), foxtail millet (146 mg kg−1; Upadhyaya

et al., 2011b) and kodo millet (213 mg kg−1 in 2015, 189 mg

kg−1 in 2016; Vetriventhan & Upadhyaya, 2019) germplasm.

Average Fe and Zn contents in little millet germplasm in this

study were greater than those of the final target content estab-

lished by HarvestPlus for rice (Fe 13 mg kg−1, Zn 24 mg kg−1)

and comparable with the average Fe and Zn content at the

baseline for wheat, maize, and sorghum (Sorghum bicolor;

Garcia-Oliveira et al., 2018). Consumption of little millet

could potentially contribute up to 28% Fe, 36.8% Zn, and

27.4% protein of RDA, which is higher than rice (Fe 10.6%

DV, Zn 16.8% DV, protein 13.4% DV), wheat (Fe 20.6% DV,

Zn 8.8% DV, protein 21.1% DV), and maize (Fe 15.9% DV,

Zn 22.7% DV, protein 16.7% DV; Longvah et al., 2017; Saleh

et al., 2013). Moreover, depending on the amount of little mil-

let consumed daily basis, it can even meet with 100% DV of

these important and major nutrients (Anitha et al., 2019). A

previous study has shown that little millet can be eaten like

rice and can easily replace the staple (Anitha et al., 2019);

therefore, it is easy to achieve adequate consumption in staple

form. The high amount of major nutrients in little millet has

the potential to meet the RDA of these major nutrients. This

needs to be studied further based on these high nutrient little

millet accessions. These studies highlight the importance of

little millet in terms of grain nutrients and demonstrate that

this crop and other millets can be a good supplement for crop

and dietary diversity.

The genotype and genotype × environment (locations

and sites) interactions significantly influence grain nutrients

content. High genotype × environment (sites) interactions

have been reported for grain nutrient content in several crops,

including in maize, pearl millet, sorghum (Hariprasanna et al.,

2012; Oikeh et al., 2004; Phuke et al., 2017; Pucher et al.,

2014; Singhal et al., 2018), and small millets (Vetriventhan

& Upadhyaya, 2018, 2019). Thus, high-grain, nutrient-rich

accessions in one year may not display the same performance

in another year, therefore, identifying consistently high-grain

nutrient-rich accessions across years and locations is essen-

tial. In this study, 60, 63.5, 79.5, and 81.5% of the total

accessions were found to be consistent between years for

Ca, Fe, Zn, and protein contents, respectively, indicating the

relative contribution of the genotype, year and genotype ×
year interactions on the expression of the traits. Grain Fe and

Zn contents showed significant positive correlation with each

other in both the years, as in other small millets such as proso

millet (Vetriventhan & Upadhyaya, 2018) and finger millet

(Upadhyaya et al., 2011a), as well as in sorghum (Phuke et al.,

2017; Upadhyaya et al., 2016), and pearl millet (Kanatti et al.,

2014). In the full set, grain yield was negatively correlated

with Fe, Zn, and protein, and had a nonsignificant correlation

with Ca, indicating that the simultaneous improvement of Fe,

Zn, protein and grain yield in little millet is difficult, whereas

Ca content could be improved together with high grain yield.

Interestingly, when correlations were estimated for each race

individually, grain Fe and Zn in the race robusta showed

nonsignificant correlation with grain yield, but showed

significantly negative correlation in the race nana. This

significance in nana is not due to differences in the number

of accessions of two races, as nana has more accessions than

robusta. Both races are morphologically different in terms of

maturity, stature, the thickness of stem, and yield potential.

Correlation between Ca content and grain yield in both the
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races was negligible, indicating that it would be possible to

enhance Ca content in both the races and Fe and Zn content

in the race robusta, together with high grain yield in little

millet.

Identification of promising trait-specific accessions for the

traits of interest is essential to enhance their use in breeding

programs and for release through selection from germplasm if

they are found to be superior. Little millet is mostly cultivated

in India, where until 2020, only 32 varieties were released,

of which 20 were based on the selection from existing lan-

draces, and the remaining were developed through recombi-

nation breeding (9) and mutation breeding (3; http://www.

aicrpsm.res.in/; AICSMIP, 2014). This is because of difficulty

in hybridization and low breeding focus. However, emascula-

tion and crossing techniques are reported in little millet (Nan-

dini et al., 2019) which can provide support in recombination-

based breeding. In this study, 15 accessions were identified as

promising for higher grain (IPmr 1036, 1040, 891, 862, 1042,

1035, 712, 855, 991, 1000, 974, 877, 875, 1006, 699; grain

yield 1,781 to 2,476 kg ha−1). For grain nutrients, based on

consistent performance across 2 yr, 30 accessions were iden-

tified as promising for high grain nutrients including three for

Fe, 11 for Zn, 12 for Ca, and nine for protein, and a few of

them were consistently high for two or more nutrients (IPmr

449 for Fe, Zn, Ca, and protein; IPmr 981 for Zn and pro-

tein). Five accessions (IPmr 855, 974, 877, 897, 767) yielded

over 1,500 kg ha−1 and had consistently high Ca in both years.

IPmr 767 and IPmr 977 had high Fe, Zn, Ca, and protein, early

maturity (<80 d), and produced over 1,000 kg ha−1. Promis-

ing accessions identified for higher grain yield were mostly

belonged to the race robusta (12) and originated in Odisha

(5), and Andhra Pradesh (5), while those identified for greater

seed weight as well as rich in grain nutrients belong to the race

nana. The germplasm identified in this study could be tested

in little millet growing regions in India and similar ecologies

in other countries that could result in the release of selection

from germplasm as varieties.

Many crops including undomesticated plants have the

potential to become important feedstock, with substantial

prospects for offsetting greenhouse gas emissions arising

from the use of fossil fuels. However, only a few crops supply

the bulk of biofuel and bioenergy production globally (Long

et al., 2015). Little millet is a C4 crop, similar to switchgrass

(Panicum virgatum); both belong to the grass genus Panicum,

with high photosynthetic efficiency and high biomass yield

potential even with limited water supply. In the current study,

15 accessions that yielded about 12 to 16 t ha−1 straw (dry

weight) were identified as high biomass-yielding (14 belong

to robusta, and 1 to nana), indicating high potential of uti-

lizing little millet for dual purposes (as food and bioenergy

feedstock crop).

5 CONCLUSION

Crop and dietary diversity are essential for sustainable agri-

culture and healthy lives. Little millet together with other

small millets has huge potential to contribute to achieving

crop and dietary diversity. Little millet is a good choice par-

ticularly in a changing climate scenario because of its diverse

adaptation, less water requirement, being less affected by

biotic and abiotic stresses, and having high nutrient den-

sity. It can be grown as a sole crop or as an intercrop with

other crops, particularly legumes. It can be grown as a multi-

purpose crop—for food and fodder—and it has the potential to

use as a bioenergy feedstock crop. But little millet continues

to remain an under-researched and under-utilized crop even

among small millets. To increase the popularity of this low-

priority crop, the promising high yielding and nutrient-dense

accessions identified in this study could be used as poten-

tial starting materials for little millet improvement including

direct release as cultivar following national protocols. The

scope of the little millet evaluations needs to be expanded to

include multiple sites, ideally with different soil types and fer-

tility, to make a better estimate for the heritability of grain

yield and nutrient composition. Further, assessing little mil-

let as a potential bioenergy feedstock, fodder quality profil-

ing, and genomic investigation can promote little millet as

a multi-purpose, climate-resilient, nutrient-rich crop in a cli-

mate change scenario. Researchers can obtain seed samples

of little millet accessions from the ICRISAT genebank (http:

//genebank.icrisat.org/) following a standard material transfer

agreement.
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