

ollandlier & Associaties, Inc.

1860 LINCOLN

1400 LINCOLN TOWER BUILDING DENVER, COLORADE PREED OIL & GAS EX PREED AND PRODUCTION APR 2 6 1984 DIVISION OF OIL GAS & MINING

April 23, 1984

Utah Division of Oil, Gas & Mining 4241 State Office Bldg. Salt Lake City, Utah 84114

> RE: Application for Permit to Drill Lawrence 16-1 SE SE Sec. 16-18S-8E Emery County, UT

303 863-9100

Gentlemen:

1

Enclosed please find three copies of the APD for the captioned well.

Please contact us should you need more information.

Sincerely yours,

CHANDLER & ASSOCIATES, INC.

1 David M. Burnett

DMB/trz enclosures

Form OGC-1a		OF UTAH	SUBMIT (Othe CES	SUBMIT IN TRIPLIC (Other actions revealed side)		
	DIVISION OF OIL,	GAS, AND MININ	G		5. Lease Designation MI _ 34259	on and Serial No.
APPLICATION	FOR PERMIT T	O DRILL, DEE	PEN, OR PLUC	BACK	6. If Indian, Allot	tee or Tribe Name
La. Type of Work DRI b. Type of Weil	u 🕅		PLUG	ВАСК	7. Unit Agreement	Name
Oil X G Well W	as Other		Single X Zone	Muitipie	S. Farm or Lease	Name
2. Name of Operator					Lawrence	
Chandler &	Associates, Inc.				9. Weil No.	
. Address of Operator			-OEII	IEU	16-1	
1860 Lincol	n Street, Denver	, Colorado 8	D203 REUEN		10. Field and Pool,	or Wildcat
. Location of Weil (Rep	ort location clearly and in	accordance with any Si	ate requirements.*)		• Wildcat	
At surface 735	5 FSL; 659 FEL		APR 26	1984	11. Sec., T., R., M and Survey or	or Bik. Area
At proposed prod. zone	Same			OFOIL	1-18S-8E	
14. Distance in miles and	direction from nearest toy	n or post office*	DIVISION	MINING	12. County or Part	rish 13. State
3.7 miles s	outh of Huntingt	on, Utah	GAS &	MILL	Emery	Utah
15. Distance from propose location to nearest	ied*	. 16	No. of acres in lease	17. No. to th	of acres assigned is well	
(Also to nearest drig.	line, if any) 659		217		40	·
 Distance from proposition to nearest well, drilling 	ed location* ng. completed.	19	. Proposed depth	20. Rota	ry or cable tools	
or applied for, on this	i lease, ft		9880'		Rotary	
1. Elevations (Show whe	ther DF, RT, GR. etc.)				22. Approx. date	work will start*
570	0' Ground				May 15, 1	.984
23.		PROPOSED CASING	AND CEMENTING PROG	RAM	·	
Size of Hole	Size of Casing	Weight per Foot	Setting Depth		Quantity of C	ement
17 ¹ /2	13-3/8	54.5#	1600		1,230 s	X
8-3/1	51	15.5#	9880		315 9	X

- 1. Drill to TD of 9880 (Mississippian).
- 2. Run $5\frac{1}{2}$ " casing if commercial production is indicated.
- 3. If dry hole, P&A as instructed by the State of Utah.
- 4. Well will be drilled with mud.
- 5. Well control equipment will include double hydraulic BOP system of 900 series. A fill-up line will be installed, equipment pressure mechanically checked daily while drilling.

Well	Name:	Lawrence	State	16-1
------	-------	----------	-------	------

IN ABOVE SPACE DESCRIBE PROPOSED PROGRAM: If p ductive zone. If proposal is to drill or despendirectionally, giv preventer program, if any.	proposal is to deepen or plug back, give data on present p ve pertinent data on subsurface locations and measured	productive zone and proposed new pro- and true vertical depths. Give blowout
Signed Richard Veonte	Title Petroleum Engineer	Date 4/23/84
(This space for Federal or State office use)		
Permit No	Approval Date	
Approved by Conditions of approval, if any:	Title	Date

PROJECT

T185, R8E, S.L.B.&M.

CHANDLER & ASSOCIATES, INC.

Well location, LAWRENCE STATE #/6-/, located as shown in the SE 1/4 SE 1/4 Section 1, T 18 S, R 8 E, S.L.B. & M. Emery County, Utah.

CERTIFICATE

THIS IS TO CERTIFY THAT THE ABOVE PLAT WAS PREPARED FROM FIELD NOTES OF ACTUAL SURVEYS MADE BY ME OR UNDER MY SUPERVISION AND THAT THE SAME ARE TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF

aurance

REGISTERED LAND SURVEYOR REGISTRATION № 3137 STATE OF UTAH

Uintah Engineering	& Land Surveying
p.o. box q 85 s c	Duth - 200 east
Vernal, V	Utah - 84078
SCALE	DATE
I" = 1000'	2/17/84
D.A. G.S. D.K. BFW	REFERENCES GLO Plat
WEATHER Cold	FILE CHANDLER & ASSOC.

Scott M. Matheson, Governor Temple A. Reynolds, Executive Director Dee C. Hansen, State Engineer

74 West Main Street • P.O. Box 718 • Price, UT 84501 • 801-637-1303

1 been RECEIVED APR 3 0 1.4 DIVISION OF OIL

GAS & MINING

April 26, 1984

Division of Oil, Gas and Mining Attn: Norm Stout 4241 State Office Building Salt Lake City, Utah 84114

Re: Temporary Change 84-93-6

Dear Mr. Stout:

Enclosed please find a copy of the application and approval letter on the above referenced Temporary Change. These copies are for your records. Please contact us if you have any questions.

€.

Sincerely,

Mark P. Page Area Engineer

Enclosure

MPP/mjk

Huntington-Cleveland Irrigation Co. Attn: Mar Grange 55 North Main Street Huntington, Utah 84528

Re: Temporary Change 84-93-6

Dear Mr. Grange:

The above numbered Temporary Change Application has been approved. A copy is herewith returned to you for your records and future reference.

Sincerely,

Mark P. Page Area Engineer for Dee C. Hansen, P.E. State Engineer

DCH/MPP/mjk

Enclosure

DEDENVED			V .	
RECEIVED			-	
APR 3 () 1981	APPLICA	FION NO. 74	1-93-6	
	DISTRIB	UTION SYSTEM.	HUNTINGTON CA	al.
Application of oil	Temporary Ch	ange of Po	oint of Div	version,
	Place or Purpo	ose of Use		DECUVED
	STATE OF	UTAH	• •	APR 25 1984
	(To Be Filed in I	Duplicate)		OTHER FROM FER
	Pric	e, Utah	April 25.	PHICE UTAI 19
For the purpose of obtain	ing permission to temporarily	change the point o (Strike	f diversion, place of out written matter not	r purpose of use needed)
of water, the right to the use of	which was acquired byA.	HChristense	nDecree	.ward No.)
to that hereinafter described, ap facts, submitted in accordance w	plication is hereby made to th ith the requirements of the Law	e State Engineer, b vs of Utah.	ased upon the follo	wing showing of
1. The owner of right or applicat	ion is Huntington-Clev	eland Irrigat: amo as abovo	ion Company	
2. The name of the person make	ng this application is	ain Huntin	ton. Utah 84	528
3. The post office address of the	applicant is	<u>w).(())</u> wn.w.ch;	3 4V.(()	
	PAST USE OF	WATER		
4. The flow of water which has	peen used in second feet is3	92.25	· · · · · · · · · · · · · · · · · · ·	
5. The quantity of water which	has been used in acre feet is			
6. The water has been used each	year from	(Day) (Me	onth) (I	Day)
7. The water has been stored ea	ch year from January] (Month)	to (Day) (Mo	December3]	, incl. Day)
8. The direct source of supply is	Huntington Crk& t	r.i.b.s., inEr	nery	County.
9. The water has been diverted diversion from Hunting	into Iton.Creek.and.tribut	ditch at a point aryspr.ings	locatedYarious	s_points_of.
0. The water involved has been	used for the following purpose:	Irrigation,	domestic, sto	ockwater
NOTE: If for irrigation, give legal sub	divisions of land and total acrease	which has been irrigate	32,833.01 d. If for other purpses,	give
place and purpose of use.	OWING TEMPORARY	CHANGES AR	E PROPOSED	
	owing reministration			
1. The new of water to be chang 2. The quantity of water to be c	hanged in acre-feet is $\dots 3.0$	0		
3. The water will be diverted in	to the tank truck	ditch at a point	located	
N, 1200 ft. & W. 320 ft	t. from St Cor. Sec.		, SLB&M,	
14. The change will be made from	nMay 10 (Perio	1984, to d must not exceed one	<u></u>	1984
15. The reasons for the change a	rethe water will b	e.used.for.dr	illing.fluid	in the
construction of an exp	loration well.			
6. The water involved herein he	as heretofore b ee n temporarily	changed	years prior t	o this application.
	(List	ye <mark>ars change has been r</mark> Fxnloration	nade) Drilling.***	PERCE State
7. The water involved is to be the 16-1 . located: 16-1 .	ised for the following purpose:		c1,1185. N	E, SLB&M
NOTE: If for irrigation, give legal au	bdivisions of land to be irrigated. If	for other purposes, giv	al e place and purpose of	proposed use.
	EXPLANA	TORY	с, · · ?	
Information for t	nis_application_was_o	btained.from.	David.Burnett	.of
Chantlett & Astractates	(1-303-863-9100)		••••••	k
A filing fee in the sum of \$5.0 vertising this change, or both, up	0 is submitted herewith. I agree on the request of the State En	ee to pay an additio gineer.	nal fee for either in	vestigating or ad-
		MARTI	1. Ssan	$c_{\mathcal{N}}$
			mature of Applicant	····

•

C. a

(Read Carefully)

This application blank is to be used only for temporary change of point of diversion, place or nature of use for a definitely fixed period not to exceed one year. If a permanent change is desired, request proper application blanks from the State Engineer.

Application for temporary change must be filed in duplicate, accompanied by a filing fee of \$7.50 Where the water affected is under supervision of a Water Commissioner, appointed by the State Engineer, time will be saved if the Application is filed with the Commissioner, who will promptly investigate the proposed change and forward both copies with filing fee and his report to the State Engineer. Applications filed directly with the State Engineer will be mailed to the Water Commissioner for investigation and report. If there be no Water Commissioner on the source, the Application must be filed with the State Engineer.

When the State Engineer finds that the change will not impair the rights of others he will authorize the change to be made. If he shall find, either by his own investigation or otherwise, that the change sought might impair existing rights he shall give notice to persons whose rights might be affected and shall give them opportunity to be heard before acting upon the Application. Such notice shall be given five days before the hearing either by regular mail or by one publication in a newspaper. Before making an investigation or giving notice the State Engineer will require the applicant to deposit a sum of money sufficient to pay the expenses thereof.

> Address all communications to: State Engineer State Capitol Building Salt Lake City, Utah

STATE ENGINEER'S ENDORSEMENTS

(Not to be filled in by applicant)

	Change Application No
1.	4-25-84 Application received by Water Commissioner
	/ (Name of Commissioner) /
	Recommendation of Commissioner
2 .	HPRIC 25,1984 Application received over counter in State Engineer's Office by
3.	
.4	
5.	Corrected application resubmitted over counter to State Engineer's Office.
6.	
7.	
8 .	
9 .	
10.	
11.	Application approved for advertising by mail
12.	
13.	
14.	
15.	
16.	4-25-84 Application recommended for approval by
17.	4-26-84 Change Application approved and returned to HUNDINGTON - Clavelon & Jello.

THIS APPLICATION IS APPROVED SUBJECT TO THE FOLLOWING CONDITIONS:

Mart Plage aua Engine State Engineer

1860 LINCOLN

1400 LINCOLN TOWER BUILDING DENVER, COLORADO 80203 OIL & GAS EXPLORATION AND PRODUCTION

303863-9100

May 1, 1984

RECEIVED

MAY 2 1984

Utah Division of Oil, Gas and Mining 4241 State Office Building Salt Lake City, Utah 84114 DIVISION OF OIL GAS & MINING

RE: Application for Permit to Drill Lawrence State 15-1 SWSE Sec. 1-18S-8E Emery County, Utah

Gentlemen:

Enclosed please find three copies of the APD captioned above. We previosly permitted the Lawrence 16-1. Please disregard that application.

Thank you for your assistance with this matter. Should you have any questions, please don't hesitate to call.

Sincerely yours,

David M. /Burnet

Ę		,	
Form	0.G	C-12	

\sim	SUBMIT IN TRIPLICATE*
STATE OF UTAH	(Other instructions on
PARTMENT OF NATURAL RESOURCES	

*

2.0

	DIVIS	ION OF OIL, GA	RAL RESOURCE S, AND MINING	.		5. Lunse Designation	and Serial No.
	ATION FOR	PERMIT TO	DRILL DEEPE	N. OR PL	UG BACK	ML-34259 6. If Indian. Allotte	e or Tribe Name
Type of W	ork						10-0
	DRILL	D	EEPEN	PLU	JG BACK 🗌	. Unit Agreement P	
. Type of ₩ Oii ΓΣ	ell Gas 🦳			Single [Y]	Muitipie	3. Farm or Lease N	inde.
Weil Las Name of Ope	Well -	Other	Na	id Burnet	tt	Lawrence	
Chano	dler & Assoc	iates, Inc.	: <u>3</u> 03	3-863-91	00	9. Well No.	
Address of (Operator					10-1	or Wildest
1860	Lincoln Str	eet, Denver, (Jolorado 8020	J.J.		• Wildcat	
Location of At surface	Weil (Report locatio	on clearly and in accou	mancy with any State	iequitements. ,	_	11. Sec., T., R., M.	or Bik.
•	660' FSL;	1980 FEL		SWS	E	and Survey of A	
At proposed	prod. zone	Same				<u>1-185-8E</u>	
Distance in	miles and direction	from nearest town of	r post office*			12. County or Parris	th 13. State
3.7 r	niles south	of Huntington	, Utan	o of serve in less	117. No.	of acres assigned	Ulan
location to	nearest	6601		217	to th	is well	
(Also to ne	arest drig. line, if a	ny) 000	19. Pr	C1/	20. Rota	ry or cable tools	
to nearest	well, drilling, compli- for, on this lease, ft	eted.	<u> </u>	9880'	۴	Rotary	
Elevations	(Show whether DF.	RT, GR. etc.)			•	22. Approx. date	work will start*
	5726' From	m Ground		<i>,</i> ,		May 15, 19	984
		. PBC	POSED CASING AND	CEMENTING P	ROGRAM		
Size of	Hole S	ize of Casing	Weight per Foot	Setting Der	oth	Quantity of Cer	nent
175		13-3/8	54.5#	1600		<u> </u>	X
8-3	/4	5-2	15.5#	9880			
			توجد			REUE	IVED
1.	Drill to TD	of 9880 (Mis	sissippian).				
2.	Run 5½" cas	ing if commer	cial production	on is indic	cated.	MAY	2 1984
3.	If dry hole	P&A as inst	ructed by the	State of I	ما م ماد (
4.		فحالا جلاب العاور		Juane of a	Jtan.	DIVISIO	
	Well will b	e drilled wit	h mud.		Jtan.	DIVISIO GAS &	n of oil Mining
5.	Well will b Well contro series. A checked dai	e drilled wit l equipment w fill-up line ly while dril	h mud. ill include do will be insta ling.	ouble hydra lled, equip	aulic BOP sy oment pressu	DIVISIO GAS & ystem of 900 ure mechanica	N OF OIL MINING 11y
5.	Well will b Well contro series. A checked dai Well Name:	e drilled wit l equipment w fill-up line ly while dril Lawrence Sta	h mud. ill include do will be insta ling. te 15-1	ouble hydra 11ed, equi APPF OF OIL	aulic BOP sy pment press UTAH DIV , GAS, AN <u>I</u>	DIVISIO GAS & ystem of 900 ure mechanica THE STATE ISION OF SMONNA	N OF OIL MINING
5.	Well will b Well contro series. A checked dai Well Name: Mell Name: If proposal is to di gram. if any.	e drilled wit l equipment w fill-up line ly while dril Lawrence Sta PROPOSED PROGRAM	h mud. ill include do will be insta ling. te 15-1 I: If proposal is to do ally, give pertinent dat	ouble hydri lled, equi APPF OF OIL DATE BY: repen or plug bac ta on subsurface	aulic BOP sy pment press OVED BY UTAH DIV , GAS, ANI E k. give data on py locations and measure	DIVISIO GAS & ystem of 900 ure mechanica THE STATE ISION OF D MINING MINING MINING	N OF OIL MINING
5. ABOVE S letive ione. eventer prod Sistnesi	Well will b Well contro series. A checked dai Well Name: BPACE DESCRIBE : If proposal is to d gram. if any.	e drilled wit l equipment w fill-up line ly while dril Lawrence Sta PROPOSED PROGRAM rill or deepen direction	h mud. ill include de will be insta ling. te 15-1 f: If proposal is to de ally, give pertinent dat Pe	ouble hydri lled, equi APPF OF OIL DATE BY: repen or plug bac ta on subsurface	aulic BOP sy pment press UTAH DIV , GAS, ANI : : : : : : : : : : : : : : : : : : :	DIVISIO GAS & ystem of 900 ure mechanica THE STATE ISION OF MINING MINING MINING MINING MINING MINING MINING MINING MINING MINING	N OF OIL MINING
ABOVE S ctive zone. eventer prod	Well will b Well contro series. A checked dai Well Name: Well Name: If proposal is to d grann. if any. Hugo Cart	e drilled wit l equipment w fill-up line ly while dril Lawrence Sta PROPOSED PROGRAM rill or deepen direction aya aya	h mud. ill include du will be insta ling. te 15-1 f: If proposal is to du ally, give pertinent dat Title	ouble hydri lled, equi APPF OF OIL DATE BY: repen or plug bac ta on subsurface	aulic BOP sy pment press OVED BY UTAH DIV , GAS, ANI : : : : : : : : : : : : : : : : : : :	DIVISIO GAS & ystem of 900 ure mechanica THE STATE ISION OF MINING MININ	N OF OIL MINING 11y and proposed new pa depths. Give blowc

Approved	by.			
Conditions	of	approval.	if	an y :

Title.....

Date.

.....

.....

PROJECT

CHANDLER & ASSOCIATES, INC.

Well location, LAWRENCE STATE #/5-/, located as shown in the SW1/4 SE1/4 Section 1, T18S, R8E, S.L.B.& M. Emery County, Utah.

CERTIFICATE

THIS IS TO CERTIFY THAT THE ABOVE PLAT WAS PREPARED FROM FIELD NOTES OF ACTUAL SURVEYS MADE BY ME OR UNDER MY SUPERVISION AND THAT THE SAME ARE TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF.

REGISTERED LAND SURVEYOR REGISTRATION № 2454 STATE OF UTAH

Uintah Engineering	8 Land Surveying
p. o. box q - 85 sc	outh - 200 EAST
Vernal, I	JTAH - 84078
SCALE 1" = 1000'	DATE 4 / 30 / 84
PARTY	REFERENCES
D.A. J.H. BFW	GLO Plat
WEATHER	FILE
Foir	CHANDLER

TIBS, RBE, S.L.B.&M.

					1
• •				\sim	به به الا لا
OPERATOR Change	la × less	ciate, G	nc.	DATE <u>5-3</u>	-84
WELL NAME _ Jan	nence 15-1	<u> </u>			
SEC SWSE /	T 185	R <u>8</u> E	COUNTY	Emery	
43-0 API N	15 - 30/92 IUMBER		SZ. TYPE	OF LEASE	
POSTING CHECK OFF:					
	· · ·	HL			
NID		PI			
MAP					
PROCESSING COMMENTS:		+1 100			
Water og -	# 84-93-6				······
APPROVAL LETTER:					
SPACING: A-3	UNIT	[с-3-а	CAUSE NO. &	DATE
c-3-	-b	Ľ	с-3-с		
SPECIAL LANGUAGE:					
			<u></u>		
			<u>`</u>		

3**4** 10 RECONCILE WELL NAME AND LOCATION ON APD AGAINST SAME DATA ON PLAT MAP. AUTHENTICATE LEASE AND OPERATOR INFORMATION VERIFY ADEQUATE AND PROPER BONDING AUTHENTICATE IF SITE IS IN A NAMED FIELD, ETC. APPLY SPACING CONSIDERATION ORDER UNIT с-3-ь c-3-c CHECK DISTANCE TO NEAREST WELL. CHECK OUTSTANDING OR OVERDUE REPORTS FOR OPERATOR'S OTHER WELLS. IF POTASH DESIGNATED AREA, SPECIAL LANGUAGE ON APPROVAL LETTER IF IN OIL SHALE DESIGNATED AREA, SPECIAL APPROVAL LANGUAGE.

WELL PROGNOSIS TE: May 1, 1984 UTAH PROSPECT: Lawrence DRLG. DEPT. Carl Winters GEOLOGIST: Larry Prendergast 8289 NO.: GR 5726' DF ELEVATION: EST. GR DF SURVEY RECEIVED OPERATOR: Chandler & Associates, Inc. WELL: Lawrence State 15-1 LOCATION: SWSE Section 1-T18S-R8E Emery County, UT MAY 7 ł, 198.1 ESTIMATED FORMATION TOPS: SAMPLES: 10' surface to total depth **DIVISION OF OIL** (Next Page) GAS & MINING Wet cut to: Amstrat 6336 E 39th Avenue Denver, CO 80207 Dry cut to: Amerada Hess Chevron Marathon CORES & DST'S: LOG PROGRAM: BHC Sonic/GR-sfc csg to TD Four DST's anticipated. Catch representative DIL/GR/SP -sfc csg to TD fluid samples top, middle, bottom, sample -sfc csg to TD CNL/FDC chamber of all DST's. -6000' to TD Dipmeter Mudlog -sfc csg to TD DST ' SERVICE COMPANY ELECTRIC LOGS DIRECT DISTRIBUTION: FIELD FINAL REPORT MUD LOG Division of Oil, Gas & Mining 1 1 1 4241 State Office Building Salt Lake City, UT 84114 Chandler & Associates, Inc. 3 4 4 3 1860 Lincoln St., Suite 1400 Denver, CO 80203 Robert L. Lent (303) 863-9100 (0) (303) 779-0130 (H) 4 4 4 4 Amerada Hess (303) 573-3500 + l sepia 1625 Broadway, Suite 2200 Denver, CO 80202 Bob Lupe - 722-2088 (H) Mac Duncan 2 2 2 2 Chevron USA, Inc. (303) 691-7000 + dry cut samples + l sepia P. O. Box 599 Denver, CO 80201 R. B. Christie - 691-7471(0); 985-0107 (H) Steve M. Doherty-691-7231(0); 722-6505 (H) 2 3 2 Marathon Oil Company (307) 577-1555 3 + dry cut samples + l sepia P. O. Box 2659 Casper, WY 82602 Scott Raymond (307) 577-1216 (H) Alec Steele (307) 266-4153 (H) 2 2_____ Texas International Petroleum Corp. 2 + l sepia 6525 N. Meridian (405) 728-5125 Oklahoma City, OK 73116 -728-5100 Don Preston (405) 364-4963 (H)

May 1, 1984

44

Prospect	::	Lawrence
No.	:	8289
Well	:	Lawrence State 15-1
Location	1:	SWSE Section 1-T18S-R8E
		Emery County, UT

Page 2

ESTIMATED FORMATION TOPS:

Est KB	5,735'
Ferron	940'
Bentonite Marker #1	1,300'
Bentonite Marker #2	1,550'
Dakota	1,600'
Cedar Mountain	1,660'
Buckhorn	2,315'
Morrison	2,380'
Summerville	2,760'
Curtis	3,110'
Entrada	3,360'
Carmel	4,060'
Navajo	5,060'
Chinle	6,000'
Upper Moenkopi	6,290'
Sinbad	6,890'
Lower Moenkopi	7,040'
Kaibab	7,310'
Toroweap	7,420'
Elephant Canyon	7,890'
Mississippian	8,240'
Mississippian Porosity	8,440'
Mississippian Sh Marker	9,040'
Ouray-Devonian	9,440'
Maxfield	9,530'
Ophir	9,840'
Total Depth	9,880'

May 7, 1984

Chandler & Associates 1860 Lincoln Street Denver, Colorado 80203

> RE: Well No. Lewrence 15-1 SWSE Sec. 1, T. 185, R. 8E 660' FSL, 1980' FEL Emery County, Utah

Gentlemen:

n e e Frei

Approval to drill the above referenced oil well is hereby granted in accordance with Rule C-3 (b), Ceneral Rules and Regulations and Rules of Practice and Procedure.

In addition, the following actions are necessary to fully comply with this approval:

- 1. Spudding notification to the Division within 24 hours after drilling operations commence.
- 2. Submittal to the Division of completed Form OCC-8-X, Report of Water Encountered During Drilling.
- 3. Prompt notification to the Division should you determine that it is necessary to plug and abandon this well. Notify R. J. Firth, Associate Director, Telephone (801) 533-5771 (Office), 571-6068 (Home).
- 4. Compliance with the requirements and regulations of Rule C-27, Associated Gas Flaring, General Rules and Regulations, 011 and Gas Conservation.
- 5. This approval shall expire one (1) year after date of issuance unless substantial and continuous operation is underway or an application for an extension is made prior to the approval expiration date.

The API number assigned to this well is 43-015-30192.

Sincerely,

R. J. Firth Associate Director, 011 & Gas

RJF/as cc: State Lands Enclosures

DIVISION OF OIL, GAS AND MINING

SPUDDING INFORMATION

سليد(مركز

NAME OF CO	MPANY :	CHANDL	ER & ASS	OCIATES				
WELL NAME:		LAWRENCE	15-1			<u> </u>		
SECTION SW	ISE 1	TOWNSHIP	<u>185</u>	Range	8E	COUNTY	EMERY	
DRILLING O	ONTRACTO	R <u>lofl</u>	AND					
RIG #_1								
SPUDDED:	Date	5-15-84						
	Time	6:00 AM						
	How	Rotary						
DRILLING W	ILL COM	1ENCE						
REPORTED B	YR	ita				·		
Telephone	# <u></u> 3	03-863-9100						

DAIL 5-15-84	DATE	5-15-84		SIGNED	<u>AS</u>
--------------	------	---------	--	--------	-----------

DST REF	PORT: DS	ST#	l	Fo	rmation	NAVAJO			Interval	4896*	To	4940*
Reason fo	or Test		DRIFT	NG BREAK A	ND GAS SHOW							
Type Test	t	CONVENTIONA	L DUAL PI	CKER								
Testing C	ompany		LOPET.OL	- JONLITON			T	ester	GLEN GRI	MEIS		
Water Cu	ishion	NONE										
IF	.15	Minutes				<u> </u>						
ISI	32	Minutes	<u> </u>		<u></u>							
FF	60	_ Minutes					<u> </u>					
FSI	121	_ Minutes	3									
RECOV	ERY:	218* DR	LLING MU	32	D21 PRECE ATE	<u>{</u>						
вотто	M HOLE	SAMPLE	R : Pre	ssure _	12 psi		Re	covery	2100 cc			
RESISTI		TA: Drill F	Pipe Re	coverv	3202' 1 <u>00</u>	ATEN		(a	Rw 10.0	<u>68•</u>	2000	
			Sa	ampler	2 100cc .AC.R	100%		@	30v 10.0	<u>. 69• F</u>	2000	
			N	lud Pit_				@		20• F	1300	
PRESSU	JRES:			Top Cha	rt 4 865 *			Bot	ttom Char	t 4901*		
		IH	2302	FH _	2265		IH	2331	FH	2297		
		IF	<u>69</u>	to	597		IF	79	to	613		
		ISI	1883	to			ISI	1889	to			
		FF	<u>608</u>	to	1501		FF	631	to	1524		
		FSI	1883	to			FSI	1689	to		Klatras.	
	Тор	Choke	1/8"			_ Bottom	Choke_		/16"		R R	ECEIVED
Bottom I	Hole Temp	erature	123° F			、					el 1. P	
		COUNTON TO ATT Y	COUD DOM								130 1	IN 2 D

	TOR <u>CHANDLER & ASSOCIATES</u> , INC. AWRENCE STATE 15-1 SIDETRACK #1	SEC _1_ TW	P <u>18</u> <u>5</u> CO.,	RNG <u>8</u> UTAH	A GEOSCIENCE EXTENSION OF X
DST REPORT: [Reason for Test	DST#_2Formation cas show and stain in reservoir formation	SINBAD	In	terval 6795'	To6840'
Type Test <u>OPEN NO</u> Testing Company Water Cushion	LE HALIBURTON		Tester clif	FORD L. RICHARDS	RECEIVED
IF10	Minutes <u>tool opened 1/16" blow</u>	: CLOSED TOOL			JUL 1 9 1984
ISI 30 FF 60 FSI 86	Minutes <u>opened tool; no blow.</u> Minutes <u>closed tool for fsl.</u> Minutes <u>finished fsl.</u>				DIVISION OF OIL GAS & MINING
	10' DRILLING MUD.		Recovery	2240 c.c. MUD & LIQU	
RESISTIVITY D	ATA: Drill Pipe Recovery	80° F	@ @ @	600 600 600	PPM CI PPM CI PPM CI
PRESSURES:	Top Chart		Botto	om Chart	
	IH <u>3328'</u> FH <u>3315'</u>	IH	<u>3423'</u> 52	FH 3358' to 52	
	ISI <u>13</u> to <u>13</u>	ISI FE	<u>52</u>	to 52	
т. Т	$FF \qquad 12 \qquad 10 \qquad 13$ $FSI \qquad 13 \qquad 10 \qquad 13$ $FSI \qquad 13 \qquad 13 \qquad 13$	FS Bottom Chok	e 75	to52	
Bottom Hole Ter Remarks	nperature_138° r				

Reason for Tes	T: DST# tshow, p	3 Ossible 1	FO	rmation_	KAIB	NB		Interval_	7 130'	To	72241
Type Test	CONVENTIONAL	DUAL PACI	ER OPEN NOLE								<u></u>
Testing Compa	ny <u>halliburt</u>					T	ester	CLIPPORD I	RICHARDS		
Water Cushior	NONE				W-de- %	· · · · · · · · · · · · · · · · ·					
IF10	Minut	es			<u> </u>					_	
ISI30	Minut	es									
FF60	Minut	es									
FSI	Minut	tes									
RESISTIVITY	DATA: Dril	II Pipe F	ecovery Sampler Mud Pit		1.1 1.0 1.0		@ @	80° 80° 78°			PPM CI PPM CI PPM CI
PRESSURES	DATA : Dril	II Pipe F	ecovery Sampler Mud Pit Top Chai	rt	1.1 1.0 1.0		@ @ @ Bot	80° 80° 7 8° tom Chai	t		PPM CI PPM Ci PPM Ci
PRESSURES	DATA: Dril	II Pipe F	Recovery Sampler Mud Pit Top Chai	rt 3436	1.1 1.0 1.0	ІН	@ @ @ Bot 3568	80 • 78• tom Chai	t 3568		PPM CI PPM Ci PPM Ci
PRESSURES	DATA: Dril	11 Pipe F 3491 41	Recovery Sampler Mud Pit Top Char FH to	rt 3436 55	1.1 1.0 1.0	IH IF	@ @ Bot 3568 135	80° 7 8° tom Chai FH toto	t 3568 148		PPM CI PPM Ci PPM Ci
PRESSURES	DATA: Dril	11 Pipe F 2491 41 1640	Recovery Sampler Mud Pit Top Chai FH to to	rt 3436 55	1.1 1.0	IH IF ISI	@ @ Bot 3568 135 1713	80° 7 8° tom Chai FH to to	t 3568 148		PPM CI PPM Ci PPM Ci
PRESSURES	DATA: Dril	3491 41 1640 137	Recovery Sampler Mud Pit Top Chai FH to to to	rt 3436 55 192	1.1 1.0	IH IF ISI FF	@ @ Bot 3568 135 1713 1725	80° 78° tom Chai FH to to	t 3568 148 243		PPM CI PPM CI PPM CI
PRESSURES	DATA: Dril	3491 41 1640 137 1867	Recovery Sampler Mud Pit Top Char FH to to to to to	1 3436 55 192	1.1 1.0	IH IF ISI FF FSI	@ @ Bot 3568 135 1713 1713 175 1970	80° 78° tom Chai FH to to to to	t 3568 148 243		PPM CI

et	OPERA	TOR	CHANDLE	R L ASSOCIATES,	INC.		WP_18_	5	RNG		anal	e'
TENSION OF XCO		WRENCE STA	111 15-1			ENERY	(<u> </u>	UTAN		A GEOSCIENCE EXTENS	SION OF
DST Reas	REPORT : D	ST#_4	52	Fo	irmation_			Inter	rval 745	о. То	- 7503'	
Test	ing Company_	NALIBURTO	DN				Tester	SCOTT B	PITT			
Wate	er Cushion_ 	£										
IF	11	Minu	ites _m	ol opened ; clo	ISED N/ K" BI	LON						
ISI_	<u> 30</u>	Minu	ites _m	IISH, SHUT IN.								
FF_	30	Minu	ites _opi	ENED TOOL.								
FSI_	60	Minu	ites _cu	DSED TOOL IN.								
REC	OVERY:_201	DRILLING	MID.			<u></u>						
BOT	FTOM HOLE	SAMP	LER:	Pressure	<u>2 PSI</u>		_Recover	Y_ 1350 ●.	e. MUD t LIQU	ID.		
RES	SISTIVITY DA	TA : Dri	ill Pipe	Recovery_			(<i>w</i>			PPM CI	
				Sampler_	1.2		@	₽ 75•₽		4800	PPM CI	
				Mud Pit_	1.2		@	D75•P		4800	PPM CI	
PRE	SSURES:			Top Chai	rt			Bottom	Chart			
		IH .	3627*	FH	364 1	I'	+ <u> </u>	F	H 3672			
		IF _	42	to	56		53	te	D 53			
		ISI .	1704	to		[:	SI 1714	te	0			
		FF .	42	to	42	F	F66	te	o 66	an f an ad fair an dd fair fair an a		
	T -	FSI _		to		F	SI <u>636</u>	te	0			
Pott	I OP om Holo Tomo	Choke_	140*	<u></u>		Bottom Cho	ке ?/•					
Bom	on noie temp											
nell			·······		·····							

•••

DST REPORT: [DST#_ 5	Formati	On MISSISSIPPIA	E	_Interval	To84	65'
Reason for Test_	EAK SHOW AND PONOSI!	Y IN MISSISSIPPIAN I	DOLONITE.				
Type Test <u>convent</u>	ONAL DUAL PACKER , (PEN JOLE.					
Testing Company	HALLIBURTON			Tester_	LIPPORD RICHARDS		
Water Cushion_	NE.						
IF10	Minutes	<u></u>					
ISI 30	Minutes						
FF90	Minutes	·					
FSI	Minutes						
		,					
		Sampler	1.03	@_	80°7	780	
× .		Sampler Mud Pit	1.03 1.09	@@@	50°7 90°7	780	PPM CI PPM CI
PRESSURES:	-	Sampler Mud Pit Top Chart	1.03 1.09	@_ @_ B	80°7 90°7 ottom Chart 8463°	750	PPM CI PPM CI
PRESSURES:	IH <u>4077</u>	Sampler Mud Pit Top Chart 4 FH	1.03 1.09	@@_ @_ B IH67	80°F 90°F ottom Chart 8463° FH 4105°	780	PPM CI PPM CI
PRESSURES:	IH <u>4077</u> IF <u>27</u>	Sampler Mud Pit Top Chart FH to69	1.03 1.09 1379	@@_ @_ Br 67 	80°? 90° ? ottom Chart 8463° FH 4105° to 122	780	PPM CI PPM CI
PRESSURES:	IH <u>4077</u> IF <u>27</u> ISI <u>3050</u>	Sampler Mud Pit Top Chart 4 FH 3993 to 69 to	1.03 1.09 3379	@@ Br IHBr IF ISI101 119	80°? 90°? ottom Chart 8463° FH 4105° to 122 to 551	760	PPM CI PPM CI
PRESSURES:	IH <u>4077</u> IF <u>27</u> ISI <u>3050</u> FF <u>96</u>	Sampler Mud Pit Top Chart 4 FH to to to to	1.03 1.09 3379 3	@@ Br IH IF ISI FF FF 3151	80°? 90°? ottom Chart 8463° FH 4105° to 122 to 551	760	PPM CI PPM CI
PRESSURES:	IH <u>4077</u> IF <u>27</u> ISI <u>3050</u> FF <u>96</u> FSI <u>3116</u>	Sampler Mud Pit Top Chart 4 FH 2993 to 69 to to to	1.03 1.09 1.09 1.09 1.09 0.05	@@ IH IF ISI FF FSI TSI	80°? 90°? ottom Chart 8463° FH 4105° to 122 to to 551 to	760	PPM CI PPM CI
PRESSURES:	IH <u>4077</u> IF <u>27</u> ISI <u>3050</u> FF <u>96</u> FSI <u>3116</u> >p Choke <u>2"</u>	Sampler Mud Pit Top Chart 4 FH 3993 to 69 to 52 to 320 to 52 to	1.03 1.09	@@ Bi IH IF ISI ISI FF FSI TSI M Choke	80°? 90°? ottom Chart 8463° FH 4105° to 122 to to 551 to	780	PPM CI PPM CI

+3

FLOPETROL JOHNSTON

Schlumberger

١,

WELL PERFORMANCE TEST REPORT

Schiur	nberger	8 *			-
		A Production System	ns Analysis (N	NODAL)	
Test Dat	e	Base	d On	•	Report No.:
6-18-8	4	Drillstem	Test Data		42934 E
				in 197	
COMPANY			WELL		
CHANDLI	ER & ASSOCI	ATES, INC.	LAWREN	ICE STATE #1	15-1
TEST IDENTIFIC	ATION	· · · · · · · · · · · · · · · · · · ·	WELL LOCATIO	N	
Test Type		OPEN HOLE DST	Field		(WILDCAT)
Test Number		: 1	County	,	EMERY
Formation		NAVAJO	State		: UTAH
Test Interval		: 4895 - 4940 FT.	Sec / Twn / Rng		1 T18S R8E
Reference Depth		: KELLY BUSHING	Elevation		: NDT GIVEN
HOLE CONDITIO	DNS		MUD PROPERT	IES	GEL-CHEM-L SND
Total Depth (MVI	D/TVD)	: 4940 FT.	Mud Type	• • • • • • • • • • • • • • • • • • • •	
Hole Size / Devia	tion Angle	: 8 3/4 IN./STRAIGHT	Mud Weight	• • • • • • • • • • • • • • • • • • • •	.65 DHMS @ 75°F.
Csg / Liner ID .		: N/A	Mud Resistivity		.5 DHMS @ 70°E.
Perf'd Interval	· · · · · · · · · · · · · · · · · · ·	: N/A	Filtrate Resistiv	ity	1800 CL PPM
Shot Density / Ph	nasing	: N/A	Filtrate Chloride	S	NOT GIVEN
Gun Type / Perf C	Cond	: N/A	Filtrate Nitrates	••••••••••••	
INITIAL TEST C	ONDITIONS		TEST STRING C	ONFIGURATION	
Gas Cushion Typ	e	NONE	Pipe Length / ID		4285 FT./3.83 IN.
Surface Pressure		: N/A	Collar Length / I	D	559 FT./2.38 IN.
Liquid Cushion 1	Гуре		Packer Depth(s)		: 4888 - 4895 FT.
Height Above DS	ST Valve	: N/A	BH Choke Size.		: 15/16 IN.
NET PIPE RECO	VERY		NET SAMPLE C	HAMBER RECOV	'ERY
Volume	Fluid Type	Physical Properties	Volume	Fluid Type	Physical Properties
3.1 BBLS	MUD	.65 DHM-M @ 75°F.	1.46 SCF	GAS	N/A
		1800 CHL PPM	2100 CC	WATER	10 0HM-M @ 64°F.
40.7 BBLS	WATER	10 DHM-M @ 68°F.			2000 CHL PPM
		2000 CHL PPM			
			Pressure: 12	PSIG GOR:	GLR: 110
INTERPRETATIO	N RESULTS		ROCK / FLUID	WELLBORE PRO	PERTIES
Reservoir Press	ure @Gauge Depth	: N/A	Reservoir Temp	erature	.: 123°F.
Gauge Depth		: 4901, 4846 FT.	Analysis Fluid T	ype	
Hydrostatic Gra	dient	: N/A	Formation Volu	ne Factor	.: N/A
Potentiometric S	Surface	: N/A	Viscosity	•••••	.: N/A
Effective Perme	ability to	: N/A	Z-Factor (gas or	lly)	.: N/A
Transmissibility		: N/A	Net Pay	••••••	
Skin Factor / Dai	mage Ratio	: N/A	Porosity		
Omega / Lambda	a (20 System)	: N/A	Total System Co	mpressibility	
Radius of Invest	igation		Wellbore Radius	5	.: .30 FI.
Measured Wellb	ore Storage	: N/A	Expected Wellb	ore Storage	.: N/A
FLOW RATE DU	JRING DST		-		RECEIVED
		820 BWPD AVERAGE RA	IE		

MAXIMUM FLOW RATE POTENTIAL AFTER COMPLETION

B14059

FJS-5

.

JUN 2 5 1984

DIVISION OF OIL GAS & MINING 1.

DST EVENT SUMMARY

Field Report # 42934 E

DATE (M/D/Y)	TIME (HR:MIN)	EVENT E.T. (MIN)	EVENT DESCRIPTION	SURFACE PRESSURE (PSIG)	FLOOR MANIFOLD CHOKE SIZE (64ths INCH)	
6-18-84	2006		SET PACKER 1		В	
	2009	-	OPENED TEST TOOL FOR INITIAL FLOW 2	3 "	υ	
			BLOW INCHES IN WATER		В	
	2017			39 "	В	
	2024			60 "	L	
					E	
	2025		CLOSED TEST TOOL FOR INITIAL SHUT-IN 3	60 "		
	2028			50 "	н	
					n	
					ς ς	
	2056		FINISHED SHUT-IN 4	0 "	F	
	2057	—	OPENED TEST TOOL FOR FINAL FLOW 5	1 1/4"		
	2058			9 "	1/8"	
	2059			12 "	••	
	2100			15 "	**	
	2102			23 "	**	
	2104			30 "	**	
	2106		· · · · ·	36 "	**	
	2108		· · · · · · · · · · · · · · · · · · ·	44 "	89	
	2110			49 "	TT	
	2112			54 "	11	
	2117			69 "	**	
	2127		· · · · · · · · · · · · · · · · · · ·	85 "	**	
	2137			95 "	**	
	2147			92 "		
	2157			81 "	**	
	2157		CLOSED FOR FINAL SHUT-IN 6	79 "	**	
	2750	_	FINISHED FINAL SHUT-IN 7	0 "	11	
6-19-84	2350		UNSEATED PACKER B		- ·.	
0 19 04			REVERSED OUT			
					· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·				
		_	BEGAN TRIP OUT OF HOLE			

BOTTOMHOLE PRESSURE LOG FIELD REPORT NO. 42934E INSTRUMENT NO. J-1243 DEPTH : 4901FT CAPACITY : 2800 PSI PORT OPENING : OUTSIDE G

.

10

-

FIELD REPORT # + 42934E INSTRUMENT # : J-1243 CAPACITY EPSID : 2800. DEFTH EFT3 : 4901.0 CONFANY : CHANDLER & ASSOCIATES, INC. PORT DPENING : DUTSIDE WELL : LAWRENCE STATE #15-1 TEMPERATURE EDEG F1 : 123.0 LABEL POINT INFORMATION TIME 🏝 BOT HOLE OF DAY DATE ELAPSED PRESSURE # HH:MM:SS DD-MM EXPLANATION TIME,MIN PSIA 1 20: 6:43 18-JN HYDROSTATIC MUD -2.28 2344 0.00 2 20: 9: 0 18-JN START FLOW 96 3 20:25:22 18-JN END FLOW & START SHUT-IN 16.36 634 1913 4 20:56:20 18-JN END SHUT-IN 47.34 5 20:57: 9 18-JN START FLOW 48.15 652 6 21:57:31 18-JN END FLOW & START SHUT-IN 1530 108.52 7 23:58: 0 18-JN END SHUT-IN 229.00 1917 8 0:12:16 19-JN HYDROSTATIC NUD 243.27 2316 SUMMARY OF FLOW PERIDDS ****** START END START END ELAPSED ELAPSED DURATION PRESSURE PRESSURE PERIOD TIME, MIN TIME, MIN PSIA PSIA 建氯化化物 化化化化化化化化 化化化化化化化化化化化化化 16.36 16.36 96 634 0.00 1 652 48.15 108.52 60.37 1530 2 SUMMARY OF SHUTIN PERIBDS START END FINAL FLOW END START ELAPSED ELAPSED DURATION PRESSURE PRESSURE PRESSURE PRODUCING PERIBD TIME, MIN MIN PSIA PSIA PSIA TIME, MIN **经财务关系法 春季发表关系关系** 美国关系关系的人名 法发展关系的关系 化苯化化化学医苯化 经公司公司公司 法法学家关系法 美国人大学学生人 16.3647.3430.986341913634108.52229.00120.48153019171530 16.36 1 . 2 76.73

FIELD REPORT # : 42934E

۰.

٠.,

TEST PHASE : FL	OW PERIOD	# 1			
T7MC					
OF DAY DATE	EL ARGEN	DELTA	PPECCHPE		
HUTMMISS DD-MM	TTME MIN	TTNE MTN	PETA		
ARGANIGIS DD AR					
*******	******	* * * * * * * * *	*****		
201 9: 0 18-JN	0.00	0.00	96		
20:14: 0 18-JN	5.00	5.00	364		
20:19: 0 18-JN	10.00	10.00	487		
20:24: 0 18-JN	15.00	15.00	603		
20:25:22 18-JN	16.36	16.36	634		
TEST PHASE : SH	IUTIN PERI	BD # 1			
FI	NAL FLOW	PRESSURE	CPSIAL =	634	
Fri	CODUCING T	IME EMIND	= 16.3	6	
TTMF			RAT HALF		106
OF DAY DATE	FLAPCED	DEL TA	PPECCHPE	DELTA P	UNGNER
	T7 ME . MTN	TTME MTM	DETA	DECIMI	TTME
			F D L H N N N N N N N N N N	LOI	
********	*******		****	*******	*****
20:25:22 18-JN	16.36	0.00	634	0	
20:26:22 18-JN	17.36	1.00	1322	687	1.240
20:27:22 18-JN	18.36	2.00	1816	1182	0.963
20:28:22 18-JN	19.36	3.00	1873	1239	0.810
20:29:22 18-JN	20.36	4.00	1887	1253	0.707
20:30:22 18-JN	21.36	5.00	1893	1259	0.631
20:31:22 18-JN	22.36	6.00	1896	1262	0.571
20:32:22 18-JN	23.36	7.00	1899	1265	0.523
20:33:22 18-JN	24.36	8.00	1901	1267	0.484
20:34:22 18-JN	25.36	9.00	1902	1268	0.450
20:35:22 18-JN	26.36	10.00	1903	1269	0.421
20:37:22 18-JN	28.36	12.00	1905	1271	0.374
20:39:22 18-JN	30.36	14.00	1907	1273	0.336
20:41:22 18-JN	32.36	16.00	1908	1274	0.306
20:43:22 18-JN	34.36	18.00	1909	1275	0.281
20:45:22 18-JN	36.36	20.00	1910	1276	0.250
20:47:22 18-JN	38.36	22.00	1911	1277	0.241
20:49:22 18-JN	40.36	24.00	1911	1277	0.226
20;51;22 18-JN	42.36	26.00	1912	1278	0.212
20;53;22 18-IN			1010	4070	A 554
	44.36	28.00	1712	12/8	0.200
20:55:22 18-JN	44.36	28.00 30.00	1912	1278	0.200

PAGE 2

•

٠

TEST PHASE : FLOW PERIDD # 2

TIME				BOT HOLE		
DE DAY	DATE	ELAPSED	DELTA	PRESSURE		
HH:MM:55	DD-MM	TIME, MIN	TIME, MIN	PSIA		
*******	*****	*******	*******	****		
20:57: 9	18-JN	48.15	0.00	652		
711 71 9	18 - IN	57.15	5.00	754		
21, 2, 1	10 _ IN	50 15	10 00	0.5X		
21. /. 7		2011.0 717 48	15 00	670		
21:12: 9	18-38	63=10 (0 45	10.00	1077		
21:1/: 9	18-JN	68.15	20.00	1007		
21:22: 9	18-JN	/3.15	25.00	1118		
21:27: 9	18-JN	78.15	30.00	1192		
21:32: 9	18-JN	83.15	35.00	1261		
21:37: 9	18-JN	88.15	40.00	1324		
21:42: 9	18-JN	93.15	45.00	1381		
21:47: 9	18-JN	98.15	50.00	1434		
21:52: 9	18-JN	103.15	55.00	1482		
21:57: 9	18-JN	108.15	60.00	1527		
21:57:31	18-JN	108.52	60.37	1530		
21.07.02	20 0.1					
TEST PHA	SF : SP	HUTIN PER	18D # 2			
	יש. יש	TNAL FLOW	PRESSURE	(PSIA) =	1530	
		99996 7 600 999967 NG - 1	TTME FMIN	1 = 74	7 X	
	F i	KUDUU IRU				
工工用定				BOT HOLE		LDG
1 al. 11 au						1100032000
OF DAY	NATE	FLAPSEN	DELLA		DELTA P	HURNER
OF DAY	DATE	ELAPSED	DELIA TIME MIN	PRESSURE	DELTA P PST	TIME
OF DAY HH:MM:55	DATE DD-MM	ELAPSED TIME,MIN	DELTA TIME,MIN	PRESSURE PSIA	DELTA P PSI	TIME
OF DAY HH:MM:53 ******	DATE DD-MM ****	ELAPSED TIME,MIN *******	DELTA TIME,MIN *******	PRESSURE PSIA ********	DELJA P PSI *******	TIME
OF DAY HH: MM:53 *******	DATE DD-MM *****	ELAPSED TIME,MIN ********	DELTA TIME,MIN *******	PRESSURE PSIA **********	DELTA P FSI *********	TIME
OF DAY HH:MM:55 ******** 21:57:31	DATE DD-MM ***** 18-JN	ELAPSED TIME,MIN ******** 108.52	DELTA TIME,MIN ******** 0.00	PRESSURE PSIA ********* 1530 1876	DELTA P PSI ********* 0 346	TIME ******
OF DAY HH:MM:53 ******* 21:57:31 21:58:31	DATE DD-MM ***** 18-JN 18-JN	ELAPSED TIME,MIN ******** 108.52 109.52	DELTA TIME,MIN ******** 0.00 1.00 2.00	PRESSURE PSIA ********* 1530 1876 1892	DELTA P PSI ********* 0 346 362	TIME ****** 1.891 1.595
OF DAY HH:MM:53 ******** 21:57:31 21:58:31 21:59:31	DATE DD-MM ***** 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 108.52 109.52 110.52	DELTA TIME,MIN ******** 0.00 1.00 2.00 7.00	PRESSORE PSIA ********** 1530 1876 1892 1894	DELTA P PSI ********* 0 346 362 364	TIME ****** 1.891 1.595 1.425
OF DAY HH: MM:53 ******* 21:57:31 21:58:31 21:59:31 22: 0:31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 108.52 109.52 110.52 111.52	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00	PRESSORE P51A ********** 1530 1876 1892 1896 1898	DELTA P PSI ********** 0 346 362 366 747	TIME ****** 1.891 1.595 1.425
OF DAY HH: MM:55 ******** 21:57:31 21:58:31 21:59:31 22: 0:31 22: 1:31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 108.52 109.52 110.52 111.52 112.52	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00	PRESSORE P51A ********** 1530 1876 1876 1892 1896 1898	DELTA P PSI ********** 0 346 362 366 367 7(D	TIME ****** 1.891 1.595 1.425 1.305
OF DAY HH: MM:55 ******** 21:57:31 21:58:31 21:59:31 22: 0:31 22: 1:31 22: 2:31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 108.52 109.52 110.52 111.52 112.52 113.52	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00	PRESSURE P51A ************************************	DELTA P PSI ************************************	TIME ****** 1.891 1.595 1.425 1.305 1.213
OF DAY HH: MM:55 ******** 21:57:31 21:58:31 21:59:31 22: 0:31 22: 1:31 22: 2:31 22: 3:31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 108.52 109.52 110.52 111.52 112.52 113.52 114.52	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00	PRESSORE P51A ********** 1530 1876 1872 1898 1898 1899 1899 1899	DELTA P PSI ************************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140
OF DAY HH: MM:55 ******* 21:57:31 21:58:31 21:59:31 22: 0:31 22: 1:31 22: 2:31 22: 3:31 22: 4:31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 108.52 109.52 110.52 111.52 111.52 112.52 113.52 114.52 115.52	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00	PRESSORE PSIA ************************************	DELTA P FSI *********** 0 346 362 366 367 369 370 371	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078
OF DAY HH: MM:55 ******** 21:57:31 21:58:31 21:59:31 22: 0:31 22: 1:31 22: 2:31 22: 3:31 22: 4:31 22: 5:31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 108.52 109.52 110.52 111.52 112.52 113.52 114.52 115.52 116.52	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00	PRESSORE P51A ************************************	DELTA P FSI *********** 0 346 362 366 367 369 370 371 372	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025
OF DAY HH: MM:53 ******** 21:57:31 21:58:31 21:59:31 22: 0:31 22: 1:31 22: 2:31 22: 3:31 22: 4:31 22: 5:31 22: 6:31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 108.52 109.52 110.52 111.52 112.52 113.52 114.52 115.52 116.52 117.52	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00	PRESSORE P51A ************************************	DELTA P FSI *********** 0 346 362 366 367 369 370 371 372 372 372	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025 0.979
OF DAY HH: MM:53 ******** 21:57:31 21:58:31 21:59:31 22: 0:31 22: 1:31 22: 2:31 22: 4:31 22: 4:31 22: 5:31 22: 6:31 22: 7:31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ********* 108.52 109.52 110.52 111.52 112.52 113.52 114.52 115.52 116.52 117.52 118.52	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00	PRESSORE P51A ********** 1530 1876 1872 1892 1898 1898 1898 1899 1900 1901 1902 1902 1903	DELTA P FSI ********** 0 346 362 366 367 369 370 371 372 372 372 373	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025 0.979 0.938
OF DAY HH: MM:53 ******** 21:57:31 21:58:31 21:59:31 22: 0:31 22: 1:31 22: 2:31 22: 3:31 22: 4:31 22: 5:31 22: 6:31 22: 7:31 22: 9:31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ********* 108.52 109.52 110.52 111.52 112.52 113.52 114.52 115.52 116.52 117.52 118.52 120.52	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00	PRESSORE P51A ********** 1530 1876 1872 1876 1878 1878 1879 1879 1900 1901 1902 1902 1903 1904	DELTA P PSI *********** 0 346 362 366 367 367 367 370 371 372 372 372 373 374	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.025 0.979 0.938 0.869
OF DAY HH: MM:55 ******** 21:57:31 21:58:31 21:59:31 22: 0:31 22: 1:31 22: 2:31 22: 3:31 22: 4:31 22: 4:31 22: 5:31 22: 6:31 22: 7:31 22: 7:31 22: 9:31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 108.52 109.52 110.52 111.52 112.52 113.52 114.52 115.52 116.52 116.52 117.52 118.52 120.52 122.52	DELTA TIME,MIN ******* 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00	PRESSORE P51A ********* 1530 1876 1872 1876 1878 1878 1879 1900 1901 1902 1902 1903 1904 1905	DELTA P PSI **********************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.025 0.979 0.938 0.869 0.812
OF DAY HH: MM:55 ******** 21:57:31 21:58:31 21:59:31 22: 0:31 22: 1:31 22: 2:31 22: 3:31 22: 4:31 22: 4:31 22: 5:31 22: 6:31 22: 7:31 22: 7:31 22: 9:31 22: 11:31 22: 13:31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 108.52 109.52 110.52 111.52 112.52 113.52 114.52 115.52 116.52 116.52 117.52 118.52 120.52 122.52 124.52	DELTA TIME, MIN ******* 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 16.00	PRESSORE P51A ********* 1530 1876 1872 1876 1872 1876 1878 1879 1900 1901 1902 1903 1904 1905 1905	DELTA P PSI ************************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.025 0.979 0.979 0.938 0.869 0.812 0.763
OF DAY HH: MM: 55 ******** 21: 57: 31 21: 58: 31 21: 59: 31 22: 0: 31 22: 0: 31 22: 1: 31 22: 2: 3: 31 22: 4: 31 22: 4: 31 22: 5: 31 22: 5: 31 22: 7: 31 22: 7: 31 22: 11: 31 22: 13: 31 22: 15: 31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ************************************	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00 16.00 18.00	PRESSORE PSIA ************************************	DELTA P PSI ************************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025 0.979 0.938 0.869 0.812 0.763 0.721
OF DAY HH: MM: 55 ******** 21: 57: 31 21: 58: 31 21: 59: 31 22: 0: 31 22: 1: 31 22: 2: 31 22: 3: 31 22: 4: 31 22: 5: 31 22: 5: 31 22: 7: 31 22: 7: 31 22: 13: 31 22: 13: 31 22: 15: 31 22: 17: 31	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ************************************	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00 16.00 18.00 20.00	PRESSORE PSIA ************************************	DELTA P PSI ************************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025 0.979 0.938 0.869 0.812 0.763 0.721 0.685
OF DAY HH: MM: 55 ******** 21: 57: 31 21: 58: 31 21: 59: 31 22: 0: 31 22: 1: 31 22: 2: 31 22: 3: 31 22: 4: 31 22: 4: 31 22: 5: 31 22: 5: 31 22: 7: 31 22: 7: 31 22: 13: 31 22: 15: 31 22: 15: 31 22: 17: 31	DATE DD-MM ***** 18-JN	ELAPSED TIME,MIN ************************************	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00 16.00 18.00 20.00 22.00	PRESSURE PSIA ************************************	DELTA P PSI ************************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025 0.979 0.938 0.869 0.812 0.763 0.721 0.685 0.652
OF DAY HH: MM: 55 ******** 21: 57: 31 21: 58: 31 21: 59: 31 22: 0: 31 22: 0: 31 22: 1: 31 22: 2: 31 22: 3: 31 22: 4: 31 22: 5: 31 22: 5: 31 22: 7: 31 22: 7: 31 22: 13: 31 22: 15: 31 22: 17: 31 22: 17: 31 22: 19: 31	DATE DD-MM ***** 18-JN	ELAPSED TIME,MIN ********* 108.52 109.52 110.52 111.52 111.52 112.52 113.52 114.52 115.52 116.52 116.52 117.52 120.52 120.52 124.52 126.52 130.52	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00 16.00 18.00 20.00 22.00	PRESSURE PSIA ************************************	DELTA P PSI ************************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025 0.979 0.938 0.849 0.812 0.763 0.721 0.685 0.652 0.623
OF DAY HH: MM: 55 ******** 21: 57: 31 21: 58: 31 21: 59: 31 22: 0: 31 22: 0: 31 22: 1: 31 22: 2: 31 22: 3: 31 22: 4: 31 22: 4: 31 22: 5: 31 22: 7: 31 22: 13: 31 22: 15: 31 22: 17: 31 22: 17: 31 22: 19: 31 22: 21: 31	DATE DD-MM ***** 18-JN	ELAPSED TIME,MIN ************************************	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00	PRESSURE PSIA ************************************	DELTA P FSI ************************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025 0.979 0.938 0.812 0.763 0.721 0.635 0.652 0.623 0.597
OF DAY HH: MM: 55 ******** 21: 57: 31 21: 58: 31 21: 59: 31 22: 0: 31 22: 1: 31 22: 2: 31 22: 2: 31 22: 4: 31 22: 4: 31 22: 5: 31 22: 1: 31 22: 1: 31 22: 15: 31 22: 17: 31 22: 19: 31 22: 21: 31 22: 23: 31	DATE DD-MM ***** 18-JN	ELAPSED TIME,MIN ************************************	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00	PRESSURE PSIA ************************************	DELTA P FSI ***********************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025 0.979 0.938 0.812 0.763 0.721 0.485 0.652 0.623 0.597
OF DAY HH: MM: 55 ******** 21: 57: 31 21: 58: 31 21: 59: 31 22: 0: 31 22: 1: 31 22: 2: 31 22: 2: 31 22: 3: 31 22: 4: 31 22: 4: 31 22: 5: 31 22: 7: 31 22: 13: 31 22: 17: 31 22: 17: 31 22: 21: 31 22: 23: 31 22: 25: 31	DATE DD-MM ***** 18-JN	ELAPSED TIME, MIN ************************************	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00	PRESSURE PSIA ************************************	DELTA P FSI ***********************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025 0.979 0.938 0.869 0.812 0.763 0.721 0.685 0.652 0.623 0.597 0.573 0.551
OF DAY HH: MM: 55 ******** 21: 57: 31 21: 58: 31 21: 59: 31 22: 0: 31 22: 0: 31 22: 1: 31 22: 2: 31 22: 3: 31 22: 4: 31 22: 5: 31 22: 4: 31 22: 7: 31 22: 13: 31 22: 13: 31 22: 17: 31 22: 17: 31 22: 21: 31 22: 21: 31 22: 21: 31 22: 21: 31 22: 21: 31	DATE DD-MM ***** 18-JN	ELAPSED TIME, MIN ************************************	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00	PRESSURE PSIA ************************************	DELTA P FSI ***********************************	TIME ******* 1.891 1.595 1.425 1.305 1.425 1.213 1.140 1.078 1.025 0.979 0.938 0.869 0.812 0.763 0.721 0.685 0.623 0.557 0.551 0.551
OF DAY HH: MM: 55 ******** 21: 57: 31 21: 58: 31 21: 59: 31 22: 0: 31 22: 0: 31 22: 1: 31 22: 2: 31 22: 3: 31 22: 4: 31 22: 4: 31 22: 5: 31 22: 4: 31 22: 7: 31 22: 13: 31 22: 17: 31 22: 17: 31 22: 19: 31 22: 21: 31 22: 21: 31 22: 23: 31 22: 22: 31 22: 22: 31	DATE DD-MM ***** 18-JN	ELAPSED TIME, MIN ************************************	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00 16.00 18.00 20.00 22.00 24.00 24.00 28.00 30.00	PRESSURE PSIA ************************************	DELTA P FSI ***********************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025 0.979 0.938 0.869 0.812 0.763 0.721 0.685 0.623 0.551 0.551 0.551
OF DAY HH: MM: 55 ******** 21: 57: 31 21: 58: 31 21: 59: 31 22: 0: 31 22: 0: 31 22: 1: 31 22: 2: 31 22: 3: 31 22: 4: 31 22: 4: 31 22: 5: 31 22: 6: 31 22: 7: 31 22: 17: 31 22: 17: 31 22: 17: 31 22: 19: 31 22: 21: 31 22: 22: 31 22: 22: 31 22: 37: 31	DATE DD-MM ***** 18-JN	ELAPSED TIME, MIN ************************************	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 24.00 24.00 28.00 30.00 35.00 40.00	PRESSURE PSIA ************************************	DELTA P FSI ***********************************	TIME ****** 1.891 1.595 1.425 1.305 1.213 1.140 1.078 1.025 0.979 0.938 0.869 0.812 0.721 0.685 0.623 0.721 0.685 0.623 0.551 0.504 0.504 0.455

 \smile

.

۰.

 \sim

TIME				BDT HOLE		LDG
DF DAY	DATE	ELAPSED	DELTA	PRESSURE	DELTA P	HDRNER
HH: MM:55	DD-MM	TIME, MIN	TIME, MIN	PSIA	PSI	TIME
*******	****	******	*******	****	********	*****
22:47:31	18-JN	158.52	50.00	1912	382	0.404
22:52:31	18-JN	163.52	55.00	1913	383	0.379
22:57:31	18-JN	168.52	60.00	1913	383	0.358
23: 2:31	18-JN	173.52	65.00	1914	384	0.339
23: 7:31	18- ³ N	178.52	70.00	1914	384	0.321
23:12:31	18-JN	183.52	75.00	1914	384	0.306
23:17:31	18-JN	188.52	80.00	1915	385	0.292
23:22:31	18-JN	193.52	85.00	1915	385	0.279
23:27:31	18-JN	198.52	90.00	1915	385	0.268
23:32:31	18-JN	203.52	95.00	1915	385	0.257
23:37:31	18-JN	208.52	100.00	1915	385	0.247
23:42:31	18-JN	213.52	105.00	1915	385	0.238
23:47:31	18-JN	218.52	110.00	1915	385	0.230
23:52:31	18-JN	223.52	115.00	1916	386	0.222
23:57:31	18-JN	228.52	120.00	1917	386	0.215
23:58: 0	18-JN	229.00	120.48	1917	386	0.214

,

· · · ·

1.1

INSTRUMENT # : J-080 FIELD REPORT # : 42934E CAPACITY EPSI3 : 2800. DEPTH EFT3 : 4846.0 COMPANY : CHANDLER & ASSOCIATES, INC. WELL : LAWRENCE STATE #15-1 PORT DPENING : ABOVE TEMPERATURE EDEG F3 : 123.0 11. LABEL POINT INFORMATION ******** BOT HOLE TIME ELAPSED PRESSURE OF DAY DATE # HH:MM:SS DD-MM EXPLANATION TIME, MIN PSIA \mathbf{x} 1 19:50:19 18-JN HYDROSTATIC MUD -18.69 25 2 20: 9: 0 18-JN START FLOW 0.00 25 599 16.06 3 20:25: 4 18-JN END FLOW 602 4 20:25:28 18-JN START SHUT-IN 16.46 602 5 20:54:37 18-JN END SHUT-IN 45.62 6 20:57: 9 18-JN START FLOW 48.15 609 1517 7 21:57:45 18-JN END FLOW 108.75 1521 109.09 8 21:58: 5 18-JN START SHUT-IN 229.00 1522 9 23:58: 0 18-JN END SHUT-IN 232.56 151710 O: 1:34 19-JN HYDROSTATIC MUD SUMMARY OF FLOW PERIODS **** START END START END ELAPSED ELAPSED DURATION PRESSURE PRESSURE PERIOD TIME, MIN TIME, MIN MIN PSIA PSIA 25 0.00 16.06 16.06 599 i 48.15 108.75 60.60 609 1517 2 SUMMARY OF SHUTIN PERIODS ***** START END FINAL FLDW END START ELAPSED ELAPSED DURATION PRESSURE PRESSURE PRESSURE PRODUCING TIME, MIN PERIDD TIME, MIN MIN PSIA PSIA PSIA PSIA 602 1522 599 16.06 29.16 602 16.46 45.62 1 1517 76.66 109.09 229.00 119.91 1521 2

 \smile

FIELD REPORT # : 42934E

TI	ES	T	F	٩H	A	ΞE	÷	F	Lan	i P	E	RI	01)	¥.		1						
	Ŧ	7	MA 12	-																			
	1	1	171 E 15 J	i. V V		n A	т	-	Et	A 0		r n				• •	т.			DOT HULL			
ь. С Ц	ມາ		12 F 14 1	11 . C	-	08			- E.L.	_ HC 1 MC	່ວ: ·	с. 12 м т		т	UС Т н	1 L. 1 12		н м т	a 1	PREDOURC DOTA			
	4 4	111	11. 		3	20	-r	414	1 J 			 . T	. 19	1	11		2 ~	o o La T	N 	LDTH			
*	* *	*	* 4		*	* *	***	* *	**	* * *	. 🛧 :	* *		*	187 18	: 7	* 1	* *	.	******	*		
21	G(\$,		9 :	;	٥	18	. – .	IN			õ	. 0	0				0	. 0	0	25			
21	- D :	1.	4 :	5	0	18		IN			5	. 0	0				5	0	0	322			
21	5:	1	9 :		ō	18	_	IN		1	ō.	. 0	0			1	0	. 0	0	452			
2	0:	5	4 :	;	õ	1 8		EN		1	5	0	0			1	5	. 0	ò	574			
21	0:	2	5 :		4	18		IN		1	6	. 0	6			1	Ä	. 0	Ă	599			
-	•	-			•					-			-			-	-		-	500 ° 1			
							z.	•															
TI	ES	Т	F	٩	A9	Ξ	Ŧ	S	HU	E I N	t I	^p E	RI	0	D	ŧ		1					•
								F	INF	λĹ.	Fil	. 0	W	P	RE	S	SI	UR	Е	EPSIAD =	599		
								F	ROI) UC	:11	NE	; 7	ΓI	ME	-	C	MI	ЦN	= 16	.06		
	Ŧ	-	M 1																				1.00
	1	1	n 1			15.4			1 - 1	A 1'		m			.		.			DUI HULL		F 1	
		-	U* *	41 		- 0 F			<u><u> </u></u>	_ H7 7 mr	ີ ລະ	1. J. 14 7	, 	Ŧ	U C T 5		1	н м т	21	PREDOURE	UELIN	r	TIMEN
-11	H +	П			13 	00		7 M	1.	1912		. 1	. IN	1	7.5	1 5.	7		N	F518	r51		1 J.P.E.
÷.	* *	÷	* :	6.8	×	* 3	: X :	÷ *	*:	* * *	***	* *	: *	*	* *	e X	÷	* *	*	*****	* ******	* * *	*****
24	0:	25	5	: 7	0	1.8		IN		1	6	_ 4	. 6				0	. 0	0	602		3	
2	0 :	2	λ:	. 2	0	1.0	-	IN		1	2	_ 4					1	. 0	0	602		3	1.232
2	0:	2	7 :	. 2	0	18		IN		-	0	. 4	.A				5	. 0	ŏ	602		3	0.956
21	0:	2	8 3	. 2	0	1.8		IN		1	Ģ	. 4	6				ĩ	. 0	ŏ	602		3	0.803
2	0 :	2	9 :	: 2	0	10	-	IN		2	0	. 4	Ā				4	. 0	ŏ	602		3	0.700
2	01	3	n :	2		1.0		IN		2	> 1	. 4	Ä				5	. 0	ŏ	602		3	0.624
21	0 :	7	1 :	. 2	0	18		2 N.		2	5		Ă				ž	. 0	Ň	602		ž	0.565
2	ð I	7			0	10		EN		-	- ~- > 'Z	 2	. A				7	. 0	Ň	602		3	0.518
2	n :	3	т. Т :	. 2	0	1.0	·	EN.		2	2	4	. A				é	. 0	ŏ.	602		3	0.478
2	01	ž	<u> </u>	. 2	0	1.0	_	EN		7	5	. 4					Ģ	. 0	ō.	602		3	0.445
2	0:	3	5	2	0	1.9		EN		5	2	. 4				1	ò	0	ō	602		3	0.416
$\overline{2}$	01	3	7:	. 2	8	10	_	IN		5	28	4	6			1	2	. 0	ō	602		3	0.369
2	0 :	3	ý :	. 7	0	1.0	-	EN		7	ŝõ	. 4				1	4	. 0	0	602		3	0.332
2	n:	2	, 1 :	. 7	0	1.9	_	IN		7	12	. 4	E.			1	Å	. 0	0	602		3	0.302
2	0 :	4	4 7 (1.0	_	5 N 1 N		7	ξ <u>ι</u> .	• ~ 2	. A.			1	0	۰. ۵	Ň	602		τ	0 277
2	v • 6 =	4	ບ 5 :		. U . <u>0</u>	10		1 14		7		 2				- - 2	۵ ۵	. 0	ŏ	2002 202		3	0.254
5	ላ ፣ ሰ ፣	4	7	- 4 - 7	. U 10	10		, र स र स			10					5	5	۰. ۸	Ň	2 A D		ž	0 270
2	0 • 6 •		/ ` 0 ·	7 4 1 77	. 0	10	·	אז <i>ע</i> אז ע		- /	10		- W - A			2	í.	• • ^	ι Λ	602 200		7	0 222
2	2 T A T		7 ' 4 '		. C) 0 0	10	· _ ·	או ע. הגנ		2	. D	 /	10			… つ	-	۰. م	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0V2 407		7	0 200
2	0 + A +	5	7. 1.	• 4 • •	. ŭ 10	10	· - ·	3 N 1 N		2	ч 42. С. Л.	• • /	2			2	o Q	• •	Ň	6V2 400		ວ 7	0.207 0.107
2	0+ ^+	ີມ. ສະ	ים גי	• ~	. Ŭ 7	10		אין ה. וגין		2	1941) 1. ET	• *	0			2	0 0	н U ч	4	604 400		3 7	A 101
- ← `	ν.	ີ	-	•	17	-16	, -,	J 14			t J.	. C	24.			- 	7	. 1	0	o v 4		3	V . 1 7 1

 \smile

PAGE 2

FIELD REPORT # + 42934E

TEST PHASE : FLOW PERIDD # 2

TTAE .				BOT HOLE		
DE DAY	DATE	FLAPSED	DELTA	PRESSURE		
HH4 MM199	00-00	TIME.MIN	TTMF.MTN	PSTA		
*******	*****	******	*******	****		
*******	••••					
20357: 9	18IN	48,15	0.00	609		
212 22 9	18 - IN	57 15	5.00	7.71		
21 2 7	10 IN	50 15	10 00	0.77		
21 7 7 7	10 JN	27 15	15 00	974		
21+12+ 7	10	20 15	20.00	1017		
21+17+ 7	10-31	200×10 777 45	20.00	1010		
21:22: 7	18-31	73.13	23.00	1074		
21+2/+ 9	18-JN	/8.13	30.00	1100		
21:32: 9	18-JN	83.10	35.00	120/		
21:3/: 9	18-JN	88.15	40.00	1301		
21:42: 9	18-JN	73.10	45.00	1360		
21:47: 9	18-JN	98.15	50.00	1415		
21:52: 9	18-JN	103.15	55.00	1466		
21:57: 9	18-JN	108.15	60.00	1512		
21:57:45	18-JN	108.75	60.60	1517		
TEST PHA	6E : S	HUTIN PER	IBD # 2			
	F	INAL FLOW	PRESSURE	EPSIAD =	1517	
•	P	RODUCING	TIME EMIN:	l≕ 76.ć	66	
TIME				BOT HOLE		LDG
						1 1 1 M. M. 1 1 1 1 1 1 1 1 1
OF DAY	DATE	ELAPSED	DELTA	PRESSURE	DELTA P	HUKNEN
DF DAY HH:MM:SS	DATE DD-MM	ELAPSED TIME,MIN	DELTA TINE,MIN	PRESSURE PSIA	DELTA P PSI	TIME
OF DAY HH:MN:53 *******	DATE DD-MM *****	ELAPSED TIME,MIN ******	DELTA TIME,MIN *******	PRESSURE PSIA ********	DELTA P PSI ********	HURNER TIME *****
OF DAY HH:MM:SS ******	DATE DD-MM #***	ELAPSED TIME,MIN ******	DELTA TINE,MIN *******	PRESSURE PSIA ********	DELTA P PSI ********	HURNER TIME *****
OF DAY HH:MM:55 ******* 21:58: 5	DATE DD-MM ***** 18-JN	ELAPSED TIME,MIN ******** 109.09	DELTA TIME,MIN ********	PRESSURE PSIA ********** 1521	DELTA P PSI **********	HURNER TIME *****
OF DAY HH:MM:58 ******** 21:58: 5 21:59: 5	DATE DD-MM ***** 18-JN 18-JN	ELAPSED TIME,MIN ******* 109.09 110.09	DELTA TIME,MIN ******* 0.00 1.00	PRESSURE PSIA ********** 1521 1521	DELTA P PSI ********* 4 4	HURNER TIME ****** 1.890
DF DAY HH:MM:58 ******* 21:52: 5 21:59: 5 22: 0: 5	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******* 109.09 110.09 111.09	DELTA TIME,MIN ******* 0.00 1.00 2.00	PRESSURE PSIA ********** 1521 1521 1521	DELTA P PSI ********* 4 4 4	HDRNER TIME ****** 1.890 1.595
OF DAY HH:MM:58 ******** 21:52: 5 21:57: 5 22: 0: 5 22: 1: 5	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******* 109.09 110.09 111.09 112.09	DELTA TIME,MIN ******* 0.00 1.00 2.00 3.00	PRESSURE PSIA ********** 1521 1521 1521 1521 1521	DELTA P PSI ********* 4 4 4 4	HDRNEK TIME ****** 1.890 1.595 1.424
OF DAY HH:MM:SS ******** 21:58: 5 21:57: 5 22: 0: 5 22: 1: 5 22: 2: 5	DATE DD-MM **** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 109.09 110.09 111.09 112.09 113.09	DELTA TIME,MIN ******* 0.00 1.00 2.00 3.00 4.00	PRESSURE PS1A ********** 1521 1521 1521 1521 1521 1521	DELTA P PSI ********* 4 4 4 4 4 4	HURNER TIME ****** 1.890 1.595 1.424 1.305
OF DAY HH:MM:SS ******** 21:58: 5 21:59: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5	DATE DD-MM **** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 109.09 110.09 111.09 112.09 113.09 114.09	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00	PRESSURE PSIA ************************************	DELTA P PSI ******** 4 4 4 4 4 4 4	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213
OF DAY HH:MM:SS ******** 21:58: 5 21:57: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5 22: 4: 5	DATE DD-MM **** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME,MIN ******** 109.09 110.09 111.09 112.09 113.09 114.09 115.09	DELTA TIME,MIN ******* 0.00 1.00 2.00 3.00 4.00 5.00 6.00	PRESSURE PSIA ************************************	DELTA P PSI ******** 4 4 4 4 4 4 4 4	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139
OF DAY HH:MM:SS ******** 21:58: 5 21:59: 5 22: 0: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5 22: 4: 5 22: 5: 5	DATE DD-MM **** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******* 109.09 110.09 111.09 112.09 113.09 114.09 115.09 116.09	DELTA TIME,MIN ******* 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00	PRESSURE PSIA ************************************	DELTA P PSI ******** 4 4 4 4 4 4 4 4 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.077
DF DAY HH: MM: 58 ******** 21: 58: 5 21: 59: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5 22: 4: 5 22: 5: 5 22: 6: 5	DATE DD-MM **** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******* 109.09 110.09 111.09 112.09 113.09 114.09 115.09 116.09 117.09	DELTA TIME,MIN ******* 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00	PRESSURE PSIA ************************************	DELTA P PSI ******** 4 4 4 4 4 4 4 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025
DF DAY HH: MM: 58 ******** 21: 58: 5 21: 59: 5 22: 0: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 7: 5	DATE DD-MM **** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******* 109.09 110.09 111.09 112.09 113.09 113.09 114.09 115.09 116.09 117.09 118.09	DELTA TIME,MIN ******* 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00	PRESSURE PS1A ************************************	DELTA P PSI ******** 4 4 4 4 4 4 5 5 5 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979
DF DAY HH: MM: 58 ******** 21: 58: 5 21: 59: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 7: 5 22: 8: 5	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******* 109.09 110.09 111.09 112.09 113.09 113.09 114.09 115.09 116.09 117.09 118.09	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00	PRESSURE PS1A ************************************	DELTA P PSI ******** 4 4 4 4 4 4 5 5 5 5 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979 0.938
OF DAY HH: MM: 58 ******** 21: 52: 5 21: 57: 5 22: 0: 5 22: 0: 5 22: 2: 5 22: 2: 5 22: 4: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 7: 5 22: 8: 5 22: 10: 5	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******** 109.09 110.09 111.09 112.09 113.09 114.09 115.09 116.09 117.09 118.09 119.09	DELTA TIME,MIN ******* 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00	PRESSURE PS1A ************************************	DELTA P PSI ********* 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979 0.938 0.869
OF DAY HH: MM: 58 ********* 21: 58: 5 21: 57: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5 22: 4: 5 22: 5: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 7: 5 22: 8: 5 22: 10: 5 22: 12: 5	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******** 109.09 110.09 111.09 112.09 113.09 114.09 115.09 116.09 116.09 117.09 118.09 119.09 121.09	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 9.00 10.00 12.00 14.00	PRESSURE PS1A ************************************	DELTA P PSI ********* 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.077 1.025 0.979 0.938 0.869 0.811
OF DAY HH: MM: 53 ********* 21: 58: 5 21: 57: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 7: 5 22: 8: 5 22: 10: 5 22: 12: 5 22: 14: 5	DATE DD-MM **** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******* 109.09 110.09 110.09 111.09 112.09 113.09 114.09 115.09 116.09 116.09 117.09 118.09 119.09 121.09 123.09	DELTA TIME,MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00	PRESSURE PS1A ************************************	DELTA P PSI ******** 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	HDRNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.025 0.979 0.938 0.869 0.811 0.763
OF DAY HH: MM: 53 ********* 21: 58: 5 21: 59: 5 22: 0: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5 22: 4: 5 22: 5: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 7: 5 22: 10: 5 22: 12: 5 22: 14: 5	DATE DD-MM **** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******** 109.09 110.09 111.09 112.09 113.09 114.09 115.09 116.09 116.09 117.09 118.09 119.09 121.09 123.09	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00 16.00	PRESSURE PS1A ************************************	DELTA P PSI ********* 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979 0.938 0.869 0.811 0.763 0.721
DF DAY HH: MM: 58 ******** 21: 58: 5 21: 57: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5 22: 4: 5 22: 5: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 7: 5 22: 8: 5 22: 10: 5 22: 12: 5 22: 14: 5 22: 14: 5 22: 14: 5	DATE DD-MM **** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******** 109.09 110.09 110.09 111.09 112.09 113.09 114.09 115.09 114.09 115.09 116.09 117.09 118.09 119.09 121.09 123.09 125.09	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00 16.00 18.00	PRESSURE PS1A ************************************	DELTA P PSI ******** 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	HDRNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979 0.938 0.869 0.811 0.763 0.721 0.684
OF DAY HH: MM: 58 ******** 21: 58: 5 21: 59: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 2: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 6: 5 22: 7: 5 22: 10: 5 22: 12: 5 22: 12: 5 22: 14: 5 22: 16: 5 22: 18: 5 22: 20: 5	DATE DD-MM **** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******** 109.09 110.07 111.07 112.07 112.07 113.07 114.07 115.07 116.07 115.07 116.07 117.07 118.09 119.07 121.09 123.09 125.09 127.09	DELTA TIME, MIN ******* 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00 16.00 18.00 20.00 22.00	PRESSURE PS1A ************************************	DELTA P PSI ********* 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979 0.938 0.869 0.811 0.763 0.721 0.684 0.457
OF DAY HH: MM: 58 ******** 21: 58: 5 21: 59: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 2: 5 22: 4: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 6: 5 22: 10: 5 22: 10: 5 22: 10: 5 22: 10: 5 22: 14: 5 22: 16: 5 22: 16: 5 22: 20: 5 22: 10: 5 22: 10: 5 22: 10: 5 22: 10: 5 22: 10: 5 22: 5 5 22: 5 5 5 22: 5 5 5 22: 5 5 5 5 22: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******** 109.09 110.09 110.09 111.09 112.09 113.09 114.09 115.09 115.09 116.09 117.09 118.09 119.09 121.09 123.09 125.09 127.09	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00 16.00 18.00 20.00 22.00	PRESSURE PS1A ************************************	DELTA P PSI ******** 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979 0.938 0.869 0.811 0.763 0.721 0.684 0.652 0.423
OF DAY HH: MM: 58 ******** 21: 58: 5 21: 59: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 2: 5 22: 4: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 10: 5 22: 10: 5 22: 10: 5 22: 10: 5 22: 14: 5 22: 16: 5 22: 16: 5 22: 16: 5 22: 16: 5 22: 20: 5 22: 20: 5	DATE DD-MM ***** 18-JN	ELAPSED TIME, MIN ******** 109.09 110.09 111.09 112.09 113.09 114.09 115.09 115.09 115.09 116.09 117.09 118.09 117.09 121.09 123.09 125.09 127.09 131.09	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00 16.00 18.00 20.00 22.00 24.00	PRESSURE PS1A ************************************	DELTA P PSI ********* 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979 0.938 0.869 0.811 0.763 0.721 0.684 0.652 0.623 0.584
OF DAY HH: MM: 58 ******** 21: 58: 5 21: 57: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 2: 5 22: 4: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 10: 5 22: 10: 5 22: 10: 5 22: 10: 5 22: 14: 5 22: 16: 5 22: 16: 5 22: 18: 5 22: 20: 5 22: 10: 5 22: 20: 5 22: 10: 5 22: 10: 5 22: 20: 5 22: 5 22: 20: 5 22: 5 22: 20: 5 22: 5 22: 5 22: 5 22: 5 5 22: 5 5 22: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DATE DD-MM ***** 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN 18-JN	ELAPSED TIME, MIN ******** 109.09 110.09 111.09 112.09 113.09 114.09 114.09 115.09 114.09 115.09 116.09 117.09 118.09 121.09 123.09 123.09 125.09 127.09 131.09	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 9.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00	PRESSURE PS1A ************************************	DELTA P PSI ********* 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.025 0.979 0.938 0.869 0.811 0.763 0.721 0.684 0.652 0.596 0.596
OF DAY HH: MM: SS ******** 21: 58: 5 21: 57: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 2: 5 22: 4: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 10: 5 22: 12: 5 22: 12: 5 22: 12: 5 22: 14: 5 22: 12: 5 22: 22: 5 22: 5 22: 22: 5 5	DATE DD-MM ***** 18-JN	ELAPSED TIME, MIN ******** 109.09 110.09 111.09 112.09 113.09 114.09 114.09 114.09 115.09 114.09 115.09 116.09 117.09 121.09 123.09 123.09 125.09 127.09 133.09 135.09	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 7.00 10.00 12.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 24.00 28.00	PRESSURE PS1A ************************************	DELTA P PSI ********* 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979 0.938 0.869 0.811 0.763 0.721 0.684 0.652 0.596 0.573 0.551
OF DAY HH: MM: SS ******** 21: 58: 5 21: 57: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 2: 5 22: 4: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 10: 5 22: 12: 5 22: 12: 5 22: 12: 5 22: 14: 5 22: 12: 5 22: 14: 5 22: 12: 5 22: 22: 5 5	DATE DD-MM ***** 18-JN	ELAPSED TIME, MIN ******** 109.09 110.09 111.09 112.09 113.09 114.09 114.09 114.09 115.09 114.09 115.09 115.09 117.09 121.09 123.09 123.09 125.09 127.09 131.09 133.09	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 7.00 8.00 7.00 10.00 12.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 24.00 26.00 30.00	PRESSURE PS1A ************************************	DELTA P PSI ********* 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5	HURNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979 0.938 0.869 0.811 0.763 0.721 0.684 0.652 0.573 0.551 0.554
OF DAY HH: MM: SS ******** 21: 58: 5 21: 59: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5 22: 4: 5 22: 5: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 10: 5 22: 12: 5 22: 12: 5 22: 14: 5 22: 12: 5 22: 14: 5 22: 12: 5 22: 20: 5 22: 10: 5 22: 20: 5 22: 5 22: 20: 5 22: 5 22: 5 22: 20: 5 22: 20: 5 22: 5 22: 5 22: 5 22: 5 22: 5 5 22: 5 5 22: 5 5 22: 5 5 22: 5 5 22: 5 5 22: 5 5 22: 5 5 5 22: 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	DATE DD-MM ***** 18-JN	ELAPSED TIME, MIN ******** 109.09 110.07 111.07 112.07 113.07 114.07 115.07 115.07 116.07 115.07 116.07 117.09 118.07 117.09 121.07 123.09 125.09 127.09 125.09 131.07 133.07 135.07	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 9.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 24.00 26.00 30.00 35.00	PRESSURE PS1A ************************************	DELTA P PSI ********* 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5	HDRNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979 0.938 0.869 0.811 0.763 0.721 0.684 0.652 0.551 0.551 0.551
OF DAY HH: MM: 58 ******** 21: 58: 5 21: 59: 5 22: 0: 5 22: 1: 5 22: 2: 5 22: 3: 5 22: 4: 5 22: 5: 5 22: 6: 5 22: 6: 5 22: 7: 5 22: 10: 5 22: 10: 5 22: 10: 5 22: 12: 5 22: 12: 5 22: 14: 5 22: 14: 5 22: 14: 5 22: 14: 5 22: 14: 5 22: 14: 5 22: 12: 5 22: 22: 5 22: 5 22: 22: 5 22: 32: 5 22	DATE DD-MM **** 18-JN	ELAPSED TIME, MIN ******** 109.09 110.07 111.07 112.07 113.07 113.07 114.07 115.07 115.07 116.07 117.07 118.09 117.07 121.07 123.09 125.09 127.07 131.07 133.07 135.07 137.09 139.09	DELTA TIME, MIN ******** 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 7.00 8.00 9.00 10.00 12.00 14.00 14.00 16.00 18.00 20.00 22.00 24.00 24.00 26.00 35.00 40.00	PRESSURE PS1A ************************************	DELTA P PSI ********* 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5	HDRNER TIME ****** 1.890 1.595 1.424 1.305 1.213 1.139 1.027 1.025 0.979 0.938 0.869 0.811 0.763 0.721 0.684 0.652 0.623 0.554 0.551 0.504 0.504

PADE 3

•

•

• . .

TEST PHASE : SHUTIN PERIOD # 2 FINAL FLOW PRESSURE EPSIAL = 1517 PRODUCING TIME EMINT = 76.66

TIME				BOT HOLE		LDG
OF DAY	DATE	ELAPSED	DELTA	PRESSURE	DELTA P	HDRNER
HH: MM:SS	DD-MM	TIME, MIN	TIME, MIN	PSIA	PSI	TIME
* ** * * * * *	****	******	******	****	********	*****
22:48: 5	18-JN	159.09	50.00	1522	5	0.404
22:53: 5	18-JN	164.09	55.00	1522	5	0.379
22:58: 5	18-JN	169.09	60.00	1522	5	0.357
23: 3: 5	18-JN	174.09	65.00	1522	5	0.338
23: 8: 5	18-JN	179.09	70.00	1522	5	0.321
23:13: 5	18-JN	184.09	75.00	1522	ວິ	0.306
23:18: 5	18-JN	189.09	80.00	1522	5	0.292
23:23: 5	18-JN	194.09	85.00	1522	5	0.279
23:28: 5	18-JN	199.09	90.00	1522	5	0.268
23:33: 5	18-JN	204.09	95.00	1522	5	0.257
23:38: 5	18-JN	209.09	100.00	1522	5	0.247
23:43: 5	18-JN	214.09	105.00	1522	5	0.238
23:48: 5	18-JN	219.09	110.00	1522	5	0.230
23:53: 5	18-JN	224.09	115.00	1522	5	0.222
23:58: 0	18-JN	229.00	119.91	1522	5	0.215

Form OGC-1b		F UTAH	SUBM (C	IT IN TRIE	PLICATE* ions on	1
•	DEPARTMENT OF NA DIVISION OF OIL, C	TURAL RESOU GAS, AND MIN	RCES	everse sid	") 5. LEASE DESIGNAT MI _ 34259	ION AND BERIAL NO.
SUN (Do not use this	DRY NOTICES AND form for proposals to drill or to Use "APPLICATION FOR PERT	REPORTS O	N WELLS	oir.	6. IF INDIAN, ALLO	TTER OR TRIBE NAME
i.		· :'		20 -	T. UNIT AGREEMENT	NAME
OIL GAE WELL	OTHER		litte			
2. NAME OF OPERATOR	·	Å	- 2 Lie	\∕į	8. FARM OR LEASE	NAME
<u>Chandler & As</u>	sociates, Inc.	<u> </u>	Divisio	-	Lawrence	
1400 Lincoln	Tower Building, Denv	ver. Colorado	BASSE NOF C	DIL	15-1	
4. LOCATION OF WELL (R	leport location clearly and in acco	ordance with any S	tate requirements.		10. FIELD AND POOL	, OR WILDCAT
At surface 660' FS	\$ L; 1980' FEL (SW SE)			-	Wildcat	OR BLE. AND
					1-18S-8E	
14. PERMIT NO.	15. BLEVATIONS	(Show whether DF. J	T. GR. etc.)		12. COUNTY OR PAR	ISH 18. STATE
43-015-30192	5726'	Ground			Fmerv	lltah
43-013-30192		T. J. J. M.			Linci y	
¥0. 3	Check Appropriate Box		ture of Notice, Kep	i di 10, 1100 sudseque	NT ABPORT OF:	
TIST WATER SHUT-OF	PULL OR ALTER CA	SING	WATER SHUT-OFF		REPAIRI	IG WELL
FRACTURE TREAT	MULTIPLE COMPLE	TE	FRACTURE TREATM	ENT	ALTERIN	G CABING
SHOOT OR ACIDIZE	ABANDON®		SHOUTING OR ACID		ABANDON	MENT"
REPAIR WELL	CHANGE PLANS		(Other)	tormatic	n lipdate	on on Well
(Other)			Completion of	or Recomplet	tion Report and Log	form.)
17. DESCRIBE PROPOSED ON proposed work. If	well is directionally drilled, give	state all pertinent subsurface locatio	defails, and give pertin ns and measured and t	rue vertical	depths for all mar	kers and zones perti-
nent to this work.						
5-15-84 SPUD 6 5-29-84 Depth 2% CaC	5 AM. 1,690'. Set 41 jts C1, 1/4#/sk flocele,	13 3/8" 54. 10% Gilsoni	5# surf csg at te followed by	1690'w 200 sx	//935 sx How Class "G", :	co Lite, 2% CaCl,
6-19-84 Depth 218' r	4,940'. Ran DST #1 nud, 3202' fresh wtr.	in Navajo f No GTS. Sa	rom 4896-4940' mpler: 2100 cc	. 15", 3 fresh w	32", 60", 12 Nater.	l". Rec
6-28-84 Depth 6-29-84 Depth	5,517'. Prep to Whi 4,575'. WOC. Pluge	pstock. Jed back w/1	65 sx Class "G	", 3% sa	alt.	
18 7 harshy spatiates that	the foregoing is true and correct		<u></u>			
10. I mereur certar tak	- Castan-	Petr	oleum Engineer		6-	28-84
SIGNED	ugo Lartava	TITLE			UATE	

(This	spacé	for	Federal	01	State	omce	use)

S.

APPROVED BY _______ CONDIN. IS OF APPROVAL, IF ANT:

UINTA RESEARCH & ANALYTICAL SERVICES 291 EAST 200 NORTH (801) 722-2532 ROOSEVELT, UTAH 84066

JUL 2 5 1984

RECEIVED

DIVISION OF OIL GAS & MINING

SAMPLE PRODUCED BY: CHANDLER & ASSOCIATE

DENVER COLORADO LOCATION: SAMPLE #: GC 2475 LINE PRESS: CYL PRESS: DATE SAMPLED :7-19-84

ANALYSIS DATE: 7-20-84 CYL #: WELL #:LAWRENCE STATE 15-1 SAMPLED BY: ANALYST: JS

BTU/CU FT (BASE PRESS DRY @ 14.73)= 18.5 BTU/CU FT (BASE PRESS WET @ 14.73 = 18.1782 SPECIFIC GRAVITY/BASED ON ANALYSIS(VAPOR)= 1.4852 SPECIFIC GRAVITY/BASED ON ANALYSIS(LIQUID)= .6322 SPECIFIC GRAVITY/RANAREX FIELD OBSERVED=

PSEUDOCRIVICAL TEMPERATURE= 497 RANKIN PSEUDOCRITICAL PRESSURE= 1044 PSIA

ABSOLUTE VIS = 9.53414E-6 (LB MASS/FT SEC. @ 40 1 ATM)

COMPONENT	MOL %	LIQ VOL%	GALZMCF
HYDROGEN SULFIDE	0		
HYDROGEN	0		
NITROGEN	3.53		
OXYGEN	0		
METHANE	1.54		
CARBON DIOXIDE	94.83		
CARBON MONOXIDE	0		
ETHANE	.06		
ETHYLENE	0		
PROPANE	0	0	9
PROPYLENE	0	0	0 .
ISOBUTÁNE	0	, 0	0
N-BUTANE	.02	43.38	.01
BUTENE-1, I-BU	0	0	0
TRANS-BUTENE-2	0	0	0
CIS-BUTENE-2	0	. 0	0
ISOPENTANE	0	Ø	0
N-PENTANE	0	0	0
C5 UNSAT, C6 PLUS	.02	56.61	.01
TOTAI	100	99 .99	.02

TOTAL

A star and see a star share

REMARKS :WILDCAT-DST #3

THANK YOU FOR THE BUSINESS

RECEIVED

LEGAL LOCATION SEC. - TVP. - RNG.

SEC.

T 185 - R 8E

FIELD

VILDCAT

COUNTY

EMERY

STATE

итен

NM

LAWRENCE STATE

1-15 VELL NO.

TEST

NO.

7450. ' - 7503. TESTED INTERVAL

CHANDLER AND ASSOCIATES, INCORPORATED

JUL 3 0 1984

DIVISION OF OIL GAS & MINING

669

h

TICKET NO. 84223500 26-JUL-84 VERNAL

FORMATION TESTING SERVICE REPORT

GAUG	E NO: <u>76</u> DEPTH: 7427.0	BLANK	ED OFF:_	<u>NO</u> HOUR	OF CLOCK	:24
ID	DESCRIPTION		SSURE			TYPE
A	INITIAL HYDROSTATIC	3627	3635.1		SHEEDENTED	
В	INITIAL FIRST FLOW	42	31.6			
С	FINAL FIRST FLOW	56	34.7	11.0	11.0	F
С	INITIAL FIRST CLOSED-IN	56	34.7	20.0		
D	FINAL FIRST CLOSED-IN	1704	1714.7	30.0	30.0	
E	INITIAL SECOND FLOW	42	42.5	20.0		
F	FINAĽ SECOND FLOW	42	45.5	30.0	30.0	F
F	INITIAL SECOND CLOSED-IN	42	45.5			
G	FINAL SECOND CLOSED-IN	585	609.8	60.0	60.0	
н	FINAL HYDROSTATIC	3641	3633.8			

GAUGE NO: DEPTH:		BLAN	KED OFF: <u>Y</u>	<u>es</u> hour	OF CLOCK	:24
ID	DESCRIPTION					TYPE
A	INITIAL HYDROSTATIC	3645	3649.3		CHECOENTED	
В	INITIAL FIRST FLOW	53	57.9	11.0	11 0	
С	FINAL FIRST FLOW	53	59.0	11.0	11.0	
С	INITIAL FIRST CLOSED-IN	53	59.0	20.0	20.0	C
D	FINAL FIRST CLOSED-IN	1714	1728.9	30.0	30.0	
E	INITIAL SECOND FLOW	66	70.7			-
F	FINAL SECOND FLOW	66	69.3	30.0	30.0	
F	INITIAL SECOND CLOSED-IN	66	69.3	60.0	<u> </u>	
G	FINAL SECOND CLOSED-IN	636	641.7	00.0	60.0	
н	FINAL HYDROSTATIC	3672	3648.8			

GAUGE NO: 400. DEPTH: 7500.0 BLANKED OFF: YES HOUR OF CLOCK: 24

EQUIPMENT & HOLE DATA	TICKET NUMBER: <u>84223500</u>
FORMATION TESTED:TOROWEAP	
NET PAY (ft):	DHIE: <u>7-23-84</u> IESI NU: <u>4</u>
GROSS TESTED FOOTAGE:53.0	
ALL DEPTHS MEASURED FROM:GROUND LEVEL	ITTE USI: UFEN HULE
CASING PERFS. (ft):	HALL TRURTON CAMP.
HOLE OR CASING SIZE (in): 8.750	VERNAL
ELEVATION (ft):5726	
TOTAL DEPTH (ft):7503.0	SCOTT R. PITT
PACKER DEPTH(S) (ft): _7442. 7450	
FINAL SURFACE CHOKE (in):	
BOTTOM HOLE CHOKE (in):0.750	HITNESS. CLAYTON LOFFERTY
MUD WEIGHT (16/gal):9.20	
MUD VISCOSITY (sec):	
ESTIMATED HOLE TEMP. (°F):	DRILLING CONTRACTOR:
ACTUAL HOLE TEMP. (°F): <u>140</u> @7500.0ft	LOFFLAND # 1
FLUID PROPERTIES FOR RECOVERED MUD & WATER SOURCE PIT 1.200 @ .75 °F .4848 ppm .1200 @ .75 °F 4848 ppm .1200 @ .75 °F 4800 ppm .1200 @ .0 °F 4800 ppm	SAMPLER DATA Psig AT SURFACE:2 cu.ft. OF GAS:0.00 cc OF OIL:0 cc OF WATER:0 cc OF MUD:1350 cc OF MUD:1350 TOTAL LIQUID cc:1350 CUSHION DATA TYPE AMOUNT WEIGHT
RECOVERED: 20 FEET OF DRILLING MUD	MEASURED FROM
REMARKS:	· · · · · · · · · · · · · · · · · · ·

٤.

687

ŝ

TYPE & SI	ZE MEASUR	ING DEVICE:		LT 20	T 20 MANIFOLD TICKET NO:	
TIME	CHOKE SIZE	SURFACE PRESSURE PS1	GAS Rate MCF	L1QUID RATE BPD	REMF	IRKS
7-22-84						
1800					CALLED OUT.	
2100					ON LOCATION.	
2200					STARTED OPERATIONS.	
2230					STARTED CLOCKS.	
2400					PICKED UP THE TOOL.	
7-23-84						
0130					TRIP IN THE HOLE.	
0430					RIGGED UP CONTROL HER	ар .
0443					SET PACKERS.	
0444					TOOL OPENED - SURFACE	E BLOW IN
					A 5 GALLON BUCKET OF	WATER.
0455				-	CLOSED TOOL WITH 1/4	BLOW IN
					A 5 GALLON BUCKET OF	WATER.
0525					OPENED TOOL FOR THE S	SECOND FLOW
					WITH A SURFACE BLOW	INA 5
					GALLON BUCKET OF WAT	ER.
0550					BLOW WAS DEAD.	
0555					CLOSED TOOL.	
0655					OPENED BYPASS.	
0705					TRIP OUT OF THE HOLE	•
1100					TOOLS AT THE TABLE.	
1210					FINISHED JOB.	
	1					
· · · · · ·						

•

'.

•

			D			
		\checkmark			- ТІСКЕ	T NO. 84223500
		_	0.D.	I.D.	LENGTH	DEPTH
	T		4 500	2 826	6770 0	
1	ð		6 750	2 875	541 0	
50		IMPACT REVERSING SUB	6.500	3.000	1.0	7320.0
3		DRILL COLLARS	6.750	2.875	92.0	
5		CROSSOVER	5.750	2.000	1.0	
13	•	DUAL CIP SAMPLER	5.000	0.750	6.8	
60	0	HYDROSPRING TESTER	5.000	0.750	5.0	7425.0
80		AP RUNNING CASE	5.000	2.250	4.1	7427.0
15		JAR	5.000	1.750	5.0	
16	v	VR SAFETY JOINT	5.000	1.000	2.8	
70		OPEN HOLE PACKER	7.750	1.530	5.8	7442.0
18	0	DISTRIBUTOR VALVE	5.000	1.680	2.2	
70		OPEN HOLE PACKER	7,750	1.530	5.8	7450.0
20		FLUSH JOINT ANCHOR	5.750	2.870	47.4	
81	a	BLANKED-OFF RUNNING CASE	5.750		4.2	7500.0

TOTAL DEPTH

i_

7503.0

ļ

:

EQUIPMENT DATA

₽8<u>9</u>

\mathbf{U}			
	ECEIVED	LEGAL LO SEC T	
	JUL 3 0 <u>19</u> 84	CATION WP RNO	LEASE
I	DIVISION OF OIL GAS & MINING		NAME
		SEC. 1	
		• T 18	
	\	5. R 8	WELL NO.
(HALLIBÜRTON)	m	11
SERVICES		FIELD	EST NO.
TICKET NO. 74047000 24-JUL-84			
VERNHL		¥1L	T
		DCAT	ESTED IN
			FERVAL
		COUN	-
		ТҮ	
		EMER	
		Ŷ	
		STAT	ISE UVNER,
		Ē	COMPHNY
FORMATION TESTING SERVICE	REPORT	UTAH	NHME
		MN	

Standard References Maria and Standard References References Maria and Standard References

	 198	 	
an s			

•

GAUGI	E NO: <u>192</u> DEPTH: <u>7221.0</u>	BLANI	KED OFF: <u>Y</u>	<u>es</u> hour	OF CLOCK	: 24
ID	DESCRIPTION	PRE	PRESSURE			TYPE
A	INITIAL HYDROSTATIC	3568	3574.2	REPORTED	SHEEDENTED	
В	INITIAL FIRST FLOW	135	116.5	10.0	10.2	2 F
С	FINAL FIRST FLOW	148	131.6	10.0	10.2	
С	INITIAL FIRST CLOSED-IN	148	131.6	20.0	<u> 10 1</u>	
D	FINAL FIRST CLOSED-IN	1713	1682.8	50.0	20.1	
E	INITIAL SECOND FLOW	175	183.8	<u> </u>	60 O	Г
F	FINAL SECOND FLOW	243	252.0	00.0	60.0	
F	INITIAL SECOND CLOSED-IN	243	252.0		90.0	
G	FINAL SECOND CLOSED-IN	1970	1941.8	50.0	JV.V	
Н	FINAL HYDROSTATIC	3568	3550.0			

		·	
	ját agun an a 146		

GAUG	E NO:205 DEPTH:7106.9	BLAN	KED OFF:	<u>NO</u> HOUR	OF CLOCK	:24
ID	DESCRIPTION	PRE	SSURE			TYPE
A	INITIAL HYDROSTATIC	3491	3515.2	NET ON TED	CHECCENTED	
В	INITIAL FIRST FLOW	41	57.3	10.0	10.0	_
С	FINAL FIRST FLOW	55	95.5	10.0	10.2	F
С	INITIAL FIRST CLOSED-IN	55	95.5	20.0	20.1	
D	FINAL FIRST CLOSED-IN	1640	1631.0	30.0	28.1	
E	INITIAL SECOND FLOW	137	153.6			_
F	FINAL SECOND FLOW	192	207.2	60.0	60.0	F
F	INITIAL SECOND CLOSED-IN	192	207.2	00.0	00.0	0
G	FINAL SECOND CLOSED-IN	1887	1890.5	90.0	90.0	L
Н	FINAL HYDROSTATIC	3436	3492.5			

'

. .

:

0 3 3

.

EQUIPMENT & HOLE DATA	TICKET NUMBER: 74047000
FORMATION TESTED: <u>KAIBAB</u>	
NET PAY (ft):	UHIE: <u>7-18-84</u> IESI NU: <u>3</u>
GROSS TESTED FOOTAGE:94.0	TYPE DST. OPEN HOLE
ALL DEPTHS MEASURED FROM: <u>Kelly Bushing</u>	
CASING PERFS. (ft):	HALLIBURTON CAMP:
HOLE OR CASING SIZE (in): 8.750	VERNAL
ELEVATION (ft):5726	
TOTAL DEPTH (ft):7224.0	TESTER, <u>CLIFFORD L. RICHARDS</u>
PACKER DEPTH(S) (ft): _7122, 7130	
FINAL SURFACE CHOKE (tn):	
BOTTOM HOLE CHOKE (in):0.750	WITNESS: LARRY PRENDERGAST
MUD WEIGHT (16/gal):9.20	
MUD VISCOSITY (sec):48	
ESTIMATED HOLE TEMP. (°F):	URILLING CUNTRHCTUR:
ACTUAL HOLE TEMP. (°F): <u>145</u> @ft	LOFFLAND_DRILLING # 1
FLUID PROPERTIES FOR	SAMPLER DATA
RECOVERED MUD & WATER	
SOURCE RESISTIVITY CHLORIDES	Pstg HI SURFHCE:1200
<u>_PIT1.000 @ 78</u> °F ppm	cu.ft. OF GAS:1.43
<u>TOP - MUD <u>1.100</u> © <u>80</u> °F <u>ppm</u></u>	cc OF OIL:0
<u>MIDDLE-MUD-GAS_CUT</u> <u>1.100</u> @ <u>80</u> °F ppm	cc OF WATER:0
<u>BUTION</u> <u>1.000</u> 6 80 °F ppm	CC OF MUD: 1800
<u>SHMPLER</u> <u>1.000 % 80 °F</u> ppm	
@ ppm	
HYDROCARBON PROPERTIES	CUSHION DATA
OIL GRAVITY (°API):@°F	TYPE AMOUNT WEIGHT
GAS/OIL RATIO (cu.ft. per bbl):	
GAS GRAVITY:	·
RECOVERED.	Σ
485 FEFT OF HIGHLY GAS CUT M	
	ů,
	LAR
	ESI
	ᄣᅳ
DEMODIC	
ELEVHIIUN KEPUKIED IS HI GKUUND LEVEL.	

TYPE & SI	ZE MEASUR	ING DEVICE:	······································			TICKET NO: <u>74047000</u>	
TIME	CHOKE S1ZE	SURFACE PRESSURE PSI	GAS RATE MCF	LIQUID RATE BPD	REMARKS		
7-18-84					· · · · · · · · · · · · · · · · · · ·		
1530					CALLED OUT.		
1730					LEFT SHOP.		
2200					ON LOCATION.		
2220					STARTED CLOCKS.		
2300					PICKED UP THE TOOLS.		
7-19-84							
0005					TRIP IN THE HOLE.		
0402			· · · · · · · · · · · · · · · · · · ·		SET PACKERS.		
0405	*		· · · · · · · · · · · · · · · · · · ·		TOOL OPENED - 1/2" B	_OW IN A 5	
			<u></u>		GALLON BUCKET.	<u> </u>	
0407					BLEW TO THE BOTTOM O	F THE BUCKET	
0413		2#					
0415					CLOSED TOOL.	· · · · · · · · · · · · · · · · · · ·	
0445	*				OPENED TOOL - 4" BLOW IN A 5		
					GALLON BUCKET OF WAT	ER.	
0447		10 OZ.					
0450		16 OZ.					
0455		20 DZ.					
0458		2#			· · · · · · · · · · · · · · · · · · ·		
0503	1	2.5#		-			
0515		2#					
0520	-	1#					
0530		14 OZ.					
0535		12.5 OZ					
0540		11.5 OZ					
0545		10.5 OZ					
0545					CLOSED TOOL FOR THE	FINAL	
					CLOSED IN PRESSURRE.		
0715					FINISHED CLOSED IN.		
0717					OPENED BYPASS AND PU	LLED	
					PACKER LOOSE.		
0725					TRIP OUT OF THE HOLE	•	
1125					OUT OF THE HOLE WITH	THE TOOL.	
1135	+				DRAINED SAMPLER AND	LAID DOWN	
······	1				THE TOOL.		
1335	1				JOB COMPLETE.		

. <u>.</u>.

:

٠,

ì

ъ ,

TIC	ICKET NO: 74047000					No. of the second se	P		GA	UGE NO:	205		
CLO	СК	NO: 1	1654 H	OUR: 24		ALLIB	ÜRTC	N	DE	PTH: 71	06.9		
REF		MINUTES	PRESSURE	ΔP	<u>t×∆t</u> t+∆t	log <u>t+∆t</u> ∆t	REF	M	INUTES	PRESSURE	ΔΡ	<u>t×∆t</u> t+∆t	$log \frac{t+\Delta t}{\Delta t}$
			FIRST	FLOW				SECON 7 8	D CLOSE 30.0 35.0	D-IN - CONTI 1270.7 1344.2	NUED 1063.5 1137.0	21.0 23.4	0.524 0.478
B	1 2 3	0.0 2.0 4.0	57.3 66.1 70.9	8.8 4.8			1	9 0 1	40.0 45.0 50.0	1417.5 1486.2 1547.3	1210.3 1279.0 1340.1	25.5 27.4 29.2	0.440 0.408 0.381
	4 5	6.0 8.0	86.2 94.0	15.3			1	2 3	55.0 60.0	1602.1 1653.4 1701 7	1394.9 1446.2 1494 5	30.8 32.4 33.8	0.357 0.337 0.318
	Ð	10.2	JDOT O	1.5 0055 IN			1	4 5 6	70.0	1744.6	1537.4	35.1 36.3	0.302
С	1	۲ 0.0	95.5	.USED-IN			1 G 1	7 8 9	80.0 85.0 90.0	1822.5 1860.7 1890.5	1615.3 1653.5 1683.3	37.4 38.4 39.4	0.274 0.262 0.251
	2 3 4 5	2.0 4.0 6.0 8.0	170.9 260.2 350.5 440.0	75.4 164.7 255.0 344.4	1.7 2.9 3.8 4.5	0.781 0.548 0.433 0.358							
	6 7 8 9	10.0 12.0 13.9 16.0	564.5 730.7 954.8 1136.0	469.0 635.2 859.3 1040.5	5.1 5.5 5.9 6.2	0.306 0.267 0.239 0.215							
	10 11 12	18.0 20.0 22.0	1259.5 1365.9 1457.8	1163.9 1270.4 1362.3	6.5 6.8 7.0	0.195 0.179 0.166							
D	13 14 15	24.0 25.9 28.1	1519.7 1577.1 1631.0	1424.1 1481.6 1535.4	7.2 7.3 7.5	0.134 0.144 0.135							
			SECONE) FLOW									
E	1 2 3 4 5 6 7	0.0 5.0 10.0 15.0 20.0 25.0 30.0	153.6 142.4 148.9 158.7 167.0 173.0 179.8	-11.2 6.4 9.9 8.2 6.0 6.9									
F	9 10 11 12 13	40.0 45.0 50.0 55.0 60.0	186.3 189.2 195.6 200.5 207.2	4.2 2.9 6.4 4.9 6.7									
		S	ECOND C	LOSED-IN	1								
F	1 2 3 4 5 6	0.0 5.0 10.0 15.0 20.0 25.0	207.2 376.6 689.1 946.9 1084.2 1183.4	169.4 481.9 739.7 877.0 976.2	4.6 8.8 12.4 15.6 18.4	1.179 0.903 0.753 0.654 0.581							

REMARKS:

į,

			\sim									
ТІСК	ET NO:	7404700	0]	, and the second	P) Gf	RUGE NO:	192		
CLOC	K NO: 2	2786 H	OUR: 24) N 		PTH: 72	21.0		
REF	MINUTES	PRESSURE	ΔP	<u>t×∆t</u> t+∆t	log <u>t+∆t</u> ∆t	REF		1INUTES	PRESSURE	ΔΡ	<u>t×∆t</u> t+∆t	$log \frac{t + \Delta t}{\Delta t}$
В	. 0.0	FIRST	FLOW				SECC 7 8 9	ND CLOSE 30.0 35.0 40.0	D-IN - CONTI) 1333.2) 1409.0) 1478.1	NUED 1081.2 1157.1 1226.2	21.0 23.4 25.5	0.523 0.478 0.440
	2 2.0 3 4.0 4 6.0	115.0 120.7 130.0	-1.5 5.7 9.3 3.8			1 1 1	0 1 2 3	45.0 50.0 55.0 60.0	 1539.2 1600.6 1654.1 1707.5 	1287.3 1348.6 1402.2 1455.6	27.4 29.2 30.8 32.4	0.408 0.381 0.357 0.336
C	5 10.2	131.6	-2.2			1 1 1 1	4 5 6 7	65.0 70.0 75.0	1755.5 1796.1 1838.2	1503.6 1544.1 1586.3	33.8 35.1 36.3	0.318 0.302 0.287
	י ח ח ח	131.6	-03EB IN				' 8 9	85.0) 1912.3) 1941.8	1660.4	38.5	0.262
	2 2.0 3 4.0 4 6.0 5 8.0 5 10.0 6 10.0 7 12.0 3 14.0 9 16.0 1 20.0 2 22.0 3 24.0 4 26.0 5 28.1	218.7 302.9 395.9 498.4 635.5 831.1 1015.4 1215.9 1354.9 1444.6 1518.2 1578.8 1635.6 1682.8	87.1 171.3 264.3 366.7 503.9 699.5 883.8 1084.3 1223.2 1313.0 1386.5 1447.2 1504.0 1551.2	1.7 2.9 3.8 4.5 5.1 5.5 6.2 6.5 6.8 7.0 7.2 7.3 7.5	0.784 0.551 0.431 0.359 0.306 0.267 0.239 0.214 0.195 0.179 0.166 0.154 0.144 0.135			•				
		SECON) FLOW									
E 1 F	1 0.0 2 5.0 3 10.0 4 15.0 5 20.0 6 25.0 7 30.0 8 35.0 9 40.0 0 45.0 1 50.0 3 60.0	183.8 174.0 184.7 196.2 205.1 212.9 221.0 224.0 231.6 238.9 244.8 252.0	-9.8 10.7 11.5 8.9 7.8 8.1 3.0 4.2 3.4 7.3 5.9 7.1									
	S	ECOND C	LOSED-IN	1								
F	1 0.0 2 5.0 3 10.0 4 15.0 5 20.0 5 25.0	 252.0 437.8 737.7 994.9 1135.0 1241.9 	185.8 485.7 743.0 883.0 990.0	4.7 8.7 12.3 15.6 18.5	1.176 0.905 0.755 0.654 0.581							

REMARKS:

ţ

۴. .

.

	\sim			ТІСКЕ	T NO. 74047000
-		0.D.	I.D.	LENGTH	DEPTH
		4.500	3 826	6516.3	
	DRILL COLLARS	6.750	2.250	455.3	
0	IMPACT REVERSING SUB	6.750	3.000	1.2	6972.0
~	DRILL COLLARS	6.750	2.250	120.0	
	CROSSOVER	6.500	2.250	1.2	
0	DUAL CIP SAMPLER	5.000	0.750	6.8	
0	HYDROSPRING TESTER	5.000	0.750	5.0	7104.9
	AP RUNNING CASE	5.000	2.100	4.1	7106.9
	JAR	5.000	1.750	5.0	
۷	VR SAFETY JOINT	5.000	1.000	2.8	
	OPEN HOLE PACKER	7.750	1.530	5.8	7122.0
0	DISTRIBUTOR VALVE	5.000	1.680	2.2	
	OPEN HOLE PACKER	7.750	1.530	5.8	7130.0
	FLUSH JOINT ANCHOR	5.750	2.870	15.0	

6.500

6.750

6.750

5.750

5.750

5.750

2,250

2.250

2,250

2.250

2.870

1.0

58.1

3.2

1.0

4.2

TOTAL DEPTH

CROSSOVER.....

FLUSH JOINT ANCHOR.....

BLANKED-OFF RUNNING CASE.....

DRILL COLLARS.....

CROSSOVER.....

1

З

50

3

5 13

60

80

15

16

70

18

70

50

5 3

5 5

20

81

ł

-

7224.0

;

7221.0

÷

EQUIPMENT DATA

2,9,8

RECEIVED

JUL 3 0 1984

LEGAL LOCATION

185 -

еñ Г

FIELD AREA

WILDCAT

COUNTY

EMERY

STATE

UTAH

MS

LAWRENCE STATE

15-1 VELL NO.

TEST .

6795. - 6840. ' TESTED INTERVAL

CHANDLER AND ASSOCIATES

NO.

DIVISION OF OIL GAS & MINING

181

TICKET NO. 74046900 24-JUL-84 VERNAL

FORMATION TESTING SERVICE REPORT

•	i ∳ ≉-	

:

•

والمترارين والمراجع

GAUG	E NO: <u>490</u> DEPTH: <u>6772.0</u>	BLANK	ED OFF:	NO HOUR	OF CLOCK	: 24
ID	DESCRIPTION	PRES	SSURE			TYPE
A	INITIAL HYDROSTATIC	3328	3333.6			
В	INITIAL FIRST FLOW	13	15.0	10.0	10.0	F
С	FINAL FIRST FLOW	13	15.0	10.0		
С	INITIAL FIRST CLOSED-IN	13	15.0	20.0	30.0	С
D	FINAL FIRST CLOSED-IN	13	22.1	30.0		
Ε	INITIAL SECOND FLOW	13	18.3	<u> </u>		F
F	FINAL SECOND FLOW	13	17.9	60.0	60.0	
F	INITIAL SECOND CLOSED-IN	13	17.9	90.0	00.0	C
G	FINAL SECOND CLOSED-IN	13	20.7	00.0	86.V	
Н	FINAL HYDROSTATIC	3315	3324.7		· ·	

.

.

١

DDE COUDE TANK

		 R. 3. 1.		
	ł			

.*

GAUG	E NO: <u>198</u> DEPTH: <u>6837.0</u>	BLAN	KED OFF: <u>Y</u>	<u>es</u> hour	OF CLOCK	: 24
ID	DESCRIPTION	PRE	SSURE			TYPE
A	INITIAL HYDROSTATIC	3423	3345.1		011200211120	
В	INITIAL FIRST FLOW	52	58.8	10.0	10.0	F
С	FINAL FIRST FLOW	52	55.7	10.0		
С	INITIAL FIRST CLOSED-IN	52	55.7	20.0	30.0	
D	FINAL FIRST CLOSED-IN	52	60.5	30.0		
E	INITIAL SECOND FLOW	52	58.5	<u> </u>	<u> </u>	
F	FINAL SECOND FLOW	52	55.8	60.0	60.0	F
F	INITIAL SECOND CLOSED-IN	52	55.8		00.0	
G	FINAL SECOND CLOSED-IN	52	57.8	00.0	86.0	
Н	FINAL HYDROSTATIC	3358	3359 . 6	· · · . · ·	· • · · · · · · ·	

-

a state and a state of a

EQUIPMENT & HOLE DATA	TICKET NUMBER: <u>74046900</u>
FORMATION TESTED:SINBAD	DATE: 7-16-84 TEST NO: 2
ALL DEPTHS MEASURED FROM: KELLY BUSHING	TYPE DST:OPEN HOLE
CASING PERFS. (ft):	HOLL TRUPTON COMP.
HOLE OR CASING SIZE (tn):8.750	VERNAL
ELEVATION (ft):5726	
TOTAL DEPTH (ft):6840.0	TESTER. <u>CLIFFORD L. RICHARDS</u>
PACKER DEPTH(S) (ft): <u>6787.6795</u>	
FINAL SURFACE CHOKE [in]:	
BOTTOM HOLE CHOKE [in]:0.750	WITNESS: LARRY PRENDERGAST
MUD WEIGHT (16/gal):9,20	
MUU VISCUSIIY (SOC):4/	DRILLING CONTRACTOR:
ACTUAL HOLE TEMP (\circ F):	LOFFLAND DRILLING #1
	· · · · ·
FLUIU FRUFERIIES FUR	SAMPLER DATA
	Pstg AT SURFACE:0
PIT 8.500 @ 80 °F 600 ppm	cu.ft. OF GAS:0.00
<u>BOTTOM</u> <u>8,500</u> 8 <u>80</u> °F <u>600</u> ppm	cc OF OIL: 0
<u>SAMPLER</u> <u>8.500</u> Ø <u>80</u> °F <u>600</u> ppm	
6^Fppm	CO OF MUD: 2240
@Ppm	
e ppm	
HYDROCARBON PROPERTIES	CUSHION DATA
OIL GRAVITY (°API): @°F	TYPE AMOUNT WEIGHT
GAS/OIL RATIO (cu.ft. per bbl):	
RECOVERED:	ω. Δ
10 FEET OF DRILLING MUD	
	Ψ ^μ
LLEVELIUM ALIONIED IS EL GROUND LEVEL.	

78L

TIME	CHOKE S1ZE	SURFACE PRESSURE PSI	GAS Rate Mcf	LIQUID RATE BPD	REMARKS
7-15-84	· · ·				
2200					CALLED OUT
7-16-84					
0230					ON LOCATION
0231					STARTED CLOCKS
0300					PICKED UP TOOLS
0400					TRIPPED IN HOLE
0723					SET PACKERS
0725	1/4 BH		· · · ·		TOOL OPENED, 1/16" BLOW
0735			· • • • • • • • • • • • • • • • • • • •		CLOSED TOOL
0805	1/4 BH				OPENED TOOL WITH NO BLOW
0905					CLOSED TOOL FOR SECOND CIP
· • •					PÊRIOD.
1031					FINISHED SHUT IN.
1033					PULLED PACKERS LOOSE.
1037					TRIPPED OUT OF HOLE
1500					OUT OF HOLE WITH TOOLS
1510					DRAINED SAMPLER, LAID DOWN
n					TOOLS.
1615					JOB COMPLETED.
			···		
<u></u>	· · ·		• <u>•</u> ••••••••••••••••••••••••••••••••••		
		-			
<u></u>					
4					
<u> </u>	r				
					· · · · · · · · · · · · · · · · · · ·
<u></u>					
!		· · · · ·			· · · ·
1 1					

. ~

					🛩 ТІСКЕТ	NO. 74046900
			0. D.	Ι.Ο.	LENGTH	DEPTH
		_				
1	L L	DRILL PIPE	4.500	3.826	6128.0	
3		DRILL COLLARS	6.750	2.875	541.0	
50	0	IMPACT REVERSING SUB	6.500	3.000	1.0	6669.0
з		DRILL COLLARS	6.750	2.875	92.0	
5		CROSSOVER	5.750	2.000	1.0	
13	D	DUAL CIP SAMPLER	5.000	0.750	6.8	
60	Ð	HYDROSPRING TESTER	5.000	0.750	5.0	6770.0
80		AP RUNNING CASE	5.000	2.100	4.1	6772.0
1,5		Jar	5.000	1.750	5.0	
16	v	VR SAFETY JOINT	5.000	1.000	2.8	
70		OPEN HOLE PACKER	7.750	1.530	5.8	6787.0
18	•	DISTRIBUTOR VALVE	5.000	1.680	2.2	
70		OPEN HOLE PACKER	7.750	1.530	5.8	6795.0
20		FLUSH JOINT ANCHOR	5.750	2.870	39.1	
81	0	BLANKED-OFF RUNNING CASE	5.750		4.2	6837.0

TOTAL DEPTH

ł

6840.0

;

ŗ,

٠.

EQUIPMENT DATA

ANTA RESEARCH & ANALYT AL SERVICES 291 E. 200 N. (801) 722-2532 ROOSEVELT, UTAH 84066

SAMPLE PRODUCED BY: CHANDLER & ASSUC.

LOCATION: EMERY SAMPLE #: GC 2503 LINE PRESS: CYL PRESS: DATE SAMPLED :8-2-84

いたいとうないないないできょうというという

ANALYSIS DATE: 8-6-84 CYL #: WEESZ#:LHWRENCE STATE 15-1 ' SAMPLED BY: HNALYST:JH

RECEIVED

AUG 8 1984

DIVISION OF OIL GAS & MINING

BTU/CU FT (BASE PRESS DRY @ 14.73)= 28.5 BTU/CU FT (BASE PRESS WET @ 14.73 = 28.0043 SPECIFIC GRAVITY/BASED ON ANALYSIS(VAPOR)= 1.4696 SPECIFIC GRAVITY/BASED ON ANALYSIS(LIQUID)= .6217 SPECIFIC GRAVITY/RANAREX FIELD OBSERVED=

PSEUDOCRITICAL TEMPERATURE= 489 RANKIN PSEUDOCRITICAL PRESSURE= 1024 PSIA

ABSOLUTE VIS = 9.5602E-6 (LB MA55/FT SEC. @ 40 1-ATM)

COMPONENT	MOL %	F18 AQ	L% GAL/MCF
HYDROGEN SULFIDE	9		
HYDROGEN	0		
NITROGEN	6.68		an a
OXYGEN	ы		
METHANE	1.59999	·	~
CARBON DIOXIDE	91.38		
CARBON MONOXIDE	Ø		
ETHANE	.04		
ETHYLENE	6		
PROPANE	6	Ø	0
PROPYLENE	6	Ø	0
ISOBUTANE	.01	5.04	0
N-BUTANE	.07	20.65	.02
BUTENE-1, I-BU	М	Ø	Ø
TRANS-BUTENE-2	Ø	Ø	Ø
CIS-BUTENE-2	Ŭ	Ø	0
ISOPENTANE	.09	30.83	.03
N-PENTANE	. 1	33.91	. 04
C5 UNSAT, C6 PLUS	.03	11.55	.01
тата	тий	99.98	. 1

REMARKS :

and the state of the

ORAL APPROVAL PLUG AND ABAND TO QØ Operator (Manalla & Representative **K**Range Location W 1/ W 1/4 Section Township Well No. the **Field** State County Unit Name and Required Depth Base of fresh water sands 59mo Size hole and Mud Weight and Top Fill per sack #/gal Casing Set Top of To Be Plugging Requirements Sacks Cement Pulled From Size At Cement То 10 6 H. Hresh live Formation Тор Base Shows [] っ 1707 ろ h, W ISN C@ 1700 ひひゆり Muru 6022 MT Cls nenalle V 3 1122 OVOWCAP TUSV Minsumin 805 284 4 36 GREMARKS s, lost cir culati DS zones, etc. a.m. Approved by Date Time p.m.

HECEIVED

9.2 C

EGAL LOCATION

SEC

<u>185.</u>

8E

FIELD AREA

WILDCAT

COUNTY

EMERY

STATE :

UTAH SM

_AWRENCE STATE

15-1 VELL NO.

5 TEST NO.

8402.1 - 8465.1 TESTED INTERVAL

ICHANDLER AND ASSOCIATES INCORPORATED

AUG 1 4 1984

DIVISION OF OIL GAS & MINING

TICKET NO. 74047100 07-AUG-84 VERNAL

FORMATION TESTING SERVICE REPORT

. . . .

ł

GAUG	E NO: 205 DEPTH: 8379.0	BLANK	KED OFF: _!	<u>NO</u> HOUR	OF CLOCK	: 24
ID	DESCRIPTION	PRES	SSURE CALCULATED	T I REPORTED	ME Calculated	TYPE
A	INITIAL HYDROSTATIC	4077	4108.7			
В	INITIAL FIRST FLOW	27	33.3	10 0	10 6	
С	FINAL FIRST FLOW	69	89.2	10.0	10.0	
С	INITIAL FIRST CLOSED-IN	69	89.2	20.0	30 1	
D	FINAL FIRST CLOSED-IN	3050	3048.5	20.0		
E	INITIAL SECOND FLOW	96	119.3	90.0	80.1	F
F	FINAL SECOND FLOW	328	328.4	50.0		
F	INITIAL SECOND CLOSED-IN	328	328.4	182 0	181 2	
G	FINAL SECOND CLOSED-IN	3116	3123.5	102.0	101.6	
Н	FINAL HYDROSTATIC	3993	4081.5			

.

•

•

. . .

GAUGE NO: 205 DEPTH: 0374.0 BLANKED OFF: NO HOUR OF CLOCK: 24

GAUG	E NO: 192 DEPTH: 8462.0	BLANK	KED OFF:Y	<u>es</u> hour	OF CLOCK	: <u>24</u>
ID	DESCRIPTION	PRE	SSURE CALCULATED	TIN	TYPE	
A	INITIAL HYDROSTATIC	4188	4163.8			
В	INITIAL FIRST FLOW	67	84.5	10.0	10.0	_
С	FINAL FIRST FLOW	122	134.6	10.0	10.6	
С	INITIAL FIRST CLOSED-IN	122	134.6	00.0		
D	FINAL FIRST CLOSED-IN	3101	3101.5	20.0	30.1	
E	INITIAL SECOND FLOW	149	181.0	00.0	00.1	_
F	FINAL SECOND FLOW	351	377.2	90.0	80.1	Г
F	INITIAL SECOND CLOSED-IN	351	377.2	102.0	101 0	
G	FINAL SECOND CLOSED-IN	3151	3173.8	102.0	101.2	<u></u> С
Н	FINAL HYDROSTATIC	4105	4131.9			

1

•

•

.

the second s

•

••

EQUIPMENT & HOLE DATA TIC	KET NUMBER: <u>74047100</u>			
FORMATION TESTED: MISSISSIPPIAN				
NET PAY (ft):DAT	E: <u>8-1-84</u> TEST NO: <u>5</u>			
GROSS TESTED FOOTAGE:63.0				
ALL DEPTHS MEASURED FROM:KELLY BUSHING	E DST:OPEN HOLE			
CASING PERFS. (ft):				
HOLE OR CASING SIZE (tn):8.750				
ELEVATION (ft):5726				
TOTAL DEPTH (ft):8465.0	CLIFFORD L. RICHARDS			
PACKER DEPTH(S) (ft): <u>8394, 9402</u>				
FINAL SURFACE CHOKE (tn):				
BOTTOM HOLE CHOKE (in):0.750 WIT	NESS:BOB ??			
MUD WEIGHT (1b/gal):9,20				
MUD VISCOSITY (sec): 51	LLING CONTRACTOR:			
ESTIMATED HOLE TEMP. (°F):	LOFFLAND DRILLING #1			
ACTUAL HOLE TEMP. (°FJ: <u>159</u> @ <u>8461.0</u> ft				
FLUID PROPERTIES FOR	SAMPLER DATA			
RECOVERED MUD & WHIER				
SOURCE RESISTIVITY CHLORIDES	G C C C C C C C C C C			
PIT <u>1.090 @ 90 °F</u> <u>750 ppm</u> Cu.	1 t. UF GHS:0.20			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	cc OF OIL:0			
<u></u>	OF WATER:2000			
<u>SAMPLER</u> <u>1.030</u> © <u>80</u> °F <u>780</u> ppm cc	OF MUD:0			
• • • • • • • • • • • • • • • • • • •	AL LIQUID cc:2000			
HIDRUCHRDUN FRUFERILES	TYPE AMOUNT WEIGHT			
CAS/OIL RATIO (ou ft per bhl):				
GAS GRAVITY:				
PECOVERED.				
RECUVERED:				
633 FEET OF SULPHUR WATER HIGH				
	EBS			
	∑⊢.			
PEMORKS.				
REPORTED ELEVATION WAS MEASURED AT CROUND LEVEL				
REFURIED ELEVATION WAS MEASURED AT GROOND ELVEL.				

~

.

1

ر مرتبعیت تلخصه

6 L C

TYPE & SI	ZE MEASURI	NG DEVICE:	· · · · · · · · · · · · · · · · · · ·		
TIME	CHOKE SIZE	SURFACE PRESSURE PSI	GAS RATE MCF	LIQUID RATE BPD	REMARKS
7-31-84					
2100					CALLED OUT
2230					LEFT SHOP
8-1-84					
0500					ON LOCATION
0205					STARTED CLOCKS
0415					PICKED UP TOOL
0530					TRIPPED IN HOLE
1005					SET PACKERS
1008	1/4		· · ···· · · · · · · · · · · · · · · ·	1	OPENED TOOL WITH 1/4" BLOW
<u></u>			, <u></u>		INCREASING TO 4" IN 10 MINUTES.
1018					CLOSED TOOL IN
1038					OPENED TOOL FOR SECOND FLOW
· · · ·					1" BLOW.
1043	· · · · · · · · · · · · · · · · · · ·				5" BLOW
1048					7" BLOW
1103		5 OZ.			
1108		7 OZ.			
1113		8 OZ.		-	
1118		9 OZ.			
1123		9.5 OZ.	· · · · · · · · · · · · · · · · · · ·		
1128		10 OZ.			GAS TO THE SURFACE AT 1130.
1133		10.5 07.			
1138		11.5 DZ.		<u> </u>	
1143		12 07.			
1148		13.5 07.	nga pony ana ana ana ana ang ang ang		
1153		14.5 07.			
1158		15 5 07			
1203		16.5 07.		·	
1208					· · · · · · · · · · · · · · · · · · ·
1208					
1510					
1520					
2100	. 11 %				DRAINED SEMPLER
2115					
2200					
					Sop com Lieb.

											<i>*</i>			
TI	СКЕ	T NO:	74047100)	\neg		P			GA	JGE NO:	205		÷
	רא	NO- 1	1654 H (⊣(н	ALLIB	ÜRI	0	N)		ртн. 83	79 N		
							16 88							
RE	F	MINUTES	PRESSURE	ΔΡ	<u>t×∆t</u> t+∆t	log <u>t+At</u>	RE	F	MINU	ITES	PRESSURE	ΔP	<u>t×∆t</u> t+∆t	log <u>t+∆t</u> ∆t
<u> </u>			••		•			SE(COND CL	.OSED-	IN - CONTINU	ED		
			FIRST	FLOW				10	1 1 (90.0 00 0	3084.0 3092.1	2755.6 2763.7	45.2	0.303
В	1	0.0	33.3			1		12	1	10.0	3099.5	2771.1	49.7	0.261
	2	2.0	39.4	6.0				13	1	20.0	3104.2	2775.8	51.7	0.244
	3	4.0	52.9	13.6				14	1:	30.0	3108.3	2779.9	53.4	0.230
	4	6.U 8.0	77.2	12.5				15	11	40.0 50.0	3116.5	2788.1	56.5	0.205
C	6	10.6	89.2	12.1				17	1	60.0	3118.9	2790.5	57.9	0.195
								18	1	70.0	3121.7	2793.3	59.1	0.186
		F					G	19	1	81.2	3123.5	2795.1	60.4	0.176
	2	-	IKSI LL	USED-IN										
C	1	0.0	89.2											
	2	2.0	1005.8	916.6	1.7	0.805								
	3	4.0	2583.4	2494.1	2.9	0.564								
	4	6.0	2/40.9	2651.6	3.8	0.442								:
	6	10.0	2870.0	2780.8	5.1	0.314								
	7	12.0	2906.5	2817.3	5.6	0.275	1							
	8	14.0	2936.6	2847.4	6.0	0.244								
	9	16.0	2959.4	2870.2	6.4	0.220								
	10	18.0	2978.5	2889.2	6./ 6.0	0.201								
	12	20.0	2995.0	2904.6	D .9 7 .1	0.171								
	13	24.0	3021.4	2932.2	7.3	0.158								
	14	26.0	3031.8	2942.6	7.5	0.148								
	15	28.0	3040.8	2951.6	7.7	0.139								
I U	16	30.1	3048.5	2959.2	7.8	0.131								
			SECOND	FLOW										
			0200110											
E	1	0.0	119.3											
	2	10.0	146.1	26.9										
	3	20.0	218.5	37.4										
	5	40.0	251.2	32.6										
	6	50.0	274.0	22.7										
	7	60.0	589.6	15.6			l l							
	8	70.0	306.9	17.3			1							
	y	80.1	320.4	21.0										
	4	S	ECOND CL	_OSED-IN		 								
		•												
F	1	0.0	328.4	0000 0		4 000								
	2	10.0	2/24.5	2396.0	9.0	1.003								
	4	30.0	2947.5	2619.1	22.5	0.605	1							
	5	40.0	2991.1	2662.7	27.7	0.514	1							
	6	50,0	3022.2	2693.8	32.2	0.449								
	7	60.0	3043.8	2715.4	36.1	0.400								
	8 0	70.0	3061.4 3073 9	2745.5	39.5 12 5	0.351								
	9	00.0	5075.3		76.0	4.953								
L														

REMARKS:

TIC	СКЕ	T NO:	7404710	0		· · · ·				GA	UGE NO:	192		
CLO	CK	NO: 2	290 H	OUR: 24] (H	ALLIB	ÜR1	0	ッ	DE	PTH: 84	62.0		• •
RE	F .	MINUTES	PRESSURE	ΔP	<u>t×∆t</u> t+∆t	log <u>t+∆t</u> ∆t	RE	F	MINU	TES	PRESSURE	ΔP	<u>t×∆t</u> t+∆t	$log \frac{t + \Delta t}{\Delta t}$
в		0.0	F I RST 84.5	FLOW				SEC 10 11 12	OND CL 9 10 11	0SED- 90.0 00.0	IN - CONTIN 3133.5 3141.8 3149.0	UED 2756.3 2764.5 2771.8	45.2 47.5 49.7	0.303 0.280 0.261
с	2 3 4 5 6	4.0 6.0 8.0 10.6	101.6 115.1 125.3 134.6	4.1 13.1 13.5 10.1 9.3				13 14 15 16 17	13 14 15 16	30.0 40.0 50.0 60.0	3154.3 3159.2 3163.3 3166.2 3169.4	2777.0 2782.0 2786.1 2789.0 2792.1	53.4 55.0 56.5 57.9	0.244 0.230 0.217 0.205 0.195
		F	IRST CL	.OSED-IN			G	18 19	1	70.0 81.2	3172.3 3173.8	2795.0 2796.5	59.1 60.4	0.186 0.176
с	1	0.0	134.6											
	2 3 4 5 6 7	2.0 4.0 6.0 8.0 10.0 12.0	845.4 2427.7 2714.4 2829.0 2896.0 2947.2 2981.4	710.7 2293.1 2579.8 2694.4 2761.4 2812.6	1.7 2.9 3.8 4.6 5.1 5.6	0.805 0.562 0.439 0.366 0.313 0.274								
	9 10 11 12 13	14.0 16.0 18.0 20.0 22.0 24.0	3007.2 3028.0 3045.6 3061.7 3074.3	2872.6 2893.4 2911.0 2927.0 2939.7 2851.2	6.4 6.7 6.9 7.1 7.3	0.220 0.201 0.185 0.170 0.158 0.148								
Ð	14 15 16	28.0 30.1	3094.8 3101.5	2960.2 2966.9	7.3 7.7 7.8	0.139 0.131								
Е	1 2 3 4 5 6 7 8	0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0	SELUNI 181.0 196.9 233.6 266.6 299.5 322.7 338.2 357.0	15.8 36.8 33.0 32.9 23.3 15.4 18.8										
F	9	80.1	<u>,377</u> .2	20.3		• • • • •								
	-	- S	ECOND C	LOSED-IN										
	1 2 3 4 5 6 7 8 9	0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0	377.2 2722.9 2907.7 2990.1 3035.4 3067.6 3092.4 3109.1 3122.4	2345.6 2530.4 2612.9 2658.2 2690.3 2715.2 2731.8 2745.2	9.0 16.4 22.5 27.7 32.2 36.1 39.5 42.5	1.002 0.743 0.605 0.514 0.449 0.400 0.361 0.329								

.

REMARKS:

				••	TICKET	NO. 74047100
		-	0. D.	I.D.	LENGTH	DEPTH
						
1		DRILL PIPE	4.500	3.826	7790.5	4, 4.
3		DRILL COLLARS	6.750	2.875	514.0	
50		IMPACT REVERSING SUB	6.500	3.000	1.0	8305.5
3	$\widetilde{\Box}$	DRILL COLLARS	6.750	2. 875	60.0	
5		CROSSOVER	5.750	2.000	0.8	
13	Ô	DUAL CIP SAMPLER	5.000	0.750	6.8	
60	0	HYDROSPRING TESTER	5.000	0.750	5.0	8377.0
80		AP RUNNING CASE	5.000	2.250	4.1	8379.0
15		JAR	5.000	1.750	5.0	
16	V	VR SAFETY JOINT	5.000	1.000	2.8	
70		OPEN HOLE PACKER	7.750	1.530	5.8	8394.0
18	0	DISTRIBÜTOR VALVE	5.000	1.680	2.2	
70		OPEN HOLE PACKER	7.750	1.530	5.8	8402.0
20		FLUSH JOINT ANCHOR	5.750	2.850	8.0	
5		CROSSOVER	5.750	2.500	1.0	
з		DRILL COLLARS	6.750	2.875	32.2	
5		CROSSOVER	5.750	2.500	1.0	
20		FLUSH JOINT ANCHOR	5.750	2.875	15.0	
81	•	BLANKED-OFF RUNNING CASE	5.750		4.2	8462.0

TOTAL DEPTH

1

8465.0

EQUIPMENT DATA
Form O	GC-1b DEPART DIVIS	T IN TRIP ner instructi reverse sid	CLICATE* ons on e) 5. LEASE DESIGNATION MI - 34259	AND SERIAL NO.		
{Do n	SUNDRY NO	TICES AND REPORT	S ON WELLS lug back to a different reservo	ir.	6. IF INDIAN, ALLOTTE	OR TRIBE NAME
1. 01L					7. UNIT AGREEMENT NA	MB
WELL	WELL OTHER		<u> </u>	-	8. FARM OR LEASE NAI	
Chandle	r & Associates.	Inc.	*		lawrence	
8. ADDRESS O	F OPERATOR		BECEIV	FD	9 WELL NO.	······
_1400 Li	<u>ncoln Tower Bui</u>	1ding, Denver, Colo	orado 80203		15-1	
4. LOCATION (See also s	OF WELL (Report location pace 17 below.)	clearly and in accordance with	any State requirements.		10. FIELD AND POOL, O	R WILDCAT
At surrace	660' FSL; 198	O' FEL (SW SE)	AUG 2 2 19	84 -	11. SEC., T., R., M., OB 1	LE. AND
					SURVEY OR AREA	
			DIVISION OF	OIL	1-182-8E	
14. PERMIT NO).	15. BLEVATIONS (Show wheth	er DF, RT, GR, 64/15 & WIINI	NG	12. COUNTY OR PARISH	18. STATE
43-01	5-30192	5726' Grou	nd		Emery	Utah
16.	Check A	ppropriate Box To Indicat	e Nature of Notice, Rep	ort, or Ot	her Data	
	NOTICE OF INTE	INTION TO:		AUBEBQUE	NT REPORT OF :	
TEST WAT	TER SHUT-OFF	PULL OR ALTER CASING	WATER SHUT-OFF		REPAIRING	WBLL
FRACTURE	TREAT	MULTIPLE COMPLETE	FRACTURE TREATM	ENT	ALTERING C.	ASING
SHOOT OR	ACIDIZE	ABANDON*	SHOUTING OR ACID	ZING	ABANDONME	NT• X
REPAIR W		CHANGE PLANS	(Other)	rt results o	f multiple completion	on Well
(Other)			Completion a	r Recomplet	tion Report and Log for	rm.)
nent to 5-15-84 5-29-84 6-19-84	<pre>shis work)* SPUD 6 AM. Depth 1,690'. 2% CaC1, 1/4#/ 1/4#/sk flocel Depth 4,940'. 2001 mud 2202</pre>	Set 41 jts 13 3/8 sk flocele, 10% Gi e, Plug down 9:30 Ran DST #1 in Nava	" 54.5# surf csg a Isonite followed b PM w/good returns ajo from 4896-4940	t 1690' y 200 s	w/935 sx How x Class "G", , 32", 60", 1	co Lite, 2% CaCl, 21". Rec
6-28-81	210 muu, 3202	Pren to Whinstock			Shi haven i	
6-29-84	Depth 4.575'.	WOC. Plugged bac	k w/165 sx Class "	G", 3%	salt.	
7-17-84	Depth 6,920'.	Ran DST #2 from 6	795-6840'. 10", 3	0", 60"	', 86". Rec 1	0'DM.
7-20-84	Sampler: 2240 Depth 7,312'.	cc mud, no gas. Ran DST #3 in Kai	bab from 7130-7224	·. 10"	', 30", 60", 9	0". No
7-24-84	Depth 7,581'.	Ran DST #4 in Tor	ст.43 сту, 1800 с oweap from 7450-75 Sampler: 1350 сс п	03'. 1 ud.	10", 30", 30",	60". Rec
8-2-84	Depth 8,530'. Rec 94' HGC mu	Ran DST #5 in Mis ud, 633' HGC sulfur	sissippian from 84 wtr. Sampler: 20	02-8465 00 cc s	5'. 10", 30", sulfur wtr, .2	90", 180". cfg.
8-9-84	Depth 9,728'.	Logged well. Ran	DIFL-GR, BHC-Soni	c, CNL-	-CN logs.	
	(Con't on Pg 2	2)				
18. I hereby	certify that the foregoing	is true and correct			<u></u>	
SIGNED .	Augo Carta	TITLE.	Petroleum Engineer	·	<u>DATE</u> 8-17-	-84
(This spa	ce for Federal or State o	Mice use)				
		יות. דירי דירי			DATE	
CONDITI	ONS OF APPROVAL, IF	ANY:				

 \checkmark

•

£ .

· - ---

*See Instructions on Reverse Side

-

Form OGC-1b DEPARTI	STATE OF UTAH MENT OF NATURAL RESOU	SUBMIT IN TRI (Other instruc reverse sin NG	UBMIT IN TRIPLICATE* (Other instructions on reverse side) 5. LEAGE DESIGNATION AND SERIAL NO.				
SUNDRY NOT (Do not use this form for propor Use "APPLICA	ICES AND REPORTS O	N WELLS to a different reservoir. posals.)	ML-34259 6. 17 INDIAN, ALLOTTER OR TRIBE NAME				
I. OIL GAS			7. UNIT AGREEMENT NAME				
2. NAME OF OPERATOR	••••••••••••••••••••••••••••••••••••••		S. PARM OR LEASE NAME				
Lhandler & Associates,	Inc.		Lawrence				
1400 Lincoln Tower Build	ing, Denver, Colorado	80203	15-1				
4. LOCATION OF WELL (Report location c See also space 17 below.)	learly and in accordance with any St	ate requirements.*	10. FIELD AND POOL, OR WILDCAT				
660' FSL: 1980	' FFL (SW SF)	AUG 2 2 1984	W1 QCAT 11. SBC., T., R., M., OR BLE. AND				
			SURVEY OR AREA				
14 -	I IE BURGARANA / Ohan - habaa an a	GAS & MINING	Sec 1-18S-8E				
43-015-30192	5726' Grou	nd	Emery Utah				
16. Check Ar	propriate Box To Indicate Na	ture of Notice, Report, or O	ther Data				
NOTICE OF INTEN	TION TO :	SUBSBQU	INT REPORT OF :				
TEST WATER SHUT-OFF	PULL OR ALTER CASING	WATER SHUT-OFF	REPAIRING WELL				
FRACTURE TREAT	AULTIPĻE COMPLETE	FRACTURE TREATMENT	ALTERING CABING				
SHOOT OR ACIDIZE	BANDON*	SHOOTING OR ACIDIZING	ABANDONMENT"				
(Other)		(Nors: Report results Completion or Recomple	of multiple completion on Well tion Report and Log form.)				
 DESCRIBE PROPOSED OR COMPLETED OPE proposed work. If well is direction nent to this work.)* O 11 OA Donth O 720! 	RATIONS (Clearly state all pertinent on nally drilled, give subsurface location	details, and give pertinent dates, as and measured and true vertical	including estimated date of starting any depths for all markers and zones perti-				
8-11-84 Depth 9,728. plug the well. Mining to plug	After evaluation on To Permission was receive the well on 8-11-84 as Plug #1 8 Plug #2 58 Plug #2 58 Plug #3 50 Plug #4 31 Plug #5 15 Plug #6	595, tests & samples ed from the Utah Div 5 follows: 100-8000 46 sx 350-5750 56 sx 330-4930 46 sx 200-3100 78 sx 750-1650 74 sx Surface 37 sx	, it was determined to ision of Oil, Gas and				
RIG RELEASED 10 be restored as	PM 8-11-84. Mud lade per approved plan.	en fluid between plu	gs. Location will				
1	E E	APPROVED BY T OF UTAH DIVI OIL, GAS, AND DATE: 7 3/27/3 BY: 7 4 4	HE STATE SION OF MINING				
18. I hereby certify that the foregoing in	true and correct	leum Engineen	<u>8_17_9/</u>				
BIGNED Hugo Cartaya			DATE0-1/-04				
(This space for Federal) or State offi	ce use)						
APPROVED BY Conditions of Approval, if A	TITLE						

•

- 1

*

*See Instructions on Reverse Side

AILDCAT EMERY				UTA	Н				RECEN	VE
08-09-84									AUG 2 7	198
									DIVISION C GAS & MI)F-(NIN
INTERVAL	440	0.0 TO	980		<u>μ1μ</u>					
ENGINEER	MILL	ER			7		MAG	DEC	14.	
<u>.</u>										
*******	*****	*****	****	******	*****	******				
* WINNOW	-8 FT	STEP-	2 FT	SEARCH-	8 IN	*				
*			_			*				
<u>* 4</u>	0	0	0	U ********	******	******				<u></u>
<u>* * * * * * * * * * * * * * * * * * * </u>	****	****		• • • • • • • •						
							00500	E * * * *		
DEDTU	3.00	**FOR	MATIO	DIP**	GRADE		DAZ	BEARTNG		
DEPTH	<u></u>	ANG	<u> </u>	DEANING	UNADE		<u> </u>			
4488.0	8.00	15.6	164	S 16 E	6	4.8	251	S 71 W		
4494.0	8.00	-21.3	15/	S 23 E	100	4.9	253	S 73 W		
4508.0	8.00	13.6	120	S 60 E	100	T #790	252	S 72 W		
4510.0	8.00	16.3	121	S 59 E	94	4,9	250	S 70 W		
4530.0	8.00	12.5	116	5 64 E	100	5.0	247	S 67 W	<u> </u>	
4532.0	8,00	18.0	120	S 60 E	91	5,2	245	S 65 W		
4534.0	8,00	_20.9	118	S 62 E	87	5.5	24.9	SGAW		
4538.0	8.00	17.7	114	S 66 E	66	5.0	247	S 67 W		<u></u>
4554.0	8.00	3.9	75	N 75 E	82	4.3	243	S 63 W		
4558.0	8.00	3.5	80	N 80 E	100	4.2	242	S 62 W		
4562.0	8.00	29.0	346	N 14 W	95	4.4	240	S 60 W		<u></u>
4564.0	8.00	28.3	346		100	4,2	237	5 54 W		
4568 0	8,00	15.9	338	N 22 W	100	3.8	239	S 59 W	· · · ·	
4576.0	8.00	7.5	352	N 8 W	90	3.5	231	S 51 W		
4578.0	8.00	5.5	6	N 6 E	100	3.4	233	S 53 W		
4580.0	8.00	21.5	342	N 18 W	57	3.3	235	S 55 W		
4582.0	8.00	21.7	345	N 15 W	49	3.4	203	5 55 W		
4586.0	8.00	5.8	20	N 29 F	70 A1	3.3	225	S 45 W		<u></u>
11 7 14 14 11	8.00	6,1	345	N 15 W	67	3.1	224	S 44 W		
458.0		4.8	342	N 13 W	77	2,9	227	S 47 W		
4588.0 4598.0 4600.0	8.00			C 14 E	100	2.7	225	S 45 W		
4588.0 4598.0 4600.0 4604.0	8.00	13.2	149	<u> </u>		and the second secon		A A A A A A A A A A		
4598.0 4598.0 4600.0 4604.0 4606.0	8.00 8.00 8.00	13.2	149	S 31 E	100	2.5	224	S 44 W		
4588.0 4598.0 4600.0 4604.0 4606.0 4608.0	8.00 8.00 8.00 8.00	13.2 16.0 14.2	149 149 151	S 31 E S 31 E S 29 E	100 100	2.5 2.4	224 219	S 44 W S 39 W S 40 W		

•	~	— р	AGE	2
CHANDLER AND ASSOCIATES	DIP 414			
LAWRENCE 15-1				
WILDCAT				<u>د</u>
EMERY	UTAH			
08-09-84				

		FOR	MATIO	N DIP		****B	OREHO	LE****		
DEPTH	WL	ANG	AZ	BEARING	GRADE	ΠA	DAZ	BEARING		
										 ·····
4624.0	8.00	7.0	232	S 52 W	100	1.7	210	S 30 W		
4626.0	8.00	7.0	233	S 53 W	100	1,6	209	S 29 W		
4628.0	8,00	7.2	232	S 52 W	94	1.5	207	S 27 W		
4630.0	8.00	14.5	238	S 58 W	74	1.5	207	S 27 W		
4632.0	8.00	9.5	241	S 61 W	99	1.5	201	S 21 W		
4644.0	8.00	28.0	256	S 76 W	38	1.4	193	<u>S 13 W</u>		
4654.0	8.00	21.2	261	S 81 W	96	1.3	188	<u>S 8 W</u>		
4656.0	8.00	21.0	260	S 80 W	95	1.3	188	<u>S 8 W</u>		
4672.0	8.00	16.0	329	N 31 W	65	1.1	182	<u>S 2 W</u>		
4676.0	8.00	7.5	291	N 69 W	48	1.1	176	<u>S 4 E</u>		
4678.0	8.00	11.9	288	N 72 W	59	1.1	177	<u>S 3 E</u>		
4680 . C	8.00	15.3	302	N 58 W	39	1.0	178	<u>S 2 E</u>		
4684.0	8.00	17.7	296	N 64 W	81	1,1	178	S 2 E		
4686.0	8.00	16.4	315	N 45 W	59	1.1	178	<u>S 2 E</u>		
4688.0	8.00	17.6	339	N 21 W	100	1,1	177	<u>S 3 E</u>		
4694.0	8.00	13.6	358	N 2 W	100	1.4	177	<u>S 3 E</u>		
4696.0	8.00	13.3	359	N 1 H	70	1.4	177	8 3 E		
4698.0	8,00	10.7	17	N 17 E	100	1.44	176	_ <u>S_4</u> _ <u></u>	1. I. J.	
4700.0	8.00	11.8	348	N 12 W	100	1.4	176	S 4 E		
4702.0	8.00	13.9	339	N 21 W	100	1.4	176	<u>8</u> 4 <u></u>	<u> </u>	
4704.0	8.00	15.4	356	N 4 W	100	1.4	176	~ <u>S</u> 4 E		
4706.0	8,00	14.2	337	N 23 W	100	1.4		<u>335</u>	······································	
4708.0	8,00	16.5		N 24 W	99	<u>1,2</u>	176	346		
4710.0	8.00	30.0	349	N 11 W	64	1.0	17	5 3 E		
4712.0	8.00	31.9	343	N 17 W	76	1.4	1/6	<u> </u>		
4714.0	8.00	27.8	347	N 13 W	56	۲.4	1/5	<u>55</u>		
4722.0	8.00	24.3	15	N 15 E	30	1.6	1/1	<u> </u>		
4736.0	8.00	14.7	23	N 23 E	100	2.1	1/2	<u> </u>		
4738.0	8.00	6.5	76	N 76 E	76	<u> </u>	170	<u>5 10 E</u>		
4740.0	8.00	24.1	41	N 41 E	38	2.2	168	5 12 E		
4744.0	8.00	32.3	39	N 59 E	33	2.4	174	<u> </u>		
4746.0	8.00	29.6	35	N 35 E	14	2,4	1/4	3 6 E		
4750.0	8.00	29.4	40	N 40 E	20	4.5	109	<u> </u>		
4752.0	8.00	14.5	61	N 61 E	21	2,6	1/1	<u> </u>		
4756.0	8.00	5.6	16	NIGE	74		172			
4758.0	8.00	3.4	8	N 8 E	84	4. 8	1/3	S / E		
4760.0	8.00	8,6	308	N 52 W	.70	<u> </u>	173	<u> </u>		
4764.0	8.00	8.6	338	N 55 M	90	2.9	1/3			
4766.0	8.00	20.1	347	N 13 W	32	<u> </u>	177	<u> </u>		
4768.0	8.00	13.0	14	N 14 E	T 00	ວູປ	112	<u> </u>		

CHANDLER	AND A	SSOCIA	ſES	DI	P 414			- PAGE	3	
LAWRENCE WILDCAT EMERY	15-1			UTAI	H					
08=09=84										
										<u></u>
		FOR	MATIC	N DIP		****8	OREHC	LE****		
DEPTH	WL.	ANG	AZ	BEARING	GRADE	ПА	DAZ	BEARING		
	0 00	<u>01 7</u>	000	N 74 LI	100	<u> </u>	170	<u> </u>		
4772.0		19 0	207		100	3.0	173	<u>S 7 F</u>		
4774.0 4776 0	8,00 8,00	19.1	296		97	3.0	172	SAE		
4778.0	8.00	16.5	285	N 75 W	89	3.0	173	<u>S 7 E</u>		
4780.0	A.00	16.3	310	N 5n W	91	3.0	173	S 7 E		
4788.0	8.00	3.1	340	N 20 W	100	3.2	175	S 5 E		
4792.0	8.00	3.1	333	N 27 W	99	3.2	171	S 9 E		
4794.0	8.00	14.3	339	N 21 W	60	3,2	175	S 5 E		<u>n na herrieta de la constante </u>
4796.0	8.00	14.6	338	N 22 W	97	3,2	173	S 7 E		
4798.0	8.00	14.3	326	N 34 W	71	3.1	174	S 6 E		
4800.0	8.00	16.3	325	N 35 W	100	3.1	173	S 7 E		
4802.0	8.00	15,6	324	N 36 W	100	3.1	173	<u>S 7 E</u>		
4804.0	8.00	16.9	323	N 37 W	95	3,1	174	<u>S 6 E</u>		
4814.0	8.00	19.3	286	N 74 W	82	3.2	172	SBE		
4820.0	8.00	15.4	286	<u>N 74 W</u>	95	3,2	168	S 12 E		
4822.0	8.00		187	<u>57W</u>	96	<u> </u>	168	0 12 L		
4828.0	8.00	10.9	117	0 01 C	10	33	170			
4030.0	9.00	- 7.0	142	5 30 E			171	S QE		
4052.0	8.00	19.8	149	SINF	68	3.3	172	SAE		
4838.0	A.00	15.3	163	S 17 E	92	3.4	173	S 7E	e	
4842.0	8.00	15.8	137	5 43 E	100	3,5	167	S 13 E	aaa	<u></u>
4844.0	8.00	16.0	140	S 40 E	66	3,5	168	S 12 E		
4848.0	8,00	3,3	139	S 41 E	52	3.7	168	S 12 E	<u></u>	
4860.0	8.00	18.6	204	S 24 W	100	3,8`	168	S 12 E		
4864.0	8.00	17.0	219	S 39 W	100	3.6	162	S 18 E		
4866.0	8.00	17.7	210	S 30 W	50	5.6	166	<u>S 14 E</u>		
4868.0	8.00	20.0	246	<u>S 66 W</u>	61	5,6	171	S 9 E		
4870.0	8.00	5.8	255	S /5 W	100	3,5	166	<u>S 14 E</u>		
4876.0	8.00	11.3	134	546 E	82	3,5	166	0 14 E		
4878.0	8.00	5.9	90	5 02 E	100	0.0 X E	167	3 13 L S 17 F		
4080.0	8.00	5.5	103	SITE	100	3.5	165	S 10 F		
4002.0	8,00	4.3	76	N 34 F	100	3.5	161	S 19 F		<u> </u>
1004.U	A. 00	4.9	XA	N 3A F	100	3.6	160	S 20 E		
4890-0	8.00	2.3	359	N 1 W	100	3,5	161	S 19 E		
4892.0	8.00	2.5	22	N 22 E	100	3,5	163	S 17 E		
4898.0	8.00	9.9	189	S 9 W	86	3,5	164	S 16 E		
4900.0	8.00	10,2	230	S 50 W	100	3,5	163	S 17 E		
4904.0	8.00	7.8	269	S 89 W	100	3.5	158	S 22 E		vennen en en en distante de desta de desta en

				Birtug 1			*	-	PAGE	4	
CHANDLER	AND /	ASSOCIA	TES	DI	P 414						
LAWRENCE	15-1										5
 WILDCAT											 8
 EMERY				ATU	H						 5
 08-09-84											 <u>i</u>
 											 3
 											 22
		FOR	MATIO	N DIP		****8	OREHO	LE**	***		
 DEPTH	WL	ANG	AZ	BEARING	GRADE	DA	DAZ	BEAR	ING		
 	~ ^ ^ ^	9 0	700	NEAL	100	16	150	C 7			
 4906.0	8.00	77	205	N 52 W	100	3.5	150	<u> </u>	2 L 2 F		 3
4908.0	<u>8.00</u>	7.6	303	N 57 W	100	3.5	162	<u>S</u> 1	AF		77
 4912-0	8.00	8.4	299	N 61 W	100	3.5	161	S 1	9 E		 2
4916.0	8.00	4.3	324	N 36 W	100	3.6	158	S 2	2 E		
 4920.0	8.00	5.6	280	N 80 W	100	3.7	161	S 1	.9 E		نب
4924.0	8.00	9,2	275	N 85 W	100	3,5	158	S 2	2 E		
4926.0	8.00	8.2	284	N 76 W	100	3.5	159	<u> </u>	1 E		
4928.0	8.00	14.5	235	<u>S 55 W</u>	100	3.6	162	<u>S 1</u>	<u>.8 E</u>		
4930.0	8.00	14.5	235	<u>S 53 W</u>	64	2.5 X E	163	2 1			37
 4952.0	8.00	15.5	232	<u>S 52 W</u>	67		150	<u> </u>	0 E 1 F		 <u> </u>
4954.0	<u>8.00</u>	7.8	191	<u> </u>	100	3.6	161	<u>S</u> 1	9 E		8
 4944.0	8.00	18.0	323	N 37 W	70	3.3	161	S 1	.9 E		 2
4946.0	8.00	14.5	292	N 68 W	62	3,3	160	S 2	10 E		
 4950.0	8.00	15.6	266	S 86 W	75	3.3	165	S 1	.5 E		
4952.0	8.00	13.6	268	N 72 W	34	3.3	164	SI	.6 E	<u>}</u>	 0.002
 4954.0	8.00	16.8	254	5 74 W	74	3,3	163	57	7 5	4 	
 4958.0	8.00	20.2	233	S 53 W	82	2,3	169	<u> </u>	1 6		Ž
4964.0	8.00	20.6	219	S SU W	62	33	167		7 F	2	 5
 4970.0	8.00	25.0	232	5 52 W	83	3.3	166	SI	.4 E	w <u> </u>	 <u>_</u>
4986.0	8.00	19.6	320	N 40 W	100	3.2	172	S	8 E	1	
4990.0	8.00	16.7	330	N 30 W	87	3.2	171	S	9 E	<u> </u>	<u>م</u>
4992.0	8.00	20.1	28	N 28 E	100	3.2	170	S 1	.0 E		
 4994.0	8.00	22.5	16	N 16 E	100	3.1	172	S	8 E		
4996.0	8.00	20.9	20	N 20 E	100	5.1	174	<u> </u>	<u>6 L</u>		
4998.0	8.00	14.1	34	N 34 E	97	<u> </u>	1/6	<u> </u>	4 5		77
 5002.0	8.00	19.0	130	SEZE	<u>700</u>	<u> </u>	175	5	5 E		 2
 5004.0	A.00	14.5	271	S 54 W	100	3.0	174	S	<u>6 E</u>		
 5008.0	8.00	18.4	244	S 64 W	100	3.0	175	Ś	5 E		 <u></u>
 5010.0	8.00	19.6	240	S 60 W	100	3.0	175	S	5 E		<u> </u>
5012.0	8.00	20.0	235	S 55 W	100	3.0	175	S	5 E		<u>نت</u>
 5014.0	8.00	22.8	228	S 48 W	97	3,0	175	S	5 E		ECONO.
5016.0	8.00	23.1	229	S 49 W	78	3.0	175	S	5 E		<u>.</u>
5020.0	8.00	25.3	245	S 65 W	19	5.0	178	8	2 L		
5022.0	8.00	24.6	247	5 07 W	57	3.1 X 1	170	<u>ः</u>	2 C 2 F		Ť
5024.0	B.00	24.0	240	<u>S 67 W</u>	27	3.0	179	<u></u>	<u> </u>		 Â
3460.0	0.0 4 4 4	6741	671	w	J /	₩ •0		<u> </u>	÷ •		

					Temper			\smile	PAGE	5	
	CHANDLER	AND A	SSOCIA	TES	DI	P 414					
	LAWRENCE	15+1	0								
	WILDCAT										
	EMERY				UTA	H					<u></u>
	08-09-84										
	<u></u>			<u></u>							
			FOR	MATIO	N DIP		****8	OREHOLE	*****		
	DEPTH	WL	ANG	AZ	BEARING	GRADE	DA	DAZ BE	CARING		
	5028.0	8.00	26.7	208	S 28 W	92	5.0	180	S O E		
	5030.0	8.00	26.8	208	S 28 W	97	3.0	181 3	> 1 W		
	5032.0	8.00	26.9	207	<u>S 27 W</u>	100	3.0	180 3			
	5034.0	8.00	26.4	205	S 25 W	100	3,0	180 3			
	5036.0	8.00	27.1	199	<u>S 19 W</u>	57	3.0	161 3	<u>> 1 W</u>		
	5038.0	8.00	25.5	198	<u>S 18 W</u>	100	3.0	101 3			
	5040.0	8.00	22,9	199	<u>S 19 W</u>	100	<u> </u>	102 0			
	5042.0	8.00	22.0	201	<u>5 21 W</u>	100	2.7	Tot			
	5044.0	8.00	1/.6	200	<u>5 68 W</u>	100	2.0	192 0	2 2 1		
	5046.0	8,00	10.1	214	5 34 W	100	2.1	103 0			
	5048.0	8.00	14.4	210	S 36 W	100	2.6	182 9	5 2 W		
	5050.0	8.00	7.4	231	S J/ W	100	2 6	187	<u> </u>		
	5052.0	0.00	6.0	200		100	2.6	183 9	5 3 W		
	5054.0	8.00	6.5	207	NZW	100	2.6	182 5	<u> </u>		
	5050.0	0.00	10.1	× 357		100	2.5	182	2 W		
	5050.0	<u>a no</u>		269		100	2.5	187	S 3 W		
<u></u>	5060.0	8.00	22.9	219	5 59 W	A4	2.6	184	5 4 W L		
	5066.0	8.00	22.8	247	S 67 W	74	2.6	185	5 5 W		
	5068.0	8.00	9.3	284	N 76 V	100	2.6	186	SGW		
	5070.0	8.00	5.4	284	N 76 W	100	2.6	184	S 4 W		
	5072.0	8.00	5.4	309	N 51 W	100	2.6	184	s 4 W	6	
	5074.0	8.00	4.8	- 289.	N 71 W	100	2.7	184	5 4 W	¥	
	5076.0	8.00	13.8	220	S 40 W	100	2.6	186 \$	56W	<u></u>	
	5078.0	8.00	20.2	210	S 30 W	77	2.5	188 \$	58W		
	5080.0	8.00	13.3	169	S 11 E	100	2.5	186 \$	5 6 W		
	5082.0	8.00	14.4	165	S 15 E	57	2.5	187	57W		
<u></u>	5084.0	8.00	22.1	149	S 31 E	86	2.5	181 \$	S 1 W		
	5086.0	8.00	13.7	161	S 19 E	70	2,4	183	S 3 W		
	5088.0	8.00	19.7	169	S 11 E	75	2.3	187 \$	S 7 W		
	5090.0	8.00	21.5	169	S 11 E	100	2.3	190 \$	S 10 W		
	5092.0	8.00	19.3	171	S 9 E	57	2.3	191 3	S 11 W		
	5094.0	8.00	19.2	188	S 8 W	100	2,2	191	<u>5 11 W</u>		<u> </u>
	5096.0	3.00	18.5	190	S 10 W	100	2.1	190 8	5 10 W		
	5098.0	8.00	18.2	232	S 52 W	100	2.2	191	5 11 W		
	5100.0	8.00	17.6	226	S 46 W	90	2.1	190 \$	5 TO M		
	5102.0	8,00	12,4	243	S 03 W	70	<u> </u>	170			
	5104.0	8.00	5.7	209	5 29 W	T00	2.2	170			
	5106.0	8.00	10.1	223	3 73 W	100	2.2	180	고 * U ₩ 온 다 년		
	5108.0	8.00	T0.0	47	N 47 L		٤.٤	107	2 7 W		
\$22.000		18. 18. 18. 18. 18. 18. 18. 18. 18. 18.				ana mangana kata kata kata kata kata kata kata k		2207-220-22020-22020-22020-22020-22020-22020-22020-22020-22020-22020-22020-22020-22020-22020-22020-22020-22020		47777777777777777777777777777777777777	

LAWRENCE	15-1	220CIN	123		UI					
WILDCAT						•••				
EMERY						И				
08-07-84					<u></u>					
		FOR	MATI	DN DI	D* *		**8	OREHO	LE****	
DEPTH	<u>wl.</u>	ANG	<u>AZ</u>	BEAK	ING	GRADE	<u>DA</u>	UAZ	BEARING	
5110.0	A.00	9.3	46	N 4	6 E	100	2.3	190	S 10 W	
5112.0	3.00	9.3	40	N 4	0 E	100	2,3	189	S 9 W	
5114.0	A.00	10.0	44	N 4	4 E	100	2.3	189	S 9 W	
5116.0	8.00	9,6	55	N 5	5 E	71.	2.4	189	<u>S 9 W</u>	
5126.0	8.00	18.2	71	N 7	1 E	73	2,3	192	S 12 W	
5128.0	8.00	18.6	69	N 6	9 E	77	2,4	198	S 18 W	
5132.0	8.00	16.1	93	<u>S 8</u>	<u>7 E</u>	69	2,3	187	<u> </u>	
5134.0	8.00	13.7	344	NI	<u>6 W</u>	36	2.5	188	<u>58</u> W	
5136.0	8.00	11.2	340	<u>N 2</u>	<u>0 W</u>	<u> </u>	2.4	175	S 13 W	
5142.0	5.00	8.5 10 0	343	N I		100	2.5	193	S 13 W	
5148.0	0.00	$\frac{10.0}{17.7}$	100	<u> </u>	<u>/ </u>	<u>65</u> 83	2.1	190		
5152 0	<u>a 00</u>	20.4	154	52		70	2.0	191	<u>S 11 W</u>	
5156.0	8.00	5.1	278	N 8	2 1	85	2.0	193	S 13 W	
5158.0	8.00	16.6	253	<u>s 7</u>	3 W	82	2.0	198	S 18 W	
5160.0	8.00	19.5	241	<u> </u>	1 W	71	2.0	197	S 17 W	
5164.0	8.00	14.9	278	N 8	2₩	35	2.0	200	S 20 W	N
5178.0	8.00	4.5	352	Ň	8 W-	100	2.0	201	S 21 4 L	
5180.0	8.00	5.7	338	N 2	5 H	100	2.0	203	8 23 W	
5182.0	8.00	7.5	316	N A	4.11	100	2,0	203	S 23 W	<u> </u>
5184.0	8.00	5.6	293	N 6	7 W	100	2,0	204	S 24 W	
5186.0	8,00	6,7	291	N 6	9 W	100	1.7	202	- <u>5 22 W</u>	
5188.0	8.00	- 57	2//	- N 0		100			s la lu	
5190.0	8.00		200	57	ວ W // LL	£7	2 0	196	S 15 W	
5210 0	0.00	15.1	186	<u> </u>	4 W	100	2.0	204	5 24 W	
5218_0	8.00	1.A	293	N 6	7 1	75	2.0	204	S 24 W	
5220.0	8.00	1.7	285	N 7	5 W	75	2.0	204	S 24 W	
5228.0	8.00	12.7	258	S 7	8 W	43	1,9	206	S 26 W	
5230.0	8.00	9.8	232	S 5	2 W	45	1.9	206	S 26 W	
5232.0	8,00	5.9	238	S 5	8 W	82	1,9	207	S 27 W	
5234.0	8.00	7.3	243	S 6	3 W	90	2.0	206	S 26 W	
5238.0	8.00	29.3	252	S 7	2 W	54	2.0	206	S 26 W	
5240.0	8.00	28.7	252	<u>S 7</u>	2 W	54	2.0	204	S 24 W	
EDHAA	a. nn	4.5	241	S 6	1 14	100	2.1	209	S 29 W	

214

215

214

214

2,1

2.2

2.2

S 34 W

S 35 W

S 34 W

S 34 W

8.00

8.00

5254.0

5258.0

5252.0 8,00

5256.0 8.00

307

283

283

287

12.7

12.9

15.1

6.8

N 53 W

N 77 W

N 77 W

N 73 W

100

100

100

78

			COCTA.	TES	<u> </u>	D #1#		_	PAGE	7	
	LAWRENCE	15 - 1	2201/1A	120	4 ن						
	WILDCAT					н					<u></u>
	08=09-84				011						
	DEDT		**FOR	MATI(DEARTNG	GRADE	****B	OREHOL	E****		
	ULPTH	WI.	ANG	<u> </u>	BEALING	GRADE	174		DCANTING		
							A 1.	~ • •	~ 7.4 \1		
	5260.0	8.00	16.4	276	N 62 W	41	2.4	211	5 31 W 5 29 W		
	5264.0	8.00	11.4	279	N 81 W	91	2,5	211	S 31 W		
	5266.0	8.00	10.0	290	N 70 W	57	2.6	208	S 28 W		
	5268.0	8.00	9.5	269	<u>589W</u>	49	2.4	200	<u>S 20 W</u>		
	5272.0	8.00	6.8	240	<u>5 60 W</u>	100	2.4	202	S 22 W		
	5276.0	8,00	7.1	247	S 67 W	92	2.4	201	S 21 W		
	5280.0	8.00	7.5	240	S 60 W	91	2.5	200	S 20 W		
	5282.0	8.00	8.1	241	S 61 W	91	2,5	200	S 20 W		
	5286 0	8,00	5.0	214	S 34 W	93	2.6	200	S 21 W		
	5288.0	8.00	11.5	44	N 44 E	96	2,6	207	S 27 W		
	5290.0	8.00	12.1	61	N 61 E	100	2.7	206	S 26 W		
f	5292.0	8.00	13.7	81	N 81 E	100	<u>5.0</u>	203	S 23 W	<u></u>	
1 	5294.0	A.00	14.3	90	N 90 E	100	3.0	197	8 17 W		
<u>.</u>	5298.0	8.00	13.3	81	N 81 E	100	3,0	192	S 12 W L		
	5300,0	8.00	15.5	60	N 60 E	100	3.1	189	S 9 W		
	5302.0	8.00	10.6	и р о 45	N 45 F	100	3.0	201	S 20 W	<u> </u>	
	5306.0	8.00	20.6	113	5 67 E	76	3.1	202	5 22 W	n <u></u>	
	5308.0	8.00	19,0	110	S 70 E	100		204	S 24 W	Ĩ	
	5310.0	8.00	18.6	105	S 75 E	100	3.2	200	S 20 W		
	5312.0	8.00	18.3	99	5 01 E 5 88 F	85	3.3	193	S 13 W		
	5316.0	8.00	6.7	319	N 41 W	100	3,3	200	S 20 W		
	5318.0	8.00	6.0	298	N 62 W	86	3.3	202	S 22 W		
	5324.0	8,00	14.0	238	5 58 W	92	3.5	202	S 22 W		
	5026+U	8.00	16.8	217	S 37 W	99	3.3	198	S IA W		
	5330.0	8.00	18.8	214	S 34 W	66	3.3	202	S 22 W		~
	5332.0	8.00	13.4	206	S 26 W	50	3.3	201	S 21 W		
000000000	5334.0	8.00	21.6	93	S 87 E	100	ວູຽ 3 3	199	S 23 U		
<u></u>	5338.0	8.00	24.2	101	S 79 E	100	3.2	204	S 24 W		
	5340.0	8.00	23.7	103	S 77 E	100	3,2	204	S 24 W		
	5342.0	8.00	21.9	103	S 77 E	99	3.2	207	S 27 W		
<u></u>	5376 0	8.00	4.4	310	N 47 W	100	3,3	209	S 29 W		
	<u></u>		• • •	<u></u>			• •	/			
11/1/1/07/07											

				~				PAG	E	8		
CHANDI.ER	AND A	SSOCIA	TES	DI	9 41 4							
LAWRENCE	15-1											
WILDCAT				117.0							<u> </u>	
08-09-84					1							
								<u></u> .				
						****0	OPFUO	Fares				
	W1	ANG		BEARTNG	GRADE	DA	DAZ	BEARING	;			
						-						
						7 6		<u> </u>				
5378.0	8.00	6.5	325	N 35 W		3.4 3.4	209	S 29 1	1			
5382.0	8.00	3.8	327		100	3.3	211	S 30 h				
5386.0	8.00	3.9	335	N 25 W	41	3.3	212	S 32 h				
5388.0	8.00	3.5	307	N 53 W	100	3.3	213	S 33 1				
5390.0	8.00	5.7	312	N 48 W	100	3.2	215	S 35 W				
5392.0	8.00	4.4	320	N 40 W	100	3.2	218	S 38 k				
5394.0	00.3	4.7	306	N 54 W	100	5.2	219	S 39 W				
5396.0	8.00	4.3	8	N 8 E	100	3.2	276	N 74 1	1			
5398.0	8.00	3.1	22	N 22 E	100	33	204	S 24	•			
5408.0	8.00	7.6	268	S 88 W	100	3.2	209	S 29 V	1			
5410.0	8.00	7.8	269	S 89 W	100	3.2	210	S 30 V	1			
5412.0	8.00	5.5	274	N 86 W	100	3.3	211	S 31 V	ł			
5414.0	8.00	3.6	281	N 79 W	100	3.3	211	S 31 k				
5418.0	8.00	1.1	293	N 67 W	100	3.4	210	S 30 V	1			
5420.0	8.00	2,7	305.	N DS N	100	3.3	212	S 22 1				
5434.0	8.00		232	S 75 W	- 73	3.4	209	S 29				
5438-0	8.00	20.6	255	S 75 W	79	3,5	209	S 29 V	1			
5450.0	8.00	6.1	285	N 75 W	100	3.4	208	S 28 V	1			
5478.0	8.00	4.2	269	S 89 W	100	3,4	217	- 5 37 1	}			
5482.0	8.00	4.2	279	N 81 W	100		212	S 32 1				
5488.0	8.00	8.0	257	S 77 W	100		208	S 28 V	4			
5490.0	8,00	8.1	254	S 74 W	100	3.4	211	5 30 4				
5472.0	8.00	9.5 8.4	236	S 54 W	100	3.4	203	S 23 1				
5526.0	8.00	13.5	233	S 53 W	56	3.0	218	S 38	1			
5530.0	8.00	12.9	276	N 84 W	76	2,9	212	S 32 I	1			
5532.0	8,00	14.2	245	S 65 W	100	3,0	213	S 33 V	I			
5534.0	8.00	14.8	250	S 70 W	100	3.0	213	S 33	1			
5536.0	8.00	17.3	208	<u>S 28 W</u>	100	5.1	213	CAEL	v I			
556.0	8.00	20 1	200	S 20 W	100	3.0	215	S 35	1			
5540.0	8.00	20.6	209	S 29 W	100	3.0	215	S 35	l I			
5544.0	8.00	21.7	208	S 28 W	100	3.0	216	S 36 1	1			
5546.0	8.00	18.9	207	S 27 W	92	3,0	217	S 37 I	I			
5548.0	8 .00	13.9	221	S 41 W	88	2.9	216	S 36 I	1			
5550.0	8.00	15.2	220	S 40 W	100	2.8	216	S 36 1	J			<u> </u>
5552.0	8.00	10.1	222	<u> </u>	64	G • 1	<u> </u>	<u> </u>	ч 			

				\sim			<u> </u>	PAGE	9	
CHANDLE	R AND A	SSOCIA	TES	DI	P 414					
LAWRENC	F 15-1	00-011								
EMERY					н					<u> </u>
	×/4				••					
00-03-6	7									
		E0B	MATTO			**	OBENUI	F****		
DEDT			<u>Λ7</u>	REARTING	GRADE			REARTNG		
ULPIP	1 //.	ANG	<u> </u>	DEALTING	UNADE			<u></u>		
EREN O		17 6	224	S Un U	20	2.7	218	S 38 W		
5559.0		4 7	227		52	2.6	214	S 36 W		
5556.0		<u> </u>	007	N 72 W	100	25	221	S 41 W		
5560.0		4.0	201	N 70 W	100	26	220	<u>S 40 W</u>		
5562.0			200			2.0	220	5 40 W		
5564.0		0.0	270	N 65 W	54	2 5	220	S 40 W		
5566.(1 5.00	7.3	273	N 65 W	100	2.5	220	C XO W		
5568.0	3.00	12.0	303	N 35 W	100	2,0	210	<u>S 30 W</u>		
5570.0) 8.00	12.4	307	M 33 W	100	2 E	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	C 37 U		
5572.0	3 8.00	2.9	266	<u>N 74 W</u>	100	2.0	211	<u> </u>		
5574.(3 8.00	1.2	262	<u> </u>	100	2.5	210			
5576.(1/.0	148	<u>5 52 E</u>	60	<u> </u>	218	S 40 W		<u> </u>
5578.0		11.5	149	<u>5 31 E</u>	100	2.5	262			
5580.(0 8.00	1/.2	145	<u>5 35 E</u>	100	2.J	217	S 30 W		
5582.(<u> 9.00</u>	1/.0	136	<u>544 E</u>	100	2.5	212	S JZ W		
5584.(0 8.00	1/.8	102	<u>548 E</u>	100	6. 6	220	S TU W		
5586.() 8.00	1(+4	130	SOL	100	<u> </u>	×16	3 36 W		
5588.(0 9.00	1/.1	120	S D4 E	100	<u> </u>	242	S 72 W		
5590.(<u>, 8,00</u>	11.1	159	5 52 E	LUU	<u> </u>	242	N 24 C	888 	
5592,(0 8,00	10.6	150	5 30 L	100	2.0	246	3 76 W		
5594.(0 9.00	17.2	129	SPLE		4.*	240	S #5 4	<u>)</u>	
5596.(0 8.00	6.4	162	5 18 E	82	۲.4	225	5 45 W		
5598.(0 8.00	5,6	158	S 22 E	98	<u> </u>	CCI /	S 4/ W		
5600,(0 8.00	4,1	245	<u> </u>	100		226	5 76 W		
5606.0	0 8.00	3.8	257	S 57 W	91	2.2	229	5 49 W		
5608.(0 8.00	3.8	267	S 87 W	100	2.5	227	S 47 W		
5612.(0 8.00	20.3	261	<u>S 81 W</u>	100	2.7	221	S 41 W		
5614.(0 8.00	20.1	255	<u>S (5 W</u>	100	<u> </u>	226	<u>5 46 W</u>		
5616.(0 8.00	17.1	247	S 67 W	100	<u>ۍ ځ</u>	225	S 45 W		
5618.(0 8.00	16.0	241	S 61 W	100	5.6	227	8 47 W		
5620.(0 8.00	15.4	240	S 60 W	100	3.4	224	S 44 W		
5622.0	0 8.00	14.1	241	S 61 W	100	3,3	225	S 45 W		
5624.(0 8.00	9.0	291	N 69 W	100	3.4	223	<u>S 43 W</u>		
5628.(0 8.00	6.8	327	N 33 W	85	3.3	224	S 44 W		
5630.(0 8.00	8,3	322	N 38 W	100	3,2	224	<u>S 44 W</u>		
5636.0	0 8.00	12.6	308	N 52 W	88	3,2	221	S 41 W		
5638.(0 8.00	15.1	281	N 79 W	58	3,2	222	S 42 W		
5642.(0 8.00	10.3	313	N 47 W	97	3.3	226	S 46 W		
5644.(0 8.00	9.8	310	N 50 W	100	3.2	223	S 43 W		
5646.(0 8.00	9,3	299	N 61 W	100	3.3	222	S 42 W		
5648.(0 8.00	7.0	334	N 26 W	100	3.1	222	S 42 W		

)				- PAGE	10	
	AND A	SSOCIA	TFS	DI	P 414					
LAWRENCE	15-1		- Anna Car							
WILDCAT										
FMERY				UTA	Н					
08-09-84										
<u></u>										
		FOR	MATIC	N DIP		****8	OREHO)LE****		
DEPTH	WL.	ANG	AZ	BEARING	GRADE	ΠA	DAZ	BEARING		
5650.0	8.00	5.6	344	N 16 W	100	<u>3.2</u>	222	<u>S 42 W</u>		
5652.0	8.00	5.1	339	N 21 W	100	5.2	226	<u>546 W</u>		
5654.0	8.00	5.8	310	W DO W	100	3.2	222	<u>S 42 W</u>		
5656.0	8.00	6.5	325	N 35 W	97	<u> </u>	224	<u> </u>		
5658.0	8.00	6.6	325	<u>N 37 W</u>	91	3,2	221	5 47 W		
5660.0	8.00	6.6	305		100	3.1	225	C LE U		
5662.0	8.00	<u> </u>	079		100	2.8	227	<u> </u>		
5664.0	8.00	4.U 7 E	217	N DI W	100	2.0	221	S 47 W		
5670.0	000	<u> </u>	219		100	2.6	226	S 46 W		
5670.0	0.00	4 6	317	N 34 W		2.5	224	S 44 W		
5674 0	<u>e 10</u>	18.6	246	<u>S 66 W</u>	74	2.5	228	S 48 W		<u></u>
5679 0	6.00	20.7	233	<u>S 57 W</u>	71	2.4	226	S 46 W		
5680.0	8.00	18.6	237	S 57 W	59	2.4	225	S 45 W		
5696-0	A.00	4.6	267	S 87 W	73	2.5	225	S 45 W		
5698.0	8.00	4.7	267	S 87 W	94	2.5	224	S 44 W		
5700.0	8.00	4.8	265	S 85 W	94	2.4	224	S 44 W		
5702.0	8.00	9.8	275	N 85 W	65	2,4	225	S 45 W		<u>C C. 1997 - C. M. C. M</u>
5704.0	8.00	6.7	285	N 75 W	100	2,4	224	S 44 W		
5706.0	8.00	9.8	254	574 W	23	2,5	222	S 42 W		
5708.0	8,00	9,4	248	S 68 W	20	2,6	222	<u>S 42 W</u>	*****	
5712.0	8.00	11,8	267	<u> </u>	17	2.5	~224	<u>- 5 44 W</u>		
5718.0	8.00	22.3	-287	N 73 W		2.6	229	S 49 M		
5720.0	8.00	22.8	272	N 88 W	65	2.6	228	S 48 W		
5722.0	8.00	25.6	271	. N 89 W	61	2.6	229	S 49 W		
5724.0	8.00	23.1	267	5 87 W	100	2.0	225	5 75 W		
5/26.0	8.00	24.1	211	N O9 W	100		221	S 40 W		
5728.0	8.00	23.1	274	N 06 W	100	2.0	220	C 147 U		
5/50.0	8.00	20.6	2/6	N 04 W	100	25	220	S 40 W	<u></u>	
5752.0	00.00	45 5	203	N 74 W	100	2.5	220	S 42 W		
5734.0	0.00	57	200	5 7 a W	74	2.4	225	S 45 W		<u> </u>
5730.0	0.00	16.9	103	S 77 F		2.4	224	S 44 W		
5740 0	8-00	16.8	94	S 84 F	60	2.3	228	S 48 W		
5742.0	8.00	14.8	76	N 76 E	100	2.3	230	S 50 W		
5744-0	8.00	16.6	79	N 79 E	100	2.1	231	S 51 W		
5746.0	8.00	16.3	72	N 72 E	100	2.1	230	S 50 W		
5748.0	8.00	14.8	70	N 70 E	100	2,1	230	S 50 W		
5750.0	8.00	17.1	218	S 38 W	42	2.1	229	S 49 W		
5752.0	8.00	17.6	217	S 37 W	100	2.0	230	S 50 W		

CHANDLER LAWRENCE	AND / 15-1	ASSOCIA	TES	UI DI	P 414			- PAGE	11		
EMERY				UTA	Н					· · · · · · · · · · · · · · · · · · ·	<u></u>
08-09-84											
											<u>9997</u> 3
		FOR	MATIC	N DIP		****B	OREHO	LE****			
DEPTH	<u>WL.</u>	ANG	<u> </u>	BEARING	GRADE		DAZ	BEARING			
5754.0	8.00	17.9	217	S 37 W	100	2,1	231	S 51 W			
5756.0	8.00	18.5	223	S 43 W	100	2.1	231	S 51 W			
5758.0	8.00	18.6	226	<u>S 46 W</u>	100	2,1	233	S 53 W			
5760.0	8.00	17.0	237	S 52 W	100	2.1	200	S 51 W			
5764-0	8.00	19.3	239	S 59 W	100	2.1	232	S 52 W		<u></u>	<u>2000</u>
5766.0	8.00	20.9	240	S 60 W	80	2.0	230	S 50 W			-
5768.0	8.00	20.3	243	S 63 W	100	2.0	231	S 51 W			
5770.0	8.00	19.2	229	S 49 W	56	2.0	231	<u>S 51 W</u>			
5780.0	8.00	12.8	237	<u>S 57 W</u>	91	2,3	235	S 55 W			
5782.0	8.00	14.2	195	<u>377 N</u> <u>515 W</u>	04 99	2.1	237	S 57 W			
5792.0	A.00	20.6	325	N 35 W	46	2,1	238	S 58 W			
5794.0	8.00	27.1	323	N 37 W	32	2,1	239	S 59 W			
5808.0	8.00	21.2	322	N 38 W	62	2.0	237	S 57 W			
5810.0	8.00	15.8	315	N 45 W	92	2.2	238	S 58 W			
5824.0	8.00	2.4	44	N 44 E	100		248	N 60 6	-		
5828 0	8.00	3.2	- 27	N 27 F	100	3.1	229	S 49 W			
5830.0	8.00	2.3	33	N 33 E	100	2.6	240	S 60 W	7.)	<u></u>	<u> Antili</u>
5836.0	8.00	17.9	81	N 81 E	6	1.8	253	S 73 W	·····		
5838.0	8.00	20.2	74	N 74 E	8	1,8	253	S 73 W			
5852.0	8.00	2.5		N 36 E	100	2.3	249	S 69 W			
5854.0	8.00	2.6	36 70	NJOE	100	2.0	240	5 70 W			
5858-0	8.00	3.2	44	N 44 E	49	3.2	253	S 73 W			<u></u>
5860.0	8.00	2.2	68	N 68 E	87	2,9	251	S 71 W			
5862.0	8.00	1.5	106	S 74 E	68	2.1	253	S 73 W			
5902.0	8.00	2.7	276	N 84 W	100	1.5	247	S 67 W			
5904.0	8.00	1.5	246	S 66 W	100	1,6	248	5 68 W			
5906.0	8.00	1.1	318	0.42 W	100	1.3	240	S 63 W			
5952.0	8.00	5.2	311	N 49 W	70	1.3	235	S 55 W			
5956.0	8.00	1.4.1	274	N 86 W	10	1.3	229	S 49 W			
5964.0	8.00	16.9	290	N 70 W	13	1,1	235	S 55 W			
5980.0	8.00	15.4	333	N 27 W	50	1.2	233	S 53 W			<u></u>
5988.0	8.00	6,9	346		100	1 2	220	S 46 W			
577U.U 5990 n	8.00	17.3	340	N 12 W	95	1.1	225	S 45 W			
6002.0	8.00	9.3	347	N 13 W	86	1.0	222	S 42 W			<u></u>

CHANDLER	AND	ASSOCIA	TES	DI	P 414			F	PAGE	12		
LAWRENCE WILDCAT	15-1											
EMERY 08-09-84				UTA	H						 	
DEPTH	Lf1	**FOR ANG	MATIC AZ	BEARTNG	GRADE	****8 DA	DAZ	BEAR:	⊧** ING		 	
				• • •					-		 	
6004.0	8.00	1.0	25	N 25 E	99	1.0	222	S 42	2 W			
6006.0	8.00	12.2	359	N 1 W	100	1,2	224	S 44	+ W		 	
6016.0	8.00	23,6	301	N 59 W	23	1,2	218	S 31	3 W z W		 	
6022.0	8.00	7.0	289	N 71 W	100	0.9	215	S 3	5 W		 	
6026.0	8.00	5.7	286	N 74 W	100	1,0	216	S 3(5 W		 <u>,</u>	<u>200.222</u>
6072.0	8.00	12.4	340	N 20 W	77	1,3	211	<u>S</u> 3:			 	
6136.0	8.00	19.8	270	N 90 W	93	1.8	207	S 2	7 W		 	537
6140.0	8.00	5,6	274	N 86 W	64	1.7	188	S (8 W			<u></u>
6144.0	8.00	2,1	333	N 27 W	55	1.6	202	<u>S 2</u>	2 W		 	
6146.0	8.00 A.00	2.5	351	NILE	100	1.6	202	S 2	2 W 1 W		 	
6150.0	8.00	2.9	358	N 2 W	100	2.2	203	S 2;	3 W		<u></u>	24020
6152.0	8.00	3.0	347	N 13 W	100	2,1	178	S /	2 E		 	
6154.0	8.00	2.5	112	NUE	100	1.A	205	S 2			 	
6162.0	8.00	2.1	281	N 79 W	100	12	202	S 2;	2 Ŵ T		 <u></u>	<u>2007.000</u>
6170.0	8.00	1.1	310	N 50 W	100	1,1	201	S 2	L W		 	
6172.0	8,00	2.4	275	N AS W		1.2	198		5 W R W	2		9893
6178.0	8,00	6.7	266	S 86 W	100	1,1	198	S 1	3 W	w <u> </u>	 <u></u>	1999-999 1999-999 1999-999
6180.0	8.00	2.6	281	N 79 W	100	<u>į.</u> į	206	5 2	5. W		 	
6182.0	8.00	3.8	283	N 77 W	100		195	S 1: S 1:	э₩ хW			
6186.0	8,00	1.9	312	N 48 W	81	1.1	195	S 1	5 W		 	
6188.0	3.00	4.0	286	N 74 W	35	1.0	191	S 1	LW			
6190.0	8.00	4.2	280	N 80 W	91	0.9	187	<u>S</u> .	7 W			
6194.0	8.00	1.5	301	N 59 W	100	0.8	188	S (3 W		 	<u></u>
6196.0	8.00	1.7	289	N 71 W	100	0.9	191	S 1:	L W		 	
6198.0	8.00	1.8	286	N 74 W	100	0,9	189	S S	9 W			
6202.0	8.00	2.5	254	S 74 W	100	0.6	187	S ·	7 W		 	<u></u>
6204.0	8.00	2.5	249	S 69 W	100	0.5	184	S I	łW		 	
6206.0	8.00	4.1	264	S 84 W	100	0.6	184	S I	+ W		 	
6210-0	8.00	4,9	268	S BA W	100	0.4	177	S :	ι W 3 Ε		 	<u>1999</u>
6212.0	8,00	5.9	259	S 79 W	100	0.6	176	Si	ŧ E			
6214.0	8.00	3.7	279	N 81 W	100	0,6	183	S :	3 W		 	
											 <u></u>	<u> 2010</u>

CHANDLER LAWRENCE	AND A: 15-1	SSOCIA	TES	DI	P 414					
WILDCAT										
EMERY				UTA	H					
08=09=84										
			MATTO			****	OPFUOL	F*****		
DEPTH	WI.	ANG	AZ	BEARING	GRADE		DAZ B	EARING		
(210 0	0 00	<u> </u>	274	NACW	100	<u> </u>	1.81	<u>S 1 W</u>		
6218.0	8.00	2.6	285	N 75 W	100	0.4	181	S 1 W		<u></u>
6220.0	8.00	3.9	284	N 76 W	100	0.3	181	S 1 W		
6222.0	8.00	3.9	288	N 72 W	100	0.3	179	<u>-</u> S 1 E		
6224.0	A.00	4.8	282	N 7A W	100	0.3	176	S 4 E		
6226.0	8.00	4.8	278	N 82 W	100	0.4	170	S 10 E	<u></u>	
6228.0	8.00	3.7	265	S 85 W	100	0.3	169	S 11 E		
6230.0	8,00	3.3	255	S 75 W	100	0,2	172	S 8 E		
6232.0	8.00	3.3	255	S 75 W	100	0,3	170	S 10 E		
6236.0	8.00	3.2	256	S 76 W	100	0.2	170	S 10 E		
6238.0	8.00	3.9	263	S 83 W	100	0.2	170	S 10 E		
6240.0	8.00	4.0	265	S 85 W	100	0.2	170	<u>S 10 E</u>		
6242.0	8.00	4.1	297	N 63 W	100	0.2	171	<u>S 9 E</u>		
6244.0	8.00	4.2	287	<u>N 73 W</u>	100	0.2	170	S 10 E		
6246.0	8.00	4.6	285	<u>N 75 W</u>	100	0,2	170	SIOE		
6248.0	8.00	5.1	288	N /2 W	100	<u> </u>	168	S 12 C		
6250.0	8.00	2.1	313	N 47 W	100	0.3	1/6	0 4 C	<u> </u>	
6252.0	8.00	<u><u><u></u></u></u>	444	0 72 M			160	5 10 F	*** 	
6254.0	0.00			5 4 U	70	n i	160	S 1A F		<u> (1997) - 1997</u>
6236.0	0.00	3.4	288	N 72 W	100	0.1	163	S 17 E	<u> </u>	
6262 0	8.00	- 4 - 4	280	N 80 W	100	0.1	163	S 17 E	w <u> </u>	<u> 1000000000000000000000000000000000000</u>
6264.0	8.00	3.7	274	N 86 W	100	0.1	162	5 18 E		
6266.0	8.00	3.8	262	S 82 W	100	0.1	162	S 18 E	<u></u>	
6268.0	8.00	3.4	276	N 84 W	100	0,1	164	S 16 E		
6270.0	8,00	3.2	277	N 83 W	100	0.1	161	S 19 E		antanan an
6272.0	8.00	2.7	275	N 85 W	100	0.2	162	S 18 E		
6274.0	8.00	1.9	271	N 89 W	81	0.2	165	S 15 E		
6276.0	8,00	3.0	251	S 71 W	100	0,3	160	S 20 E		
6278.0	8.00	2.5	215	S 35 W	100	0.2	164	S 16 E		
6280.0	8.00	4.2	237	S 57 W	100	0,2	161	S 19 E		
6282.0	8.00	3.4	258	S 78 W	100	0,2	160	S 20 E		
6284.0	8.00	4.8	300	N 60 M	87	U,2	167	S 13 E		
6286.0	8,00	4,4	290	N 70 W	73	U.3	161	5 19 E		*****
6288.0	8.00	5.3	263	S 83 W	100	0.4	164	3 16 L		
6290.0	8.00	2.7	2/3	N 07 W	55	0.5	167	3 43 E		
6235*0	8.00	0.6	533	3 /9 ₩ 5 27 U	100	V,4	160	0 14 E		
6276.0	8.00	10.9	203	O C S W	40	2.0	167	<u>C 21 F</u>		
6470.0	0.00	20 0	228	S 40 W	21	11 2	154	S 26 F		<u></u>
P 200.0	0.00	6407	660	א מד ט		~•£		<u>~ ~0 </u>		

	CHANDI.ER	AND A: 15-1	SSOCIA	TES	DI	P 414		_	PAGE	14		
	WILDCAT EMERY 08-09-84				UTA	H					×	
	05070		**FOR	MATIO	N DIP**	GRADE	****B	OREHOLE	****			
	DEPTH	WI.	ANG	<u> </u>	DEANING	UNADE	1/6					
	6304.0	8.00	14.2	232	S 52 W	24	0.3	152 8	28 E			
	6306.0	8.00	16.2	215	S 35 W	22	0.3	152 8	5 28 E			
	6308.0	8.00	15.0	208	S 28 W	32	0.4	154 8	26 E			
	6310.0	8.00	5.3	294	N 66 W	78	0.4	153 5	27 E			
	6512.0	8.00	5.5	298	N 62 W	100	0.5	15/ 0	20 E			
	6314.0	8.00	/.9	287	N 73 W	100	0.5	154 3	26 L			
	6318.0	<u>0.00</u>	7.7	290	NZOW	100	0.3	153 8	6 27 E			
	4320 0	8.00	11.0	272	N 8A W	100	0.4	153 5	27 E			
	6324.0	8.00	2.0	281	N 79 W	100	0.4	155 \$	5 25 E			
	6326.0	8.00	1.6	236	S 56 W	80	0.4	149 \$	3 31 E			
	6328.0	8.00	1.5	234	S 54 W	100	0,4	155 8	6 25 E			
	6330.0	8.00	1.6	277	N 83 W	100	0.3	157 \$	5 23 E			
	6332.0	8.00	2.1	278	N 82 W	100	0.3	153 8	5 27 E			
	6334.0	8.00	2.3	292	N 68 W	100	0.2	154 8	3 26 E			
	6338.0	8.00	3.5	296	N 64 W	90	0.2	153	27 E			
	6340.0	8.00	1.8	332	N 28 W	94	0.3	151 3	5 29 E			
	6342.0	8.00	5.6	302	NDAW	9/	<u> </u>			104 ©		
	6344.0	8.00	<u>6.</u> U	316	N 54 W	100		148 4	5 32 L 5 31 F			
	6346.0	8.00	- 3 0	217		100	0.3	147 5	337 F	2		
	(350.0	0.00		31/	N 73 W	100	0.3	150	28 E			
	<u> </u>	<u>0.00</u>	- 2 9	167	N 7 W	79	0.7	153	27 E	<u> </u>		
<u></u>	6364-0	8.00	1.7	322	N 3A W	100	0 >4	152 8	5 28 E	<u></u>		<u></u>
	6366-0	A.00	1.5	317	N 43 W	100	0.5	149 8	5 31 E			
	6368.0	8.00	2.4	286	N 74 W	100	0.6	149 8	5 31 E			
	6370.0	8.00	2.2	282	N 78 W	100	0.6	147 8	5 33 E			
<u></u>	6372.0	8.00	3,3	269	S 89 W	100	0.5	151 \$	S 29 E			
	6374.0	8.00	4.2	272	N 88 W	100	0,5	150 8	5 30 E			
	6376.0	8.00	3.1	282	N 78 W	100	0,5	148 \$	5 32 E			
	6378.0	8.00	3,5	279	N 81 W	100	0,4	148 8	5 52 E			
	6380.0	8.00	5.3	273	N 87 W	24	U . 4	146 8	5 34 E			
	6390.0	8.00	3.1	295	N 65 W	100	0.4	146	5 34 E			
	6392.0	00.8	1.7	249	5 69 W	52	C+U	146 2				
	6594.0	8.00	+•U	233	N BO W	100	<u> </u>	140 9	30 E			
	6376.0	0.00	C.J	2/1	N 70 U	100	0 F	142 5	37 E			
	6070.U	8 00	2 2	276	N 84 W	100	0.5	139 5	S 41 E		<u></u>	
	<u>4414 n</u>	8.00	1.1	310	N 50 W	95	Ū.6	144 5	36 E			
	6416-0	8.00	1.4	316	N 44 W	99	0.6	146 \$	5 34 E			
			-				-					
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												

		AND A	SSOCIA	TFS	<u> </u>	P 414		•	PAGE	15	
	LAWRENCE	15-1	00			•					
	WILDCAT					<u>u</u>					
	LMERY					<u>n</u>					
	00-07-04										
					•						
	DEDTU	1.18	**FORI	MATIC	DEARTNG	GRADE	****B	DAZ	REARTNG		
	DEPTH	<u>WI.</u>	ANG	<u> </u>	BEANING	UNAUE		<u>DA7</u>	DEANING		
											<u></u>
	6426.0	8.00	1.1	297	N 63 W	100	0.6	139	S 41 E		
	6428.0	8.00	1.2	297	N 63 W	100	0.6	129	S 51 E		
	6430.0	8.00	1.0	304	<u>N 56 W</u>	100	0.7	156	<u>S 44 E</u>		
	6432.0	8.00	1.2	324	N 56 W	100	0,6	137	S 43 E		
<u></u>	6404.U	8.00	2.5	267	S 87 W	95	1.3	118	S 62 E		
	6490.0	8.00	1.2	230	S 50 W	71	1,2	109	S 71 E		
	6492.0	8.00	2.8	316	N 44 W	100	1.3	110	S 70 E		
	6494.0	8,00	3.8	336	N 24 W	100	1,4	112	S 68 E		
	6496.0	8.00	3.4	343	N 17 W	100	1,4	114	<u>Ş 66 E</u>		
	6498.0	8.00	3.9	305	N 55 W	100	1.5	110	<u>S 70 E</u>		
	6500.0	8.00	2.4	285	N 77 W	100	2.1	108	S 72 F		
	6544.0	8,00	1.6	327	N 33 W	100	2.2	108	S 72 E		
	6550.0	8.00	2.1	326	N 34 W	100	2,4	106	S 74 E		
	6552.0	8.00	2,3	316	N 44 W	100	2.5	109	S 71 E		
Davez des	6554.0	8.00	1.9	319	N 41 W	100	2.5	107	8 73 E		
	6556.0	8.00	2.7	50	N 50 E	100	2.1	103	S 77 L		
	6558.0	8.00	2.9	40	N 40 E	100	2 2	109	871 E		
	6560.0	00.8	11.9	300	N 1 9 W	35	2.4	107	-S 73 E	<u></u>	
	6564.0	8.00	27.6	267	S 87 W		2.5	108	5 72 E		
	6580.0	8.00	7.8	303	N.57 W	100	2,8	109	S 71 E		
	6594.0	8.00	3.6	298	N 62 W	100	3,0	106	S 74 E		
	6598.0	8.00	5.0	343	N 17 W	100	3.0~	105	S 75 E		
	6602.0	8.00	4.1	306	N 54 W	100	2.9	111	5 69 E		
	6604.0	8.00	4.0	302	N 58 W	100	29	105	S 74 E		
	6606.0	8.00	3.7	310	N 50 W	100	3.0	102	5 78 E		
<u></u>	6610.0	8.00	3.5	320	N 40 W	100	3.1	108	S 72 E		
	6612.0	8.00	3,1	319	N 41 W	100	3,4	109	S 71 E		
<u></u>	6614.0	8.00	2.5	299	N 61 W	100	3.5	103	S 77 E		
	6616.0	8.00	2.1	314	N 46 W	100	2.8	109	<u>S 71 E</u>		
	6618.0	8,00	2,2	311	N 49 W	100	2.9	108	5 12 E		
	6620.0	8.00	2.2	207		100	3.0	106	S 74 E		
	6624-0	A.00	2.4	307	N 53 W	100	3.0	106	S 74 E		
<u>0.12090</u>	6628.0	8.00	10.1	316	N 44 W	70	2.9	110	S 70 E		
	6630.0	8.00	7.0	333	N 27 W	100	3.0	110	S 70 E		
	6634.0	8.00	4.0	285	N 75 W	96	3.1	108	S 72 E		

								PAGE	16	
CHANDLER	AND A	SSOCIA	TES	IC	P 414			• • • • •		
LAWRENCE	15=1	0								
WILDCAT									,	
EMERY				UTA	Н					
08-09-84										
		FOR	MATIC	ON DIP		****8	OREH)LE****		
DEPTH	WL.	ANG	AZ	BEARING	GRADE.	DA	DAZ	BEARING		
6636.0	8.00	2.0	290	N 70 W	100	3,1	104	<u> 5 /6 E</u>		
6638.0	8.00	4.5	279	N 81 W	100	3.5	99	5 01 L		
6640.0	8,00	20.4	258	<u>S 78 W</u>	100	2.9	107	<u>573E</u>		
6642.0	5.00	14.0	517	N 41 W	100	3.0	108	5 12 L		
6654.0	0.00	5.0	364	N 39 W	100	3.0	110	5 10 L 5 68 F		
6606.U	8.00	0.7	304		100	3.0	100	S 71 F		
6660.0	0.00	7 1	253		100	3.0	110	S 70 E	<u></u>	
0,0000	<u>a nn</u>	7.6	295	NAFW	100	3.1	108	S 72 E		
6668 0	8.00	6.2	310	N 50 W	100	3,0	110	S 70 E		
6672.0	8.00	5.8	344	N 16 W	86	3.2	105	S 75 E		
6674-0	8.00	2.6	307	N 53 W	78	3,3	110	S 70 E		
6676.0	8.00	1.7	325	N 35 W	100	3.1	106	S 74 E		
6678.0	8.00	3.1	324	N 36 W	100	3,1	110	S 70 E		
6680.0	8.00	4.0	333	N 27 W	100	3,1	112	S 68 E		
6682.0	8.00	4.6	321	N 39 W	100	3.2	115	8 65 E		
6684.0	6.00	4.6	318	N 42 W	100	3.2	110	S 70 E		
6686.0	8,00	4.8	315	N 45 W	100	3,2	109	S 71 E		
6688.0	8.00	4.4	312	N 48 W	100	3,3	108	S 72 E		
6690.0	g.00	15.4	319	NAL W	94	3.2	103	<u>S 77 E</u>	<u> </u>	
6692.0	8.00	17.3	314	N 46 W	100	3.2	113	~ <u>\$ 67 E</u>		
6694.0	8.00	13.2	314	N 46 W	100	3.2	>113	3 67 L		
6696,0	8.00	8	336	N 24 W	100		111	SOFE		
6698.0	8.00	3.0	310	W DC M	100	372 7 0	111	5 69 E		
6700.0	8.00	3.2	319	N 41 W	100	3.2	115	3 65 E		
6704.0	8.00	16.2	194	5 14 W	100	J.1	119	SPIE		
6706.0	8.00	4.0	205	5 45 W	100		110	5 62 E		
6708.0	5.00	2.7	240	5 65 W	100	4 1	117	5 62 L		· · · · ·
(712.0	0.00	<u> </u>	202	NON	100	<u> </u>	117	S 63 E		
6722 0	0.00	2.7	221	N 36 L	100	3.1	115	5 65 E		
6724.0	8.00	3.4	306	N 54 W	100	3.1	113	S 67 E		
6726.0	A.00	2.6	323	N 37 W	100	3,1	114	S 66 E		
6728-0	8.00	2.0	270	N 90 W	73	3.1	114	S 66 E		
6730.0	8.00	1.5	262	5 82 W	97	3,1	121	S 59 E		
6736.0	8.00	2,5	237	S 57 W	100	3,1	122	S 58 E		
6738.0	8.00	1.4	306	N 54 W	100	3,0	125	S 55 E		
6740.C	8.00	1.8	327	N 33 W	100	3.1	121	S 59 E		
6746.0	8.00	2,8	322	N 38 W	100	3,0	117	S 63 E		
6748.0	8.00	2.6	334	N 26 W	100	3.0	117	S 63 E		

		SOCIAI	, 1 E Ø		р "1 и		~	PAGE	17		
	15-1	POACTH		U+1	· · · · · ·						
WILDCAT				1170	ц.						
08-09-84				014	11						
											<u></u>
							ADELLOI E	** . **			
DE07		**FORI			GRADE	****8		ARTNG			<u></u>
ULPIH	<u>WI.</u>	ANG	<u> </u>	SEANTING	UNADE			NUTINO			
6750.0	8.00	3.1	331	N 29 W	100	3,1	124 S	56 E			
6752.0	8.00	3.1	334	N 26 W	100	3,1	122 S	58 E			
6758.0	8.00	6.4	300	<u>N 60 W</u>	100	5,1	<u>118 S</u>	62 L			
6760.0	8.00	4.7	300	N 60 W	100	3,2	119 5	51 E 57 E			
6762.0	8.00	Del	299	N 35 W	100	3.3	$\frac{123}{122}$ S	58 E			
6766-0	R.00	5.0	301	N 59 W	100	3.3	120 S	60 E			
6768.0	8.00	4.7	291	N 69 W	100	3.2	119 S	61 E			<u></u>
6770.0	8.00	4,2	291	N 69 W	100	3,2	119 S	61 E			
6772.0	8.00	1.6	293	N 67 W	100	3.2	119 S	61 E			
6776.0	8.00	4.0	301	N 59 W	100	3,2	<u>116 S</u>	64 E			
6778.0	8.00	4.6	295	N 65 W	88	5.2	116 S	64 L			
6780.0	8.00	4.6	297		95	33	114 S	64 F			<u> 26929</u>
6702.0 6784 0	8.00	1.9	313	N 47 W	100	3.3	$\frac{110}{114}$ S	66 E			
6786.0	5.00	2.2	325	N 35 W	100	3.8	116 5	64 E		<u> </u>	and and an
6788.0	8.00	2.3	338	N 22 W	100	3,3	118 \$	62 E			
6790.0	8.00	2.1	308	N 52 W	100	3,3	118 S	62 E			
6792.0	8,00	2.0	323	N 37 W	100	3.3	121 5	59 E			
6794.0	8.00	4.5	281	N 70 W	100	3,0	112 5	69 E	2		
6796.0	0.00	<u> </u>	200	N 74 W	100	3.3	111 5	69 E	w 		
6800.0	8.00	4.6	279	N 81 W	100	3.2	110 5	70 E			
6806.0	8,00	4.1	273	N 87 W	100	3,2	110 S	70 E	<u></u>		13.15.154
6808.0	8.00	2.8	316	N 44 W	100	3,2	108 S	72 E			
6810.0	8.00	2.6	327	N 33 W	100	3.2	113 S	67 E			
6812.0	8.00	2.8	329	N 51 W	100	3,2	$\frac{114}{110}$ S	66 L			
6816.0	8.00	2.2	319	N 41 W	100	3.2	117 5	67 F			
6010.0	8,00	3.5	270	N 90 W	100	3.2	112 S	68 E			
6826.0	8.00	3.5	269	S 89 W	100	3.2	113 S	67 E			
6828.0	8.00	1.7	280	N 80 W	100	3,2	110 S	70 E			<u>alabelua</u>
6830.0	8.00	2.8	276	N 84 W	100	3,2	113 S	67 E			
6832.0	8.00	2.1	338	N 22 W	100	3,2	113 S	67 E			
6834.0	8.00	1.9	339	N 21 W	100	0.2	110 S	10 E			<u> () () (</u>
6038.0	8,00	4.6	314 305	N 76 W	100	3.2	119 8	68 F			<u></u>
6842.0	8.00	4.5	294	N 66 W	100	3.2	113 S	67 E			<u></u>
6844_0	8.00	3.6	244	S 64 W	100	3.2	113 S	67 E			
6848.0	8.00	2.3	256	S 76 W	100	3.3	110 S	70 E		<u></u>	<u> an </u>

CHANDLER	AND A	ASSOCIA	TES	 DI	P 414)	PAGE	18	
LAWRENCE WILDCAT EMERY 08-09-84	15-1			UTA	H					·
		FOR	MATIO	N DIP		****8	OREHOL	E****		
DEPTH	WI.	ANG	AZ	BEARING	GRADE	ΠA	DAZ B	EARING		
6856.0	8.00	1.7	260	S 80 W	100	3,2	119	S 61 E		
6858.0	8.00	1.7	268	S 88 W	91	3.2	123	S 57 E		
6860.0	8.00	1.7	279	N 81 W	100	3,2	120	S 60 E		
6862.0	8.00	2.5	286	N 39 W	100	3.2	119	S 61 E		
6866.0	8.00	1.6	290	N 70 W	100	3,2	123	S 57 E		
6868.0	8.00	1.7	287	N 73 W	100	3.2	121	S 59 E		
6870.0	8.00	4.5	305	N 55 W	100	3.2	122	S 58 E		
6872.0	8.00	4.4	305	N 35 W	100	3.2	122	5 58 E		
6876.0	8.00	2.9	327	N 33 W	100	3.2	120	S 60 E		
6884.0	8.00	2.9	311	N 49 W	100	3,1	122	S 58 E		
6886.0	8.00	1.7	354	NGW	100	3,1	122	S 58 E		
6888.0	8.00	1.6	338	N 22 W	100	3,2	124	S 56 E		
6892-0	8.00	3.1	319	N 41 W	100	3.2	122	S 58 E		
6894.0	8.00	2.9	317	N 43 W	100	3.2	122	S 58 E		
6896.0	8.00	1.9	346	N IA W	100	3,1	123	S 57 E		
6898.0	8.00	4.1	340		100	5.2	123	S 57 E		
6900.0	8.00 A.00	3.5	324	N 36 W	100	3.1	123	S 57 E	2	
6904.0	8.00	3.3	322	N 38 W	100	3.1	122	\$ 58 E		
6906.0	8.00	3.3	325	N 35 W	100	3,1	122	S 58 E		
6908.0	8.00	3,0	316	N 44 W	100	5.1	121	S 59 E		
6710.0	8,00	3.8	321	N 30 W	100	3.2	121	3 39 E S 59 F		
6914.0	8.00	3.7	327	N 33 W	100	3.2	120	S 60 E		
6916.0	8.00	3,6	331	N 29 W	100	3,1	119	S 61 E		
6918.0	8.00	2.9	330	N 30 W	100	3,1	121	S 59 E		
6920.0	8,00	2.5	342	N 18 W	100	<u></u>	123	5 37 E		
6924.0	8.00	3.0	339	N 21 W	100	3.1	121	S 59 E		
6926.0	8.00	3.4	330	N 30 W	100	3,1	120	S 60 E		
6928.0	8.00	3.7	321	N 39 W	100	3.1	122	S 58 E		
6930.0	8.00	5.8	323	N 37 W	100	3,1	124	S 56 E		
6732.0	8.00	3.5	325	N 35 M	100	3.1	120	S 56 E		
6942.0	8.00	2.6	311	N 49 W	100	3.1	121	S 59 E		
6944.0	8.00	1.9	308	N 52 W	100	3.1	123	S 57 E		
6946.0	8.00	2.3	32.4	N 36 W	100	5.1	122	5 58 E		

			<u> </u>	-			`		GE	19			
CHANDLER	AND A	SSOCIAT	res	DI	P 414					-			
LAWRENCE	15-1	UU =			· · ·								
WILDCAT													
EMERY				UTA	H							· · · · · · · · · · · · · · · · · · ·	2022
08=09-84					· · ·								37
00 07 01													23
													223
		FOR	ATTON			**8	OREHO	LE***	*				
DEPTH	1.11	ANG	Δ7 F	REARTNG	GRADE	DA	DAZ	BEARIN	G				<u> 1979</u>
			, ,	<u>, , , , , , , , , , , , , , , , , , , </u>									<u>.</u>
													مىشىن
6948.0	8.00	2.6	329	N 31 W	100	3.1	125	S 55	E				37
6950.0	8.00	3.4	328	N 32 W	100	3.1	124	S 56	E				لفتناق
6952.0	A.00	3.7	326	N 34 W	100	3.1	123	S 57	Ε				
6954.0	8.00	3.8	324	N 36 W	100	3.1	124	S 56	ε				Sec. 4
6956.0	A.00	4.0	323	N 37 W	100	3.2	123	S 57	Ξ				
6958-0	8.00	4.0	333	N 27 W	100	3.1	124	S 56	E				<u></u>
6960-0	A.00	3.9	333	N 27 W	100	3.1	124	S 56	Ε				
6962.0	8.00	4.0	351	N 9 W	89	3.1	124	S 56	E				-
6964.0	8.00	3.9	325	N 35 W	100	3.2	125	S 55	E				
6966-0	8.00	4.1	325	N 35 W	100	3.2	125	S 55	E				<u></u>
6968.0	A.00	3.4	329	N 31 W	100	3.3	125	S 55	E				
6970.0	8.00	3.2	333	N 27 W	100	3.3	126	S 54	E				
6972.0	A.00	2.3	344	N 16 W	100	3.3	125	S 55	E				C
6974-0	8.00	3.1	6	NGE	100	3.3	130	S 50	E		<u></u>		نندينوم. ا
6976.0	A.00	3.2	9	NÖE	100	3.3	129	S 51	E				
6978-0	8.00	4.7	2	N 2E	100	3.2	130	\$ 50	E				4020
6980.0	A.00	2.6	337	N 23 W	100	3.2	129	S 51	E	<u>N</u>			
6982.0	8.00	2.6	355	NSW	100	3,2	129	S 51	Ę .				
6984.0	8.00	2.5	352	NSW	100	3.2	129	S 51	É	·			
6986.0	8.00	1.8	332	N 28 W	100	3.2	129	S 51	e , –				ini
6988.0	8.00	2.1	318	N 42 W	100	3,2	128	S 52	E	£			
6990.0	8.00	2.1	271	N 89 W	100	3.2	127	S 53	E				
6992.0	8.00	-1.7	306	N 54 W	100	3.2	127	S 53	E				
6994.0	8.00	2.8	340	N 20 W	100	3,2	127	S 53	Ε	<u> </u>			ministr
6996.0	8.00	3.3	347	N 13 W	100	3.2	127	S 53	E				
7000.0	8.00	3.6	339	N 21 W	100	3.2	126	S 54	E.				Co.Albert
7002.0	8.00	3.3	342	N 18 W	68	3.2	127	S 53	E				
7004.0	8.00	3,5	7	N 7 E	100	3.3	127	S 53	E				
7006.0	8.00	3,1	350	N 10 W	100	3.3	128	S 52	Ε				
7008.0	8.00	5.2	343	N 17 W	100	3.3	129	S 51	Ε				
7010.0	8.00	3,9	341	N 19 W	100	3,3	130	S 50	E				
7012.0	8.00	3.2	339	N 21 W	100	3.3	126	S 54	E				
7014.0	8.00	3,3	329	N 31 W	100	3,2	125	S 55	E				
7016.0	8.00	3,9	334	N 26 W	100	3,2	126	S 54	E				
7018.0	8.00	1,9	359	N 1 W	100	3,2	126	S 54	E				
7020.0	8.00	1.7	25	N 25 E	100	3.2	126	S 54	E				
7022.0	8.00	1.9	42	N 42 E	100	3,2	126	S 54	E				
7024.0	8.00	3.0	359	N 1 W	100	3.2	127	S 53	E				litera
7028.0	8.00	3.7	347	N 13 W	100	3,2	126	S 54	E				
7030.0	8.00	5.1	341	N 19 W	100	3.2	127	S 53	E				-
warmenter and an an an an and a state of the													

					<u> </u>			•	PAGE	20	
	CHANDL.ER	AND A	SSOCIA	TES	DI	> 414					
	LAWRENCE	15-1									
<u></u>	WILDCAT					н					<u>.</u>
	08-09-84				014						
								OPENAL	E. 4. 4. 4. 4. 4		
	DEDTU		**FOR	MATIC	DEARTNG	GRADE	****B		E ARTNG		
	DEPTH	WI.	ANG	<u> </u>	BLANING	UNAUL		<u>UN2 L</u>	<u>CAUTIO</u>		
	7032.0	8.00	4.8	359	N 1 W	100	3,2	126	S 54 E		
	7034.0	8.00	4.7	344	N 16 W	100	3,2	127	S 53 E		
	7036.0	8.00	3.8	336	N 24 W	100	3,2	127	<u>S 53 E</u>		
	7038.0	8.00	3.6	324	N 36 W	100	3.2	127	S 53 E		
	7046.0	8.00	2.3	323	N 37 W	100	<u> </u>	$\frac{131}{131}$	S HO F		
	7048.0	8.00	4./ // #	347		100	3.1	131	S 49 F		
	7050.0	8.00	3.3	346		100	3.1	131	S 49 E		
	7052.0	8.00	2.8	348	N 12 W	100	3.0	131	S 49 E		
	7056.0	8.00	4.2	349	N 11 W	100	3,1	131	S 49 E		
	7058.0	8.00	3.0	347	N 13 W	100	3,1	131	S 49 E		
	7060.0	8.00	3.0	12	N 12 E	100	3.1	132	S 48 E		
	7062.0	8.00	3.7	339	N 21 W	100	3.1	132	S 48 E		
	7064.0	8.00	4.4	358	<u>N 2 W</u>	100	3.1	152	5 48 E		
	7066.0	8.00	4.1	345	N 15 W	100	3.1	127	8 53 E		
	7068.0	8.00		207		100	3.2	126	S 54 E		
	7070.0	8 00	3.8	126	N 34 W	100	3.2	126	S 54 E		
	7074_0	A.00	3.5	387	N 23 W	100	3.2	127	S 53 E	· · · · · · · · · · · · · · · · · · ·	
	7076.0	8.00	6.7	344	NIGW	100	3.1	126	S 54 E)	
	7078.0	8.00	6.5	345	N 15 W	100	3.1	128~	S 52 E		
	7080.0	8.00	4.7	341	N 19 W	100	3.2	122	S 58 E		
	7082.0	8.00		347	<u>N 13 W</u>	100		120	S 60 E		
	7088.0	8.00	7.0	355	N 5 W	100	3.1 X 1	121	S 59 E		
	7090.0	8.00	5.9	353		100		120	S 57 E		
	7092.0	8.00	4.0	272		100	3.1	125	S 55 E		
	7094.0	8.00	3.7	312	N 48 W	100	3.1	125	S 55 E		
	7100.0	8.00	2.9	320	N 40 W	100	3.1	124	S 56 E		
	7102.0	8.00	3.5	345	N 15 W	100	3,1	130	S 50 E		
	7104.0	8.00	4,2	347	N 13 W	100	3.1	132	S 48 E		
	7116.0	8.00	4.4	316	N 44 W	86	3,0	124	S 56 E		
•	7118.0	8.00	3,3	322	N 38 W	100	3.0	127	S 53 E		
	7120.0	8.00	3.1	340	N 20 W	100	3,1	125	5 55 E		
	7122.0	8.00	5.6	341	N 19 W	100	3,1	122	5 58 E		
	7126.0	8.00	10.9	U 0 7 7 0	NSE	100	J.2 X X	127	5 52 E		
	7128.0	00.00	- 2 X	220	N ZE W	100	3.1	121	S 59 E		
	1134.0	0.00	E • U	007	1 - C W		· • •		/ 14		

100 100

100

125

129

3.1 3.1

S 55 E

S 51 E

7132.0 8.00 7146.0 8.00

8.00

7148.0

8.7

9.9

355

2

N 26 W 2 E

5 W

N

N

CHANDLER LAWRENCE	AND A 15-1	SSOCIA	ES	DI	P 414			¥ РА	GE	21
WILDCAT					<u></u>					
EMERY				UTA	H					
08=09=84										
		FOR	ATIC	DN DIP		****8	OREHO)LE****	*	
DEPTH	WL.	ANG	A 7 .	BEARING	GRADE		DAZ	BEARIN	IG	
3150 0	0 00	G X	14	NIAF	100	3.1	129	5 51	F	
7152 0	8 00	9.0	19	N 19 F	100	3.1	125	S 55	E	
7154 0	A-00	6.0	A	NAE	100	3.2	126	S 54	E	
7156-0	8.00	1.9	41	N 41 E	100	3.3	126	S 54	Ε	
7158.0	8.00	5.3	359	NĨW	83	3.2	129	S 51	E	
7160.0	8.00	3.3	- 9	N 9 E	100	3.2	131	S 49	Ε	
7162.0	8.00	3.2	6	NGE	84	3,2	130	S 50	E	
7164.0	8.00	9.3	303	N 57 W	34	3.1	125	S 55	E	
7166.0	8.00	16.7	222	S 42 W	55	3,2	126	S 54	Ε	
7178.0	8.00	15.3	242	S 62 W	100	3.2	133	S 47	E	
7182.0	8.00	14.0	207	S 27 W	100	3,2	135	S 45	E	
7184.0	8.00	10.0	239	S 59 W	100	3.2	135	S 45	E	
7186.0	8.00	6,1	226	S 46 W	100	3.2	134	<u>S 46</u>	E	
7188.0	8.00	14.2	265	S 85 W	92	3.2	133	<u>S 47</u>	<u>۲</u>	
7190.0	8.00	27.1	288	<u>N 72 W</u>	49	3.2	136	5 44	<u> </u>	
7192.0	8.00	26.9	285	N /5 W	25	<u> </u>	109	S +1	E.	
7194.0	8.00	8.9	269	5 89 W	75		137	0 70	с. г –	
7196.0	8.00	8.8	265	S 05 W	72	P,U	104	0 76	- 	
7206.0	8.00	10.5	210	N	60		170	S 40	r F	
7208.0	8.00	12.0				3 1	137	S 47	F	Ø
7210.0	8.00		200	0 2 U W	67 2 3	X N	137	9 41	F	wa
7212.0	0.00	-10.4	271	S 5/ 4	99	3.0	137	5 43	E	
7219 0	8,00	13.2	200	S 20 W	93	3.0	135	S 45	ε	
7220 0	A.00	10.8	197	S 17 W	93	3.0	140	S 40	Ε	
7222.0	8.00	10.3	197	S 17 W	92	3.0	139	S 41	Ē	
7224.0	8.00	9.6	203	S 23 W	100	3.0	146	S 34	E	
7226.0	8.00	10.3	200	S 20 W	100	3.0	140	S 40	Ε	
7230.0	8.00	12.3	252	S 72 W	70	2.9	131	S 49	E	

2.9

3.0

3.1

2,9

3.0

3,0

3.0

3.0

3.0

3.0

3.0

132

141

142

128

128

129

129

129

135

133

126

80

100

100

100

100

100

100

75

62

6

95

S 48 E

S 39 E

S 38 E

S 52 E

S 52 E

S 51 E

S 51 E

S 47 E

S 54 E

45 E

S 51 E

S

S 63 W

S 78 W

W

W

W

W

W

W

N 68

S 86

N 23

N 30

N 64

S 46

N 20 W

N 46 W

S 85 W

12.0

7,8

5.9

4.2

12.0

11.7

10.1

10.0

17.6

10.8

8.8

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

8.00

7232.0

7240.0

7242.0

7246.0

7248.0

7250.0

7252.0

7254.0

7256.0

7266.0

7270.0

243

258

292

266

337

340

330

314

296

265

CHANDI.ER	AND A 15-1	SSOCIA	TES	- DI	P 414		•	PAGE	22	
EMERY				UTA	H				<u> </u>	
08-09-84										
		FOR	MATIC	DN DIP		****B	OREHOI	_E****		
DEPTH	WL	ANG	AZ	BEARING	GRADE	ΠA	DAZ	BEARING		
7272.0	8.00	14.4	248	S 6A W	46	2.9	131	S 49 E		
7276.0	8.00	1.6	219	S 39 W	100	2,9	131	S 49 E		
7282.0	8.00	12.9	156	S 24 E	100	2.9	132	S 48 E		
7284.0	8.00	15.0	140	S 40 E	100	2.9	128	S 52 E		
7286.0	8.00	14,3	134	<u>S 46 E</u>	100	2,8	135	<u>S 45 E</u>		
7290.0	8.00	2.8	74	N 74 E	100	2.8	135	S 45 E		
7300.0	8.00	4.6	63	N 63 E	100	<u> </u>	141	S 39 E		
7302.0	8.00	4.9	46	NHGE	100	2,0	139	C LE F		
7304.0	8.00	<u> </u>	210	S BC W	76	2.8	148	S 32 E		
7300.0	<u>8.00</u>	4.7	200	SAGW	90	2.9	141	S 39 E		
7310 0	8.00	9.2	285	N 75 W	100	2.9	146	S 34 E		
7312.0	A.00	8.6	277	N 83 W	100	2.9	146	S 34 E		
7314.0	8.00	12.6	232	\$ 52 W	82	3.0	140	S 40 E		
7316.0	8.00	6.1	203	S 23 W	100	3.0	138	S 42 E		
7318.0	8,00	8.6	155	S 25 E	96	2.8	128	\$ 52 E		
7322.0	8.00	12.6	129	S 51 E	45	2.9	134	S 46 E		
7326.0	8.00	11.4	115	S 65 E	50	2.9	133	S 77 E		
7332.0	8,00	8.3	116	5 64 E	100	2.9	128	SD2E		
7338.0	8.00	_13.6	104	SILE	55	4.7	192	0 48 G	<u>/</u>	
7342.0	8.00	5.2	188	5 8 W	62	2.7	129	SOLE		
/356.0	8.00	0.0	233	8 75 W	72	2.9	127	S 57 F		
7338.0	0.00	-22 5	273	N 87 W	34	2.4	134	S 46 E		
7376.0	0.00	22.1.9	210	S 63 W	36	2.5	133	S 47 E		
7390 0	8.00	3.3	100	<u>S 80 F</u>	100	2.8	139	S 41 E		
7392.0	8.00	3.4	95	S 85 E	100	2.8	139	S 41 E		
7394_0	8.00	2.7	99	S 81 E	100	2,9	135	S 45 E		<u></u>
7396.0	8.00	28.6	222	S 42 W	24	2.7	133	S 47 E		
7398.0	8.00	24.2	193	S 13 W	41	2.7	134	S 46 E		
7400.0	8.00	19.3	247	S 67 W	69	2,8	140	S 40 E		
7402.0	8.00	15.6	237	S 57 W	100	2.8	139	S 41 E		
7404.0	8.00	6.9	226	S 46 W	100	2.9	135	S 45 E		
7406.0	8.00	10.5	231	S 51 W	100	2.8	137	S 43 E		

82

63

100

100

94

2.9

2.9

2.9

2.9

2.9

2.9

138

138

135

131

135

135

S 42 E

S 42 E

S 45 E

S 49 E

S 45 E

S 45 E

7406.0

7408.0

7410.0

7412.0

7414.0

7416.0

7418.0

8.00 8.00

8.00

8.00

8.00

8.00

8.00

4.9

4.8

3.8

3.6 4.8 225

231

263

253

19

339

S 45 W

S 51 W

S 83 W

S 73 W

N 19 E

N 21 W

	CHANDI.ER	AND	ASSOCIA	TES	Ť		DI	P 414				<u> </u>	PA	GE	23		
	WILDCAT EMERY	19-1				U	ITA	H								 	
	00-07-04															 	 <u></u>
			FOR	MATIC	DN C)Ip*	*		**:	**80	REH)LE*	*	*			
100000000	DEPTH	WL.	ANG	AZ	BEA	RIN	IG	GRADE		ΠA	DAZ	BEA	RIN	G			
					b .4	- 11				~			11 -				
	7420.0	8,00	3.4	46	N	46	<u>L</u>	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>. y</u>	107	<u> </u>	45	L		 	
	7430.0	8.00	1.1	20	N N	20	Е. 10	100	2	• '	121	<u> </u>	59	5			
	7452.0	8.00	4.0	300	N Ni	50		100	2	• /	127	<u> </u>	53	F		 	 <u></u>
	7454.0	0.00		201	AI	57	W LJ	100		• 5	130	S	40	F			
	7436.0	<u>0.00</u>	6.1	294		66		100	2	.4	124	S	56	Ē		 	
	7440 0	A.00	7.2	274	N	64	W	92	2	.4	125	Š	55	Ē		 	
	7444.0	8.00	7.2	256	S	76	W	19	2	4	126	Ś	54	E		 	 20020
	7452.0	8.00	22.3	205	S	25	W	80	2	.4	120	S	60	E		 	
	7456.0	8.00	22.0	196	S	16	W	100	2	•5	129	S	51	Ε		 	
	7458.0	8.00	1.3	96	S	84	E	100	2	.6	128	S	52	Ε			
	7462.0	8.00	6.3	54	N	54	E	100	2	•6	126	S	54	E			
	7464.0	8.00	6,5	67	N	67	E	100	2	.6	124	S	56	E			
	7470.0	8.00	21.2	142	S	38	Ε	66	2	•8	123	S	57	E		 	
	7472.0	8.00	21.4	142	S	38	E	70	2	.9	124	<u> </u>	56	<u>E</u>		 	
	7474.0	8.00	21.4	146	S	34	E	50	2	• <u>•</u>	120	<u>S</u>	60	Ł.		 	
	7476.0	8.00	21.0	141	. 5	39	<u></u>	55		.8	120	<u> </u>	60		\ <u></u>	 <u></u>	
	7488.0	8.00	26.0	111	5	-FT	W	0.00	¥		129		10	6. F	88 D 		
	7492.0	8.00	2.1	1/3	 	2-	<u>с</u> -ы	70		• <u>u</u>	120	- °	40			 	
-	7500.0	8.00	16 9	213	0	20	<u>เ</u>	100	2 J	•	132	S	40	ب آ	2	 	
	7502.0	8.00	16.3	-215	Ś	35	-W-			.9	129	S	51	Ē	W		<u> 2000</u>
	7504.0	A.00	92.A	245	Š	65	u	35	1	9	131	S	49	Ē			
	7512.0	8.00	4.0	184	S	4	W	100	Ť	.9	123	S	57	Ε	<u>2886.000</u>	 	20244
	7514.0	8.00	19.9	194	S	14	W	59	1	, 9 [~]	123	S	57	Ε		 	
<u></u>	7518.0	8.00	25.0	202	S	22	W	92	1	.8	118	S	62	Ε			
	7520.0	8.00	25.7	198	S	18	W	88	1	.8	125	S	55	E			
<u>800, 0, 2000000</u>	7522.0	8.00	19.3	202	S	22	W	63	1	.8	126	S	54	E.			
	7524.0	8.00	19,3	236	S	56	W	60	1	.7	132	S	48	E		 	
	7526.0	8.00) 3.2	40	N	40	E	94	1	•7	127	S	53	E		 	
	7528.0	8.00) 2.8	2	<u>N</u>	2	E	78	1	<u>.7</u>	129	<u> </u>	21	<u>k</u>			
	7532.0	8.00) 1.9	351	IN .	9	W	100		• (152	<u>১</u>	48				
	7534.0	8.00	4.0	548		12	W	100	<u>ل</u> ۲	• •	125) C	42	2 7			<u>. 2000</u>
	(336.0	8.00		10	IN IN	21	ـــ ح	100	¥	• •	120	<u> </u>	41	ten F		 	 <u>7978</u>
	7556.0	a nn	12 7	12		10	F	100	<u> </u>	-8	134		44	Ē		 	 2023
	7540 N	8.00	18.9	231	S		L.	100	<u> </u>	.8	133	Š	47	Ē			
<u>000000</u>	7544.0	8-00	16.1	235	S	55	W	100		.8	131	Ś	49	E			 <u>NETES</u>
	7546.0	8.00	17.2	232	Š	52	W	100	1	.9	133	S	47	E			
2797.92	7550.0	8.00) 15.6	229	S	49	W	100	1	•9	134	S	46	E			

				\sim			,		GE	24		
CHANDLER	AND	ASSOCIA	TES	ſ	DIP 414				-			
LAWRENCE	15-1											
WILDCAT												
FMERY				บา	ГАН						<u></u>	<u></u>
08-09-84												
00 07-07												
		FOR	MATIC	N DID		****	ROREHO)LE****	*			
DEPTH	1./ I	ANG	AZ	BEARTNO	G GRADE		DAZ	BEARTN	G			
						· · · ·						
7552.0	A.00	16.3	235	S 55 I	N 100	1.9	137	S 43	E			
7554.0	8.00	16.7	237	S 57 V	J 100	1.9	137	S 43	E			
7556.0	8.00	17.5	236	S 56 V	100	1.9	135	S 45	E			
7558.0	8.00	17.7	238	S 58 V	N 100	1.9	133	S 47	E			
7560.0	A.00	20.7	246	S 66	N 100	1.9	131	S 49	E			
7562-0	8.00	21.3	246	S 66 1	N 100	2.0	131	S 49	E			
7564.0	8.00	20.0	253	S 73	N 100	1.9	131	S 49	E			
7566.0	8.00	20.3	257	S 77 1	V 100	1.9	131	S 49	E			<u></u>
7568.0	8.00	9.5	294	N 66 1	N 100	1.9	130	S 50	E			
7570.0	8.00	6.0	302	N 58 1	N 100	1.9	1.29	S 51	Ê			
7572.0	8.00	10.7	277	N 83 1	V 100	1.9	129	S 51	E			
7574.0	8.00	6.5	285	N 75 1	v 1 00	1.9	130	S 50	E			
7576.0	A.00	8.7	191	S 11 1	N 100	2.0	128	S 52	Ε			
7578.0	8.00	9.1	190	S 10 1	N 100	2.0	119	S 61	E			
7580.0	A.00	21.4	230	S 50 I	M 100	1.8	140	S 40	Ε			
7582.0	8,00	28.2	225	S 45 1	v 100	1.9	123	S 57	E.			
7584.0	8.00	27.8	223	8 4 7 1	100	1.9	120	S 60	E	X.		
7586.0	8.00	23.1	220	5 40	1 100	1.9	117	S 63	E –	1		
7588.0	8.00	26.2	241	S 61 I	×29	1.9	123	S 57	E			
7590.0	8.00	19.4	255	5 75 1	/ 100	1.9	117	S 63	E, T			
7592.0	8.00	20.4	230	S 50 1	N 100	1.9	117	<u> </u>	Ε	r		
7594.0	8.00	20.8	187	5 7 1	A 100	1.9	118	\$ 62	E	W		
7596.0	8.00	19.0	215	S 35 1	/ 100	1.9	123	S 57	E	*		
7600.0	8.00	20.7	259	S 79 1	N 93	1.9	120	S 60	E	<u>.</u>		-
7602.0	8.00	20.4	257	S 77 1	n 98	1.9	119	S 61	Ε			
7604.0	8.00	20.2	252	S 72 1	v 100	1.9	120	S 60	Ε			
7606.0	8.00	24.9	220	S 40 1	1 90	1,9	118	S 62	E			
7608.0	8.00	9.4	145	S 35 B	E 100	1.9	117	S 63	E			
7610.0	8.00	9.1	133	S 47 1	E 100	1,9	121	S 59	E			
7612.0	8.00	9.0	126	S 54 [E 82	1.9	121	S 59	E			
7614.0	8.00	9.0	126	S 54 I	E 77	1.9	120	S 60	E			
7616.0	8.00	8.9	228	S 48 I	N 89	1.9	120	S 60	E			
7618.0	8.00	17.2	216	S 36 1	100	1.9	120	S 60	E			
7620.0	8.00	17.8	213	S 33	√ <u>100</u>	1.9	121	S 59	E		<u></u>	
7622.0	8.00	19.1	214	S 34 1	100	1.9	121	S 59	E			
7624_0	8.00	18.9	213	S 33 V	N 100	1.9	120	S 60	E			<u></u>
7626.0	8.00	17.5	216	S 36 1	100	1.9	117	S 63	E			
7628.0	8.00	14.7	231	S 51 I	v 65	1.9	117	S 63	E			
7632.0	8.00	4.4	204	S 24	V 100	1.9	116	S 64	E			
7638.0	8.00	17.4	201	S 21 V	v 92	1.8	115	S 65	E			

CHANDI.ER LAWRENCE	AND 15-1	ASSOCIA	TES	D1	P 414		-	- PAGE	25	
WILDCAT										
EMERY					H					
08=09=84										
		FOR	ΜΔΤΙ	DN DIP		****B	OREHOL	E****		
DEPTH	WL.	ANG	AZ	BEARING	GRADE	DA –	DAZE	BEARING		
· · · ·										
7640.0	8.00	17.7	204	S 24 W	100	1.8	114	S 66 E		
7642.0	3.00	17.0	203	S 23 W	88	1.8	115	S 65 E		
7644.0	8.00	15.4	190	<u>S 10 W</u>	77	1.8	113	<u>S 67 E</u>		
7648.0	8.00	1.6	208	S 28 W	100	1.8	108	S 72 E		
7656.0	8.00	5.7	1/5	S 5 E	100	1.8	115	S 65 E		
7670.0	8.00	9.0	156	5 24 E	64	1 · 7	112	<u> </u>		
7672.0	8.00	10.5	15/		<u>12</u> EQ	1 7	117	S 67 E		
7674.0	8.00		1/0	<u> </u>		17	114	5 64 F		
7678.0	0.00		201	2 21 W	29	1.7	115	5 65 E		
7640 0	<u>a nn</u>	6.4	173	<u>S 7 F</u>	76	1.7	115	5 65 E		
7682 0	8.00	6.3	15	N 15 F	100	1.7	116	S 64 E		
7684.0	8.00	5.1	<u> </u>	N 4 E	83	1.7	116	S 64 E		
7692.0	8.00	12.6	44	N 44 E	14	1.7	118	S 62 E		
7694.0	8.00	12.4	46	N 46 E	14	1.7	116	S 64 E		
7696.0	8.00	13.9	39	N 39 E	75	1.7	120	S 60 E		<u></u>
7700.0	8.00	1.9	217	S 37 W	90	1.8	117	S 63 E		
7702.0	8.00	1.9	213	S 33 W	100	1,8	120	S 60 E		
7704.0	8.00	1.5	217	S 37 W	92	1.8	121	S 59 E		
7706.0	8.00	2.3	242	S 62 W	100	1.7	120	SEOE	2	
7710.0	8.00	12.8	226	<u>S 46 W</u>	98	2,0	108	S 72 E		
7712.0	8,00	7.0	252	S 72 W	100	1.0		NOOL	ne 19	
7722.0	8.00	18,1	319	N 41 W	28	4.7	110	3 /U E		
7724.0	8.00	16.6	311	N 49 W	48	+ 2 (107	5 7 5 E		
7728.0	8.00		333				710	S TUE		
7750.0	6.00		250		90	1.8	90	S 81 F		
7734 0	<u>0.00</u>	5 4	28	N 20 F	75	1.8	98	S 82 F		
7736 0	8.00	A.6	10	N 10 F	<u> </u>	1.7	98	S 82 E		
7738.0	8.00	4.1	32	N 32 E	100	1.8	98	S 82 E		
7740-0	A.00	1.7	1	N 1 E	100	1.8	99	S 81 E		
7744.0	8.00	9.5	212	S 32 W	100	1.7	106	S 74 E		
7746.0	8.00	19.5	226	S 46 W	66	1.7	107	S 73 E		
7748.0	8.00	19.5	226	S 46 W	55	1.7	101	S 79 E		
7750.0	8.00	7.3	206	S 26 W	100	1.7	102	S 78 E		
7754.0	8.00	8.3	129	S 51 E	100	1.7	103	S 77 E		
7758.0	8.00	11.3	129	S 51 E	100	1.8	98	S 82 E		
7760.0	8.00	10.9	117	S 63 E	100	1,8	96	S 84 E		
7762.0	8.00	11.5	114	<u>S 66 E</u>	100	1.8	95	3 05 E		
7766.0	8.00	8.1	105	5 15 E	T00	4•8	91	3 04 E		

			-		
CHANDLER	AND	ASSOCIATES		DIP	414

PAGE 26

-

LAWRENCE 15-1 WILDCAT

EMERY 08-09-84 UTAH

9-84

				M . 77/	N. ologe						
	DEDTU	UI	ANG	<u>^7</u>	BEARING	GRADE			BEARING		
		WI.	ANG	AL	BLANINO	ONADE		042	DENITIO		
	7768.0	8.00	18.3	77	N 77 E	35	1.8	91	S 89 E		
	7772.0	8.00	18.8	294	N 66 W	67	1.6	105	S 75 E		
	7776.0	8.00	18.9	287	N 73 W	100	1,7	104	S 76 E		
	7778.0	8.00	8.0	330	N 30 W	100	1.7	99	S 81 E		
	7780.0	8.00	8.6	4	N 4 E	100	1.6	101	S 79 E		
	7782.0	8.00	16.2	129	S 51 E	44	1.6	103	<u>S 77 E</u>		
	7788.0	8.00	3.2	142	S 38 E	66	1.6	109	<u>S 71 E</u>		
	7790.0	8.00	3.6	218	S 38 W	100	1.7	104	<u>S 76 E</u>		
	7806.0	8.00	19.0	215	S 35 W	100	1.7	96	<u>S 84 E</u>		
	7808.0	8.00	12.9	232	<u>S 52 W</u>	38	1.7	97	S 83 E		
	7810.0	8.00	16.3	284	<u>N 76 W</u>	66	1.7	97	S 83 E		
	7812.0	8.00	16.1	294	N 66 W	47	1.8	94	5 86 E		
	7814.0	8.00	12.8	347	<u>N 13 W</u>	21	1.8	94	<u> </u>		
	7816.0	8.00	10.0	356	<u>N 4 W</u>	79	2.0	91	5 03 E		
<u> </u>	7818.0	8.00	10.3	354	N K6 W	79	1 a /	18	N 78 E		
	7820.0	8.00		358	<u>N 2 W</u>	98	<u> </u>	44		*******	
·	7822.0	8.00	17.5	338		5/		108	5 4 C		
	7824.0	8.00		301		32	1 2		- 6 6 F	1 600-0	
	7826.0	0.00	12.4	120	0 0/ C	100	1.6	110	5 70 F	-	
	7828.0	8.00	12 0	114	SACE	100	1.7	100	S 72 F	·····	
	7830.0	8.00	14.0	117	006 L	100	1 6	-100	S 72 E		<u></u>
	7052.0	0 00	L D	202	NACE	100	1.4	111	S 69 E		
	7836 0	A 00	5.8	75	N 75 F	100	156	104	S 76 E		
	7838.0	<u>a 00</u>	12.0	52	N 52 E	51	1.5	111	S 69 E		
	7844 0	8,00	11.1	241	S 61 W	63	1.4	108	S 72 E		
	7844 0	9.00	23.0	214	<u>5 64 W</u>	100	1.4	108	S 72 E		
	7852.0	8,00	26.5	254	S 74 W	79	1.4	110	S 70 E		
	7862.0	8.00	11.5	277	N 83 W	81	1.4	105	S 75 E		
	7866.0	8.00	13.3	283	N 77 W	69	1.4	103	S 77 E	<u></u>	
	7868.0	8.00	21.6	304	N 56 W	98	1.4	102	S 78 E		
	7870.0	8.00	13.5	280	N BO W	71	1.5	104	S 76 E		
	7872.0	8.00	14.4	266	S 86 W	94	1.5	104	S 76 E		
<u></u>	7874.0	8.00	24.1	358	N 2 W	100	1.5	106	S 74 E		
	7876.0	8.00	26.3	358	N 2 W	98	1.4	109	S 71 E		
	7878.0	8.00	19.7	12	N 12 E	24	1.4	112	S 68 E		
	7886.0	8.00	13.4	239	S 59 W	60	1,4	110	S 70 E		
<u></u>	7888.0	8.00	11.8	254	S 74 W	76	1.4	109	S 71 E		
	7890.0	8.00	14.5	316	N 44 W	25	1.4	108	<u>5 72 E</u>		
	7892.0	8.00	10.4	323	N 37 W	26	1.4	109	S /1 E		

	ANU A 15-1	SSOCIA	TES	DI	P 414		~	PAGE	27	
EMERY 08-09-84				UTA	H					
DEPTH	WL.	**FOR Ang	MATIC AZ	DN DIP** BEARING	GRADE	****8 NA	OREHOL DAZ B	E***** Earing		
7908.0 7910.0	8.00	18.7 18.4	271 268	N 89 W S 88 W	100 100	1,4	107 104	s 73 E s 76 E		
7914.0 7916.0	8.00	12.8	288 307	N 72 W N 53 W	100	1.3	99 99	S 81 E S 81 E S 79 F		
7922.0 7924.0	8.00	21.1 19.9	36 34	N 36 E N 34 E	15 24	1.3 1.3	110 110	S 70 E S 70 E		
7948.0 7960.0	8.00	8.0 15.3	69 115	N 69 E S 65 E	100 35	1.3	107 103	S 73 E S 77 E		
7964.0 7966.0 7968.0	8.00	$\frac{11.1}{16.3}$	145 156 151	S 25 E S 29 E	30 31	1.3	103 102	S 78 E		
7972.0 7974.0	8.00	21.2 15.1	261 259	S 81 W S 79 W	25 30	1.2	104	S 76 E S 76 E		
7990.0 7992.0 7994.0	8.00	23.7 14.4 14.2	202 245 243	S 65 W	86 80	1.2 1.2	102 101 99	S 79 E S 81 E		
7996.0 7998.0	8.00	23.1	255	\$ 75 W	86 53	1.3	104	S 76 E S 75 E S 73 F		
8002.0	8.00	20.3	238 239	S 58 W	58 58	1.3	105	S 75 E S 78 E	<u> </u>	
8008.0 8062.0	8.00	22.4	239	S 59 W S 59 W	100 36	1.4 1.0	103	S 77 E S 71 E S 70 F		
8064.0 8068.0 8070.0	8.00 8.00 8.00	6.5 19.0	183 128	S 37 W S 3 W S 52 E	24 32	1.1 1.1 1.1	111 110	S 69 E S 70 E		
8072.0 8080.0	8.00	25.3	116 180	S 64 E S 0 E	24 80	1.0 1.0	110 113	S 70 E S 67 E S 73 F		
8084.0 8086.0 8096.0	8.00	15.6 4.9	206 185	S 26 W S 5 W	36 30	1.0 0.9	108 110	S 72 E S 70 E		
8098.0 8100.0	8.00	4.6	189 112	S 9 W S 68 E	21 25	0.9	110 110	S 70 E S 70 E S 72 F		
8108.0 8110.0	8.00 8.00	9.7 7.4	138 117	S 42 E S 63 E	100	1.0 0.9	108 110	S 72 E S 70 E		
8114.0 8116.0	8.00	11.9	70 62	N 70 E N 62 E	100 74	0.9 0.8	110 106	S 70 E S 74 E S 64 F		
8124.0	8.00	0.2	71	3 03 L	5	V.D	<u> </u>			

- **X**

CHANDI.ER LAWRENCE	AND A: 15-1	SSOCIA	TES	 DI	P 414		_	PAGE	28	
EMERY 08-09-84				UTA	H	·				
		FOR	MATIO	N DIP	60.455	****8	OREHOL	E****		
DEPTH	WL.	ANG	AZ	BEARING	GRADE		UAZ B	LANING		
8126.0	8.00	13.3	140	S 40 E	60	0.8	114	S 66 E		
8130.0 8134.0	3.00	28.2	243	S 63 W N 88 W	47	0.8	107	S 73 E S 73 E		
8136.0	8,00	28.2	269	S 89 W	34	0.7	105	S 75 E S 71 E		
8150.0	8,00	10.8	229	S 49 W	100	0.6	108	S 72 E		
<u>8152.0</u> 8154.0	8.00	11.1 13.0	225	S 45 W S 32 W	69 79	0.5	105	S 76 E		
8158.0	8.00	5.1	149	S 31 E S 45 F	90 62	0,5	104	S 76 E S 70 E		
8162.0	8.00	5.3	138	S 42 E	72	0,7	113	S 67 E		
<u>8164.0</u> 8166.0	8.00	5.9	136 67	N 67 E	68	0,5	113	S 67 E		
8168.0	8.00	15.3	7	N 7 E	76	0.5	112	S 68 E S 67 E		
8172.0	8.00	24.9	66	N 66 E	44	0.8	115	S 65 E		
8174.0	8.00	10.1	79	N 79 E	29	0.2	115	S 67 E T		
8192.0	8.00	27.7	116	\$ 64 E \$ 58 E	54 65	0.2	105	S 75 E S 73 E		
8196.0	8.00	20.3	139	S 41 E	48	0.3	107	S 73 E	«	
8198.0	8.00	13.8	244	S 64 W	71	0.4	113	S 67 E		
8204.0	8.00 8.00	15.4 15.2	251 250	S 71 W S 70 W	51 57	0.3	113	S 67 E S 68 E		
8208.0	3.00	12.8	242	S 62 W	74	0.4	114	S 66 E		
8214.0	8.00	29.6	115	S 65 E	13	0,4	111	S 69 E		
8240.0	8,00	4,2	129	S 51 E	27	0.2	106	S 74 E S 76 E		
8250.0	8.00	20.1	120	S 60 E	25	0.2	109	S 71 E		
8256.0	8.00	11.7	95	S 85 E		0.2	109	5 71 E		
8258.0	8.00	11.2	91 340	5 89 E N 20 W	16 52	0.2	115 118	S 65 E S 62 E		
8288.0	8.00	1.1	320	N 40 W	100	0.2	99 110	S 81 E S 70 F		
8294.0	8.00	9.4	354	N 6 W	98	0.3	105	S 75 E		
8296.0 8304.0	8.00	5.3	358 293	N 2 W N 67 W	75 61	0.2	107 101	S 73 E S 79 E		

CHANDLER LAWRENCE	ANU A 15-1	SSOCIAT	ſES		^{>} 414			PAGE	29		
WILDCAT											
EMERY				UTA	4						
08=09=84											
										<u></u>	<u></u>
		FOR	4ATIO	N DIP		****8	OREHOL	E****			
DEPTH	WL.	ANG	AZ	BEARING	GRADE	DA	DAZ B	EARING			
8308.0	8.00	27.7	237	<u>S 57 W</u>	11	0.2	105	S 75 E			
8322.0	8,00	26.0	240	5 60 W	81	0,4	110	S TU E			
8524.0	8.00	20.0	202	S 32 W	95		109	S 73 F			<u></u>
8528.0	8,00	<u>20.1</u>	215	N 67 W	98	0.1	111	S 69 F	1		
0.332 0	0.00	49	322	N 38 W	99	0.1	111	S 69 E			
<u>8332.0</u>	<u>8.00</u>	25.1	280	N 80 W	68	0.1	112	S 68 E			
8338.0	8.00	23.4	313	N 47 W	50	0.0	107	S 73 E		<u></u>	<u></u>
8340.0	8.00	23.6	304	N 56 W	72	0.0	126	S 54 E			
8342.0	8.00	32.1	337	N 23 W	63	0.0	118	S 62 E			<u></u>
8356.0	8.00	29.0	335	N 25 W	44	0.0	133	S 47 E			
8358.0	8.00	26.2	4	N 4 E	50	0.0	135	S 45 E			
8360.0	8.00	15.0	25	N 25 E	68	0.0	133	S 47 E			
8370.0	8.00	34.5	296	N 64 W	65	0.0	125	\$ 55 E			
8372.0	8.00	34.4	296	N 64 W	66	0.0	126	S 54 E			
8374.0	8.00	24.7	346	N 14 W	40	0.0	150	S 50 E			
8376.0	8.00	31.8	19	N 19 E	51	0.0	129	SDIE			
8378.0	8.00	<u> </u>	1	NTE			128	0 02 E	884 883		
8380.0	8.00	20.0	340	N ∠() W	30		127	S 42 F		<u> </u>	
8394.0	0.00	<u> </u>	15	N 1c F	100	0.0	137	S 47 F	<u>~</u>		
8398.0	<u>00.00</u>	9.0	10	N 45 E	<u> </u>	0.0	140	S 40 E	<u></u>		<u>9400000</u>
8404 0	A.00	-31.6	128	S 52 F	62	0.0	140	S 40 E			
3406-0	8.00	35.0	110	S 70 E	62	0.0	139	S 41 E	<u></u>		
8412.0	A.00	10.0	69	N 69 E	100	0.1	126	S 54 E			
8414.0	8.00	10.2	63	N 63 E	100	0.1	129	S 51 E		<u></u>	<u>delitive el divê</u>
8416.0	8.00	10.2	56	N 56 E	100	0,1	125	S 55 E			
8418.0	8.00	10.3	50	N 50 E	100	0.1	130	S 50 E			
8420.0	8.00	28.5	1	N 1 E	15	0.1	127	S 53 E			
8422.0	8.00	17.9	32	N 32 E	21	0.1	127	S 53 E			
8424.0	8.00	23.2	26	N 26 E	13	0,1	130	S 50 E			
8426.0	8.00	13.2	33	N 33 E	29	0.2	142	5 38 E			
8430.0	8,00	6.6	1/9	S 1 E	62		143	SOLE			
8432.0	8.00	7.5	162	3 18 E	57	U 4	142	S JA F			
8454.0	8.00	7.4	162	<u> </u>	70	0.0	144	S 34 F			<u>2000005</u>
0436.U	8 00	1.0	100	N 42 F	72	0.0	118	S 62 E			
8442 0	8.00	2.6	53	N 53 F	99	0_0	142	S 38 E		<u></u>	2009/202
<u>A444_n</u>	8.00	3.4	34	N 34 E	74	0.0	124	S 56 E			
8446.0	8.00	5.5	70	N 70 E	100	0.0	128	S 52 E			

				~				- p	AGE	30	
CHANDLER LAWRENCE	ANU 15-1	ASSOC1A	TES	DI	P 414			,	7°2	50	
 WILDCAT											
 EMERY				UTA	Η						
08-09-84											
			717 SOPPOR						* .		
 F3 57 55 55		**FOK	MATIC	JN DIP**		****	UREH		(***		
DEPTH	WI.	AMG	AZ	BEARING	GRADE			BEARI	NG		
0440 0	<u>a (1)</u>	11 5	51	N 54 F	57	0.0	115	5 65	F		
 0450 0	0.00	16.5	40		69	0 0	144	S 34			
0450 0	<u> </u>	12 4	25	N 25 F	A1	0.0	138	<u>S</u> 42	T (
 <u>8454</u> 0	6.00	14.3	24	N 24 F	40 80	0.0	132	S 48	ι <u>-</u> ι Ε		
 <u> </u>	8.00	18.9	20	N 20 F	68	0.0	146	S 34	, <u> </u>		
 8466 0	3,00	18.2		NGF	84	0.0	141	5 39) F		
8468 0	8.00	19.8	346	N 1 L W	69	0.0	182	S 2	N W		
 8480 0	8.07	15.5	16	N 16 F	74	0,0	162	S 18	3 E		
9486.0	8.00	15.6	29	N 29 E	68	0.0	244	S 64	W		
 8490.0	8.00	6.0	46	N 46 E	65	0.1	158	S 22	E E		
 8492.0	8.00	5.0	50	N 50 F	100	0.1	150	S 30	E		
 3494.0	8.00	6.7	55	N 55 E	100	0.1	143	S 37	r E		
 8496.0	A.00	6.3	134	S 46 E	36	0.1	147	S 33	S E		
 8500.0	8.00	22.6	133	S 47 E	33	0.1	145	S 35	5 E		
8506.0	A.00	5.8	126	S 54 E	100	0.2	148	S 32	E		
 8508.0	8.00	5.9	120	S 60 E	100	0.2	141	S 39	θE		
8510.0	8.00	6.3	148	S 32 E	88	0.2	136	S 44	E	N	
 8512.0	8.00	6.2	113	5 67 E	66	0,2	132	S 48) E 🗌		
 8518.0	8.00	19.5	109	S 71 E	53	0.2	130	\$ 5() E		
8520.0	8.00	13.0	140	S AO E	70	0.2	177	S 3	5 E 🗌		
8532.0	8.00	3.2	206	S 26 W	100	0,1	163	<u>s</u> 17	r E	*	
8534.0	8.00	15.9	233	S 53 W	31	0.1	163	- S 17	'E		
8536.0	8.00	17.0	245	S 65 W.	20	0,1	163	S 17	T E		
 6538.0	8.00	23,5	148	S 32 E	30	0.1	161	S 19	θE		
8540.0	8.00	23.5	147	S 33 E	23	0.1~	160	<u> </u>) E		
 8542.0	8.00	24.6	136	S 44 E	52	0,1	157	S 23	5 E		
8546.0	8.00	23.6	118	S 62 E	62	0.0	145	S 35	5 E		
 8564.0	8.00	13.6	90	N 90 E	29	0.0	148	S 32	2 E		
 8576.0	8.00	25.6	171	S 9 E	66	0.0	151	S 29) E		
8594.0	8.00	9.3	144	S 36 E	72	0.0	188	S E	3 W		
8596.0	8.00	18.0	109	871 E	60	0.0	178	<u> </u>	<u> </u>		
8598.0	8.00	17.6	118	S 62 E	71	0.0	194	<u> </u>	+ W		
8602.0	8.00	21.6	162	<u>S 18 E</u>	56	0.0	188	<u> </u>	5 W		
 8604.0	8.00	21.1	155	8 25 E	54	U.U	184	5 4	+ W		
8606.0	8.00	21.5	144	3 36 E	86	0,0	1/7) E \		
8610.0	8.00	12.0	164	2 16 F	44	U.U	108	5 IZ			
8618.0	8.00	0.2	15/	<u> </u>	100	0.0	112	3 C) L		
3020.0	8.00 0 00	7.4 9.0	141	3 / L 5 2/ E	100	0,0	160	<u>S</u> 20	, L) F		
0624.0	0,00	- 0.0 - 0.2	125		- <u>- 00</u>	<u> </u>	157	S 27	. د د ٦		
00440	- 3 + V V	2.0	TOD	0 40 E	00	U • U	101	ပမ	ی ا		

			,	~				- Р	AGE	31	
CHANDLER	AND /	ASSOCIA	TES	DI	P 414						
LAWRENCE	15-1										
WILDCAT										<u> </u>	
EMERY				UTA	Π				-		
08-09-84											
		FOR	MATIO	N DIP		****B	OREHO	LE***	**		
DEPTH	WL.	ANG	AZ	BEARING	GRADE	DA	DAZ	BEARI	NG		
	~ 00	10 0	167	0 99 E	02	<u> </u>	151	5 20	F		
8626.0	8.00	25.8	157	S 20 E	<u></u>	0.0	145	S 35	E		
8642.0	A.00	9.6	115	S 65 E	89	0.0	136	<u> </u>	E		
3652.0	8.00	9.1	81	N 81 E	100	0,0	118	S 62	E		
8654.0	8.00	9.9	84	N 84 E	100	0.0	114	S 66	E		
8658.0	8.00	3,1	115	S 65 E	100	0.0	213	S 33	W		
8664.0	8.00	12.3	67	N 67 E	75	0.0	202	S 22	W		
8666.0	8.00	16.3	27	N 27 E	80	0.0	242	S 62	W		
8668.0	8.00	16.8	31	N 31 E	84	<u> </u>	293	N 07	W 		
8670.0	8.00	16./	21		84		200	5 65	- M		
8672.0	8.00	17 6	<u>- 234</u>	N 43 F	46	0.0	233	S 53	W		
8670.U	8.00	10.6	106	S 74 E	29	0.0	205	S 25	W		
8686-0	8.00	10.8	89	N 89 E	66	0.0	211	S 31	W		
8688.0	8.00	26.4	3	N 3 E	53	0,0	201	S 21	W		
3698.0	8.00	20.7	19	N 19 E	66	0.0	175	S 5	E		
8700.0	8.00	17.7	11	N 11 E	70	0.0	161	8 19	E		 <u> </u>
8704.0	8.00	20.7	11	NILE	29	<u> </u>	155	S 25			
8706.0	8.00	20.3	275	N 85 W	- 4	0.0	106	0 4	<u>с</u> . я		
8708.0	8.00						186	5 - 5 - 5 - 6	<u>ц</u>	2	
8122.0	8.00	10.1	274	N 74 W	21 31	0.0	181	S 1	W	w <u></u>	
8728.0	A.00	6.0	346	N 14 W	21	0.0	183	<u>Š</u> 3	Ŵ		
8730.0	8.00	6.1	350	N 10 W	8	0.0	185	S 5	W	<u></u>	
8732.0	8.00	6.0	349	N 11 W	8	0,0	185	S 5	W		
8744.0	8.00	14.6	341	N 19 W	48	0.0	179	S 1	E		
8746.0	8.00	28.8	305	N 55 W	35	0.0	178	<u> </u>	E		
8754.0	8.00	5.0	341	N 19 W	56	0.0	188	<u> </u>	W		
8758.0	8.00	1.8	16	N 16 E	94	0.0	1/9	<u> </u>	, E .		
8774.0	8.00	15.7	294	N 66 W	68	0.0	108	S 0	L N		
8776.0	8.00	14 7	223	N 71 W	50	0.0	196	S 16	W		 <u></u>
0782 0	9.00	27.6	303	N 57 W	67	0.0	196	S 16	W		
8790-0	8.00	7.9	294	NGGW	61	0_0	191	S 11	W		
8792.0	8.00	14.0	289	N 71 W	78	0,0	192	S 12	W		
8794.0	8.00	14.3	284	N 76 W	74	0.0	190	S 10	k.		
8806.0	8.00	9.8	287	N 73 W	19	0.3	189	S 9	W		
8814.0	8.00	22.8	156	S 24 E	14	0.6	182	<u> </u>	W		
8816.0	8,00	22.3	160	SZO E	14	0,6	106	<u> </u>	1 W 11		
8818.0	8.00	20.5	164	3 16 E	14	V • D	174	5 +4	• •74		

CHANDLER LAWRENCE	AND A 15-1	SSOCIA	TES	- נס	IP 414		_	PAGE	32	
EMERY 08-09-84				UT	AH					Ŷ
		FOR	MATIO	N DIP		****	OREHOL	E****		
DEPTH	WL.	ANG	AZ	BEARING	GRADE	DA	DAZ B	EARING		
8820.0	8.00	18.5	218	S 38 W	21	0.6	190	S 10 W		
8824.0	8.00	20.5	235	S 55 W	21	0.5	182	<u>S</u> 2 W		
8840.0	8.00	16.2	252	S 72 W	42	1,1	185	S 5 W		
8842.0	8.00	23.0	254	S 74 W	39		178	S 2 E		
8858.0	8.00 A.00	22.5	210	S 31 W	25	0.9	194	S 14 W		
8862.0	8.00	17.4	107	S 73 E	21	0,9	196	S 16 W		
8868.0	8.00	1.0	20	N 20 E	100	1.0	192	S 12 W		
8870.0	8.00	21.7	92	S BA E	32	1.1	198	S 18 W		
8904.0	8.00	31.8	81	N 81 E	14	1,1	196	S 16 W		
8914.0	8.00	1.5	58	N 58 E	87	0.7	194	S 14 W		
8926.0	8.00	35.2	<u> </u>	N 71 E	4	0.2	206	S 26 W		
8952.0	8.00	34.0	59	N 59 E	36	0.2	205	S 25 W		
8960.0	8.00	2.0	205	S 25 W	100	0,3	216	S 36 W		
8962.0	8.00	1.8	19/	S 17 W	71	0.3	22A	S 48 W		
8966.0	8.00	1.7	186	SEV	100	0.3	226	S 46 W	0	
8970.0	8.00	17.5	187	S 7 W	15	0.3	221	S 41 W		
8974.0	8.00	21.4	293	N 67 M	55 40	0.3	227	5 47 W		
8980.0	8.00	17.4	276	N 84 W	52	0.2	225	S 45 W		
8990.0	8.00	1.1	237	S 57 W	100	0,5	227	S 47 W		
9002.0	8.00	8.2	293	N 67 W	79	0.2	231	S 51 W		
9004.0	8.00	13.2	174	S 6 E	91	0.3	224	S 44 W		
9010.0	8.00	21.9	213	S 33 W	91	0.2	225	S 45 W		
9012.0	8.00	22.1	218	S 38 W	67	0.2	223	S 43 W		
9014.0	8.00	23.7	5	N JIE N 5E	26	0.2	222	S 42 W		
9018.0	8.00	24.2	2	N 2 E	35	0,2	221	S 41 W		
9024.0	8.00	22.8	333	N 27 W	30	0.2	217	S 37 W		
9026.0	8.00	21.5	329	N 91 W	52 73	0.2	228	S 48 W		
9030.0	8.00	26.1	57	N 57 E	23	0.2	222	S 42 W	,	
9038.0	00.8	25.4	49	N 49 E	32	0.2	226	S 46 W		
9040.0	8.00	25.9	51 49	N 31 E	65	0.2	226	5 46 W		
J + + + U										

				\sim			<u> </u>	PAGE	33			
CHANDLER	AND A	ASSOCIA	TES	DI	P 414							
LAWRENCE	15-1											
WILDCAT												
EMERY				UTA	н					<u></u>		
08-09-84					-							
		FOR	MATTC	M DID		****BOREHOLE****						
DEPTU	1.51	ANG	Δ7	BEARTNG	GRADE		DAZ B	EARTNG				
	<u>M1.</u>			UTW.Tue	<u> </u>	••••	<u></u>	<u> </u>				
9050 0	<u>0.00</u>	6.0	1	NIF	62	0.1	221	S 41 W				
9050.0	0.00	5.8			61	0.1	220	S 40 W				
0154 0	0.00	3.9	200	N 60 W	79	0.2	218	5 38 W				
20142 0	0 00	17 2	189	W OC N	31	0.2	228	5 48 W				
0070 0	0.00	77	132	<u><u>S</u> Lo F</u>	65	0.4	228	S 49 W				
9070.0	<u>c 00</u>	4 F	120	<u> </u>	62	0.2	230	S 58 W				
9002.0	8.00		137	S HA E	64	1 2	230	5 50 W				
9084.0	0.00	0.0	140	370 E	19	0.1	241	S 61 4				
9094.0	8.00	20.0	141		<u>_</u>	0.1	241					
9096.0	8.00	34.9	121				240	5 60 M				
9098.0	8.00	30.7	120	3 J2 E		0.1	272					
9100.0	8.00	17.2	107	<u> 3 61 C</u>			273	SCSW				
9104.0	8.00	9.2	244	3 64 W	37	V.1	274	S D4 W				
9106.0	8.00	4.0	200	<u>3 30 W</u>	/0	0.1	242	5 62 W				
9110.0	8.00	5.6	217	5 37 W	99	0.1	239	5 59 W				
9112.0	8.00	31.2	185	<u>53W</u>	55	0.1	209	3 39 W				
9114.0	8,00	22.5	181	<u>S 1 W</u>	94	<u> </u>	528	8 59 W				
9116.0	6.00	22.7	129	SOLE	86	- 0.1	240	5 6U W				
9118.0	8.00	22.6	127	5 93 L			20/	5 77 W	1988 Galeria			
9120.0	8.00	17.8	233	S 53 W	33	0,1	241	3 6 1 M				
9124.0	8.00	25.4	308		50	0.1	240	3 05 4	2			
9126.0	8.00	27.2	312	N 48 W	41	V.1	244	5 64 W				
9128.0	8.00	38.2	251	<u>S /1 W</u>	51	0.1	<33	5 59 %				
9130.0	8.00	31.0	_249_	S 69 W	41		233	8 33 W				
9140.0	8.00	19.2	254	S 74 W	96	0.1	245	S 65 W				
9142.0	8.00	18.5	247	S 67 W	53	0,1~	248	S 68 W				
9144.0	8.00	58.6	221	S 41 W	27	0,1	244	S 64 W				
9152.0	8.00	1.2	202	S 22 W	64	0.2	257	S 77 W				
9154.0	3.00	1.2	200	S 20 W	99	0,3	254	S 74 W				
9156.0	8.00	1.2	119	S 61 E	100	0,1	258	S 78 W				
9158.0	8.00	4.5	141	S 39 E	100	0.1	252	S 72 W				
9160.0	8.00	4.9	137	S 43 E	100	0.1	243	S 63 W				
9162.0	8.00	6.1	123	S 57 E	100	0.1	260	S 80 W				
9164.0	8.00	6.3	176	S 4 E	100	0.2	256	S 76 W				
9168.0	8.00	9.2	167	S 13 E	16	0.1	247	S 67 W				
9172.0	8.00	21.4	163	S 17 E	16	0,1	249	S 69 W				
9176.0	8.00	4.0	143	S 37 E	100	0.1	245	S 65 W				
9178.0	8.00	4.2	139	S 41 E	100	0,1	242	S 62 W				
9180.0	8.00	4.8	137	S 43 E	84	0,1	248	S 68 W				
9182.0	8.00	5,2	126	S 54 E	76	0.2	242	S 62 W				
9184.0	8.00	18,9	32	N 32 E	46	0,3	256	S 76 W				
								and the second	the second s			

									<u> </u>	PAGE	74		
C LL		AND A	AT 2022	TES	П					AVE	0.4		
	ANDI.EK	ANU A	2201.1A	IE O	0	16 414							
LAI	NRENCE	19-1											
WI	LUCAT					A 1 1						,	
EM	ERY				U I	АН							
08	-09-84												
			FOR	MATI	ON DIP		****	BOREH	OLE**	***			
	DEPTH	WI.	ANG	AZ	BEARING	GRADE	NA	DAZ	BEAR	ING			
9	186.0	A.00	17.9	359	N 1 W	20	0.3	242	S 6	2 W			
	188.0	8.00	18.6	358	N 2 W	31	0.1	238	<u> </u>	8 W			
9	190 0	8.00	26.8	719	N 41 W	46	0.1	232	<u> </u>	2 4			
	204 0	<u>00000</u>	22 1	335	N 25 W	71	0.1	228	<u>S</u> 4	8 4			
		0.00		770	N 21 W	45	1.2	243	<u> </u>	<u>z W</u>			
7		0.00	7 1	202			0 3	230	<u> </u>	<u>a</u> W			
		0.00	2/ • 1	327	N TC N		0.0	160	<u>e</u> 1	4 6			
9	214.0	8.00	32.0	220	<u>5 78 W</u>	· 11	01	109	<u> </u>				
9	216.0	8.00	27.5	150	5 30 E	62	0.1	240	30	<u> </u>			
9	218.0	8.00	21.2	146	<u>5 34 E</u>	26	0.1	241		<u>T M</u>			
9	220.0	00.3	29.4	144	5 36 E	21	U.1	260	<u> </u>	<u>0 w</u>			
9	222.0	8.00	27.8	124	<u>S 56 E</u>	22	<u> </u>	245	<u> </u>	<u>5 W</u>			
9	230.0	8.00	31.9	211	S 31 W	72	0.2	268	58	<u>8 W</u>			
9	232.0	8.00	31.7	202	S 22 W	78	0.2	264	S 8	4 W			
9	234.0	8.00	31.2	194	S 14 W	90	0.3	263	S 8	3 W			
9	242.0	8.00	14.0	205	S 25 W	54	0.1	250	S 7	0 W			
9	244.0	8.00	13.4	185	S 5 W	74	0.2	253	<u>s</u> 7	3 W			
9	246.0	8.00	23.9	31	N 31 E	32	0.2	246	56	6 W	N		
- 9	248.0	8.00	23.8	12	IN TEE	65	0.2	238	S 5	8 W T	8		
g	268.0	A.00	18.0	- 7	N 7 E	35		251	S 7	1 W			
	286.0	8.00	1.2	356	T N TU W	T 7 91	0_3	257	S 7	7 W 🗆	Ĵ		
	288.0	A.00	1.3	103	S 77 F	65	0.3	245	<u>~</u> S 6	5 W	<u></u>		
	290 0	9 00				80	0.2	>251	S 7	1 4	w <u></u>		
	<u>X00 0</u>	0.00	- 3 1	u.o	N 40 F	76	0.1	229	54	q W	M		
	302 0	0.00	- 21	27	N 27 F	ъц	0.1	227	S 5	7 W			
7	302.()	0.00	~ • · · ·	113		71	0 1	257	s 7	7 W			
	312.0	0.00	E	70			<u> </u>	- 267	- . .	7 4			
9	514.0	8.00	ວ.ວ	57	N 39 E	60	0.2	201	0 0	/ ** 2 U			
	516.0	8.00	1.8		N / E	100	0.0	200	<u> </u>	이 제 국 니			
9	318.0	8.00	2.9	2	N 2 E	100	0.0	267	30	/ 'N			
9	320.0	8.00	2.4	345	N 15 W	100	0.1	2/2	0 1/1	8 ₩			
9	322.0	3.00	3.8	4	N 4 E	100	0.1	260	50	<u>()</u> W	and and a stand of the stand of the stand of the		
9	324.0	8.00	3.5	345	N 15 W	100	0,1	222	<u> </u>	2 W			
9	326.0	8.00	3.1	331	N 29 W	100	0.0	259	S 7	9 W			
9	328.0	8.00	2.6	354	NGW	100	0.0	268	S 8	8 W			
9	332.0	8.00	2.0	357	NJW	100	0.1	260	S 8	O W			
9	334.0	8.00	1.3	13	N 13 E	100	0.1	262	S 8	2 W			
- 9	336.0	8.00	3.1	34	N 34 E	100	0.2	261	S 8	1 W			
	338.0	8.00	4.7	46	N 46 E	100	0.2	251	S 7	1 W			
	340-0	8.00	4.2	26	N 26 E	100	0.3	251	<u> </u>	1 W			
	342 0	8.00	7.A	11	N 11 F	100	0.2	249	S 6	9 W			
<u> </u>	344 0	8,00	3-8	351	N a W	100	0.2	238	<u> </u>	8 W			
	U I I I I I I I I I I I I I I I I I I I	0.00	V • •				- • •	0		<u> </u>			
CHANDLER LAWRENCE	AND A 15-1	SSOCIAT	ES	DI	P 414		``	- PAGE	35				
------------------------------	---------------	---------------	------------	--------------------	--------------	-------------	--------------	-------------------	----	--------------			
WILDCAT Emery 08-09-84				UTA	H					 			
DEPTH	WI.	**FORI Ang	ATIO AZ	N DIP** BEARING	GRADE	****B NA	OREHO DAZ	LE**** BEARING					
9348.0	8.00	1.8	3	N 3 E	100	0.3	240	S 60 W		 			
9350.0	8.00	3.0	337	N 23 W	100	0.3	247	S 67 W					
9352.0	8.00	3.5	208	N 25 E	53	0.2	255	S 74 W		 			
9358.0	8.00	4.2	22	N 22 E	65	0.2	250	S 70 W					
9360.0	8.00	3.5	358	N 2 W	100	0.2	248	S 68 W		 			
9366.0	8.00	1.4	6	N 47 L N 6 E	100	0.1	262	S 82 W		 			
9368.0	8.00	2.4	12	N 12 E	100	0.1	256	S 76 W					
9370.0	8.00	2,3	18	N 18 E	100	0.2	252	S 72 W		 			
9374.0	8,00	1.0	13	N 13 E	100	0.1	255	S 75 W		 			
9376.0	8.00	2.4	95	S 85 E	78	0.2	247	S 67 W		 			
9378.0	8.00	2.6	85	N 83 E	100	0.5	247	S 64 W		 			
9382.0	8.00	4.2	78	N 78 E	100	0.4	250	\$ 70 W					
9384.0	8.00	6.0	86	N 86 E	100	0.4	232	S 52 W		 			
9386.0	8.00 8.00	1.4	29	N 72 E	100	0.2	226	S 46 W					
9390.0	8.00	1.1	65	N 65 E	100	0.2	229	S 49 W)	 <u> </u>			
9394.0	8.00	1.5	61	N 61 E	100	0.2	233	S 53 W		 			
9400.0	8.00	1.5	49 90	N 49 L	100	0.1	251	S 71 W		 			
9404.0	8.00	1.5	100	S 80 E	77	0.2	247	S 67 W		 <u></u>			
9412.0	8.00	1.6	23	N 23 E	100	0.3	242	S 62 W		 			
9418.0	8.00	4. <u>Ŗ</u>	19	N 19 E	100	0.5	237	S 57 W					
9422.0	8.00	2.4	20	N EU E	100	0.4	230	S 50 W		 <u></u>			
9426.0	8.00	2.4	15	N 15 E	100	0,3	232	S 52 W					
9432.0	8.00	1.3	44	N 44 E	100	0.2	215	S 35 W		 			
9434.0	8.00	2.9	<u> </u>	N OU E	100	0.3	212	S 32 W		 			
9438.0	8.00	2.0	355	N 5 W	61	0.1	217	S 37 W					
9440.0	8.00	1.3	323	N 37 W	85	0.1	234	S 54 W					
9442.0	8.00	1.5	70	N 70 E	100	0.1	230	S 66 W		 			
9446.0	8.00	1.3	61	N 61 E	100	0.2	232	S 52 W		 			
9448.0	8.00	3.2	40	N 40 E	100	0.1	222	S 42 W					
9450.0	8.00	2.0	45	N 45 E	100	0.3	226	5 46 W		 			
77,70.0	0.00	1 00		·· · · · ·	<u>+ 0 0</u>		U			 			
			<u></u>							 			

 CHANDI.ER LAWRENCE	AND A 15-1	SSOCIA	TES	.	[P 414			<u> </u>	PAGE	36		
 WILDLAT EMERY 08-09-84				UT	AH						· · · · · · · · · · · · · · · · · · ·	
 DEPTH	WL.	**FOR Ang	MATI AZ	ON DIP** BEARING	GRADE	****B NA	DAZ	BEAR	**** ING			
9458.0	8.00	1.7	50 44	N 50 E	100	0.4	228	S 4 S 6	8 W			
 9462.0 9466.0	8.00	2.2	28 29	N 28 E N 29 E	100 100	U.8 U.7	225 224	S 4 S 4	5 W			
 9468.0 9470.0	8.00 8.00	2.4 14.0	62 233	N 62 E S 53 W	30 13	0.7	216 212	S 3	6 W			
 9474.0 9476.0 9480.0	8.00	16.9 29.9	210 165 179	S 20 W S 15 E S 1 E	43	0.8	205	S 2 S 4	20 W 20 W			
 9482.0 9486.0	8.00	1.4.2 12.6	212 163	S 32 W S 17 E	99 58	0.5 0.5	214 222	S 2 S 4	54 W 12 W			
9488.0 9494.0	8.00 8.00	10.0	159 153	S 21 E S 27 E	95 100	0.5	228 226	S 4 S 4 S 4	H8 W H6 W			
 9496.0 9498.0 9500.0	8.00	7.6	145 124	S 56 E S 74 E	100 100	0.8	224 230 223	S S	50 W F3 W			
9502.0 9506.0	8.00	17.7	83 74	N 83 E	94 26	1.0	218 218	S S	a w Sa w	<u> </u>		
 9508.0 9510.0 9512.0	8.00 8.00 8.00	12.5 14.6 14.0	102 89 73	N 89 E N 73 E	76 100 100	0.7	209 205 211	3 5 ~ S	19 W 15 W 1 W	<u>) </u>		
 9514.0 9518.0	8.00 8.00	12.0	54 89	N 54 E N 89 E	100 100	0.7	209 206	52	29 W 26 W			
 9520.0 9522.0	8.00	1.9 1.5	140 133	S 40 E S 47 E	56 77	0,3	225	S 4 S 4 ~ 4	+5 W +6 W 16 W			
 9552.0 9552.0	8.00	7.0 19.4	147 155	S 33 E S 25 E	91 100	0.3	218 211	S Z	58 W 51 W			
 9556.0 9562.0	8.00	8.6 30.3	139 220	S 41 E S 40 W	62 26	0.4	216 195	S 3 S 1	6 W			
 9566.0 9576.0 9578.0	8.00	54.5 6.6 5.0	190 0 47	N 0 E N 47 E	98 60	0,2 0,3 0,4	242 225 231	S 4 S 5	12 W 15 W			
 9580.0 9582.0	8.00	23.9 8.7	71 65	N 71 E N 65 E	55 79	0.3 0.2	227 218	S 4 S 2	17 W 18 W			
 9584.0 9586.0	8.00	10.6	36 352	N 36 E	100 90	0.2	219 227	S 3 S 4	9 W 7 W			
 9590.0 9592.0 9596.0	8.00	16.3 7.6	288	N 72 W S 13 E	100 1 00	0.2	223 221 211	S 4	1 W 51 W			
 • •						-						

	A 611') - A 1	000074	Tro	-	TD 410)	PAGE	37	
	15-1	820CIA	15	U	18 414					
WILDCAT	10 -									
EMERY				UT	АН					
08-09-84										
		FOR	MATIO	N NIP		****	OREHOL	E****		
DEPTH	WL.	ANG	AZ	BEARING	GRADE	DA	DAZ B	EARING		
9598.0	8.00	1.8	199	<u>S 19 W</u>	100	0.2	210	S 30 W		
9600.0	8.00	3.1	245		100	2.0	210	5 30 W		
9604.0	000	12.9	253	N 06 W	75	0.2	195	S 15 W		
9608.0	8.00	16.5	2.33	S 67 W	71	0.2	196	<u>S 16 W</u>		
9632-0	8.00	25.8	298	N 62 W	67	0,2	226	S 46 W		
9634.0	8.00	26.3	288	N 72 W	34	0.2	217	S 37 W		
9636.0	8.00	26.5	281	N 79 W	21	0.2	214	S 34 W		
9638.0	8.00	6,1	281	N 79 W	92	0,3	221	S 41 W		
9642.0	8.00	12,9	246	S 66 W	20	0.1	204	S 24 W		
9644.0	8,00	19.3	206	S 26 W	42	0.1	205	S 25 W		
9650.0	8.00	3,1	267	<u>S 87 W</u>	100	U_1	188	S 8 W		
9652.0	8.00	5.8	314	N 46 W	88	0.2	191	S I W		
9654.0	8.00	0.C	300		100	n 2	175	3 4 W S 5 F		
9658 0	<u>0,00</u>	3.0	294	N 66 W	100	0.4	165	S 15 E		
9662-0	8.00	- 63	340	N 20 W	82		178	S 2 E		
9664.0	8.00	6.0	352	NAW	75	0.1	178	S 2 E 1		
9666.0	8.00	6.5	355	N 5 W	64	0.1	194	s 14 W		
9668.0	8.00	6.1	351	NQW		0,1	184	S 4 ₩ 7		
9672.0	8,00	6.0	323	N 37 W	100	0.1	189	S 9 W		
9674.0	8.00	7,2	337	N 23 W	100	0.2	192	S 12 W		
9676.0	8.00		283	N 77 W	100	U.2	207	SZ7W Slev		
9682.0	00.8		248	5 68 W	54	0.1	190	S 15 W		
9604.0	0.00	4 •/	200	S 25 W	100		200	S 20 W		
9694.0	8.00	10.9	234	5 51 W	100	0.2	186	<u>5 6 W</u>		
9698.0	8.00	2.7	340	N 20 W	86	0.2	180	SOE		
9700.0	8.00	3.7	346	N 14 W	100	0.3	176	S 4 E		
9702.0	8,00	9,1	340	N 20 W	100	0,2	188	S 8 W		
9704.0	8.00	7.9	341	N 19 W	100	0,1	193	S 13 W		
9716.0	8.00	3.8	339	N 21 W	80	0.1	194	S 14 W		
9718.0	8,00	4.8	24	N 24 E	80	0,1	207	S 27 W		
9722.0	8.00	28.7	1	N 1 E	30	U.2	210	5 20 W		
9724.0	8.00	30.8	329	N 31 W	85	0.2	209	S KY W		
9136.0	8.00	2.4	321	N 35 W	11	1.v	170	5 4 W		
9740.0	8.00	45-0	59	N 59 F	63	0.2	179	S 1 E	<u></u>	
9742.0	8.00	45.0	59	N 59 E	12	U.2	179	S 1 E		
<u></u>	<u> </u>									

		1					\checkmark		
n OGCC-3)	SUBMIT	IN DUPLIC	ATE•	lo	
		STATÉ	OF UTA	АН)		(See struc	other in- ctions on		
	OIL & G	AS CONSERV	ATION	сом	MISSION	RECE	IVEL	MI	RADER
WELL CO		I OP PECO					G *	6. IF INDIAN,	ALLOTTEE OR TRIBE NA
In. TYPE OF WEL							-1984	7 11117 4087	
b. TYPE OF COM	wi PLETION:	ELL LI WELL L	DR	T []	Other	<u></u>		1. UNIT AURE	GMENT NAME
WELL	WORK DE	EP- PLUG BACK	DIFF. RESVI	R. 🗌	Other	DIVISION	OF OIL	S. FARM OB	LEASE NAME
2. NAME OF OPERAT	on					GAS & M	NING	Lawı	rence
Chandler 3. ADDRESS OF OPE:	& Associa	tes, Inc.						9. WELL NO.	1
1400 Linc	coln Tower	Building,	Denver.	. Col	orado 802	03	-	10. FIELD AN	D POOL, OR WILDCAT
4. LOCATION OF WEI	LL (Report locat	ion clearly and in	accordance	with an	y State requiren	nents)*		Wild	dcat
At surface 6	500° FSL;	1980' FEL (SW SE)					11. SEC., T., J OR AREA	I., M., OR BLOCK AND BUR
At top prod. int At total depth	erval reported b	elow						Sec	. 1-T18S-R8E
-			14. PER:	MIT NO.	DA	TE ISSUED	-	12. COUNTY O PARISH	DR 13. STATE
C. DATE SPUDDED	15 aDOVE	REACHED 17 DAT	43-0	115-3 Ready to	UI92	5-/-84		Emer	cy Utah 19. ELEV. CABINGHEAD
5-15-84	8-9-84	P&A	8-11-84	ļ	18. 1	GR 5726	UF, KB, B, K1 	, GR, LIC()*	
. TOTAL DEPTH, MD	A TVD 21. PL	UG. BACK T.D., MD &	TVD 22.	IF MULT	TIPLE COMPL.,	23. INT DRI	ERVALS LLED BY	BOTARY TOOL	LS CABLE TOOLS
9,728'			POTTOM N		D AND TYDIS		<u>→ </u>	AII	25 WAS DIRECTION
A. PRODUCING INTER	WAL(S), OF THIS	COMPLETION-TOP	, BUITUM, N	AMB (A	ID AND IVD)*				SURVEY MADE
None									No
6. TYPE ELECTRIC A	ND OTHER LOGS	BUN Chi	60		1				27. WAS WELL CORED
UIFL-GR,	BHC-SOUIC	L CNL-CN		<u>- 11 -</u>	13 phile	بر بینویی ا			NO
CASING SIZE	WEIGHT, LB.	/FT. DEPTH SE	T (MD)	HOI	E SIZE	CED	MENTING R	ECOBD	AMOUNT PULLE
13 3/8"	54.5	1690	1	17	1/2"	1135	5 sx.		
		·							
						<u> </u>			
9.		LINER RECORD			'	30.	TU	BING RECO	RD
8IZE	TOP (MD)	BOTTOM (MD)	SACKS CEM	ENT*	SCREEN (MD)	812E	DI	EPTH SET (ME) PACKER SET (MI
	·			——				· <u></u>	
. PERFORATION REC	ORD (Interval, s	ize and number)	·	<u>.</u>	32.	ACID. SHOT	, FRACTU	RE, CEMENT	SQUEEZE, ETC.
None					DEPTH INTER	WAL (MD)	AMO	UNT AND KIND	OF MATERIAL USED
none					None]		
ATE FIRST PRODUCT	ION PROD	UCTION METHOD ()	lowing, gas	PROD Hft, pu	mping—size an	d type of pun	np)	WELL 8	STATUS (Producing or
None								ehut.	- ⁱⁿ⁾ P&A
ATE OF TEST	HOURS TESTED	CHOKE SIZE	PROD'N. TEST PI	FOR CRIOD	OIL-BÉL.	GAS-M	с г .	WATER-BBL.	GAS-OIL RATIO
			01LBB	BL.	GAS-MC		WATER-B	BL.	OIL GRAVITY-API (CORR.)
LOW. TUBING PRESS.	CASING PRESSU	RE CALCULATED	-		1			1	
LOW. TUBING PRESS.	CASING PRESSU	RE CALCULATED 24-HOUR RAT	E						
4. DISPOSITION OF G	CASING PRESSU AB (Sold, used fo	r fuel, vented, etc.)						TEST WITNESS	SED BY
LOW. TUBING PRESS. 4. DISPOSITION OF G. NONE 5. LIST OF ATTACED	CASING PRESSU AS (Sold, used fo MENTS	r fuel, vented, etc.)	B]			TEST WITNESS	SED BY
4. DIBPOSITION OF G. NONE 5. LIST OF ATTACED LOGS & DS	CASING PRESSU AB (Sold, used fo MENTS Tharts	r fuel, vented, etc.)	mailed	by s	ub-contra	ctors.		TEST WITNES	SED BY
4. DISPOSITION OF G. None 5. LIST OF ATTACED LOGS & DS 6. I hereby certify	CASING PRESSU AS (Sold, used fo MENTS Tharts that the foregol	r fuel, vented, etc.)	mailed	by s	ub-contra ete and correct	ctors.	ed from al	TEST WITNESS	SBD BY
LOW. TUBING PRESS. 4. DISPOSITION OF G. NONE 5. LIST OF ATTACED LOGS & DS 6. I hereby certify SIGNED	CASING PRESSU AS (Sold, used for MENTS Tharts that the foregol	r fuel, vented, etc.)	mailed	by s ls compl	ub-contra ete and correct etroleum	ctors.	ed from al	TEST WITNESS	cords

S	f
Z	l
0	ļ
-	ł
	I
Ξ	I
	I
Ě	ł
5	1
÷	I
_	

General: This form is designed for submitting a complete and correct well completion report and log on all types of lands and leases to either a Federal agency or a State agency or a state agency or a state agency or correct well complete and correct well complete and proceedures and precisal instructions concerning the use of this form and the number of copies to be submitted, particularly with regard to local, area, or regional procedures and practices, either are shown below or will be issued by, or may be obtained from, the local Federal and/or State office. See instructions on items 22 and 24, and 33, below regarding separate reports for separate completions. If not field prior to the time this summary record is submitted, copies of all currently available logs (drillers, geologists, sample and core analysis, all types electric, etc.), formation and pressure tests, and directional surveys, should be attached hereto, to the extent required by applicable Federal and/or State laws and regulations. All attachments abould be listed on this form, see item 35.

or Federal office for specific instructions. or Federal office for specific instructions. Hem 18: Indicate which elevation is used as reference (where not otherwise shown) for depth measurements given in other spaces on this form and in any attachments. Hem 28: Indicate which elevation is used as reference (where not otherwise shown) for depth measurements given in other spaces on this form and in any attachments. Hem 29: Indicate which elevation is used as reference (where not otherwise shown) for depth measurements given in other spaces on this form and in any attachments. Hem 29: "Sacks Cement": Attached supplemental records for this well should show the details of any multiple stage cementing and the location of the cementing tool. Hem 33: Submit a separate completion report on this form for each interval to be separately produced. (See instruction for items 22 and 24 above.)

-			TEUR VERT. DRPTH						<u> </u>													<u>. . . </u>			
	IC MARKERS	104	MEAS. DEPTH																						
	GEOLOG				-																				
	38.											ffg,		_		<u>:</u>	حندجر		<u>.</u>	<u></u>					
	ents Thereof; Cored Intervals; and all drill-stem tests, including Open, plowing and shut-in pressures, and recoveries	DESCRIPTION, CONTENTS, ETC.		USI NO. 1, 4890-4940 ; 10 , 32 , 00 , 121	Rec. 218' mud, 3202' fresh wtr. No GTS.	Sampler: 2100 cc fresh water.		DST No. 2, 6795-6840'; 10", 30", 60", 86"	Rec. 10' DM. Sampler: 2240 cc mud, no gas		DST No. 3, 7130-7224'; 10", 30", 60", 90"	No GTS. Rec. 485' HGC mud. Sampler: 1.43	1800 cc HGC mud.		DST No. 4, 7450-7503'; 10", 30", 30", 60"	Rec. 20' DM. No oil, wtr. or gas. Sampl	1350 cc mud,		DST No. 5, 8402-8465'; 10", 30", 90", 180	Rec. 94' HGC mud, 633' HGC sulfur wtr.	Sampler: 2000 cc sulfur wtr., .2 cfg.				
	OSITY AND CONTE ISED, TIME TOOL	BOTTOM														•									
	US ZONES: INT ZONES OF POR ESTED, CUBRION L	TOP		80/1	2230	2318	2804	3158	3312	4094	4915	5342	5503	5824	5978	6088	6756	0069	7122	7274	7708	8054	9288	9306	9690
	37. SUMMARY OF PORO SHOW ALL IMPORT DEPTH INTERVAL T	FORM ATION		Cedar Mountain	Buckhorn	Morrison	Summerville	Curtis	Entrada	Carmel	Navajo	Kayenta	Wingate	Chinle	Shinarump	Moenkopi	Sinbad	L. Moenkopi	Kaibab	Toroweap	Elephant Canyon	Mississippian	Ouray	Maxfield	Ophir

CHANDLER & ASSOCIATES, INC. LAWRENCE STATE 15-1 EMERY COUNTY, UTAH

Ву

L. A. (Larry) Prendergast 187 Reta Drive Grand Junction, Colorado 81503 (303) 245-3921 CHANDLER & ASSOCIATES, INC.

LAWRENCE STATE 15-1

EMERY COUNTY, UTAH

RECEIVED	
OCT 3 1984	
DIVISION OF OIL GAS & MINING	

By

4

9,1**4**

L. A. (Larry) Prendergast 187 Reta Drive Grand Junction, Colorado 81503 (303) 245-3921 L. A. PRENDERGAST

Grand Junction, Colorado 81503 (303) 245-3921

WELL DATA SUMMARY

LAWRENCE STATE 15-1

EMERY COUNTY, UTAH

WILDCAT

CHANDLER & ASSOCIATES, INC.

SW/4 SE/4 Sec. 1, T18S, R8E

Well Name:

Operator: Location:

Province:

Area:

Drilling Contractor:

Elevation:

Depth Logged:

Well Status:

Casing Program:

Mechanical Logs Run:

LOFFLAND BROTHERS	5
GR 5726'	
KB 5745'	
9734'	
Plugged and Abang	doned
13 3/8" @ 1690'	
FDC/CNL	Surface - TD
Sonic	Surface - TD
DIL	Surface - 1684
DLL	1690 - TD
Dipmeter	4500 - TD

D.S.T.:

Mudlogging Company:

Analex - Denver, Colorado

5 Total - DST Reports

Geologist:

L.A. Prendergast - Grand Junction, Colorado

FORMATION TOPS

FORMATION	PROGNOSIS	SAMPLE	ESTIMATED TOP	E-LOG	SUBSEA LOG
Ferron	940		970	978	<u></u>
Marker #1	1300		1323	1323	المودي نيوين عوري
Marker #2	1550		1555	1582	
Dakota	1600		1632	1632	
Cedar Mountain	1660		1713	1707	
Buckhorn	2315	······································	2228	2230	
Morrison	2380		2327	2318	
Summerville	2760	<u></u>	2823	2804	
Curtis	3110		3158	3158	<u></u>
Entrada	3360		3355	3312	-
Carmel	4060		4087	4094	
Navajo	5060		4896	_4892	
Kayenta			5338	5342	
Wingate			5505	5503	
Chinle	6000	·	5823	5824	
"Shinarump"			5978	5978	
Upper Moenkopi	6290		6085	6088	
Sinbad	6890		6795	6792	
Lower Moenkopi	7040		6924	6900	
Kaibab	7310		7130	7122	
Toroweap	7420		7260	7262	
Elephant Canyon	7890		7774	7708	
Mississippian	8240		8048	8054	
Mississippian Perosity	8440		8410	8412	

FORMATION TOPS

FORMATION	PROGNOSIS	SAMPLE	ESTIMATED TOP	E-LOG	SUBSEA LOG
Mississippian Shale Marker	9040		Not Seen	8858	
Ouray	9440		9297	9288	
Maxfield	9530		9323	9306	
Ophir	9840		Not Seen	9690	•
			In Samples		
					
<u></u>					<u></u>
			<u></u>		
	·····	······			
					
	·				
<u></u>					
		·····			61 - 19 - 19 - 19 - 19 - 19 - 19 - 19 -
	<u></u>				<u></u>
			<u></u>		• <u>••</u> •••••••••••••••••••••••••••••••••
		<u></u>			
					
·····					
					

DEVIATION	SURVEYS
the second se	

Deviation surveys after surface casing

DEPTH	SURVEY	CHANGE
70	1/2°	
189	3/4°	+1/40
350	<u>1°</u>	+1/40
_440	<u>3/4</u> °	<u>-1/4°</u>
963	<u>1/2°</u>	<u>-1/4°</u>
1119	<u>1°</u>	+1/2°
1659	30	+2
1755	30	0
1845	<u>2 3/4</u> °	<u>-1/4°</u>
1970	<u>2°</u>	<u>-3/4°</u>
2156	10	<u>_l°</u>
2375	3/4°	<u>-1/4°</u>
2524	<u>l</u> °	+1/40
3004	4 1/2°	+3 1/20
3220	<u>4 3/4°</u>	<u>+1/4°</u>
3270	<u> </u>	<u>+1/4°</u>
3336	<u>4 3/4°</u>	<u>-1/4°</u>
3365	50	+1/40
3402	<u> </u>	0
3467	4 3/4°	<u>-1/4°</u>
3592	50	+1/40
3712		
3762	50	0

DEVIATION SURVEYS

. . . .

Deviation surveys after surface casing

DEPTH	SURVEY	CHANCE
3832	50	0
4030	<u>5°</u>	0
4200	<u>5 3/4°</u>	+3/40
4245	5 3/4°	0
4302	5 1/4°	-1/2°
4361	4 3/4°	_1/2°
4490	<u>4 1/2°</u>	-1/4°
4608	6°	+1 1/2°
4670	5 3/40	<u>-1/4°</u>
4763	<u>5 1/2°</u>	<u>-1/4°</u>
4860	<u>5 3/4°</u>	+1/4°
4920	5 3/4°	0
4963	<u>5 1/2°</u>	_1/4°
5154	<u>4 1/2°</u>	
5517	4 3/4°	+1/4°
BEGIN SIDETRACK #1		
4494	<u>5° S 73°</u> W	<u>Orientation</u> Survey
4519	<u>5° S 63°</u> W	
4551	<u>3 3/4°</u> S 54° W	
4582	<u>2 1/4°</u> S 38° W	
4644	<u>1 3/4°</u> S 11° E	
4737	3 1/4° S 15° E	
4828	<u>3 1/2°</u> S 26° E	

DEVIATION SURVEYS

Deviation surveys after surface casing

DEPTH	SURVEY	CHANGE
4891	<u>3 3/4°</u> S 24° E	
5420	3° S 37° W	
5803	3 1/2°	+ 1/2
6132	1 3/40	_1 3/40
6810	3 1/40	<u>+ 1 1/2</u> °
7184	30	<u>-1/4°</u>
7363	30	<u>0 · </u>
7503	2 1/20	<u>-1/2°</u>
7596	<u>2°</u>	<u>-1/2°</u>
7676	<u>1 3/4°</u>	<u>-1/4°</u> .
7893	1 3/40	0
8268	1 1/20	- 1/4°
8465	<u>1/4°</u>	<u>-1 1/4°</u>
8831	1 3/40	<u>+1_1/2°</u>
9271	3/40	<u>_l°</u>

								BIT R	ECORD											
	OP E R	ATOR	Cha	Indler	& Asso	ciates	5		LL NAME:	Lawre	ence	Ste		LOCA	TION	NO	:		15-1	
	соит	FRACT	0 R :	offla	nd Bros		RIG#:		AREA:	Sec	<u>1,T</u>	<u>185, F</u>	8E	STA	TE/C	OUN	TY	<u>Er</u>	mery County, Utah	
ł	RIG	MAKE	& MODE	EL:	<u>U-40</u>			S U	RF CSG:			. INT.	CSG:_					P	ROD CSG:	<u> </u>
	NO 1	PUM	P, MAKI	E & M(DDEL: _		D-700					•	SPI	UD DA	TE : _	15	May	/ 84	4 G.L.: <u>5726</u>	
	<u>NO 2</u>	PUM	P, MAK	E & M	0DEL:		DB-70	0					T	.D. (DATE	10	Aug]. {	<u>В4</u> к.в.: <u>5745</u>	
	BIT NO.	SIZE	MAKE Type	JETS	BIT SER.NO.	DEPTH OUT	FEET	HOURS	ACCUM. HOURS	WT. M.	RPM	VERT. DEV.	P U M P P S I	MU WT.	D E VIS	<u>З I Т</u> Т	. СО В	N D. G	REMARKS	(
	1	12 1	Reed S13G	14,14 13	L34901	729	697	24 <u>1</u>	24 1	10/ 20	80/ 100		500	ppg. 8.6						
	2	12 1	Reed S136	18,18 18	L 34951	1087	358	16 1	41	10/ 30	60/ 70		500	8.6						
	3	12 1	HTC X33	20,20	XB085	1656	569	<u>58</u> 불	99]	30/ 35 307	60/ 80 607	30	200/ 500	8.8		4	5	1/ 8		<u> </u>
	_4	12 1	X44	16	ZP687	1689	33	5	104 1	35	70		200	8.9		2	2	I		
	IA	17 <u>1</u>	R93	16	2060R	975	928	45	149 1							_6	6	1"		
	<u>2A</u>	17 1	HO	16,16 16	RB4071	1080	105	22 3/4	171 1											
	_5	17]	4.1S	18,18	SAH097	1615	535	67	239 1	35	70		850	8.9		4	6	8		<u> </u>
	6	17 1	HTC X33	16,16 <u>16</u>	P 1326	1690	75	9]	248 3/4											-(
	7	8 3/4	Reed FP53A	14,14 14	A26150	2400	710	55	303 3/4	40	94		700			6	5	<u>1</u> 4		<u> </u>
	8	8 3/4	Reed HPM	13,13	JH17111	2534	134	11	314 3/4					<u> </u>		7	6	1/8		
	9	83/4	Sec M90F	¹⁴ 14	177789	3004	470	41	355 3/4							2	2	Ι		
	10	83/4	Reed FP53A	14,14 14	E80745	3365	361	37 1	393 1							2	2	I		
	11	8 3/4	SEC M44N	14,14 14	182742	3405	40	111	404 3/4	15/ 	100		800			_5_	3	I.		
	12	8 3/4	Reed FP53A	14,14 14	A26318	3762	357	37 1	442	32/ 35	100	 		ļ		5	4	1		
	<u>13</u>	8 3/4	HTC 133H	13,13 13	E8050	424	483	50]	492 <u>급</u>	404	6		850			4	4	I		

.

.

7

								BITR	ECORD											
	OPEF	RATOR	: <u>Cha</u>	andlei	r & Asso	ociate	<u>s</u>	W E	LL NAME:	Lawr	ence	State	2	LOCA	TION	NO	:	1	5-1	
	CON	TRACT	OR :	Loff]	land Bro	os	.RIG#:		AREA:		·			STA	TE/	COUN	ŧTY			
	RIG	MAKE	& MODE	EL :			<u></u>	S U	RF CSG:			_ INT.	CSG:_					P	ROD CSG:	
	NO 1	L PUM	P, MAK	E & M	ODEL: _				•				SPt	ÌD DA	TE:				G.L.:	<u> </u>
	NO 2	2 PUM	P, MAK	E & M	ODEL: _								T	.D. (DATE	:			К.В.:	
	BIT NO.	S I ZE	MAKE Type	JETS	BIT SER.NO.	DEPTH OUT	FEET	HOURS	ACCUM. HOURS	WT. M.	RPM	VERT. DEV.	P U M P P S I	MU WT.	D VIS	BIT T	. СО В	N D. G	REMARKS	(
	14	8 3/4	HTC J33H	13,13	DR972	4940	695	69 1	562	40/ 45	70		850	ppg.		4	5	I		
	15	8 3/4	Sec M84F	13,13 13	161648	5517	577	39	601	Stuc	k at	5517	Plug	back	and	l si	det	rac	k	
	1 <u>6</u>	8 3/4	Reed FP53A	$\frac{4414}{14}$	A26053	4529	Dres	s cemer	t for Dy	na Dr	ill	and S	detra	k bi	t					
	17	8 3/4	Chris MD435T		010975	2 4615	86	30	631	5/ 			1000	Diam	ond	Sid	etr	ack	Bit	
RR	18	8 3/4	_ <u>RR#16</u> FP53A	14,14 14	A26053	5459	844	84 3/4	715 3/4	207 35	70		700			6	4	14		
	19	8 3/4	STC F-4	13,13 13	HA4786	5835	376	50)	766 1	35/ 40	70		900			8	4	16	[
	20	8 3/4	STC F-5	3,13 13	EK1638	6132	297	49 }	815 3/4	40	60	1 3/4	950	9.1	50	4	3	1/ 16		
	21	8 3/4	Reed FP67	13,13 13	952501	6738	606	74 ‡	890	45	60	3 3/4	950	9.2	50	2	2	1		_
	22	8 3/4	HTC J33H	13,13 13	EB159	6840	102	12	902	40	65	3 1/4	950	9.2	50	INC				
	23	RR 🖌	22	13,1	EB159	7220	486	56]	9581 <u>s</u>	40 <i>5</i>	65	30	900	9.3	47	5	4	I		
	24	B 3/4	SEC M84F	13,1	161249	7363	143	18	976]	45	65	30	1000	9.2	45	Lo	st	2 c	ones – 3 nose tips	
	25	B 3/4	HTC J-55R	3,13	DM491	7440	77	12 1	989	45	50		1000	9.2	45	8	4	$\frac{1}{2}$		
	26	B 3/4	HTC 1-77	13,1	DP 502	7503	63	9 1	998 1	48	45	21	1050	9.1	47	6	4	1	·	
	27	в <i>3/4</i>	Reed FP83.1	13,1 13	T58409	7615	112	18 1	1017	45	50	20	1100	9.1	47	вт	E	1/8		
	2 <u>8</u>	B 3/4	SEC H100F	13,1 13	165680	7704	89	18	1035	45	45	1,3/4	1100	9.1	49	5	7	l_1		

•

œ

OPE	RATOR	•					W E	LL NAME:					LOCA	TIO	N NO):		
CON	TRACT					RIG#	•	ARFA					ST	ATE /	, C 011		,	
RIG	MAKE	8 MODI	F1:				 	RE CSG.			INT	<u> </u>	5.					
			с о м	0.051			30				- INT.						'	
NO	I PUM	Р, МАК	E&M	ODEL: _								SP	יט טט	41E:				G.L.:
NO	2 PUM	P, MAK	E & M	ODEL:								1	r.D.	DATE	:			<u> </u>
BIT NO	IS I ZE	MAKE Type	JETS	BIT SER.NO.	DEPTH OUT	FEET	HOURS	ACCUM. HOURS	WT. M.	RPM	VERT. DEV.	PUMP PSI	WT.	VIS	T T	. СС В	G N D	REMARKS
29	8 74	Reed	13,13	015071	7770	75	101	10541	40	50	11	1000	ppg.	40	ВŢ	ş	,	
<u></u> 3∩	83/4	Reed FP62B	13,1 13,1	890826	7949	166	<u>⊥22</u> 30 1	1024 <u>2</u>	40	457 50	13	1000	9.1	42	B1 5	5 F	17 16	
<u></u> 31	83/4	Reed FP62B	12,12	168/189	828	1 335	46 3/4	1131 3/4	40	55	11	1200	9.2	48	8	[1/	6
<u>32</u>	8 3 4	Reed	12,12	H69137	8465	185	15	1146 3/4	40	55	1	1200	9.2	48	BT 3	2	I	
33	8 3/4	Sec M89F	12,12 13	165159	8842	377	30	1176 3/4	40	55	1 3/4	1250	9.2	50	ВТ 5	6	1	
34	8 3/4	Sec M89F	13,13	165144	9301	459	46	1222 3/4	40	55	3/4	1250	9.2	49	5	4	12	6
35	8 3/4	Sec M90F	13, 3 13	177787	9728	427	51 1	1274 1	45	495	1 3/4	1200	9.2	50	4	6	1	· · · ·
	<u> </u>		1							ļ	ļ					 		· · · · · · · · · · · · · · · · · · ·
	<u> </u>		 		ļ					<u> </u>	· ·	ļ				┨	ļ	
<u> </u>																+	<u> </u>	<u> </u>
<u> </u>																╀	-	1
						 					 					┢	+	
<u></u>												<u> </u>		+	+	+		
		ļ		1			<u> </u>		<u> </u>				-		+	+		
	<u> </u>	<u> </u>	<u> </u>	1	<u> </u>	<u> </u>	<u> </u>	<u> </u>	1		<u> </u>	<u> </u>	1	1	1		<u> </u>	

•

	COMPANY	Chandler	& Associat	tes, Inc.				
	WELL NO.	Lawrence	State 15-1	1		<u></u>		
	LOCATION							
						ZO	NE OF INTER	REST NO.
INTER	VAL: From	4899	To49	940				
DRILL	. RATE: Abv	6-8 m/ft	Thru	1 1 – 2 m	/ft.			Below
MUD	GAS-CHROMATO	GRAPH DATA						
Ĺ		TOTAL	C ₁	C ₂	C ₃	C4	C ₅	OTHER
	Before	16	trace					
	During	19	trace				· · ·	
	After	11	trace					
	Type gas incr	ease: Gradual C	🗴 Sharp 🗔					
	Gas variation	within zone: S	teady 🖾 🛛 I	Erratic 🗖	Increasing 🗔	Decreasing		
CARB	IDE HOLE RATIO	GRAMS READING	X Min. in Pe	ak =		Sensi	ivity: Poor 🖾	Fair 🖾 🛛
FLUO	: Mineral None Poor Z	Even 🖾 % in total s	Spotty C ample <u>80</u>	J 	CUT:	None 🗆 Poor 💹 Fair 🗔	Streaming Slow [Mod [
	Fair ∟ Good □	% in show COLOR:	ithology yellow					 yellow
STAIN	I: None 🗖 P	oor 🖾 🛛 Fair 🗆	🗆 Good 🗖	Live 🗖	Dead 🗔 Res	idue 🗖 🛛 Ev	en 🗆 Spott	y 🗆 Lt. 🖾
PORO	SITY: Poor 🖾	Fair 🖾 🛛 Go	ood 🗖 Kind	Intergr	anular, tr	<u>ace fract</u>	ure	
LITHO	DLOGY SS wh	, clr, vf-f	`g subrdd,	p-m cem,	calc. 10	% w/brn s	tain; 80%	yel fluo;
mode	erate slo yel	cut w/yel	<u>residue r</u>	ing		SAMPLI	E QUALITY	_good
NOTI	FIED Bob Le	nt		@		HRS. DAT	E: <u>19 June</u>	. 1984

	COMPANY	Chand1	er & Asso	ciates, Ind	2			
	WELL NO.	Lawren	ce State	15-1				
	LOCATION							
						ZO	NE OF INTER	EST NO
INTE	RVAL: From 6	5807	To6	834	_			
DRIL	L RATE: Aby6	m/ft.	Thru	4 m/ft.		, ii	F	Below_7-8 m
MUD	GAS-CHROMATO	GRAPH DATA						
		TOTAL	C ₁	C ₂	C3	C4	C ₅	OTHER
	Before	17	1.30	trace				
	During	34	9.6u	1.4u	.6u			
	After	14	1 30	trace			· · ·	
					L	L		
	Cas unsisting			E-matic 🗖 In		Decreasing	-	
		GRAMS				Sonoit		Fair 🗖 🖸
CAR	BIDE HOLE RATIO	READING	X Min. in Pe	ak =		Jens	Streeming	·
FLU	0: Mineral None	ليا Even % in total :	ample <u></u>		v F	Poor		נ
	∨ Poor 🖾 Fair 🗖	% in show	lithology	10	l C	Fair 🛄 Good 🗖	Fast]
	Good	COLOR:	weak yel				COLOR	weak yei
STA	IN: None 🗆 Po	oor 🔽 Fair 🕻] Live 🗆 D	Dead 🖾 Resi	due 🗔 🛛 Ev	en 🗖 Spotty	🔽 Lt. 🗆
POR	OSITY: Poor 🖾	Fair 🗖 🛛 G	ood 🗔 Kin	dInterc	rystalline	fracture	<u>. </u>	
LITH	HOLOGYLS 1t.	gry micro	-vfxln ar	g, dolomit	ic microsa	crosic w/	/dk brn-blk	stain.
	poor weak yel	fluo & cut				SAMPLE	QUALITY_9	ood

ZONE DESCRIBED BY _____ L. A. Prendergast

	OMPANY	Chandler &	& Associat	es, Inc.	· · · · · · · · · · · · · · · · · · ·			
w	ELL NO	Lawrence S	State 15-1					
L	OCATION		<u></u>			<u></u>		
						ZON	E OF INTER	est no. <u>3</u>
INTERVA	L: From		То					
DRILL RA	TE: Abv		Thru	<u> </u>			1	Below
MUD GAS	-CHROMATOG	RAPH DATA						
		TOTAL	C1	с ₂	C ₃	C4	C5	OTHER
Bef	ore		RECIABLE	AS INCREA	SE			
Du	ring	10 - 12	2 UNITS BA	CKGROUND	GAS			
							······································	
Alt		<u> </u>			1			.I
CARBIDE	Gas variation w	Vithin zone: Sto GRAMS READING	eady 🗔 🛛 Ei X Min. in Pea	rratic 🖪 🛛 II	ncreasing 🗖	Decreasing ⊂ Sensitiv	ity: Poor	Fair 🗖 G
CI IIO	Mineral None Poor Fair	Even 🗔 % in total sa % in show li	Spotty 🗖	······	CUT:	None 🙀 Poor 🗀 Fair 🗀 Good 🗔	Streaming Slow C Mod C Fast C COLOR:	
FLUO:	Good 🗆	COLOR:						
FLUO: STAIN:	Good None Poo	or 🗔 🛛 Fair 🖾] Good 🖾	Live 🗔 🛛	Dead 🖾 Re	sidue 🔯 Ever	n 🗔 Spotty	🗆 Lt. 🗖
FLUO: STAIN: POROSIT ¹	Good 🗆 None 🗆 Poo Y: Poor 🗔	or 🗀 Fair 🖾 Fair 🗔 God] Good 🖾 od 🗔 Kind	Live 🗆 I	Dead &X Re	sidue 🖾 Even e, fracture	n 🗆 Spotty	🗆 Lt. 🗆
FLUO: STAIN: POROSIT ^V LITHOLO	Good None Poor Y: Poor GY <u>LS 1t</u>	or I Fair K Fair Goo gry slty,] Good [] od [] Kind sdy dolom	Live 🗆 I 	Dead XX Re rystalling o crm, wh	sidue 🖾 Even e, fracture cryptoxln	n □ Spotty -microxln	Lt. U
FLUO: STAIN: POROSIT LITHOLO 	Good None Poor Y: Poor GY LS 1t	or I Fair K Fair I Goo gry slty,] Good 🖾 od 🗆 Kind sdy dolom	Live 🗆 I	Dead 🖾 Re cystalline c crm, wh	sidue 🖾 Even e, fracture cryptoxln SAMPLE	n 🗆 Spotty -microxln QUALITY	Lt. W/abn dead
STAIN: POROSIT LITHOLO 	Good None Poor Y: Poor GY LS 1t n Bob	or I Fair K Fair Go gry slty, Lent] Good 🖾 od 🗆 Kind sdy dolom	Live [] I Interc: nity, Dolo	Dead &X Re cystalling crm, wh	esidue 🖾 Even cryptoxln SAMPLE HRS. DATE	m	Lt. w/abn dead good Ly 1984

		Chandre	1 a ASSUC	lates, inc	•				
	WELL NO.	Lawrenc	e State 1	5-1					
	LOCATION			······································					
						ZON	E OF INTER	REST NO. <u>4</u>	
INTE	RVAL: From	7456	To74	.91	_				
DRILI	L RATE: Aby 9-	13 m/ft	Thru	5-11 errat	ic		· · · · · · · · · · · · · · · · · · ·	Below	
MUD	GAS-CHROMATO	GRAPH DATA							
[TOTAL	C ₁	C ₂	C ₃	C4	C ₅	OTHER]
	Before	10	trace					1.8-2.5	
1									
	During	22	1.6u	trace				1.5u	-
	During After Type gas incre Gas variation	22 case: Gradual 2 within zone: St	1.6U	trace	creasing 🗔	Decreasing □]	1.5u	
. CARB	During After Type gas incre Gas variation BIDE HOLE RATIO D: Mineral None	22 ase: Gradual 2 within zone: So : GRAMS : READING Even % in total s	L.6U Sharp C teady C I X Min. in Pe Spotty C ample trac	trace Erratic I In- ak =	creasing CUT:	Decreasing Sensitiv None Poor	rity: Poor	1.5u	
CARB FLUO	During After Type gas incre Gas variation BIDE HOLE RATIO D: Mineral None X Poor X Fair C Good C	22 ase: Gradual 2 within zone: Si GRAMS : READING Even % in total s % in show 1 COLOR:	L.6U Sharp teady X Min. in Per Spotty ample <u>trac</u> thology <u>t</u>	trace	creasing CUT:	Decreasing Sensitiv None Poor Fair Good	I streaming V Slow (Mod (Fast (COLOR:)	Fair C G	
CARB FLUO STAIN	During After Type gas incre Gas variation BIDE HOLE RATIO D: Mineral None X Poor X Fair C Good C	22 ase: Gradual 2 within zone: Su within zone: Su GRAMS Even % in total s % in show COLOR: bor Fair	1.6u Sharp teady X Min. in Per Spotty ample trace ithology yel-blu Good	trace Erratic I in ak = in in <td>creasing CUT:</td> <td>Decreasing Sensitiv None Fair Good tidue Even</td> <td>ity: Poor Streaming V Slow (Mod (Fast (COLOR:) n Spotty</td> <td>1.5u Fair 🗆 G</td> <td></td>	creasing CUT:	Decreasing Sensitiv None Fair Good tidue Even	ity: Poor Streaming V Slow (Mod (Fast (COLOR:) n Spotty	1.5u Fair 🗆 G	
CARB FLUO STAIN PORO	During After Type gas incre Gas variation BIDE HOLE RATIO D: Mineral None X Poor X Fair C Good C N: None Poor	22 ase: Gradual 2 within zone: Su within zone: Su ase: GRAMS CRAMS Even % in total s % in show 1 COLOR: bor Fair GRAMS COLOR: Fair GRAMS	1.6u Sharp Sharp teady X Min. in Personal Spotty ample trac ithology yel-blu Good wood	trace Erratic Innak = ak = Live I D dPossibl	creasing CUT:	Decreasing Sensitiv None Poor Fair Good idue Even	Tity: Poor Streaming V Slow (Mod (Fast (COLOR: n Spott	1.5u Fair C G	
CARB FLUO STAIN PORO LITHO	During After Type gas incre Gas variation BIDE HOLE RATIO D: Mineral None Poor Fair Good N: None N: None Poor COSITY: Poor COSITY: Poor COSITY: South,	22 ase: Gradual 2 within zone: Si GRAMS Even Even K in total s % in show 1 COLOR: por Fair Grams GRAMS COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR: COLOR:	1.6u Sharp teady X Min. in Per Spotty ample <u>trac</u> ithology <u>trac</u> ithology <u>trac</u> ithology <u>trac</u> bod Good Kind Subang-Su	trace Erratic Innak = ak = Ce Live I D d Possibl ubrdd m cem	creasing CUT:	Decreasing Sensitiv Sensitiv None Poor Fair Good C idue Even re.	ity: Poor Streaming V Slow C Fast C COLOR: n Spott tr. yel-t	1.5u Fair □ G □ □ □	
CARB FLUO STAIN PORO LITHO	During After Type gas incre Gas variation BIDE HOLE RATIO D: Mineral None X Poor X Fair C Good C N: None Poor C OSITY: Poor C HOLOGY SS wh,	22 ase: Gradual 2 within zone: Si GRAMS : READING Even % in show 1 COLOR: fair Fair Grair Color	1.6u Sharp Iteady Iteady X Min. in Person Spotty ample trac ithology Iteady Good King subang-su	trace Erratic Innak = ak = Crace Live I D d Possibl ubrdd m cen	creasing CUT:	Decreasing Sensitiv None Fair Good tidue te. v scant	ity: Poor Streaming V Slow (Fast (COLOR:	1.5u Fair G Dale y Lt. Dalue plue plue plue good	

COM	PANY	Chandler	& Associ	ates, Inc.				<u> </u>
WELI	L NO	Lawrence	State 15	5-1				<u> </u>
LOCA	ATION						<u></u>	
						ZON	E OF INTER	EST NO5
NTERVAL:	From <u>84</u>	00	<u>To84</u>	165				
DRILL RATE	: Abv <u>7-</u>	9 m/ft.	Thru	2-3; 2-5				Below
MUD GAS-CH	IROMATOG	RAPH DATA						
		ΤΟΤΑΙ		C ₂	C ₂	Ca	C۲	OTHER
Before		1-5	trace					C0 1.2
During	Max.	18	trace	trace				1.2
After	pe gas incre	ase: Gradual [Sharp 🗆			Decreasing	1	
After Ty Ga CARBIDE HO	ype gas incre as variation v DLE RATIO	ase: Gradual E within zone: S GRAMS READING	Sharp teady X Min. in Pe) Erratic 🗔 In eak =		Decreasing Sensitiv] ity: Poor	Fair 🗆 Go
After Ty Ga CARBIDE HO FLUO: Mi No Po Fa	ype gas increates variation volte RATIO	ase: Gradual [within zone: S : GRAMS : READING Even X % in total s % in show 1	Sharp teady X Min. in Pe Spotty iample lithology] Erratic 🖸 In eak =	CUT:	Decreasing Sensitiv None 🕅 Poor Fair Good Good	ity: Poor⊡ Streaming Slow □ Mod □ Fast □	Fair Go
After Ty Ga CARBIDE HO FLUO: Mi No Po Fa Go	ype gas increases variation volte RATIO	ase: Gradual [within zone: S : GRAMS : READING Even X % in total s % in show COLOR:	A Sharp teady X Min. in Pe Spotty sample lithology yel	Erratic In eak =	CUT:	Decreasing Sensitiv None X Poor Fair Good C	ity: Poor Streaming Slow (Mod (Fast (COLOR:	Fair Go
After Ty Ga CARBIDE HO FLUO: Mi No Po Fa Go STAIN: No	ype gas increases variation volte RATIO	ase: Gradual C within zone: S : GRAMS : READING Even X % in total s % in show COLOR: or X Fair C	Sharp Sharp teady X Min. in Pe Spotty Spotty ithology yel Good	Erratic In Eak = Live D Live	CUT: 1	Decreasing Sensitiv None X Poor Fair Good Good Ever	ity: Poor Streaming Slow Mod Fast COLOR: Spotty	Fair 🗆 Go
After Ty Ga CARBIDE HO FLUO: Mi No Fa Go STAIN: No POROSITY:	ype gas increates variation volte RATIO	ase: Gradual C within zone: S : GRAMS READING Even X % in total s % in show COLOR: or X Fair C Fair X Go	Sharp teady X Min. in Pe Spotty ithology yel Good Kin	Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state Image: Second state	CUT: 1 CUT: 1 Joead I Resi	Decreasing Sensitiv None 22 Poor Fair Good tidue Ever	ity: Poor Streaming Slow C Mod C Fast C COLOR: n C Spotty	Fair \Box Go
After Ty Ga CARBIDE HO FLUO: Mi No Fa Go STAIN: No POROSITY: LITHOLOGY	ype gas increases variation volte RATIO	ase: Gradual C within zone: S : GRAMS Even X % in total s % in show COLOR: or X Fair C Fair X Go n tan-1t br	Sharp teady X Min. in Pe Spotty ithology yel Good Kin Charpen Cryptox	Image: second	CUT: 1 CUT: 1 Dead I Resi	Decreasing Sensitiv None 🕅 Poor Fair Good tidue Ever	ity: Poor Streaming Slow C Mod C Fast C COLOR: a D Spotty	Fair □ Go
After Ty Ga CARBIDE HO FLUO: Mi No Fa Go STAIN: No POROSITY: LITHOLOGY	/pe gas increates variation volte RATIO	ase: Gradual C within zone: S : GRAMS READING Even X % in total s % in show COLOR: or X Fair C Fair X Go n tan-1t br	Sharp teady X Min. in Pe Spotty iample ithology yel Good Kin Cod Kin Cod Cod Kin Cod Cod Cod Cod Cod Cod Cod Co	Image: second	CUT:	Decreasing Sensitiv None X Poor Fair Good idue Ever re SAMPLE of	ity: Poor Streaming Slow C Mod C Fast C COLOR: n C Spotty QUALITY	Fair Go

DST #1 4895 - 4940

Formation: Navajo Hole Size: 8 3/4" Test Type: Conventional Dual Packer Johnston-Macco; Vernal, Utah Testing Company: Glenn Grimes 0 Rm. 65 @ 75 F Mud Properties: Wt: 8.9 Vis. 40 Water Cusion: None Top Cnoke: 1/8" Bubble Hose Bottom Choke: 15/16" Flow #1: 15 minutes Shut in #1: 32 minutes Flow #2: 60 minutes Shut in #2: 121 minutes Top Chart - Inside Bottom Chart - Outside 2331 IH 2302 IH 2297 FH 2265 FH 69-597 79-613 Flow #1 Flow #1 Shut in #1 1889 Snut in #1 1885 Flow #2 Flow #2 613-1524 608-1501 Snut in #2 1883 Shut in #2 1889 BHT 1230 0 218 drilling mud .65 @75 F Rec: Rw: 3202 Freshwater 10 @68oF Rw: Sample Chamber: 12psi

2100 cc water Rw: 10 @ 64oF

6795 - 6840 DST #2 Hole size: 8 3/4" Formation: Sinbad Test Type: Conventional Dual Packer Testing Company: Halliburton; Vernal, Utah Cliff Richards Mud Properties: Wt. 9.2 Water Cushion: None Bottom Choke: 3/4" Top Choke: 1/4" Flow #1 10 Shut in #1 30 Flow #2 60 Shut in #2 86 Bottom Chart - Outside Top Chart - Inside 3423 IH IH 3325 3358 3315 FH FH Flow #1 52 Flow #1 13 52-52 13-13 Shut in #1 Shut in #1 52 Flow #2 Flow #2 13 Shut in #2 52-52 Snut in #2 13-13 138oF BHT 0 8.5 @ 80 F 10' drilling mud. Rw: Rec: 0 Sample Chamber 2240 cc mud. Rm 8.5 @ 8 F

DST #3 7130 - 7224 Hole Size: 8 3/4" Formation: Kaibab Test Type: Conventional Open Hole Dual Packer Testing Company: Halliburton; Vernal, Utah Cliff Richards Mud properties: Wt. 9.2 Vis. 48 Bottom Choke: 3/4" Top Cnoke: 1/8" Flow #1 10 minutes Shut in #1 30 minutes 60 minutes Flow #2 90 minutes Snut in #2 Bottom Chart - Outside Top Cnart - Inside 3568 3491 IH IΗ 3568 FH 3436 FH Flow #1 135-148 Flow #1 41-35 Shut in #1 1713 Shut in #1 1640 Flow #2 175 - 243Flow #2 137-192 Shut in #2 1970 Shut in #2 1887 Highly gas cut mud. Rec: 485' Sample Cnamber: 1200 psi 1.43 ft3 gas 1800 cc mud. 0 Rm 1.1 @ 80 F Top: Middle: Rm 1.1 @ 800 F Rm 1.1 @ 800 F Bottom: Rm 1.0 @ 800 F Sampler:

Time: 0405 0407 0413 0415			Open t Blow t 2 psi Closed	ool o bo Too	with ottom	1/2 of	2 blow bucke.
0445			Open t	ool	with	4 "	blow.
0447	10 oz.		_				
0450	16 oz.						
0455	20 oz.						
0458	2 psi						
0503	2 Ī/2 psi						
0515	2 psi						
0520	l psi						
0530	14 ^{oz.}						
0535	12 1/2 oz.						
0540	$11 \ 1/2 \ \text{oz.}$						
0545	10 1/2 oz.	Closed	tool.				

DST #4 7450 - 7503 Hole Size: 8 3/4# Formation: Toroweap Test Type: Conventional Dual Packer Testing Company: Halliburton; Vernal, Utah Scott Pitt Mud Properties: Wt. 9.2 Top Cnoke: 1/8" Bottom Choke: 3/4" Flow #1 ll minutes Snut in #1 30 minutes Flow #2 30 minutes Shut in #2 60 minutes Bottom Chart - Outside Top Cnart - Inside 3645 ΙH 3627 IH FH 3541 FH 3672 53-53 Flow #1 42-56 Flow #1 Shut in #1 1704 Shut in #1 1714 Flow #2 Flow #2 66-66 42-42 Snut in #2 5 85 Shut in #2 636 BHT 1400 F Rec: 20' Drilling Mud Rm 1.2 @ 75 F Sample Cnamber: 2 psi 1350 cc mud Rm 1.2 @ 750 F

8402 - 8465 DST #5 Hole Size: 8 3/4" Formation: Mississippian Test Type: Conventional Dual Packer Testing Company: Halliburton; Vernal, Utah Cliff Richards Mud Properties: Wt. 9.2 Vis. 51 Top Cnoke: 1/4" Bottom Choke: 3/4" 10 minutes Flow #1 Shut in #1 30 minutes 90 minutes Flow #2 180 minutes Snut in #2 Bottom Chart - Outside Top Cnart - Inside 4188 IH IH 4077 4105 FH FH 3993 67-122 27-69 Flow #1 Flow #1 Shut in #1 3101 Shut in #1 3050 149-351 Flow #2 Flow #2 96-328 Shut in #2 3151 Shut in #2 3116 1590 F BHT 0 1.09 @ 85 F Rec: 94' Drilling mud Rm: 1.05 @ 80oF 633 Sulfur water Rm: Top: 1.03 @ 80oF Middle: 1.03 @ 80oF Bottom: .202 ft gas Sample Cnamber: 300 psi 3

BLOW DESCRIPTION

Time: Open tool with 1/4" blow increasing to 4" in 10 minutes Closed tool in 1008 1018 Open tool with 1" blow 1038 3^m blow 1043 7" blow 1048 5 oz. 1103 1108 7 oz. 8 oz. 1113 9 oz. 1118 9 1/2 oz. 1123 10 oz. 1128 10 1/2 oz. 1133 11 1/2 oz. 1138 12 oz. 1143 13 1/2 oz. 1148 14 1/2 oz. 1153 $15 \ 1/2 \ \text{oz.}$ 1158 16 1/2 oz. 1203 Closed tool in 18 oz. 1208

DA	ILY	REP	ORT

TEMP	SPUD	15 May 84	DAY	1	DATE		y 84
COMPANY	Chandler	& Associ	ates			· ·	
WELL	Lawrence	State 15	-1	·			
LOCATION	SW SE See	c.1 T185	R8E Ei	nery Count	y, UT		
DEPTH YEST	P	_TODAY_	50	Time_7	<u>.00am</u> FTC	18	FT/HR
OPERATION_	Drilling			;- <u></u> ;;;;;;;;;	·····		
BIT NO. <u>1</u>	TYPE Red	ed S-13G	IN <u>3</u>	2 OUT		_ FT	HRS
BIT NO	TYPE		IN	OUT		_ FT	HRS
WOВ	RPM	-75	_PP	SPM		_ LAG _	@
MUD	WT_8.6	_VIS32	W	LC	КРН_	C	LFE/CA_
SURVEYS							
*			GE	OLOGICAI			
FORM TOPS							
FORMATION]	Blue Gate	Shale				
LITHOLOGY							
					·····		······································
					······································		·····
MUD GAS		-	TG	BAC	KGROUND		
Zone of Inter	est No.		·.			@	To
Shows-Breaks	; 						
Depth	Lithology _	HW	CI	C2	C3 C4	4 <u>C5</u>	Flou
			<u></u>				
REMARKS:		· · · · · · · · · · · · · · · · · · ·			- 72		
		<u> </u>					
Called Bob I			6	263_0100		D =4 -	

TEMP	SPUD	DAY	2	DATE	16 May 8	4
COMPANY	Chandler & As	sociates				
WELL	Lawrence Stat	e 15-1				
LOCATION						
DEPTH YEST	. <u>50</u> TOD	AY <u>575</u>	Time6;	.00 FTG_	525	_FT/HR
OPERATION_	Drilling with	Bit #1				
BIT NO1		<u>3G</u> IN <u>32</u>	OUT _		FT	HRS.
BIT NO	TYPE	IN	OUT		FT.	HRS.
WOB 15/20	RPM 89	PP400		62	LAG 4	@ 381
MUD_513	WT <u>8.7</u> VIS_		<u> </u>	2 PH	9CL_10	00 x17312/CA_8
SURVEYS	70 - 1/2, 189	- 3/4, 350	- 1, 440 -	• 3/4		
					···· · ·	
<u></u>			<u></u>	•		
FORM TOPS		GEOI	JOGICAL			
FORM TOPS -			,			
FORMATION _	Blue Gate Sha	le			·	
LITHOLOGY _	Sh dk gry, dk	gry brn firm	n blocky s	slty calc.	w/tr foss	frag.
		****			· · · · · · · · · · · · · · · · · · ·	
					• • • • • • • • • • • • • • • • • • •	
MUD GAS		TG	BACK	GROUND	4 tr C1.	Ca
Zone of Inter	est No. _{None}		—	-	@	<u></u> Tö
Shows-Breaks						
Depth	Lithology HW	/ CI	C2 C	3 C4	C5	Flou
					- -	· · · · ·
REMARKS:	Dresser Atlas	- Roosevelt	(801) 72	2-3627		
	Carl Jones al	erted for Fr:	i. or Sat.			
						
Called Bob	Lent	@ 86:	3-9100		Date	

ТЕМР	SPUD1	5 May 84	_DAY	3	DATE_	<u>17 Ma</u>	ay 84	
COMPANY	Chandler	& Associat	es					
WELL	Lawrence	State 15-1		_				
LOCATION								
DEPTH YEST	•525	TODAY_7	29	Time	FTG_	204.	<u> </u>	FT/HR
OPERATION_	<u>Trip - re</u>	pair rig	· · · · · · ·		·			
BIT NO. 1	TYPE R S	<u>13 G</u> I	N <u>32</u>	_ OUT _	729	FT.	697	HRS. 27
BIT NO. 2	TYPE <u>rs</u>	<u>13 G</u> I	N <u>729</u>	OUT _		FT.	. <u></u> .	HRS
WOB	RPM <u>88</u>	P	P <u>450</u>	SPM	60	LAG		0
 MUD	_WT	VIS	WL_	СК	PH		CL	FE/CA
SURVEYS								
FORM TOPS			GEOL	OGICAL		***		
FORMATION	Blue Gate	Shale						•
LITHOLOGY	Sh dk gry	firm bloc	ky slty	calc, tr	foss fra	g		
MUD GAS		<u> </u>	TG	BACKO	GROUND	A		
Zone of Inter	est No.					@		То
Shows-Breaks	ـــــــــــــــــــــــــــــــــــــ							
Depth	Lithology	HW	CI	C2 C	3 C4	C	C5	Flou
							•	
REMARKS: _	Because s	tuck at 72	9 w/loss	s of retur	rns	<u> </u>		
	lost 1700	bbl mud;	stuck 12	2 hrs				
.	Call B. L	<u>ent at Fer</u>	ron top	779-013)			
Called <u>Bob</u>	Lent		@ 863	-9100		Date		

TEMP	SPUD	DA	Y4	DATE_	18 May	84
COMPANY	Chandler	& Associates				
WELL	Lawrence	State 15-1				<u></u>
LOCATION					<u> </u>	
DEPTH YEST.	729	TODAY 106	2Time	FTG_	333	_FT/HR
OPERATION	Drilling	with Bit #2				
BIT NO. 2	TYPE Ree	d s-13G IN 7	29 OUT		FT	HRS.
BIT NO	TYPE	IN	OUT		FT	HRS
WOB40	RPM70	PP_5	<u>00</u> SPM		LAG	@
MUD_1016	WT <u>8.7</u>	VIS 64	WL 9 C	K <u>2</u> PH	10.0 CL 40	0 \$TXEX/CA_
SURVEYS	936 - 1/2	0				
	· · · · · · · · · · · · · · · · · · ·					
			<u>.</u>		<u></u>	
		C	GEOLOGICAL	I		
FORM TOPS	Ferron					<u></u>
FORMATION _				•		
LITHOLOGY	Sh dk gry	firm blocky	slty calc			
	Ferron SS	it tan to lt	gry-brn to	lt gry vf	- fg subang	ſ
	subrdd M-	W cem calc w/	clay Matrix	abn dk min	incl.	
MUD GAS	10U CG	T	G BACI	GROUND	6-7	
Zone of Intere	est No.				0	То
Shows-Breaks	None					
Depth	Lithology	HW CI	C2	C3 C4	C5	Flou
REMARKS:	6:30 a.m.	Saturday				
		· · · · · · · · · · · · · · · · · · ·				
		• • • • • • • • • • • • • • • • • • • •			···· ····	
Called	Bob Lent	0	863-9	100	_Date	

TEMP	SPUD		_DAY_	5	DATE_	19 May	7 84
COMPANY	Chandler &	Associa	tes			. <u></u>	
WELL	Lawrence S	State 15-	1	······			
LOCATION_				· · · · · · · · · · · · · · ·		······································	3-5
DEPTH YES	T. <u>1062</u>	roday	1265	Time	FTG_	203	FT/HR
OPERATION	Drilling w	vith bit	#3				
BIT NO. 3	TYPE 12	<u>HTC X-3</u> 3	IN <u>1087</u>	OUT		FT	HRS
BIT NO2	TYPE s-13	3G	IN <u>729</u>	OUT	1087	FT. <u>358</u>	HRS. 16
WOB <u>35/40</u>	RPM	I	PP_550	SPM	50/50	LAG	@
MUD <u>1240</u>		VIS <u>66</u>	WL	<u>7</u> CF	KPH	9.5 CL 4	100 £XEX/CA_
SURVEYS	936 - 1/29)					
	1119 - 1°			- · · · · · · · · · · · · · · · · · ·			
		<u> </u>	<u> </u>	<u></u>	<u></u>		
FORM TOPS			GEO	LUGICAL			
FORM IUFS		······································					<u></u>
FORMATION			•			· · · · · · · · · · · · · · · · · · ·	
LITHOLOGY	SlTSN lt -	- M gry b	orn firm	- hd, li	te		
			····				
MUD GAS _			TG	BACK	GROUND	6-10	
Zone of Inte	erest No. <u>None</u>	2	<u></u>	_, • , , _ ,		0	To
Snows-Break		T T T 47	CI	<u> </u>		<u> </u>	
Deptn	LITHOLOGY		01	02 0	<u>5 04</u>	05	t 10U
	,	<u></u>	<u></u>				<u> </u>
REMARKS		······				,	
				<u> </u>			<u>.</u>
• <u>·</u> ···································				· <u>····································</u>			<u></u>
Called	Sob Lent		@ 303	3-779-013	0	Date	

TEMP	SPUD 15 May 8	4 DAY	6	DATE	20 May 84	
COMPANY	Chandler & Assoc	iates				
WELL	Lawrence State 1	5-1				
LOCATION						
DEPTH YEST.	<u>1265</u> TODAY	1417	Time	FTG_	152	_FT/HR <u>14_ft</u>
OPERATION	Drilling with Bi	t #3	11. <u>51.,*</u> 5			
BIT NO3	TYPE <u>X-33</u>	IN <u>1087</u>	OUT		FT	HRS
BIT NO	_ TYPE	IN	OUT		FT	HRS
WOB <u>30/35</u>	RPM60		SPM		LAG 10	@ 1130
MUD <u>1406</u>	VT <u>8.7</u> VIS <u>6</u>	oWL_	8 CK	2PH	9.5 CL 5	00 ¥£X85X/CA_80
SURVEYS						
		GEOI	OGICAL		· · · · · · · · · · · · · · · · · · ·	······································
FORM TOPS	، مَعْدَ الْعَالَيْنِ مَعْدَ الْعَالَيْنِ مَعْدَ الْعَالَيْنِ مَعْدَ الْعَالَيْنِ مَعْدَ الْعَالَيْنِ مَعْدَ ا			<u>. 24.2</u>		
FORMATION	Tunuck 1200+ B	ent #1 13	23			
LITHOLOGY	Sh dk arv firm b	lock sltv	w/occasion	al thin s	SS & SITSN	interlams
	$5726 \text{ GR} + 18\frac{1}{3} \text{ ft}$	to KB = K	B 5744.5			
MUD GAS		TG	BACKG	ROUND	6-7	
Zone of Intere	st No.		······································		0	То
Shows-Breaks						
DepthI	Lithology <u>HW</u>	CI	C2 C3	C4	C5	Flou
			<u> </u>			
KEMAKKS:	Lost returns 129	<u>1' - 100 b</u>	bl			
	131	<u>3' - 600 b</u>	pT			
Called Bob L	ent	@0	3-779-0130		Date	

TEMP	SPUD	DAY	7	DATE	<u>21 Ma</u>	ay 84
COMPANY	Chandler & A	ssociates				
WELL	Lawrence Sta	te 15-1				
LOCATION			·····		•	
DEPTH YEST	. <u>1417</u> TO	DAY 1600	Time	FTG_	183	FT/HR
OPERATION_	Drilling wit	h Bit #3	<u> </u>			<u></u>
BIT NO. 3		IN 1087	OUT	, , , <u></u>	FT	HRS.
BIT NO	TYPE	IN	OUT _		FT	HRS.
WOB <u>35/38</u>	RPM	PP_200	SPM	<u> </u>	LAG	@
MUD <u>1580</u>	_WT8.9+VIS	70 WL	. <u>6.2</u> CK	2 PH	<u>9</u> _CL	500 fxE /CA
SURVEYS						
		, 				<u></u>
		<u></u>	<u> </u>			
		GEO	DLOGICAL			Eloq
FORM TOPS			·			
FORMATION	Tununk Be	nt #2 1555		·····		
LITHOLOGY	Sh m-dk gry	firm-soft slt	y sl mgry	soft bent	ic	
	Measured:	.44 @ 78				
	RW	.25 @ 78 Fe .33 @ 78 Da	rron kota			
MUD GAS		TG	BACK	GROUND	6-10	
Zone of Inter	est No.				0	То
Shows-Breaks	S None					
Depth	_Lithology H	IW CI	C2 C	3 C4	C5	Flou
<u>*************************************</u>		. .			· · · · · · · · · · · · · ·	
REMARKS:	801-722-3627					
		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	·····
Called Bob I	lent	@	63-9100		Date	

	<u> </u>	-	DAIL	Y REPORT	\bigcirc		
TEMP	SPUD		DAY	8	_DATE_	22 May 84	
COMPANY	Chandler &	Associ	ates	<u>-</u>			
WELL				· · · · · · · · · · · · · · · · · · ·	<u></u>		
LOCATION				· · · · · · · · · · · · · · · · · · ·			<u></u>
DEPTH YEST	С. <u>1600</u> Т	ODAY_	1689	Time	FTG_		FT/HR
OPERATION_	Logging wit	th Dres	ser Atlas	5			•
BIT NO	TYPE		IN	OUT		FT	HRS.
BIT NO	TYPE		IN	OUT		FT	HRS
WOB	RPM	<u>.</u>	_PP	SPM		LAG	0
MUD		'IS	WL	СК	PH	CL_	FE/CA_
SURVEYS	5° 1659					Fer	ron 978
			<u></u>			Tur	unk 1200
		· · · · · · · · · · · · · · · · · · ·			<u> </u>	<u> </u>	<u>it #1 1323</u> it #2 1582
				·····		Dak	tota 1632
			GEO	LOGICAL			,
FORM TOPS	Dakota 1	632			·		
FORMATION	Dakota						····
LITHOLOGY	Drlr TD	1689				<u> </u>	
	SLM	1686				· · · · · · · · ·	
	Logger	1684					
MUD GAS			TG	BACKG	ROUND	6-7	
Zone of Inter	rest No					0	To
Shows-Break	s					•	
Depth	Lithology	HW	CI	C2 C3	C4	C5	Flou
REMARKS:	Logging To	ol FDC/	CNL Malf	unction	Ē	IL to	1684
·					F	DC/CNL	1684
					S	o Nic -	1679
Called <u>Bo</u>	b Lent		01	-800-521-24	59	_Date	
a .							

i
		\smile	DAIL	Y REPORT	\smile		
TEMP	SPUD_		DAY	9	DATE	23 May 84	1
COMPANY							
WELL							
LOCATION_		·····		·····			
DEPTH YEST	ſ	_TODAY_	······	Time	FTG_		FT/HR
OPERATION	Open hol	<u>e to 17]"</u>	·····	•	<u></u>		
BIT NO	TYPE		IN	OUT		FT	HRS
BIT NO	TYPE		IN	OUT		FT	HRS
WOB	RPM		PP	SPM		LAG	@
MUD	_WT		WL	CK	PH	CL_	FE/CA
SURVEYS							
FORM TOPS FORMATION	-						
LITHOLOGY		· · · · · · · · · · · · · · · · · · ·			·····		•
MUD GAS			TG	BACKG	ROUND		
Zone of Inte	rest No.			······		0	To
Shows-Break	s			•			
Depth	_Lithology _	HW	CI	C2 C3	C4	C5	Flou
REMARKS: _					·	· · · · · · · · · · · · · · · · · · ·	······

Geology Logging Mileage Exp.

30

۰.

COMPANY								
WELL		·····		····				
LOCATION								
DEPTH YEST	•	_TODAY_	940	Time	FTG_			_FT/HR
OPERATION_								
BIT NO	TYPE		IN	OUT		FT.		HRS
BIT NO	TYPE		IN	OUT		FT.		HRS
WOB	RPM		PP	SPM		LAG	- <u></u> · · · · ·	@
MUD	_WT	VIS	WL	СК	PH:		CL_	FE/CA
SURVEYS								
	·····							
				<u></u>		<i>,</i>		
			GEOI	OGICAL				
FORM TOPS							<u>.</u>	<u> </u>
FORMATION		·····			<u></u>	. <u></u>		
LITHOLOGY					•			
-								
			· · · · · · · · · · · · · · · · · · ·					
MUD GAS			TG	BACKG	ROUND			
Zone of Inter	est No.					_0	•.	_To
Shows-Breaks	S	<u></u>						
Depth	Lithology	HW	CI	C2 C3	C4	(25	Flou
					<u></u>			
REMARKS:								
				·		<u></u>		
Called <u>Bob</u>	Lent		@	863-9100		Date		
Geology		Loggin	g]	Mileage	-	E	xp

|--|

	SPUD_		DAY	11	DATE_	25 Ma	y 84
COMPANY							
WELL	. <u></u>	·			<u> </u>		
LOCATION							<u></u>
DEPTH YEST	•	_TODAY_		Time	FTG_		FT/HR
OPERATION_	Open hol	<u>e to 17‡</u> "					••••••••••••••••••••••••••••••••••••••
BIT NO	TYPE		IN	OUT	i	FT	HRS.
BIT NO	TYPE	·	IN	OUT	<u></u>	FT	HRS
WOB	RPM		_PP	SPM		LAG	@
MUD	_WT	_vis	WL	СК	PH	CL	FE/CA
SURVEYS							
		<u> </u>	GEO			····,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
FORM TOPS			GEO	LOGICAL			
							· · · · · · · · · · · ·
LITHOLOGY							
LITHOLOGY							· · · · · · · · · · · · · · · · · · ·
MUD GAS			TG	BACKG	ROUND		
MUD GAS	rest No.		TG	BACKG	ROUND	@	To
LITHOLOGY MUD GAS Zone of Inter Shows-Breaks	rest No		TG	BACKG	ROUND	_@	To
LITHOLOGY MUD GAS Zone of Inter Shows-Break: Depth	rest No s _Lithology _	HW	TG 	BACKG	ROUND	@ C5	To Flou
LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	rest No s Lithology _	HW	TG TG	BACKG C2 C3	ROUND	@ C5	To Flou
LITHOLOGY MUD GAS Zone of Inter Shows-Break: Depth REMARKS:	rest No s _Lithology _	HW	TG CI	BACKG	ROUND	@C5	To Flou
LITHOLOGY MUD GAS Zone of Inter Shows-Break: Depth REMARKS:	rest No s _Lithology _	HW	TG CI	BACKG	ROUND	@C5	To Flou

		\smile	DAILY	REPORT	\smile			33
TEMP	SPUD_		DAY	12	DATE_	26 M	ay 84	
COMPANY							<u></u>	
WELL	· · · · · · · · · · · · · · · · · · ·							
LOCATION								
DEPTH YEST		_TODAY_		Time	FTG_		FT/HR	
OPERATION_	<u>Open hol</u>	<u>e to 17;</u> ")					
BIT NO	_ TYPE		IN	OUT		FT	HRS	
BIT NO	TYPE	<u></u>	IN	OUT		FT	HRS	
WOB	RPM		_PP	SPM	<u>-</u>	LAG	@	
MUD	WT	VIS	WL	СК	РН	CL	FE/CA	
SURVEYS			• • • • • • • • • • • • • • • • • • •					
			GEOI	LOGICAL	·			
FORM TOPS _	<u> </u>	<u> </u>			···		······································	
FORMATION _								
LITHOLOGY _								
MUD GAS			тс	ВАСКО	ROUND		· · · · · · · · · · · · · · · · · · ·	
Zone of Inter	est No.	·- <u>··=·a·/////////////////////////////////</u>	1 (DACKO	ROOND .	@	То	
Shows-Breaks					<u>.</u>	_~	~ ~ <u></u>	
Depth	Lithology	HW	CI	C2 C3	3 C4	C5	Flou	

REMARKS:

 			<u></u>	<u></u>
Called	0	Date	;	
 Geology	Logging	Mileage	Exp	·····-

|--|

TEMP	SPUD_	·	DAY	13	DATE_	27 May	84
COMPANY							
WELL		····					
LOCATION	<u></u>						
DEPTH YEST	•	TODAY		Time	FTG_		FT/HR
OPERATION_	Open hol	<u>e to 17+</u>	•	<u> </u>			
BIT NO	TYPE		IN	OUT		FT	HRS
BIT NO	TYPE		_ IN	OUT _	<u></u>	FT	HRS.
WOB	RPM		PP	SPM		LAG	@
MUD	_WT	_vis	WL	СК	PH	CL_	FE/CA_
SURVEYS							
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · ·	<u></u>
	······································						
		•	GEO	LOGICAL			
FORM TOPS		<u> </u>				<u> </u>	
FORMATION							
LITHOLOGY							
				· · · · · · · · · · · · · · · · · · ·			
MUD GAS			TG	BACK	GROUND		
Zone of Inter	est No					0	To
Shows-Breaks	5						
Depth	Lithology	HW	CI	C2 C	C3 C4	C5	Flou
			- 32	,,,,_,_,,,,,,,,,,,,,,,,,,,,			
DEMADYC							
REWARNS:			<u>.</u>			<u></u>	
	. <u></u>						
Called			@			Date	
<u> </u>		T ·					

DΔ	$\mathbf{II}.\mathbf{V}$	$\mathbf{P}\mathbf{F}\mathbf{P}$	OPT
			OILT

ТЕМР	SPUD_		DAY	14	DATE_	28 May	84
COMPANY							
WELL			<u></u>				
LOCATION	<u></u>					<u> </u>	
DEPTH YEST	•	_TODAY_	<u></u>	Time	FTG_		FT/HR
OPERATION_	Open hol	<u>e to 17½</u> "	۱ 		<u> </u>		
BIT NO	TYPE	·	IN	OUT _	· · · · · · · · · · · · · · · · · · ·	FT	HRS
BIT NO	TYPE		IN	OUT		FT	HRS
WOB	RPM		_PP	SPM		LAG	@
MUD	wT	VIS	WL	СК	PH	CL_	FE/CA
SURVEYS							
FORMATION					······		•
FORMATION . LITHOLOGY							
		<u> </u>	ξ. β				
MUD GAS			TG	BACK	GROUND	· · · · · · · · · · · · · · · · · · ·	
Zone of Inter	est No				·····	@	To
Shows-Breaks		······································			<u>. </u>	., . .	
Depth	Lithology _	HW	CI	C2 C	<u>3 C4</u>	C5	Flou
REMARKS:							
Called			@			_Date	

			Dinib				
TEMP	SPUD		DAY	. 15	_DATE_	29 May	84 .
COMPANY				<u></u>			
WELL		<u> </u>					
LOCATION		<u></u>		<u></u>			
DEPTH YEST.	•	TODAY		Time	FTG_		FT/HR
OPERATION	Open hole	e to 17½'	', Run 13	3/8" Casine	g to 1690	0' (54.5	16ft)
BIT NO	TYPE		_ IN	OUT	<u></u>	FT	HRS.
BIT NO	TYPE		IN	OUT		FT	HRS
WOB	RPM	<u></u>	PP	SPM		LAG	@
MUD	WT	_vis	WL	СК	PH	CL_	FE/CA
SURVEYS							
FORM TOPS _	<u></u>	• 181914 ··· •					W
FORM TOPS _ FORMATION _		• 12 91 - • • • • • • • • •		•			······································
FORM TOPS _ FORMATION _ LITHOLOGY _							
FORM TOPS _ FORMATION _ LITHOLOGY _	, , , ,	· · · · · · · · · · · · · · · · · · ·		•			······
FORM TOPS _ FORMATION _ LITHOLOGY _ MUD GAS		· · · · · · · · · · · · · · · · · · ·	TG	BACKG	ROUND		
FORM TOPS _ FORMATION _ LITHOLOGY _ MUD GAS Zone of Intere	est No.		TG	BACKG	ROUND	@	To
FORM TOPS _ FORMATION _ LITHOLOGY _ MUD GAS Zone of Intere Shows-Breaks	est No.		TG	BACKG	ROUND	@	To
FORM TOPS _ FORMATION _ LITHOLOGY _ MUD GAS Zone of Intero Shows-Breaks Depth	est No Lithology _	HW	TG CI	BACKG C2 C3	ROUND C4	@	To Flou
FORM TOPS _ FORMATION _ LITHOLOGY _ MUD GAS Zone of Intere Shows-Breaks Depth REMARKS:	est No	HW	TG CI	BACKG C2 C3	ROUND C4	@ C5	To Flou
FORM TOPS _ FORMATION _ LITHOLOGY _ MUD GAS Zone of Intere Shows-Breaks Depth REMARKS:	est No	HW	TG CI	BACKG	ROUND C4	@	To Flou
FORM TOPS _ FORMATION _ LITHOLOGY _ MUD GAS Zone of Intere Shows-Breaks Depth REMARKS: Called	est No	HW	TG CI	BACKG	ROUND C4	@ 	To Flou

TEMP	SPUD_		DAY	16	DATE_	30 May	84
COMPANY			· · · · · · · · · · · · · · · · · · ·				
WELL				· · · · · · · · · · · · · · · · · · ·			
LOCATION				·			
DEPTH YEST	•	_TODAY		Time	FTG_		FT/HR
OPERATION_	Wait on ce	ement. Nir	B au elac	.O.P. Plug d	down @ 9:	:30 p.m.	29 May 84
BIT NO	TYPE	<u>.</u>	IN	OUT		FT	HRS.
BIT NO	TYPE		IN	OUT		FT	HRS.
WOB	RPM	·	_PP	SPM	<u></u>	LAG	0
MUD	_WT		WL	CK	PH	CL_	FE/CA
SURVEYS							
		·····					
FORM TOPS			GEO	LUGICAL			
		•					
FORMATION		······	÷				<u></u>
LITHOLOGY						·····	
							······
MUD GAS			TG	BACKG	ROUND		
Zone of Inter	est No					@	
Shows-Break	s				· . · · · · · · · · · · · · · · · · · ·		
Depth	Lithology	HW	CI	C2 C3	C4	C5	Flou
		···				<u></u>	
REMARKS: _		······································		······································			
				····			
Called Bob I	lent		a 800	0-521-2459		Date	

)-

DA	AILY	REPO	RT

TEMP	SPUD	•	DAY	17	_DATE_	<u>31 May</u>	84
COMPANY	Chandler	& Associa	ites	<u> </u>			
WELL	Lawrence	State 15-	·1				
LOCATION	· · · · · · · · · · · · · · · · · · ·	·····	• • =				
DEPTH YEST	•	TODAY_	1690	Time	FTG		FT/HR
OPERATION_	Finish Nipp	le Up; qo	in hole	w/8 3/4 bit	t. Mudlo	gger on	location
BIT NO. 7	Re TYPE FP	ed 8 3/4 53A	IN <u>1690</u>	OUT		FT	HRS
BIT NO	TYPE		IN	OUT		FT	HRS
WOB	RPM		PP	SPM		LAG	@
MUD		_vis	WL	СК	PH	CL	FE/CA
SURVEYS							
						· · · · · · · · · · · · · · · · · · ·	
<u></u>							
			GEO	LOGICAL			
FORM TOPS _			<u> </u>		·		
FORMATION		······	·				
LITHOLOGY							
			····				<u> </u>
MUD GAS			TG	BACKG	ROUND	·	
Zone of Inter	est No.				-	0	То
Shows-Breaks				•			·
Depth	Lithology _	HW	CI	C2 C3	C4	C5	Flou
REMARKS:					<u>.</u>		
Called		·			······	D - 4 -	
Called Bob	Lent		<u></u>	0-521-2459		Date	
Coologu		T	_		1/11		E

`

		15 May 8	<u>.</u>	TQ	U	A 1 C_		- 03
COMPANY	Chandle	r & Asso	ciates	<u></u>				
WELL	Lawrenc	<u>e State</u>	15-1					
LOCATION							······	<u></u>
DEPTH YEST	1690	TODAY_	1894	Time		FTG_	204	FT/HR
OPERATION_	Drilling	with Bit	<u>#7</u>					
BIT NO7_	Ree TYPE <u>83</u>	d /4 FP53A	IN_1690	טס	r		FT	HRS.
BIT NO	TYPE	·······	IN	00'	Г		FT	HRS.
WOB <u>20</u>	RPM70/	80	PP 600) SPN	160	<u></u>	LAG	@
MUD_ <u>1886</u>	WT_ <u>8.8</u>	VIS39	WI	. 8.4	СК <u>2</u>	_PH	9.5_CL	480 £X£ /CA
SURVEYS	1845 - 2	3/4						
	1755 3°	•						
	<u></u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>				
FORM TOPS	Cedar Mtr	a. 1713	GEO		····			
FORMATION _	Cedar Mtr	l						
LITHOLOGY _	Pred sh c	<u>irn-gry b</u>	entonet	ic w/thi	n ss &	sltsn	interbe	ds
Begin r	ed-brn, marc	on @ 180	0 '+. T	r dkgy l	s nodul	es an	d thin i	nterlams.

MUD GAS			ТG	BA	CKGRO	UND	4	
Zone of Inter	est No.					-	0	To
Shows-Breaks	None		<u>,</u>					
Depth	Lithology	HW	CI	C2	C3	C4	C5	Flou
•				······································				
• <u>•</u> ••••••••••••••••••••••••••••••••••		······					<u> </u>	
REMARKS:			<u> </u>		- <i>, .</i>		···· ··· ··· ··· ··· ··· ··· ··· ··· ·	
	<u></u>	· · · · · ·	······				<u></u>	<u></u>
		<u></u> ,						<u></u>
Called BO	b Lent		@ 8	00-521-2	459		Date	<u></u>

TEMP	SPUD	DAY	19	DATE_	2 June	84
COMPANY	Chandler & As	sociates				
WELL	Lawrence Stat	e 15-1				
LOCATION						·····
DEPTH YEST	. <u>1894</u> TOI	DAY 2215	Time	FTG_	321	FT/HR
OPERATION_	Drilling with	<u>1 Bit #7</u>				<u> </u>
BIT NO7	Reed TYPE_ <u>8_3/4_1</u>	<u>P53A</u> IN <u>169</u>	<u>o </u>		FT	HRS
BIT NO	TYPE	IN	OUT		FT	HRS
WOB <u>30/35</u>	RPM94	PP60	<u>o</u> SPM		LAG	@
MUD	_WTVIS	<u>39</u> W	L_ <u>7.6</u> _CK	PH	9.5 CL	420 £XE/CA_
SURVEYS	1970 - 2°					
	2156 - 1°					
	<u> </u>		····			<u></u>
		CE				· · · · · · · · · · · · · · · · · · ·
FORM TOPS		GE	OLOGICAL			
FORM IOFS			······	<u> </u>		
FORMATION	Cedar Mtn.				<u></u>	
LITHOLOGY	Sh varicolor	w/thin ss &	i	·		. <u> </u>
		<u>.</u>	<u></u>	·····		
MUD GAS		TG	ВАСК	GROUND	2	
Zone of Inter	est No				0	To
Shows-Breaks	None					
Depth	Lithology H	IW CI	C2 C	C3 C4	C5	Flou
			<u></u>		<u></u>	
REMARKS:						
	· · · · · · · · · · · · · · · · · · ·					<u></u>
Called <u>Bob L</u>	ent	0	779-0130		_Date	
Caslans	T			Miles		-

40

•

ТЕМР	SPUD	DAY_	20	DATE_	3 June	e 84	
COMPANY							
WELL							
LOCATION_					<u></u>	<u></u>	
DEPTH YES	T. <u>2215</u> TODA	Y <u>2460</u>	Time	FTG_	245	FT/HR	
OPERATION	Drilling with	Bit #8. T	rip at 240	0 -			
BIT NO	8 TYPE Reed HP	<u>M IN 240</u>	OUT		FT	HRS	
BIT NO	Reed 7 TYPE <u>FP53A</u>	IN <u>169</u>	<u>o</u> OUT _	2400	FT	7 <u>10</u> HRS	
WOB	RPM	PP	SPM		LAG	@	
MUD		42WL	. <u>8.4</u> CK	2PH	<u>9.5</u> CL	450 £X \$	CA_
SURVEYS	3/4 @ 2375						
	<u> </u>					<u> </u>	
				····	<u></u>		
			····	······································			
		GEC	DLOGICAL				
FORM TOPS	Buckhorn 22	GEC	DLOGICAL				
FORM TOPS	Buckhorn_22 Buckhorn	GEC 28	DLOGICAL	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
FORM TOPS FORMATION LITHOLOGY	Buckhorn 22 Buckhorn Pred. cht p	GEC 28 ebble cong	DLOGICAL	lor sh			
FORM TOPS FORMATION LITHOLOGY	Buckhorn 22 Buckhorn Pred. cht p	GEC 28 ebble cong	DLOGICAL w/s varico	lor sh		· · · · · · · · · · · · · · · · · · ·	
FORM TOPS FORMATION LITHOLOGY	Buckhorn 22 Buckhorn Pred. cht p	GEC 28 ebble cong	DLOGICAL	lor sh			
FORM TOPS FORMATION LITHOLOGY MUD GAS	Buckhorn 22 Buckhorn Pred. cht p	GEC 28 ebble cong TG	DLOGICAL w/s varico BACK	lor sh GROUND		· · · · · · · · · · · · · · · · · · ·	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte	Buckhorn 22 Buckhorn Pred. cht p	GEC 28 ebble cong TG	DLOGICAL w/s varico BACK	lor sh GROUND	1_	To	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break	Buckhorn 22 Buckhorn Pred. cht p erest No csNone	GEC 28 ebble cong TG	DLOGICAL w/s varico BACK	lor sh GROUND	1.	To	· · · · · · · · · · · · · · · · · · ·
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth	Buckhorn 22 Buckhorn Pred. cht p erest No. csNone LithologyHW	GEC 28 ebble cong TG	DLOGICAL w/s varico BACK C2 C	lor sh GROUND	1 	To Flou	· · · · · ·
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth	Buckhorn 22 Buckhorn Pred. cht p erest No. csNone LithologyHW	GEC 28 ebble cong TG 7 CI	DLOGICAL w/s varico BACK C2C	GROUND	1 C5	To Flou	· · · · · · · · · · · · · · · · · · ·
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS:	Buckhorn 22 Buckhorn Pred. cht p erest No. csNone LithologyHW	GEC 28 ebble cong TG 7 CI	DLOGICAL w/s varico BACK C2C	GROUND	1 	To Flou	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS:	Buckhorn 22 Buckhorn Pred. cht p erest No. csNone LithologyHW	GEC 28 ebble cong TG 7 CI	DLOGICAL w/s varico BACK C2 C	GROUND	1 	To Flou	· · · · · · · · · · · · · · · · · · ·

		DAY	21	_DATE_	4 June	_84
COMPANY_				· · · · · · · · · · · · · · · · · · ·		<u></u>
WELL						••••••••••••••••••••••••••••••••••••••
LOCATION			· · · · · · · · · · · · · · · · · ·			
DEPTH YES	ST. <u>2460</u> TOI	DAY 2655	Time	FTG_	195	FT/HR
OPERATION	N Drilling wit	ch Bit #9				<u></u>
BIT NO	9 TYPE Sec M90	DF IN 253	4 OUT	, _, _,,	FT	HRS.
BIT NO	TYPE	IN	OUT		FT	HRS
WOB <u>30</u>	RPM60	PP700	SPM	60	LAG	@
MUD	WT <u>8.9</u> VIS	<u>42</u> WL	7.6 CK	2PH	9.5_CL_	450 \$\$XBX/CA_t
SURVEYS						
-						
, <u></u> ,						
FORM MOR	C	GEC	LOGICAL			
FORM TOP	J Morrison	2327				
					<u></u>	<u></u>
FORMATIO	N Morrison					
FORMATIO LITHOLOG	N <u>Morrison</u> Y <u>Sh gry-gr</u>	n			<u></u>	
FORMATIO LITHOLOG	N Morrison Y Sh gry-gr	n				
FORMATIO LITHOLOG [*] MUD GAS	N <u>Morrison</u> Y <u>Sh gry-gr</u>	n	BACKG	ROUND		1
FORMATIO LITHOLOG [*] MUD GAS Zone of Int	N <u>Morrison</u> Y <u>Sh qry-qr</u> terest No.	n	BACKG	ROUND	@	 To
FORMATIO LITHOLOG MUD GAS Zone of Int Shows-Brea	N <u>Morrison</u> Y <u>Sh gry-gr</u> terest No.	nTG	BACKG	ROUND		 To
FORMATIO LITHOLOG MUD GAS Zone of Int Shows-Brea Depth_	N <u>Morrison</u> Y <u>Sh qry-qr</u> terest No aks	nTG	BACKG	ROUND	@ C5	To Flou
FORMATIO LITHOLOG MUD GAS Zone of Inf Shows-Brea Depth	N <u>Morrison</u> Y <u>Sh qry-qr</u> terest No	nTG TG	BACKG	ROUND	_@ C5	1 To Flou
FORMATIO LITHOLOG MUD GAS Zone of Int Shows-Brea Depth REMARKS:	N <u>Morrison</u> Y <u>Sh qry-qr</u> terest No	nTG TG	BACKG	ROUND	_@	1 To Flou
FORMATIO LITHOLOG MUD GAS Zone of Int Shows-Brea Depth REMARKS:	N <u>Morrison</u> Y <u>Sh qry-qr</u> terest No. Lithology	nTG	BACKG	ROUND	@	 To Flou
FORMATIO LITHOLOG MUD GAS Zone of Int Shows-Brea Depth REMARKS:	N <u>Morrison</u> Y <u>Sh qry-qr</u> terest No aks Lithology H	nTG TG 	BACKG	ROUND 3 C4	@ 	

TEMD	SPUD	DAY	22		une 84
		DAT			<u>1116 04</u>
WELL					<u>*************************************</u>
LOCATION			<u></u>		
DEPTH YEST	. <u>2655</u> TODA	Y 2910	Time	FTG 255	FT/HR
OPERATION_	Drilling wi	th Bit #9			
BIT NO.	8 3/4 S TYPE <u>M 90 F</u>	ec. IN2534_	_ OUT _	FT	HRS
BIT NO	TYPE	IN	OUT	FT	HRS.
WOB <u>35/45</u>	RPM <u>60/65</u>	PP <u>800</u>	SPM	LAG _	@
MUD	WT 8.9 VIS	48 WL	<u>6.8</u> CK	2 PH 9.5 C	CL_450 £XE /CA_
SURVEYS					
				· · · · · · · · · · · · · · · · · · ·	, <u></u>
		GEOL	OGICAL	•	
FORM TOPS	Summerville	2823	<u> </u>		
FORMATION	Summerville	·····			·····
LITHOLOGY					
MUD GAS		TG	ВАСКО	GROUND	1
Zone of Inter	rest No.	·		@	To
Shows-Break	S	······			
Depth	_LithologyHW	CI	C2 C	3 C4 C	5 Flou
		· · · · · · · · · · · · · · · · · · ·			
REMARKS: _	••••••••••••••••••••••••••••••••••••••				
Called		6		Date	

43

ļ.

TEMP	SPUD	DAY	23	DATE_	6 Jur	ne_84
COMPANY_						
WELL		·····				
LOCATION	·	<u></u>				
DEPTH YES	T. 2910	TODAY 3116	5Time	FTG_	206	FT/HR
OPERATION	Drilling	with Bit #10				
BIT NO	10 TYPE Ree	<u>d FP53</u> IN <u>3</u> (004 OUT		FT	HRS
BIT NO.	9 TYPE	IN_25	534 OUT	3004	FT4	170_HRS. <u>41</u>
WOB <u>35</u>	RPM_70/	80 PP -	750 SPM		LAG	@
MUD <u>3095</u>	WT8.9	VIS <u>45</u> V	VL_7.2_C	K <u>2</u> PH	9CL	450 XXBE/CA_8
SURVEYS _					<u></u>	
			· · · · · · · · · · · · · · · · · · ·			
				. <u>.</u>		
FORM TOP		. Gr	LOLOGICAL			
FORM TOT						
FORMATION	NSummer	ville				
LITHOLOGY	Sh red	-brn slty w/ab	n Anhy incl)	1
		·····			۱ 	•
MUD GAS		TG	BAC	KGROUND		1
Zone of Int	erest No.				0	To
Shows-Brea	ks	· · · · · · · · · · · · · · · · · · ·		···		
Depth	Lithology	HW CI	C2	C3 C4	C5	Flou
					·····	
REMARKS:			·····			
		+ 0	800-521-24	159	Date	
Called	B. Len	<u> </u>	000 322 2			

	SPUD		DAY	24	DAT	E	7 June	84	
COMPANY	Chandl	er & Ass	ociates						
WELL	Lauron	<u>. Ctata</u>	15_1						
LOCATION	Lawren	Je State	<u> </u>		<u> </u>				
DEPTH YEST.	3116	TODAY	3340	Time	FT	G 22	4	FT/H	IR
OPERATION	Drilling	with Bi	t #10						
BIT NO. 10	TYPE Ree	d FP53	IN <u>3004</u>	_ OUT		FT	•34	<u>41</u> HE	ss. <u>4</u>
BIT NO	TYPE		IN	OUT		FT	•	не	ιs
WOB	RPM75	- 100	PP 750	SPM		LA	G	@	<u>,, , , , , , , , , , , , , , , , , , ,</u>
MUD <u>3340</u>	NT <u>8.9</u>	VIS <u>4</u>	3WL	7.5 CH	K_2PF	<u> </u>	_CL_	450 X X	‰/CA_
SURVEYS 327	0 - 5°	2375	- 3/4°	1755	- 3°				
322	0 - 4 3/4	2155	- 1°	3340	- 4 3/4				
300	$\frac{4 - 4 1/2}{4 - 1^{\circ}}$	<u> </u>	- 2 3/4	2750	- 2 1/2		<u></u>		
			, -						
			GEO	LOGICAL					
FORM TOPS	Curtis	3158							
FORMATION		*** ¥		· · · · · · · · · · · · · · · · · · ·	· :	·			•
	Curtis								
LITHOLOGY _	SS lt-mq	ry f-mg	msort, su	bang-sub	rdd fria	- mce	m cal	c w/wh	clay
LITHOLOGY _	SS lt-mq Matrix,	ry f-mq blk, brn	msort, su incl. ab	bang-sub	rdd fria incl	- mce	m cal	c w/wh	clay
LITHOLOGY _	SS lt-mq Matrix, sh mgry	ry f-mq blk, brn firm blo	msort, su incl. ab ck sli ca	bang-sub on Glauc	rdd fria incl	- mce	m cal	c w/wh	clay
LITHOLOGY	SS lt-mq Matrix, sh mgry	ry f-mg blk, brn firm blo	msort, su incl. ab ck sli ca TG	bang-sub on Glauc lc BACK	rdd fria incl GROUN	<u>- mce</u>	m cal	<u>c w/wh</u>	clay
LITHOLOGY MUD GAS Zone of Intere	<u>SS lt-mq</u> <u>Matrix,</u> <u>sh mgry</u> est No.	<u>ry f-mg</u> blk, brn firm blo	msort, su incl. at ck sli ca TG	bang-sub on Glauc ulc BACK	rdd fria incl GROUN	<u>- mce</u>	m cal	<u>r w/wh</u> 1 To	clay
LITHOLOGY MUD GAS Zone of Intere Shows-Breaks	<u>SS lt-mg</u> <u>Matrix,</u> <u>sh mgry</u> est No.	<u>ry f-mg</u> blk, brn firm blo	msort, su incl. ab ck sli ca TG	bang-sub on Glauc ulc BACK	rdd fria incl KGROUN	- mce	m cal	<u>v/wh</u> 1 To	clay
LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth	<u>SS lt-mq</u> <u>Matrix,</u> <u>sh mgry</u> est No Lithology	<u>ry f-mg</u> blk, brn firm blo HW	msort, su incl. at ck sli ca TG CI	bang-sub on Glauc llc BACK C2	rdd fria incl GROUN C3 (- mce	m cal	1 To Flou	clay
LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth1	<u>SS lt-mq</u> <u>Matrix,</u> <u>sh mgry</u> est No	ry f-mg blk, brn firm blo HW	msort, su incl. ab ck sli ca TG CI	bang-sub on Glauc ulc BACK C2	rdd fria incl IGROUN C3 (- mce	m cal	1 To Flou	clay
LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth1 REMARKS:	<u>SS lt-mq</u> <u>Matrix,</u> <u>sh mgry</u> est No Lithology <u>3235 los</u>	ry f-mg blk, brn firm blo HW t 100 bb	msort, su incl. ab ck sli ca TG CI l mud	bang-sub on Glauc ulc BACK C2	rdd fria incl GROUN C3 (- mce	m cal	To Flou	clay
LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth1 REMARKS: Called	<u>SS lt-mq</u> <u>Matrix,</u> <u>sh mgry</u> est No Lithology <u>3235 los</u>	ry f-mg blk, brn firm blo HW t 100 bb	msort, su incl. ab ck sli ca TG	bang-sub on Glauc ulc BACK C2	rdd fria incl GROUN C3 (- mce	m calo	1 To Flou	clay

TEMP	SPUD	DAY	25	DATE	8 June 8	34
COMPANY	Chandler &	Associate	S			
WELL	Lawrence S	tate 15-1				
LOCATION			<u> </u>	<u></u>		
DEPTH YEST	. <u>3340</u> TOE	AY336	5Time	FTG	25	FT/HR
OPERATION_	Backing off; st	uck drill	string. Free	e-point truc	k on locat	ion.
BIT NO. 10	TYPE Reed FF	<u>53 a</u> IN <u>3</u>	004 OUT	<u>3368</u> I	T. <u>361</u>	_ HRS <u>3</u>
BIT NO. 1	L TYPE FP53 a	IN_3	365 OUT	I	FT	HRS.
WOB2	D RPM 100	PP	800 SPM	60 I	.AG	@
MUD <u>3365</u>	WT <u>8,9</u> _VIS	42	WL <u>7.6</u> CH	KPH9_	CL_45() £%35⊮ ∕CA_
SURVEYS	3336 - 4 3/4					
	3365 - 5°					
FORM TOPS				•		
FORMATION	Curtis					
LITHOLOGY _	Trip out o	f hole; pi	ck up stabi	lizer. Trip	in hole;	stuck @
	Spotted 28	00 gal die	sel & pipe	free.	u <u>, .</u>	
MUD GAS		TG	BACK	GROUND	1 Before	e diesel
Zone of Inter	est No				<u>9</u>	То
Shows-Breaks	·					
Depth	Lithology H	W CI	C2	C3 C4	C5	Flou
			,			
REMARKS:						
Called	B. Lent	Q	800-521-24	59 [Date	

TEMP	SPUD	DAY	26	DATE	9 June 8	4	
COMPANY	Chandler & A						
WELL	Lawrence Sta	te 15-1					
LOCATION						20-	-25m/ft
DEPTH YEST.	TO	DAY <u>3378</u>	Time	FTG	13	FT/HR	2 - 3
OPERATION	Back off stuck	pipe. Trip in	w/jars; s	<u>crew into</u>	fish jar l	ooseTOP	H w/fis
BIT NO. <u>11</u>	TYPE Sec M4	4N IN 3365		y.	FT	_ HRS	
BIT NO	_ TYPE	IN	OUT		FT	_ HRS	
VOB <u>15</u>	RPM100	PP 700	SPM		LAG	@	
MUD <u>3365</u>	WT <u>8.8</u> VI	5 <u>43</u> WL	6.0 CK	2 PH 8	.5 CL 450	XEXES/CA	40
SURVEYS							
FORM TOPS _	Entrada	•					
LITHOLOGY _	Sample very	contaminated f	ollowing f	ishing op	eration;	· · · · · · · · · · · · · · · · · · ·	
۱ _۱ 	NOTE: 2800	gal diesel add	ed to mud	during fi	shing opera	tion.	<u></u>
MUD GAS		TG	BACKO	ROUND	50 - 6	5 Units	
Zone of Intere	est No				@	То	
Shows-Breaks	None						
Depth	Lithology	HW CI	C2 C3	3 C4	C5	flou	
						<u></u>	
REMARKS:							
Called		@	779-0130	· · · · · · · · · · · · · · · · · · ·	Date		

		\smile	DAIL	Y REPORT		/	40
TEMP	SPUD		DAY	27	DATE	10 June	84
COMPANY	<u></u>						
WELL		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · ·	·		
LOCATION_			·····				
DEPTH YEST	Г. <u>3378</u>	TODAY	3405	Time	FTG	27	FT/HR
OPERATION_	Reaming to k	ottom w/	'3pt ream	er; 70 pen	dulum.		<u> </u>
BIT NO. 12	2 TYPE B	P53	IN <u>34</u> 0	<u>5</u> OUT		FT	HRS
BIT NO. 11	1TYPE	: M44N	IN <u>336</u>	<u>5</u> OUT _	3405	FT	0 HRS. 111
WOB30	DRPM	90 - 100	_PP70	<u>0</u> SPM _		LAG	@
MUD <u>3405</u>	_WT8.8	_vis	<u>49 </u> WI	. <u>7.2</u> CK	PH	9.0 CL_4	50 XFX122/CA_6
SURVEYS	3402 - 59)					
FORM TOPS			GEC	DLOGICAL			
	•••						
FORMATION	Entrada						<u></u>
FORMATION LITHOLOGY	Entrada						9
FORMATION LITHOLOGY	Entrada		· · · · · · · · · · · · · · · · · · ·				<u>.</u>
FORMATION LITHOLOGY 	Entrada		TG	BACK	GROUND	25 Units	
FORMATION LITHOLOGY MUD GAS Zone of Inter	Entrada		TG	BACK	GROUND	25 Units @	To
FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break	Entrada		TG	BACK	GROUND	25 Units @	To
FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break Depth	Entrada rest No sLithology	HW	TG CI	BACK C2 C	GROUND	25 Units @ C5	
FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break Depth	Entrada rest No sLithology	HW	TG CI	BACK C2 C	GROUND	25 Units @ C5	5 To Flou
FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break Depth REMARKS:	Entrada rest No sLithology	HW	TG CI	BACK C2 C	GROUND	25 Units @ C5	To Flou
FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break Depth REMARKS: Called	Entrada	HW	TG CI	BACK C2 C	GROUND	25 Units @ C5 Date	To To Flou

·___

TEMP	SPUD	DAY_	28	DATE_	<u> 11 June</u>	84
COMPANY	Chandler & Ass	ociates		· · · · · · · · · · · · · · · · · · ·		····
WELL						
LOCATION					<u></u>	
DEPTH YEST.	<u>3405</u> TOD	AY <u>3622</u>	Time	FTG_	217	FT/HR
OPERATION	Drilling with	Bit #12				
BIT NO. 12	TYPE FP53	IN <u>340</u>	<u>5</u> OUT		FT	HRS
BIT NO.	TYPE	IN	OUT		FT.	HRS.
WOB <u>20/30</u>	RPM <u>90/100</u>)PP	SPM _		LAG	@
MUD <u>3610</u>	WT_8.9_VIS_	<u>52</u> WL	<u>10.0</u> CK	PH_8	3.3 CL	<u>450 ¥№35/</u> CA_
SURVEYS	3467 - 4 3/4					
	3561 - M R					
	3592 - 5°					
		GEC	LOGICAL			
FORM TOPS _					<u></u>	
FORMATION	Entrada					
- LITHOLOGY	SS 1t red-org	vfa veltv w	/wh Anhy i	ncl		
	<u> </u>	vig voicy "	/ wii imii j			
MUD GAS		TG	BACK	GROUND	From Di 40+	esel contami
Zone of Intere	st No.			-	0	То
Shows-Breaks						
Depth	Lithology <u>HV</u>	V CI	C2 (C3 C4	C5	Flou
REMARKS:						
	· · · · · · · · · · · · · · · · · · ·					·····
Called <u>Bob I</u>	ent	<u> </u>	800 521-245	59	Date	
Geology	Loo					P

.

TEMP	SPUD	DAY	29	DATE	12 June 84
COMPANY	Chandler & Assoc	iates —			
WELL	Lawrence State 1	5-1			
LOCATION					
DEPTH YEST	. <u>3622</u> TODAY	3762	Time	FTG	140FT/HR
OPERATION_	Trip for Bit #13				
BIT NO. 12	TYPE Reed FP53A	IN <u>3405</u>	5_ OUT _	3762	FT HRS
BIT NO. 13	TYPE HTC J-33A	IN <u>3762</u>	2 OUT _		FT HRS
WOB	RPM	PP	SPM	<u> </u>	LAG@
MUD <u>3762</u>	WT_ <u>8.9</u> _VIS	60WL	<u>10.2</u> CK	2_PH_9	.0 CL 425 188/CA
SURVEYS	3592 - 5°				
	3712 - 5°		· · · · · · · · · · · · · · · · · · ·		
		<u>,</u>			
«,,, , ,, ,, ,, ,,	3762 - 5°	CEO			
FORM TOPS		GEO	LUGICAL		
FORMATION	Entrada				
LITHOLOGY	100% SS 1t red-0	ra vfa w/a	abn Anhv i	ncl.	
	1800 - 1940 Mud	log to pa	artners &	Ch missing	•
			······································		
MUD GAS		TG	BACK	GROUND	30
Zone of Inter	est No				@ To
Shows-Breaks	5				
Depth	Lithology <u>HW</u>	CI	C2 C	3 C4	C5 Flou
	****			· · · · · · · · · · · · · · · · · · ·	
Called		@5:	21-2459		Date
Caslana	T a m a tr				

50

.

TEMP	SPUD	DAY	30	DATE	13 June	e 84	
COMPANY	Chandler & A	ssociates					
WELL	Lawrence Sta	 te 15-1			- ·		<u></u>
LOCATION			- <u></u>				6-7m/
DEPTH YEST	. <u>3762</u> _TODA	Y <u>3885</u>	Time	FTG	123	FT/H	R
OPERATION_	Drilling with B	<u>it #13</u>					
BIT NO	TYPE HTC J-33A	IN <u>3762</u>	OUT		FT	HR	
BIT NO	TYPE	IN	OUT		FT	HR	
WOB <u>40/45</u>	RPM65	PP850	SPM	60	LAG	49	3850
MUD <u>3880</u>		48 WL	<u>7.0</u> CK_	2 PH 8	.9_CL	400 XEXE	K/CA_60
SURVEYS	3832 - 5°					<u></u>	
		<u> </u>					
		GEOI	OGICAL				
FORM TOPS	·						
FORMATION	Entrada					<u></u>	
LITHOLOGY	100% SS lt red-	org to bric	k red; vf-	fg slty w	/s vfg g	grdng ťo	SITSN
	Sli calc w/abn	Anhy incl.	<u></u>		<u></u>		
MUD GAS		TG <u>11</u>	2 BACKG	ROUND	4(0	
Zone of Inter	est No.				0	To	
Shows-Break	S						
Depth	Lithology <u>HW</u>	CI	C2 C3	C4	C5	Flou	
				_			<u></u>
REMARKS: _							<u></u>
REMARKS:			00-521-245	9	Date		

51

.

TEMP	SPUD		DAY	31	DATE	14	June (84
COMPANY	Chandler &	<u>Associa</u>	ites					
WELL	Lawrence S	State 15-	·1					
LOCATION								
DEPTH YEST.	3885	TODAY_	4110	Time	FTG_	225	FT	/HR
OPERATION	Drilling w	vith Bit	#13					
BIT NO. 13		-33A	IN <u>3762</u>	OUT		FT	<u> </u>	HRS
BIT NO	TYPE		IN	OUT		FT.		HRS
WOB	RPM		PP	SPM		LAG		@
MUD_4105	WT_ <u>8.9</u>	VIS4	1 <u>3 </u> WL	<u>8.0</u> CK	2_PH_9	<u>.0</u> C	L_425	_EXER/CA_
SURVEYS								
FORM TOPS	Carmel 40	087	GEO	LOGICAL	<u> </u>	<u> </u>		
FORM TOPS _	Carmel 40)87	GEO	LOGICAL				
FORM TOPS	Carmel 40 Carmel	087	GEO	LOGICAL	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
FORM TOPS FORMATION LITHOLOGY	Carmel 40 Carmel 50% Entrad	087 1a	GEO	LOGICAL				· · · · · · · · · · · · · · · · · · ·
FORM TOPS FORMATION LITHOLOGY	Carmel 40 Carmel 50% Entrac 50% SS vit	087 la z gry-gry	GEO v vf-fg v	LOGICAL	n calc			· · · · · · · · · · · · · · · · · · ·
FORM TOPS FORMATION LITHOLOGY MUD GAS	Carmel 40 Carmel 50% Entrad 50% SS vit	087 la : gry-gry	GEO v vf-fg v TG	LOGICAL //sort mcem BACKC	1 calc ROUND		25	· · · · · · · · · · · · · · · · · · ·
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere	Carmel 40 Carmel 50% Entrad 50% SS vit	087 la z gry-gry	GEO v vf-fg v TG	LOGICAL	n calc GROUND	@	25 To	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks	Carmel 40 Carmel 50% Entrad 50% SS vit	087 la z gry-gry	GEO	LOGICAL	calc ROUND	 @	25To	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth	Carmel 40 Carmel 50% Entrad 50% SS vlt	087 la c gry-gry HW	GEO v vf-fg v TG CI	LOGICAL //sort mcem BACKC C2 C:	r calc GROUND 3 C4	@C5	25 To Flo	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth	Carmel 40 Carmel 50% Entrad 50% SS vlt	087 da gry-gry 	GEO v vf-fg v TG CI	LOGICAL //sort mcem BACKC C2 C:	calc GROUND 3 C4	@	25 To Flo	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth REMARKS:	Carmel 40 Carmel 50% Entrad 50% SS vit	087 la c gry-gry HW DO Home	GEO vvf-fg v TG CI	LOGICAL //sort mcem BACKC C2 C:	r calc GROUND 3 C4	@C5	25 To Flo	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth REMARKS: Called p. r	Carmel 40 Carmel 50% Entrac 50% SS vlt est No. Lithology Call @ 7:0	087 la c gry-gry HW DO Home	GEO vvf-fg v TG CI	LOGICAL //sort mcem BACKC C2 C: 00-521-2456	r calc GROUND 3 C4	@ C5	25 To Flo	

TEMP	SPUD	DAY	32	DATE	15 June	84
COMPANY	Chandler & Asso	ciates				<u></u> , <u></u>
WELL	Lawrence State	15-1			· · · · · · · · · · · · · · · · · · ·	
LOCATION		·			<u>. </u>	
DEPTH YEST	. 4110 TODA	Y 1256	Time	FTG	146	FT/HR
OPERATION	Drilling with B	$\frac{-4200}{1+410}$	·		140	
			OUT	4045	<u></u> Б.Т. (4	
BII NO. <u>13</u>		IN <u>3/62</u>	001	4245	f I . <u>4</u>	83_ HK350
BIT NO. 14		IN 4245	OUT		FT	HRS
WOB30	RPM	PP850	SPM	60	LAG 5	@
MUD_4245	WT <u>8.9</u> VIS	<u>46 </u> WL	<u>8.2</u> CK	2 PH 9	.0 CL 4	100 <u>*</u> FXBx/CA
SURVEYS	4245 - 5 3/4	3762 - 5°				
	4249 - 53/4	3712 - 5°				
	<u>4030 - 5°</u>	<u> 3592 - 5°</u>				
	3832 - 5°	3467 - 4	3/4			•
		GEOI	LOGICAL	<u></u>		
FORM TOPS						
FORMATION	<u> </u>					
FORMATION -	Carmel	······································	<u> </u>	<u>,</u>		
LITHOLOGY _	SS wh, crm v	f-fh mcem w	/abn Anhy	incl.		<u></u>
	Sh mgry, mgr	y-grn w/abn	Anhy inc	1.	· · · · · · · · · · · · · · · · · · ·	
MUD GAS		TG	BACK	GROUND	15	
Zone of Inter	est No.			-	@	То
Shows-Breaks			· · · · ·			
Depth	Lithology HW	CI	C2 C	3 C4	C5	Flou
- <u></u>				· · · · · · · · · · · · · · · · · · ·		
REMARKS:	·····		····			
				<u></u>	<u></u>	
Called	B.L.	<u>@ 303</u>	8-779-0130)	Date	
C 1	T	•				

ТЕМР	SPUD		DAY_	33	DATE	<u>16 Ju</u>	ne 84	
COMPANY	Chandle	er & Ass	ociates					
WELL		•						
LOCATION	 				<u></u> .			
DEPTH YEST.	4256	TODAY_	4466	Time	FTG	210	FT	/HR
OPERATION	Drilling v	with Bit	#14					
BIT NO. 14	TYPE HT	C-J-33H	IN	OUT		FT.		HRS.
BIT NO	TYPE		IN	OUT		FT.		HRS.
WOB45	RPM7)	PP 850	SPM	60	LAG _	52	@4
MUD_4465	WT <u>8.8</u>	VIS	<u>45 </u> WI	9.2_CK	2_PH_	9.0 C	L 400	XFXBE/CA
SURVEYS	4361 - 4	3/4						
	4302 - 5	1/4						
	<u></u>					,		
•	<u></u>	· · · · · · · · · · · · · · · · · · ·	GEO		-			
FORM TOPS								
FORMATION	Carmel							
LITHOLOGY _	Various -	w/abn A	nhy in e	everything.				
MUD GAS			TG	ВАСК	GROUND	1	2	
Zone of Intere	est No					_0	To	
Shows-Breaks				·····	**=* <u>-</u>		-	
Depth	Lithology	HW	CI	C2 (C3 C4	<u>C5</u>	Flo	u
REMARKS:				· · · · · · · · · · · · · · · · · · ·				
Called			A ~	03-770 013	0	Data		

|--|

TEMP	SPUD	DAY	34	DATE_	17 Jun	e 84
COMPANY						·····
WELL						<u> </u>
LOCATION	······		· . · ·			
DEPTH YEST	. <u>4466</u> TODA	Y_4680	Time	FTG	214	FT/HR
OPERATION_	Drilling with	Bit #14				
BIT NO. 14	4_ TYPE	IN424	<u>5</u> OUT _		FT	HRS
BIT NO	TYPE	IN	OUT _		FT	HRS
WOB 40	RPM 70	PP 850	SPM	60	LAG	Q
				5 1 ×16	•	
MUD 4680	WT 8.9 VIS	50 WL	10.0 CK	2 PH	8.9 CL	425 XXX/CA
SURVEYS	<u> </u>					
	4670 = 3 - 3/4	<u> </u>			· · · ·	
	4490 - 4 1/2					
	4008 - 0					
		GEOI	LOGICAL		······································	·
FORM TOPS						
FORMATION	Carmel					
		· · · · · · · · · · · · · · · · · · ·				
LITHOLOGI -	Various w/abn	<u>Anhy in alo</u>	t of it			
********************** **************			· ·	······		······································
MUD GAS		TC	BACKO			·····
Zone of Inter	est No.	1 U	DACKC	ROUND		<u></u>
Shows-Breaks		· · · · · · · · · · · · · · · · · · ·	 			10
Depth	Lithology HW	CI	C2 C	3 C4	C5	Flou
	• • • • • • • • • • • • • • • • • • •					
KEMAKKS:			· · · · · · · · · · · · · · · · · · ·			
Called <u>B.L.</u>		@ 303	-779-0130		Date	
Geology	Logg	:		N/13		

TEMP	SPUD		DA	Y	35	D	ATE	18 Ju	ine 84	
COMPANY	Chandler	& Assoc	ciates				-			
WELL	Lawrence	State 1	15-1							
LOCATION_										
DEPTH YEST	G. 4680	TODAY	4904		_Time		FTG	224	FT/	HR
OPERATION	Drilling	with Bi	lt #14	· · · ·						
3IT NO. <u>1</u>	4 TYPE	J-33H	_ IN	4245	OUT			FT	н	RS
3IT NO	TYPE		_ IN		OUT			FT	н	RS
OB <u>40M</u>	RPM	70	PP	850	_ SPM			LAG _	0	<u></u>
MUD <u>4900</u>	_WT8.9	vis	44	WL	7.6 Cl	K_2	PH_1	L0.0_C	L <u>500 X</u> B	08/CA_40
SURVEYS	4763 - 5	1/2								
	4860 - 5	3/4								
	•									
		<u> </u>	G	EOLO	DGICAL					
FORM TOPS										
ORMATION	Carmel									
,ITHOLOGY	Intbdd G	ry LS &	limey	sh						
	<u> </u>	tic LS (4725							
	<u> </u>	o <u>4899</u>								
UD GAS			ТG	ì	BACK	GROU	JND	1	1 1-2mir	n/ft
Cone of Inter	est No. 1	Navajo 4	1899				-	@ 4920	<u>то</u>	<u>-,</u>
Shows-Break	S					- <u></u>				
Depth	Lithology	HW	CI	C		23	C4	C5	Flou	Cut
	Before	16	tr	-						
	During	19	tr	•					yel	yel w/r:
EMARKS:	After	13	tr							
SS_wh,	clr vf-fq s	ubrdd po	cem sli	_ calo	; abn v	w/brn	stair	n 10% -	80% yel	fluo
Modera	<u>te slo yel c</u>	ut w/yel	l resid	lue r	ing.					
Called	B.L.		0	800-9	521-2459	9		Date		
Jeology		Loggin	g			Mile	age		Exp.	

DAILI REPORT	D	AILY	REPO	RT
--------------	---	------	------	----

TEMP	SPUD		DAY	36	DATE	19 .Tur	e 84	
COMPANY							<u> </u>	
WELL		- 			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
LOCATION			·····		······································			
DEPTH YE	ST4504	TODAY	4940	Time	FTG	36	FT/	HR
OPERATIO	N Lay down	DST Tools	5					
BIT NO.	14 TYPE HT	<u>C_J-33H</u>	IN <u>4245</u>	OUT	4940	_ FT6	<u>95 H</u>	IRS. 69½
BIT NO.	15 TYPE se	<u>c M84F</u>	IN 4940	OUT		FT	H	IRS
WOB	40M RPM	70	PP 850	SPM	<u></u>	_ LAG	0	
MUD <u>494(</u>	0_WT_ <u>8.9</u>	VIS <u>44</u>	<u>ı </u> WL	<u>7.2</u> C	K_2_PH_	<u>10.0</u> CL	450	EXCA_4
SURVEYS	4920 - 5	3/4				······		···
		*******					· · · · · · ·	
			GEO	LOGICAT				
				TOATOUT				
FORM TOP	S Navaj	o 4899			-			
FORM TOP: FORMATIO	S <u>Navaj</u>	o <u>4899</u>				· · · · · · · · · · · · · · · · · · ·		
FORM TOP: FORMATIO	S <u>Navaj</u> N	o 4899	-fa subr	dd p-mo	em calc			
FORM TOP: FORMATIO	S <u>Navaj</u> N YSS wh, 10% w/	o 4899 clr - vf brn stn:	-fg subr 80% vel	dd. p-mc	em calc. derate slo	; vel cut	w/vel	residue
FORM TOP: FORMATIO LITHOLOGY	S <u>Navaj</u> N YSS wh, 10% w/ Rec DS	o 4899 clr - vf brn stn; T #1 4896	-fg subr 80% yel 5 - 4940	dd. p-mc fluo; mo	em calc. derate slo	; yel cut	z w/yel	residue
FORM TOP: FORMATION LITHOLOGY MUD GAS	S <u>Navaj</u> N <u>SS wh,</u> 10% w/ Rec DS	o 4899 clr - vf brn stn; T #1 4896	-fg subr 80% yel 5 - 4940 TG	dd. p-mc fluo; mo BAC	em calc. derate slo	; yel cut	- 11	residue
FORM TOP: FORMATIO LITHOLOGY MUD GAS Zone of Int	S <u>Navaj</u> N <u>SS wh,</u> 10% w/ <u>Rec DS</u> cerest No.	o 4899 clr - vf brn stn; T #1 4896	-fg subr 80% yel 5 - 4940 TG	dd. p-mc fluo; mo BAC	em calc. derate slo KGROUND	; yel cut 10 0 0_4899	- 11 To	residue 4940
FORM TOP: FORMATIO LITHOLOGY MUD GAS Zone of Int Shows-Brea	S <u>Navaj</u> N Y <u>SS wh,</u> 10% w/ <u>Rec DS</u> cerest No aks <u>4920-40 b</u>	o 4899 clr - vf brn stn; T #1 4896 1 efore 6-8	-fg subr 80% yel 5 - 4940 TG 3m/ft Dur	dd. p-mc fluo; mo BAC	em calc. derate slo KGROUND m/ft	; yel cut 10 	- 11 To	residue 4940
FORM TOP: FORMATIO LITHOLOGY MUD GAS Zone of Int Shows-Brea Depth	S <u>Navaj</u> N Y <u>SS wh,</u> 10% w/ <u>Rec DS</u> cerest No. aks <u>4920-40 b</u> Lithology	o 4899 clr - vf brn stn; T #1 4896 1 efore 6-8 HW	-fg subr 80% yel 5 - 4940 TG Bm/ft Dur CI	dd. p-mc fluo; mo BAC ing 1½-2 C2	em calc. derate slo KGROUND m/ft C3 C4	; yel cut 10 @ 4899 C5	- 11 To Flou	residue 4940
FORM TOP: FORMATION LITHOLOGY MUD GAS Zone of Int Shows-Brea Depth	S <u>Navaj</u> N <u>SS wh,</u> 10% w/ <u>Rec DS</u> cerest No. aks <u>4920-40 b</u> Lithology <u>Before</u>	o 4899 clr - vf brn stn; T #1 4896 1 efore 6-8 <u>HW</u> 16	-fg subr 80% yel 5 - 4940 TG Bm/ft Dur CI tr	dd. p-mc fluo; mo BAC ing 1½-2 C2	em calc. derate slo KGROUND m/ft C3 C4	; yel cut 10 @ 4899 C5	- 11 To Flou	residue 4940
FORM TOP: FORMATION LITHOLOGY MUD GAS Zone of Int Shows-Brea Depth	S <u>Navaj</u> N Y <u>SS wh,</u> 10% w/ <u>Rec DS</u> cerest No. ks <u>4920-40 b</u> Lithology Before During	o 4899 clr - vf brn stn; T #1 4896 1 efore 6-8 HW 16 19	E-fg subr 80% yel 5 - 4940 TG TG Bm/ft Dur CI tr tr	dd. p-mc fluo; mo BAC ing 1½-2 C2	em calc. derate slo KGROUND m/ft C3 C4	; yel cut 10 @ 4899 C5	- 11 To Flou yel	residue 4940 yel c
FORM TOP: FORMATION LITHOLOGY MUD GAS Zone of Int Shows-Brea Depth REMARKS:	S <u>Navaj</u> N Y <u>SS wh,</u> 10% w/ <u>Rec DS</u> cerest No. <u>Rec DS</u> cerest No. <u>Lithology</u> <u>Before</u> During After	o 4899 clr - vf brn stn; T #1 4896 1 efore 6-8 HW 16 19 11	E-fg subr 80% yel 5 - 4940 TG TG Bm/ft Dur CI tr tr tr	dd. p-mc fluo; mo BAC ing 1½-2 C2	em calc. derate slo KGROUND m/ft C3 C4	; yel cut 10 @ 4899 C5	- 11 To Flou yel	residue 4940 yel c
FORM TOP: FORMATION LITHOLOGY MUD GAS Zone of Int Shows-Brea Depth REMARKS: DST #:	S <u>Navaj</u> N Y <u>SS wh,</u> 10% w/ Rec DS cerest No. <u>Rec DS</u> cerest No. <u>Lithology</u> Before During After 1 Flo petrol -	o 4899 clr - vf brn stn; T #1 4896 1 efore 6-8 HW 16 19 11 Johnstor	E-fg subr 80% yel 5 - 4940 TG Bm/ft Dur CI tr tr tr tr tr tr tr tr	dd. p-mc fluo; mo BAC ing 1½-2 C2	em calc. derate slo KGROUND m/ft C3 C4	; yel cut 10 @ 4899 C5	- 11 To Flou yel	residue 4940 yel c
FORM TOP: FORMATION LITHOLOGY MUD GAS Zone of Int Shows-Brea Depth REMARKS: DST #: Called	S <u>Navaj</u> N Y <u>SS wh,</u> 10% w/ Rec DS cerest No. Aks <u>4920-40 b</u> Lithology Before During After 1 Flo petrol - Bob Lent	<u>o 4899</u> <u>clr - vf</u> brn stn; <u>T #1 4896</u> <u>1</u> <u>efore 6-8</u> <u>HW</u> 16 19 11 Johnstor	E-fg subr 80% yel 5 - 4940 TG Bm/ft Dur CI tr tr tr tr tr , Vernal @ 800	dd. p-mc fluo; mo BAC ing 1½-2 C2 , Utah	em calc. derate slo KGROUND m/ft C3 C4	; yel cut 10 @ 4899 C5 	- 11 To Flou yel	residue 4940 yel c

|--|

TEMP	SPUD		DAY_	37	DATE	20 J	une 84	
COMPANY	Chandler	& Associa	tes					
WELL	Lawrence	State 15-	1					
LOCATION_				·····			······································	
DEPTH YES	T. <u>4940</u>	TODAY	5267	Time	FTG	327	F	T/HR
OPERATION	Drilling	with Bit	#15					·····
BIT NO. <u>1</u>	5 TYPE Sec	<u>M84F</u>	IN <u>494(</u>	OUT		FT.		HRS.
BIT NO	TYPE	······	IN	OUT		FT.		HRS
WOB3	151 RPM	70	.PP <u>900</u>	SPM		LAG		0
MUD_5257		VIS47	wi	. <u>6.8</u> CF	<u>2 PH</u>	9.0 (CL_500	EXE/CA
SURVEYS	4963 - 5 1,	/2						
	4920 - 5 3,	/4						· · · · · · · · · · · · · · · · · · ·
	E1EA _ A 1	/2						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		<u> </u>	GEC	LOGICAL				
FORM TOPS			420	20010112			•	
FORMATION	Navajo	, , , , , , , , , , , , , , , , , , ,						
LITHOLOGY								· · · · · · · · · · · · · · · · · · ·
DITHODOGI	Base of sh	$\frac{1}{2}$ which $\frac{1}{2}$	w/s mg	A960 co	incides w/	color	change	from gry
	where to lt	org SS		. 4900 00	Inclues w/		change	IIOM GLY
Zone of Inte	most No		1G _	BACK	GROUND		<u>6</u>	
Shows-Break	rest NO	None			<u></u>		1	0
Depth	Lithology	HW	CI	C2 (C3 C4	C	5 F1	ou
	· · · · · · · · · · · · · · · · · · ·							
REMARKS: _								
REMARKS: _								
REMARKS: _	B. L.		@80	0-521-2459)	Date		

TEMP	SPUD	DAY38	DATE	21 June	84
COMPANY	Chandler & Asso	ciates			
WELL					
LOCATION	I		······		
DEPTH YE	ST. 5267 TOD	AY 5517 Tir	ne FTG	250 F	T/HR
OPERATIO	N Drilling with E	it #15 (Stuck)			
BIT NO.	15 TYPE Sec Ma	4F IN 4950 O	UT	FT.	HRS.
BIT NO.	TYPE	IN O	UT	FT.	HRS.
WOB	40 RPM 70	PP900S	PM 1	LAG	
MUD <u>5517</u>		48 WL 7.0	_CK_2_PH_10	.0 CL <u>475</u>	RE/CA
SURVEYS	5517 - 4 3/4				
			······		
		+			
	· · · · · · · · · · · · · · · · · · ·				
		GEOLOGI	CAL.		
FORM TOP	SKayenta 533	4, Wingate 5501			
FORMATIC	N				
ITHOLOG	V co sh set f				
DITHOLOG	1 55 Wh VI-IG	mcons.		<u></u>	
		**************************************		<u></u>	
			ACKGROUND	10	
MUD GAS					
MUD GAS Zone of In	terest No.			Q 1	ò
MUD GAS Zone of In Shows-Bre	terest No			01	°o
MUD GAS Zone of In Shows-Bre Depth	terest No aks <u>None</u> Lithology H	W CI C2	C3 C4	@1 C5 F	`o lou
MUD GAS Zone of In Shows-Bre Depth	terest No aksNone LithologyH	W CI C2	C3 C4	01 C5F	'o lou
MUD GAS Zone of In Shows-Bre Depth	terest No aksNone LithologyH	W CI C2	C3 C4	@1 C5F	`o lou
MUD GAS Zone of In Shows-Bre Depth REMARKS:	terest No aksNone LithologyH	W CI C2	C3 C4	@1 	`o lou
MUD GAS Zone of In Shows-Bre Depth REMARKS:	terest No aksNone LithologyH	W CI C2	C3 C4	@1 	`o lou
MUD GAS Zone of In Shows-Bre Depth REMARKS:	terest No aks Lithology	W CI C2	C3 C4	@1 	`o
MUD GAS Zone of In Shows-Bre Depth REMARKS: Called	terest No aksNone LithologyH 	<u>W CI C2</u> <u>@ 800-521-</u>	C3 C4	@1 Date	`o

TEMP	SPUD		DAY_	39	D	ATE	22 Jur	ne 84
COMPANY								· · ·
WELL							<u></u>	
LOCATION								
DEPTH YEST	•5517	TODAY	5517	Time		FTG		FT/HR
OPERATION_	Fishing	r on stu	ck drill	collars		- <u></u>		
BIT NO	TYPE		IN	OUT		E	т	HRS
BIT NO	TYPE		IN	OUT	<u></u>	E	т	HRS
WOB	RPM	<u></u>	_PP	SPM		L	.AG	@
MUD <u>5517</u>	WT_9.0	VIS	5 <u>0</u> WL	6.0 0	CK_2_	_PH_9.	5_CL	500 RE /CA
SURVEYS	Spotted	70,000 ft	3 N ² - N	lo				
	Success							
			GEC					
FORM TOPS		•			L			
FORMATION								
FORMATION	Wingate							<u> </u>
LITHOLOGY .	Possible	Backof	f and was	shover			<u> </u>	
MUD CAS	<u></u>		<u></u> тс		YCDO		<u></u>	
Zone of Inter	est No.		10	BAU	KGKU	UND ۳		. То́
Shows-Breaks	 5				<u></u>		·	* V
Depth	Lithology	HW	CI	C2	C3	C4	C5	Flou
REMARKS:	······································				<u> </u>			
Called			Q			D	ate	
Goology		Loggin	<u> </u>		Mile			Exp

		-					
TEMP	SPUD_		DAY_	40	DATE_	23 J	une 84
WELL	, . <u></u>	* <u>*</u>	·····				
LOCATION			·····				···· · · · · · · · · · · · · · · · · ·
DEPTH YEST.		TODAY	5517	Time	FTG		FT/HR
OPERATION	After wa	ashing ov	er 96.30	gallons -	jarring or	n Fish	
BIT NO	TYPE		IN	OUT		FT	HRS.
BIT NO.	TYPE		IN	OUT		FT.	HRS.
WOB	RPM		PP	SPM		LAG	00
			GE	OLOGICAL			
FORM TOPS _		(5501	GE()?	OLOGICAL			
FORM TOPS	Wingat	(5501 te(?)	GE()?	DLOGICAL			
FORM TOPS _ FORMATION _ LITHOLOGY _	Wingat	(5501 te(?)	GE()?	DLOGICAL			
FORM TOPS FORMATION LITHOLOGY MUD GAS	Wingat	(5501 te(?)	GE()? TG	DLOGICAL	ROUND		
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere	Wingat wingat	(5501 te(?)	GE()? TG	DLOGICAL	ROUND _	@	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks	Wingat wingat	(5501 te(?)	GE()? TG	DLOGICAL	ROUND _	@	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth	Wingat est No Lithology _	(5501 te(?) HW	GE()? TG CI	OLOGICAL BACKC	GROUND _ 3 C4	@ C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth REMARKS:	Wingat est No Lithology _	(5501 te(?) HW	GE()? TG CI	DLOGICAL BACKC	GROUND 3 C4	@C5	To Flou

and an and a second second second second second second second second design and design at the Party of the Party of the

D	A	Π	JY	F	١E	PO	R	Т
	_		_					

TEMD						
	SPUD	DAY	41	DATE	24 June	84
COMPANY	Chandler &	Associates				
WELL	Lawrence S	tate 15-1		· · · · · · · · · · · · · · · · · · ·		
LOCATION_						
DEPTH YES	T. <u>5517</u>	TODAY 5517	Time	FTG		_FT/HR
OPERATION	Fishing -	washover; drill	collars			
BIT NO	TYPE	IN	OUT		FT	HRS.
BIT NO	TYPE	IN	OUT		FT.	HRS.
WOB	RPM	PP	SPM			@
MUD_5517	WT 90	VIS_65W	L <u>64</u> CK	2PH9	.5_CL_5	00 R22% CA 6
SURVEYS						
						· · · · · · · · · · · · · · · · · · ·
				·		
		GE	DLOGICAL			
FORM TOPS				······································		
FORMATION	Washove	r & pull one D.	C. (3 jts w	ash pipe)	rih w/5 j	ts washover
FORMATION LITHOLOGY	<u>Washove</u>	<u>r & pull one D.</u>	C. (3 jts w H. lav down	ash pipe) two its w	TIH w/5 j ash pipe.	ts washover
FORMATION LITHOLOGY	Washove	<u>r & pull one D.</u> get to fish; TO shover	C. (3 jts w H, lay down	ash pipe) two jts w	TIH w/5 j ash pipe.	ts washover
FORMATION LITHOLOGY	Washove Do not TIH; wa	r & pull one D. get to fish; TO shover	C. (3 jts w H, lay down	ash pipe) two jts w	TIH w/5 j ash pipe.	ts washover
FORMATION LITHOLOGY MUD GAS	<u> </u>	<u>r & pull one D.</u> get to fish; TO shover TG	C. (3 jts w H, lay down BACK(ash pipe) two jts w GROUND	TIH w/5 j ash pipe.	ts washover
FORMATION LITHOLOGY MUD GAS Zone of Inte	<u>Washove</u> <u>Do not</u> <u>TIH: wa</u> rest No.	<u>r & pull one D.</u> get to fish; TO shoverTG	C. (3 jts w H, lay down BACK(ash pipe) two jts w GROUND _	TIH w/5 j ash pipe. @	ts washover
FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break	<u>Washove</u> <u>Do not</u> <u>TIH: wa</u> rest No	<u>r & pull one D.</u> get to fish; TO shoverTG	C. (3 jts w H, lay down BACK(ash pipe) two jts w GROUND	TIH w/5 j ash pipe. @	ts washover
FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth	<u>Washove</u> <u>Do not</u> <u>TIH; wa</u> rest No ts Lithology	<u>r & pull one D.(</u> <u>get to fish; TO</u> <u>shover</u> TG TG 	C. (3 jts w H, lay down BACK(C2 C	ash pipe) two jts w GROUND 3 C4	TIH w/5 j ash pipe. 0 C5	ts washover
FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth	<u></u>	<u>r & pull one D.</u> <u>get to fish; TO</u> <u>shover</u> <u>TG</u> <u>HW</u> CI	C. (3 jts w H, lay down BACK(C2 C	ash pipe) two jts w GROUND 3 C4	TIH w/5 j ash pipe. 0 C5	ts washover _To _Flou
FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS: _	<u></u>	<u>r & pull one D.(</u> <u>get to fish; TO</u> <u>shover</u> TG TG <u>HW CI</u> <u>m. Mon. Home</u>	C. (3 jts w H, lay down BACK(C2 C	ash pipe) two jts w GROUND 3 C4	TIH w/5 j ash pipe. @ C5	ts washover _To _Flou
FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS: Called	<u>Do not</u> <u>Do not</u> TIH: wa rest No cs Lithology 6:00 a. B.L.	<u>r & pull one D.(</u> <u>qet to fish; TO</u> <u>shover</u> TG TG TG TG 	C. (3 jts w H, lay down BACK(C2 C	ash pipe) _two jts w GROUND 3 C4	TIH w/5 j ash pipe. 0 C5 Date	ts washover To Flou

	D	AIL	Y	R	E	P	Ο	R	т
--	---	-----	---	---	---	---	---	---	---

	SPUD	DAY_	42	DATE	25 June	84
COMPANY			· · ·			
WELL						
LOCATION						
DEPTH YES	STTO	DAY_5517	Time	FTG		FT/HR
OPERATION	N Fishing				······································	
BIT NO	TYPE	IN	OUT]	ст	HRS.
BIT NO	TYPE	IN	OUT	1	т	HRS
WOB	RPM	PP	SPM	I	.AG	@
MUD_5517	<u>WT 9.0</u> VIS	62 WL	7.2 CK	2PH9	. <u>0</u> _CL_	500 RE /CA_
SURVEYS						
					- <u>'''' </u>	
		GEO	LOGICAL			
FORM TOPS	5					······································
FORM TOPS	S NWash over to	5054; top of	Fish 4958.	P.O.O.H.;	stand ba	ack, wash pi
FORM TOPS FORMATION	S NWash over to KP/I screw in	5054; top of 3	Fish 4958. H; screw in	P.O.O.H.; n, attempt	stand back	ack, wash pi off.
FORM TOPS FORMATION LITHOLOGY Back o	S NWash over to XP/I screw in off; (broke wire l	5054; top of i sub TI ine) screw in	Fish 4958. H; screw in , jar. Att	P.O.O.H.; a, attempt cempt back	stand back to back off (2 d	ack, wash pi off. collars)brok
FORM TOPS FORMATION LITHOLOGY Back of screw	S NWash over to XP/I screw in off; (broke wire l in sub. Attempt	5054; top of i sub TI ine) screw in back off (2 c	Fish 4958. H; screw in , jar. Att ollars)- ba	P.O.O.H.; a, attempt cempt back acked off,	stand back to back off (2 o packed t	ack, wash pi off. collars)brok up 2 collars
FORM TOPS FORMATION LITHOLOGY Back of screw MUD GAS _	S NWash over to XP/I screw in off: (broke wire 1 in sub. Attempt	5054; top of i sub TI ine) screw in back off (2 cd TG	Fish 4958. H; screw in , jar. Att ollars)- ba BACKG	P.O.O.H.; a, attempt cempt back acked off, ROUND	stand back to back off (2 o packed t	ack, wash pi off. collars)brok up 2 collars
FORM TOPS FORMATION LITHOLOGY Back of screw MUD GAS Zone of Int	S NWash over to XP/I screw in off; (broke wire 1 in sub. Attempt erest No	5054; top of sub TI ine) screw in back off (2 cd TG	Fish 4958. H; screw in , jar. Att ollars)- ba BACKG	P.O.O.H.; a, attempt cempt back acked off, ROUND	stand back off (2 o packed o	ack, wash pi off. collars)brok up 2 collars To
FORM TOPS FORMATION LITHOLOGY Back of screw MUD GAS Zone of Int Shows-Brea	S NWash over to YP/I screw in off; (broke wire 1 in sub. Attempt in sub. Attempt erest No uks	5054; top of : sub TI ine) screw in back off (2 co TG	Fish 4958. H; screw in , jar. Att ollars)- ba BACKG	P.O.O.H.; a, attempt cempt back acked off, ROUND	stand back to back off (2 o packed o	ack, wash pi off. collars)brok up 2 collars To
FORM TOPS FORMATION LITHOLOGY Back of screw MUD GAS Zone of Int Shows-Brea Depth	S NWash over to YP/I screw in off; (broke wire 1 in sub. Attempt erest No erest No Lithology	5054; top of sub TI ine) screw in back off (2 co TG	Fish 4958. H; screw in , jar. Att ollars)- ba BACKG C2 C3	P.O.O.H.; a, attempt cempt back acked off, ROUND C4	stand back off (2 off (ack, wash pi off. collars)brok up 2 collars To Flou
FORM TOPS FORMATION LITHOLOGY Back of screw MUD GAS Zone of Int Shows-Brea Depth	SN <u>Wash over to</u> X <u>P/I screw in</u> off: (broke wire 1 in sub. Attempt erest No. ks Lithology	5054; top of sub TI ine) screw in back off (2 co TG IW CI	Fish 4958. H; screw in , jar. Att ollars)- ba BACKG C2 C3	P.O.O.H.; a, attempt cempt back acked off, ROUND C4	stand back off (2 o packed o C5	ack, wash pi off. collars)brok up 2 collars To Flou
FORM TOPS FORMATION LITHOLOGY Back of screw MUD GAS _ Zone of Int Shows-Brea Depth REMARKS:	SN <u>Wash over to</u> X <u>P/I screw in</u> off: (broke wire 1 in sub. Attempt erest No. ks Lithology H Loggers and G	5054; top of sub TI ine) screw in back off (2 co TG TG IW CI eo on stdby;	Fish 4958. H; screw in , jar. Att ollars)- ba BACKG C2 C3 26 June	P.O.O.H.; a, attempt cempt back acked off, ROUND C4	stand back off (2 o packed o C5	ack, wash pi off. collars)brok up 2 collars To Flou
FORM TOPS FORMATION LITHOLOGY Back of screw MUD GAS _ Zone of Int Shows-Brea Depth REMARKS: Called	S NWash over to XP/I screw in off: (broke wire 1 in sub. Attempt erest No erest No Lithology Loggers and G	5054; top of sub TI ine) screw in back off (2 co TG IW CI eo on stdby; @ 7	Fish 4958. H; screw in , jar. Att ollars) - ba BACKG C2 C3 26 June 79-0130	P.O.O.H.; a, attempt cempt back acked off, ROUND C4	stand bi to back off (2 o packed o C5	ack, wash pi off. collars)brok up 2 collars To Flou

			<u></u>				
TEMP	SPUD		DAY	43	_DATE_	26 June	84
COMPANY	· · · · · · · · · · · · · · · · · · ·						
WELL				·····			
LOCATION_				· · · · · · · · · · · · · · · · · · ·			
DEPTH YES	т	_TODAY_		Time	FTG_		FT/HR_
OPERATION							
BIT NO	TYPE		IN	OUT		FT	HRS
BIT NO.	TYPE		_ IN	OUT		FT	HRS.
WOB	RPM		PP	SPM		LAG	@
MUD	WT	_vis	WL	Ск	PH	CL	FE/CA
SURVEYS							
		 		· · · · · · · · · · · · · · · · · · ·			
			GEO	LOGICAL			
FORM TOPS	••••••••••••••••••••••••••••••••••••••	Stand	GEO)	LOGICAL			-
FORM TOPS FORMATION		Stand	GEO) by	LOGICAL			-
FORM TOPS FORMATION LITHOLOGY	-	<u>Stand</u>	GEO)	LOGICAL			• •
FORM TOPS FORMATION LITHOLOGY		Stand	GEO	LOGICAL			· · · · · · · · · · · · · · · · · · ·
FORM TOPS FORMATION LITHOLOGY MUD GAS		<u>Stand</u>	GEO by TG	BACKGI	ROUND		·
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter	 rest No	<u>Stand</u>	GEO	LOGICAL	ROUND	<u>@</u>	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth	rest No	<u>Stand</u>	GEO	BACKGI	ROUND	<u>@</u>	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte: Shows-Break Depth	rest No Lithology	Stand	GEOI	BACKGI	ROUND	@	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break Depth REMARKS: _	rest No sLithology	<u>Stand</u>	GEOI	BACKGI	ROUND _	@ C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS: Called	rest No s Lithology _	Stand	GEOI	BACKGI	ROUND C4	_@ Date	To Flou

DA	\IL	Y	RE	P	OR	Т

TEMP	SPUD_		DAY_	44	DATE_	27 Ju	ne 84
COMPANY		·····	·	·			
WELL						<u> </u>	
LOCATION_	<u> </u>						
DEPTH YES	т	_TODAY_		Time	FTG_		FT/HR
OPERATION						····	
BIT NO	TYPE	#	IN	OUT		FT	HRS
BIT NO	TYPE		IN	OUT		FT	HRS
WOB	RPM		_PP	SPM		LAG	@
					·		
AUD	WT	_vis	WI	скск_	PH	CL	FE/CA
SURVEYS							
							·····
		·····					
		· · · · · · · · · · · · · · · · · · ·		• ••••••••••••••••••••••••••••••••••••			<u> </u>
			GEC	DLOGICAL			
TORM TOPS		·	· · · · · · · · · · · · · · · · · · ·	····	Standb	ру У	
FORMATION	•••==========						
ITHOLOGY							
				· · · · · · · · · · · · · · · · · · ·			
			• • • • • • • • • • • • • • • • • • • •				
UD GAS			TG	BACKG	ROUND	~	
one of Inter	rest No.				-	0	То
hows-Break	S				·····	<u></u>	
epth	Lithology	HW	CI	C2 C3	C4	C5	Flou
EMARKS: _							
EMARKS: _							······································
I	DA	IL	Y	R	EP	OR	(T
---	----	----	---	---	----	----	----

TEMP	SPUD_		DAY	45	_DATE_	28 J	une 84
COMPANY							<u></u>
WELL		1 					
LOCATION		<u> </u>					······
DEPTH YEST.		_TODAY_		Time	FTG_		FT/HR
OPERATION	· · · · · · · · · · · · · · · · · · ·		<u> </u>				•
BIT NO	TYPE	<u> </u>	IN	OUT		FT	HRS
BIT NO	TYPE		IN	OUT		FT	HRS
woв	_ RPM		_PP	SPM		LAG	@
w	'T	_vis	WL_	Ск	PH	CL	FE/CA
SURVEYS							
							· · · · · · · · · · · · · · · · · · ·
		······	GEOI	OGICAL			
FORM TOPS						Stan	dby
FORMATION							
UTHOLOGY							
				· · ·			
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>						
IUD GAS		••••••••••••••••••••••••••••••••••••••	 TG	BACKGI	ROUND		
AUD GAS	t No		TG	BACKGI	ROUND	Q	To
AUD GAS Cone of Interes Shows-Breaks _	t No		TG	BACKG	ROUND		To
AUD GAS Cone of Interes Hows-Breaks _ PepthL	t No	HW	TG CI	BACKGI	ROUND C4	@ 	To Flou
UD GAS Sone of Interes Shows-Breaks DepthL	it No	HW	TG CI	BACKGI	ROUND C4	@ C5	To Flou
AUD GAS Cone of Interes Shows-Breaks Depth Line REMARKS:	it No ithology _	HW	TG CI	BACKGI	C4	@ C5	To Flou
MUD GAS Zone of Interes Shows-Breaks Depth L REMARKS:	it No	HW	TG CI	BACKGI	C4	C5	To Flou

TEMP COMPANY	SPUD_	·	DAY	46	_DATE_	29 Jur	ne 84
WELL							
LOCATION	······						
DEPTH YEST. OPERATION	•	TODAY_	· · · · · · · · · · · · · · · · · · ·	Time	FTG_		FT/HR
BIT NO	TYPE		IN	OUT		FT	HRS
BIT NO	_ TYPE		IN	OUT		FT	HRS.
WOB	R P M		_PP	SPM		LAG	@
MUD	WT	VIS	WL	СК	PH	CL	FE/CA
SURVEYS		·				•	
FORM TOPS			GEOL	OGICAL			
FORM TOPS	Plug bag	ck well to	GEOL	OGICAL	Standby	side tra	ck bole
FORM TOPS FORMATION LITHOLOGY	Plug bac Plug dow	ck well to wn @ 5:30	GEOL 5 4415. C a.m.; 29	OGICAL armel; prep June 84. C	Standby pare to s Cemt w/1	side tra .65 sx l	ck hole. ight
FORM TOPS FORMATION LITHOLOGY	Plug bac Plug dow w/.75% (ck well to wn @ 5:30 CFR2 3% sa	GEOL 4415. C a.m.; 29 alt	OGICAL armel; prep June 84. C	Standby pare to s Cemt w/1	side tra .65 sx l	ck hole. ight
FORM TOPS FORMATION LITHOLOGY MUD GAS	Plug bac Plug dow w/.75% (ck well to wn @ 5:30 CFR2 3% sa	GEOL 0 4415. C a.m.; 29 01t TG	OGICAL armel; prep June 84. C BACKGR	Standby pare to s Cemt w/1	side tra .65 sx l	ck hole. ight
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Interes	Plug bac Plug dow w/.75% (st No.	ck well to wn @ 5:30 CFR2 3% sa	GEOL 0 4415. C a.m.; 29 11t TG	OGICAL armel; prep June 84. C BACKGR	Standby pare to s Cemt w/1	side tra .65 sx 1 @	ck hole. ight To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Interes Shows-Breaks DepthL	Plug bac Plug dou w/.75% (st No	ck well to wn @ 5:30 CFR2 3% sa HW	GEOL 0 4415. C a.m.; 29 11t TG CI	OGICAL armel; prep June 84. C BACKGR	<u>Standby</u> pare to s Cemt w/1. .OUND .OUND	side tra .65 sx 1 @ 	ck hole. ight To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Interes Shows-Breaks DepthI REMARKS:	Plug bac Plug dow w/.75% (st No	ck well to wn @ 5:30 CFR2 3% sa HW	GEOL 0 4415. C a.m.; 29 11t TG CI	OGICAL armel; prep June 84. C BACKGR C2C3	<u>Standby</u> pare to s Cemt w/1. .OUND C4	side tra .65 sx 1 @ 	ck hole. ight To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Interes Shows-Breaks DepthI REMARKS: Called	Plug bac Plug dow w/.75% (st No	ck well to wn @ 5:30 CFR2 3% sa HW	GEOL 0 4415. C a.m.; 29 1t TG CI CI 0	OGICAL armel; prep June 84. C BACKGR C2 C3	<u>Standby</u> pare to s Cemt w/1. .OUND C4	side tra .65 sx 1 @ C5 Date	ck hole. ight To Flou

		Ŭ	DAILY	REPORT				
TEMP	SPU	D	DAY	47	DATE_	30 Jui	ne 84	
COMPANY	Chand	ler & Assoc	iates					
WELL	Lawre	nce State 1	5-1					
LOCATION_					_			
DEPTH YES	т	TODAY_		Time	FTG		FT/HR	
OPERATION	Trip in	hole to dres	ss plug; t	op of plu	g @ 5517	- fish le	eft @ 5517	
BIT NO. 15	5 TYPE	Sec M84F	IN_4940	OUT	5517	FT. 577	HRS.	
BIT NO. 16	5 TYPE	Reed FP53F	IN	OUT		FT	HRS	
WOB	RPM		_PP	SPM	· ···	LAG	@	
MUD		VIS	WL_	Ск_	PH	CL_	FE/CA	
SURVEYS	45	75						
FORM TOPS			GEOI	OGICAL				
FORM TOPS FORMATION	Carme	1	GEOI	OGICAL				
FORM TOPS FORMATION LITHOLOGY	Carme Trip	l in hole to a	GEOI dress plug	J.OGICAL			·	
FORM TOPS FORMATION LITHOLOGY MUD GAS	Carme	l in hole to d	GEOI dress pluc TG	LOGICAL	ROUND		· · · · · · · · · · · · · · · · · · ·	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte	<u>Carme</u> <u>Trip</u> rest No.	l	GEOI	LOGICAL	ROUND	 @	To	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte: Shows-Break	Carme Trip rest No s	l in hole to o	GEOI	LOGICAL	ROUND	@	To	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte: Shows-Break Depth	Carme Trip rest No s Lithology	1 in hole to (GEOI	LOGICAL	ROUND C4	@ C5	To Flou	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break Depth REMARKS:	Carme Trip rest No sLithology	1 in hole to o	GEOI	LOGICAL	ROUND	@ C5	To Flou	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte: Shows-Break Depth REMARKS: Called	Carme Trip rest No sLithology	1 in hole to o	GEOI dress pluc TG CI 	LOGICAL	ROUND 3 C4	@ C5 Date	To Flou	

TEMP	SPUD	C	AY	48	_DATE_	1 July	84
COMPANY	Chandler &	Associates	3				
WELL	Lawrence S	<u>tate 15-1</u>			<u></u>		
LOCATION							
DEPTH YEST.	<u>4529</u> T	ODAY 4	<u>553</u> 1	Cime	FTG_	24	FT/HR
OPERATION_E	eqin side tr	ack #1 w/Dy	ynadrill	& Diamor	nd Bit		
BIT NO. <u>16</u>	TYPE Reed	<u>FP53</u> IN_		OUT		FT	HRS
BIT NO. 17	TYPE <u>Chri</u>	sIN_	4529	OUT		FT	HRS.
WOB _5000	RPM	PP	850	SPM		LAG	@
MUD <u>4548</u>	VT <u>8.8</u> V	IS <u>60</u>	WL	5.8_CK	2 PH_1	.0.5 CL	580 XRX83/CA_
SURVEYS (S73	<u>W) Orientati</u>	on Survey	to start	side tra	ack #1;	1 ¹ / ₂ bent	sub on bottom
						·	
			GEOLOG	ICAL			
FORM TOPS	<u>.</u>		······			÷	
FORMATION _	Carmel	-				······································	
LITHOLOGY							
		•					······
					· · · · · · · · · · · · · · · · · · ·	····	
MUD GAS			۲G	BACKGR	ROUND	7	· · · · · · · · · · · · · · · · · · ·
Zone of Intere	st No.					0	To
Shows-Breaks				· · · · · · · · · · · · · · · · · · ·	<u></u>		
DepthI	ithology	HW C	C2	C3	C4	C5	Flou
REMARKS:			<u></u>	,,,,,,,,,			
Called <u>B. I</u>		(<u>a</u> 779-01:	30		Date	

DAIL	Y RE	POR	Т

		Ŭ	DAIL	I REPORT				
TEMP	SPUD		DAY_	49	DATE	<u>2 Ju</u>	ly 84	
COMPANY	Chandler	& Asso	ciates					
WELL	Lawrence	State	15-1					
LOCATION								
DEPTH YEST.	4553	TODAY	4615	Time	FTG		FT/H	R
OPERATION	Trip							
BIT NO	TYPE		IN	OUT _		_ FT	HR	s
BIT NO	TYPE		IN	OUT _		_ FT	HR	s
WOB	_ RPM		PP	SPM		_ LAG _	0	
MUD <u>4615</u> W	/T <u>8.7</u>	_VIS	43 WL	,_6_СК	2 PH	11.5 C	L500 POS	/CA :
SURVEYS								
							·····	
					· · · · ·			<u></u>
 			GEC	LOGICAL	· · · · · · · · · · · · · · · · · · ·			
FORM TOPS			· · · ·	•				
FORMATION	Carmel					•		
LITHOLOGY								
				· · · · · · · · · · · · · · · · · · ·				
MUD GAS			TG	BACK	GROUND	.		
Zone of Interes	st No.		······································			@	To	
Shows-Breaks							······	
DepthL	ithology _	HW	CI	C2 C	3 C4	C5	Flou	
REMARKS:								
Handhard					- <u>188 </u>		*****	
Called <u>B.L</u>	•		@ 80	0-521-2459		_Date _		

ТЕМР	SPUD	DAÝ	50	DATE	<u> </u>	84
COMPANY	Chandler & Asso	ciates				
WELL	Lawrence State	15-1				
LOCATION						
DEPTH YEST.		Y 4720	Time	FTG_	105	FT/HR
OPERATION_	Drilling with B	it #18				1
BIT NO. <u>18</u>	TYPE Reed FP53	J IN 4615	OUT		FT	HRS
BIT NO. 17	TYPE <u>Chris</u>	IN4529	OUT	4615	FT	86 HRS.
WOB <u>35</u>	RPM70	PP650	SPM	60	LAG	@
MUD_4710	WT <u>8.7</u> VIS	44WL	<u>6.4</u> CK	2PH	11.5_CL_	490 फ़िस्ट्र/CA
SURVEYS	4644 - 1 3/4 S1	LE	4519 - 5°	S63W	<u></u>	
	4582 - 2 1/4 S3	3W	4494 - 5°	S73W		
	4551 - 3 3/4 S5	1W				
	•	GEO	LOGICAL			
FORM TOPS		·····				
FORMATION	Carmel					
LITHOLOGY _				. <u></u>		<u></u>
			РАСИ	CROUND		,, , , , , , , , , , , , , , , , ,
MOD GAS	at No	10	DACK	GROUND -		<u>π</u>
Showe-Break	ESI NO.			· · ·		10
Depth	Lithology HW	CI	C2 C	3 C4	C5	Flou
	·····					
REMARKS:		· · · · · · · · · · · · · · · · · · ·				
- ·· ·		-				

TEMP	SPUD		DAY	51		DATE	4	July 8	84
COMPANY						• ••			
WELL									
LOCATION_								···· ··· ··· ··· ··· ··· ··· ··· ··· ·	······································
DEPTH YEST	F. <u>4720</u> Drilling w	TODAY	<u>4888</u> #18	Time	9	FTG_	168	J	FT/HR
BIT NO. 18	TYPE	d FP53	IN 4615	OU	т		FT.		HRS.
BIT NO.	TYPE		IN	00	т		FT.		HRS.
WOB	RPM		PP	SP	M		LAG		@
MUD_4879	_WT_ 8.7	_VIS_42	WI	, 6.2	CK_2	PH	12	_CL_46	0ĚŽ/CA3
SURVEYS	4828 - 3 1	./2 S26E					<u></u>		· · · · ·
	4737 - 3 1	L/4_S15E		· · · · · · · · · · · · · · · · · · ·		<u> </u>			
	4891 - 3 3	3/4 S24E							
	4891 - 3 3	3/4 S24E	GEC	DLOGIC	AL				
FORM TOPS		3/4 S24E	GEC Minor rev	LOGIC	AL eak p	ossible			
FORM TOP <u>S</u> FORMATION		3/4 S24E 96 (?)	GEC Minor rev	LOGIC	AL eak po	ossible			
FORM TOPS FORMATION LITHOLOGY	<u>4891 - 3 3</u> <u>Navajo 489</u> <u>Carmel</u>	3/4 S24E	GEC Minor rev	DLOGIC	AL eak p	ossible		•	
FORM TOPS FORMATION LITHOLOGY	<u>4891 - 3 3</u> <u>Navajo 489</u> <u>Carmel</u>	3/4 S24E	GEC Minor rev	DLOGIC	AL eak po	ossible			· · · · · · · · · · · · · · · · · · ·
FORM TOPS FORMATION LITHOLOGY MUD GAS		3/4 S24E	GEC Minor rev	DLOGIC.	AL eak po	OUND		25	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte	<u></u>	3/4 S24E	GEC Minor rev TG	DLOGIC.	AL eak po CKGR	OUND		25	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break	<u></u>	3/4 S24E	GEC Minor rev TG	DLOGIC	AL eak po CKGR	OUND		25	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth	<u></u>	3/4 S24E 96 (?) HW	GEC Minor rev TG 	DLOGIC	AL reak po CKGR C3	OUND	 (25 25 C5 I	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth		3/4 S24E 96 (?) HW	GEC Minor rev TG 	DLOGIC	AL reak po CKGR C3	OUND C4		25 C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS:		3/4 S24E 96 (?) HW	GEC Minor rev TG 	DLOGIC	AL reak po CKGR C3	OUND C4	 	25 C5 I	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS:		3/4 S24E 96 (?) HW	GEC Minor rev TG 	DLOGIC	AL reak po CKGR C3	OUND C4		25 C5 I	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte: Shows-Break Depth REMARKS: Called		3/4 S24E 96 (?) HW	GEC Minor rev TG CI CI	DLOGIC	AL reak po CKGR C3	OUND C4	((25	To Flou

.

	SPUD		_DAY_	52	DATE_	<u>5 Ju</u>	ly 84
COMPANY	Chandler	& Associa	tes				
WELL	Lawrence	State 15-	1				
LOCATION							
DEPTH YEST	•4888	TODAY_	5192	Time	FTG_	204	FT/HR
OPERATION_	Drilling	with Bit	#18				<u> </u>
BIT NO	TYPE		IN	OUT		FT	HRS
BIT NO	TYPE		IN	OUT		FT	HRS
WOB	RPM	70	PP <u>700</u>	SPM	60	LAG	@
MUD 5180	WT 8.6+	VIS 48	WL	5.8 CK	2 PH_	11.5_CL	450_FE/CA_
SUBVEVS		· <u>·</u> ·		•		· · ·	
SURVEIS				·		<u></u>	
				<u>,,</u>			
** <u>*</u> ····· ··· ··· ··· ··· ··· ···	<u></u>						
			GEO	LOGICAL			
FORM TOPS	<u>Navajo 4</u>	896					
FORM TOPS	Navajo 4 Navajo	896					
FORM TOPS	<u>Navajo 4</u> <u>Navajo</u> (Kaventa	896 5338) SS					
FORM TOPS	Navajo 4 Navajo (Kayenta	896 5338) SS					
FORM TOPS FORMATION LITHOLOGY	Navajo 4 Navajo (Kayenta	896 5338) SS		·	·		
FORM TOPS FORMATION LITHOLOGY MUD GAS	Navajo 4 Navajo (Kayenta	896 5338) SS	TG	BACK	GROUND		30
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter	Navajo 4 Navajo (Kayenta	896 5338) SS	TG	BACK	GROUND	@	30 To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks	<u>Navajo</u> <u>Navajo</u> (Kayenta rest No	896 5338) SS	TG	BACK	GROUND	@	30 To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	<u>Navajo</u> <u>Navajo</u> (Kayenta (Kayenta s Lithology	896 5338) SS HW	TG CI	BACK	GROUND	@ C5	30 To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	<u>Navajo 4</u> <u>Navajo</u> (Kayenta rest No sLithology _	896 5338) SS HW	TG 	BACK C2 C	GROUND	@ C5	30 To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break: Depth REMARKS:	<u>Navajo 4</u> <u>Navajo</u> (Kayenta rest No sLithology _	896 5338) SS HW	TG 	BACK	GROUND	@ C5	30 To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break: Depth REMARKS:	<u>Navajo 4</u> <u>Navajo</u> (Kayenta rest No Lithology	896 5338) SS HW	TG CI	BACK C2 C	GROUND	@ C5	30 To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break: Depth REMARKS: Called	<u>Navajo 4</u> <u>Navajo</u> (Kayenta rest No s Lithology	896 5338) SS HW	TG CI 	BACK C2 C	GROUND	@ C5 Date	30 To Flou

ТЕМР	SPUD	D <i>i</i>	AY	53	_DATE_	<u>6 Jul</u>	y 84
COMPANY							
WELL							
LOCATION							
DEPTH YEST	• <u>5192</u> T	ODAY <u>545</u>	2Ĩ	`ime	FTG_	260	FT/HR
OPERATION_	Drilling wi	th Bit #18					
BIT NO. <u>18</u>	TYPE Reed	FP53A IN	4615	OUT		FT	HRS.
BIT NO.	TYPE	IN		OUT		FT.	HRS
WOB	RPM	PP_6	50/700	SPM		LAG	@
MUD 5449	WT 9.0 V	/IS 46	WL 6.6	5 CK	2 PH	11.0 CL	550 Bog/CA ;
SUDVEVS				<u> </u>			
SURVEIS							
			GEOLOC	SICAL			
FORM TOPS	Kayenta	5338					
FORMATION							
LITHOLOGY	90% SS v	vh vffq					
	10% Slts	sn & Sh: tr	Anhy				
	Bgg -	1 Unit @ 6:	00 a.m.				
MUD GAS		Т	G	BACKG	ROUND		7
Zone of Inter	est No.					0	To
Shows-Break	5		······				
Depth	Lithology	HW CI	C2	<u>C</u> 3	C4	C5	Flou
REMARKS: _	NOTE: (changed out	poly flo	ow; four	nd conta	nination	in system was
		causing high	back g	round.			
						<u></u>	······································
Called	B.L.	(g	521-2459)	_Date	
Coology		Logging			Milongo		Fvn

	3100		DAY	54	D.	ATE	<u>7 Ju</u>	<u>lv 84</u>	
COMPANY	Chandle	r & Asso	ciates						
WELL	Lawrence	e State	15-1 SI	:#1					
LOCATION									<u></u>
DEPTH YEST	5452 7	TODAY	5556	Time		FTG_1	04	FT	/HR
OPERATION_	Drilling	g with B	it #19						
BIT NO. <u>18</u>	TYPE Reed	FP53A	IN <u>4615</u>	OUT	545	9	FT	844	HRS. <u>84</u>
BIT NO. 19	TYPE STC	F-4	IN_5459	0UT			FT		HRS
WOB <u>35</u>	RPM70		PP <u>800</u>	SPM		·]	LAG		@
MUD <u>5557</u>	_WT	VIS_47_	WL	<u>6.2</u> C	K_2	РН <u>1</u>	<u>1.0</u> CI	550	_F _X F _X /CA_
SURVEYS	5420 - 3° s	537W							
				<u></u>					
						<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>		
FORM TOPS	Wincate	5505 (2)						
FORM TOPS	Wingate	5505 (?)					 	
FORM TOPS	Wingate Wingate	5505 (?)			· · · ·		··· ·	
FORM TOPS	Wingate Wingate 100% SS	5505 (wh, lt-	?) org vf-f	iq w/s mq	m-wce	m vsli	– non	calc	
FORM TOPS FORMATION LITHOLOGY	Wingate Wingate 100% SS	5505 (wh, lt-	?) org vf-f	iq w/s mq	m-wce	m vsli		calc	······
FORM TOPS FORMATION LITHOLOGY MUD GAS	Wingate Wingate 100% SS	5505 (wh, lt-	<u>?)</u> org vf-f	<u>iq w/s mq</u> BAC	m-wcei KGROI	n vsli	<u> </u>	_calc6	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter	Wingate Wingate 100% SS	5505 (wh, lt-	<u>org vf-f</u>	<u>iq w/s mq</u> BAC	m-wcei KGROI	n vsli JND _	<u>– non</u>	_calc6Tc	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks	Wingate Wingate 100% SS	5505 (wh, lt-	org vf-f	<u>iq w/s mq</u> BAC	m-wcei KGROI	m vsli JND _	 @	<u>calc</u> 6 Tc	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Wingate Wingate 100% SS est No. s <u>NONE</u> Lithology	5505 (wh, lt-	CI	<u>iq w/s mq</u> BAC C2	m-wcei KGROU C3	n vsli JND _ C4	 @ C5	 To To	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Wingate Wingate 100% SS rest No. sNONE Lithology	5505 (wh, lt-	cilic ?) org vf-f TG CI	<u>iq w/s mq</u> BAC 	m-wcei KGROI C3	n vsli JND _ C4	<u>– non</u> @ 	6 To Flc) DU
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Wingate Wingate 100% SS	5505 (wh, lt-	CI	<u>iq w/s mg</u> BAC 	m-wcei KGROI C3	n vsli JND _ C4	<u>– non</u> @	6 To Flc)
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Wingate Wingate 100% SS rest No. sNONE Lithology	5505 (wh, lt-	CI	<u>iq w/s mq</u> BAC 	m-wcei KGROI C3	n vsli JND C4	<u>- non</u> @ 	calc 6 To Flc))
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS: Called	Wingate Wingate 100% SS	5505 (wh, lt-	(150 <u>?)</u> <u>org vf-f</u> <u>TG</u> <u>CI</u> <u>CI</u>	<u>iq w/s mq</u> BAC 	m-wcei KGROI C3	n vsli JND C4	 @ C5 Date	 Flc))))))

	SPUD		DAY_		DATE		8 Jul	<u>y 84</u>
COMPANY	Chandle	er & Asso	ciates					
WELL	Lawrend	ce State	15-1 ST	:#1				
LOCATION			- <u></u>					
DEPTH YEST	• 5556	TODAY	5750	Time	FTC	_194_	•	_FT/HR
OPERATION_	Drilling v	with Bit	#19					•
BIT NO. 19	TYPE <u>ST&</u>	<u>C F-4</u>	IN <u>5459</u>	OUT		_ FT.		HRS
BIT NO	TYPE		IN	OUT		_ FT.		HRS
WOB <u>40 m</u>	RPM	70	PP <u>850</u>) SPM	60	_ LAC		@
MUD <u>5743</u>	WT 9.1	VIS <u>52</u>	WL	<u>6.6</u> C	K_2_PH	11	_CL_;	5 <u>50 x</u> (CA
SURVEYS								
		and the second						
FORM TOPS . FORMATION . LITHOLOGY	Wingate SS wh,	e lt-org v	vf-fg suk	ang m-w (cem; vsli	- non	calc.	
FORM TOPS	Wingate SS wh,	e lt-org v	∕f-fg suk	ang m-w (cem; vsli	<u>- non</u>	calc.	
FORM TOPS _ FORMATION _ LITHOLOGY _ MUD GAS	Wingate SS wh,	e lt-org v	rf-fg suk	bang m-w c	cem; vsli KGROUND	<u>– non</u>	<u>calc</u> . 6-9	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter	Wingate SS wh, rest No.	e lt-org v	<u>rf-fg suk</u> TG	bang m-w c	cem; vsli KGROUND	- non 	<u>calc</u> . 6-9	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks	Wingate SS wh, rest No. sNone	e lt-org v	rf-fg suk	bang m-w c	cem; vsli KGROUND	- non	<u>calc</u> . 6-9	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Wingate SS wh, SS wh, Sest No None Lithology	e lt-org v HW	rf-fg suk TG CI	BACI	cem; vsli KGROUND C3 C	- non 	calc. 6-9 C5	_To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Wingate SS wh, rest No s Lithology	e lt-org v HW	rf-fq sub TG CI	Dang m-w c BACI 	cem; vsli KGROUND C3 C	- non @4	calc. 6-9 C5	_To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Wingate SS wh, cest No s Lithology	e lt-org v HW	rf-fg suk TG CI	BACI	cem; vsli KGROUND C3 C	- non @4	calc. 6-9 C5	_To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS: Called	Wingate SS wh, eest No <u>None</u> Lithology	e lt-org v HW	cI @	Dang m-w c BACI	cem; vsli KGROUND C3 C	- non @ 4	<u>calc</u> . 6-9 C5	To Flou

ТЕМР	SPUD	DAY_	56	DATE	9 July 84
COMPANY					
WELL			<u></u>		
LOCATION					
DEPTH YEST	. 5750 T	ODAY 5847	Time	FTG <u>97</u> ،	FT/HR
OPERATION_	Drilling wi	th Bit #20			
BIT NO. 19	TYPE <u>STC F</u>	-4 IN5459	OUT	<u>5835</u> FT	. <u>376</u> HRS.
BIT NO. 20	TYPE STC F	-5 IN 583	5 OUT	FT	. HRS.
				τ	~
WOB <u>40</u>	KPM5	5PP950	<u>)</u> SPM	60 LA	۵۴
MUD FOAF	WT o o V	IS E1 WI	- 7 2 CK	2 PH 10	
MOD <u>5845</u>	<u> </u>	10 <u>_51</u>	<u>_/.2_</u> 0K_	_2110.1	<u> </u>
SURVEYS	5803 - 3 1/	2°	<u> </u>		
		GEC	DLOGICAL		
FORM TOPS	Chinle	5823			
FORMATION	Chinle				
LITHOLOGY				· · · · · · · · · · · · · · · · · · ·	. <u> </u>
LITHOLOGI .	Sn & SIC	sn red-brn fill	n vsii non	calc.	<u></u>
				· · · · · · · · · · · · · · · · · · ·	,
MUD GAS		TG	BACKC	GROUND	6-10
Zone of Inter	est No		· · ·	0	To
Shows-Breaks	3				
Depth	Lithology	HW CI	C2 C	3 C4	C5 Flou
·····	· · · · · · · · · · · · · · · · · · ·				<u></u>
			····	·····	·····
KEMARKS:		· · · · · · · · · · · · · · · · · · ·	····		<u></u>
				····	1
Called	B.L.	<u> </u>	300-521-245	9Dat	.e
<u> </u>		· ·			-

TEMP	SPUD		DAY_	57	DATE	10	July 84	
COMPANY	Chandle	er & Asso	ciates	····.				
WELL	Lawrend	<u>e State</u>	15-1					
LOCATION					· · · · · · · · · · · · · · · · · · ·			
DEPTH YEST	•5847	TODAY_	5995	Time	FTC	148	FT/	HR
OPERATION_	Drilling v	with Bit	#20					
BIT NO. <u>20</u>	TYPE STC	F-5	IN <u>5835</u>	<u>5</u> OUT		_ FT	н	RS
BIT NO.	TYPE		IN	OUT		_ FT	н	RS
WOB <u>40</u>	RPM	55	PP_900	SPM	60	LAG_	0_	
MUD <u>5993</u>	WT 9.1	VIS	55WL	. <u>7.0</u> C	K_2_PH	10.5	CL <u>550</u>	k≣/CA
SURVEYS								
	<u></u>							
	<u></u>		GEC	DLOGICAI	<u>.</u>			
FORM TOPS			GEC	DLOGICAI				
FORM TOPS FORMATION	Chinle		GEC	DLOGICAI				
FORM TOPS FORMATION LITHOLOGY	Chinle Sh red	-brn, vai	GEC	DLOGICAI	vsli - no	on calc.		
FORM TOPS FORMATION LITHOLOGY	Chinle Sh red	-brn, va	GEC	DLOGICAI	vsli - no	on calc.		
FORM TOPS FORMATION LITHOLOGY	Chinle Sh red	-brn, va	GEC	DLOGICAI	vsli – no	on calc.		
FORM TOPS FORMATION LITHOLOGY MUD GAS	Chinle Sh red	-brn, va	GEC ricolor 1 TG	DLOGICAI	vsli - no KGROUNE	on calc.	4	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte	Chinle Sh red- 	-brn, va	GEC	DLOGICAI	vsli - no KGROUNE	on .calc.	4To	· · · · · · · · · · · · · · · · · · ·
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break	Chinle Sh red Sh red 	-brn, va	GEC	DLOGICAI	vsli – no KGROUNE	on .calc.	4To	······································
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break Depth	Chinle Sh_red rest No sLithology	-brn, va:	GEC	DLOGICAI	vsli – no KGROUNE C3 C	on .calc.	4 To 5 Flou	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth	Chinle Sh red rest No s Lithology	-brn, van HW	GEC ricolor 1 TG CI	DLOGICAI	vsli - no KGROUNE C3 C	on calc.	4 To 5 Flou	· · · · · · · · · · · · · · · · · · ·
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break Depth REMARKS: _	Chinle Sh red rest No sLithology	-brn, va:	GEC ricolor 1 TG CI	DLOGICAI	vsli - no KGROUNE C3 C	<u>on calc</u> .	4To 5Flou	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS:	Chinle Sh red rest No sLithology	-brn, vai	GEC ricolor 1 TG CI	DLOGICAI	vsli - no KGROUNE C3 C	on calc.	4 To 5 Flou	

	SPUD	D <i>ł</i>	4 Y <u>58</u>	DATE	<u> </u>	<u>uly</u>
COMPANY	Chandler	& Associat	<u>es</u>			
WELL				<u></u>		, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
LOCATION	<u></u>					
DEPTH YEST	• <u> </u>	TODAY_ <u>613</u>	Time	<u>137</u> FTG		FT/HR6f
OPERATION_	Trip for	bit #21				
BIT NO. 20	TYPE STO	F-5_IN_	5835 OUT	6132	FT. 29	7 HRS. 4
BIT NO.	TYPE	IN	OUT		_ FT	HRS
WOB	RPM	PP	SPM	<u></u>	LAG	@
MUD <u>6131</u>	WT 9.2	VIS_52	_WL_6.8_C	ск_2_рн_	10.0 CL	600 _FE/CA_
SURVEYS						
	,					
			GEOLOGICA	L	<u></u>	
FORM TOPS	Shinaru	mp 5978	GEOLOGICA	L		
FORM TOPS	Shinaru	mp 5978	GEOLOGICA	L		
FORM TOPS	Shinaru SS wh, c	mp 5978 lr vf-mg p s	GEOLOGICA orț p-vw cem	L n s/hd, sha	rp w/top :	30' having
FORM TOPS FORMATION LITHOLOGY 10-15% dead	Shinaru SS wh, c i black stain	mp 5978 lrvf-mgps w/vweakye	GEOLOGICA ort p-vw cem 1 fluo & cut	L n s/hd, sha : – show de	rp w/top i creasing w	30' having with depth
FORM TOPS FORMATION LITHOLOGY 10-15% deac below 6010	Shinaru SS wh, c i black stain – No gas inc	mp 5978 lr vf-mg p s w/v weak ye r	GEOLOGICA orț p-vw cem 1 fluo & cut	L n s/hd, sha : - show de	rp w/top i creasing (30' having with depth
FORM TOPS FORMATION LITHOLOGY 10-15% dead below 6010 MUD GAS	Shinaru SS wh, c i black stain - No gas inc	mp 5978 lr vf-mg p s w/v weak ye r I	GEOLOGICA ort p-vw cem 1 fluo & cut	L n s/hd, sha : - show de :KGROUND	rp w/top i creasing w 6	30' having with depth
FORM TOPS FORMATION LITHOLOGY 10-15% deac below 6010 MUD GAS Zone of Inter	Shinaru SS wh, c d black stain – No gas inc rest No.	mp 5978 lr vf-mg p s w/v weak ye r1	GEOLOGICA ort p-vw cem 1 fluo & cut	L s/hd, sha - show de CKGROUND	rp w/top i creasing v 6 @	30' having with depth
FORM TOPS FORMATION LITHOLOGY 10-15% deac below 6010 MUD GAS Zone of Inter Shows-Breaks	Shinaru SS wh, c black stain - No gas inc rest No. 5978 As	mp 5978 lr vf-mg p s w/v weak ye r T T	GEOLOGICA ort p-vw cem 1 fluo & cut CG BAC	L s/hd, sha - show de CKGROUND	rp w/top i creasing v 6 	30' having with depth To
FORM TOPS FORMATION LITHOLOGY 10-15% deac below 6010 MUD GAS Zone of Inter Shows-Breaks Depth	Shinaru SS wh, c black stain - No gas inc est No. 5978 As Lithology	mp 5978 lr vf-mg p s w/v weak ye r T T HW CI	GEOLOGICA ort p-vw cem 1 fluo & cut CG BAC B.L On 10 C2	L s/hd, sha - show de KGROUND July C3 C4	rp w/top i creasing w 6 6 6 6	30' having with depth To Flou
FORM TOPS FORMATION LITHOLOGY 10-15% deac below 6010 MUD GAS Zone of Inter Shows-Breaks Depth	Shinaru SS wh, c d black stain - No gas inc rest No. 5978 As Lithology	mp 5978 lr vf-mg p s w/v weak ye r T T T T T T	GEOLOGICA ort p-vw cem 1 fluo & cut CG BAC B.Lon 10 C2	L s/hd, sha - show de KGROUND July C3 C4	rp w/top : creasing w 6 0 1 25	30' having with depth To Flou
FORM TOPS FORMATION LITHOLOGY 10-15% deac below 6010 MUD GAS Zone of Inter Shows-Breaks Depth	Shinaru SS wh, c black stain - No gas inc rest No. 5978 As Lithology	mp 5978 lr vf-mg p s w/v weak ye r T T T T T T	GEOLOGICA ort p-vw cem 1 fluo & cut CG BAC B.Lon 10 C2	L s/hd, sha - show de KGROUND July C3 C4	rp w/top i creasing w 6 0 1 C5	30' having with depth To Flou
FORM TOPS FORMATION LITHOLOGY 10-15% deac below 6010 MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Shinaru SS wh, c black stain - No gas inc rest No 55978 As Lithology	mp 5978 lr vf-mg p s w/v weak ye r T T T T T	GEOLOGICA ort p-vw cem 1 fluo & cut CG BAC BAL On 10 C2	L s/hd, sha - show de KGROUND July C3 C4	rp w/top i creasing w 6 0 1 C5	30' having with depth To Flou
FORM TOPS FORMATION LITHOLOGY 10-15% deac below 6010 MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Shinaru SS wh, c black stain - No gas inc est No. 5978 As Lithology	mp 5978 lr vf-mg p s w/v weak ye r T T T T T T T T	GEOLOGICA	L s/hd, sha - show de KGROUND July C3 C4	rp w/top 2 creasing w 6 0 1 C5	30' having with depth To Flou
FORM TOPS FORMATION LITHOLOGY 10-15% deac below 6010 MUD GAS Zone of Inter Shows-Breaks Depth REMARKS: Called	Shinaru SS wh, c d black stain - No gas inc rest No. 5978 As Lithology	mp 5978 lr vf-mg p s w/v weak ye r T T T T T T 	GEOLOGICA ort p-vw cem 1 fluo & cut CG BAC B.L. on 10 C2 0 0	L s/hd, sha - show de KGROUND July C3 C4	rp w/top : creasing w 6 @ 2 2 3 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	30' having with depth To Flou

	SPUD		_DAY_	59	DATE_	<u>12 J</u>	uly	,
COMPANY	Chandler	& Associa	tes	•				
WELL				· · · · · · · · · · · · · · · · · · ·				
LOCATION								
DEPTH YEST	г. <u>6132</u>	TODAY	6234	Time	FTG	102	FT/HR_	6]
OPERATION	Drlg w/bit	#21						
BIT NO	<u>21</u> TYPE R	eed FP62 I	N <u> </u>	₂₃₄ OUT _		FT	HRS.	
BIT NO.	TYPE	I	N	OUT		_ FT	HRS.	
WOB <u>45</u>	RPM	<u>60 </u> P	P	SPM _		LAG	@	
MUD <u>62.33</u>		VIS <u>65</u>	WL	<u>6.4</u> CK	PH	<u>10</u> CI	_ <u>550</u>	:A_4
SURVEYS	1 3/4 @ 61	32						
	,				· · · · · · · · · · · · · · · · · · ·			
			GEO	LOGICAL				
FORM TOPS	Moenko	pi 6085	GEO	LOGICAL	• . 			
FORM TOPS FORMATION	Moenko Moenko	pi 6085	GEO	DLOGICAL				
FORM TOPS FORMATION LITHOLOGY	Moenko Moenko Shale brn	pi 6085 pi -red vario	GEO	DLOGICAL				
FORM TOPS FORMATION LITHOLOGY	Moenko Moenko Shale brn	pi 6085 ni -red vario	GEO	on calc				
FORM TOPS FORMATION LITHOLOGY MUD GAS	Moenko Moenko Shale brn	pi 6085 ni -red vario	GEO	on calc	GROUND)4	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte	<u>Moenko</u> <u>Moenko</u> Shale brn	pi 6085 ni -red varic	GEO	on calc	GROUND	()4To	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break	<u>Moenko</u> <u>Moenko</u> Shale brn erest No.	pi 6085 ni -red vario	GEO	on calc	GROUND	()4To	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth	<u>Moenko</u> <u>Moenko</u> Shale brn erest No cs Lithology	pi 6085 ni -red vario HW	GEO color na TG CI	on calc BACK	GROUND	(((()4To Flou	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth	<u>Moenko</u> <u>Moenko</u> Shale brn rest No. Lithology	pi 6085 pi -red varic HW	GEO color n TG CI	OLOGICAL on calc BACK C2 (GROUND	(@(()4 To Flou	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS:	<u>Moenko</u> <u>Moenko</u> Shale brn srest No. Lithology	pi 6085 ni -red varic HW	GEO	OLOGICAL on calc BACK C2 (GROUND	(@((()4To Flou	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS: Called	Moenko Moenkn Shale brn 	pi 6085 ni -red vario HW	GEO	on calc BACK BACK	GROUND	(@ Date)4 To Flou	

1 EMP	SPUD		_DAY	60	DAT	E	<u>12 Ju</u>	ly
COMPANY				<u></u>				
WELL								
LOCATION								
DEPTH YEST	. <u> 6234 </u> T	ODAY	6423	Time	FT	G <u>18</u>	39	FT/HR
OPERATION_	Drilling	with Bit	#21					
BIT NO.	TYPE	I	N	OUT		FT	•	HRS.
BIT NO.	TYPE	I	N	ОUТ		FT	•	HRS
WOB 45	RPM60_	P	P	SPM		LA	G	@
MUD 6423	WT 9.1 V	'IS <u>49</u>	WL	<u>2.6</u> C	к <u>2</u> РI	H <u>. 9.0</u>	CL_	500 ££ / CA
SURVEYS	-							
	<u></u>							
					<u></u>			
								······································
			GEO	LOGICAL	٠			
FORM TOPS								
FORMATION	Moenkoopi							
LITHOLOGY	Sh varicol	or						
				<u></u>			<u>''</u>	
								,
	<u></u>						_	
MUD GAS			TG	BAC	KGROUN	ID	3	<u></u>
MUD GAS Zone of Inte	rest No		TG	BAC	KGROUN	ID@	3	To
MUD GAS Zone of Inte: Shows-Break	rest No		TG	BAC	KGROUN	ID@	3	To
MUD GAS Zone of Inte: Shows-Break Depth	rest No s Lithology	HW	TG	BAC	KGROUN C3	ID@ C4	3 C5	To Flou
MUD GAS Zone of Inte: Shows-Break Depth	rest No s _Lithology	HW	TG CI	BAC	KGROUN C3	ID@ C4	3 C5	To Flou
MUD GAS Zone of Inte: Shows-Break Depth REMARKS:	rest No s Lithology	HW	TG CI	BAC	KGROUN C3	ID@ C4	3 C5	To Flou
MUD GAS Zone of Inte: Shows-Break Depth REMARKS:	rest No .s _Lithology	HW	TG CI	C2	KGROUN C3	ID@ C4	3 C5	To Flou

			<u></u>	I REPORT			
TEMP	SPUD		DAY	61	DATE_	14	July
						·····	<u></u>
WELL							
LUCATION			· · · · · · · · · · · · · · · · · · ·	·····	·····	. <u></u>	<u>,</u>
DEPTH YEST.	6423	TODAY_	6621	Time	FTG_	198	FT/HR
OPERATION							
BIT NO. 21	TYPE FP	62	IN_6132	OUT		FT	HRS
BIT NO.	TYPE		IN	OUT		FT.	HRS.
		~~~			<i>(</i> <b>)</b>		 
WOB <u>45</u>		60	_FF <u>90</u> 1		_6U		
				CV			
MUDV	vi <u> </u>	V15 <u>44</u>	WL	<u>_7.0</u> _CK	<u></u> PH	<u>9.5</u> CL	<u>500 </u> 8x27 CA
SURVEYS			<u></u>		. <u></u>	······	
	· · · · · · · · · · · · · · · · · · ·		···				
·			CEO				
FORM TOPS			GEO	LOGICAL	0		
FORM TOPS _	·		GEO	LOGICAL	Green Sh	6450 <u>+</u>	
FORM TOPS	Moenkop	)i	GEO	LOGICAL	Green Sh	6450 <u>+</u>	
FORM TOPS FORMATION LITHOLOGY	Maenkop 6492-65	500 Bc	GEO 1 5 - 11	LOGICAL	Green Sh	6450 <u>+</u>	•
FORM TOPS FORMATION LITHOLOGY	Maenkop 6492-65 6532-34	500 Bo	GEO <u>1 5 - 11</u> 4 - 7 <del>3</del>		Green Sh	6450 <u>+</u>	•
FORM TOPS FORMATION LITHOLOGY	Moenkop 6492-65 6532-34 6574-84 8602-14	500 Bo	GEO <u>15 - 11</u> <u>4 - 7<del>3</del></u> <u>4 - 17</u> 2		Green Sh NO DRIL PROB. F	6450 <u>+</u> L BREAKS	•
FORM TOPS FORMATION LITHOLOGY MUD GAS	Moenkop 6492-65 6532-34 6574-84 8502-14	500 Bo	GEO $\frac{1}{4} = \frac{5}{7} = \frac{11}{4}$ $\frac{4}{5} = \frac{17}{12}$ TG	BACK	Green Sh NO DRIL PROB. F GROUND	<u>6450+</u> L BREAKS RACTURE 6-7	•
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere	Maenkop 6492-65 6532-34 6574-84 8502-14	рі 500 Вс	GEO $\frac{1}{4} = \frac{5}{7}$ $\frac{4}{5} = \frac{17}{2}$ TG	BACK	Green Sh NO DRIL PROB. F GROUND	<u>6450+</u> L BREAKS RACTURE <u>6-7</u>	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks	Maenkor 6492-65 6532-34 6574-84 8602-14	500 Bo	GEO $\frac{1}{5} - 11$ $\frac{4}{5} - \frac{7}{2}$ $\frac{4}{5} - \frac{17}{2}$ TG	BACK	Green Sh NO DRIL PROB. F GROUND	6450 <u>+</u> L BREAKS RACTURE 6-7 _@	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth	Moenkop 6492-65 6532-34 6574-84 8602-14 est No Lithology	500 Bc	GEO 5 - 11 $4 - 7\frac{1}{2}$ $\frac{4 - 7\frac{1}{2}}{5 - 172}$ TG CI	DLOGICAL	Green Sh NO DRIL PROB. F GROUND	<u>6450+</u> <u>BREAKS</u> <u>RACTURE</u> <u>6-7</u> <u>@</u> C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth	Moenkop 6492-65 6532-34 6574-84 8602-14 est No Lithology	01 500 Bc 1 1 HW	GEO $\frac{15 - 11}{4 - 7\frac{1}{2}}$ $\frac{4 - 7\frac{1}{2}}{5 - 172}$ TG CI	DLOGICAL	Green Sh NO DRIL PROB. F GROUND	6450 <u>+</u> LBREAKS RACTURE 6-7 @   	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth	Maenkop 6492-65 6532-34 6574-84 8602-14 st No Lithology	Di 500 Bo 1 1 HW	GEO $4 - 7\frac{1}{2}$ $4 - 7\frac{1}{2}$ $4 - 7\frac{1}{2}$ 5 - 172 TG CI	DLOGICAL	Green Sh NO DRIL PROB. F GROUND	6450 <u>+</u> L BREAKS RACTURE 6-7 @ C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth REMARKS:	Moenkop 6492-65 6532-34 6574-84 8602-14 est No Lithology	01 500 Bo HW	GEO $\frac{1}{4} = \frac{1}{7}$ $\frac{4}{5} = \frac{1}{12}$ TG CI	LOGICAL	Green Sh NO DRIL PROB. F GROUND	6450 <u>+</u> L BREAKS RACTURE 6-7 _@ C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth REMARKS:	Moenkop 6492-65 6532-34 6574-84 8602-14 est No Lithology	bi 500 Bo 1	GEO $4 - 7\frac{1}{2}$ $4 - 7\frac{1}{2}$ 4 - 172 TG CI	LOGICAL	Green Sh NO DRIL PROB. F GROUND	6450 <u>+</u> L BREAKS RACTURE 6-7 @ C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Intere Shows-Breaks Depth REMARKS:	Moenkop 6492-65 6532-34 6574-84 8602-14 est No Lithology	DiBC	GEO $\frac{5}{5} - 11$ $\frac{4}{5} - \frac{7}{2}$ $\frac{4}{5} - \frac{1}{2}72$ TG CI	LOGICAL	Green Sh NO DRIL PROB. F GROUND	6450 <u>+</u> LBREAKS RACTURE 6-7 @ C5	To Flou

			DAY	62	DATE	15 Ju	ily
COMPANY	Chandler & A	ssociat	es				
WELL					<u></u>	<u></u>	
LOCATION			<u>.</u>				
DEPTH YEST	. 6621	TODAY	6738	Time	FTG	117	FT/HR
OPERATION_	Trip for E	Bit #22	(Work or	ר Drawwor	ks)	<u> </u>	<u> </u>
BIT NO. 2	1 TYPE FP 6	52	IN 6132	OUT	6738	_ FT. <u>606</u>	HRS. 79
BIT NO. 2	2 TYPE J33	3H	IN 6738	OUT		FT	HRS.
WOB	RPM	· · · · · · · · · · · · · · · · · · ·	_PP	SPM		LAG	@
MUD 6738	_WT9.2	VIS_45	5WL	6.6 C	<u>к2 рн</u>	10.0 CL 5	500 将在/CA
SURVEYS							
	<u> </u>			<u> </u>	<u></u>	<u> </u>	••••••••••••••••••••••••••••••••••••••
		<u> </u>			······		i
			GEO	LOGICAL	<i>.</i>		
FORM TORC							
FORM TOPS							
FORMATION	Moenkop	i					
FORM TOPS FORMATION LITHOLOGY	Moenkopi	L					
FORM TOPS	Moenkopi	l					
FORM TOPS FORMATION LITHOLOGY	Moenkop:	L					
FORM TOPS FORMATION LITHOLOGY MUD GAS	Moenkop:	L	TG	BAC	KGROUND	 Tr.	ipping
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter	Moenkop:	L	TG	BAC	KGROUND	Tr T	ippingTo
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks	Moenkop:	L	TG	BAC	KGROUND	Tr	ippingTo
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Moenkop	L HW	TG 	BACI C2	KGROUND C3 C4	Tr   	ipping To To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Moenkop:	i HW	TG 	BAC	KGROUND C3 C4	Tr @ C5	ipping To To  Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Moenkop:	L HW	TG CI	BACI	KGROUND C3 C4	Tr: @ C5	ipping To To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Moenkop:	L HW	TG CI	BACI	KGROUND C3 C4	Tr: @ 	ipping To  Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS: Called	Moenkop	L HW	TG TG	BACI	KGROUND C3 C4	Tr: @ C5 	ipping To To Flou

		$\smile$	DAIL	Y REPORT			
TEMP	SPUD_		DAY_	63	DATE_	· 16	July
COMPANY				•	····		
WELL_	<u></u>			<u></u>			
LOCATION_	. <u></u>	<u> </u>	<del></del>				<u> </u>
DEPTH YES	T. <u>6738</u>	_TODAY_	6840	Time	FTG	102	FT/HR
OPERATION	TIH w/l	<u>DST #2</u>	Hall	iburton			
BIT NO.	TYPE		IN	OUT		_ FT	HRS
BIT NO.	TYPE		IN	OUT		FT	HRS
WOB	RPM		_PP	SPM		LAG	@
MUD	_WT_9.2	VIS47	7WL	<u>6.0</u> CK	2 PH	10.5 CL	, 600 FE/CA
SURVEYS	3 <del>1</del> @ 6810	0					·
<del> </del>							
			GEO	LOGICAL			
FORM TOPS	Sinbad	6795					
FORMATION			•				
LITHOLOGY	LS lt a	ry micro-v	vfxln ar	g dolomiti	с		
	microcu	crosic w	/drk brn-	blk stain			
<del></del>	vpoor w	eak yel cu	ut w/vwe	ak yellow	fluo		
MUD GAS		·····	тд	67 BACKO	GROUND		
Zone of Inte	rest No. 2			· · · ·		_0	To
Shows-Break	s <u>6795-68</u>	10					
Depth	_Lithology _	HW	CI	C2 C3	3 C4	C5	Flou
		17	13	trace			
	<u>Before</u> During	34	9.6	1.4 .	6 tr?		
REMARKS: _	Before During	17 34 14	9.6	1.4 . tr	6 tr?		
REMARKS: _	Before During DST #2 679	17 34 14 5-6840	9.6	1.4 . tr	6 tr?		
REMARKS: _	Before During DST #2 679	17 34 14 5-6840	9.6 1.3 	1.4 . tr	6 tr?	_Date	

0.4

		$\mathbf{}$	DAIL	Y REPORT				
TEMP	SPUD_		DAY_	64	DATE	17	July	
COMPANY								
WELL			•		<u> </u>			
LOCATION_								
DEPTH YES	<b>r.</b> 6840	TODAY	6922	Time	FTG	82	F	T/HR
OPERATION	Drilling	w/bit #2	3 RR#22	· · · · · · · · · · · · · · · · · · ·				
BIT NO	TYPE	·	_ IN	OUT		_FT.	<u></u>	HRS
BIT NO	TYPE		_ IN	OUT		FT.		_ HRS
<b>WOB</b> 40	RPM6	0	PP	SPM		LAG		0
MUD	_wt9.2	_vis_4	7 <u>w</u> l	, <u>6.0</u> _СК_	2PH	10.5	CL 600	
SURVEYS								
<del></del>								
	<u> </u>	······································					•	
			GEC	DLOGICAL				
FORM TOPS							· · · · · · · · · · · · · · · · · · ·	
FORMATION	Sinbad				+			
LITHOLOGY	LS crm	, ltgray	microxl	.yn				
<del></del>				· ·	· · · · · · · · · · · · · · · · · · ·			
MUD GAS		······································	TG	45 BACKG	ROUND	aft	er trip	
Zone of Inter	rest No					_0	T	0
Shows-Break	s							
Depth	_Lithology _	HW	CI	C2 C3	C4	(	C5 F1	lou
		· · · · · · · · · · · · · · · · · · ·			·····			
REMARKS: _								
REMARKS: _			·	·····				
REMARKS:			@			_Date	······································	

.

TEMP	SPUD		DAY	65	DATE	18 July	1
COMPANY	Chander & A	ssociate					
WELL	•						
LOCATION_						·	
DEPTH YES	T. 6922	TODAY	7113	Time	FTG	191	FT/HR
OPERATION	Drillingw	— ith Bit	# 23	 RR#22			
BIT NO.	TYPE		IN	OUT		FT.	HRS.
BIT NO.	 TYPE		 IN			 FT.	HRS.
	<u></u>					· · · · ·	
WOB	RPM	÷	PP	SPM		LAG	@
MUD 7110	wr 9.2	VIC 47	5 1471	6.0 Cr	2 54.9	.0 cr	450 554 64
				<u></u> CK	<u> </u>		XXE/CA 4
SURVEYS _				<u>un</u>		<u> </u>	
	•••••						
			GEC				
FORM TOPS			GEC	DLOGICAL		er Moenk	ni 6924
FORM TOPS		······	GEC	DLOGICAL	Low	er Moenko	opi 6924
FORM TOPS FORMATION	Lower Mc	penkopi	GEC 6924	DLOGICAL	Low	er Moenk	opi 6924
FORM TOPS FORMATION LITHOLOGY	Lower Mc Siltstor	penkopi ne wh, lt	GEC 6924 cgry w/at	DLOGICAL	Low	er Moenka	opi 6924
FORM TOPS FORMATION LITHOLOGY	Lower Mc Siltstor No fluo,	penkopi ne wh, lt no cut	GEC 6924 cgry w/at	DLOGICAL	Low	er Moenka	opi 6924
FORM TOPS FORMATION LITHOLOGY	Lower Mo Siltstor No fluo,	penkopi ne wh, lt no cut	GEC 6924 :gry w/at	DLOGICAL	Low	er Moenk	opi 6924
FORM TOPS FORMATION LITHOLOGY MUD GAS	Lower Mc Siltstor No fluo,	penkopi ne wh, lt no cut	GEC 6924 TG	DLOGICAL	Low ROUND _	er Moenk	opi 6924 5
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte	Lower Mc Siltstor No fluo,	penkopi ne wh, lt no cut	GEC 6924 TG	DLOGICAL	Low	er Moenka	5To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break	Lower Mc Siltstor No fluo,	penkopi ne wh, lt no cut	GEC 6924 	DLOGICAL	Low ROUND	er Moenka	opi 6924 5 To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth	Lower Mc Siltstor No fluo, erest No. Lithology	benkopi ne wh, lt no cut HW	GEC 6924 .gry w/at TG CI	DLOGICAL	Low ROUND C4	er Moenko e C5	5 5 Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth	Lower Mc Siltstor No fluo, erest No. Lithology	enkopi ne wh, lt no cut HW	GEC 6924 	DLOGICAL	Low ROUND C4	er Moenko e C5	5 To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS:	Lower Mc Siltstor No fluo,	enkopi ne wh, lt no cut HW	GEC 6924 TG TG	DLOGICAL	Low ROUND C4	er Moenko e C5	5  Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Break Depth REMARKS: Called	Lower Mc Siltstor No fluo, erest No Lithology	enkopi ne wh, lt no cut HW	GEC 6924 TG TG	DLOGICAL	Low ROUND C4	er Moenka	5 To Flou

TEMP	SPUD		DAY	66	DATE_	<u>19 Ju</u>	uly
COMPANY							
WELL							
LOCATION	·	••••••••••••••••••••••••••••••••••••••	······································				
DEPTH YEST	7224	TODAY_	7113		FTG_	111	FT/HR
OPERATION_	DST #3						
BIT NO. 23	3_TYPE	5-33H	IN_6738	_ OUT	7224	FT. <u>486</u>	HRS. 56
BIT NO.	TYPE	·	IN	OUT		FT	HRS
WOB	RPM	65	PP 900	SPM	60	LAG	@
MUD7224	WT_9.3	VIS 48	WL	6.0 C	K 2 PH 1	0.0 CL 5	500 FE/CA
SURVEYS	30 718/						
	/104						
_		•					
			GEOL	OGICAL			
FORM TOPS	Kaibah .	- 7130	GEOL	OGICAL	,		
FORM TOPS	Kaibab ·	- 7130	GEOL	OGICAL	, 		
FORM TOPS	Kaibab ·	- 7130	GEOL	OGICAL			
FORM TOPS FORMATION	Kaibab · LS lt gry	- 7130 slty sdy	GEOL	OGICAL	,		
FORM TOPS	Kaibab · LS lt gry Dolo_crm,	- 7130 slty_sdy _wh_crypt	GEOL <u>/ dolomiti</u> toxln - mi	OGICAL c croxln			
FORM TOPS FORMATION LITHOLOGY	Kaibab LS lt gry Dolo crm, w/abn dea	- 7130 slty sdy wh crypt d stn, no	GEOL <u>/ dolomiti</u> toxln - mi o fluo, no	OGICAL c croxln cut	, 	24=7220 4	' uphole
FORM TOPS FORMATION LITHOLOGY MUD GAS	Kaibab · LS lt gry Dolo crm, w/abn dead	- 7130 slty sdy wh crypt d stn, no	GEOL <u>dolomiti</u> toxln - mi fluo, no TG	OGICAL c croxln cut BACE	, <u>SLM 722</u> (GROUND	24=7220 4 10-12	' uphole
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter	Kaibab LS lt gry Dolo crm, w/abn dead	- 7130 slty sdy wh crypt d stn, no	GEOL <u>dolomiti</u> toxln - mi fluo, no TG	OGICAL c croxln cut BACI	SLM 722	24=7220 4 10-12 @	' uphole To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks	Kaibab - LS lt gry Dolo_crm, w/abn deau rest No.	- 7130 slty sdy wh crypt d stn, no	GEOL <u>dolomiti</u> toxln - mi fluo, no TG	OGICAL c croxln cut BACI	, <u>SLM 722</u> (GROUND	24=7220 4 10-12 @	' uphole To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Kaibab LS lt gry Dolo crm, w/abn dead rest No.	- 7130 slty sdy wh crypt d stn, no HW	GEOL <u>dolomiti</u> <u>toxln - mi</u> <u>toxln , no</u> <u>TG</u> <u>CI</u>	OGICAL	SLM 722	24=7220 4 10-12 @	' uphole To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Kaibab LS lt gry Dolo crm, w/abn dead rest No Lithology	- 7130 slty sdy wh crypt d stn, no HW	GEOL <u>dolomiti</u> <u>toxln - mi</u> <u>o fluo, no</u> TG CI	OGICAL c croxln cut BACE C2	SLM 722 (GROUND C3 C4	24=7220 4 10-12 @ 	' uphole To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Kaibab LS lt gry Dolo_crm, w/abn deau rest No Lithology	- 7130 slty sdy wh crypt d stn, no HW	GEOL <u>dolomiti</u> <u>toxln - mi</u> <u>o fluo, no</u> <u>TG</u> <u>CI</u>	OGICAL c croxln cut BACH C2	, <u>SLM 722</u> (GROUND <u>C3 C4</u>	24=7220 4 10-12 @ C5	' uphole To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Kaibab LS lt gry Dolo_crm, w/abn dead rest No Lithology	- 7130 slty sdy wh crypt d stn, no HW	GEOL <u>dolomiti</u> <u>toxin - mi</u> <u>o fluo, no</u> <u>TG</u> <u>CI</u>	OGICAL	SLM 722 (GROUND C3 C4	24=7220 4 10-12 @ C5	' uphole To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Kaibab LS lt gry Dolo crm, w/abn dear rest No Lithology	- 7130 slty sdy wh crypt d stn, no HW	GEOL <u>dolomiti</u> <u>coxln - mi</u> <u>b</u> fluo, no TG CI  <u>CI</u>  <u>DB in 2 mi</u>	OGICAL c croxln cut BACH C2 n 82 ps	SLM 722 SLM 722 GROUND C3 C4	24=7220 4 10-12 @ C5	' uphole To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Kaibab LS lt gry Dolo_crm, w/abn dead rest No Lithology	- 7130 slty sdy wh crypt d stn, no HW	GEOL <u>dolomiti</u> <u>toxin - mi</u> <u>o fluo, no</u> <u>TG</u> <u>CI</u> <u>OB in 2 mi</u>	OGICAL c croxln cut BACH C2 n 82 ps	SLM 722 GROUND C3 C4	24=7220 4 10-12 @ C5	' uphole To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS: Called	Kaibab LS lt gry Dolo crm, w/abn dead rest No Lithology	- 7130 slty sdy wh crypt d stn, no HW	GEOL <u>dolomiti</u> <u>coxln - mi</u> <u>o fluo, no</u> <u>TG</u> <u>CI</u> <u>DB in 2 mi</u> <u>@</u>	OGICAL c croxln cut BACH C2 n 82 ps	SLM 722 SLM 722 C3 C4	24=7220 4 10-12 @ C5 Date	' uphole To Flou

	$\smile$	DAIL	Y REPORT	)			88
TEMP	SPUD	DAY	67	DATE	20 Jul	y	
COMPANY						<b></b>	
WELL			·····		· · · · ·		
LOCATION_	·····			-			
DEPTH YES	T. <u>7224</u> TOD	AY <u>7313</u>	Time	FTG_	89	FT/HR	
OPERATION	Drlg w/Bit # 24	4	<u>SLM 7224=72</u>	20	<u></u>		
BIT NO2	4_ TYPE	IN72	20_OUT		FT	HRS.	
BIT NO	TYPE	IN	OUT	· · · · · · · · · · · · · · · · · · ·	FT	HRS	
WOB	R PM	PP	SPM		LAG	<u> </u>	
	WT 9.2 VIS	43 WL	6.6 CK	2 рн	9.0 CL	525 10E/CA	60
SURVEYS							
				······ <u></u>	······································		
••••••••••••••••••••••••••••••••••••					·····		
•						<del>-,</del>	
		GEO	LOGICAL				
FORM TOPS	· · · · · · · · · · · · · · · · · · ·					.=	
FORMATION	Toroweap 72	260		·····			
LITHOLOGY	<u>SS wh, clr vi</u>	<u>f-mg p sort</u>	ang-subrdd,	p-m ce	m sil-vs	li calc	
	tr dead black	<u>k oil stain</u>	no flúo	no cut			
			1	<u>"</u>			
MUD GAS		TG 3	4 BACKG	#5 ROUND	4-5		
Zone of Inte	rest No.			-	0	To	
Shows-Break	s None						
Depth	Lithology HV	V CI	C2 C3	C4	C5	Flou	
REMARKS:						······································	
REMARKS: _							
REMARKS:		@			Date		······

•

-

.

TEMP	SPUD	DAY	68	DATE_	21 Ju	ılv
COMPANY_						
WELL						
LOCATION						
DEPTH YES	T. 7313 TO	DAY7363		FTG	50	FT/HR
OPERATION	I Trip out w/mag	gnet (lost 2	cones & t	ip of 3rd)		
BIT NO.	<u>24</u> TYPE <u>M84F</u>	IN7220	OUT	7363	FT. <u>14</u>	HRS. 1
BIT NO	TYPE	IN	OUT		FT.	HRS.
WOB <u>45</u>	RPM <u>65</u>	PP 900	SPM	60	LAG	
MUD <u>736</u>	<u>3_</u> WT_ <u>9.2</u> _VIS	45 WL	<u>6.8</u> СК	2_PH_9	.5_CL	525 FE/CA 6
SURVEYS	7363 - 3º					
						······································
	<del> </del>					<u> </u>
<del> </del>			001041			
FORM TOPS	ł	GEOL	OGICAL			
FORMATION						
FORMATION			#= dana ,		<del></del>	
LITHOLOGY	SS_wh, clr v	f-mg p sort an	g-subrdd.	p-m cem	sil - vs	calc.
47 <u>1 </u>	tr dead blk	<u>stn no fluo, n</u>	o cut			
MUD GAS _		TG	ВАСКО	GROUND _	4-5	
Zone of Inte	erest No				0	_To
Shows-Break	ks					
Depth	Lithology H	W CI	C2 C	<u>3 C4</u>	C5	Flou
				·		
REMARKS.				beening		
NEMAROS:	кеа э тір & 2.	Largecone ends	- several	Dearings		
Called		0		I	Date	

	$\smile$	DAII	LY REPORT			
TEMP	SPUD	DAY	69	DATE	22 July	- 
COMPANY						
WELL_						
LOCATION		<u>-</u>	·			
DEPTH YEST	. <u>7363</u> TOD	Y <u>7440</u>	Time	FTG	<u>77 </u> E	T/HR
OFERATION_	Urig W/ bit #20	)				
BIT NO. 25	TYPE J55R	IN <u>73</u>	<u>63</u> OUT _	<u>7440</u> I	T. <u>77</u>	HRS. 12
BIT NO6		IN74	40_OUT_		т	HRS.
WOB45	RPM50	PP10	00 SPM _	I	AG <u>100</u>	<u> </u>
<b>MUD</b> 7440	wt_9.3_vis_	<u>47 wi</u>	<u>. 6.4</u> CK	2 ph 8	5 CL 500	KE/CA7
SURVEYS						
	** <u>***********************************</u>	GE				
FORM TOPS						
FORMATION	Toroweap					
LITHOLOGY	SS wh, clr-fv-n	ig ang-subr	dd hd tit	ce sil-sli d	calc. tr g	jry Dolo
MUD GAS	<u></u>	TG	ВАСК	GROUND	4-5	
Zone of Inter	est No.				<u> </u>	`^
Shows-Break	3		· · · · · · · · · · · · · · · · · · ·		·4	~ <u></u>
Depth	Lithology HW	CI	C2 C	3 C4	C5 F	lou
REMARKS:						
Called						
		@		D	ate	
Geology	Log	lung		Mileage	Exp	•

		$\smile$	DAILY	REPORT	$\bigcirc$		
TEMP	SPUD	l 	DAY	70	_DATE_	23 July,	
COMPANY							
WELL							
LOCATION		·····					
DEPTH YEST OPERATION	•	TODAY_		Time	FTG_		FT/HR
BIT NO27	TYPE	FP83	IN_7503	_ OUT		FT	HRS
BIT NO	TYPE		IN	_ OUT		FT	HRS
WOB	RPM		_PP	SPM		LAG	@
 MUD	WT	VIS	WL	СК	PH	CL_	£Æ/CA
SURVEYS						<u></u>	
<u>.</u>		<u> </u>		- <u>, , , , , , , , , , , , , , , , , , ,</u>	<u></u>		
			GEOL	OGICAL			
FORM TOPS							
FORMATION	_						
LITHOLOGY					· · · · · · · · · · · · · · · · · · ·		
			- <u>27 - 27 - 27 - 27 - 27 - 27 - 27 - 7</u> - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -				
MUD GAS			ТG	BACKG	ROUND		
Zone of Inter	rest No.					0	_To
Shows-Break	s						
Depth	_Lithology	<u>H</u> W	CI	<u>C2</u> C3	C4	C5	Flou
REMARKS: _							
			· · ·				
Called			0			Date	

ТЕМР	SPUD		_DAY_	71	D <i>ł</i>	TE	24 Ju	ly	
COMPANY									
WELL									
LOCATION								<u> </u>	
DEPTH YEST	. <u>7503</u> T	ODAY	.7581	Time_		FTG	78	FT/HF	۱ <u> </u>
OPERATION_	Driling w/E	3it #27							
BIT NO27	TYPE FP83		IN_7503	OUT		E	т	HRS	5
BIT NO	TYPE	<u></u>	IN	OUT		E	гт	HRS	5
WOB 45	RPM	° 50	PP <u>1</u>	000 SPM		Ľ	.AG	@	
MUD <u>7525</u>	_WT_9.1V	/IS47	wL	5.6_0	ск_1_	PH_10	<u>.0</u> CL	400 £E	CA_
SURVEYS	2 <del>1</del> 7503								
		_ # * * * * * * * * * * * * *							
	<u> </u>								
	<u></u>		GEC		Τ.			<u></u>	
FORM TOPS			000						
FORMATION	Тогом	eap	-						
	SS wh. clr								•
LITHOLOGI .									
	· · · · · · · · · · · · · · · · · · ·						W		
MUD GAS			TG	BAC	KGRO	UND	5		
Zone of Inter	rest No	<u></u>					0	To	
Shows-Break	S								
Depth	_Lithology	HW	CI	C2	C3	C4	_C5	Flou	
REMARKS:									
Called	, <u>, , , , , , , , , , , , , , , , </u>		0			1	Date	<u></u>	

TEMP	SPUD	DAY	72	DATE	25 Jul	У
COMPANY				<u> </u>		
WELL				<u> </u>		
LOCATION						
DEPTH YEST	. <u>7581</u> TC	DAY 7645	Time	FTG	64	FT/HR
OPERATION_	Drlg w/bit #	28				
BIT NO. 27		IN7	503 OUT	7615	FT. <u>112</u>	HRS
BIT NO. 28	TYPE H100	- IN 76	515 OUT		FT	HRS
WOB 45		PP_900	SPM	<u></u>	LAG	@
MUD_7640	WT 9.2 VI	(S_45W	L <u>5.6</u> CK	PH1	0.0_CL_	400 ££ / CA
SURVEYS	2º 7596					
			<u></u>		. <u></u>	
<u></u>		CF		•		
FORM TOPS		GE GE	ODOGIOND			•
	Tanawaaa		<u>,,,,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>			
FORMATION	loroweap			•		
LITHOLOGY	SS wh, clr	vf-mg w/s cg	ored hd, ti	<u>te sil w/s</u>	<u>cg</u> rdd (	olr frstd lse
				<u></u>	<u></u>	
MUD GAS		TG	BACK	GROUND		т <u>е</u>
Zone of Inter	est No.		<u>.                                    </u>	, <u>, , , , , , , , , , , , , , , ,</u>		
Depth	S	HW CI	C2 (	C4	C5	Flou
REMARKS: _		<u></u>				
						<u> </u>
			·····	<u> </u>		
Called		00	······································		_Date	

ТЕМР	SPUD	<b></b>	_DAY	73	DATE	26	<u>July</u>	····
COMPANY								
WELL								
LOCATION								
DEPTH YEST.	7645	TODAY	7717	Time	FTG	72		_FT/HR
OPERATION	Drlg w/Bi	t. #29						<u></u>
BIT NO	_ TYPE	H100F	IN7615	5 OUT	7704	_ FT.	89	HRS
BIT NO. 29	TYPE Ree	d HPH	IN7704	4_ OUT		FT.		HRS
WOB45	RPM	40/50 I	PP_1000	SPM		LAG		@
MUD <u>7712</u>	WT 9.1	_VIS44	WL	5.6 (	СК_2РН	10.5	_CL_4	100 <u>F</u> E/CA_
SURVEYS	1 3/4	7676						
		<u> </u>	<u></u>	<u></u>				
	•		GEO	LOGICA	L			
FORM TOPS								
- FORMATION	Toroweap							
		- ]	•					
LITHOLOGI -	SS-Wh,	<u>cir</u>						
· · · · · · · · · · · · · · · · · · ·					······································			
MUD GAS			TG	<u>13</u> BAC	CKGROUND		6	<u></u>
Zone of Inter	est No.				<u></u>	0		_To
Shows-Breaks	3 <u> </u>							
Depth	Lithology_	HW	CI	C2	<u>C3</u> C4	1	C5	Flou
					· · · · · · · · · · · · · · · · · · ·			
REMARKS:	<u> </u>							
		· · · · · · · · · · · · · · · · · · ·						
Called			0			Dat	e	
Geology		Logging	3		Mileage		E	Exp

TEMP	SPUD		DAY	74	DATE	27	7.July	
COMPANY								
WELL								
LOCATION	· · · · · ·							
DEPTH YEST	. 7717	TODAY_	7782	Time	FT(	3	JF	T/HR
OPERATION_	Drlq w/Bit	<u>.</u> #30	<u></u>					
BIT NO. 30	TYPE FP6	2	IN <u>77</u>	<u>79</u> OUT		_ FT.		HRS
BIT NO	TYPE HPH		IN <u>77</u>	07 OUT	7779	FT.	75	_ HRS1
WOB	RPM	• :	PP	SPM	<u></u>	LAG		0
MUD <u>7779</u> SURVEYS	WT <u>9.0</u> 1 <del>1</del> 7779	VIS <u>46</u>	5 <u>W</u> L	<u>6.0</u> 0	:к <u>2</u> рн	10.5	CL_500	_£Æ/CA_
	2 7596							
								· · · ·
			GEC	LOGICA	L			
FORM TOPS			GEC	LOGICA	L			
FORM TOPS	Elephant	Canyon	GEC 7708	DLOGICA	L			
FORM TOPS FORMATION LITHOLOGY	Elephant.	Canyon	GEC 7708	DLOGICA	L			
FORM TOPS FORMATION LITHOLOGY	<u>Elephant</u>	Canyon	GEC 7708	DLOGICA	L	· · · · · · · · · · · · · · · · · · ·		
FORM TOPS FORMATION LITHOLOGY MUD GAS	<u>Elephant</u>	Canyon	GEC 7708	BAC	L	)	r-1	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter	<u>Elephant</u>	Canyon	GEC 7708	BAC	L	) <u>t</u> : @	r-1	Го
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks	<u>Elephant</u>	Canyon	GEC 7708	BAC	KGROUN	) <u>t</u> : @	r-1	Го Го
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	<u>Elephant</u>	Canyon	GEC 7708 TG 	DLOGICA 3 BAC C2	L KGROUN C3 (	) <u>t</u> 1 0 <u>t</u> 1	r-1 	Го `lou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Break: Depth REMARKS:	Elephant	Canyon	GEC 7708 TG 	BAC	L KGROUN C3 (	) 0 0 24	r-1 C5 E	Го `lou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Elephant	Canyon	GEC 7708 TG  CI	BAC	L KGROUN C3 (	) <u>t</u>	c-1	۲٥ ۲lou

. .

TEMP	SPUD		DAY_	75	D	ATE_	28	July	1	
COMPANY										
WELL									<u></u>	
LOCATION										-
DEPTH YEST		TODAY_	7905	Time_		FTG_	123	5	FT/HR	
OPERATION_	Drlg_w/	Bit #30		i i i				<u></u>		
BIT NO	TYPE		IN	OUT	<u></u>		FT.	<u></u>	HRS	
BIT NO.	TYPE		IN	OUT			FT.	<u> </u>	HRS	
WOB 45	RPM	<u>45/50</u>	_PP10	000 SPM	60	)	LAG	86	@ <u>7698</u>	
MUD_7900	WT_9.1	_vis4	3WI	, 5.6 (	ск_2	_PH	10.5	CL_	500 £ E/CA	
SURVEYS										
							<b>-</b>			
			GEC	DLOGICA	L					
FORM TOPS				•		<u>.</u>				
FORMATION	Elephar	t Canyon		<u></u>						
LITHOLOGY										
-									<u></u>	
MUD GAS			ТG	BAC	CKGRO	UND		2-3		
Zone of Inter	est No.	<u> </u>					0	•	To	
Shows-Breaks	5									
Depth	Lithology _	НW	CI	C2	C3	C4		C5	Flou	
·				•						
		. <u></u>	. <u> </u>						<u></u>	
KEMAKKS: _		·····							<u> </u>	_
									<u> </u>	
Called			0		<u> </u>		Date	e		
										_

`						
TEMP	SPUD	DAY_		DATE_	29. JL	1y
COMPANY				<del></del>		
WELL					<u> </u>	<u></u>
LOCATION	<u></u>					
DEPTH YEST	<u>. 7905 </u> TODA	Y <u>7998</u>	Time	FTG	93	FT/HR
OPERATION_	Drlg w/Bit #31	· · · · · · · · · · · · · · · · · · ·				
BIT NO. 30	TYPE FP62B	IN	OUT	7945	FT. <u>166</u>	HRS ³⁰
BIT NO. 31	TYPE FP62B	IN 7945	OUT		FT	HRS.
wob 40		PP 1200	SPM		LAG	@
MUD <u>7981</u>	WT_9.1VIS_4	13 WL	5.8 CK	<u>2 PH</u>	11.0_CL_	500 <u>F</u> FE/CA_
SURVEYS	7893 1 3/4					
						<u></u>
	<u></u>	CFO				
FORM TOPS		GEO	LOGICAD			
FORMATION	Elephant Canyor	<u>ן                                     </u>				
LITHOLOGY _	Dolo crm, pk cr	ptosln-mic:	roxln hd	dense, sdy	/ in pt, s	ilty in part
	w/Anhy incl Ar	hy wh, pk	soft calc	. Sh pal	e grn-gry	firm
	splntry-blocky	sli calc				
MUD GAS		TG	BACK	GROUND	. 1	
Zone of Inter	est No.				0	To
Shows-Breaks	5					
Depth	Lithology HW	CI	C2	C3 C4	C5	Flou
					<u> </u>	
			. <u></u>			
REMARKS:						
• <u>•••</u> ••••••••••••••••••••••••••••••••						
Called		0	· · · · · ·		_Date	

DA	ILY	REP	OR	Т

	SPUD_		DAY	77	DATE_	<u> </u>	ly
COMPANY							
WELL						<u>.</u>	<u></u>
LOCATION_							
DEPTH YES'	T. <u>7998</u>	TODAY_	8175	Time	FTG	177	FT/HR
OPERATION	Drlg_w/Bi	± #31			<u></u>		
BIT NO3	TYPE	P62B	IN <u>794</u>	<u>.</u> OUT		FT	HRS.
BIT NO.	TYPE		IN	OUT		_ FT	HRS
WOB 40	RPM5	55	PP 1200	SPM	60	LAG	@
MUD 8168	WT 9.2	VIS 56	5 WL	6.8 C	к <u>2</u> рн <u></u>	0.5 CL	, 800 £5E/CA_
SUBVEVS			•				
Sollvero _							
			C E O	TOCICAL			
FORM TOPS	<u>Mississip</u>	bian' 804	48 (Des	eret)	, <u></u>		
FORM TOPS FORMATION	Mississip	bian` 804	48 (Des	eret)			
FORM TOPS FORMATION LITHOLOGY	<u>Mississipp</u> Dolo lt ta	oian 804 an-buff m	48 (Des	hd, dens	; ;e w/tan, c	cht incl	tr anhy
FORM TOPS FORMATION LITHOLOGY	<u>Mississipr</u> Dolo lt ta	oian 804 an-buff m	48 (Des	hd, dens	e w∕tan, d	cht incl	tr anhy
FORM TOPS FORMATION LITHOLOGY MUD GAS	<u>Mississipr</u> Dolo lt ta	oian 804 an-buff m	TG	hd, dens	e w/tan, o KGROUND	cht incl	tr anhy
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte	<u>Mississipr</u> Dolo lt ta	oian 804 an-buff m	TG	hd, dens	e w/tan, o KGROUND	cht incl tr_l 0	tr anhy To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Breal	<u>Mississipr</u> <u>Dolo lt ta</u> erest No.	oian 804	TG	hd, dens	se w/tan, o KGROUND	cht incl tr_l 0	tr anhy To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Breal Depth	<u>Mississipr</u> <u>Dolo lt ta</u> erest No. ks Lithology	bian 804 an-buff n HW	TG CI	hd, dens BACI	KGROUND	tr-l0C5	tr anhy To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Breal Depth	<u>Mississipr</u> Dolo lt ta	bian 804 an-buff m	CI	hd, dens	kGROUND	tr-l 0 C5	tr anhy To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Breal Depth REMARKS:	<u></u>	bian 804 an-buff n HW	TG CI	hd, dens	KGROUND	tr-1 @ C5	tr anhy To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Breal Depth REMARKS:	<u></u>	bian 804 an-buff n HW	TG CI	hd, dens BACI	KGROUND	cht incl tr-l @ C5	tr anhy To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inte Shows-Breal Depth REMARKS: Called	    erest No ks Lithology	bian 804 an-buff n HW	TG TG 	hd, dens	KGROUND	 tr_l @ C5	tr anhy To Flou

TEMP	SPUD		DAY	78	DATE_		31 July
COMPANY	Chandler & /	Associates					
WELL L	S 15-1						
LOCATION				•			
DEPTH YEST	• 8175	TODAY 8	300	Time	FTG	125	FT/HR
OPERATION_	Drla w/B	 i±_#32					
BIT NO. 31	TYPE FI	P 62B II	v 7945	OUT	8280	FT.	335 HRS. 46
BIT NO. 32	TYPE H	 PM II	N 8280	- OUT		FT.	HRS.
			1200	- CDV		- 	
WOB <u>40</u>	RPM	<u> </u>	1200	_ SPM		LAG	6
				<u> </u>		10.0	
MUD <u>8280</u>	WT_9.2	_VIS42_	WL	<u>6.8</u> C	K <u>Z</u> PH	10.2	
SURVEYS	1 <del>1</del> 8268						
		•					
			<u> </u>				
					7		
FORM MODE			GEOL	JGICAI	Li li		
CORM TOPS		<u> </u>					
FORMATION		·····					
LITHOLOGY	Dolo_lt	<u>tan-tan mi</u>	<u>.croxln h</u>	id, dns	e tr poor :	interx	ln porosity
	Tr gry-	<u>grn sh in 8</u>	270-80 s	pl			
		8	280-90		· - · · · · · · · · · · · · · · · · · ·		
MUD GAS			TG 1	BAC	KGROUND		1
Zone of Inter	est No.			<b>—</b>		0	То
Shows-Break	5						
Depth	Lithology	HW	CI (	C2	C3 C4	(	C5 Flou
•							
<b>1</b>	••••••••••••••••••••••••••••••••••••••						
REMARKS:			·····		<u> </u>		
REMARKS: _					<u></u>		
REMARKS: _					<u> </u>		

TEMP	SPUD		_DAY_	. 79	D A	TE	l Aug,		
COMPANY		<u></u>						<u> </u>	
WELL									
LOCATION			<u></u>						
DEPTH YEST	8300	TODAY_	8465	Time_	E	TG	165	FT/HR	
OPERATION_	Trip for D	ST #5	840	2-8465					
BIT NO. 32	_ TYPEHP	'М	IN <u>82</u>	<u>80</u> OUT	8465	J	T. <u>185</u>	HRS	• <u>15</u>
BIT NO	TYPE		IN	OUT	·	F	т	HRS	•
WOB	RPM	<u></u>	PP	SPM		L	AG	0	
MUD8465	WT_9.2	VIS 51	WL	, 6.0 (	ск_2	PH_10.	5CL_{	300 <u></u> fxE/	CA_
SURVEYS	SLM 8.44								
	8466 = 8474	t Dr	ownhole	correcti	.on				
- <u></u>	······································	<u></u>							
	<u> </u>	<u></u>			T				
FORM TOPS			GEC	LUGICA	ب				<u>.</u>
FORMATION	Micciccir	nian - D	eseret						
							aity an	d 5mm f	
LITHOLOGY -		an-morn i	ILCTOX1		W/LT XI		SILY all		
	porosity							<u> </u>	
MUD GAS			TG	BAC	KGROU	IND	1-5		
Zone of Inter	est No.	5				G	8400		65
Shows-Breaks	j								
Depth	Lithology	HW	CI	C2	C3	C4	C5	Flou	C02
		18	tr	tr				tr min	<u> </u>
REMARKS:									
							ate		
Called			e				all		

		DAIL	Y REPORT	$\smile$		
TEMP	SPUD	DAY	80	DATE_	2 Aug	
					<u></u>	
LOCATION					. <u>, ,</u>	
DEPTH YEST	. <u>8465</u> TO	DAY 8530	Time	FTG_	65	FT/HR4-5 m
OPERATION_	Drig w/Bit_#	33				
BIT NO. 33	TYPE SEC M	<u> 39F IN 846</u>	8_ OUT		FT	HRS
BIT NO	TYPE	IN	OUT		FT	HRS
WOB	RPM	PP	SPM		LAG	@
MUD 8519	WT 9.3 VI	S 49 WL	, 5.6 CK	l_PH.	10.0 CL_	800 FXE/CA 5
SURVEYS						
50KVE15						
		GEC	VT OCTCAT			
FORM TOPS		·				
FORM TOPS	Deseret -	Mississippiar				
FORM TOPS FORMATION LITHOLOGY	Deseret - Dolo lt tan	Mississippiar cryptoxln - M	nicroxln			
FORM TOPS FORMATION LITHOLOGY	Deseret - Dolo lt tan	Mississippiar cryptoxln - n	nicroxln			
FORM TOPS FORMATION LITHOLOGY MUD GAS	Deseret - Dolo lt tan	Mississippiar cryptoxln - m 	nicroxln	ROUND	12	
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter	Deseret Dolo_lt tan	Mississippiar cryptoxln - n TG	nicroxlnB_ACKG	ROUND	12 0	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Deservet Dolo_lt_tan  rest_No s Lithology	Mississippiar cryptoxln - m TG TG	nicroxlnB_BACKG	ROUND	12 	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Deseret Dolo lt tan rest Nos Lithology	Mississippiar cryptoxln - m TG TG	nicroxln <u>8</u> BACKG	ROUND	12 	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Deseret - Dolo lt tan	Mississippiar cryptoxln - m TG TG	nicroxln 	ROUND 3 C4	12 @ C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Deseret - Dolo lt tan	Mississippiar cryptoxln - n TG 	n nicroxln 	ROUND 3 C4	12 @C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS: Called	Deservet Dolo lt tan rest Nos Lithology	Mississippiar cryptoxln - m TG TG 	nicroxln 	ROUND 3 C4	12 	To Flou

.

·---- ·
DAILY REPORT

TEND	SPUD		DAY	81	DATE	3	Aug.
WELL	<u></u>		······································				
LOCATION_	······································						
DEPTH YEST	. 8530	TODAY	8828	Time	FTG	298	FT/HR
OPERATION_	Drlg w/Bit #	33					
BIT NO. 3	3 TYPE SEC	M89F	IN <u>846</u>	<u>500T</u>		FT	HRS
BIT NO.	TYPE		IN	OUT _		FT	HRS.
WOB40	RPM55	<u> </u>	PP120	DO SPM		LAG	@
MUD_8814	_WT9_2	VIS <u>58</u>	WL	2.8 CK	2 PH_9	<u>5</u> CI	- <u>1000</u> _£Æ/CA_
SURVEYS							
·					······································		
				<u></u>	<u></u>		
FORM TOPS			GEO	LUGICAL			
FORMATION	Deser	et - Miss		<del></del>			
LITHOLOGY	Dolo tan	-lt brn -	microx	ln v chty			
			· · · ·				
MUD GAS			TG	BACK	GROUND _	3	
Zone of Inte	rest No					0	To
Shows-Break	S						
Depth	_Lithology	HW	CI	<u>C2</u> C	C4	C5	Flou
			******				
REMARKS: _	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7					
							· · · · · · · · · · · · · · · · · · ·
Called			a			Date	

	-	DAI	LY REPOR	<u>T</u>		
TEMP	SPUD	DAY	82	DATE_	4. Aug.	
COMPANY		······································				<u></u>
WELL						
LOCATION					···	
DEPTH YEST OPERATION	. <u>8828</u> T Drla w/Bit	DDAY <u>8946</u> #34	Time	FTG_	118	FT/HR
BIT NO. 37	TYPE Sec M	89F IN 84	65 OUT	8842	FT. 377	
BIT NO 74	TYPE SEC.				 FT.	HRS.
WOB	RPM55	PP_120	0 SPM	60	LAG <u>109</u>	@ 89
MUD <u>8937</u>	_WT_9.2V	IS_55W	L_6.8_C	K <u>2</u> PH <u>1</u>	1.0 CL_90	£E/CA_
SURVEYS	1 3/4 8831				<u></u>	·.·
·		· · · · · · · · · · · · · · · · · · ·	<u></u>		<u></u>	
<u> </u>		GE	OLOGICAL	,		
FORM TOPS						
FORMATION	Miss D	eseret				
LITHOLOGY	Dolo.tan-lt	brn microxln	hd, dnse	Cherty s	/crm vfxln	Anhydritic
MUD GAS		TG	9 BACI	KGROUND	3	
Zone of Inter	rest No.	<u></u>			0	То
Shows-Break	s					
Depth	Lithology	HW CI	C2	C3 C4	C5	Flou
REMARKS: _			· · · · · · · · · · · · · · · · · · ·			
· · · · · · · · · · · · · · · · · · ·	······································	·····				
Called		Q	<u></u> ,		Date	

	$\smile$	DAIL	Y REPORT			
TEMP	SPUD	DAY	83	DATE	. 5	Aug.
COMPANY						
WELL						
LOCATION						
DEPTH YEST	. <u>    8946     </u> TO	DAY 9195	Time	FTG	250	FT/HR6
OPERATION_	Drlb w/Bit #	34				
BIT NO. 34	TYPE Sec M8	9F IN <u>88</u> 4	2_OUT	[	T	HRS
BIT NO.	TYPE	IN	OUT	E	т	HRS.
<b>WOB</b> <u>40</u>	RPM55	PP120	0 SPM	I	.AG	@
MUD <u>9195</u>	WT <u>9.3</u> VI	5 <u>46</u> W	. <u>7.4</u> CK	<u> </u>	<u>ح</u> Cل <u>و</u>	0£~E/CA_
SURVEYS	8831 - 1 3/4	7893 -	1 3/4	7596 - 2	) 	
	8465 - 1/4	7779 -	1 1/4	7503 - 2	$\frac{1}{2}$	
•	8268 - 1 1/4	7676 -	1 3/4	7363 - 3	;	
		GE	OLOGICAL			
FORM TOPS			•			
FORMATION	Miss – Dese	ret?		· · · · · · · · · · · · · · · · · · ·		
LITHOLOGY	Dolo tan-lt t	rn vfxln-fxl	n; crm-vlt	tan, vf-mx]	.n dnse	w/tr vuggy
	porosity abr	Anhy incl;	tr Cht incl	l in darker	Dolo	
<u>Spls_started</u> 8995. No bl MUD GAS	<u>change to coar</u> ack Shale marke	<u>ser texture (</u> er at base of TG	<u>8990-9000</u> Deseret wa BACK	) possible as noted. GROUND	Lower M	iss. Gardisc
Zone of Inter	est No.	······································			0	To
Shows-Breaks	S None		<u></u>			
Depth	Lithology	HW CI	C2 (	C3 C4	C5	Flou
<b></b>						
REMARKS:						
Called					 >	

		DAILY	REPORT			105
TEMP	SPUD	DAY	84	DATE	6 Aug.	
COMPANY						
WELL						
LOCATION				<u></u>		
DEPTH YEST.	. <u>9196</u> TODAY	<u> </u>	Time	FTG_	121	FT/HR <u>12-1</u>
OPERATION	Drlg w/bit_#33	· ·				
BIT NO. <u>34</u>	TYPE SEC M89F	IN 8842	2_OUT_	9301	FT. <u>459</u>	HRS. 46
BIT NO. 35	TYPE M90F	IN930.	<u>1_0UT_</u>		FT	HRS
WOB45	RPM550	PP120	SPM	60	LAG	@
 MUD 9312	WT 9.3 VIS	49 WL	6.8 CK	<u>1</u> PH 9	.5 _CL_	900_£XE/CA
SURVEYS	3/4 - 9271					
		· · · · · · · · · · · · · · · · · · ·				
			<u></u>			
		GEOI	OGICAL	·····		
FORM TOPS		Dev - Our	<u>ay 9297</u>			
FORMATION	Ouray					
FORMATION _	Ouray 95% Dolo crm mi	croxln hd,	dnse			
FORMATION	Ouray 95% Dolo crm mi 05% Sh gry, gry	.croxln hd, -grn, maroo	dnse n pastel	waxy		
FORMATION LITHOLOGY	Ouray 95% Dolo crm mi 05% Sh gry, gry	.croxln hd, -grn, maroo TG 2	dnse n pastel BACK	waxy GROUND	1	
FORMATION LITHOLOGY MUD GAS Zone of Inter	Ouray 95% Dolo crm mi 05% Sh gry, gry rest No.	<u>.croxln hd,</u> -grn, maroo TG2	dnse n pastel BACK	waxy GROUND	 @	To
FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks	Ouray 95% Dolo crm mi 05% Sh gry, gry rest No.	<u>.croxln hd,</u> -grn, maroo TG2	dnse n pastel BACK(	waxy GROUND	 @	To
FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Ouray 95% Dolo crm mi 05% Sh gry, gry est No Lithology HW	<u>croxln hd,</u> -grn, maroo TG2 	dnse n pastel BACK C2 C	waxy GROUND 3 C4	1 @ 	To Flou
FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth	Ouray 95% Dolo crm mi 05% Sh gry, gry est No LithologyHW	<u>croxln hd,</u> -grn, maroo TG2 	dnse n pastel BACK C2 C	waxy GROUND 3 C4	_1 @ C5	To Flou
FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Ouray 95% Dolo crm mi 05% Sh gry, gry est No Lithology HW	<u>croxln hd,</u> -grn, maroo TG2 CI	dnse n pastel BACK C2 C	waxy GROUND 3 C4	1 @ C5	To Flou
FORMATION LITHOLOGY MUD GAS Zone of Inter Shows-Breaks Depth REMARKS:	Ouray 95% Dolo crm mi 05% Sh gry, gry est No.	<u>croxln hd,</u> <u>-grn, maroo</u> TG2 CI	dnse n pastel BACK C2 C	waxy GROUND 3 C4	    	To Flou

.

DAILY REPORT

I DIVIE	SPUD		DAY	85	D <i>ł</i>	TE	7. Au	g
COMPANY								
WELL								
LOCATION_	·							
DEPTH YES	ST. <u>9317</u> .	TODAY	9470	Time	1	TG_1	53	FT/HR
OPERATION	<u>Drla w/bit</u>	#35						
BIT NO	35_ TYPE	20F	IN_930	<u>1</u> оит			т	HRS
BIT NO.	TYPE		IN	OUT		F	т	HRS
WOB 45	RPM	55	PP12	O SPM	60	L	AG 10	<u>9402 05 0</u>
MUD_9463		VIS_4	16 WL	, 6 <b>.</b> 8 _C	к_1	PH_10	.5_CL_	900 £Æ/CA
SURVEYS								
							<u>,, </u>	
			<u> </u>					
	_		GEC	LOUICA	<b>ب</b>			
FORM TOPS	S <u>Maxfield</u>	9323			•• •••			
FORM TOPS	S <u>Maxfield</u> N	9323						
FORM TOPS FORMATION	S <u>Maxfield</u> N <u>Dolo crm-1</u>	9323 t tan, c	dk gry-bri					
FORM TOPS FORMATION	S <u>Maxfield</u> N <u>Dolo crm-l</u> Sh gry, gr	9323 t tan, c y-grn	dk gry-bri scant ti	n r vfg gla		pegin (	9370	
FORM TOPS FORMATION	5 <u>Maxfield</u> N <u>Dolo crm-l</u> Sh gry, gr	9323 t tan, c y-grn	dk gry-brr scant ti	n r vfg gla	uc SS I	pegin (	9370	
FORM TOPS	5 <u>Maxfield</u> N <u>Dolo crm-l</u> Sh gry, gr	9323 t tan, c y-grn	dk gry-brr scant ti TG	n c vfg gla BAC		pegin @ JND_	<b>9</b> 9370 3	
FORM TOPS FORMATION LITHOLOGY MUD GAS _ Zone of Int	5 <u>Maxfield</u> N <u>Dolo crm-l</u> Sh gry, gr	9323 t tan, c y-grn	<u>dk gry-brr</u> scant ti TG	n c vfg gla BAC		Degin @ JND	9370 3 <u>3</u>	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Int Shows-Brea	5 <u>Maxfield</u> N <u>Dolo crm-l</u> Sh gry, gr	9323 t tan, c y-grn	<u>dk gry-brr</u> scant tr	n c vfg gla BAC		Degin (	9370 3 9	To
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Int Shows-Brea Depth	5 <u>Maxfield</u> N <u>Dolo crm-1</u> Sh gry, gr serest No. <u></u> Lithology _	9323 t tan, c y-grn HW	<u>dk gry-brr</u> scant tr TG 	r vfg gla BAC	uc SS I KGROI C3	Degin ( JND C4	9370 3 9 C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS _ Zone of Int Shows-Brea Depth	SMaxfield N YDolo crm-1 Sh gry, gr Sh gry, gr erest No ks Lithology	9323 t tan, c y-grn HW	<u>dk gry-brr</u> scant tr TG	r vfg gla BAC	uc SS I KGROI C3	Degin ( JND C4	9370 3 2 C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS _ Zone of Int Shows-Brea Depth REMARKS:	SMaxfield N YOolo crm-1 Sh gry, gr Sh gry, gr Lithology	9323 t tan, c y-grn HW	<u>dk gry-brr</u> scant tr TG 	r vfg gla BAC	uc SS I KGROI C3	Degin ( JND C4	9370 3 2 C5	To Flou
FORM TOPS FORMATION LITHOLOGY MUD GAS Zone of Int Shows-Brea Depth REMARKS:	SMaxfield N YDolo crm-1 Sh gry, gr Sh gry, gr Eerest No Lithology	9323 t tan. c y-grn HW	<u>dk gry-brr</u> scant tr TG CI	r vfg gla BAC	uc SS I KGROI C3	Degin ( JND C4	9 9370 3 <u>2</u> <u>C5</u>	To Flou

	<b>`</b>	-	DAIL	Y REPOR	$\underline{\mathbf{T}}$			
TEMP	SPUD		DAY_	. 86	DATE_	. 8	Aug į	
COMPANY			<u></u>					<u></u>
WELL								
LOCATION								
DEPTH YEST.	9470	TODAY_	9698	Time	FTG	228	3	FT/HR
OPERATION	Drla w/B	it #35			<u></u>		•	
BIT NO. 35	TYPE M9C	)F	IN 930	<u>1</u> OUT		FT.		HRS
BIT NO	TYPE		IN	OUT		FT.		HRS
WOB 45		/55	PP 120	<u>0</u> SPM	60	LAG	<del></del>	@
MUD 9689 V	VT_9.3	VIS <u>50</u>	)WI	<u>6.6</u> Cl	K <u>1</u> PH.	10.5	CL 90	0_£%E/CA_
SURVEYS	·							
							<u> </u>	
FORM TOPS			GEC	JEOGICAL	•			
	Mayfield							
FORMATION		i				<u></u>		<u></u>
LITHOLOGY _	Dolo wh,	<u>crm, 1</u>	<u>t tan vf</u> -	<u>fxl micro</u>	SUCIOSI W	<u>/tr_pk</u>	Limey	Anhy incl
		NO SHOW	S OF HYDF	OCARBONS				
MUD GAS			ТG	BACI	KGROUND		2	
Zone of Intere	st No.		·····			0		_To
Shows-Breaks						•		
Depth	Lithology	HW	CI	C2	C3 C4	1	C5	Flou
		<u></u>	<u></u>				<u></u>	
REMARKS:	TD 9728	9:00	А.М.					
REMARKS:	TD 9728	9:00	A.M.			Data		

DAILY REPORT

TEMP	SPUD		<u> </u>	87	_DATE_	9 AL	<mark>a, 1</mark> 9	84	
COMPANY									
WELL		<u></u>							
LOCATION									
DEPTH YEST	• <u> </u>	TODAY	9728	Time	FTG_	30		FT/HE	۲ <u> </u>
OPERATION_	TD	9728		•	<u></u>				
BIT NO	_ TYPE		_ IN	OUT		FT.	<u></u>	HRS	5
BIT NO	TYPE		IN	OUT		FT.		HRS	5
WOB	RPM	- 	PP	SPM	<u> </u>	LAG		0	
MUD	WT	VIS	WL	СК	PH		CL	£E	/CA_
SURVEYS									
	<u></u>		· · · · · · · · · · · · · · · · · · ·						
·									
			GEO	LOGICAL					
FORM TOPS									
FORMATION	Ophir	·							
LITHOLOGY	Dresser A	tlas - C	raio Mille	er Enar.					
	Run #1 DLI	_/FDC/GR	GR	failure				•	
<u> </u>	Run #2 Fl	DC /CNL	matrix c	nange 🛽 675	0 4	4880 @	6:00	А.М.	TD
MUD GAS			TG	BACKG	ROUND				
Zone of Inter	est No.	······				@		То	
Shows-Break	s			•					
Depth	Lithology	HW	CI	C2 C3	C4	(	C5	Flou	
······································									
REMARKS:				<u></u>					
		<u>.</u>	<u></u>						
									-
Called			0			_Date			

DAILY REPORT

TEMP	SPUD_		DAY	88	_DATE_	10 /	Aug.,	
COMPANY		·····						······································
WELL		<u> </u>		<del></del>				
LOCATION								
DEPTH YEST	9728	_TODAY_	9728	Time	FTG_			_FT/HR
OPERATION_	· · · · · · · · · · · · · · · · · · ·							
BIT NO	TYPE		IN	OUT		FT.		HRS
BIT NO.	TYPE		_ IN			FT.	<u> </u>	HRS
WOB	RPM		PP	SPM		LAG		@
MUD	WT		WL	СК	PH		CL_	
SURVEYS								
· · · · · · · · · · · · · · · · · · ·		····					<u></u>	
· · · · · · · · · · · · · · · · · · ·	<u></u>	<u> </u>		<del>,</del>	·		<u></u>	<u></u>
			GEOI	OGICAL				
FORM TOPS			4201	Joarone				
FORMATION								
LITHOLOGY			····				<del></del>	
•			•					
MUD GAS			TG	BACKGI	ROUND			
Zone of Inter	rest No.				•	0		То
Shows-Break	s							
Depth	_Lithology	HW	CI	C2 C3	C4	(	25	Flou
				·····				
REMARKS.					• • •			<b></b>
LEMARIO: _	Run E logs	w/Dresse	er Atlas - Preive nlug	<u>Charter fl</u> noing order	<u>ight pac</u> s from l	<u>kages</u> Itah S	<u>to l</u> tate	Jenver as po Of <b>f</b> icials
	THOUTUCTO		<u>, , , , , , , , , , , , , , , , , , , </u>	<u>191.19 01001</u>				_ ·
Called			0		. <u></u>	Date		
		-	-					

## CHANDLER & ASSOCIATES LAWRENCE STATE 15-1 Emery County, Utah

## Begin Sample Descriptions @ 0038 in Blue Gate Shale

0032- 40 100% Shale, dark gray firm blocky calcareous, very silty with some grading to Siltstone. Trace very fine grain, very silty light tan Sandstone. Trace light brown microcrystalline Limestone nodules.

- 40- 50 100% Shale as above.
- 50- 60 100% Shale as above with slight thin light tan Siltstone interlaminations; trace Limestone nodules as above.
  - 60- 70 100% Shale dark gray dark gray brown, very silty firm calcareous.
  - 70- 80 100% Shale as above, trace fossil fragments.
- 80- 90- 100% Shale as above.
- 90-0100 No Sample Shaker by-passed.
- 100-110 No Sample Shaker by passed.
- 110-120 100% Shale, dark gray firm, slight calcareous.
- 120- 30 100% Shale as above, trace fossil fragments.
- 130- 40 100% Shale as above.
- 140- 50 100% Shale as above.
- 150- 60 100% Shale as above.
- 160- 70 100% Shale as above.
- 170- 80 100% Shale as above, trace fossil fragments
- 180- 90 100% Shale as above.
- 190-200 100% Shale as above.
- 200- 10 100% Shale, dark gray, dark gray-brown firm, slighty calcareous, trace fossil fragments. Trace light tan Siltstone interlaminations.
  - 10- 20 100% Shale as above.

20-	30	100%	Shale as above.
30-	40	100%	Shale as above.
40-	50	100%	Shale as above.
50-	60	100%	Shale as above with decreasing silty interlaminations.
60-	70	100%	Shale, dark gray, firm blocky, slightly calcareous.
70-	80	100%	Shale as above.
80-	90	100%	Shale as above, trace fossil fragments.
90-	300	100%	Shale as above.
300-	10	100%	Shale as above.
10-	20	100%	Shale as above, trace fossil fragments.
20-	30	100%	Shale as above, trace Bentonite, white soft
30-	40	100%	Shale as above.
40-	50	100%	Shale as above.
50-	60	100%	Shale as above.
60-	70	100%	Shale as above.
70-	80	100%	Shale as above. Trace fossil fragments, trace light green Bentonite.
80-	90	100%	Shale as above.
90-	400	100%	Shale as above.
400-	10	100%	Shale, dark gray, firm blocky, slightly calcareous, trace fossil fragments.
10-	20	100%	Shale as above.
20-	30	100%	Shale as above.
30-	40	100%	Shale as above.
440-	50	No samp	le. Shaker by-passed.
50-	60	100%	Shale as above, some becoming gray-brown silty.
60-	70	100%	Shale as above.
70-	80	100%	Shale as above.

•			
- 80 -	90	100%	Shale as above.
. 90-	500	100%	Shale as above, trace fossil fragments.
500-	10	100%	Shale dark gray, some dark gray-brown blocky, silty, calcareous with trace fossil fragments.
10-	20	100%	Shale as above.
20-	30	100%	Shale as above.
30-	· 40	100%	Shale as above.
40-	· 50	100%	Shale as above.
. 50-	· 60	100%	Shale as above.
60-	- 70	100%	Shale as above, trace fossil fragments.
- 70-	- 80	100%	Shale as above.
80-	- 90	100%	Shale as above.
90-	- 600	100%	Shale as above.
600-	- 10	100%	Shale dark gray, firm blocky, silty, calcareous with trace fossil fragments.
10-	- 20	100%	Shale as above.
20-	- 30	100%	Shale as above.
30-	- 40	100%	Shale as above.
40-	- 50	100%	Shale as above.
50-	- 60	100%	Shale as above.
60-	- 70	100%	Shale as above.
70-	- 80	100%	Shale as above.
- 80 <b>-</b>	- 90	100%	Shale as above.
690-	- 700	100%	Shale as above.
700-	- 10	100%	Shale as above.
10-	- 20	100%	Shale as above.
20-	- 30	100%	Shale as above.
- 30-	- 40	No Sa	mple. Shaker by-passed. Lost circulation @ 729.
40-	- 50	No Sam	ple. Shaker by passed.

50-	60	100%	Shale as above. Abundant Lost Circulation Material.
60-	70	100%	Shale as above. Abundant Lost Circulation Material.
70-	80	No Sampl	Le. Shaker by-passed.
80-	90	100%	Shale as above.
90-	800	100%	Shale as above.
800-	10	100%	Shale as above.
10-	20	100%	Shale as above.
20-	30	100%	Shale, dark gray firm blocky, silty, calcareous with trace fossil fragments.
30-	40	100%	Shale as above.
40-	50	100%	Shale as above.
50-	60	100%	Shale, dark gray, firm, silty, calcareous, trace fossil fragments. Abundant Lost Circulation Material contamination.
60-	70	100%	Shale as above.
70-	80	100%	Shale as above. (Losing Returns)
80 -	90	100%	Shale as above. Abundant Lost Circulation Material.
90-	900	100%	Shale as above.
900-	10	No Samp	le. Shaker by-passed.
10-	20	90%	Shale, medium gray, firm, very silty, with some Siltston interlams. Calcareous.
		10%	Siltstone, light gray firm, calcareous.
20-	30	90%	Shale, light-medium gray, very silty as above.
		10%	Siltstone as above. Some grading to very fine Sandstone.
30-	40	90%	Shale as above.
		10%	Siltstone as above.

40- 50	70%	Shale, light-medium gray, firm, very silty, calcareous.
	20%	Siltstone, light-medium gray, firm calcareous.
	10%	Sandstone, light gray, light gray-brown, silty, firm, calcareous.
50- 60	70%	Shale as above.
	10%	Sandstone as above.
	20%	Siltstone as above.
60- 70	90%	Shale as above becoming medium-dark gray.
	10%	Sandstone gray-brown very fine-fine grain, subangular-subround. Medium cemented, calcareous.
70- 80	50%	Shale as above.
	50%	Sandstone tan to gray-brown very fine-fine grain, sub-angular-sub-round, predominately firm with some friable. Calcareous with white clay matrix. Abundant mineral inclusions.
80- 90	408	Shale as above.
	60%	Sandstone as above.
90-1000	30%	Shale as above.
	70%	Sandstone as above.
1000-1010	40%	Shale, dark-medium gray, firm silty calcareous.
	60%	Sandstone becoming very light tan-light gray, very fine-fine grain with trace medium grained, sub-angular - sub-round, medium-well cemented, calcareous, abundant dark mineral inclusions.
1010-1020	30%	Shale as above.
	70%	Sandstone as above becoming predominately light gray-brown, very fine grain, medium- well cemented.
1020-1030	30%	Shale as above.
	70%	Sandstone as above, light gray-brown-white, very fine grain-fine grain.

<u> </u>	1030-1040	50%	Shale as above.
		50%	Sandstone as above.
<u> </u>	1040-1050	95%	Shale as above. Some very silty grading to Siltstone.
		5%	Sandstone as above.
~	1050-1060	80 %	Shale, medium gray, firm, silty, very slightly calcareous with trace fossil fragments.
		20%	Siltstone, light-medium gray, firm slightly calcareous. Trace Sandstone, light gray, very fine grain, very well cemented, slightly calcareous.
	1060-1070	20%	Shale as above.
}		60%	Siltstone as above.
		20%	Sandstone as above with some very fine-fine grain, sub-round moderately cemented.
	1070-1080	308	Shale as above.
-		50%	Siltstone as above.
	<b>-</b> ·	20%	Sandstone as above.
~~	1080-1090		Very poor sample. Predominately Lost Circulation Material.
	1090-1100	20%	Shale, medium-dark gray as above.
		50%	Siltstone as above.
_		30%	Sandstone as above. Trace coal.
	1100-1110	20%	Shale medium gray-brown, firm, very silty, calcareous.
		70%	Siltstone, light-medium gray-brown, firm calcareous.
		10%	Sandstone light gray-white, very fine-fine grained, moderately cemented, some very silty calcareous. Trace dead brown stain.
	1110-1120	10%	Shale as above.
		30%	Siltstone as above.
_		60%	Sandstone as above, predominately very fine grain grading to Siltstone.

•

-			
	1120-1130	20%	Siltstone as above.
-		80%	Sandstone, light gray, very fine grain as above. Trace Shale as above.
-	1130-1140	10%	Shale as above.
		20%	Silstone as above.
-		70%	Sandstone as above, predominately very fine grain well cemented, calcareous.
-	1140-1150	20%	Siltstone as above.
		80%	Sandstone as above. Trace Shale as above.
-	1150-1160	100%	Sandstone, light gray, light gray-brown, very fine grain, sub-round. Well sort, well cem. slightly calcareous. Trace Siltstone as above. Trace Shale as above.
_	1160-1170	80 %	Sandstone as above with trace dead brown stain.
-		20%	Siltstone as above. Trace shale as above.
	1170-1180	70%	Sandstone as above.
		30%	Siltstone as above. Trace Shale as above.
-	1180-1190	40%	Sandstone, light-medium gray, very fine grain as above.
-		60%	Siltstone as above. Trace common Shale, dark gray firm, silty.
	1190-1200	60%	Siltstone
-		30%	Sandstone as above.
-		10%	Shale as above.
	1200-1210	20%	Sandstone, light gray, very fine grain grading to Siltstone , well cemented, calcareous with trace coal interlaminations.
-		20%	Siltstone, light gray moderately cemented, calcareous some very shaley.

60% Shale, light-medium gray with some dark gray firm, blocky, silty calcareous.

			119
_	1210-1220	10%	Sandstone as above.
<b>-</b> .		20%	Siltstone as above.
		70%	Shale as above.
_	1220-1230	10%	Sandstone as above.
		10%	Siltstone as above.
-		80%	Shale as above with increasing dark gray
	1230-1240	10%	Siltstone as above.
		90%	Shale, predominately dark gray, firm blocky, very silty, calcareous. Trace Sandstone as above.
	1240-1250		No Sample. Shaker by-passed.
	1250-1260	100%	Shale, predominately dark gray with some medium gray, firm block, very silty, calcareous. Trace Siltstone as above. Trace Sandstone as above. (Cavings?).
	1260-1270	100%	Shale as above. Trace Siltstone as above. Trace Sandstone as above (cavings?)
	1270-1280	100%	Shale as above with trace Siltstone and Sandstone cavings as above.
_	1280-1290	100%	Shale as above. Trace Sandstone, light gray, fine-medium grained with Glauconite inclusions. Trace Siltstone, light-medium gray, very shaley.
-	1290-1300		No Sample. Shaker by-passed.
	1300-1310		No Sample. Shaker by-passed.
_	1310-1320	100%	Shale as above. Very poor sample. Abundant LCM contamination - abundant cavings. Trace Bentonite, white, soft with brown micaceous inclusions.
	1320-1330	100%	Shale as above, some very silty. Trace- common Bentonite, white, soft with brown micaeous inclusions.
_	1330-1340	100%	Shale, dark gray, firm, blocky some very silty grading to Siltstone. Trace common Bentonite white, soft with green micaeous inclusions.
	1340-1350	100%	Shale as above. Abundant LCM contamination.
	1350-1360	100%	Shale as above.

			120
	1360-1370	100%	Shale as above, some with clear quartz green inclusions, some very silty grading to Siltstone.
	1370-1380	100%	Shale as above.
	1380-1390	100%	Shale as above.
	1390-1400	100%	Shale as above.
-	1400-1410	100%	Shale as above.
	1410-1420	100%	Shale as above, trace light gray Siltstone, hard, tight.
	1420-1430	100%	Shale medium-dark gray, firm blocky, silty, calcareous.
	1430-1440	100%	Shale as above.
-	1440-1450	100%	Shale as above.
	1450-1460	100%	Shale as above, trace light gray Siltstone.
	1460-1470	100%	Shale as above.
	1470-1480	100%	Shale as above.
	1480-1490	100%	Shale as above.
	1490-1500	100%	Shale as above.
_	1500-1510	100%	Shale, dark-medium gray firm, silty, blocky calcareous. Trace light gray Siltstone.
	1510-1520	100%	Shale as above. LCM contamination.
	1520-1530	100%	Shale as above, trace Siltstone as above.
	1530-1540	100%	Shale as above.
	1540-1550	100%	Shale as above.
	1550-1560	100%	Shale as above, trace Bentonite, light tan, soft.
	1560-1570	100%	Shale as above, trace Bentonite, light tan, soft.
<b></b>	1570-1580	100%	Shale as above. Siltstone, gray soft, bentonitic.
	1580-1590	100%	Shale as above. Siltstone, light gray, soft, bentonitic.

1590-1600 100% Lale becoming predominatel medium gray, very silty some soft bentonitic, some with trace very fine-fine grain with round quartz grain inclusions. Trace-common Bentonite, very light brown, soft. 1600-1610 90% Shale as above, some very silty, some very sandy. 10% Sandstone, clear, white, very fine-fine grain, sub-angular, predominately loose grains. 1610-1620 90% Shale as above, some grading to Siltstone. 10% Sandstone as above. 1620-1630 100% Shale as above. Trace-common loose quartz grains. 1630-1640 100% Shale, predominately medium gray with some dark gray firm blocky calcareous, very silty; some grading to Siltstone, some very sandy. 1640-1650 90% Shale as above. Sandstone as above with some light gray very 10% fine-fine grain well cemented, calcareous, silty; trace weak yellow fluorescence; trace pale milky yellow cut. Trace brown siltstone. 1650-1660 70% Shale medium gray, very silty as above. Some light gray bentonitic. 30% Sandstone, light gray very fine grain, very silty. Shale medium gray very silty as above with 1660-1670 60% common light gray soft bentonitic; trace common light gray-brown Bentonite. 40% Sandstone white, light tan very fine-medium grain, medium sort, medium cemented. Calcareous with white clay matrix. 1670-1680 40% Shale, predominately light gray-green, soft, bentonitic with abundant medium gray-dark gray very silty firm blocky, calcareous. Sandstone as above with abundant loose 60% grains.

1680 - 169060% Shale as above. 40% Sandstone as above, some very well cemented. Driller's TD 1689 1686 SLM 1684 Logger's TD Circulate samples, prepare to run Electrical Logs - Dresser Atlas. Prepare to open hole to  $17 \ 1/2$ " and Run 13 3/8" Casing. 1690-1700 Very poor sample. Predominately cement. 1700-1710 80% Sandstone white, clear, very light tan, very fine-fine grain, medium sort, sub-angular, well cemented, calcareous with some white clay matrix. NSOFC 20% Shale, medium gray firm, blocky, silty calcareous, abundant very pale green-white soft, bentonitic. Abundant cement contamination. 1710-1720 Sandstone as above. 60% 40% Shale as above becoming predominately pale pastel gray-green bentonitic, arenaceous noncalcareous. Trace common Limestone mediumdark gray microcrystalline, hard, dense very silty (stringers and nodules). 1720-1730 80% Shale as above some with very thin white Siltstone interbeds. 20% Sandstone as above becoming predominately very fine grain, grading to Siltstone. Trace Pyrite. 1730-1740 90% Shale pale green-gray soft-firm bentonitic, arenaceous in part with thin white Siltstone interbeds. Trace dark gray silty micritic Limestone nodules. 10% Sandstone white very fine grain sub-angular poor-medium cement, some grading to Siltstone. Trace Limestone nodules as above. 1740-1750 80% Shale as above. 20% Sandstone as above some very silty, trace common Limestone as above.

Shale, pale gray-green to very light cream. 1750-1760 80% Soft-firm blocky, silty in part, bentonitic; some medium gray silty limey. 20% Sandstone very light tan very fine grain very silty thinly interbedded with above shale. Trace common Limestone medium-dark gray very silty micrite nodules and interlaminations. 1760-1770 90% Shale as above with trace Pyrite. 10% Limestone as above, trace Sandstone very silty as above. 1770-1780 100% Shale as above. Some very silty thin interlaminations. Shale green-gray some very pale pastel green, 1780 - 179080% some medium gray with trace maroon cast. Trace orange chert inclusions. Sandstone, light gray-brown, light gray, tan, 20% very fine-fine grain with trace medium grain, poor-medium sort predominately subangular, poor-medium cement, calcareous, some with abundant green nodular inclusions (Glauconite). Trace Pyrite. Shale as above. 1790 - 180080% Sandstone as above with some very light gray-20% green glauconitic. Trace Pyrite. Shale green-gray bentonitic with abundant 1800-1810 90% red-brown firm, blocky, silty, non-calcareous to very slightly calcareous; abundant dark red-gray to maroon firm, slightly calcareous. 10% Sandstone, light tan, very fine grain friable, some light gray-green Glauconitic. Abundant LCM contamination. Shale, predominately light green-gray 1810-1820 90% bentonitic with abundant red-brown silty, maroon silty. 10% Sandstone as above with increasing light gray-green Glauconitic. Shale as above, predominately green-gray with 1820-1830 100% abundant red-brown and maroon. Trace common Sandstone as above. Shale as above with trace Siltstone 1830-1840 100% interlaminations some becoming arenaceous. 1840 - 1850100% Shale as above.

			124
	1850-1860	100%	Shale predominately very light gray-green firm-soft, noncalcareous-very slightly calcareous with trace common red-brown silty, very slightly-noncalcareous. Common Limestone cream-medium gray cryptocrystalline silty dense nodules.
	1860-1870	90%	Shale as above.
<b></b>		10%	Limestone as above.
-	1870-1880	90%	Shale as above with increasing red-brown, maroon bentonitic some silty. Trace very thin Siltstone interlaminations.
		10%	Limestone as above.
-	1880-1890	90%	Shale as above.
		10%	Limestone as above.
_	1890-1900	100%	Shale predominately very light green-gray with some red-brown thin Sandstone, very fine grain laminations. Trace Limestone nodules as above.
	1900-1910	80%	Shale very pale green-gray soft-firm bentonitic, arenaceous in part, noncalcareous; some red mottled.
_		10%	Sandstone white, very fine-fine grained, medium sort, subangular calcareous with white clay matrix.
		10%	Limestone white, light cream cryptocrystalline, dense, trace Pyrite inclusions in Shale, Sandstone.
·	1910-1920	70%	Shale as above with some red, maroon, mottled.
		10%	Sandstone as above.
		20%	Limestone as above.
	1920-1930	70%	Shale as above.
		10%	Sandstone as above some with green glauconitic inclusions.
		20%	Limestone as above.
	1930-1940	20%	Shale as above with increasing dark red- brown, maroon arenaceous noncalcareous.
		10%	Sandstone as above some very well cemented.
		10%	Limestone as above thinly interbedded.

------

	1940-1950	808	Shale as above some varicolored, mottled.
		20%	Sandstone white, light cream very fine-fine grain medium sort, medium-well cemented, calcareous with clay matrix. Trace Pyrite inclusions.
	1950-1960	50%	Shale predominately very pale cream bentonitic with some pale green-gray bentonitic noncalcareous.
		50%	Sandstone white, light cream as above; predominately very fine-fine grained subround poor-medium cemented, calcareous with clay matrix. Trace Pyrite inclusions. Trace Limestone, white, light cream cryptocrystalline hard, dense nodules and very thin interbeds.
_	1960-1970	30%	Shale as above.
		70%	Sandstone as above Trace common Limestone as above.
	1970-1980	100%	Shale very pale gray-brown, maroon varicolor mottled firm, noncalcareous with trace brown mica flake inclusions; arenaceous, argillaceous in part.
		Trace S	andstone as above, trace Limestone as above.
	<b>1980-1990</b>	100%	Shale predominately pale maroon, pale varicolor mottled with some pale gray-green noncalcareous as above. Trace Limestone nodules as above. Trace Sandstone as above.
	1990-2000	100%	Shale as above.
	2000-2010	100%	Shale maroon, dark red-brown, varicolor as above with trace dense Limestone as above.
	2010-2020	100%	Shale as above.
	2020-2030	100%	Shale as above with trace dense Limestone as above some pink, dense.
	2030-2040	100%	Shale as above with trace dense Limestone as above.
	2040-2050	100%	Shale as above.
	2050-2060	100%	Shale marcon varicolor as above some silty.
			light gray-brown.

			126
	2070-2080	100%	Shale as above with increasing pale gray- green some silty. Trace Limestone as above.
hum	2080-2090	100%	Shale as above becoming predominately pale gray-green with some pale maroon varicolor. Trace Limestone as above.
-	2090-2100	100%	Shale as above with trace Limestone dense nodules as above.
	2100-2110	100%	Shale predominately pale green-gray with some pale cream bentonitic, common pale red-brown silty. Trace common dense Limestone fragments pale cream, pale maroon. Trace Pyrite.
	2110-2120	90%	Shale as above.
		10%	Limestone varicolor dense thin interbeds and nodules.
_	2120-2130	100%	Shale becoming predominately pale red-brown, varicolor with abundant pale green-gray as above. Trace dense Limestone as above.
	2130-2140	100%	Shale as above. Trace dense Limestone as above, trace orange Chert hard, sharp.
	2140-2150	100%	Shale as above with trace Limestone as above, trace Chert as above.
	2150-2160	100%	Shale as above with trace Sandstone white very fine grain medium cemented, calcareous.
	2160-2170	80%	Shale varicolor, maroon
	÷	20%	Sandstone white very fine-fine grain, poor- medium cemented, calcareous. Trace Limestone pink, cream cryptocrystalline hard, dense.
	2170-2180	80%	Shale varicolor, maroon, red-brown with thin Sandstone interbeds.
		10%	Sandstone white, very fine grain as above.
Naturation		10%	Limestone hard, dense as above.
	2180-2190	90%	Shale varicolor as above.
		10%	Limestone as above.
	2200-2210	100%	Shale varicolor, red-brown, maroon firm arenaceous in part. Common Limestone pink, cream, light gray, hard, dense.
	2210-2220	100%	Shale varicolor as above. Common Limestone nodules and thin interbeds.

-

----

•

127 2220-2230 100% Shale predominately light gray-white bentonitic very water sensitive with some varicolor as above. 2230 - 224040% Shale varicolor as above. 60% Conglomerate-medium conglomerate chert pebbles, varicolor, hard, sharp, loose. Trace Limestone pebbles, hard, dense. Abundant LCM contamination. 2240-2250 50% Shale varicolor as above. 50% Conglomerate as above. 2250-2260 100% Shale predominately pale green-gray firm bentonitic with abundant maroon thin varicolor Siltstone interbeds. Common conglomerate chert fragments orange, hard, sharp. <u>.</u>.... 2260-2270 100% Shale pale green-gray, maroon as above. Common chert fragments as above. 2270-2280 100% Shale as above with very thin white Sandstone interlaminations some silty. Common chert fragments as above. Trace Limestone fragments white, gray, hard, dense. 2280 - 229040% Shale pale green-gray, maroon as above. Siltstone red-brown soft-firm shaley 60% calcareous. Common Limestone white, pink, gray cryptocrystalline hard, dense. Trace Chert fragments. 2290 - 230040% Shale as above. 60% Siltstone as above. Common Limestone as above. Trace chert as above. 2300-2310 20% Shale pale green-gray, pale maroon firm very slightly calcareous, silty in part. Sandstone very light orange, light red-brown, 80% white very fine-fine grained, well sorted, friable. Trace chert fragments orange, clear, white hard, sharp. Trace Limestone pebbles, hard, dense. 2310-2320 100% Conglomerate predominately orange, clear, white chert fragments, medium-coarse hard, sharp, loose with common Sandstone fragments as above. Common shale as above. 2320-2330 70% Shale red-brown silty firm slightly calcareous. 30% Conglomerate as above.

			$\sim$ $\sim$ $^{}$
<u> </u>	2330-2340	80%	Shale predominately pale gray-white with pale pastel green shading, firm bentonitic; some red-brown silty as above, some maroon.
_		20%	Conglomerate as above predominately chert pebbles with trace common Sandstone, very light orange, white, common dense Limestone fragments.
_	2340-2350	90%	Shale varicolor as above.
		10%	Conglomerate predominately chert pebbles becoming red.
	2350-2360	90%	Shale varicolor as above.
-		10%	Chert pebbles medium-coarse grained, red loose.
_	2360-2370	20%	Shale as above varicolor
<b></b> .		80%	Conglomerate predominately chert fragments medium-coarse grained, hard, sharp with some Sandstone, white, fine-medium grained, sub- round-subangular well cemented with clay matrix.
-	2370-2380	100%	Conglomerate predominately varicolor chert fragments loose. Trace varicolor Shale as above.
	23 80-23 90	60%	Shale varicolor as above.
<b>1</b> 91.000		40%	Conglomerate as above.
	2390-2400	70%	Shale as above.
		30%	Conglomerate as above.
	2400-2410	808	Chert fragments Conglomerate; varicolor medium-coarse grained, hard, sharp.
_		20%	Shale varicolor.
	2410-2420	90%	Conglomerate as above.
		10%	Shale as above.
	2420-2430	70%	Conglomerate as above.
		30%	Shale predominately light gray-white with some varicolor.
` <b></b>	2430-2440	70%	Shale predominately varicolor as above.
		30%	Conglomerate as above with abundant Sandstone fragments, fine-medium grained, well cemented calcareous, trace Limestone pebbles.

2440-2450 40% Shale as above.

60% Conglomerate as above.

2450-2460 20% Shale as above.

- 80% Conglomerate predominately chert fragments, coarse grained, hard, sharp with abundant Sandstone, white, fine-coarse grained, poor sort, very well cemented, calcareous.
- 2460-2470 30% Shale as above.
  - 70% Conglomerate as above.
- 2470-2480 80% Shale varicolor with abundant red-brown silty very slightly calcareous.
  - 20% Conglomerate as above.
  - 2480-2490 90% Shale as above.
    - 10% Conglomerate as above predominately Sandstone white, fine-medium grained, medium sort very well cemented, calcareous with abundant chert fragments.
- 2490-2500 95% Shale as above.

5% Conglomerate as above.

- 2500-2510 100% Shale varicolor soft-firm bentonitic very slightly noncalcareous with some red-brown silty calcareous. Trace chert, Sandstone fragments as above.
- 2510-2520 90% Shale varicolor predominately pale greenwhite with some lavendar; some red-brown silty calcareous.
  - 10% Sandstone very light tan, light gray-brown, very fine-fine grained, subangular, medium sort, very well cemented siliceous. Trace chert fragments hard, sharp.
  - 2520-2530 80% Shale predominately pale green-white bentonitic. Noncalcareous.
    - 20% Sandstone as above some very slightly calcareous.
- 2530-2540 100% Shale as above some arenaceous. Trace-common red-brown silty. Trace Common Sandstone as above.
  - 2540-2550 100% Shale as above with some varicolor, some pale lavendar.

			130
-	2550-2560	100%	Shale as above, predominately pale green with some varicolor common Sandstone white, light tan, very fine grained, very well cemented.
	2560-2570	100%	Shale as above some silty. Trace-common Sandstone as above. Trace chert white, hard, sharp.
_	2570-2580	100%	Shale as above some red-brown silty. Trace Sandstone as above. Trace chert.
<b></b>	2580-2590	100%	Shale as above. Trace red-brown silty. Trace Sandstone as above.
	2590-2600	100%	Shale becoming predominately medium gray firm bentonitic noncalcareous. Trace Sandstone, light tan very fine grain, trace chert white, gray hard, sharp.
_	2600-2610	100%	Shale light-medium gray firm blocky, bentonitic noncalcareous. Trace Limestone medium gray cryptocrystalline hard, dense. Trace Sandstone light tan very fine grained, very well cemented.
	2610-2620	100%	Shale as above, trace Limestone, trace Sandstone as above.
	2620-2630	100%	Shale as above, trace Limestone as above, trace Sandstone as above.
	2630-2640	90%	Shale as above, trace Limestone as above.
<u> </u>		10%	Sandstone light tan to light gray-white, very fine grained, subangular, very well cemented.
,	2640-2650	90%	Shale as above, trace Limestone nodules as above.
		10%	Sandstone as above.
	2650-2660	100%	Shale predominately light gray-green firm bentonitic, noncalcareous with trace dense Limestone fragments. Trace-common Sandstone light tan very fine grain very well cemented, very slightly noncalcareous.
-	2660-2670	100%	Shale as above, trace Sandstone as above.
	2670-2680	100%	Shale as above, trace Sandstone as above, trace dense Limestone.
	2680-2690	100%	Shale as above.
	2690-2700	100%	Shale as above, trace common medium gray dense Limestone.

-	2700-2710	100%	Shale medium gray, firm blocky, very slightly noncalcareous with trace-common dense Limestone. Trace-common Sandstone, very fine grained, very well cemented.
	2710-2720	90%	Shale as above with some varicolor.
-		10%	Sandstone light tan, light gray, very fine grained, very well cemented.
-	2720-2730	90%	Shale as above.
		10%	Sandstone as above.
-	2730-2740	100%	Shale as above, common Sandstone as above, trace Limestone hard, dense.
-	2740-2750	100%	Shale as above, trace Limestone hard, dense, trace Sandstone as above.
-	2750-2760	90%	Shale medium gray as above with some varicolor.
_		10%	Limestone light gray, light tan, crypto- crystalline, hard, dense.
-	2760-2770	100%	Shale as above with some medium-dark gray. Common Limestone as above, common Sandstone light tan, very fine grained, very well cemented.
-	2770-2780	100%	Shale as above predominately medium-dark gray. Trace Limestone, Sandstone; trace chert hard, sharp.
-	27 80 - 27 90	90%	Shale as above.
-		10%	Sandstone light-medium tan, very fine grained, very well cemented, some medium gray very silty, calcareous.
-	2790-2800	100%	Shale as above becoming dark gray. Common Sandstone as above. Trace chert hard, sharp.
	2800-2810	60%	Shale as above.
~		40%	Sandstone light tan, light gray, cream very fine grained, well sorted, subangular- subrounded, very well cemented. Calcareous with white clay matrix.
	2810-2820	60%	Shale as above.
		30%	Sandstone as above.
-		10%	Limestone light gray, light tan, crypto- crystalline hard, dense. Trace common chert, hard, sharp.

			132	
-	2820-2830	40%	Shale as above.	
		10%	Sandstone as above.	
-		50%	Siltstone red-brown firm, some shaley with white Anhydritic inclusions.	
-	2830-2840	100%	Shale, Siltstone red-brown Anhydritic predominately grading to silty Shale.	
-	2840-2850	90%	Shale red-brown very silty with some grading to Siltstone, very abundant Anhydrite, white, light tan soft-firm nodular, some varicolor Shale.	
		10%	Anhydrite, white, soft nodular.	
	2860-2870	100%	Shale varicolor Anhydritic with common white, soft nodular Anhydrite.	
_	2870-2880	90%	Shale as above.	
-		10%	Sandstone light tan, red-brown, very fine- fine grained, medium sorted, subround, medium-very well cemented, calcareous, some with Anhydritic matrix. Common Anhydrite, white, soft.	
-	2880-2890	100%	Shale as above some very silty, anhydritic. Trace Sandstone. Common Anhydrite white, soft.	
-	2890-2900	100%	Shale predominately red-brown silty, anhydritic with some varicolor. Trace Limestone pink, tan hard, dense. Common Anhydrite, white soft.	
-	2900-2910	100%	Shale predominately red-brown, silty, firm very slightly calcareous, anhydritic with some varicolor. Common dense Limestone nodules. Common Anhydrite, white, soft nodular.	
-	2910-2920	100%	Shale as above with some becoming micro- micaceous. Common Limestone, Anhydrite as above.	
-	2920-2930	100%	Shale, red-brown, maroon, silty micaceous, very slightly calcareous with trace dense Limestone inclusions.	
-	2930-2940	100%	Shale as above with some varicolor, some micromicaceous.	
-	2940-2950	100%	Shale as above some with Anhydritic inclusions. Trace orange, fair-medium grained, medium sort Sandstone. Trace Anhydrite.	

-	2950-2960	90%	Shale as above some very silty, trace Anhydritic inclusions.
		10%	Limestone red-brown very silty, dense.
-	2960-2970	100%	Shale, red-brown silty as above, some green bentonitic. Common Limestone red-brown silty, dense.
	2970-2980	100%	Shale as above with some green bentonitic.
-	2980-2990	100%	Shale as above, trace Limestone red-brown, silty.
-	2990-3000	100%	Shale predominately red-brown very silty, firm calcareous with some pale green bentonitic. Trace-common white Anhydrite inclusions. Trace Limestone red-brown very silty, hard, dense.
	3000-3010	100%	Shale, predominately red-brown silty, firm, calcareous with Anhydrite inclusions; some green bentonitic, some very silty grading to Siltstone.
-	3010-3020	100%	Shale as above with some varicolor. Trace Limestone nodules red-brown.
	3020-3030	100%	Shale as above.
-	3030-3040	100%	Shale as above with increasing Anhydrite inclusion. Trace light orange fine-medium grain Sandstone. Trace red-brown dense Limestone.
	3040-3050	100%	Shale, red-brown silty with Anhydrite inclusions.
-	3050-3060	100%	Shale as above with some varicolor, very common red-gray, red-brown Limestone nodules. Trace very thin interlaminated Sandstone white, light gray very fine grained.
-	3060-3070	100%	Shale red-brown firm very silty with common Anhydrite inclusions; common dense Limestone inclusions. Trace Sandstone inclusions.
	3070-3080	100%	Shale red-brown very silty as above.
	3080-3090	100%	Shale as above with some pale green, varicolor.
	3090-3100	100%	Shale as above.

		134
3100-3110	100%	Shale predominately red-brown silty, micro- micaceous firm, blocky some very silty grading to Siltstone; common pale green-white bentonitic, some lavendar, maroon, varicolor. Trace dense red-brown Limestone fragments, trace Chert.
3110-3120	100%	Shale as above.
3120-3130	100%	Shale as above, some pale orange with white Anhydrite inclusions.
3130-3140	90%	Shale as above with increasing Anhydrite inclusions.
	5%	Sandstone orange, white fine-medium, subround, friable.
3140-3150	90%	Shale as above.
	5%	Limestone as above.
	5%	Sandstone as above some becoming dark brown- orange with Anhydrite matrix.
3150-3160	95%	Shale as above.
	5%	Limestone as above, trace Chert orange, white, gray, hard, sharp. Very slight trace Sandstone, very light gray-green, very fine- fine grained, well sorted, subangular- subround, very well cemented, calcareous.
3160-3170 NSOFC	80 <b>%</b>	Sandstone, medium-dark gray-brown, very fine- fine grained, medium sort, subangular- subround, predominately medium cemented, calcareous with some very well cemented slightly calcareous; abundant brown, black inclusions; abundant glauconitic inclusion. Some with white clay matrix; possible brown dead oil stain on some fragments.
	20%	Shale as above.
3170-3180	100%	Sandstone, medium-dark green-brown as above. Trace Limestone green-brown microcrystalline hard, dense, very sandy. Trace clay gray- white soft, slightly calcareous.
3180-3190	100%	Sandstone as above.
3190-3200	100%	Sandstone as above, very glauconitic. Common clay as above.
3200-3210	100%	Sandstone as above with abundant uphole red to brown cavings.

3210-3220	100%	Sandstone as above becoming predominately gray-white with brown, black, green inclusions.
3220-3230	100%	Sandstone as above.
3230-3240	100%	Sandstone as above. Lost 100 barrels drilling mud. Abundant LCM contamination; abundant cavings.
3240-3250	100%	Sandstone as above.
3250-3260	100%	Sandstone as above with some white marly clay.
3260-3270	100%	Sandstone as above. Common cavings.
3270-3280	100%	Sandstone as above.
3280-3290	100%	Sandstone as above.
3290-3300	100%	Sandstone as above, common medium gray marly shale.
3300-3310	90%	Sandstone as above.
	10%	Shale, light-medium gray, firm blocky slightly calcareous with some varicolor, maroon.
3310-3320	70%	Sandstone, light gray-white, fine-medium grained with some very fine grain, medium sort, subangular-subround, friable, medium cemented calcareous with clay matrix; black, brown inclusions, glauconitic inclusions.
	30%	Shale, medium gray, varicolor blocky, subwaxy, slightly calcareous; some white marly.
3320-3330	10%	Sandstone as above.
	90%	Shale as above.
3330-3340	100%	Shale, medium gray, varicolor as above; abundant cavings. Trace Sandstone as above.
3340-3350	60%	Shale as above.
	40%	Sandstone as above with abundant medium grain, clear frosted grains, loose. Trace Limestone white, cream, hard, dense.

-	3350-3360	40%	Shale as above.
		40%	Sandstone as above.
		20%	Siltstone red-orange firm, calcareous with anhydritic inclusions some grading to very fine grained sandstone.
	3360-3370	40%	Shale dark red-brown firm, blocky, very slightly calcareous. Tract Siltstone, red- orange grading to Sandstone as above.
-		60%	CAVINGS predominately Morrison, Cedar Mountain.
	3370-3380	70%	Siltstone red-orange grading to very fine grain Sandstone as above.
-		10%	Shale dark red-brown as above.
_		20%	CAVINGS.
-	3380-3390	70%	Siltstone red-brown very fine grained, very silty grading to Siltstone with white Anhydritic inclusions, firm, calcareous.
		20%	Shale dark red-brown firm, blocky, silty, slightly calcareous.
	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	10%	CAVINGS - ABUNDANT LCM contamination.
-	3390-3400	60%	Sandstone light red-orange very silty as above.
-		10%	Shale red-brown silty as above.
		30%	CAVINGS predominately Morrison.
	NOTE :	Became : 3405'. 100se.	stuck at 2496' while tripping for bit at Stuck going in hole. Backoff and jar fish It was necessary to ream from approximately
-		resume ( very co) gray-gr	drilling at 3405'. Samples continue to be ntaminated by Morrison lithology, shale light een, varicolor, pale lavendar, soft-firm,
~		bentoni: Chert f:	tic, very slightly calcareous with occasional ragments.
-	3400-3410	30%	Sandstone light red-orange, medium red-brown, very fine grained, firm, silty, calcareous some grading to Siltstone.
-		10%	Shale medium red-brown, firm, silty, slightly calcareous.
-		60%	Cavings.
_			
-			

	3410-3420	60%	Sandstone as above some with Anhydritic inclusions.
		10%	Shale as above.
		30%	Cavings predominately Morrison, varicolor, pale green Shale.
	3420-3430	70%	Sandstone light red-orange with Anhydritic inclusions, some medium red-brown firm, very silty, calcareous-very slightly calcareous. Trace dark red-brown Shale inclusions.
		10%	Shale dark red-brown firm, silty blocky, slightly calcareous.
		20%	CAVINGS.
	3430-3440	70%	Sandstone as above.
		10%	Shale as above.
		20%	Cavings, predominately pale green bentonitic Shale.
•	3440-3450	50%	Sandstone very silty red-orange, red-brown as above.
		50%	Cavings- varicolor Morrison.
	3450-3460	30%	Sandstone as above.
		70%	Cavings as above. Trace Chert fragments.
	3460-3470	40%	Sandstone as above.
		60%	Cavings.
	3470-3480	40%	Sandstone red-orange very fine grained, very silty as above.
		10%	Shale dark red-brown, firm, silty as above.
		50%	Cavings, varicolor bentonitic Shale, Chert fragments.
	3480-3490	60%	Sandstone as above.
-		10%	Shale as above.
		30%	Cavings.
-	3490-3500	70%	Sandstone as above.
_		10%	Shale as above.
		20%	Cavings as above.

3500-3510	60%	Sandstone light red-orange, very fine grained, very silty with white Anhydritic inclusions; some medium red-brown, well cemented, slightly calcareous. Some very fine grained grading to Siltstone.
	10%	Shale medium red-brown firm silty, slightly calcareous.
	30%	Cavings, predominately pale green, medium gray-green, varicolor Shale.
3510-3520	50%	Sandstone as above. Trace Shale as above.
	50%	Cavings.
3520-3530	40%	Sandstone as above.
	60%	Cavings predominately Morrison with trace Glauconite Sandstone (Curtis).
3530-3540	60%	Sandstone light red-orange very fine grained, very silty as above.
	40%	Cavings as above most fragments with rounded edges.
3540-3550	60%	Sandstone as above.
	40%	Cavings - VERY ABUNDANT LCM contamination.
3550-3560		VERY POOR SAMPLE - Predominately LCM
3560-3570	50%	Sandstone light red-orange as above.
	50%	Cavings VERY ABUNDANT LCM contamination.
3570-3580	40%	Sandstone as above.
	10%	Shale medium-dark red-brown, firm very silty.
	50%	Cavings, VERY ABUNDANT LCM contamination.
3580-3590	20%	Sandstone light red-orange as above some very silty grading to Siltstone.
	20%	Shale medium-dark red-brown, firm very silty, slightly calcareous.
	60%	Cavings varicolor, medium gray Shale, most fragments with red.

			20
-	3590-3600	20%	Sandstone as above.
		20%	Shale as above.
-		60%	Cavings - varicolor Shale. Abundant LCM contamination.
-	3600-3610	10%	Sandstone light red-orange very fine grained, grading to Siltstone, poor-medium cemented, slightly calcareous with Anhydrite matrix.
-		20%	Shale medium-dark red-brown firm, very silty, slightly calcareous some with Anhydritic inclusions.
		70%	Cavings.
_	3610-3620	20%	Sandstone as above.
		20%	Shale as above.
-		60%	CAVINGS
_	3620-3630	20%	Sandstone as above with Anhydritic inclusions.
		20%	Shale as above.
-		60%	CAVINGS
	3630-3640	30%	Sandstone as above.
-	•	10%	Shale as above.
-		60%	CAVINGS.
	3640-3650	30%	Sandstone as above.
-		10%	Shale as above.
		60%	CAVINGS.
-	3650-3660	20%	Sandstone as above.
_		10%	Shale as above.
		70%	CAVINGS.
-	3660-3670	10%	Sandstone as above.
_		30%	Shale as above some with Anhydritic fracture filling.
		60%	Cavings, abundant LCM contamination.
	3670-3680	10%	Sandstone as above.
---	-----------	------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
		20%	Shale as above some very silty grading to Siltstone.
		70%	Cavings, abundant LCM.
	3680-3690	20%	Sandstone as above.
		20%	Shale as above.
		60%	Cavings, abundant LCM.
	3690-3700	20%	Sandstone as above.
		20%	Shale as above.
		60%	Cavings.
	3700-3710	10%	Sandstone light red-orange very fine grained, very silty with Anhydritic inclusions, poor- moderately cemented, slightly calcareous.
		20%	Shale medium red-brown to brick red, firm calcareous with Anhydritic inclusion. Trace Anhydritic fracture fill.
-		70%	Cavings, abundant LCM contamination.
	3710-3720	20%	Sandstone as above.
		20%	Shale as above.
		60%	CAVINGS.
	3720-3730	50%	Sandstone as above.
		10%	Shale as above.
		40%	Cavings.
	3730-3740	70%	Sandstone light red-orange very fine grained, very silty with some grading to Siltstone, poor-moderately cemented, slightly calcareous with abundant Anhydritic inclusions.
		10%	Shale medium red-brown, firm, very silty grading to Siltstone, slightly calcareous with abundant Anhydritic fracture filling.
		20%	Cavings.
	3740-3750	100%	Sandstone as above some with Anhydrite matrix, some very silty grading to Siltstone. Common cavings.

- It was discovered that the fluid loss of the mud was NOTE: up to 14+ cc and that the pH was down below 8.3. When remedial action was began at depth 3700', the quantity of cavings in the sample was reduced dramatically. 3750-3750 100% Sandstone light red-orange to brick red, predominately very fine-fine grained, well sorted, subangular-subrounded some very fine grain grading to Siltstone, friable-firm, slightly-medium calcareous, some with Anhydrite matrix; abundant clay matrix. Trace Shale brick red, firm, silty, slightly calcareous, thinly interbedded. 3760-3770 100% Sandstone as above. Trace-common cavings from Tripat 3762. 3770-3780 100% Sandstone as above. 3780-3790 100% Sandstone as above. 3790-3800 100% Sandstone as above. 3800-3810 100% Sandstone as above, trace Shale as above.
  - 3810-3820 100% Sandstone as above, trace Shale as above.
- 3820-3830 100\$ Sandstone as above, trace orange Chert fragments.
- 3830-3840 100% Sandstone as above.
- 3840-3850 100% Sandstone as above.
- 3850-3860 100% Sandstone as above.
- 3860-3870 100% Sandstone as above.
- 3870-3880 100% Sandstone as above.
- 3880-3890 100% Sandstone as above.
- 3890-3900 100% Sandstone as above.
- 3900-3910 100% Sandstone light red-orange to brick red, very fine-fine grained, medium-well sort, moderately cemented calcareous; some very fine grained grading to Siltstone. Abundant Anhydritic inclusions.
  - 3910-3920 100% Sandstone as above.
- 3920-3930 100% Sandstone as above.
- 3930-3940 100% Sandstone as above.
- 3940-3950 100% Sandstone as above.

		1 I I I I I I I I I I I I I I I I I I I					. 1	_	
•	3950-3960	100%	Sandstone	as	above.	Trace	orange	Chert.	
	3960-3970	100%	Sandstone	as	above.	Trace	orange	Chert.	
	3970-3980	100%	Sandstone brown-red.	as •	above	becomin	g predo	minately	
	3980-3990	100%	Sandstone	as	above	predomi	nately	brown-red.	
	3990-4000	100%	Sandstone	as	above,	some v	ery sil	ty.	
	4000-4010	100%	Sandstone Shale red-	as -bro	above, wn, fi	trace rm.	orange	Chert, trace	;
	4010-4020	100%	Sandstone Anhydritic	as c in	above clusio	with in ns.	creasin	g white	
-	4020-4030	100%	Sandstone	as	above	becomin	ng very	silty.	
	4030-4040	100%	Sandstone abundant v	as whit	above e Anhy	becomin dritic	ng very inclusi	silty, very ons.	
	4040-4050	100%	Sandstone	as	above,	trace	red-bro	wn Shale.	
	4050-4060	100%	Sandstone	as	above,	trace	orange	Chert.	
	4060-4070	100%	Sandstone fragments	as , ve	above, ery abu	very s ndant w	silty co white An	mmon Shale hydrite.	
	4070-4080	100%	Sandstone common Sha Anhydrite	as ale noc	above, fragme lules,	commor nts. V inclusi	h Chert Very abu Jons.	fragments, ndant white	
	40 80 - 40 90	90%	Sandstone above.	bro	wn-red	l silty	Anhydr i	tic as .	
		10%	Sandstone fine grain with thin	, ve ned, gra	ery lig mediu ny-gree	ht gray m cemer n Shale	-green, nted, ca e interl	very fine- lcareous aminations.	
-	4090-4100	40%	Sandstone as above.	reċ	l-brown	, silty	y, very	Anhydritic	
-		60%	Sandstone fine grain well cemen gray, ligh interlamin Anhydrite	ver ned, nted ht q nati nod	y ligh well , calc gray-gr ons. lules.	t gray- sort, s areous een ber Trace o	green, subround with th ntonitic common w	very fine- , medium- in light Shale hite	

	4100-4110	40%	Sandstone red-brown silty, very fine-fine grained, friable, moderately cemented, calcareous with abundant white Anhydritic inclusions.
_		40%	Sandstone light gray to gray-white, very fine grained, well sort, moderately cemented, calcareous with black inclusions.
_		20%	Shale medium gray, light gray-green firm, calcareous predominately blocky, with some splintery; some white marly.
	4110-4120	40%	Sandstone red-brown silty as above.
		40%	Sandstone light gray-white as above becoming very limey.
		20%	Shale as above.
-	4120-4130	20%	Sandstone red-brown silty anhydritic as above.
		40%	Sandstone light gray-white, very fine grained, moderately cemented, very limey.
		40%	Shale, medium gray-green, firm calcareous, very sandy, abundant claystone white, marly with brown biotite inclusions.
	4130-4140	10%	Sandstone red-brown silty as above.
	NGORG	30%	Shale medium gray-green as above with abundant white Claystone as above.
_	NSOFC	60%	Sandstone light gray, light gray-white, very fine-fine grained, well cemented, very limey, some with black, orange inclusions. Some with white Anhydrite matrix. Trace Anhydrite white, soft.
	4140-4150	40%	Sandstone light gray, light gray white as above, some with white Anhydritic inclusions.
	NSUFC	40%	Shale predominately medium gray, medium gray- green as above. Some with white Anhydritic inclusions with abundant white marly claystone.
		10%	Limestone, very light gray, very light tan cryptocrystalline-microcrystalline, hard, tight, brittle.
		10%	Sandstone red-brown, silty as above. Abundant Anhydrite, white, soft.

ŧ,

1	4150-4160	908	Sandstone white, cream, light gray very fine- fine grained, medium sort, predominately subround, friable-medium cemented, calcareous to very limey; abundant black, orange inclusions; some very silty.
-		10%	Shale medium gray-green subwxy, firm, splintery, slightly-moderately calcareous. Trace Limestone light tan cryptocrystalline, hard dense. Trace Marlstone, cream silty.
	4160-4170	90%	Sandstone as above.
-		10%	Shale as above. Trace Limestone as above.
	4170-4180	80%	Sandstone as above some with white Anhydritic inclusions.
		20%	Shale gray-green as above, some silty, some very limey. Trace Limestone as above.
-	4180-4190	20%	Sandstone as above some with Anhydritic inclusions.
		808	Shale medium gray, medium gray-green firm, blocky, silty calcareous-very limey. Some grading to Shaley Limestone, abundant Anhydrite fracture fill. Common Anhydrite clear, crystalline, white, soft.
_	4190-4200	10%	Sandstone, cream, white with inclusions as above.
-		80%	Shale as above with Anhydritic inclusions as above.
<u> </u>		10%	Limestone medium gray, tan microcrystalline, silty, shaley with abundant Anhydrite inclusions. Very abundant Anhydrite.

4200-4210	70%	Shale medium gray, firm blocky, very silty calcareous-very limey with very abundant white Anhydritic inclusions, fracture filling.
	10%	Limestone, light-medium gray, light tan cryptocrystalline-microcrystalline, hard, dense some red-brown silty.
	10%	Siltstone medium-dark red-brown firm, some sandy calcareous-limey with Anhydritic inclusions.
	10%	Anhydrite, white soft nodules, fracture fill. Trace Sandstone white, cream, light gray, very fine-fine grained, medium sort, subround, medium cemented, calcareous with black, orange inclusions.
4210-4220	50%	Siltstone medium-dark red-brown as above some very sandy grading to very fine grain Sandstone; common interlaminations of brick red Shale; very Anhydritic.
	40%	Shale as above with some becoming dark gray.
	10%	Anhydrite, white, soft. Trace Limestone cryptocrystalline as above.
4220-4230	70%	Siltstone as above.
	20%	Shale medium-dark gray as above.
•	10%	Anhydrite as above with some very light redror orange silty, calcareous.
4230-4240	70%	Siltstone as above. Common red-brown Shale interlaminations.
	20%	Shale as above.
	10%	Anhydrite as above.
4240-4250	80%	Siltstone as above with increasing dark red- brown firm calcareous.
	10%	Shale as above.
	10%	Anhydrite as above.
		TRIP SAMPLE - ABUNDANT CAVINGS
	4200-4210 4210-4220 4220-4230 4230-4240 4240-4250	4200-4210 10% 10% 10% 4210-4220 50% 4220-4220 10% 4220-4230 10% 20% 10% 10% 10% 10% 10% 10% 10% 1

. .

_	4250-4260	90 <b>%</b>	Siltstone predominately dark red-brown with some red-brown firm calcreous sandy with some grading to very fine grain Sandstone; abundant white Anhydritic inclusions.
			Trace-common Anhydrite fracture filling; common dark red-brown Shale interlaminations.
		5%	Shale medium-dark gray firm blocky calcareous.
_		5%	Anhydrite white, soft, clear crystalline, light red-orange soft.
	4260-4270	90%	Siltstone as above.
_		10%	Sandstone medium red-brown very fine grain, very silty calcareous with Anhydritic inclusions.
			Trace Shale medium-dark gray.
_			Common Anhydrite as above.
	4270-4280	90%	Siltstone as above some very sandy.
		10%	Sandstone as above, very silty Trace Shale as above. Trace-common Anhydrite as above.
	4280-4290	80%	Siltstone as above.
-		20%	Sandstone as above. Very silty, very Anhydritic. Trace varicolor Shale with Anhydritic inclusions.
	4290-4300	90%	Siltstone as above.
		10%	Sandstone as above. Trace Shale as above.
	4300-4310	90%	Siltstone medium-dark red-brown firm calcareous, very sandy, very Anhydritic.
• • • • •		10%	Sandstone medium red-brown with some medium red-orange firm, silty calcareous with abundant Anhydritic inclusions. Trace Shale medium gray-green. Common Anhydrite, white, soft.
	4310-4320	90%	Siltstone as above.
		10%	Sandstone as above. Trace Snale as above. Common Anhydrite as above.

	4320-4330	808	Siltstone as above.
-		20%	Sandstone as above. Trace Shale medium gray-green, firm blocky, calcareous. Trace Limestone medium gray cryptocrystalline-microcrystalline, silty,
	4330-4340	80%	hard, dense. Siltstone as above with abundant Anhydritic
		10%	Sandstone as above with Anhydritic inclusions.
_		10%	Limestone medium-dark gray microcrystalline, tite, very silty, dolomitic with thin gray- green Shale interlaminations, some very shaley grading to limey Shale.
	4340-4350	60%	Siltstone as above.
		10%	Sandstone as above.
		10%	Anhydrite, white, soft.
~		10%	Limestone medium-dark gray microcrystalline as above. Trace Pyrite inclusions.
		10%	Shale medium-dark gray-green firm, silty very limey. Trace Pyrite inclusions.
<u>_</u>	4350-4360	30%	Siltstone red-brown very sandy with Anhydritic inclusions, common red-brown Shale interlaminations.
		30%	Snale medium gray-green, firm silty, limey
		30%	Limestone light gray-medium gray, micro- crystalline, silty, sandy.
_		58	Sandstone white-light gray, very fine-fine grained, medium cemented, calcareous with orange, black inclusions, abundant Anhydrite in filling.
		5%	Anhydrite, white, light red-orange, clear.
	4360-4370	20%	Siltstone red-brown as above.
		20%	Shale medium gray-green as above.
		20%	Limestone as above, some white soft marly.
_		40%	Sandstone white-light gray, very fine-fine grain as above with abundant Anhydrite fracture filling, in filling as above. Common Anhydrite white, clear, soft, firm as above.

-

- 4370-4380 10% Siltstone red-brown as above.
  - 10% Limestone as above.
  - 20% Shale as above some very limey.
  - 60% Sandstone white, light tan, light gray very fine-fine grained, medium sort, medium-well cemented, calcareous with black, orange inclusions. Abundant Anhydrite in filling, trace Glauconite inclusions.
  - 4380-4390 80% Sandstone as above, some very limey.
    - 10% Shale some becoming dark gray with Anhydritic inclusions.
    - 10% Limestone as above becoming medium gray. Trace Siltstone as above.
- 4390-4400 60% Sandstone as above.
  - 30% Limestone as above some very shaley, some white soft marly.
  - 10% Shale as above.
- 4400-4410 70% Sandstone, light-medium gray some cream very fine-fine grained, medium-well cemented, calcareous-limey with black, orange inclusions. Trace Glauconite inclusions, very abundant Anhydrite in filling.
  - 20% Shale, medium-dark gray, firm blocky, silty, calcareous-limey, abundant Anhydritic inclusions.
  - 10% Limestone medium gray cryptocrystallinemicrocrystalline, very silty, hard, dense with anhydrite fracture filling, some white soft marly.
  - 4410-4420 60% Sandstone as above.
    - 30% Shale as above.
    - 10% Limestone as above. Common Anhydrite, white, soft.
  - 4420-4430 10% Siltstone red-brown firm, very Anhydritic.
    - 60% Sandstone as above some with Anhydrite fracture filling.
    - 30% Shale as above, some very limey. Very common Anhydrite white, crystalline soft.

	,	149
4430-4440	10%	Sandstone as above.
	10%	Limestone as above.
	80%	Shale becoming predominately dark gray, firm blocky, calcareous-limey with abundant Anhy- drite fracture filling, abundant Anhydritic inclusions.
4440-4450	90%	Shale predominately dark gray with some medium gray; abundant Anhydrite as above.
-	10%	Anhydrite, clear-white, crystalline soft. Trace Sandstone as above. Trace Limestone as above. Trace Siltstone as above.
- 4450-4460 -	90%	Shale, predominately medium-dark gray, firm, silty calcareous-very limey with abundant Anhydritic inclusions, trace-common Anhydrite fracture filling.
	10%	Anhydrite, white, soft, clear, crystalline.
4460-4470	80%	Shale as above.
	10%	Siltstone, very light red-orange, very Anhydritic, calcareous.
-	10%	Anhydrite. Trace Limestone, light gray-brown, light tan, hard dense.
4470-4480	70%	Shale as above, some very silty.
-	10%	Siltstone very light red-orange as above.
	10%	Sandstone light gray very fine grain, medium- well cemented, calcareous-limey.
-	10%	Anhydrite, white soft.
4480-4490	90%	Shale, medium-dark gray, firm, blocky, silty, calcareous-very limey, some grading to shaley Limestone with abundant Anhydritic inclusions, fracture fill.
	10%	Anhydrite, white, clear, crystalline-soft. Trace Siltstone, Sandstone, Limestone as above.
4490-4500	90%	Shale as above.
-	10%	Anhydrite as above. Trace Siltstone, Sandstone, Limestone as above. Trace orange Chert.

		1	$\smile$	$\smile$	150
	4500-4510	90%	Shale medium-dark gray, calcareous-limey; some Limestone, some very sil Siltstone; abundant Ank inclusions; thinly inte gray Siltstone, Sandston Common light tan-light	firm, blocky, silt grading to shaley lty grading to hydrite fractrue fil erbedded light-medi ne very fine grain. gray Limestone frag	Y, 11 um gments.
•		10%	Anhydrite, white, soft.		
	4510-4520	808	Shale as above.		
_		10%	Limestone light tan-lig crytocrystalline-microc dense, some very shaley	ht gray rystalline, hard, , very silty.	
		10%	Anhydrite, as above. Trace Siltstone red-ora Trace Sandstone light g calcareous.	nge Anhydritic. ray very fine grain	Lø
	4520-4530	70%	Shale as above some ver Siltstone. Some very l Limestone.	y silty grading to imey grading to	
		20%	Limestone as above with marly.	some white, soft	
		10%	Anhydrite as above.	-	
	4530-4540	70%	Shale as above.		
		20%	Limestone as above.		
		10%	Anhydrite as above.		
	4540-4550	808	Shale as above, very si	lty.	
-		20%	Limestone as above, som Common Anhydrite. Trace orange Chert pebb	e very silty. les.	
	4550-4560	60%	Shale as above some ver	y silty very limey.	•
_		30%	Limestone light tan-med crystalline, hard, dens light gray, soft, marly	ium gray, crypto- e, very silty some '.	
<b></b>		10%	Anhydrite, white soft.		
	4560-4570	60%	Shale as above.		
_		10%	Siltsone, shale red-ora very anhydritic.	nge soft, calcareo	us,
-		20%	Anhydrite, white, light Trace Limestone as abov	orange, soft. e.	

•

,

-

		<u>````</u>	$\smile$ $\bigcirc$	151
-	4570-4580	70%	Shale a above, very Anhydritic.	
_		30%	Anhydrite as above. Trace Shale, Siltstone, red-orange. Trace Limestone as above.	
-	4580-4590	70%	Shale as above, very Anhydritic.	
] ]		30%	Anhydrite as above. Trace Shale-Siltstone, red-orange A Trace Limestone medium gray-light t silty as above. Trace Siltstone light gray calcared Anhydritic.	Anhydritic. an, very ous
-	4590-4600	60%	Shale as above.	
1		20%	Limestone as above with some light marly.	gray soft
-		20%	Anhydrite as above. Trace Siltstone-Shale, light red-og above.	range as
~	4600-4610	60%	Shale, light-medium gray with some firm blocky, very silty very limey abundant Anhydrite in filling.	dark gray, with
		10%	Limestone light-medium gray very si shaley with abundant Anhydrite in f Trace Siltstone. Trace very fine of Sandstone, trace Chert orange.	lty, very filling. grained
_	4610-4620	60%	Shale as above.	
la comuni		10%	Limestone as above with some light marly.	gray soft,
-		30%	Anhydrite as above.	
	4620-4630	70%	Shale as above.	
		10%	Limestone as above.	
-		30%	Anhydrite as above. Trace red-orange Siltstone. Trace Chert.	e orange
	4630-4640	808	Shale as above.	
_		20%	Anhydrite as above. Trace-common Limestone as above. S gray soft, marly. Trace red-orang Trace orange Chert.	Some light e Siltstone.
-	4640-4650	808	Shale as above. Trace Pyrite inclu	usions.
		20%	Anhydrite as above.	

Trace Limestone as above. Trace Siltstone red-orange as above. Trace orange chert. 4650-4660 60% Shale light-medium gray with some dary gray firm blocky very silty, very limey with some dark gray grading to argillaceous. Limestone; very abundant white crystalline Anhydrite in filling. 40% Anhydrite, white cream, light gray, crystalline, soft-firm; some with limey inclusions. 4660-4670 60% Shale as above. 30% Anhydrite as above. 10% Limestone predominately medium gray, light tan microcrystalline, hard, dense, some very silty, very shaley. 4670-4680 30% Shale as above. 50% Anhydrite as above. 20% Limestone as above with Anhydritic inclusions. 4680-4690-20% Shale as above. 60% Anhydrite as above. 20% Limestone with some becoming dolomitic. 4690-4700 20% Shale as above some very limey. 60% Anhydrite as above with some very sandy grading to very fine grain Sandstone. 20% Limestone predominately light tan-light graybrown microcrystalline, hard, dense, very sandy dolomitic. 4700-4710 808 Limestone, light gray-brown, light gray, light tan crytocrystalline-microcrystalline, silty, shaley, hard, dense, some with Anhydritic inclusions. 4710-4720 90% Limestone as above, with trace Pyrite inclusions. 10% NSOFC Anhydrite as above. Trace Shale as above. 4720-4730 100% Limestone as above with abundant cream-white soft, marly with light gray-brown oolite inclusions some very oolitic. NSOFC Trace Anhydrite as above.

	4730-4740 NSOFC	100%	Limestone as above becoming very oolitic. Trace Calcite fracture filling.
	4740-4750	100%	Limestone as above, trace Calcite fracture filling.
	NSOFC		-
	4750-4760 NSOFC	100%	Limestone predominately medium gray with brown cast, some cream with gray-brown oolites microcrystalline-very fine crystalline, hard, dense, silty in part; trace Calcite fracture fill, trace Pyrite inclusions.
	4760-4770 NSOFC	100%	Limestone medium gray-brown as above some very oolitic. Trace Anhydrite, white crystalline.
-	4770-4780 NSOFC	100%	Limestone as above, predominately microcrystalline with few oolites.
	4780-4790 NSOFC	100%	Limestone as above with very abundant oolites.
	4800-4810 NSOFC	90%	Limestones as above with very abundant oolites.
		58	Siltstone red-brown, firm micaceous very slightly-noncalcareous; trace varicolor Shale.
·		5%	Sandstone, light red-orange, very fine-medium grain, poor sort weell cemented, calcareous.
	4810-1820	20%	Limestone.
		50%	Siltstone as above some very sandy granding to very fine grain Sandstone.
		20%	Shale, brick red, dark red-brown, varicolor firm, silty, very slightly-noncalcareous.
		10%	Sandstone as above, very silty grading to Siltstone.
-	4820-4830	20%	Limestone as above.
-		70%	Siltstone as above some very sandy grading to very fine grain Sandstone.
		10%	Shale as above, red-brown, varicolor, silty as above. Common Sandstone, light red-orange very fine grain subrounded well cemented, calcareous with Anhydritic inclusions.

<b>L</b>			$\smile$		154
	4840-4850	30%	Limestone as above.		
_		20%	Siltsone and Shale red-ba	rown as above.	
		30%	Shale medium gray, firm b calcareous-limey, some g	olocky, silty very rading to Limestone	•
~		20%	Sandstone, very light gra fine-fine grain, well ce very silty, very shaley.	ay-medium gray very mented, calcareous,	
	4850-4860	60%	Shale, medium gray-dark	gray as above.	
<b></b>		30%	Limestone medium gray-bro shaley with few oolites, Shale.	own very silty, ver some grading to li	y mey
		10%	Shale and Siltstone red-	brown as above.	
	4860-4870	60%	Shale as above.		
_		40%	Limestone as above. Trace Siltstone red-brow	n as above.	
	4870-4880	40%	Shale as above.		
		60%	Limestone as above, some oolites.	very shaley, very	few
_	4880-4890	90%	Limestone, light-medium microcrystalline, hard, abundant dark gray oolit shaley in part, some cre	gray some tan dense with very es. Silty in part, am marly.	
		10%	Shale medium-dark gray, calcareous. Common cavings.	firm blocky silty,	
	4890-4900	100%	Limestone as above with of Shale as above.	thin interlaminatio	ns
			Trace Sandstone clear, w grained medium sort, poo calcareous.	hite, very fine- r-medium cemented,	
	4900-4910	40%	Limestone medium-dark gr very oolitic as above.	ay with some cream,	,
}		60%	Sandstone, clear, white grained, medium sort, po calcareous, some with wh	very fine-fine or-medium cemented, ite clay matrix.	,
-			10% with light-brown sta yellow fluorescence, slo yellow cut; bright yell	ow streaming to milk ow residue ring.	: Y

•

				55
	4910-4920	30%	Limestone as above.	
_		708	Sandstone as above with abundant light gray very fine-fine grained with brown stain. Abundant white clay matrix with show as above	•
	4920-4930	90%	Sandstone as above with increasing poor-very	
_			poor cemented; trace white red medium grain quartz grains. Abundant yellow fluorescence and cut as above.	
_		10%	Limestone as above.	
		Drilled	1 1/2 - 2 min./ft.	
-	4930-4940	80%	Sandstone as above.	
-		20%	Limestone as above. Abundant Cavings.	
		Drilled	1 1/2 - 2 min./ft.	
	4940-4950		Very Poor Sample. Cavings following DST #1.	
~		100%	Sandstone becoming cream-very light red- orange, decreasing in yellow fluorescence and cut.	ı
	4950-4960		VERY POOR SAMPLE. ABUNDANT CAVINGS.	
_		100%	Sandstone light red-orange, white, very fine- fine grained. 30% fluorescence with trace yellow cut. (light red-orange does not fluorese)	
	4960-4970	70%	Sandstone as above with 20% yellow fluorescence and trace cut.	
_		30%	Cavings predominately Limestone, Shale, mediun-dark gray.	
_	4970-4980	90%	Sandstone predominately very light orange- white, very fine-fine grained with some	
-			cemented, calcareous. Grains are generally clear, frosted quartz grains. 10% fluorescen yellow, very slight cast, trace yellow cut, very poor show.	t
		109	CAVINGS predominately gray limectone Shale	
		109	Cardeters of charge 300 fluescone, Share.	
-	4980-4990	YU*	slight cast, trace, very poor show yellow cut	•
		10%	Cavings, predominately gray, Limestone, Shale Trace orange Chert.	;

.

- 4990-5000 100% Sandstone as above. Light trace yellow fluorescence, NO CUT. Common cavings.
- 5000-5010 100% Sandstone, light orange-white, very fine-fine grain with some medium grain, medium sort, subround-round, poor cement, very slightlynoncalcareous with abundant loose grains; grains are frosted quartz grains with very light orange hematite stain. Occasional very thin red-brown Shale interlaminations. Abundant CAVINGS Limestone, Shale medium-dark gray probably caused by key-seat wiper placed at top of Drill Collar string.
- 5010-5020 100% Sandstone as above.
- 5020-5030 100% Sandstone as above.
- 5030-5040 100% Sandstone as above.
- 5040-5050 100% Sandstone as above.
- 5050-5060 100% Sandstone as above with trace very fine grain grading to Siltstone.
- 5060-5070 100% Sandstone as above with trace red-brown miaceous Shale.
- 5070-5080 100% Sandstone as above.
- 5080-5090 100% Sandstone as above.
- 5090-5100 100% Sandstone as above, abundant CAVINGS.
- 5100-5110 100% Sandstone as above with CAVINGS as above.
- 5110-5120 100% Sandstone as above.
- 5120-5130 100% Sandstone as above.
- 5130-5140 100% Sandstone as above.
- 5140-5150 100% Sandstone as above with trace thin gray-white Shale interlaminations.
- 5150-5160 NO SAMPLE
- 5160-5170 100% Sandstone, very light orange, very fine-fine grain with some medium grain, subround-round as above.
- 5170-5180 100% Sandstone as above.
- 5180-5190 100% Sandstone as above, some with black, orange inclusions.
  - 5190-5200 100% Sandstone as above.

with some clear, white very fine-fine grain with some medium grain, medium sort, subroundround. Poor-medium cemented, slightly calcareous-noncalcareous. Common white clay partings. 5210-5220 100% Sandstone as above, some with white clay matrix. 5220-5230 100% Sandstone as above. 5230-5240 100% Sandstone as above. 5240-5250 100% Sandstone as above with trace red-brown Shale interlaminations. 100% 5250-5260 Sandstone as above with white clay partings as above. 5260-5270 100% Sandstone as above with trace red-brown Shale as above. 5270-5280 100% Sandstone as above with Cavings as above, Shale partings as above. 5280-5290 100% Sandstone as above with increasing mediumcoarse grain, well rounded, clear, frosted quartz grains. 5290-5300 100% Sandstone as above. Sandstone, light orange, very fine-fine grain, 5300-5310 100% well sort, with abundant medium-coarse grain, round, clear, frosted quartz grains uncons; bimodal. Trace white clay partings. 5310-5320 100% Sandstone bimodal as above. 5320-5330 100% Sandstone as above. Sandstone predominately light orange bimodal 5330-5340 100% as above with abundant white very fine-fine grain subround-subangular, medium cement, nonvery slightly calcareous with white clay matrix. 5340-5350 100% Sandstone predominately white very fine-fine grained medium cement as above; some with light green Shale inclusions. 5350-5360 100% Sandstone white very fine-fine grained with trace medium-coarse grian, predominately subround with some round; common Shale partings, light green waxy, red-brown silty. 5360-5370 95% Sandstone white, very fine-fine grain as above.

Sandstone predominately light orange-white

5200-5210

100%

			128
-		5%	Shale, predominately red-brown silty, calcareous with some light green waxy.
<b>₩</b>	5370-5380	95%	Sandstone white, very fine-fine grain as above.
		5%	Shale as above.
	5390-5400	95%	Sandstone as above.
-		5%	Shale as above.
_	5400-5410	95%	Sandstone white, very fine-fine grain subround-subangular, medium sort, medium cement, very slightly-noncalcareous with clay matrix some medium-coarse grain, clear, frosted quartz grains.
		58	Shale red-brown silty slightly calcareous, light green waxy, thinly interbedded.
	5410-5420	95%	Sandstone white, very fine-fine grain as above.
	, ,	5%	Shale as above.
	5420-5430	95%	Sandstone as above.
·.		5%	Shale as above.
	5430-5440	90%	Sandstone as above.
		5%	Shale as above with some medium gray silty calcareous.
	5440-5450	808	Sandstone as above.
_		20%	Shale predominately medium gray, silty, micaceous, calcareous with abundant red-brown silty very slightly calcareous, some varicolor.
<u> </u>	5450-5460	808	Sandstone as above.
	5460-5470	808	Sandstone white very fine-fine grain with white clay in filling as above.
		10%	Shale as above some varicolor.
		10%	Limestone as above, some very argillaceous.
_	5470-5480	90%	Sandstone as above
		5%	Shale as above.
		59	Limestone as above.

-			15	59
_	5480-5490	90%	Sandstone as above	
		5%	Shale as above.	
<del></del>		5%	Limestone as above.	
( <i>m</i>	5490-5500	90%	Sandstone as above	
		5%	Shale as above.	
		5%	Limestone as above.	
·			BEGIN SIDETRACK #1	
	4529-4550	100%	Cement Trace-common Shale medium-dark gray, firm, blocky, silty.	
	4550-4560	95%	Cement	
		58	Shale as above with some grading to shaley Limestone microcrystalline, hard, dense; some varicolor Shale. Common Anhydrite, white, buff, soft.	e
	4560-4570	95%	Cement	
		58	Shale as above, some red-brown very silty, some varicolor. Common Anhydrite.	
	4570-4580	90%	Cement	
~		10%	Shale as above with trace Limestone as above, trace pink limestone. Common Anhydrite.	
<u> </u>	4580-4590	85%	Cement	
<u> </u>		15%	Shale as above, with trace Limestone as above trace pink Limestone. Common Anhydrite.	,
	4590-4600	85%	Cement	
		15%	Shale as above. Common Anhydrite as above.	
	4600-4610	85%	Cement	
		15%	Shale, medium-dark gray, firm silty blocky, calcareous.	
	4610-4620	808	Cement	
_		20%	Shale as above with abundant red-brown silty, Anhydritic. Common Anhydritie, white, tan, soft.	

			160
	4620-4630	60%	Cement
		30%	Shale as above abundant varicolor Anhydritic.
<b>_</b>		10%	Anhydirte, white, tan, soft, some medium- coarse crystalline.
≁-	4630-4640	30%	Cement
L		60%	Shale as above some very limey grading to shaley Limestone.
		10%	Anhydrite.
	4640-4650	808	Shale medium-dark gray, firm silty, limey with abundant Anhydritic inclusions; trace varicolor Shale.
		20%	Anhydrite, white, light cream, tan soft-firm. Trace Limestone medium-dark gray, silty, shaley, hard dense. Trace Siltstone red- brown, very Anhydritic.
	4650-4660	60%	Shale, light-medium gray with some dark gray firm blocky very silty, very limey with some grading to argillaceous Limestone; very abundant white, light cream crystalline Anhydrite in filling.
		408	Anhydrite white, cream, light tan, light gray crystalline soft-firm.
	4660-4670	40%	Shale as above.
-		10%	Limestone medium-dark gray microcrystalline, very argillaceous with common oolites.
		50%	Anhydrite as above.
·	4670-4680	30% [.]	Shale as above.
		20%	Limestone as above.
		50%	Anhydrite as above.
	4680-4690	20%	Shale as above.
		10%	Limestone as above.
		70%	Anhydrite as above.
<b></b>	4690-4700	20%	Shale as above.
		60%	Anhydrite as above.

			$\smile$	$\sim$	
					16
-		20%	Limestone light tan-1 talline, hard, dense, Trace-common Sandston grain-silt, very well	ight gray, microcrys- very sandy dolomitic. e, light tan, very fin cemented, calcareous.	, le
-	4700-4710	90%	Limestone, light gray	to light gray-brown	
÷			cryptocrystalline-mic shaley hard, dense. fracture filling, son limey Shale.	crocrystalline, silty, Some with Anhydrite ne very shaley grading	to
<b></b>		10%	Anhydrite white, crea	am crystalline soft.	
	4710-4720	808	Limestone as above.		
		10%	Shale medium-dark gra	ay firm, silty calcared	ous.
		10%	Anhydrite as above.		
	4720-4730	808	Limestone as above, o	common oolites.	
		10%	Shale as above.		
		10%	Anhydrite as above. Trace Chert cream, li	ight gray, hard, sharp.	Þ
_	4730-4740	90%	Limestone light-mediu hard, dense, oolitic filling.	ım gray microcrystallır some calcite fracture	ne,
		10%	Anhydrite white, ligh Trace Shale as above.	nt cream.	
-	4740-4750	90%	Limestone as above so with trace Pyrite ind fracture filling.	ome very oolitic. Some clusions. Trace Calcit	e Se
		10%	Anhydrite as above.		
<b>—</b>	4750-4760	90%	Limestone, light-med cream some with brown cream with gray-brown Trace Calcite fractum inclusions.	ium gray with some ligh n shading; abundant li n oolites, silty in pa re filling; trace Pyri	nt ight rt. ite
· ·		10%	Anhydrite as above. Trace medium gray cal silty, trace varicolo	lcareous, red-brown, or Shale.	
	4760-4770	90%	Limestone as above.		
		10%	Anhydrite as above. Trace Shale as above	•	
	4780-4790	908	Limestone as above.		
_		10%	Anhydrite as above. Trace Shale as above	_	

.

1

•

Limestone predominately medium gray microcrys-100% talline, silty oolitic with abundant cream, light gray, very colitic some with Anhydritic inclusions. Trace Siltstone red-brown firm calcareous, Anhydritic. Common Anhydritic, white soft, marly. 60%. Limestone as above. 40% Siltstone as above. Trace Shale, red-brown, maroon, varicolor. Common Anhydrite as above. 40% Limestone as above. Siltstone as above, some sandy, some micro-60% micaceous. Common Anhydrite as above. 20% Limestone as above. 808 Siltstone as above. Common Anhydrite as above. 30% Limestone as above, some cream, light gray, very fine crystalline. 70% Siltstone as above, some very Anhydritic. Common Anhydrite as above. 70% Limestone medium-dark gray cryptocrystallinemicrocrystalline, silty, shaley some very

20% Shale medium-dark gray, firm, fissile, calcareous.

oolitic, some very Anhydritic.

- 10% Siltstone red-brown, firm, calacreous.
- 4860-4870 80% Limestone as above.

4790-4800

4810-4820

4820-4830

4830-4840

4840-4850

4850-4860

- 20% Shale as above. Trace Siltstone as above.
- 4870-4880 100% Limestone as above, some light gray-cream very oolitic. Trace Shale as above with some varicolor.
- 4880-4890 100% Limestone as above with some fossil fragments. Trace Shale as above. Trace Anhydrite, white, crystalline, soft.
- 4890-4900 100% Limestone as above. Trace Shale as above. Trace Anhydrite as above. Trace Sandstone light gray, clear very fine grain, subangular-subround, very well

cemented, slightly calcareous with yellow fluorescense, trace yellow cut with yellow residue ring.

4900-4910 80% Sandstone, white, light gray very vine-fine grained, subangular-subround, poor-medium cemented, calcareous some with brown stain; abundant yellow fluorescence. Trace yellow cut with yellow ring as above.

> 20% Limestone as above. Trace Shale as above. Trace Anhydrite as above. Trace Cavings.
> 90% Sandstone as above.

10% Limestone as above. Trace Cavings.

4920-4930 90% Sandstone as above.

4910-4920

10% Cavings, various lithology.

4930-4940 100% Sandstone predominately white, clear, frosted with some light gray very fine to fine grain with trace show as above. Common cavings.

4940-4950 100% Sandstone as above. Common cavings as above.

> NOTE: As per orders from the Denver office, the bentonite content of the drilling mud was significantly raised beginning at 4910.

4950-4960 100% Sandstone predominately white, clear, frosted very fine-fine grain, subangular-subround poor-medium cement, calcareous with white clay matrix; trace orange-red.

Common cavings as above. Abundant LCM contamination.

4960-4970 100% Sandstone becoming predominately orange, light orange. Abundant LCM contamination.

4970-4980 100% Sandstone white, light orange very fine-fine grain, subangular-subround, poor cement. slightly calcareous. Trace yellow mineral fluorescence.

Abundant LCM contamination.

4980-4990 100% Sandstone as above.

Abundant cavings. Abundant LCM contamination.

164 100% 4990-5000 Sandstone as above. Cavings as above. 5000-5010 100% Sandstone as above. Cavings as above. 5010-5020 100% Sandstone as above. Sandstone as above with cavings as above. 5020-5030 100% 5030-5040 100% Sandstone as above with red very fine-fine grain with some medium coarse grain, well rounded, loose. 5040-5050 100% Sandstone as above. Common cavings. 5050-5060 100% Sandstone, light orange, very fine-fine grain with some medium-coarse grain, poor-medium cement with some coarse loose slightly calcareous. Common cavings. Common LCM contamination. 5060-5070 100% Sandstone, light orange, very fine-fine grain with some medium-coarse grain, poor-medium cement with some coarse loose slightly calcareous. Common cavings. Common LCM contamination. Sandstone, light orange, very fine-fine grain 5070-5080 100% with some medium-coarse grain, poor-medium cement with some coarse loose slightly calcareous. Common cavings. Common LCM contamination. 5080-5090 100% Sandstone, light orange, very fine-fine grain with some medium-coarse grain, poor-medium cement with some coarse loose slightly calcareous. Common cavings.

5090-5100 100% Sandstone, light orange, very fine-fine grain with some medium-coarse grain, poor-medium cement with some coarse loose slightly calcareous.

Common cavings.

Common LCM contamination.

5100-5110 100% Sandstone light orange very fine-fine grain with some medium grain, poor-medium cement slightly calcareous.

Common cavings.

Trace LCM contamination.

5110-5120 100% Sandstone light orange very fine-fine grain with some medium grain, poor-medium cement slightly calcareous.

Common cavings.

Trace LCM contamination.

5120-5130 100% Sandstone light orange very fine-fine grain with some medium grain, poor-medium cement slightly calcareous.

Common cavings.

Trace LCM contamination.

5130-5140 100% Sandstone light orange very fine-fine grain with some medium grain, poor-medium cement slightly calcareous.

Common cavings.

Trace LCM contamination.

5140-5150 100% Sandstone light orange very fine-fine grain with some medium grain, poor-medium cement slightly calcareous.

Common cavings.

Trace LCM contamination.

5150-5160 100% Sandstone as above, trace pink Limestone.

Common cavings.

Trace LCM contamination

Trace-common white Bentonite.

5160-5170 100% Sandstone as above, trace pink Limestone. Common cavings.

Trace LCM contamination.

Trace-common white Bentonite.

5170-5180 100% Sandstone as above, trace pink Limestone. Common cavings.

Trace LCM contamination.

Trace-common white Bentonite.

5180-5190 100% Sandstone as above, trace pink Limestone. Common cavings.

_

Trace LCM contamination.

Trace-common white Bentonite.

5190-5200 100% Sandstone as above, trace pink Limestone. Common cavings.

Trace LCM contamination.

Trace-common white Bentonite.

5200-5210 100% Sandstone light-medium orange-red very finefine grained with some medium grain, medium sort, subangular-subround, poor-medium cement, slightly calcareous some with white clay matrix, some with black, orange inclusions.

Common cavings.

Trace-common white Bentonite (possible non-dissolved drilling mud additive.)

5210-5220 100% Sandstone light-medium orange-red very finefine grain with some medium grained, medium cement, slightly calcareous some with white clay matrix, some with black, orange inclusions.

Common cavings.

Trace-common white Bentonite (possible non-dissolved drilling mud additive.)

5220-5230 100% Sandstone light-medium orange-red very finefine grain with some medium grain, medium cement, slightly calcareous some with white clay matrix, some with black, orange inclusions.

Common cavings.

Trace-common white Bentonite (possible non-dissolved drilling mud additive.)

5230-5240 100% Sandstone light-medium orange-red very finefine grain with some medium grain, medium cement, slightly calcareous some with white clay matrix, some with black, orange inclusions.

Common cavings.

Trace-common white Bentonite (possible non-dissolved drilling mud additive.)

5240-5250 100% Sandstone light-medium orange-red very finefine grain with some medium grain, medium cement, slightly calcareous some with white clay matrix, some with black, orange inclusions.

Common cavings.

Trace-common white Bentonite (possible non-dissolved drilling mud additive.)

5250-5260 100% Sandstone as above with some medium-coarse grain clear frosted with round loose quartz grains.

Trace cavings.

Trace white Bentonite as above.

5260-5270 100% Sandstone as above with some medium-coarse grain clear frosted with round loose quartz grains.

Trace cavings.

Trace white Bentonite as above.

5270-5280 100% Sandstone as above with some medium-coarse grain clear frosted with round loose quartz grains.

Trace cavings.

Trace white Bentonite as above.

5280-5290 100% Sandstone as above with some medium-coarse grain clear frosted with round loose quartz grains.

Trace cavings.

Trace white Bentonite as above.

5290-5300 100% Sandstone as above with some medium-coarse grain clear frosted with round loose quartz grains.

Trace cavings.

Trace white Bentonite as above.

5300-5310 100% Sandstone light orange very fine-medium grain as above.

Common cavings.

5310-5320 100% Sandstone light orange very fine-medium grain as above.

Common cavings.

5320-5330 100% Sandstone light orange very fine-medium grain as above.

Common cavings.

- 5330-5340 No Sample.
- 5340-5350 90% Sandstone becoming predominately white, very light orange, very fine-fine grain with decreasing medium grain. Medium sort, subangular-subround.
  - 10% Siltstone red-brown firm calcareous.

Trace-Commone Shale dark gray-green firm fissile, very slightly-noncalcareous.

Common cavings.

- 5350-5360 90% Sandstone as above.
  - 10% Siltstone and Shale as above.
- 5360-5370 90% Sandstone as above.
  - 10% Siltstone and Shale as above.

Common cavings.

5370-5380 90% Sandstone predominately white, clear frosted with trace very light orange, very fine-fine grain, medium sort subangular-subround. medium cement, very slightly calcareous.

10% Siltstone as above.

Trace Shale varicolor firm blocky very slightlynoncalcareous.

5380-5390 95% Sandstone as above.

5% Siltstone and Shale as above.

5390-5400 95% Sandstone as above.

5% Siltstone and Shale as above.

5400-5410 100% Sandstone white, clear very fine grained with some medium grain, poor-medium sort, predominately subangular, well cement very slightly-noncalcareous with some poor-medium cement; trace medium-coarse grain round -well rounded loose quartz grains; common very light orange very fine-fine grain, medium sort, subangular-subround, poor-medium cement, calcareous clusters.

> Common cavings predominately medium-dark gray Shale and Limestone from Carmel.

Trace Siltstone red-orange firm calcareous.

- 5410-5420 As above with 1-2% white Bentonite possibly from undissolved mud additives.
- 5420-5430 As above.
- 5430-5440 As above.
- 5440-5450 As above.
  - 5450-5460 100% Sandstone as above with cavings as above, Siltstone as above.
  - 5460-5470 100% Sandstone as above with increasing light orange; some with red-orange hematite stain.
- 5470-5480 100% Sandstone as above becoming 50% red-orange.
- 5480-5490 100% Sandstone as above becoming predominately red-orange. Trace Anhydrite.
- 5490-5500 100% Sandstone as above becoming predominately white, clear with 20% red-orange.

5650-5660	100%	Sandstone	as	above.
-----------	------	-----------	----	--------

- 5660-5670 100% Sandstone as above.
- 5670-5680 100% Sandstone as above.
- 5680-5690 100% Sandstone as above.
- 5690-5700 100% Sandstone as above.
- 5700-5710 100% Sandstone as above becoming predominately very light orange-red.
- 5710-5720 100% Sandstone as above.
- 5720-5730 100% Sandstone as above. Very abundant cavings.
- 5730-5740 100% Sandstone as above, thin Siltstone interlaminations.
- 5740-5750 100% Sandstone as above with Siltstone as above.
- 5750-5760 100% Sandstone, predominately light orange-red very fine-fine grain, well sort, subangularsubrounded some white clear very fine-fine grain with white clay matrix; predominately medium-well cement very slightlynoncalcareous with some poor cemented; common thin red-brown silty Shale and Siltstone interlaminations.

Abundant gray Shale and Limestone cavings.

- 5760-5770 100% Sandstone as above.
- 5770-5780 100% Sandstone as above.
- 5780-5790 100% Sandstone as above.
- 5790-5800 100% Sandstone as above with Siltstone and Shale as above.

Abundant cavings as above.

5800-5810 100% Sandstone predominately light-medium orangered very fine-fine grain well sort, subangular-subrounded poor-medium cement, very slightly-noncalcareous; some with white clay matrix, some with trace Anhydrite matrix.

Common cavings.

100%

5810-5820

Sandstone as above.

5% Shale medium-dark red-brown firm silty blocky some fissile, micromicaceous very slightlynoncalcareous some medium red-orange very silty grading to Siltstone. Trace pink, cream Anhydrite inclusions, some gray-green waxy Shale.

Very poor sample - abundant cavings.

5830-584060%Sandstone as above.40%Shale as above with increasing gray-green<br/>waxy noncalcareous.

Very poor sample. Abundant cavings.

5840-5850 30% Sandstone as above.

70% Shale as above.

- 5850-5860 80% Shale dark red-brown, maroon, gray-green, green some red-green mottled firm blocky slightly-noncalcareous some very silty grading to Siltstone some with Anhydrite inclusions.
  - 20% Sandstone white, light red-orange very fine grain very silty medium-well cement, calcareous with Shale fragment inclusions.

Abundant cavings.

- 5860-5870 80% Shale as above.
  - 20% Sandstone as above.
- 5870-5880 90% Shale predominately red-brown, maroon, varicolor with some light gray green firm silty, some micromicaceous, very slightlynoncalcareous.
  - 10% Sandstone predominately very light greenwhite, very fine grain very silty, very slightly calcareous.
- 5880-5890 85% Shale as above.

15% Sandstone as above.

- 5890-5900 90% Shale as above with trace Anhydrite inclusions.
  - 10% Sandstone as above.

5% Sandstone white, light orange very fine grain very silty medium cemented, slightly calcareous.

Trace Anhydrite white, light orange soft.

5910-5920 95% Shale as above.

5% Sandstone as above.

Trace Anhydrite as above.

5920-5930 95% Shale as above. Trace dense Limestone. 5% Sandstone as above.

Trace Anhydrite as above.

5930-5940 90% Shale as above. Trace dense Limestone. 10% Sandstone as above.

Trace Anhydrite as above.

5940-5950 100% Shale as above with some gray-green.

Common Sandstone as above.

Trace Anhydrite. Trace dense Limestone fragments.

- 5950-5960 100% Shale as above. Trace Limestone fragments.
- 5960-5970 100% Shale as above some very silty.
- 5970-5980 90% Shale as above.
  - 10% Sandstone clear, white very fine-medium grain poor sort, predominately subangular, poormedium cemented, slightly calcareous with dead black oil stain. Trace very weak yellow fluorescence.

Trace Anhydrite white, soft.

- 5980-5990 30% Shale as above.
  - 70% Sandstone as above with 10-15% having stain and show as above.

Common white clay, white Anhydrite.

- 5990-6000 30% Shale as above.
  - 70% Sandstone as above with 10% having show as above.
- 6000-6010 70% Sandstone white, clear very fine-medium grain poor sort, angular-subangular, medium-well cemented, slightly-noncalcareous, hard, sharp, 10% with show as above. Trace green Shale inclusions. Trace mica inclusions.
  - 30% Shale predominately red-brown firm, silty, micromicaceous with trace white Anhydrite inclusions; some gray-green firm silty.

Trace Anhydrite, white, soft.

- 6010-6020 80% Sandstone as above.
  - 20% Shale as above some maroon, varicolor.
- 6020-6030 80% Sandstone as above.

20% Shale as above.

- 6030-6040 85% Sandstone as above.
  - 15% Shale as above.
- 6040-6050 85% Sandstone as above.
  - 15% Shale as above.
- 6050-6060 80% Sandstone white, clear very fine-medium grain, poor sort angular-subangular hard, sharp.
  - 20% Shale red-brown, maroon, varicolor, silty firm-hard, slightly-noncalcareous some with white Anhydrite inclusions.
- 6060-6070 70% Sandstone as above.
  - 30% Shale as above.
- 6070-6080 70% Sandstone as above.
  - 30% Shale as above, trace white clay, trace white Anhydrite.
- 6080-6090 90% Sandstone as above some with green Shale inclusions becoming very hard, sharp.

10% Shale as above.

6090-6100 30% Shale as above with some green waxy, varicolor.

70% Sandstone as above.

6100-6110 60% Sandstone as above.

40% Shale as above.

6110-6120 50% Sandstone as above.

- 50% Shale as above with increasing maroon, varicolor.
- 6120-6130 90% Shale brown-red, maroon, gray-green varicolor firm silty, some waxy predominately noncalcareous with some very slightly calcareous, some red-brown very silty grading to Siltstone, some with white Anhydrite inclusions.
  - 10% Sandstone white very fine-medium grain angular well cemented, noncalcareous with trace medium-coarse quartz grains loose.
- 6130-6140 100% Shale varicolor waxy-subwaxy all with gray tones and shading; firm noncalcareous.

Trace Sandstone as above.

- 6140-6150 95% Shale varicolor as above.
  - 5% Sandstone white, clear very fine-medium grain angular with dead black stain very scant trace yellow fluorescence and very weak cut (6140-42 very poor 6 min/ft. drilling break) 2' net interval 4 unit increasing over background.

Sandstone is slightly conglomeratic.

6150-6160 100% Shale brown-red, varicolor as above.

Trace Sandstone as above.

6160-6170 100% Shale varicolor as above.

Trace Sandstone as above.

- 6170-6180 100% Shale as above becoming predominately redbrown with abundant varicolor.
- 6180-6190 100% Shale as above some becoming micro-micaceous with trace very fine grain white Sandstone, very thinly interbedded.
- 6190-6200 100% Shale as above with some very silty grading to Siltstone.

6200-6210 100% Shale red-brown silty, micromicaceous firm blocky, slightly calcareous, varicolor firm waxy, subwaxy very slightly-noncalcareous.

Trace Limestone dense nodules.

Trace Anhydrite weak, light red-brown soft.

Trace Siltstone gray micaceous slightly calcareous, thinly bedded.

- 6210-6220 100% Shale as above with trace Limestone, Anhydrite, Siltstone as above.
- 6220-6230 100% Shale as above with increasing Anhydrite, trace Limestone, Chert.
- 6230-6240 100% Shale as above some silty some very Anhydritic.

Trace Limestone, Chert fragments.

6240-6250 100% Shale as above becoming predominately redbrown very silty grading to Siltstone; abundant varicolor as above some arenaceous gray-green, lavender-gray waxy.

Trace Limestone, Chert fragments.

6250-6260 100% Shale as above.

Trace white Siltstone with black dead stain (cavings?).

Trace-common Anhydrite white, soft.

6260-6270 100% Shale predominately red-brown silty slightly calcareous with abundant varicolor waxy arenaceous in part, some red-brown with abundant Anhydrite inclusions.

Trace Limestone dense varicolor fragments.

Trace Chert white, gray hard, dense.

Common Anhydrite white, pink soft.

- 6270-6280 95% Shale as above.
  - 5% Siltstone white, gray firm dolomitic with dead black stain, no fluorescence, trace weak yellow cut, thinly interlaminated with Shale as above.

Trace Limestone fragments, Chert fragments.

Common Anhydrite white, soft.
Shale as above with varicolor arenaceous as 6280-6290 95% above. 5% Siltstone as above with stain as above thinly interlaminated with Shale as above. Common-1% dense Limestone fragments. Trace Chert. Trace Anhydrite white, pink soft. 90% 6290-6300 Shale as above. Siltstone as above (trace-1% with dead stain 10% and weak cut as above).

Trace Chert, trace Limestone fragments.

Trace Anhydrite.

- 6300-6310 90% Shale red-brown silty, varicolor waxy firm slightly-noncalcareous some varicolor arenaceous, some red-brown with white Anhydrite inclusions, some red-brown grading to Siltstone.
  - 5% Siltstone white, gray firm dolomitic with dead black stain very poor weak yellow cut, no fluorescence.
  - 5% Anhydrite, white, pink soft.

Trace Limestone, Chert pebbles.

6310-6320 95% Shale as above.

5% Anhydrite as above.

Trace Siltstone gray as above, trace Limestone, Chert pebbles.

6320-6330 100% Shale as above.

Trace Anhydrite, Siltstone, Limestone, Chert as above.

- 6330-6340 100% Shale as above some with Anhydrite inclusions as above.
- 6340-6350 100% Shale as above with trace Limestone, Chert, Anhydrite as above.
- 6350-6360 95% Shale as above.
  - 5% Anhydrite as above.

Trace Limestone, Chert, Siltstone as above.

6360-6370	100%	Shale as above.
	Trace S	iltstone red-brown firm Anhydritic.
	Trace A	nhydrite white, pink soft.
6370-6380	100%	Shale as above some red-brown silty.
6380-6390	100%	Shale as above, trace Anhydrite white, soft.
6390-6400	100%	Shale as above becoming predominately red- brown silty, with white Anhydrite inclusions.
6400-6410	100%	Shale predominately red-brown silty with abundant varicolor waxy-subwaxy firm very slightly-noncalcareous; some with white Anhydrite inclusions.
	Trace S calcare	iltstone gray soft-firm very slightly ous.
	Trace A	nhdrite, white, soft.
	Trace L	imestone, chert pebbles.
	Trace S	andstone white, thin interlaminations.
6410-6420	100%	Shale as above predominately red-brown, silty with abundant red-orange soft Anhydritic.
6420-6430	100%	Shale red-brown silty with some red-orange Anhydritic some pastel varicolor waxy.
	Trace S	Siltstone gray.
6430-6440	100%	Shale as above.
6440-6450	100%	Shale as above with common loose quartz grains fine-medium grain, well rounded.
	Trace-c	common Anhydrite white, pink soft.
	Trace S slight]	Shale gray-green waxy, subwaxy, firm very y-noncalcareous, arenaceous in part.
6450-6460	100%	Shale as above with increasing gray,gray- green waxy.
	Common	loose quartz grains as above.
	Trace A	Anhydrite white, soft.

6460-6470 100% Shale predominately gray-green, pastel green, waxy with abundant lavendar, varicolor waxy; common red-brown silty micaceous.

Trace Siltstone, red-brown, gray firm very slightly calcareous.

Trace Limestone, Chert pebbles.

- 6470-6480 100% Shale as above some pale gray with Pyrite inclusions; abundant varicolor mottled waxysubwaxy, firm calcareous.
- 6480-6490 90% Shale as above, predominately pale gray, gray-green.
  - 10% Siltstone gray, light gray-green soft-firm, slightly calcareous, very thinly interlaminated with Shale as above. Trace dead black stain.

Trace loose quartz grains, very fine-medium grain subrounded.

6490-6500 100% Shale as above with trace Pyrite inclusions.

Trace Siltstone as above.

Trace dense Limestone pebbles.

Trace white Chert.

Trace-common loose quartz grains.

- 6500-6510 90% Shale pale gray-green firm silty, very slightly-noncalcareous, some arenaceous, some micaceous; common red-brown silty, common varicolor waxy; trace Pyrite inclusions.
  - 10% Siltstoone pale gray-green, white firm slightly calcareous, micaceous in part.

Trace Sandstone white very fine-fine grain with some grading to Siltstone well sorted, poor-medium cement slightly calcareous with clay matrix.

Trace Chert, Limestone fragments, trace Anhydrite white, soft.

6510-6520 90% Shale as above with trace Pyrite inclusions.

10% Siltstone as above.

Trace Sandstone, Chert, Limestone, Anhydrite as above.

Shale as above predominately pale gray-green 95% 6520-6530 some with Anhydrite inclusions, trace Pyrite inclusions. 5% Anhydrite white, soft. Trace Siltstone, Sandstone as above. Shale as above with common Pyrite inclusions. 6530-6540 95% 5% Anhydrite as above. Trace Siltstone, Sandstone as above. Shale as above some very silty, some with 6540-6550 100% Anhydrite inclusions, very common Pyrite inclusions. Trace Siltstone interlaminations. Shale pale gray-green as above with trace 100% 6550-6560 red-brown silty, some very Anhydritic. Shale as above with Pyrite inclusions as 6560-6570 100% above. Trace Siltstone, Anhydrite as above. 100% Shale as above. 6570-6580 · Shale as above, some micaceous. 90 6580-6590 Siltstone, white, light gray-green firm, 10% calcareous micaceous with Pyrite inclusions. 6590-6600 90% Shale as above. Siltstone as above. 10% Shale pale gray-green, light gray firm, silty 6600-6610 90% micaceous very slightly-noncalcareous, common red-brown silty with Anhydrite inclusions. Common Pyrite inclusions. Siltstone light gray, light gray-green firm 10% very slightly-noncalcareous, micaceous in part with trace Pyrite inclusions, slightly dolomitic.

6610-6620 70% Shale as above.

30% Siltstone as above with 10% having dead black stain, very weak pale yellow cut, no fluorescence.

Trace Anhydrite as above.

- 6620-6630 60% Shale as above.
  - 40% Siltstone as above, trace stain as above.

Trace Anhydrite as above.

- 6630-6640 80% Shale as above.
  - 20% Siltstone as above, trace-common stain and cut as above.

Trace Anhydrite as above.

- 6640-6650 50% Shale as above.
  - 50% Siltstone as above with 15% having dead black stain, very weak pale yellow cut, no fluorescence, some very fine grain light gray, very silty Sandstone grading to Siltstone.

Trace Anhydrite.

- 6650-6660
- 70% Shale light gray-green, light green firm silty in part, waxy in part, micaceous in part, very slightly-noncalcareous; some redbrown silty very slightly calcareous with Anhydrite inclusions common, Pyrite inclusions.
  - 30% Siltstone, white, light gray, firm very slightly calcareous, medium cement, slightly calcareous with 10% having dead black stain, very weak pale yellow cut, no fluorescence, very poor porosity and permeability. Common Pyrite inclusions.

Trace Anhydrite white, soft.

6660-6670 50% Shale as above with Pyrite inclusions.

50% Siltstone as above with black stain, Pyrite inclusions as above.

Trace Anhydrite as above.

- Shale as above with Pyrite inclusions. 70% 6670-6680
  - Siltstone as above with black stain, Pyrite 30% inclusions.

Trace Anhydrite, Chert fragments.

- Shale as above. 6680-6690 90%
  - Siltstone as above, trace dead black stain 10% as above.

Trace Anhydrite, Chert as above.

- Shale as above with Pyrite inclusions some 70% 6690-6700 becoming dolomitic.
  - Siltstone as above with dead black stain, 30% very poor, very weak pale yellow cut, no fluorescence, some very slightly calcareousdolomitic; abundant clay, Anhydrite matrix.

Trace-common Anhydrite white, soft.

- 6700-6710
- Shale pale gray-green, light gray firm, very 70% slightly-noncalcareous with some becoming dolomitic some subwaxy, some silty, abundant very fine crystalline Pyrite inclusions. Common red-brown silty with Anhydrite inclusions, some gray-green very micaceous.
  - Siltstone light gray-green, white, light gray 30% firm very slightly calcareous-dolomitic with very fine crystalling Pyrite inclusions some very micaceous; 10% with dead black stain, very poor very weak pale yellow cut, no fluorescence, abundant clay, Anhydrite matrix with very poor porosity and permeability.

Trace Anhydrite white, soft.

- Shale as above with some lavendar, varicolor 6710-6720 40% waxy.
  - Siltstone as above. 50%
  - Sandstone light gray, white very fine grain 10% very silty grading to Siltstone as above. Common dead black stain as above. Very poor porosity and permeability.

Trace Anhydrite white, soft.

- 6720-6730 30% Shale as above with Pyrite inclusions as above.
  - 50% Siltstone as above with very poor show as above.
  - 20% Sandstone as above with very poor show as above.
- 6730-6740 60% Shale predominately pale gray-green, redbrown silty, very slightly-noncalcareous with abundant very fine crystalline Pyrite inclusions, some very micaceous.
  - 40% Siltstone as above with very poor show as above.

Trace Sandstone as above with very poor show as above.

- 6740-6750 70% Shale as above.
  - 30% Siltstone as above.

Trace Sandstone as above.

- 6750-6760 80% Shale as above predominately pale gray-green with some varicolor common red-brown silty, abundant pyrite inclusions.
  - 20% Siltstone gray, light gray firm very slightly calcareous with black dead stain, trace yellow cut, no fluorescence.

Trace Chert cream, white hard, sharp.

- 6760-6770 60% Shale as above with Pyrite inclusions.
  - 40% Siltstone as above with very poor show as above.
- 6770-6780 50% Shale as above with common red-green mottled.

50% Siltstone as above.

Trace Sandstone very fine grain grading to Siltstone above.

Trace-common Pyrite.

- 6780-6790 30% Shale as above with Pyrite inclusions as above.
  - 60% Siltstone as above.
  - 10% Sandstone gray, light gray very fine grain very silty grading to Siltstone, very slightly calcareous with dead black stain, very poor weak yellow cut, no fluorescence.
- 6790-6800 20% Shale as above.
  - 50% Siltstone as above with very poor show as above.
  - 10% Sandstone as above with very poor show as above.
  - 20% Limestone white, cream, light gray microcrystalline-very fine crystalline, hard, tite silty, dolomitic some cream chalky; some light gray microcrystalline with microsacrosic texture. Trace light gray oolites.
- 6800-6810 70% Limestone light gray, white, cream as above with common light gray oolites some microcrystalline with dark brown-black stain, very poor weak yellow fluorescence, very poor weak yellow cut.
  - 20% Shale as above with Pyrite inclusions as above.
  - 10% Siltstone as above.
- 6810-6820 90% Limestone as above with abundant cream chalky with light gray oolites. Trace cream chalky with broken fossil inclusions; abundant light gray silty dolomitic, 80% with poor show as above.
  - 10% Shale as above with Pyrite as above.

Common Siltstone light gray firm slightly calcareous.

- 6820-6830 90% Limestone as above with abundant medium-dark gray very fine crystalline microsacrosic with 80% having dark brown-black stain, very poor weak yellow fluorescence, very poor weak yellow cut, very scant trace pinpoint porosity at 45X.
  - 10% Shale as above with Pyrite, trace Siltstone as above.

Limestone as above with 20% having very poor 90% 6830-6840 show as above. 10% Shale as above. Limestone as above with increasing cream, 6840-6850 80% white chalky oolitic. 20% Shale as above. Limestone as above some very silty, 95% 6850-6860 dolomitic, common oolites, trace broken fossils. Shale as above some very silty grading to 5% Siltstone. Limestone predominately medium-dark gray-6860-6870 100% brown microcrystalline hard, dense, silty dolomitic with show as above, some grading to dolomitic Siltstone. Trace Shale, Siltstone as above. Trace Pyrite as above. Limestone as above becoming very silty very 6870-6880 90% dolomitic with very thin Siltstone interlaminations. Siltstone light-medium gray, hard, dense 10% dolomitic, trace black dead stain. No porosity or permeability. Limestone as above with thin Siltstone 6880-6890 100% interlaminations as above. No porosity or permeability. Limestone predominately cream, white, light 100% 6890-6900 gray some chalky oolitic, some with broken fossils, abundant medium-dark gray, very silty very dolomitic, trace black stain with very poor show. No visible porosity or permeability. Limestone cream chalky crypotcrystalline-6900-6910 60% microcrystalline, silty in part, dolomitic in part with abundant Pyrite inclusions. Shale very light gray-green firm, silty 40% dolomitic with very finely dissiminated Pyrite inclusions. Limestone as above with Pyrite as above. 6910-6920 40% Shale as above with Pyrite as above. 60%

- 6920-6930 90% Siltstone light gray, white, light gray-green firm-very well cemented noncalcareous to dolomitic with common Pyrite inclusions, trace dead black stain with no fluorescence, no cut.
  - 10% Shale very light green as above.
  - Trace Limestone as above.
  - 6930-6940 100% Siltstone as above with Pyrite inclusions as above.

Trace Shale as above.

6940-6950 100% Siltstone as above with trace very thinly interlaminated gray Shale.

Trace Limestone white, chalky.

6950-6960 100% Siltstone as above with thinly interlaminated Shale as above, common Pyrite inclusions.

Trace Limestone white, chalky.

- 6960-6970 90% Siltstone as above.
  - 10% Shale pale gray-green firm silty some waxy dolomitic in part.
- 6970-6980 80% Siltstone as above.
  - 20% Shale as above with some red-brown silty.
- 6980-6990 70% Siltstone as above some white with black stain, no fluorescence, no cut.
  - 30% Shale as above with red-brown silty, some varicolor.
- 6990-7000 90% Siltstone white, light gray some grading to very fine grain Sandstone, firm calcareous with abundant dead black stain, no fluorescence. No cut.
  - 10% Shale as above.
- 7000-7010 100% Siltstone as above with 80% having dead black stain, no fluorescence, no cut.

Trace Shale as above.

7010-7020 100% Siltstone with stain as above; abundant Pyrite inclusions.

Trace Shale as above.

-

- 7020-7030 100% Siltstone as above with stain as above.
- 7030-7040 100% Siltstone as above with trace thinly interlaminated Shale as above. Common Pyrite inclusions.
- 7040-7050 100% Siltstone as above.
- 7050-7060 90% Siltstone as above with Pyrite inclusions.
  - 10% Shale pale green, varicolor waxy, trace redbrown silty firm very slightly calcareous.
- 7060-7070 90% Siltstone as above with stain as above.

10% Shale as above with Pyrite inclusions.

7070-7080 90% Siltstone as above with stain as above.

10% Shale as above.

7080-7090 90% Siltstone as above with Pyrite inclusions.

10% Shale as above.

- 7090-7100 90% Siltstone as above.
  - 10% Shale as above.
- 7100-7110 90% Siltstone pale gray-green firm dolomitic with abundant very fine crystalline Pyrite inclusions some micromicaceous. Trace very thin interlaminations, Sandstone white very fine grain silty with black stain, no fluorescence, no cut.
  - 10% Shale pale gray-green, pale lavendar firm silty in part waxy in part with very fine crystalline Pyrite inclusions, slightly calcareous-dolomitic, trace red-brown silty.

Trace Limestone white, chalky.

- 7110-7120 50% Siltstone as above with abundant Pyrite inclusions.
  - 40% Shale as above with abundant Pyrite inclusions.
  - 10% Sandstone white, light gray with very abundant (80%) dark brown, black dead stain, no fluorescence, no cut. No visible porosity or permeability, common Pyrite inclusions.

7120-/130 20% 🛶lstone as above.

- 30% Shale as above.
- 50% Sandstone white, light gray very fine grained firm, very silty calcareous-dolomitic with abundant black stain with no cut, fluorescence.

Trace Limestone light gray microcrystalline, very silty, sandy in part, very dolomitic with abundant Pyrite inclusions.

- 7430-7140 70% Limestone light-medium gray microcrystalline, hard, dense, very sandy, very dolomitic grading to Dolomite, very abundant Pyrite inclusions with very abundant dark brown-black dead stain, no fluorescence no cut, no gas increase, no visible porosity and permeability. Trace Chert inclusions gray, white, smokey hard, sharp.
  - 20% Shale as above.
  - 10% Siltstone as above.
- 7140-/150 80% Limestone as above with some very silty, some with medium-coarse grain quartz grain inclusions, all very dolomitic grading to silty Dolomite, abundant (80%) with black stain as above, some very cherty.
  - 20% Shale as above.

Trace-common Chert white, gray, smokey.

- 7150-/160 60% Limestone as above with stain as above, some very cherty.
  - 40% Dolomite cream, light tan crypocrystallinemicrocrystalline, hard, dense some very sılty, very sandy with 50% having black stain, no fluorescence, no cut, no visible porosity; abundant Pyrite inclusions.

Common Chert.

- 7160-/170 80% Dolomite as above with 80% having stain as above.
  - 20% Limestone as above.

Very common Chert.

- 7170-7180 90% Dolomite as above with stain as above.
  - 10% Limestone as above.

7180-7190	100%	Dolomite cream, white, light tan, crypto- crystalline-microcrystalline hard, dense, silty, sandy with 50% having black stain, no fluorescence, no cut, no visible porosity. Abundant Pyrite inclusions, abundant Chert gray, white.
7190-7200	100%	Dolomite as above with dead oil show as above, trace Pyrite, trace Chert.
7200-/210	100%	Dolomite as above with dead oil show as above. Trace Calcite inclusions.
- -	Common	Pyrite inclusions.
-	Trace C	hert inclusions.
7210-/220	100%	Dolomite as above with dead oil show as above, very scant trace intercrystalline porosity.
7220-/230	90%	Dolomite as above with show as above.
	10%	Shale predominately pale green waxy dolomitic with Pyrite inclusions.
7230-/240	80 %	Dolomite as above with 20% having dead oil show as above, no fluorescence, cut.
	20%	Shale pale green waxy, pastel varicolor waxy, silty.
		Abundant Pyrite inclusions.
		Abundant Chert white, gray hard, sharp.
7240-/250	808	Dolomite as above, trace fracture porosity.
	20%	Shale as above with some red-brown silty.
	Abundai	nt Cnert.
-	Trace 1	Pyrite.
7250-/260	80%	Dolomite as above with trace dead oil show as above.
	20%	Shale as above.
-	Very co	ommon Chert white, gray hard, sharp.
-	Common	Pyrite.
	Trace sort, j	Sandstone white, very fine-medium grain, poor poor cement, silicaeous.

7260-/270 50% Dolomite as above some very sandy.

- 30% Shale as above.
- 20% Sandstone white, clear frosted, very finemedium grain poor sort, subangularsubrounded, poor-medium cement, silicaeousvery slightly calcareous; very scant trace dead black oil stain with no fluorescence, no cut.

Trace Pyrite, trace Chert.

7270-7280 40% Dolomite as above.

20% Shale as above.

40% Sandstone as above.

Trace Pyrite, trace Chert.

- 7280-/290 80% Sandstone as above with 10% dead black stain, no fluorescence, no cut. Trace Pyrite inclusions.
  - 20% Dolomite as above.
- 7290-/300 95% Sandstone white, clear very fine-medium grain, poor sort angular-subrounded, mediumwell cemented silicaeous-very slightly calcareous, trace dead black stain, no fluorescence, no cut.

Trace Pyrite inclusions.

5% Dolomite as above.

Common cavings.

- 7310-/320 100% Sandstone as above, poor sort, well cemented, hard, sharp.
- 7320-/330 100% Sandstone as above.
  - 7330-/340 100% Sandstone as above, possible very thin microcrystalline Dolomite interbeds.

Common cavings.

- 7340-4350 100% Sandstone as above.
- 7350-/360 100% Sandstone as above.

Very common cavings.

7360-/370 ??l00% Sandstone as above. Very poor sample, abundant LCM. 7370-/380 ??? Unreadable - Predominately LCM

- 7380-/390 ?? Very Poor Sample 100% Sandstone as above. Abundant LCM.
- _ 7390-7400 ?? 100% Sandstone as above. Abundant LCM.
- 7400-/410 100% Sandstone as above. Trace Pyrite inclusions. Trace Snale pale gray-green. Trace Pyrite. Trace Dolomite cryptocrystalline hard, dense.
- 7410-7420 100% Sandstone as above with trace green Shale partings, trace Pyrite, trace Dolomite gray, crypotcrystalline, hard, dense.
- . 7420-/430 100% Sandstone as above, very well cemented, hard, sharp.
- 7430-/440 100% Sandstone as above, trip sample, abundant cavings.
  - 7440-/450 100% Sandstone white, clear as above.

Thin gray-green Shale interbeds.

Thin light-medium gray Dolomite interbeds.

Very common cavings.

7450-,460 100% Sandstone white, clear very fine-medium grain with predominately fine-medium grain, subrounded-subangular predominately very well cemented, silaceous with some poor-medium cement, slightly calcareous, common loose grains; some very hard sharp. Very scant trace pale yellow-blue fluorescence with barely findable poor weak milky yellow cut.

> Trace-1% Dolomite very light brown-tan microcrystalline hard, dense, some with ghost oolite structure.

Common cavings.

- 7460-/470
- 100% Sandstone as above with very poor show as above.

Trace-1% Dolomite as above.

Common cavings.

74/0-7480 100% Sandstone as above with very poor show as above.

Trace-1% Dolomite as above.

Common cavings.

 $\smile$ 

7480-/490 100% Sandstone as above.

Common cavings.

7490 /500 100% Sandstone as above, trace Pyrite inclusions. Common cavings.

DST #4 7450-7503

7500-/510 100% Sandstone white, clear very fine-medium grain, poor sort, angular-subrounded, predominately very well cement, silaceous with some med. cement, slightly calcareous; trace Pyrite inclusions.

Trip Sample with very abundant cavings.

7510-/520 100% Sandstone as above.

Common cavings.

7520-/530 100% Sandstone as above with some medium-coarse grain, subrounded frosted grains.

Common cavings.

7530-/540 100% Sandstone as above.

Common cavings.

7540-7550 100% Sandstone as above, trace Pyrite inclusions.

Common-1% pale green dolomitic Shale thinly interbedded.

7550-/560 100% Sandstone as above.

Trace-1% Shale thinly interbedded as above.

7560-7570 100% Sandstone as above, trace Anhydrite white, soft.

Trace-1% Shale as above. Common cavings.

- 7570-7580 100% Sandstone as above. Trace Anhydrite white, soft.
  - 7580-/590 100% Sandstone as above. Trace Pyrite.
  - 7590-/600 100% Sandstone as above, trace Pyrite.

-----

7600-/610 100% Sandstone white, clear very fine-medium grain with some coarse grain, poor sort, predominately fine-medium grain, very well cement, siliceous abundant medium-coarse grain, rounded-subrounded clear frosted grains, very poor cement-loose; Trace Pyrite inclusions. Trace Anhydrite, white, soft.

Trace Dolomite, light gray microcrystalline, hard, dense.

- 7610-/620 100% Sandstone as above.
- 7620-/630 100% Sandstone as above. Common cavings.
  - 7630-/640 100% Sandstone as above.

Trace Marlstone white, soft chalky, some with pink shading.

7640-7650 100% Sandstone as above.

Trace Limestone white, soft chalky as above.

Trace Siltstone red-brown firm micaceous.

Very common cavings.

7650-7660 100% Sandstone white, clear, predominately finemedium grain, medium sort, angularsubrounded, medium-well cemented, silaceous with abundant medium-coarse grain clear frosted with rounded loose quartz grains.

Trace Limestone white, pink soft, marly.

Common cavings.

7660-/670 100% Sandstone as above.

Trace Limestone.

Common cavings.

7670-/680 100% Sandstone as above.

Trace Limestone white, soft, marly.

Common cavings.

- 7680-7690 100% Sandstone as above.
- 7690-7700 100% Sandstone as above.

/93

7700-/710 Trip Sample - Abundant cavings.

- 100% Sandstone white, clear frosted, predominately fine-medium grain, medium-well cement, silaceous. Trace-1% Limestone white, soft marly some with pink shading, Anhydritic.
- 7710-/720 100% Sandstone as above.

Trace Siltstone red-brown firm blocky calcareous some micromicaceous, some Anhydritic, very thinly interbeaded.

Trace-1% Limestone white, soft chalky, Anhydritic in part.

7720-,730 100% Sandstone as above.

Trace Siltstone as above.

- Trace Limestone as above some becoming very Annydritic grading to calcareous Anhydrite.
- 7730-/740 100% Sandstone as above.

Trace Siltstone as above.

Trace - 1% Annydrite white, chalky soft.

Trace Cnert white, cream, hard, sharp.

- 7740-7750 90% Sandstone as above.
  - 3% Annydrite as above.
  - 2% Siltstone red-brown as above.
  - 5% Dolomite as above.

Common cavings.

95%

7750-/760

Sandstone, white, clear some frosted, very fine-medium grained, medium sorted, medium-well cemented siliceous, some medium-coarse grained, well rounded, loose quartz grains.

- 2% Siltstone red-brown as above.
- 3% Anhydrite, white soft chalky.
- Trace Chert white, cream hard, sharp.

7760-,770	90%	Sandstone as above.
-	10%	Anhydrite predominately white, light gray soft chalky with trace cream, light tan, hard, dolomitic.
-	Trace-c	ommon Siltstone red-brown soft Anhydritic.
7770–1780	808	Sandstone as above.
-	15%	Anhydrite as above some red-brown silty.
-	5*	Siltstone red-brown firm-soft some very Anhydritic.
-	Trace	Shale varicolor, pale green, firm, waxy slightly calcareous.
77 80 - 77 90 	70%	Sandstone as above becoming poor-moderately cemented, silicaeous-slightly calcareous with abundant loose quartz grains.
-	10%	Anhydrite as above.
	10%	Siltstone red-brown Anhydritic as above.
-	5%	Shale varicolor, pale green-gray waxy as above.
-	5%	Dolomite, cream, light tan, cryptocrystalline, hard dense, cherty.
7790-7800	60%	Sandstone as above.
	10%	Anhydrite as above.
-	10%	Siltstone as above.
_	10%	Shale as above.
	10%	Dolomite as above some becoming light pink silicaeous.
7800-/810	70%	SAndstone white, clear some frosted, predominately very fine-fine grained, moderately sorted, with some medium grained,
		predominately subangular-subrounded with trace medium-coarse grained clear frosted, well-rounded loose. Trace Pyrite inclusions.
-	20%	Anhydrite, white, light pink, soft, chalky.
-	5%	Siltstone red-brown, firm, slightly calcareous, some red-orange, soft Anhydritic.
~	10%	Shale, pale gray-green firm, splintery, blocky, waxy, very slightly calcareous; trace varicolor, mottled.

- 5% Dolomite, white, light cream, very light tan, cryptocrystalline-microcrystalline, hard, dense, cherty in part.
- 7810-7820 60% Sandstone as above, predominately poorly cemented with very abundant loose grains.
  - 20% Anhydrite as above.
  - 5% Siltstone as above.
  - 5% Shale as above.
  - 10% Dolomite as above. Trace Pyrite, trace Chert.

-	7820-1830	50%	Sandstone as above.
-		15%	Anhydrite as above.
		5%	Siltstone as above.
-		10%	Shale as above.
		20%	Dolomite as above.
-	7 840 7-0 د8 7	50%	Sandstone as above.
		10%	Anhydrite as above.
		5%	Siltstone as above.
		5%	Shale as above.
		30%	Dolomite as above.
	7840-1850	60%	Sandstone as above some medium-coarse grained with pink stain.
		20%	Dolomite as above.
		10%	Anhydrite as above.
<b>.</b>		5*	Shale, pale gray-green, varicolor waxy as above.
-		5%	Siltstone, red-brown firm slightly calcareous as above.
<b></b> .	7850-/860	40%	Sandstone as above.
_		40%	Dolomite as above.
		10%	Anhydrite as above.
		10%	Shale as above.
		Trace-1	% Siltstone as above. Trace Pyrite.
	7860-7870	50%	Sandstone as above, predominately loose quartz grains.
		40%	Dolomite as above.
		5%	Anhydrite as above.
~		5%	Shale as above.
		Trace-1	<pre>% Siltstone as above.</pre>
		Common	Pyrite.

$\sim$
$\sim$

- 78/0-/880 40% Sandstone white, clear frosted, loose as above.
  - 40% Dolomite cream, light pink, light tan, dense as above.
  - 10% Anhydrite, white, cream, light pink soft, chalky.
  - 10% Shale pale gray-green.

Trace-1% Siltstone red-brown.

Trace Pyrite.

- 7880-/890 40% Sandstone white, clear some frosted, very fine-fine grained, moderately sorted, with some fine-medium grains, predominately subangular-subrounded, predominately friable with abundant loose grains, silicaeous-very slight calcareous; occasional cluster very weil cemented silicaeous. Trace Pyrite inclusions.
  - 40% Dolomite, cream, very light pink, cryptocrystalline-microcrystalline, hard, dense some very light tan microcrystalline, hard, dense; very common floating medium-coarse quartz grains, some very sandy grading to dolomitic Sandstone.
  - 10% Shale, pale gray-green waxy firm, splintery some blocky, predominately noncalcareous with some very slightly; calcareous; abundant Pyrite inclusions.
  - 10% Siltstone red-brown firm micaceous very slightly-noncalcareous with common Anhydrite inclusions.

Trace-1% Anhydrite, pink, white soft chalky, limey.

- 7890-/900 20% Sandstone as above.
  - 45% Dolomite as above.
  - 2% Shale as above.
  - 3% Siltstone as above.
  - 30% Limestone pink, white soft, chalky some very Anhydritic grading to limey Anhydrite.

			199
		$\smile$	1))
7900-/910	10%	Sandstone as above.	
	75%	Dolomite as above.	
	5%	Limestone as above, some very Anhydritic.	
	5%	Shale gray-green as above.	
	5%	Siltstone as above.	
7910-/920	50%	Dolomite, cream, light pink cryptocrystalline-microcrystalline, hard, dense, sandy as above.	
	40%	Limestone, cream, light pink, soft, chalky some very Anhydritic.	
	10%	Sandstone as above.	
	Trace	Snale and Siltstone as above.	
7 920- , 930	40%	Dolomite as above.	
	50%	Limestone as above.	
	5%	Shale, gray-green waxy splintery.	
	5%	Siltstone red-brown, firm Anhydritic.	
	Trace	Sandstone as above.	
40 / 40 / 7930 / 7930	60%	Dolomite as above some very sandy grading dolomitic Sandstone.	to
	30%	Limestone cream, light pink chalky.	
	5%	Shale as above.	
	5%	Siltstone as above.	
	Trace	Sandstone clear, white very fine-medium grained, subangular-subrounded, friable, v slightly-noncalcareous, some dolomitic.	ery
7 y 40 - / 950	30%	Dolomite as above.	
	10%	Limestone as above.	
	20%	Sandstone as above with some becoming very well cemented; some fine-coarse grained, poorly sorted, subangular, very well cemented.	<b>,</b>
	30%	Shale, gray, gray-green waxy, splintery, dolomitic with Pyrite inclusions.	
	10%	Siltstone red-brown as above.	

-	7950-7900	30%	Dolomite cream, pink as above.
-		10%	Limestone white, cream, pink, soft, chalky as above.
<b></b>		10%	Sandstone clear, white as above. Trace Pyrite.
		10%	Siltstone as above.
		40%	Shale, gray, gray-green, varicolor mottled, firm blocky, some splintery, noncalcareous, dolomitic, some with Pyrite inclusions.
		Trace	Anhydrite, white, soft, chalky, limey.
·		Trace C	nert white, cream, hard, sharp.
	7 96 0- / 97 0	55%	Doromite as above.
<u> </u>		10%	Limestone as above.
		20%	Shale as above.
		10%	Siltstone as above.
-		5*	Sandstone as above.
		Trace	Anhydrite as above.
-		Common	Pyrite as above.
-		Trace	Chert as above.
	79/0-/980	60%	Doromite as above.
		Trace	Limestone as above.
		20%	Shale as above.
5		10%	Siltstone as above.
-		10%	Sandstone as above.
		Trace	Anhydrite, Pyrite, Chert as above.
	90 <del>-</del> 7 <del>-</del> 90 <del>-</del> 7	80%	Dolomite as above.
		15%	Shale as above.
		5%	Siltstone as above.
-		Trace	Limestone, Sandstone, Anhydrite, Pyrite, Chert as above.

.

	90 – 8000 פע 7	70%	Dolomite, cream, pink, cryptocrystalline hard, dense, very sandy in part.
~		20%	Shale, gray, gray-green some varicolor, firm, splintery, waxy, dolomitic in part, noncalcareous in part with Pyrite inclusions.
-		5%	Siltstone red-brown firm, micaceous, Anhydritic in part.
~		5*	Sandstone predominately very fine-fine grained, clear frosted, loose quartz grains.
_		Trace	Limestone white, soft chalky.
	8000- <b>0</b> 010	85%	Do⊥omite as above.
		10%	Shale as above with Pyrite inclusions.
		Trace-1	& Siltstone as above.
		5%	Sandstone as above.
	8010-0020	90%	Dolomite as above.
		10%	Shale, pale gray-green waxy as above.
_		Trace	Siltstone as above.
		Trace	Sandstone as above, trace Pyrite, trace Chert, orange, white.
-	8020-8030	80 5	Dolomite as above, very sandy.
		10%	Shale as above.
		10%	Sandstone predominately very fine-fine grained, loose subrounded quartz grains.
		Trace	Siltstone red-brown as above.
		Trace	Pyrite, trace Chert.
_	8030-8040	808	Dolomite as above.
		10%	Shale as above with increasing maroon, varicolor waxy.
		10%	Sandstone-loose quartz grains as above.
-		Trace-1	% Siltstone red-brown micaceous.

			$\smile$
-	8040-8050	80%	Dolomite, cream, pink, cryptocrystalline- microcrystalline, hard, dense, silty in part. Some very sandy grading to dolomitic Sandstone.
		10%	Shale, pale gray-green, varicolor, waxy, calcareous-noncalcareous with Pyrite inclusions.
~		10%	Sandstone very fine-fine grained, predominately loose rounded-subrounded quartz grains.
•		Trace	Siltstone red-brown micaceous.
		Trace	Limestone white, soft, chalky.
	8050-8060	90%	Dolomite predominately cream, pink as above with very common light tan, light buff cryptocrystalline-microcrystalline hard, dense.
	NSOFC	10%	Shale as above with increasing maroon, varicolor, mottled.
		Trace	Siltstone, Sandstone as above.
	8060-8070	100%	Dolomite, light tan, light buff, cryptocrystalline-microcrystalline, hard, dense; trace cream, pink as above.
	NSOFC	Trace-19	Shale and Siltstone as above (cavings?)
<b></b>	8070-8080	100%	Dolomite as above.
		Trace-1	Shale and siltstone as above (cavings?)
	80 80 - 80 90	100%	Dolomite as above.
_	8090-8100	100%	Dolomite as above.
		Trace	Chert, cream, light tan, hard, sharp.
_	8100-8110	100%	Dolomite light tan, buff, microcrystalline,
	NSOFC		inclusions. Trace ghost oolite structure.
	8110-8120 NSOFC	100%	Dolomite as above.
	8120-8130	100%	Dolomite as above.
	8130-8140	100%	Dolomite as above some becoming silicaeous, increasing Chert, light tan, buff, hard, sharp.
-	8140-8150	100%	Dolomite as above.

•

			$\smile$ $\bigcirc$ $\neg$
_	8250-8160	100%	Dolomite light tan, cream, light buff, cryptocrystalline-microcrystalline, hard, dense with trace ghost oolite, fossil fragments.
_		Trace	Annydrite white, soft, chalky, limey.
	8160-8170	100%	Dolomite as above.
, ,	8170-8180	100%	Dolomite as above, trace Chert, tan, hard, sharp.
_	81 80 - 81 90 NSOFC	100%	Dolomite as above, hard, dense, trace Chert. No visible porosity or permeability.
_	8190-8200	100%	Doıomite, trace Chert.
	8200-8210	100%	Dolomite, light tan, buff, microcrystalline, hard, dense, very scant trace pinpoint
~-	NSOFC		intercrystalline porosity. Trace Chert.
_	8210-8220	100%	Dolomite as above predominately light tan- cream, cryptocrystalline with trace light tan-tan microcrystalline. No visible porosity or permeability.
	NSOFC		
	8220-8230 NSOFC	100%	Doromite as above. No visible porosity or permeability.
	8230-8240 NSOFC	100%	Do⊥omite as above. No visible porosity or permeability. Trace stylolites.
	8240-8250	100%	Dolomite as above with increasing tan-light brown microcrystalline. No visible porosity
	NSOFC		or permeability.
	8250-8260	100%	Dolomite light tan-tan, light brown microcrystalline with very abundant cream
_	NSOFC		porosity or permeability.
	8260-8270	100%	Dolomite as above. No visible porosity or permeability.
	NSOFC	Trace	Anhydrite white, pink, very limey.
<b>Veringent</b>	8270-8280	100%	Dolomite as above. No visible porosity or permeability.
		Trace	Pale green, varicolor Shale.
-		Trace	Anhydrite white, soft, limey.

-	82 80 - 82 90	100%	Dolomite as above, no visible porosity or permeability.
-		Trace	Shale, pale green, varicolor, waxy with Pyrite inclusions.
-		Trace	Anhydrite, white soft.
	8290-8300	100%	Dolomite as above.
-		Trace	Shale as above.
-		Trace	Anhydrite as above.
	8300- <del>8</del> 310	998	Dolomite as above, no visible porosity or permeability.
-	NSOFC	1%	Shale as above.
-		Trace	Siltstone red-brown micaceous.
		Trace	Chert, cream, light tan, hard, sharp.
<b>-</b>	8310-8320	99%	Dolomite as above.
-		18	Shale, pale green, varicolor waxy with trace Pyrite inclusions.
		Trace	Siltstone red-brown micaceous.
-		Very Sca fine gra	ant Trace Sandstone, clear frosted, very fine- ained with Anhydrite, Dolomite matrix.
-	8320-8330	98%	Dolomite, light tan, cream cryptocrystalline- microcrystalline, dense. Trace stylolites, trace Anhydritic inclusions.
	NSOFC	28	Shale as above.
-		Trace	Anhydrite, cream, white soft, marly.
-		Trace	Chert, cream, light tan, hard, sharp.
_	8330-8340	100%	Dolomite, light tan, cream, trace light brown, cryptocrystalline-microcrystalline, hard, dense with trace stylolites. No visible porosity or permeability.
-		Trace	Shale, Siltstone as above.
		Trace	Chert, Anhydrite as above.
-			

205 Dolomite becoming predominately light tan-8340-8350 100% very light brown, microcrystalline hard, dense, with trace microsucrosic texture. Trace intercrystalline porosity. Trace .5mm open fracture porosity << 1% of sample. yellow mineral fluorescence. No cut. Trace-1% No gas increase, no CO2 increase. Dolomite as above some cream with floating 8350-8360 100% quartz grain inclusion. No visible porosity or permeability. NSOFC Chert, Trace Anhydrite as above. Trace Dolomite as above with very scant trace dead 8360-8370 100% black stain, intercrystalline on fract faces, no cut, no gas increase, no CO2 increase. Chert, trace Anhydrite, pink, cream limey. Trace Dolomite light tan-light brown as above. 8370-8380 100% Trace Chert, trace Anhydrite as above. Dolomite becoming light-medium brown, micro-83 80 - 83 90 100% crystalline, hard, dense, no visible porosity or permeability. Trace Chert, trace Anhydrite as above. Dolomite as above, light-medium brown. 8390-8400 100% Dolomite cream, light tan, very light brown, 100% 8400-8410 microcrystalline, hard, dense. Very scant trace dead black stain. Trace Chert, trace Anhydrite. Dolomite as above some becoming very fine 8410-8420 100% crystalline with trace intercrystalline porosity. Trace fract porosity. Trace black stain on fract faces. Trace yellow mineral fluorescence, no cut. 100% Dolomite becoming predominately very light 8420-0430 tan-cream microcrystalline to very fine crystalline with common microsacrosic texture. Trace crystalline porosity, trace fract porosity with black stain on fract faces, extremely weak milky yellow cut and residue ring from pinch of gross sample. 5% yellow mineral fluorescence.

			206
	8430- <b>0440</b>	100%	Dolomite as above with extremely weak show as above.
		Trace	Chert, trace Anhydrite.
	8440-8450	100%	Dolomite very light tan-cream, very fine crystalline microsucrosic with extremely weak show as above.
		Trace	Chert, trace Anhydrite.
	8450- <b>5</b> 460	100%	Dolomite as above.
,	8460-8470	100%	Doromite as above.
		TRIP SA	MPLE ABUNDANT CAVINGS.
-	8470-8480	100%	Dolomite as above.
-			Common cavings.
	84 80 - 84 90	100%	Dolomite as above.
-	8 <b>490-</b> 0500	100%	Doromite as above.
	8500- <b>0</b> 510	100%	Dolomite as above with common very vuggy, crystalline porosity, trace fract porosity, very scant trace dead oil stain, trace mineral fluorescence. No cut.
	8510-8520	100%	Dolomite predominately cream with some very light tan microcrystalline-fine crystalline with common vuggy, crystalline porosity, trace fract porosity, trace dead stain, mineral fluorescence, no cut.
	8520-8530	100%	Dolomite with porosity as above.
	8530-8540	100%	Dolomite as above with porosity as above.
-	8540-8550	100%	Dolomite as above.
<b>.</b> -	8550- <b>0</b> 560	100%	Dolomite predominately cream, with some very light tan microcrystalline-fine crystalline, with common vuggy and crystalline porosity, trace fract porosity, very scant trace dead black stain with no cut.
			Trace mineral flourescence.
-			Trace Anhydrite white, pink soft.
_			Trace Chert, white, cream.
	8560-8570	100%	Dolomite as above, trace Chert.
-	8570-8580	100%	Dolomite as above, trace Chert.

			$\smile$ $\bigcirc$
-	85 80 - 85 90	100%	Dolomite as above, trace Chert.
-	85 90 - 86 0 0	100%	Dolomite as above, trace Chert.
	8600-0610	100%	Dolomite as above, with increasing light tan microcrystalline.
-		Trace	Chert.
-	8610-8620	100%	Dolomite as above with increasing light tan microcrystalline.
	8620-8630	100%	Dolomite as above with very common light tan-tan cryptocrystalline-microcrystalline hard, dense.
-	8030-8640	100%	Dolomite predominately light tan-tan microcrystalline, hard, dense, with trace fract, trace Chert inclusions. Common cream very fine-fine crystalline with porosity as above.
-	86 40 - 86 50	100%	Dolomite predominately light tan-tan microcrystalline as above. NSOFC with trace- common cream very fine-fine crystalline with vuggy, crystalline, fract porosity as above. Trace dead black stain, no cut.
_	8650-8660	100%	Dolomite predominately tan microcrystalline, hard, dense with common cream very fine crystalline.
-		Trace	Anhydrite, white, soft.
		Trace	Chert, cream, light tan hard, sharp.
-	8660-8670	100%	Dolomite, predominately tan microcrystalline as above with common cream very fine crystal- line as above.
		Trace	Anhydrite, Chert as above.
_	8670-8680	100%	Doıomite as above, common Chert white, cream.
		Trace	Anhydrite, white, soft.
-	86 80 - 86 90	100%	Dolomite as above becoming very cherty.
		Trace	Anhydrite.
-	86 90 - 8/00	100%	Dolomite tan-light brown with very common Chert white, cream, light tan, hard, sharp.
-	NDUE C	Trace	Anhydrite.
	8/00-8/10	90%	Dolomite as above.
		10%	Chert, white, cream, hard, sharp.

		$\smile$	$\smile$	208
8710-8/20	90%	Dolomite as above crystalline.	tan-light brown	micro-
	10%	Chert white, cream,	light tan hard, s	harp.
8720-8/30	95%	Dolomite as above.		
	5%	Chert as above.		
	Trace	Anhydrite white soft	t.	
8/30-8740	95%	Dolomite as above.		
	5%	Chert as above.		
	Trace	Anhydrite as above.		
8/40-8750	95%	Dolomite as above.		
	5%	Chert as above.		
	Trace	Anhydrite white, so	ft.	
8750-8/60	95%	Dolomite tan-light microcrystalline, h abundant Chert incl	brown, some medium ard, dense with ve usions.	n brown ery
	5%	Chert cream, light	tan-tan hard, sha	rp.
	Trace	Anhydrite white, so	ft.	
8/60-8770	95%	Dolomite as above.	1.	
	5%	Chert as above.	j i c f	
	Trace	Anhydrite as above.		
8770-8780	95	Dolomite as above.		
	5%	Chert as above.		
	Trace	Annydrite as above.		
8/80-8/90	95%	Dolomite as above.		
	5%	Chert as above.		
	Trace	Anhydrite as above.		
87 <del>- 88 - 90 - 880 0</del>	95%	Dolomite as above.		
	5%	Chert as above.		
	Trace	Annydrite as above.		

8800-8810 95% Dolomite tan-light brown, microcrystalline hard, dense with very abundant Chert inclusions. Chert, cream, tan, smokey, hard, sharp. 5% Anhydrite white, soft chalky. Trace 8810 - 882095% Dolomite as above. 5% Chert as above. Anhydrite as above. Trace 8820-8830 95% Dolomite as above. 5% Chert as above. Trace-common Anhydrite as above. 95% Dolomite as above. 8830-8840 5% Chert as above. Trace-common Anhydrite as above. 8840-8850 95% Dolomite as above. Chert as above. 5* Trace-common Anhydrite as above. Dolomite predominately tan-light brown, 8850-0860 90% microcrystalline, hard, dense with abundant chert inclusions, trace-common Anhydrite inclusions; some cream very fine crystalline Dolomite. Chert white, tan, clear, smokey, hard, sharp. 10% Trace-common Anhydrite white, soft marly. NSOFC Dolomite predominately tan-light brown, 90% 8860-8870 microcrystalline, hard, dense with abundant chert inclusions, trace-common Ahydrite inclusions; some cream very fine crystalline Dolomite. NSOFC Chert white, tan, clear, smokey, hard, sharp. 10% Trace-common Anhydrite white, soft marly.

	\ \	$\sim$	$\smile$	
8870-8880	90%	Doiomite predominatel microcrystalline, har chert inclusions, tra inclusions; some crea Dolomite.	y tan-light brown, d, dense with abunda ce-commmon Anhydrite m very fine crystal]	int ine
NSOFC	10%	Chert white, tan, cle	ar, smokey, hard, sh	narp.
	Trace-c	ommon Anhydrite white,	soft marly.	
8880 – 8890	90%	Dolomite predominatel microcrystalline, har chert inclusions, tra inclusions; some crea Dolomite.	y tan-light brown, d, dense with abunda ace-common Anhydrite am very fine crystal	ant Line
NSOFC	10%	Chert white, tan, cle	ear, smokey, hard, sl	narp.
	Trace-c	common Anhydrite white,	, soft marly.	
8890-8900	90%	Dolomite predominatel microcrystalline, har chert inclusions, tra inclusions; some crea Dolomite.	ly tan-light brown, d, dense with abunda ace-common Anhydrite am very fine crystal	ant line
NSOFC	10%	Chert white, tan, cle	ear, smokey, hard, sl	harp.
	Trace-c	common Anhydrite white,	, soft marly.	
8900-8910	95%	Dolomite tan-light br with abundant cream v abundant Chert inclus inclusions.	rown microcrystalling very fine crystalling sions, abundant Anhyg	e e; drite
	58	Chert, white, tan, tr	race smokey hard, sh	arp.
NSOFC	Trace-c	common Anhydrite white,	, soft marly.	
8910-8920	95 <b>%</b> .	Dolomite tan-light br with abundant cream v abundant Chert inclus inclusions.	rown microcrystallin very fine crystallin sions, abundant Anhy	e e; drite
	5%	Chert, white, tan, tr	race smokey, hard, s	harp.
	Trace-c	common Anhydrite white,	, soft marly.	
NSOFC				

	```	$\smile$ $\bigcirc$				
8920-8930	95%	Dolomite tan-light brown microcrystalline with abundant cream very fine crystalline; abundant Chert inclusions, abundant Anhydrite inclusions.				
NGORG	58	Chert, white, tan, trace smokey, hard, sharp.				
NSOFC	Trace-c	ommon Anhydrite white, soft marly.				
8930-8940	95%	Dolomite tan-light brown microcrystalline with abundant cream very fine crystalline; abundant Chert inclusions, abundant Anhydrite inclusions.				
NAORA	58	Chert, white, tan, trace smokey, hard, sharp.				
NSOFC	Trace-c	Trace-common Anhydrite white, soft marly.				
8940-8950	95%	Dolomite tan-light brown microcrystalline with abundant cream very fine crystalline; abundant Chert inclusions, abundant Anhydrite inclusions.				
NSOFC	5% Trace-c	Chert, white, tan, trace smokey, hard, sharp.				
8950-8960	100%	Dolomite tan-light brown microcrystalline- very fine crystalline with trace fine-medium crystalline, abundant Chert inclusions, trace Anhydrite inclusions; common cream-very light tan, very fine-medium crystalline with abundant Anhydrite inclusions.				
	Trace-1	<pre>% Chert tan, smokey, hard, sharp.</pre>				
	Common	Anhydrite, white, soft chalky, limey.				
8960-8970	100%	Dolomite tan-light brown microcrystalline- very fine crystalline with trace fine-medium crystalline, abundant Chert inclusions, trace Anhydrite inclusions; common cream-very light tan, very fine-medium crystalline with abundant Anhydrite inclusions.				
	Trace-1	& Chert tan, smokey, hard, sharp.				
	Common NSOFC	Anhydrite, white, soft chalky, limey.				

100% Dolomite tan-light brown microcrystallinevery fine crystalline with trace fine-medium crystalline, abundant Chert inclusions, trace Anhydrite inclusions; common cream-very light tan, very fine-medium crystalline with abundant Anhydrite inclusions.

Trace-1% Chert tan, smokey, hard, sharp.

Common Anhydrite, white, soft chalky, limey. NSOFC

8980-8990

100% Dolomite tan-light brown microcrystallinevery fine crystalline with trace fine-medium crystalline, abundant Chert inclusions, trace Anhydrite inclusions; common cream-very light tan, very fine-medium crystalline with abundant Anhydrite inclusions.

Trace-1% Chert tan, smokey, hard, sharp.

Common Anhydrite, white, soft chalky, limey. NSOFC

8990-9000

100%

Dolomite tan-light brown microcrystallinevery fine crystalline with trace fine-medium crystalline, abundant Chert inclusions, trace Anhydrite inclusions; common cream-very light tan, very fine-medium crystalline with abundant Anhydrite inclusions.

Trace-1% Chert tan, smokey, hard, sharp.

Common Anhydrite, white, soft chalky, limey. NSOFC

9000-9010 100% Dolomite predominately cream-light tan, finemedium crystalline, dense with trace-common Anhydrite inclusions. Trace vuggy, crystalline porosity. NSOFC; common tan-light brown, very fine-fine crystalline with some microcrystalline hard, dense, cherty.

Common Chert tan, white, clear hard, sharp.

Common Anhydrite white, very light tan soft, earthy marly.
		213
9010-9020	100%	Dolomite predominately cream-light tan, fine- medium crystalline, dense with trace-common Annydrite inclusions. Trace vuggy, crystalline porosity. NSOFC; common tan-light brown, very fine-fine crystalline with some microcrystalline hard, dense, cherty.
	Common	Chert tan, white, clear hard, sharp.
	Common	Anhydrite white, very light tan soft, earthy marly.
9020-9030	100%	Dolomite predominately cream-light tan, fine- medium crystalline, dense with trace-common Anhydrite inclusions. Trace vuggy, crystalline porosity. NSOFC; common tan-light brown, very fine-fine crystalline with some microcrystalline hard, dense, cherty.
	Common	Chert tan, white, clear hard, sharp.
	Common	Anhydrite white, very light tan soft, earthy marly.
9030-9040	100%	Dolomite predominately cream-light tan, fine- medium crystalline, dense with trace-common Anhydrite inclusions. Trace vuggy, crystalline porosity. NSOFC; common tan-light brown, very fine-fine crystalline.with some microcrystalline hard, dense, cherty.
),	Common	Chert tan, white, clear hard, sharp.
	Common	Anhydrite white, very light tan soft, earthy marly.
50 <del>40 – 90 50</del>	100%	Dolomite predominately cream-light tan, fine- medium crystalline, dense with trace-common Annydrite inclusions. Trace vuggy, crystalline porosity. NSOFC; common tan-light brown, very fine-fine crystalline with some microcrystalline hard, dense, cherty.
	Common	Chert tan, white, clear hard, sharp.
	Common	Anhydrite white, very light tan soft, earthy marly.

9050-9060 100% Dolomite dark cream-very light tan, very fine-fine crystalline with some tan microcrystalline-very fine crystalline cherty in part, anhydritic in part; no visible porosity very scant trace dead, black small trace.

Trace Chert and tan, hard, sharp.

Common Anhydrite white, very light tan, very soft earthy, marly.

9060-9070 100% Dolomite dark cream-very light tan, very fine-fine crystalline with some tan microcrystalline-very fine crystalline cherty in part, anhydritic in part; no visible porosity very scant trace dead, black small trace.

Trace Cnert and tan, hard, sharp.

Common Anhydrite white, very light tan, very soft earthy, marly.

9070-9080

100%

Dolomite dark cream-very light tan, very fine-fine crystalline with some tan microcrystalline-very fine crystalline cherty in part, anhydritic in part; no visible porosity very scant trace dead, black small trace.

Trace Cnert and tan, hard, sharp.

Common Anhydrite white, very light tan, very soft earthy, marly.

9080-9090 100% Dolomite dark cream-very light tan, very fine-fine crystalline with some tan microcrystalline-very fine crystalline Chert in part, Anhydritic in part; no visible porosity very scant trace dead, black small trace.

Trace Chert and tan, hard, sharp.

Common Anhydrite white, very light tan, very soft earthy, marly.

**9090-9⊥00** 

100% Dolomite dark cream-very light tan, very fine-fine crystalline with some tan microcrystalline-very fine crystalline cherty in part, anhydritic in part; no visible porosity very scant trace dead, black small trace.

Trace Chert and tan, hard, sharp.

Common Anhydrite white, very light tan, very soft earthy, marly.

` <b>_</b>	9100-9110	100%	Dolomite, cream, dark cream-very light tan, very fine-fine crystalline with some tan microcrystalline-very fine crystalline cherty
•			in part anhydritic in part very scant trace vuggy porosity in cream-dark cream. Very scant trace dead black stain.
	NOFC	Trace	Cnert tan, hard sharp.
		Trace	Annydrite white, soft, earthy, chalky.
-	9110- <del>9</del> 120	100%	Dolomite, cream, dark cream-very light tan, very fine-fine crystalline with some tan microcrystalline-very fine crystalline cherty in part, anhydritic in part very scant trace vuggy porosity in cream-dark cream. Very scant trace dead black stain.
	NOFC	<b>T</b>	Grant ten hand sharp
		Trace	Chert tan, hard sharp.
		Trace	Anhydrite white, soft, earthy, chalky.
-	9120-y130	100%	Dolomite, cream, dark cream-very light tan, very fine-fine crystalline with some tan microcrystalline-very fine crystalline cherty in part anhydritic in part very scant trace
<b></b>			vuggy porosity in cream-dark cream. Very scant trace dead black stain.
	NOFC	Trace	Chert tan, hard sharp.
		Trace	Anhydrite white, soft, earthy, chalky.
-	9130-y140	100%	Dolomite, cream, dark cream-very light tan, very fine-fine crystalline with some tan microcrystalline-very fine crystalline cherty
			in part anhydrite in part very scant trace vuggy porosity in cream-dark cream. Very scant trace dead black stain.
<b></b>	NOFC	Trace	Cnert tan, hard sharp.
\		Trace	Anhydrite white, soft, earthy, chalky.
	9140-9150	100%	Dolomite, cream, dark cream-very light tan, very fine-fine crystalline with some tan
			microcrystalline-very fine crystalline cherty in part anhydritic in part very scant trace vuggy porosity in cream-dark cream. Very scant trace dead black stain.
	NOFC	Trace	Chert tan, hard sharp.
_		<b>Mr a a a</b>	Annudrito white soft earthy chalky
		TLACE	Annyarice white, Sore, Earchy, Charky.

9150-y160 100% Dolomite cream very fine-fine crystalline, light tan-tan microcrystalline-very fine crystalline cherty in part anhydritic in part with very scant trace vuggy and fracture porosity very scant trace dead black stain:

Trace Chert tan, white hard, sharp.

Trace Annydrite white, soft.

Trace Shale parting some black siliceous Micaceous.

9160-9170 100% Dolomite cream very fine-fine crystalline, light tan-tan microcrystalline-very fine crystalline cherty in part anhydritic in part with very scant trace vuggy and fracture porosity very scant trace dead black stain:

Trace Chert tan, white hard, sharp.

Trace Anhydrite white, soft.

Trace Shale parting some black siliceous Micaceous.

9170-9180 100% Dolomite cream very fine-fine crystalline, light tan-tan microcrystalline-very fine crystalline cherty in part anhydritic in part with very scant trace vuggy and fracture porosity very scant trace dead black stain:

Trace Chert tan, white hard, sharp.

Trace Annydrite white, soft.

Trace Shale parting some black siliceous Micaceous.

9180-9190 100% Dolomite cream very fine-fine crystalline, light tan-tan microcrystalline-very fine crystalline cherty in part anhydritic in part with very scant trace vuggy and fracture porosity very scant trace dead black stain:

Trace Chert tan, white hard, sharp.

Trace Annydrite white, soft.

Trace Shale parting some black siliceous micaceous.

9190-9200

100%

Dolomite cream very fine-fine crystalline, light tan-tan microcrystalline-very fine crystalline, cherty in part anhydritic in part with very scant trace vuggy and fracture porosity very scant trace dead black stain:

Trace Chert tan, white hard, sharp.

Trace Annydrite white, soft.

Trace Shale parting some black siliceous Micaceous.

9200-9210

100% Dolomite light-dark cream very fine crystalline-fine crystalline dense-fracture with common white Anhydrite inclusions light tan-light brown microcrystalline-fine crystalline hard, dense cherty in part; occasional black shale partings included within darker Dolomite; occasional ghost pelletal or oolitical structure; ghost broken fossil fragments; cherty in part, no visible porosity.

Trace Chert white, clear, tan hard, sharp Common Anhydrite white, soft, chalky.

Scattered black siliceous shale partings.

9210-y220

0 100% Dolomite light-dark cream very fine crystalline-fine crystalline dense-fracture with common white anhydritic inclusions light tan-light brown microcrystalline-fine crystalline hard, dense cherty in part; occasional black shale partings included within darker Dolomite; occasional ghost pelletal or oolitical structure; ghost broken fossil fragments; cherty in part, no visible porosity.

Trace Cnert white, clear, tan hard, sharp.

Common Anhydrite white, soft, chalky.

Scattered black siliceous shale partings.

9220-9230 100%

Dolomite light-dark cream very fine crystalline-fine crystalline dense-fracture with common white Anhydrite inclusions light tanlight brown microcrystalline-fine crystalline hard, dense chert in part; occasional black shale partings included within darker Dolomite; occasional ghost pelletal or oolitical structure; ghost broken fossil fragments; chert in part, no visible porosity.

Trace Cnert white, clear, tan hard, sharp. Common Anhydrite white, soft, chalky.

Scattered black siliceous shale partings.

9230-9240

100% Dolomite light-dark cream very fine crystalline-fine crystalline dense-fracture with common white anhydritic inclusions light tan-light brown microcrystalline-fine crystalline hard, dense cherty in part; occasional black shale partings included within darker Dolomite; occasional ghost pelletal or oolitical structure; ghost broken fossil fragments; cherty in part, no visible porosity.

Trace Chert white, clear, tan hard, sharp

Common Anhydrite white, soft, chalky.

Scattered black siliceous shale partings.

9240-9250

100% Dolomite light-dark cream very fine crystalline-fine crystalline dense-fracture with common white aAnhydritic inclusions light tan-light brown microcrystalline-fine crystalline hard, dense cherty in part; occasional black shale partings included within darker Dolomite; occasional ghost pelletal or oolitical structure; ghost broken fossil fragments; cherty in part, no visible porosity.

Trace Cnert white, clear, tan hard, sharp Common Anhydrite white, soft, chalky. Scattered black siliceous shale partings. 9250-9260 100% Dolomite predominately dark cream-very light tan microcrystalline-very fine crystalline hard dense; some light cream anhydritic, some tan-light brown Cherty.

Trace Chert white, cream, light tan trace hard, sharp.

Trace-common Anhydrite.

Trace Shale partings-gray waxy, black siliceous Miaceous very scant trace Siltstone partings redbrown sandy or ghose pelletal or oolitical structure; trace ghost fossil fragments.

9260-9270 100% Dolomite predominantly dark cream-very light tan microcrystalline-very fine crystalline hard dense; some light cream anhydritic, some tan-light brown cherty.

Trace Cnert white, cream, light tan trace hard, sharp.

Trace-common Anhydrite.

Trace Snale partings-gray waxy, black siliceous Miaceous very scant trace Siltstone partings redbrown sandy or ghost pelletal or oolitical structure; trace ghost fossil fragments.

9270-9280 100% Dolomite predominately dark cream-very light tan microcrystalline-very fine crystalline hard dense; some light cream Anhydritic, some tan-light brown cherty.

Trace Chert white, cream, light tan trace hard, sharp.

Trace-common Anhydrite.

Trace Shale partings-gray waxy, black siliceous Miaceous very scant trace Siltstone partings redbrown sandy or ghost pelletal or oolitical structure; trace ghost fossil fragments. 100% Dolomite predominantly dark cream-very light tan microcrystalline-very fine crystalline hard dense; some light cream anhydritic, some tan-light brown cherty.

Trace Cnert white, cream, light tan trace hard, sharp.

Trace-common Anhydrite.

Trace Shale partings-gray waxy, black siliceous Miaceous very scant trace Siltstone partings redbrown sandy or ghost pelletal or oolitical structure; trace ghost fossil fragments.

9290-9300 Logged after trip-

9280-9290

95% Dolomite cream-light brown as above.

Trace Cnert as above.

Trace Anhydrite as above.

Common Shale gray-green waxy non calcite.

- 9300-310 98% Dolomite cream-light tan microcrystalline hard, dense cherty in part; some cream-light tan very fine crystalline microsucrosic Annydritic in part.
  - 01% Shale gray-green, gray waxy.
  - 01% Siltstone red-brown sandy Anhydritic

Trace Chert tan, cream hard, sharp.

Trace Anhydrite white, soft.

- 9310-9320 95% Dolomite as above predominately cream-tan microcrystalline hard, dense. Some anhydritic.
  - 03% Shale gray, gray-green, maroon waxy.
  - 02% Siltstone red-brown sandy anhydrite trace cherty and anhydritic as above.

Dolomite as above with some decreasing medium 70% 9320-9330 brown hard, dense. Some Dolomite with trace floating medium green quartz greens. Shale gray, dark gray-green waxy, Micaceous 20% in part above maroon, varicolor paste light waxy. Siltstone red-brown sandy Anhydrite in part. 05% Anhydrite white, soft-fine some very fine 038 crystalline. Chert tan, white, hard, sharp. 02% Dolomite as above with some decreasing dark 70% 9330-9340 gray shaley. Shale predominately dark gray-green firm 30% waxy Micaceous in part Dolomite in part with variable gray-green. gray, variable color waxy. Trace Siltstone, Anhydrite, Chert as above. Dolomite predominately cream-light tan 9340-9350 80% microcrystalline hard, dense with common gray gray-brown microcrystalline-very fine crystalline; trace microsucrosic texture; Cherty in part some cream-light tan Anhydritic in part, some dark gray Dolomite shaley, silty. Shale gray, gray-green, green, dark gray 20% maroon firm, waxy, some Dolomitic, thinly interbedded with Dolomite as above. Trace Siltstone red-brown sandy. . Trace Anhydrite and Chert as above. Dolomite as above with increasing dark gray-9350-9360 60% brown microcrystalline-very fine crystalline hard, dense. Shale as above some becoming very dolomitic. 40% Common - 1% Chert and Anhydrite as above. Dolomite as above subequal cream-light tan 9360-9370 90% and dark gray-brown predominantly microcrystalline hard, dense Cherty, with common very fine-fine crystalline microsucrosic Anhydritic. Shale gray-green, dark green, varicolor waxy. 10% Common Chert, Anhydrite as above.

V

9370-9380 90% Dolomite as above.

10% Shale as above. Trace some Sandstone very fine grained white, Glauconite.

Common Chert, Anhydrite as above.

- 9380-9390 95% Dolomite as above becoming predominantly cream-light tan.
  - 05% Shale as above. Trace Sandstone with very fine grained Glauconite.

Common Chert, Anhydrite as above.

- 9390-9400 98% Dolomite as above predominately cream-light tan.
  - 05% Shale as above. Trace Sandstone with very fine grained Glauconite.
  - 02% Shale as above.

Trace common Chert, Anhydrite as above.

9400-5410 100% Dolomite predominantly light tan-cream microcrystalline-very fine crystalline, hard dense some Anhydritic, some Cherty.

> Common - 1% Shale dark gray-green, varicolor, Siltstone red-brown, thinly interbedded with Dolomite as above.

Common Anhydrite white, soft, marly.

9410-9420 100% Dolomite as above.

Trace-1% Shale as above.

Common Anhydrite white, soft, marly, trace Pyrite.

Trace Sandstone with very fine grained Glauconite.

9420-,430 100% Dolomite as above.

Trace-1% Shale as above.

Common Anhydrite white, soft, marly.

Trace Chert and light tan, hard, sharp.

Trace Sandstone white, very fine-fine grained Glauconite, trace Pyrite.

9430-9440 100% Dolomite as above.

Trace-1% Shale as above.

Common Anhydrite white, soft, marly.

Trace Chert and light tan, hard, sharp.

Trace Sandstone white, very fine-fine grained Glauconite, trace Pyrite.

9440-9450 100% Dolomite as above.

Trace-1% Shale as above.

Common Anhydrite white, soft, marly.

Trace Chert and light tan, hard, sharp.

Trace Sandstone white, very fine-fine grained Glauconite, trace Pyrite.

9450-9460 100% Dolomite subequal cream-light tan microcrystalline-very fine crystalline, hard, dense; medium-dark gray-brown microcrystalline-very fine crystalline hard, dense. Trace cream medium crystalline with tan pelloid structure.

> Trace Shale dark gray-gren Micaeous waxy, trace Siltstone red-brown sandy, trace Chert tan, white, hard, sharp. Trace Anhydrite white, soft, trace Pyrite, trace Stylotites in Dolomite.

9460-9470

100% Dolomite subequal cream-light tan P microcrystalline-very fine crystalline, hard, dense; medium-dark gray-brown microcrystalline-very fine crystalline hard, dense. Trace cream medium crystalline with tan pelloid structure.

Trace Snale dark gray-gren Micaeous waxy, trace Siltstone red-brown sandy, trace Chert tan, white, hard, sharp. Trace Anhydrite white, soft, trace Pyrite, trace Stylotites in Dolomite.

9470-9480

100% Dolomite subequal cream-light tan microcrystalline-very fine crystalline, hard, dense; medium-dark gray-brown microcrystalline-very fine crystalline hard, dense. Trace cream medium crystalline with tan pelloid structure.

Trace Snale dark gray-green Micaeous waxy, trace Siltstone red-brown sandy, trace Chert tan, white, hard, sharp. Trace Anhydrite white, soft, trace Pyrite, trace Stylotites in Dolomite.

- 9480-9490 100% Dolomite becoming predominately tan-medium dark gray-brown microcrystalline hard, dense with some very fine-fine crystalline Cherty in part, Anhydritic in part. Decreasing in Shale and Siltstone as above to Pyrite, trace Chert as above, increasing in Anhydrite as above.
- 9490-y500 100% Dolomite as above with increasing cream-very light tan microcrystalline-very fine crystalline; increasing Anhydrite inclusion.
  - 01% Shale dark gray-green, gray waxy, Siltstone red-brown sandy.

Trace Cnert.

75%

Trace Sandstone white, clear, gray-white very finegrained, subrounded-rounded, poor-medium cemented some very light tan, poor cemented Dolomite with Dolomite matrix, common Glauconite inclusion.

Common large, very fine grained quartz greens.

- 9500-9510
- Dolomite predominately cream-very light tan, fine-medium crystalline with abundant microcrystalline-very fine crystalline, some medium gray-dark gray-brown microcrystalline hard, dense. Some tan-light brown fine microcrystalline with trace vuggy crystalline porosity.
- 25% Sandstone white, clear, gray-white very fine grained subrounded-rounded, poor-medium Dolomite with common Glauconite inclusions, common loose very fine grained quartz greens.

Scant trace dead black stain, no cut.

Common yellow, gold minimum Fluorescence no cut.

Common - 1% Shale gray-green, green waxy Micaceous thinly interbedded in Sandstone and Dolomite as above.

- 9510-9520 85% Dolomite as above. Trace dead black stain as above.
  - 15% Sandstone as above. Trace dead black stain as above.

Trace - 1% Shale as above.

9520-9530

100% Dolomite predominately white, cream, very light tan fine crystalline-microcrystalline, microsucrose with trace microcrystalline. Trace Euhedral Dolomite crystalline 5-10% crystalline, porosity trace vuggy porosity, tract fracture porosity.

Trace Anhydrite white, very light pink, chalky, very limey grading to Limestone.

Trace Snale gray-green, dark gray-green waxy.

Trace Sandstone white, gray-white very fine grained Glauconitic.

Trace Siltstone red-brown sandy.

9530-9540 100% Dolomite predominately white, cream, very light tan fine crystalline-microcrystalline, microsucrose with trace microcrystalline. Trace Euhedral Dolomite crystalline 5-10% crystalline, porosity trace vuggy porosity, trace fracture porosity.

Trace Anhydrite white, very light pink, chalky, very limey grading to Limestone.

Trace Shale gray-green, dark gray-green waxy.

Trace Sandstone white, gray-white very fine grained Glauconitic.

Trace Siltstone red-brown sandy.

9540-9550

Dolomite as above becoming predominately microcrystalline-very fine crystalline, hard, dense with common microsucrosic texture.

Trace Snale gray-green waxy, some Micaceous.

Trace Siltstone red-brown sandy.

Trace Common Anhydrite white, pink, chalky, very limey grading to Limestone.

9550-9560 100% Dolo crea

100%

Dolomite as above becoming predominantly dark cream-very light tan microcrystalline-very fine crystalline.

Decreasing Shale, Siltstone as above.

Trace Anhydrite as above.

	9560-9570	100%	Dolomite as above some becomming very Annydritic.	
		Trace Sn	nale gray-green waxy.	
		Trace An	hhydrite pink, white chalky, very limey.	
		Trace Cn	nert white, tan, hard, sharp.	
	9570-9580	100%	Dolomite as above some becomming very Anhydritic.	
		Trace Sr	nale gray-green waxy.	
		Trace Ar	nhydrite pink, white chalky, very limey.	
•		Trace Cr	nert white, tan, hard, sharp.	
•	95 80 - 95 90	100%	Dolomite as above some becomming very Anhydritic	
		Trace St	nale gray-green waxy.	
-		Trace A	nhydrite pink, white chalky, very limey.	
		Trace C	nert white, tan, hard, sharp.	
-	9590-9600	100%	Dolomite as above some becoming very Anhydritic.	
-		Trace Si	nale gray-greèn waxy.	
•	1,	Trace A	nhydrite pink, white chalky, very limey.	
	( ) ( ) ).	Trace C	nert white, tan, hard, sharp.	
-	9600-9610	100%	Dolomite predominately cream-light tan very	•
	NSOFC		with some microsucrosic trace crystalline, vuggy porosity. Anhydritic in part.	
•	9610-9620	Trace S Micaceo	nale gray-green, dark gray-green waxy, some us.	
_		Trace A grading	nhydrite white, pink, chalky, limey, with so to Limestone.	me
-	9620-9030	100%	Dolomite as above becoming predominately microsucrosic with porosity as above. Trac white, tan Chert.	e:
		Trace P	Pyrite, some very Anhydritic.	
-		Dark Sh	ale as above.	
		Trace A	Anhydrite white, pink, soft, chalky, Limey.	
-	9630-9640	100%	Dolomite as above becoming predominately	

Trace Pyrite, some very Anhydritic.

Dark Snale as above.

Trace Anhydrite white, pink, soft, chalky, Limey.

9640-9650 100% Dolomite as above becoming predominately microsucrosic with porosity as above. Trace white, tan Chert.

Trace Pyrite, some very Anhydritic.

Dark Shale as above.

Trace Anhydrite white, pink, soft, chalky, Limey.

9650-9060 100% Dolomite as above becoming predominately microsucrosic with porosity as above. Trace white, tan Chert.

Trace Pyrite, some very Anhydritic.

Dark Snale as above.

Trace Anhydrite white, pink, soft, chalky, Limey.

9660-9670 100% Dolomite as above becoming predominately microsucrosic with porosity as above. Trace white, tan Chert.

Trace Pyrite, some very Anhydritic.

Dark Snale as above.

Trace Anhydrite white, pink, soft, chalky, Limey.

9670-9680 100% Dolomite as above becoming predominately microsucrosic with porosity as above. Trace white, tan Chert.

Trace Pyrite, some very Anhydritic.

Dark Snale as above.

Trace Anhydrite white, pink, soft, chalky, Limey.

9680-9690 100% Dolomite as above becoming predominately microsucrosic with porosity as above. Trace white, tan Chert.

Trace Pyrite, some very Anhydritic.

Dark Snale as above.

Trace Anhydrite white, pink, soft, chalky, Limey.

9690-9/00	100% Dolomite as above becoming predominately microsucrosic with porosity as above. Trace white, tan Chert.
	Trace Pyrite, some very Anhydritic.
	Dark Shale as above.
	Trace Anhydrite white, pink, soft, chalky, Limey.
9700-9710	100% Dolomite as above becoming predominately microsucrosic with porosity as above. Trace white, tan Chert.
	Trace Pyrite, some very Anhydritic.
	Dark Snale as above.
	Trace Anhydrite white, pink, soft, chalky, Limey.
9710-9/20	100% Dolomite as above becoming predominately microsucrosic with porosity as above. Trace white, tan Chert.
	Trace Pyrite, some very Anhydritic.
	Dark Shale as above.
	Trace Anhydrite white, pink, soft, chalky, Limey.
9720-9/28	100% Doiomite as above becoming predominately microsucrosic with porosity as above. Trace white, tan Chert.
	Trace Pyrite, some very Anhydritic.
	Dark Snale as above.
	Trace Anhydrite white, pink, soft, chalky, Limey.

TD 9728 9:00 A.M. 8 August, 1984

Chandler and Associates, Inc. Lawrence State 15-1 spudded 15 May, 1984 in the Blue Gate Shale Member of the Mancos Formation. Geological evaluation began in the Blue Gate Shale at the surface.

#### CRETACEOUS

Mancos ( Blue Gate Shale)

The Blue Gate Shale was typical dark gray to dark graybrown shale. It was firm, blocky, silty and calcareous with traces of broken fossil fragments. No shows were encountered.

Ferron Sandstone

In the L.S. 15-1, the Ferron was predominately light tan to light gray-brown to light gray sandstone. This sandstone was very fine to fine grained and calcareous with white clay matrix and abundant dark mineral inclusions. No shows were noted in the Ferron.

Tununk Snale

The Tununk Shale member of the Mancos was a dark gray firm, blocky, silty shale with occasional thin sandstone and siltstone interlaminations. No shows were found in the Tununk.

Dakota

The Dakota was primarily sandstone and shale in the L.S. 15-1. The sandstone was white, clear, and light tan very fine to fine grained, moderately sorted and well cemented with white clay matrix. No significant shows were noted in the Dakota sandstone.

The Dakota Shales were light gray-green soft and bentonitic with abundant medium gray firm blocky and silty shale. No shows noted.

Cedar Mountain

The Cedar Mountain Formation was primarily Shale with varying amounts of thin white to light tan fine to very fine grained sandstones interbedded. Minor light colored dense Limestones were noted in the samples. The Shale was predominately pale gray-green and soft with varying amounts of

1200 - 1632

1632 - 1707

978 - 1200

Surface - 978

red-brown, maroon and varicolored. Abundant red-green mottled shale was noted also. No shows were found in the Cedar Mountain.

Buckhorn Conglomerate

The Buckhorn Conglomerate was medium to coarse grained varicolored chent pebble conglomerate interbedded with pale gray-green soft bentonitic shale. No shows were noted.

# JURASSIC

#### Morrison Formation

The Morrison Formation was primarily varicolor bentonitic shale very similar to the Cedar Mountain. Abundant pale graygreen and red-brown shales characterize the Morrison. Conglomeratic Sandstones and Chent pebble conglomerates interbedded in the upper portion of the Morrison. No attempt was made to distinguish the various members. No shows were found in the Morrison.

Summerville Formation

Red-brown anhydritic silty shales with thin dense Limestone and siltstone interbeds characterize the Summerville Formation. No shows were found.

# Curtis Formation

The Curtis Formation in the L.S. 15-1 was distinguished by the appearance of medium to dark green-brown very fine to fine grained glauconitic sandstone. This sandstone was subangular to subrounded, moderately sorted and moderately cemented with caleaneous cement. Some fragments near the top had a possible dead brown oil stain. No further evaluation was deemed necessary.

# Entrada Sandstone

The Entrada Sandstone was light red-orange to brick red very fine to fine grained, silty in part with abundant anhydrite inclusions. No shows were noted.

## Carmel Formation

The Carmel lithology was a highly variable complex of gray siltstones, sandstones and shales. Oolitic Limestone dominated the lower portion of this formation. Abundant anhydrite was found throughout with several two to four foot thick beds noted. No shows were noted in the Carmel.

3158 - 3312

2804 - 3158

3312 - 4094

4094 - 4892

2230 - 2318

#### Navajo Sandstone

The Navajo Sandstone was penetrated with the first appearance of white and clear very fine to fine grained subrounded sandstone. This bleached sandstone persisted to depth 4942, where a color change to the typical light redorange was noted. The upper portion contained a minor total gas increase and approximately eighty per cent of the sample had yellow fluorescence with a fair yellow cut and yellow residue ring. Drill stem test #1 was run from 4899 to 4940 to evaluate the show. Abundant fresh was recovered (See DST #1 Report). No further shows were encountered.

## TRIASSIC

#### Kayenta Formation

The Kayenta Formation was white sandstone very fine to fine grained subrounded to subangular with common red-brown and light green shale partings. No shows were noted.

Wingate Sandstone

The Wingate Sandstone in the Lawrence State 15-1 is white to light orange very fine to fine grained sugangular to subrounded poorly to moderately well cemented, very slightly to non-calcareous. No shows were encountered.

Chinle Formation

Colored shales encountered at 5824 marked the top of the Chinle Formation. The mixed lithology of claystone, sandstone siltstone and shale of the Chinle is the typical red-brown, maroon, light gray-green and varicolor. No attempt to distinguish the various members was made.

"Shinarump"

The "Shinarump" of the Lawrence State 15-1 in all probability is the "Moss Back" Member of the Chinle Formation. Communication with Bob Lupe of Amerada Hess and formerly of the U.S.G.S confirms that the true Shinarump is absent at the location of the L.S. 15-1.

The "Shinarump" consisted primarily of a clear to white very fine to medium grained poorly sorted sandstone with about ten per cent having a dead black oil stain. A very weak yellow fluorescence and cut was noted, but no gas increase was found.

Minor red-brown firm silty micromicaceous shales were noted also.

4892 - 5342

5342 - 5503

5503 - 5824

5824 - 5978

5978 - 6088

# Moenkopi (Upper)

The Upper Moenkopi was primarily red-brown silty and varicolor waxy shales with thin siltstones and sandstones interbedded. Varying small amounts of anhydrite were noted also. No significant hydrocarbon shows were encountered.

# Sinbad Limestone

Drill Stem Test #2 was run to evaluate a 17 unit gas increase found from 6792 - 6810 in the Sinbad Limestone. Lithology consisted of light gray microcrystalline to very fine crystalline argillaceous dolomites limestone with a darkbrown to black stain. A very poor weak yellow cut and very weak yellow fluorescence was noted also.

Moenkopi (Lower)

The Lower Moenkopi was a white to light gray siltstone with common to abundant dead black stain. No fluorescence, cut or gas increase was associated with the black stain. Minor varicolored shales were also present in the Lower Moenkopi.

#### PERMIAN

Kaibab

The Kaibab was tested from 7130 to 7224 to evaluate a marginal show found in the dominant dolomite lithology. This dolomite is cream, light tan cryptocrystilline to microcrystalline, silty with no visible porosity. Although up to eighty percent of the sample had black stain, no fluorescence, cut or gas increase was noted. (See DST #3)

#### Toroweap

The Toroweap is described as nearly one hundred percent sandstone: white, clear very fine to medium grained subangular to subrounded moderately to very well cemented, silicious. The interval from 7450 to 7503 was tested with DST #4 to evaluate a weak show that was related to a zone of erratic drilling times. Although the lithology did not change from that previously drilled, a weak yellow-blue fluorescence was noted and a 12 unit gas increase was recorded. (See DST #4)

## Elephant Canyon

Beneath the Toroweap the Elephant Canyon was picked with the appearance of white soft chalky anhydrite.

The varible lithology of the Elephant Canyon consisted of

232

6088 - 6792

6792 - 6900

7262 - 7708

7708 - 8054

7122 - 7262

a complex of dense dolomote very fine to fine grained sandstones, pastel waxy shales and red-brown siltstones. Abundant anhydrite was found throughout. No significant shows were found.

## Deseret Limestone

The appearance of light tan to baff chenty dolomite signaled the top of the Deseret Limestone. The porosity zone of the Mississippian was evaluated with DST #5. (8402 -8465).

A positive drill rate increase associated with visible intercrystalline and fracture porosity necessitated this DST even though the gas increase was very minor. The light tan to cream microcrystalline dolomite had a very weak yellow fluorescence and cut associated with a trace of black stain. (See DST #5)

# DEVONIAN

Ouray

9288 - 9306

9306 - 9690

9670 - TD

The Ouray was picked on the appearance in the samples of an increase in gray-green waxy shale. The Ouray was a cream microcrystalline hard, dense dolomite. No show was found in the Ouray.

# CAMBRIAN

Maxfield Formation

On the basis of electrical and mechanical log correlation at T.D., Bob Lent of Chandler and Associates picked the Maxfield at 9306.

Lithologically the Maxfield was primarily gray-green and dark gray-green waxy shales with thin red siltstones and thin white glauconitic sandstones in the upper part. The lower portion of the Maxfield was a cream to light tan very uniform dolomite.

No shows were noted in the Maxfield.

Ophir Formation

Even though no indication was found in the samples, logs showed that the Ophir was penetrated at 9690. The well was drilled to T.D. at 9278 and logged by Dresser-Atlas of Vernal, Utah.

Should I be of service in any way, please feel free to contact me at any time.

Respectfully submitted. - NV rendergas L. A. Prendergast

L. A. Frendergast Consulting Geologist 187 Reta Drive Grand Junction, Colorado 81503 (303)245-3921