FLORISTIC ANALYSIS

OF THE

VOGELGAT NATURE RESERVE

CAPE PROVINCE

SOUTH AFRICA

CHERYL DE LANGE
1992

Thesis presented for the Degree of Master of Science University of Cape Town

The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or noncommercial research purposes only.

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.

Pillansia templemanii L. Bolus

ACKNOWLEDGEMENTS

I would like to thank Dr and Mrs Ian Williams for all their encouragement during this study and assistance in identifying sub-standard plant specimens, as well as Vogelgat Nature Reserve for financial support. Furthermore, thanks must go to Dr Niel Fairall and the Flora Committee of the Specialist Services Branch of the Department of Nature and Environmental Conservation, for their encouragement, without which I would never have come this far.

CONTENTS

page
ACKNOWLEDGEMENTS
1 INTRODUCTION 4
2 METHODS 5
3 RESULTS AND DISCUSSION 6
4 SYSTEMATIC LIST 8
5 REFERENCES 9

INTRODUCTION

Vogelgat Nature Reserve is situated approximately 10 km east from the centre of Hermanus, in the Kleinrivier Mountains (latitude $34^{\circ} 22^{\prime \prime} 45^{\prime \prime} \mathrm{S}$ and $34^{\circ} 24^{\prime} 20^{\prime \prime}$ S; longitude $19^{\circ} 17^{\prime \prime} 45^{\prime \prime} \mathrm{E}$ and $19^{\circ} 19^{\prime \prime} 45^{\prime \prime} \mathrm{E} ;$ Fig 1) and covers an area of 603 ha . The altitude varies from 10 m at the bottom of the kloof near the "Old Gate" in the south, to 805 m at "Beacon Head", in the north (Fig 2).

The vegetation of the Kleinrivier Mountains falls within the fynbos biome and was one of the areas used by Acocks to describe his veld type 69, fynbos (Acocks 1975).

The objectives of this study were to:
a) compile a checklist of the Reserve;
b) determine species richness;
c) compare to species richness of other fynbos reserves;
d) categorize species according to their survival mechanisms (Noble and Slayter 1980; Bell et al. 1984) .

The Reserve falls into Climatic Region M (Schulze et al. 1978) in that it experiences a Mediterranean type climate. The winter months are characterized by hot, dry winds coming from the interior known locally as "Berg winds". These winds can lead to an increase in temperatures of over $10^{\circ} \mathrm{C}$ within a few hours (Fuggle 1981; Jackson et al. 1971), and are
Fig 1: Location of Reserve

10 km
responsible for the phenomenon of the highest absolute temperatures often being recorded during winter. These winds often coincide with the passing of cold fronts and are often associated with winter rains (Jackson et al. 1971).

Due to the Reserve's mountainous nature, and predominantly southerly aspect, rain is experienced throughout the year. A rain gauge at "Quark House" has been in operation on the Reserve since February 1981 (Fig 2). The mean annual rainfall measured over the eight years, 1981 to 1988, has been 1035 mm (Table 1).

Table 1: Mean monthly rainfall (mm) data for Quark House (1981-1988).

Jan Feb	Mar	Apr	May	Jun	Jul Aug	Sep	Oct	Nov	Dec	Total			
73	80	87	79	78	121	99	93	128	80	53	64	1	035

METHODS

Plants have been actively collected on the Reserve since 1972, the main collector being Dr Ian Williams. One set of these specimens has been housed in a local herbarium specially built for the Reserve, and another at the Bolus (BOL) Herbarium. The specimens were mainly identified by the staff at the Bolus Herbarium, but some have also been identified at the National Herbarium in Pretoria. The nomenclature conforms to Gibbs Russell et al. (1987). A few alien species have become naturalized
in the Reserve and have been included in the check list (Appendix 1).

RESULTS AND DISCUSSION

An overall analysis of the flora and comparison to the Cape of Good Hope Nature Reserve is given in Table 2.

Table 2: The relationship between the number of families, genera and species of Pteridophytes, Monocotyledons and Dicotyledons of the Vogelgat (VG) and Cape of Good Hope (GH) Nature Reserves.

	Pteridophyta				Monocotyledons				Dicotyledons				Total	
	Number		8 total		Number		\% total		Number		\% total			
	VG	GH												
Families	12	5	12,2	5,8	19	15	19,4	17,2	67	67	68,4	77,0	. 98	87
Genera	16	7	4,8	1,8	108	137	32,2	34,7	210	251	62,9	63,5	334	395
species	22	8	2,7	0,7	279	408	34,8	37,4	501	675	62,5	61,9	802	1091

The ratio of monocot to dicot species is $1: 1.79$. This is slightly higher than that for the Cape Point Nature Reserve (1:1,65)(Taylor 1984), but lower that for the Cape Peninsula (1:2.02)(Adamson \& Salter 1950). It is also lower than that recorded by Boucher (1977)(1:2,00) for the Cape Hangklip area.

In the Reserve, over half the total species recorded (54 \%) occur in the first eight families, or 9 of the total families (Table 3). These figures are almost exactly the same as those found by Taylor (1984) at the Cape of Good Hope Nature Reserve (CGHNR). As was found at CGHNR, 25 families (26 \%)
contribute more than 1% of the species. In species richness and distribution of species in families, these two reserves are very similar.

Table 3: Synopsis of families whose species contribute 18 or more towards the total number of species, together with the total number of genera in each family.

Family	Species		Genera	
	total	\%	total	\%
Asteraceae	89	10,7	41	11,5
Iridaceae	63	7,6	16	4,5
Ericaceae	61	7,3	6	1,7
Fabaceae	57	6,9	19	5,4
Orchidaceae	48	5,8	15	4,2
Restionaceae	42	5,1	12	3,4
Poaceae	38	4,6	22	6,2
Cyperaceae	36	4,3	12	3,4
Proteaceae	28	3,4	11	3,1
Campanulaceae	19	2,3	8	2,3
Bruniaceae	14	1,7	6	1,7
Apiaceae	14	1,7	4	1,1
Lobeliaceae	13	1,6	3	0,8
Santalaceae	12	1,4	3	0,8
Rutaceae	11	1,3	5	1,4
Asphodelaceae	10	1,2	4	1,1
Thymelaeaceae	10	1,2	3	0,8
Scrophulariaceae	9	1,1	9	2,5
Selaginaceae	9	1,1	6	1,7
Mesembryanthemae	9	1,1	4	1,1
Geraniaceae	9	1,1	2	0,6
Crassulaceae	9	1,1	2	0,6
Oxalidaceae	9	1,1	1	0,3
Hyacinthaceae	8	1,0	5	1,4
Polygalaceae	8	1,0	2	0,6

From Table 4 it can be seen that only one genus encountered in the Reserve has 15 or more species compared to the nine recorded at Cape Point and 14 at Cape Hangklip.

Table 4: Genera with 10 species or more, in order of numerical importance

Genus or Genera	No Species per Genera
Erica	52
Restio, Disa	14
Ficinia, Aspalathus, Indigofera	13
Tetraria, Thesium, Senecio	10

SYSTEMATIC LIST

The families of Pteridophyta are arranged according to Schelpe (1969) and the Angiosperm families according to Dyer $(1975,1976)$ and Gibbs Russell et al. (1984, 1987). Family names and spelling are as given by Gibbs Russell et al. $(1984,1987)$ except for new names allowed by the International Code of Botanical Nomenclature (Stafleu et al. 1978). In these cases the new names are given first followed by the old under the column "Notes".

Subspecific taxa are included where specimens were determined to this level. Genera and species are arranged alphabetically within each family. Collection numbers of each species is given.

ACOCKS J P A 1975. Veld types of South Africa. Memoirs Botanical Survey of South Africa. No. 40, 2nd edition.

ADAMSON R S T M SALTER 1950. Flora of the Cape Peninsula. Juta, Cape Town.

BELL D T, A J M HOPKINS \& J S PATE 1984. Fire in the Kwongan. In: PATE J S and J S BEARD (eds). Kwongan: Plant life of the Sandplain. Univ Western Aust Press,Nedlands, Western Australia.

BOUCHER C 1977. A provisional check list of the flowering plants and ferns in the Cape Hangklip area. J S A Bot 43:57-80.

DYER R A 1975. The genera of southern African flowering plants. Vol 1. Department of Agricultural Technical Services, Pretoria.

DYER R A 1976. The genera of southern African flowering plants. Vol 2. Department of Agricultural Technical Services, Pretoria.

FUGGEL S R 1981. Macro-climatic patterns within the fynbos biome. Final Report Nat Prog Eviron Sci Fynbos Biome Projects. Univ Cape Town.

GIBBS RUSSELL G E et al. 1984. List of species of southern Afican plants. Mem Bot Surv S Afr No 48.

GIBBS RUSSELL G E et al. 1987. List of species of southern African plants. Edition 2, part 2. Mem Bot Surv S Afr No 56.

JACKSON S P, TYSON P D 1971. Aspects of weather and climate over Southern Africa. Environment Stud Occas Pap 6 Univ Witwatersrand.

NOBLE $I R \& R O$ SLATYER 1980. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43:5-21.

SCHELPE E A C L E 1969. A revised check list of the Pteridophyta of southern Africa. J S Afr Bot 35:127-140.

SCHULZE R E, MC GEE O S 1978. Climatic indices and classifications in relation to the biogeography of Southern Africa. Junk, The Hague. pp 1952 .

STAFLEU F A et al. 1978 (eds). International code of botanical nomenclature. International Association of Plant Taxonomists, Utrecht.

TAYLOR H C 1984. A vegetation survey of the Cape of Good Hope Nature Reserve. II. Descriptive account. Bothalia 15:259-291.

A PHYTOSOCIOLOGICAL SURVEY

of the

VOGELGAT NATURE RESERVE

CAPE PROVINCE

SOUTH AFRICA

CHERYL DE LANGE

1992

Thesis presented for the Degree of Master of Science University of Cape Town

ACKNOWLEDGEMENTS

I would like to thank $\operatorname{Dr} \&$ Mrs Ian Williams for all their encouragement and assistance, and Vogelgat Nature Reserve for its financial aid. The Botanical Research Institute for use of the prográmme TABSORT and computer time particularly Dr Charlie Boucher and Mr Dave McDonald for advice, time and guidance during the initial stages of the study. The Department Nature Conservation, Specialist Services, Flora Committee, and Dr Niel Fairall for all their support and encouragement.

CONTENTS

page
ACKNOWLEDGEMENTS 2
1 INTRODUCTION 5
1.1 STUDY AREA 6
1.2 HISTORY OF THE RESERVE 6
1.3 GEOLOGY AND GEOMORPHOLOGY 7
1.4 TOPOGRAPHY 8
1.5 CLIMATE 9
1.5.1 Wind 9
1.5 .2 Precipitation 10
1.5 .3 Temperature 12
1.6 RECREATION 13
1.7 INTRODUCED SPECIES 14
1.8 PEST PLANTS 14
1.8.1 Leptospermum laevigatum 16
1.8 .2 Hakea gibbosa 16
1.8 .3 Pinus pinaster 16
1.8 .4 Acacia cyclops 16
1.8 .5 Eucalyptus lehmanii 17
2 VEGETATION 17
2.1 METHODS 17
2.1.1 Data collection 18
2.1.2 Table preparation 19
2.2 COMMUNITY DESCRIPTIONS 20
2.2.1 - Mesic Mountain Fynbos 21
2.2.1.1 Phaenocoma prolifera - Chondropetalum hookerianum, open low restioid veld 21
2.2.1.1.1 Brunia alopecuriodes - Chondropetalum
2 deustum mid-dense, mid-high shrubland 23
2.2.1.1.2 Chondropetalum ebracteatum, sparse to mid- dense, mid-high to tall shrubland 24
2.2.1.1.2.1 Chondropetalum ebracteatum - Villarsia capensis, mid-dense, mid-high shrubland 25
2.2.1.1.2.2 Erica coccinea var coccinea -
Widdringtonia cupressiodes, sparse to mid- dense, mid-high proteoid veld 26
2.2.1.1.2.3 Osmitopsis asteriscoides - Erica perspicua, sparse to mid-dense, mid-high to tall shrubland 28
2.2.1.1.2.4 Restio similis - Hypodiscus argenteus, open, mid-high proteoid veld 30
2.2.1.1.3 Aulax umbellata - Protea repens, mid-dense, mid-high proteoid veld 32
2.2.1.1.4 Erica onosmiflora - Brunia alopecuroides, mid-dense, low to mid-high ericoid and restioid veld 34
2.2.2 Forest and Riparian Communities 35
2.2.2.1 Passerina vulgaris - Pentaschistis capensis, sparse to open, mid-high to tall shrubland 35
2.2.2.1.1 Protea nitida - Protea repens, sparse, tall Waboomveld 36
2.2.2.1.2 Psoralea aculeata - Phylica buxifolia sparse to open, mid-high to tall ericioid veld 38
2.2.2.2.1 Curtisia dentata - Ilex mitis closed, tall kloof forest 39
2.2.2.2.2 Erica caffra - Blechnum capense open, mid- high riverine veld 41
3 DISCUSSION 42
4 REFERENCES 46

Fynbos areas are coming under increasing pressure from society in terms of recreation, water supplies and the cut flower trade (Wildlife Society of Southern Africa 1980). As more areas of fynbos disappear and become degraded, particularly in the south-western Cape, it is vitally important that those areas which have been set aside for conservation are managed in the best way possible to ensure their long term survival.

The Vogelgat Nature Reserve's objective is to maintain the greatest possible species diversity and to ensure the long-term survival of the Reserve's' ecosystems. In the fynbos biome fire and alien plant eradication are the main management tools used to meet this objective. To make optimum use of fires it is necessary to know how a specific community will react to a particular fire regime, and hence the need to know what vegetation types occur on the Reserve.

2
The objectives of this study were:
(i) to identify, describe and classify the Coastal Mountain fynbos and remnant forest communities occurring on the Reserve;
(ii) to map the plant communities of the Reserve;
(iii) to relate the plant communities to selected habitat factors, apart from edaphic factors, namely altitude, aspect and topography.

The study was carried out on a private nature reserve, Vogelgat, situated approximately 10 km east from the center of Hermanus, in the Kleinrivier Mountains ($34^{\circ} 24^{\prime} \mathrm{S}$ and $19^{\circ} 18^{\prime} \mathrm{E}$; Fig 1). The Reserve covers an area of 603 ha, varying in altitude from 10 m in the kloof near the "Old Gate" in the south, to 805 m at "Beacon Head", in the north (Fig 2).

The mountain fynbos of the Kleinrivier Mountains falls within the fynbos biome (Kruger 1978) and Acocks veld type 69, fynbos (Acocks 1975). The area experiences a mediterranean type climate with most rain falling between May and September, summers generally being hot and dry (Schulze et al. 1978). Hot, dry, north-easterly winds, locally known as "Berg winds", are common during winter. The soils are typically those of the Table Mountain Group, being sandy, stoney, infertile and acidic (Taylor 1978).

1.2 HISTORY OF THE RESERVE

The farm, Vogelgat, has a recorded history of sheep grazing from 1873 until the late nineteen sixties. No records were kept regarding frequency or seasons in which the area was burnt nor as to when, and intensity grazed. It appears that the mountains were mainly used as a route to bring sheep to the harbour at Hermanus for export. As the sheep were grazed on the
Fig 1: Location of Reserve

plains in the Caledon district, there would have been little grazing by sheep while they crossed over the mountain. Since records are not available as to the state of the vegetation prior to this practice, it is difficult to determine the damage done. Acocks, while undertaking his vegetation survey, regarded the area as being in sufficiently pristine condition to be used in his description of veld type 69, fynbos, including a photograph of the Reserve under this vegetation type (Acocks 1975).

The Hermanus Municipality erected a number of wiers in the main kloof of the farm in 1940. The water was used to supply Hermanus until 1945 when the Fernkloof dams were completed. The vegetation was not deliberately burnt in an attempt to increase run-off, but wild fires did occur. The wiers are still present, and are in a fairly good state of repair. The Municipality has retained the water rights of the Reserve.

The Reserve was purchased in 1969 by Dr Ian Williams, and declared a private nature reserve in 1971 by the Cape Department of Nature Conservation, and in 1985 a Natural Heritage Site (Number 5).
1.3 GEOLOGY AND GEOMORPHOLOGY

The Reserve falls into the Cape Fold Belt, signs of which can clearly be seen in the walls of the main kloof. A fault line, with breccia,

Abstract

traverses the north-western corner of the Reserve.

The predominant geological formation is the Peninsula Formation ($C_{1} Q_{2}$) interspersed with narrow belts of the Cedarberg Formation ($C_{1} S_{2}$) in association with the Pakhuis Formation ($C_{1} G$). All are of the Table Mountain Series and belong to the Cape System (Geological Survey 1966).

The Pakhuis and Cedarberg Formations cross the Reserve in an east-west direction, dividing the Reserve approximately into two. Another small outcrop occurs near Beacon Head (Fig 2). Contained within the Pakhuis Formation are a number of pebbles, some with striations indicating a possible glacial origin. In places the combined thickness of the Pakhuis and Cedarberg Formations average less than 60 m (Trusswell 1977).

1.4 TOPOGRAPHY

A deep kloof with almost vertical, inaccessible cliffs, is the main feature of the Reserve. At between 300 m and 500 m a plateau area runs in a horse-shoe formation around this kloof. Along the northern and eastern borders there are higher peaks reaching up to 700 m , and loose boulder screes which in places support forest vegetation.

Most streams in the Reserve are perennial and well vegetated. The main stream flows in a south-westerly direction, drops into the kloof by means of a waterfall where it turns southward, eventually emptying into the Kleinrivier Vlei south of the Reserve's boundary. Other tributaries join it at various points along its route, most of which are also perennial.

1.5
 CLIMATE

The Reserve falls into Climatic Region M (Schulze et al. 1978) in that it experiences a Mediterranean type climate with most rain falling from May to September and summers are warm to hot and dry.

Little climatic data are available for the mountainous terrain in the south-western Cape. One rain gauge is situated within the Reserve. Approximately 10 km to the west, on the northern slopes of the Kleinrivierberge, Department of Agriculture have established a weather station at Oude Hemel en Aarde (34.21'S, $19^{\circ} 14^{\prime} \mathrm{E}$; 243 m; Fig 1).

1.5.1 Wind

Almost no information is available on wind conditions in mountain areas. Kruger (1974) reported wind speeds of $3,6 \mathrm{~m} / \mathrm{s}$ in Jakkalsrivier
catchment compared to the lowlands of $3,13 \mathrm{~m} / \mathrm{s}$ at the Worcester Veld Reserve.

Winds are characteristic of the area with few calm days (pers observ). In summer they are mainly south-east to southerly, with sea breezes reinforcing the southerly gradient, resulting in winds reaching maximum velocities in the early afternoon (Fuggle 1981). Winter conditions are dominated by south-west to north-westerlies. A characteristic of the winter months is the occurrence of hot, dry winds coming from the interior, locally known as "Berg winds". These winds can lead to an increase in temperatures of over $10^{\circ} \mathrm{C}$ within a few hours (Fuggle 1981; Jackson et al. 1971), and are responsible for the phenomenon of the highest absolute temperatures being recorded during winter. Berg winds often co-inside with the passing of cold fronts (Jackson et aI. 1971).

1.5.2 Precipitation

Due to the Reserve's mountainous nature and predominantly southern aspect, rain is experienced throughout the year. A rain gauge has been in operation on the Reserve since February 1981 and is located at Quark House, in the centre of the Reserve, at an altitude of 360 m (Fig 2). The mean annual rainfall measured over the past eight years has been 1181 mm (Table 1).

Winter rains are associated with cold fronts. After the cold front has passed the winds back from north-west, west to south-west, pressures rise and rain usually occurs. Most rain is, however, associated with north-westerly prefrontal winds (Jackson et al. 1971).

Table 1: Mean monthly rainfall (mm) data for Quark House (1981-1988)

Jan	Feb Mar Apr May Jun Jul Aug Sep Oct	Nov Dec	Total									
73	80	87	79	78	121	99	93	128	80	53	64	1

The summer months are relatively dry, with November and December being the driest two months. The four months, June to September, receive almost half of the annual rainfall, accounting for 43 \% of the total. Two peaks are experienced, one in June and the other in September, having a average of over 120 mm per month, accounting for almost a quarter to the total rainfall, this tendency is not reflected in the data from the low lying Hemel en Aarde station. The highest recorded rainfall for one month was in June 1983, when 309 mm was recorded, and the driest was in August 1982 with 17 mm .

Rainfall is usually of low intensity, but can continue for 8 days. Thunder storms have a frequency of less than 5 days per annum (Jackson et al. 1971).

The higher peaks of the Reserve are often covered in cloud, and it has been estimated that over 500 mm pa. can be precipitated from these clouds without being recorded in the raingauge (Fuggle 1981).

The occurrence of frost and snow have not been recorded within the boundaries of the Reserve.

1.5.3 Temperature

Records have not been kept for the Reserve, and data has been obtained from the nearby Hemel en Aarde weather station (Fig 1).

Temperatures in January have a mean daily maximum of $24,7^{\circ} \mathrm{C}$ and minimum of $14,8^{\circ} \mathrm{C}$, dropping to $16,4^{\circ} \mathrm{C}$ and $8,7^{\circ} \mathrm{C}$ respectively in August, on average the coldest month. The coldest temperatures are associated with cold fronts which are most active during this month (Jackson et al. 1971). An absolute maximum of $39,3^{\circ} \mathrm{C}$ in January 1979 , and absolute minimum of ${ }^{2} 1,8^{\circ} \mathrm{C}$ in July 1983 has been recorded during the time period from 1978 to 1984 (Table 2).

Table 2: Temperatures at Oude Hemel en Aarde (1978-1984)

Month	Mean		Absolute Values			
	max	\min	\max			\min
max	\min	\max	\min			
Jan	24,7	14,8	39,3	14,2	26,2	7,9
Feb	24,4	15,0	33,7	15,8	17,7	9,0
Mar	23,8	14,1	33,1	12,6	23,2	9,0
Apr	21,9	13,0	35,7	11,1	21,9	7,0
May	18,2	10,7	34,0	10,2	23,0	4,8
Jun	16,9	9,6	28,0	8,9	18,0	3,9
Jul	16,8	9,0	30,5	8,5	18,7	1,8
Aug	16,4	8,7	29,6	8,8	16,9	3,2
Sep	17,6	9,3	31,6	9,2	15,5	3,0
Oct	20,1	10,7	34,2	10,1	20,1	5,0
Nov	22,0	12,3	35,7	12,4	19,1	5,9
Dec	23,3	13,7	31,6	14,4	18,8	8,0

RECREATION

Access to the Reserve is controlled by means of permits. These are issued annually, and give details of the walks and rules of the Reserve (Appendix 2; Fig 2).

The kloof path with its numerous pools and running water, is extremely popular in summer. ${ }_{\text {m }}$ Most visitors to the Reserve spend their day here, seldom venturing further into the Reserve. The route up to the plateau and the main pool at "Quark House" is also well utilized. Most people ascending the mountain go directly to this hut, situated at a major cross-road of the paths. A number of other huts are located around the Reserve at various points.

The paths have been constructed with a gentle gradient, zigzagging up slopes where necessary, following the contour as far as possible. Erosion barriers have been constructed along paths were necessary and are regularly maintained. Approximately 32 km of paths have been constructed.

1.7 INTRODUCED SPECIES

A number of indigenous species have been introduced into the Reserve in the past, generally with little success. Most of these introduced plants are rare and/or endangered in their natural habitat. Table 3 gives a detailed account of each species.
1.8 PEST PLANTS

When the area was purchased, various alien plants infested different parts of the Reserve. Densities of these plants varied from scattered to medium, with few areas being entirely free of them. These alien plants have been systematically removed with follow up work continually being done to prevent reinfestation. Neighbouring land has been cleared to act as a buffer zone around the Reserve. The work is done manually.

Table 3: Species introduced into the Reserve

1.8.1 Leptospermum laevigatum

This species has become successively more dense over the years where it occurs on the Municipal land south of the Reserve. The few trees which occurred in the Reserve have been removed and cleared to a distance of 50 m from the Reserve boundary at which point a tracer belt has been made. This area acts as a buffer zone to prevent the myrtles from entering the Reserve. It would appear that this is sufficient distance as their germination is stimulated by fire, and the area is cleared regularly.

1.8.2 Hakea gibbosa

The eastern portion of the Reserve was the most densely infested with hakea, particularly the area known as "Hakea Land" (Fig 2). :The original adults have been removed. Capsules are removed from each individual plant, carried off the mountain and destroyed.

1.8.3 Pinus pinaster

Large specimens occurred scattered on the upper part of the Reserve but have been removed.

1.8.4 Acacia cyclops

This species was limited to a few individuals in the main kloof. These have been removed, but occasional seedlings are still found.

1.8.5 Eucalyptus lehmanii

A few trees were planted in the Reserve by the previous owners and shepherds. These trees have been removed, and no seedlings have been found.

VEGETATION
2.1 METHODS

The survey was based on the Braun-Blanquet method (Werger 1974). The method has been extensively tested within the fynbos and has been found reliable by a number of workers (Westhoff et al. 1978 Taylor 1969; Boucher 1977; McDonald 1983). This method is also used by the National Botanical Institute, and has become a standard method for their vegetation surveys. Werger (1972) regarded the optimum plot size as that which gives 50-55 \% of the species found in one hectare of uniform vegetation. Based on data from three fynbos sites, 50 \% of the hectare information was reached on an average quadrat size of $51,9 \mathrm{~m}^{2}$. Taylor (1969) and Boucher (1977) found this quadrat size to be suitable for homogeneous fynbos vegetation. Quadrats of this size and shape have become standard in vegetation surveys carried out by the National Botanical Institute. Quadrats of $5 \times 10 \mathrm{~m}$ were found to be inappropriate for riverine communities, so these communities were recorded by walking along the river for 100 m
and within a distance of $0,5 \mathrm{~m}$ of the banks. At other sites, for example, marshes and rocky outcrops, the plot shape and size was adjusted to fall within the specific community. Forest relevés were larger with 10 x 20 m quadrats. Where practical the quadrats were subdivided into five 2 x 5 m to aid with the recording of the data.

Colour 1:10 000 aerial photographs were studied, and preliminary community boundaries were drawn on them. These divisions were based mainly on aspect, slope and soil moisture content, ie dry and wet areas. Relevés were then located within these areas.

2.1.1 Data collection

All higher plant species within a relevé were identified and given a cover abundance value (Table 4) based on the Braun-Blanquet scale (Table 4)(Werger 1974). Species which could not be identified in the field, were collected for later identification in the Reserve's herbarium. 2 Further data collected from each quadrat included estimates of total vegetation cover, height and stratification, slope, aspect, altitude and rock cover.

Field work was carried out during 1985, with most of the survey being done between October and December of that year. A total of 119 relevés were set out (Fig 3).

Table 4: Cover Abundance Values (after Werger 1974)

Symbol	Definition
r	Very rare and with negligible cover (usually a single individual).
6	Present but not abundant and with a small cover value (less than 1 of of the quadrat area).
1	Numerous but covering less than 1 \% of the quadrat area, or not so abundant but covering 1 to 5% of the quadrat area.
2	Very numerous but covering less than 5 \% of the quadrat area, or covering 5-25 \% of quadrat area independent of abundance.
3	Covering 25-50 \% of the quadrat area independent of abundance.
4	Covering 50-75 \% of the quadrat area independent of abundance.
5	Covering 75 - 100 of the quadrat area independent of abundance.

2.1.2 Table preparation

Data were arranged into a species by site table, and then sorted using the Programme TABSORT, developed by the Forestry Branch of the Department of Water Affairs at Jonkershoek. It 'has been expanded and modified by the National Botanical Institute (Boucher 1977). A Burroughs B7 800 computer of the Department of Agriculture was used to run the data. Further refinements were made by hand. The complete table is given as Appendix 3.

The vegetation occurring on the Reserve can be subdivided into two main categories (Fig 4):
(i) Mesic Mountain Fynbos communities (Moll et al. 1984), and,
(ii) Forest and riparian vegetation.

The communities were defined by means of floristic analysis, site characteristics and vegetation stratification, averaged over all the relevés within a community. A species-binomial (McDonald 1983; van Wilgen et al. 1985) and structural system was used to name the communities. The dominant, differential species were selected for the species-binomial part, while the structural classification (Table 5) follows the system proposed by Campbell et al. (1981) for vegetation classification in the Fynbos Biome. The term "community" was used as an abstract term (Shimwell, 1971) and does not imply any specific ranking.

2
Table 5: Structural Nomenclature (Campbell et al. 1981)

Height of dominant stratum		Projective Canopy cover of dominant stratum (\%)	
Tall	$2 \mathrm{~m}+$	Closed	75-100
Mid-high	$1 \mathrm{~m}-2 \mathrm{~m}$	Mid-dense	50-75
Low	0,25 m-1 m	Open	25-50
Dwarf	0,25 m	Sparse	$5-25$

Legend: Plant Communities

Community Name

A deustum, mid-dense, mid-high shrubland

Erica coccinea var coccinea - Widdringtonia cupressiodes, sparse to mid-dense, mid-high proteoid veld

Osmitopsis asteriscoides - Erica perspicua,
C sparse to mid-dense, mid-high to tall shrubland
D. Restio similis - Hypodiscus argenteus, open mid-high proteoid veld

Chondropetalum èbracteatum - Villarsia capensis, mid-dense, mid-high shrubland

Aulax umbellata - Protea repens, mid-dense, mid-high proteoid veld

Erica onosmiflora - Brunia alopecuroides, mid-dense, low to mid-high, ericoid and restioid veld

Phaenocoma prolifera - Chondropetalum hookerianum, open low restioid veld

Passerina vulgaris - Pentaschistis capensis, sparse to open, mid-high to tall shrubland

Protea nitida - Protea repens, sparse, tall Waboomveld

Psoralea aculeata - Phylica buxifolia, sparse to open, mid-high to tall ericioid veld

Curtisia dentata - Ilex mitis, closed, tall kloof forest

Erica caffra - Blechnum capense, open, midhigh riverine veld

Young veld, not mapped

One kilometer

Fig 4: Plant Communities

2.2.1 Mesic Mountain Fynbos

The general structure of the communities falling within this category is of three distinct layers. Adamson (1938) found these layers to be typical of the fynbos vegetation. The upper canopy is composed mainly of the families Proteaceae and Bruniaceae, the middle layer of Bruniaceae and Ericaceae, and the lower layer predominantly Restionaceae : and Cyperaceae. Smaller herbaceous and geophytic plants are also common at this level.
2.2.1.1 Phaenocoma prolifera - Chondropetalum hookerianum, open low restioid veld (Map symbol H)

RELEVéS

92	84	58	11	46
3	35	106	9	90
42	85			

TYPE SPECIES

2
Phaenocoma prolifera
Syncarpha vestita (was Helichrysum vestitum)
Chondropetalum hookerianum
Erica longiaristata
Staberoha distachya
Indigofera alopecuroides var alopecuroides
Saltera sarcocolla
Thamnochortus pulcher
Erica onosmiflora
Nebelia paleacea
Drosera glabripes
Drosera aliciae
Restio burchellii
Elegia filacea
Grubbia tomentosa
Phylica ericoides
Protea cynaroides
Erica cumuliflora
Restio ambiguus
Tetraria brevicaulis
Chondropetalum deustum
Leucadendron gandogeri
Ursinia paleacea
Gerbera crocea
Chondropetalum mucronatum

The differential species of this community form the basis of the mountain fynbos group on the Reserve, and are common to the communities described under this heading. It emerges as a separate community in small localized areas which do not have suitable conditions for the more habitat sensitive species. It occurs on any aspect, within the mid-altitudinal range of between 300 m and 550 m . Slopes are steep and well drained. Restionaceae are the visually dominant species, with the dark shape of Phaenocoma prolifera scattered throughout.

2.2.1.1.1 Brunia alopecuriodes - Chondropetalum deustum, mid-dense, mid-high shrubland (Map symbol A)

RELEVéS:

98	102	100	96	97
101	99	95		

TYPE SPECIES

Erica plukenetii var bicarinata
Erica lutea
Berzelia squarrosa

This community occurs on the limited east-northeast aspects of the Reserve at altitudes of between 500 m and 600 m , with the slope varying from gentle (2°) to moderately steep (15°). The soils are well drained, consisting of a coarse sand with numerous stones and pebbles (Mispah series). The species richness varies between nine and 16 species per $5 \times 10 \mathrm{~m}$ relevé (average 10,4), and is the lowest recorded species richness of all the Reserve's communities. This low species richness could be accounted for by the fact that these slopes are particularly hot the dry due to its aspect.

Structurally two layers can be distinguished. The tallest layer ($0,75 \mathrm{~m}$ to $1,5 \mathrm{~m}$) is open and dominated by Brunia alopecuroides and Leucadendron xanthoconus. The lower layer $(0,25 \mathrm{~m}$ to $0,50 \mathrm{~m})$ is mid-dense, and contains
both the Ericaceae type species. Chondropetalum deustum is the dominant restioid. Other common restioids include Restio bifarius and Thamnochortus gracilis. Common ericoid species are Erica aristata and Penaea mucronata. The latter two species are common within the community but have a wide distributional range, occurring in other communities.

The community is similar to the mixed ericoid and restioid fynbos of the upper mesic slopes (northerly aspect community of the inland mountain fynbos), described by Boucher (1978) in the Cape Hangklip area.
2.2.1.1.2 Chondropetalum ebracteatum, sparse to mid-
dense, mid-high to tall shrubland

TYPE SPECIES

Chondropetalum ebracteatum
Penaea cneorum ssp ruscifolia
Villarsia capensis
Restio dispar
Centella eriantha var eriantha

The greater part of the Reserve is covered by this community. It has a wide altitudinal rage and occurs on most aspects of the Reserve. Three sub-communities can be recognized, characterized by Specific habitat requirements. Eight of the relevés within this grouping do not
fall into any of these sub-communities, but form part of the general community.
2.2.1.1.2.1 Chondropetalum ebracteatum - Villarsia
capensis, mid-dense, mid-high shrubland (Map
symbol E)

RELEVéS

34	61	64	48	53
49	63	60		

The community occurs in the north-east section of the Reserve at mid (360 m) to high altitudes (750 m) on the west-south-west to north-west aspects. The characteristic species of the community are those which are diagnostic for the community as a whole. This basic community becomes clearer where the habitat requirement is not met for the more habitat sensitive subcommunities. The species richness varies between 11 and 21, with an average of 16,2 species per $5 \times 10 \mathrm{~m}$ relevé.
*
Structurally there are three layers, namely a mid-high, a lower and a dwarf layer. The midhigh layer is mid-dense, dominated by Leucadendron xanthoconus and Brunia alopecuroides, both species having a wide habitat range. Restioid and ericoid shrubs dominate the lower layer, particularly the characteristic species, Chondropetalum ebracteatum, which occurs in 75 \% of the relevés
describing this community. Other commonly occurring species in this lower level include Thamnochortus pulcher, Nebelia paleacea, Tetraria fasciata and Erica onosmiflora. The dwarf layer is generally sparse to open in density. Commonly occurring species include type species, Villarsia capensis, and the generalist, Anaxeton laeve, both of which occur at low densities.

```
2.2.1.1.2.2 Erica coccinea var coccinea - Widdringtonia cupressiodes, sparse to mid-dense, mid-high proteoid veld (Map symbol B)
```


RELEVéS

94	78	79	81	31
80	88	41	51	82
32	43	39	33	50
44	87	56	113	

TYPE SPECIES

Erica coccinea var coccinea
Hermas depauperata
Restio perplexus
Euryops abrotanifolius
Laurophyllus capensis
Widdringtonia cupressiodes
Protea lepidocarpodendron
Schizaea pectinata
Thaminophyllum latifolia
Berzelia rubra

Carpobrotus pillansii
Dilatris pillansii
Erica corydalis
Selago serrata

This sub-community occurs east of the main kloof, with a wide altitudinal range of 150 m to 600 m , with the main range lying between 150 m and 300 m . The main aspect of the community varies between south-east and west-south-west. Slopes are moderately steep, well drained and dry. The soils are white, sandy, shallow with numerous small stones scattered throughout. In places where the shale band has been exposed, Protea lepidocarpodendron becomes dominant. The soils here have a higher clay content and better soil moisture retention than those derived from sandstone. The species richness of the community is one of the highest, with an average of 22 species per $5 \times 10 \mathrm{~m}$ relevé, ranging from 16 to 34 species.

Of the type species, Erica coccinea var coccinea occurred in 56 \% of the 16 relevés representing the community; Hermas depauperata, 50 \%; Restio perplexus, Euryops abrotanifolius and Widdring'tonia cupressiodes 31 \%.

Three strata can be distinguished. The upper, at between $1,5 \mathrm{~m}$ and 2 m is generally sparse, increasing to mid-dense on moister sites. It is dominated by Widdringtonia cupressiodes, Penaea cneorum, Leucadendron gandogeri, and

L xanthoconus. Protea lepidocarpodendron, dominates on shale outcrops. The middle stratum at about 1 m is mid-dense, increasing to dense in the absence of the lower stratum on wetter sites. Shrubs, and taller restios are common in this layer, particularly Chondropetalum ebracteatum. The lowest stratum at $0,25 \mathrm{~m}$ to $0,50 \mathrm{~m}$ is absent on wet areas, reaching middensity on drier sites. Restionaceae, Cyperaceae, Poaceae and Ericaceae dominate at this level.

The Mixed lower slope fynbos of the inland mountain fynbos at Cape Hangklip (Boucher 1978) can be compared to this community.
2.2.1.1.2.3 Osmitopsis asteriscoides - Erica perspicua, sparse to mid-dense, mid-high to tall shrubland (Map symbol C)

RELEVéS

118	119	40	45	116
65	117	6	5	4

TYPE SPECIES

Osmitopsis asteriscoides
Erica perspicua
Brunia albiflora
Grubbia rosmarinifolia var rosmarinifolia
Disa tripetaloides ssp tripetaloides
Erica brevifolia

```
Erica tenuifolia
Gleichenia polypodioides
Pseudobaeckia africana
Roridula gorgonias
Isolepis digitata (was Scripus)
Ursinia eckloniana
Brunia laeve
```

The community is confined to the upper river courses of the Reserve, occurring on a wide range of slopes, varying from gentle to very steep ($5^{\circ}-10^{\circ}$), and on aspects from south-east to west, similar to the community described above. The altitudinal range is between 300 m and 700 m . Higher areas are subject to mist rain. Soils are deep, dark brown to black, and humus rich. Although the soil is permanently wet and saturated, the water is not stagnant. Compared to the above described community, there were fewer species noted, averaging only 13,7 species per relevé with a range of between 9 and 19. A number of the types species have high cover abundance values, for example, Osmitopsis asteriscoides and Villarsia capensis have an average cover abundance value (Table 4) of three for the ten sampled relevés; Chondropetalum ebracteatum and Erica perspicua two. The type species of Osmitopsis asteriscoides and Erica perspicua occurred in 90 \% and 70% of the relevés respectively.

Four strata can be identified. The upper stratum occurs at $1,5 \mathrm{~m}$ to 3 m above ground
level, variation depending on the wetness of the site: the wetter the site, the taller and more dense it is varying between sparse and middense. Dominant species in this stratum include Osmitopsis asteriscoides, Brunia alopecuroides, Restio dispar and Brunia albiflora. The intermediate stratum is approximately 1 m tall, usually mid-dense, increasing in density on the drier sites where the upper stratum is more open. Leucadendron xanthoconus, Erica sessiliflora, Chondropetalum ebracteatum and Erica hispidula dominate. The lower stratum, occurring at between $0,25 \mathrm{~m}$ and $0,50 \mathrm{~m}$ varies from mid-dense to dense, and is dominated by restioid and fern species. The lowest stratum occurs at ground level to about $0,25 \mathrm{~m}$. It is sparse on wet sites, becoming mid-dense on sites which are slightly drier. Villarsia capensis and Drosera glabripes dominate.

The Upper hygric fynbos of the Cape Hangklip area described by Boucher (1978) is similar.

```
2.2.1.1.2.4 Restio similis - Hypodiscus argenteus, open, mid-high proteoid veld (Map symbol D)
```

RELEVéS

12	10	8	7	26
1	89	2	21	47
103	36	37	20	25
27	24	23	22	

TYPE SPECIES

Restio similis
Restio bifarius
Hypodiscus argenteus
Staberoha banksii
Restio sarcocladus
Erica coccinea var pubescens
Thamnochortus lucens
Berzelia incurva
Drosera cistiflora
Serruria rubicaulus

The community dominates the western half of the Reserve, occurring within the middle altitudinal range of the reserve at between 200 m and 670 m , on dry sites. The aspect varies between north to south-east, with the south-east aspect dominating. Slopes are moderate, but can become very steep in places. Species richness varies between seven and 24 with and average of 18,3 species per $5 \times 10 \mathrm{~m}$ relevé.

The type species, Restio similis, occurs in the 'greatest percentage (47) of the 19 relevés sampled in the community; Restio bifarius in 37 \%; Hypodiscus argenteus and Staberoha banksii in 32 \%. The cover abundance value of these species is generally low (one to two). In places the type species increase in cover abundance value, becoming mid-dense, particularly at the higher altitudinal range (above 400 m) of the community.

Structurally, two distinct layers are formed in the mature vegetation: a mid-high, open upper layer ($1,0 \mathrm{~m}-1,5 \mathrm{~m}$) dominated by the thin small leafed Aulax umbellata, and a lower layer mid-dense layer dominated by restioid and ericacious shrubs.

```
2.2.1.1.3 Aulax umbellata - Protea repens, mid-dense, mid-high proteoid veld (Map symbol F)
```


RELEVÉS

114	111	115	110	112
104	28	105	120	29

30

TYPE SPECIES

Blaeria ericoides
Leucospermum gracile
Aspalathus serpens
Watsonia schlechteri
Erica tenella var gracilior
Disparago laxifolia
Leucadendron spissifolium var spissifolium
Retzia capensis
Erica cerinthoides var cerinthoides
Merciera tenuifolia var aurea
Aspalathus ciliaris
Aristea oligocephala
Ficinia trichodes
Mairea coriacea
Pentaschistis malouinensis

Thesium euphrasioides
Cassine peragua

The community is limited to south to south-west aspects at low altitudes of between 150 m and 300 m . Slopes vary from gentle (5°) to steep $\left(30^{\circ}\right)$. The sandy soil is littered with stones, with a rock cover of $5-10$ \% and well drained with low water retention.

Of the ten sampled relevés, the type species Blaeria ericoides, occurred in 50 \%; Leucospermum gracile, Aspalathus serpens and Erica tenella var gracilior in 40% and Retzia capensis in 30%. The community has one of the highest species richness of all the indentified communities, averaging 23,4 species per $5 \times 10 \mathrm{~m}$ relevé, varying between 14 and 30 species.

Two structural layers can be distinguished within the community. The upper stratum (1 m to $1,5 \mathrm{~m}$) is mid-dense. The lower stratum at between $0,25 \mathrm{~m}$ and $0,75 \mathrm{~m}$ is open, increasing to mid-dense where Protea repens, as opposed to Aulax umbellata, dominates the upper stratum. It is dominated by restios.

2.2.1.1.4 Erica onosmiflora - Brunia alopecuroides, middense, low to mid-high ericoid and restioid veld (Map symbol G)

RELEVés

70	67	71	54	57
59	55	68	62	66

69

TYPE SPECIES

Metalasia cymbifolia
Ceratocaryum argenteum (was Willdenowia)
Erica coccinea var inflata
Ehrharta setacea
Diastella divaricata ssp montana
Tetraria compar
Thesium capitatum
Thesium euphorbioides
Thesium quinqueflorum
Paranomus septrum-gustavianus
Restio filiformis

The community occùrs in the north-eastern part of the Reserve where it is confined to the upper altitudes (520 m to 700 m) on moderate to steep slopes $\left(10^{\circ}-30^{\circ}\right)$. The aspect is predominantly south-west, but varies from south-west to north on stoney soils.

Metalasia cymbifolia is the main type species of the community, occurring at a low cover
abundance value of one, in 90% of the ten sampled relevés. The other diagnostic species, Ceratocaryum argenteum occurred in 50 \%, with a Cover abundance value of two; Erica coccinea var inflata occurred in 40% with a cover abundance value of one. The remaining seven types species occurred in only 10 \% of the sampled relevés, with a cover abundance value of one. The number of species per relevé averaged 21,7 , with a range of between 14 and 27 .

Structurally, three levels can be recognized in the mature community. The upper stratum, often absent on drier sites, reaches a height of between 1 m and $1,5 \mathrm{~m}$. It is sparse in density, dominated by Thesium euphorbioides, Erica onosmiflora, Saltera sarcocolla, and Brunia alopecuroides. The intermediate layer is middense, between $0,75 \mathrm{~m}$ and 1 m tall, dominated by restioid and ericioid shrubs. The lower stratum at $0,25 \mathrm{~m}$ to $0,50 \mathrm{~m}$ in height, is middense in the absence of the upper stratum, dropping to sparse. Ericoid and restioid species are common.
2
2.2.2 Forest and Riparian Communities
2.2.2.1 Passerina vulgaris - Pentaschistis capensis, sparse to open, mid-high to tall shrubland

The community occurs at low altitudes (50 m to 100 m above sea level), generally within a limited range of aspects (south to west-south-
west). It can also occurr at low altitudes on east-north-east aspects.

Two sub-communities can be identified, namely Protea nitida - Protea repens sparse, tall Waboomveld and Psoralea aculeata - Phylica buxifolia sparse to open, mid-high to tall ericoid shrubland. A possible third subcommunity can be indentified (map symbol I). This community is limited to low altitudes $(50 \mathrm{~m}$ - 100 m$)$ and south to west-south-west aspects.

```
2.2.2.1.1 Protea nitida - Protea repens, sparse, tall
    Waboomveld (Map symbol J)
```

 RELEVéS
 \(\begin{array}{llll}14 & 15 & 13 & 18\end{array}\)
 TYPE SPECIES

Protea nitida
Diospyros glabra
Knowltonia capensis
Pelargonium longicaule
Myrsiphyllum declinatum
Erica parviflora
Ehrharta rehmanni
Pentaschistis thunbergii
Lachenalia peersii
Eriospermum nanum
Mohria caffrorum
Tephrosia capensis

The aspect on which the community occurs is only east-north-east at low altitudes (50-100 m) in the kloof: The slope is moderately steep. Soils are relatively deep and sandy. The average number of species per relevé is high for the Reserve at 30,5 , varying between 27 and 34 .

The type species, Protea nitida, is visually dominant in the community, giving it a characteristic blue/grey colour. It has a high cover abundance value (three), and occurred in all the sampled relevés. The other type species, Knowltonia capensis, Diospyros glabra, Tephrosia capensis, Pelargonium longicaule and Eriospermum nanum are also commonly occurring species.

Structurally there are three distinct layers. The tall upper layer at a height of 3 m to 5 m , is sparse and dominated by the type species Protea nitida. The middle layer is dominated by Protea repens and Passerina vulgaris. This is a dense layer reaching a height of between $1,5 \mathrm{~m}$ and 2 m . The lower layer, at between $0,50 \mathrm{~m}$ and $0,75 \mathrm{~m}$ dominated by grasses, restios and Erica imbricata. It is a mid-dense layer.

```
2.2.2.1.2 Psoralea aculeata - Phylica buxifolia sparse,
to open, mid-high to tall ericioid veld (Map
symbol K)
```

RELEVéS

76	73	17	83	19

$\begin{array}{lll}75 & 74 & 107\end{array}$

TYPE SPECIES

Phylica buxifolia
Lampranthus emarginatus
Indigofera angustifolia
Crassula biplanata
Arctotis semipapposa
Briza maxima
Erica villosa
Psoralea aculeata
Agathosma ciliaris
Ehrharta erecta
Erica discolor
Helichrysum cymosum
Rhus glauca

This community occurs mainly on south-south-west to west-south-west aspects of the kloof at low altitudes of between 40 m to 100 mm . The slope varies from gentle to very steep. The number of species per relevé varies from 11 to 26 , with an average of 17,1 .

No one type species is particularly dominant in the community. Phylica buxifolia is the most commonly occurring of the type species.

Two layers can be distinguished in the mature vegetation. The upper layer at between 1 m and $2,5 \mathrm{~m}$, is sparse to open in density. The lower layer, between $0,50 \mathrm{~m}$ and $0,75 \mathrm{~m}$, is mid-dense to dense, dominated by Erica hispidula, restios and grasses.

2.2.2.2.1 Curtisia dentata - Ilex mitis closed, tall kloof forest (Map symbol L)

RELEVé

93

TYPE SPECIES

Curtisia dentata
Ilex mitis
Blechnum tabulare
Elaphoglossum angustatum
Rumohra adiantiformis
Myrsiphyllum asparagoides
Elegia thyrsifera

It occurs on south-south-west aspects, at an altitude from 100 m to 250 m . Only 13 species were recorded in the relevé.

The more rapid weathering of the shaleband is the Table Mountain Sandstone provides deeper soils than those of in situ weathered sandstones, sometimes resulting in steep-sided ravines, particularly where the shales meet the lower sandstones (Boucher 1978). These steep walls provide the forest with a degree of protection from fires. The forests are thus limited in extent, occurring only in the protective kloofs along the water courses. One relevé of $10 \times 20 \mathrm{~m}$ was used to sample the community.

Rumohra adiantiformis, Blechnum tabulare (both types species for the community) and Todea barbara are common components of the interior ground cover (cover abundance value two), attaining heights up to $0,75 \mathrm{~m}$. They do not build up large amounts of litter, thus help to keep fires out of the forest (Boucher 1978).

The canopy is closed, and varies in height between 10 m and 15 m . Other species typical of the forest include Olea capensis ssp capensis, Rapanea melanophloeos, Pterocelastrus rostratus and Maytenus acuminata (cover abundance value two). Another discontinuous, sparse shrub layer occurs at between 1 m and 3 m , comprising mainly of tree saplings.

The Podocarpus-Rapanea Shale forest described by Boucher (1978) for the Cape Hangklip area can be compared to this community.

2.2.2.2.2 Erica caffra - Blechnum capense open, mid-high riverine veld (Map symbol M)

RELEVéS

7791

TYPE SPECIES
Prionium serratum
Blechnum capense
Ehrharta rehmanni var filiformis
Erica caffra
Empleurum unicapsulare
Psoralea pinnata
Laurentia secunda
Ficinia distans
Scriptus prolifera
Juncus capensis

This community occurs as a narrow stripe along river courses above and below the forest community described above. The altitude varies from 40 m to 280 m , on south-south-east aspects.

There is not physical protection for the community against fire, and it burns on a similar rotation as that experienced by the fynbos communities. Thirteen to 14 species were recorded per relevé.

The vegetation is much lower than that of the forest, reaching a height of 2 m to 5 m , and is
mid-dense: Erica caffra and Empleurum unicapsulare are dominant. A lower layer of $0,50 \mathrm{~m}$ to $0,75 \mathrm{~m}$ is mid-dense with Blechnum capense and Prionium serratum being dominant. Mosses form a sparse ground layer (0 m $0,10 \mathrm{~m})$.

The tall fynbos of the rocky streams under the riparian vegetation of the Cape Hangklip area (Boucher 1978) can be compared to this community.

DISCUSSION

Werger (1974) found that the Braun-Blaqquet approach to vegetation mapping, could be applied successfully to the fynbos. However, Campbell (1985) felt that it would be appropriate for use in small areas only. From this study, I would support the latter statement for the following reasons:
(a) the method is expensive in terms of time, each relevé taking approximately one hour to complete.
(b) a high degree of floristic knowledge is necessary to identify species, both in the field and herbarium (also a time consuming activity!).
(c) not all plants noted were at a stage where they could be identified in either the field or herbarium at the time of the survey, and
a number of relevés had to be revisited to collect previously tagged plants.
(d) some plants could have been mistaken for other species, and hence incorrectly indentified.

Abstract

Although these factors can be considered disadvantageous and costly, Reserve field personnel can learn a great deal about field conditions, and develop their knowledge of species names, habitat requirements, and interactions with other species by using the methodology. The method is also a very efficient way of compiling an initial species list and to set up a herbarium of an area. In this study a total of 242 species were identified of the 707 higher plant species which have been collected within the 603 ha of the Reserve (de Lange 1992). In approximately 0,1 \% of the area 34% of the recorded higher plant species were collected. A further advantage is that a detailed vegetation map can be compiled.

One of the objectives of the Reserve is that it should be used for research, the present survey has therefore provided a good baseline study for further studies. As the Reserve is only 603 ha, with an established herbarium and an extensive network of paths allowing for easy access, as well as an even aged, mature vegetation at the time of the study (10 years), it was an ideal site for the study.

A total of 13 communities and sub-communities were identified in the Braun-Blanquet table, indicating a great diversity of habitats within the Reserve. Each community had its own environmental requirements. Aspect, altitude and soil moisture appear to be particularly important in this regard. Once the communities were defined, their extent was determined by extrapolation to the surrounding areas using the prepared classification and by referring to aerial photographs.

The vegetation divided into two broad categories: mesic mountain fynbos, and forest and riparian communities. Of the forest and riparian communities, the forest had distinct physical boundaries which offer protection from fire. Soils here were generally deeper then those in the rest of the Reserve, mainly as a result of exposure and eroding of the shale band.

The mesic mountain fynbos communities were divided into two groups, namely those of the steep kloof slopes and the rest of the reserve. These communities vary in complexity depending on such environmental factors as altitude, aspect, slope and moisture conditions. Communities on wetter sites generally had a lower species richness.

The whole Reserve was burnt in February 1985, and a repeat survey was carried out 18 months

The whole Reserve was burnt in February 1985, and a repeat survey was carried out 18 months later, when fifty of the original relevés were re-assessed. The table (Appendix 4) for the latter survey gave the same communities as for the mature vegetation, but with different type species. When all the pre-fire species were excluded from the table the remaining species (predominantly geophytes) showed similar groupings to those previously recorded (Appendix 5). New species recorded after the fire were predominantly sprouters only visible and identifiable for a few years after a fire. These species are by nature subjected to the pressures of short or long fire rotations, and could possibly be used as indicators of community changes due to various management actions. For example, an increase in the density of geophytic plants could be indicative of short rotation burning since fire stimulates flowering of these plants.

ACOCKS J P H 1975: Veld Types of South Africa (Second Edition). Mem Bot Surv of S A No 40.

ADAMSON R S 1938: The vegetation of South Africa. London: British Empire Vegetation Committee.

BOUCHER C 1977: Cape Hangklip area: I. The application of association analysis, homogeneity functions and BraunBlanquet techniques in the description of South-western Cape vegetation. Bothalia Vol. 12:293-300.

BOUCHER C 1978: Cape Hangklip area: II. The vegetation. Bothalia 12:455-497.

CAMPBELL B M 1985: A classification of the mountain vegetation of the fynbos biome. Mem Bot Surv S A No 50.

CAMPBELL B M, R M COWLING, W BOND AND F J KRUGER 1981: Structural characterization of vegetation in the Fynbos Biome. South African National Scientific Programmes Report Number 52. CSIR, Pretoria.

DE LANGE C 1992: An analysis of the flora species of Vogelgat Nature Reserve. Unpulb MSc thesis Univ Cape Town.

FUGGEL 1981: Macro-climatic patterns within the fynbos biome. Fynbos biome project. Nat Prog Enviro Sci CSIR. Final report, December.

Geological Survey 1966: Dept. Mines. 3319C Worcester and 3419A Caledon.

JACKSON S P and P D TYSON 1971: Aspects of weather and climate over Southern Africa. Environment Stud Occas Pap 6. Univ Witwatersrand.

KRUGER F J 1974: The physiography and plant communities of the Jakkalsrivier Catchment. Unpubl MSc thesis, Univ Stellenbosch.

KRUGER F J 1978: A description of the Fynbos Biome Project. South African National Scientific Programmes Report No 28. CSIR, Pretoria.

MCDONATD D J 1983: The vegetation of Province, South Africa. Unpubl MSc Thesis, Univ Cape Town.

MOLL E J, B M CAMPBELL, R M COWLING, L BOSSI, M L JARMAN AND C BOUCHER 1984: A description of the major vegetation categories in and adjacent to the fynbos biome. South African National Scientific Programmes Report No 83. CSIR, Pretoria.

SCHULZE R E and O S MC GEE 1978: Climatic indices and classifications in relation to the biogeography of Southern Africa. Junk, The Hague. pp. 19-52.

SHIMWELL D W 1971: The description and classification of vegetation. London: Sidgwick and Jackson. pp 322.

TAYLOR H C 1969: A vegetation survey of the Cape of Good Hope Nature Reserve. Unpubl MSc thesis, Univ Cape Town.

TAYLOR H C 1978: Capensis. In: Werger M J A (ed) The biogeography and ecology of southern Africa. Junk, The Hague.

TRUSWELL J. F.: 1977: The Geological Evolution
of South Africa.
Johannesburg.
VAN WILGEN B W AND F KRUGER 1985: The physiography and fynbos vegetation communities of the Zachariashoek catchments, south-western Cape Province. S Afr J Bot 51 (5) 379-399.
'WERGER M. J. A.: 1972: Species-area Relationships and plot size with some examples from South African Vegetation. Bothalia 10:583-594.

WERGER M J A 1972: Species-area relationships and plot size with some examples from South African Vegetation. Bothalia 10:583-594.

WERGER M. J. A.: 1974: On concepts and techniques applied in the ZurichMontpellier method of vegetation survey. Bothalia 11 (3):309-323.

WESTHOFF, V., E. VAN DER MAAREL: 1978: The Braun-Blauquet approach. Ordination and classification of vegetation. In: R. H. Whittaker (ed.). Handbookd of Vegetation Science Vol 5. Junk, the Hague

WILDLIFE SOCIETY OF SOUTHERN AFRICA 1980: The policy and strategy for environmental conservation in South Africa.

A PHYTOSOCIOLOGICAL SURVEY

OF THE

VOGELGAT NATURE RESERVE

CAPE PROVINCE

SOUTH AFRICA

CHERYL DE LANGE
1992

Thesis presented for the Degree of Master of Science University of Cape Town

ACRNOWLEDGEMENTS

I would like to thank Dr \& Mrs Ian Williams for all their encouragement and assistance, and Vogelgat Nature Reserve for its financial aid. The Botanical Research Institute for use of the programme TABSORT and computer time particularly Dr Charlie Boucher and Mr Dave McDonald for advice, time and guidance during the initial stages of the study. The Department Nature Conservation, Specialist Services, Flora Committee, and Dr Niel Fairall for all their support and encouragement.

CONTENTS

page
ACKNOWLEDGEMENTS 2
1 INTRODUCTION 5
1.1 STUDY AREA 6
1.2 HISTORY OF THE RESERVE 6
1.3 GEOLOGY AND GEOMORPHOLOGY 7
1.4 TOPOGRAPHY 8
1.5 CLIMATE 9
1.5.1 Wind 9
1.5.2 Precipitation 10
1.5.3 Temperature 12
1.6 RECREATION 13
1.7 INTRODUCED SPECIES 14
1.8 PEST PLANTS 14
1.8.1 Leptospermum laevigatum 16
1.8 .2 Hakea gibbosa 16
1.8 .3 Pinus pinaster 16
1.8.4 Acacia cyclops 16
1.8 .5 Eucalyptus lehmanii 17
2 VEGETATION 17
2.1 METHODS 17
2.1.1 Data collection 18
2.1.2 Table preparation 19
2.2 COMMUNITY DESCRIPTIONS 20
2.2.1 Mesic Mountain Fynbos 21
2.2.1.1 Phaenocoma prolifera - Chondropetalum hookerianum, open low restioid veld 21
2.2.1.1.1 Brunia alopecuriodes - Chondropetalum * deustum mid-dense, mid-high shrubland 23
2.2.1.1.2 Chondropetalum ebracteatum, sparse to mid- dense, mid-high to tall shrubland 24
2.2.1.1.2.1 Chondropetalum ebracteatum - Villarsia capensis, mid-dense, mid-high shrubland 25
2.2.1.1.2.2 Erica coccinea var coccinea -
Widdringtonia cupressiodes, sparse to mid- dense, mid-high proteoid veld 26
2.2.1.1.2.3 Osmitopsis asteriscoides - Erica perspicua, sparse to mid-dense, mid-high to tall shrubland 28
2.2.1.1.2.4 Restio similis - Hypodiscus argenteus, open, mid-high proteoid veld 30
2.2.1.1.3 Aulax umbellata - Protea repens, mid-dense, mid-high proteoid veld 32
2.2.1.1.4 Erica onosmiflora - Brunia alopecuroides, mid-dense, low to mid-high ericoid and restioid veld 34
2.2.2 Forest and Riparian Communities 35
2.2.2.1 Passerina vulgaris - Pentaschistis capensis, sparse to open, mid-high to tallshrubland35
2.2.2.1.1 Protea nitida - Protea repens, sparse, tall Waboomveld 36
2.2.2.1.2 Psoralea aculeata - Phylica buxifolia sparse to open, mid-high to tall ericioid veld 38
2.2.2.2.1 Curtisia dentata - Ilex mitis closed, tall kloof forest 39
2.2.2.2.2 Erica caffra - Blechnum capense open, mid- high riverine veld 41
3 DISCUSSION 42
4 REFERENCES 46

Fynbos areas are coming under increasing pressure from society in terms of recreation, water supplies and the cut flower trade (Wildife Society of Southern Africa 1980). As more areas of fynbos disappear and become degraded, particularly in the south-western Cape, it is vitally important that those areas which have been set aside for conservation are managed in the best way possible to ensure their long term survival.

The Vogelgat Nature Reserve's objective is to maintain the greatest possible species diversity and to ensure the long-term survival of the Reserve's' ecosystems. In the fynbos biome fire and alien plant eradication are the main management tools used to meet this objective. To make optimum use of fires it is necessary to know how a specific community will react to a particular fire regime, and hence the need to know what vegetation types occur on the Reserve,

The objectives of this study were:
(i) to identify, describe and classify the Coastal Mountain fynbos and remnant forest communities occurring on the Reserve;
(ii) to map the plant communities of the Reserve;
(iii) to relate the plant communities to selected habitat factors, apart from edaphic factors, namely altitude, aspect and topography.

The study was carried out on a private nature reserve, Vogelgat, situated approximately 10 km east from the center of Hermanus, in the Kleinrivier Mountains ($34^{\circ} 24^{\prime} \mathrm{S}$ and $19^{\circ} 18^{\prime} \mathrm{E}$; Fig 1). The Reserve covers an area of 603 ha, varying in altitude from 10 m in the kloof near the "Old Gate" in the south, to 805 m at "Beacon Head", in the north (Fig 2).

The mountain fynbos of the Kleinrivier Mountains falls within the fynbos biome (Kruger 1978) and Acocks veld type 69, fynbos (Acocks 1975). The area experiences a mediterranean type climate with most rain falling between May and September; summers generally being hot and dry (Schulze et al. 1978). Hot, dry, north-easterly winds, locally known as "Berg winds", are common during winter. The soils are typically those of the Table Mountain Group, being sandy, stoney, infertile and acidic (Taylor 1978).

1.2
 HISTORY OF THE RESERVE

The farm, Vogelgat, has a recorded history of sheep grazing from 1873 until the late nineteen sixties. No records were kept regarding frequency or seasons in which the area was burnt nor as to when, and intensity grazed. It appears that the mountains were mainly used as a route to bring sheep to the harbour at Hermanus for export. As the sheep were grazed on the
Fig 1: Location of Reserve

10 km

plains in the Caledon district, there would have been little grazing by sheep while they crossed over the mountain. Since records are not available as to the state of the vegetation prior to this practice, it is difficult to determine the damage done. Acocks, while undertaking his vegetation survey, regarded the area as being in sufficiently pristine condition to be used in his description of veld type 69, fynbos, including a photograph of the Reserve under this vegetation type (Acocks 1975).

The Hermanus Municipality erected a number of wiers in the main kloof of the farm in 1940. The water was used to supply Hermanus until 1945 when the Fernkloof dams were completed. The vegetation was not deliberately burnt in an attempt to increase run-off, but wild fires did occur. The wiers are still present, and are in a fairly good state of repair. The Municipality has retained the water rights of the Reserve.

The Reserve was purchased in 1969 by Dr Ian Williams, and declared a private nature reserve in 1971 by the Cape Department of Nature Conservation, and in 1985 a Natural Heritage Site (Number 5).
1.3 GEOLOGY AND GEOMORPHOLOGY

The Reserve falls into the Cape Fold Belt, signs of which can clearly be seen in the walls of the main kloof. A fault line, with breccia,
traverses the north-western corner of the Reserve.

The predominant geological formation is the Peninsula Formation ($\mathrm{C}_{1} \mathrm{Q}_{2}$) interspersed with narrow belts of the Cedarberg Formation $\left(C_{1} S_{2}\right)$ in association with the Pakhuis Formation ($C_{1} G$). All are of the Table Mountain Series and belong to the Cape System (Geological Survey 1966).

The Pakhuis and Cedarberg Formations cross the Reserve in an east-west direction, dividing the Reserve approximately into two. Another small outcrop occurs near Beacon Head (Fig 2). Contained within the Pakhuis Formation are a number of pebbles, some with striations indicating a possible glacial origin. In places the combined thickness of the Pakhuis and Cedarberg Formations average less than 60 m (Trusswell 1977).
1.4 TOPOGRAPHY

Abstract

A deep kloof with almost vertical, inaccessible cliffs, is the main feature of the Reserve. At between 300 m and 500 m a plateau area runs in a horse-shoe formation around this kloof. Along the northern and eastern borders there are higher peaks reaching up to 700 m , and loose boulder screes which in places support forest vegetation.

Most streams in the Reserve are perennial and well vegetated. The main stream flows in a south-westerly direction, drops into the kloof by means of a waterfall where it turns southward, eventually emptying into the Kleinrivier Vlei south of the Reserve's boundary. Other tributaries join it at various points along its route, most of which are also perennial.
1.5 CLIMATE

The Reserve falls into Climatic Region M (Schulze et al. 1978) in that it experiences a Mediterranean type climate with most rain falling from May to September and summers are warm to hot and dry.

Little climatic data are available for the mountainous terrain in the south-western Cape. One rain gauge is situated within the Reserve. Approximately 10 km to the west, on the northern slopes of the Kleinrivierberge, Department of Agriculture have established a weather station at Oude Hemel en Aarde ($34^{\circ} 21^{\prime} \mathrm{S}$, $19^{\circ} 14^{\prime} \mathrm{E}$; 243 m ; Fig 1).

1.5.1 Wind

Almost no information is available on wind conditions in mountain areas. Kruger (1974) reported wind speeds of $3,6 \mathrm{~m} / \mathrm{s}$ in Jakkalsrivier
catchment compared to the lowlands of $3,13 \mathrm{~m} / \mathrm{s}$ at the Worcester Veld Reserve.

Winds are characteristic of the area with few calm days (pers observ). In summer they are mainly south-east to southerly, with sea breezes reinforcing the southerly gradient, resulting in winds reaching maximum velocities in the early afternoon (Fuggle 1981). Winter conditions are dominated by south-west to north-westerlies. A characteristic of the winter months is the occurrence of hot, dry winds coming from the interior, locally known as "Berg winds". These winds can lead to an increase in temperatures of over $10^{\circ} \mathrm{C}$ within a few hours (Fuggle 1981; Jackson et al. 1971), and are responsible for the phenomenon of the highest absolute temperatures being recorded during winter. Berg winds often co-inside with the passing of cold fronts (Jackson et al. 1971).

1.5.2 Precipitation

Due to the Reserve's mountainous nature and predominantly southern aspect, rain is experienced throughout the year. A rain gauge has been in operation on the Reserve since February 1981 and is located at Quark House, in the centre of the Reserve, at an altitude of 360 m (Fig 2). The mean annual rainfall measured over the past eight years has been 1181 mm (Table 1).

Winter rains are associated with cold fronts. After the cold front has passed the winds back from north-west, west to south-west, pressures rise and rain usually occurs. Most rain is, however, associated with north-westerly prefrontal winds (Jackson et al. 1971).

Table 1: Mean monthly rainfall (mm) data for Quark House (1981 - 1988)

Jan	Feb	Mar Apr May Jun Jul Aug Sep Oct	Nov Dec	Total									
73	80	87	79	78	121	99	93	128	80	53	64	1	035

The summer months are relatively dry, with November and December being the driest two months. The four months, June to September, receive almost half of the annual rainfall, accounting for 43% of the total. Two peaks are experienced, one in June and the other in September, having a average of over 120 mm per month, accounting for almost a quarter to the total rainfall, this tendency is not reflected in the data from the low lying Hemel en Aarde sstation. The highest recorded rainfall for one month was in June 1983, when 309 mm was recorded, and the driest was in August 1982 with 17 mm .

Rainfall is usually of low intensity, but can continue for 8 days. Thunder storms have a frequency of less than 5 days per annum (Jackson et al. 1971).

The higher peaks of the Reserve are often covered in cloud, and it has been estimated that over 500 mm pa can be precipitated from these clouds without being recorded in the raingauge (Fuggle 1981).

The occurrence of frost and snow have not been recorded within the boundaries of the Reserve.

1.5 .3
 Temperature

Records have not been kept for the Reserve, and data has been obtained from the nearby Hemel en Aarde weather station (Fig 1).

Temperatures in January have a mean daily maximum of $24,7^{\circ} \mathrm{C}$ and minimum of $14,8^{\circ} \mathrm{C}$, dropping to $16,4^{\circ} \mathrm{C}$ and $8,7^{\circ} \mathrm{C}$ respectively in August, on average the coldest month. The coldest temperatures are associated with cold fronts which are most active during this month (Jackson et al. 1971). An absolute maximum of $39,3^{\circ} \mathrm{C}$ in January 1979, and absolute minimum of ${ }^{2} 1,8^{\circ} \mathrm{C}$ in July 1983 has been recorded during the time period from 1978 to 1984 (Table 2).

Table 2: Temperatures at Oude Hemel en Aarde (1978-1984)

Month	Mean		Absolute Values			
	max	\min	\max			\min
		\max	\max	\min		
Jan	24,7	14,8	39,3	14,2	26,2	7,9
Feb	24,4	15,0	33,7	15,8	17,7	9,0
Mar	23,8	14,1	33,1	12,6	23,2	9,0
Apr	21,9	13,0	35,7	11,1	21,9	7,0
May	18,2	10,7	34,0	10,2	23,0	4,8
Jun	16,9	9,6	28,0	8,9	18,0	3,9
Jul	16,8	9,0	30,5	8,5	18,7	1,8
Aug	16,4	8,7	29,6	8,8	16,9	3,2
Sep	17,6	9,3	31,6	9,2	15,5	3,0
Oct	20,1	10,7	34,2	10,1	20,1	5,0
Nov	22,0	12,3	35,7	12,4	19,1	5,9
Dec	23,3	13,7	31,6	14,4	18,8	8,0

RECREATION

Access to the Reserve is controlled by means of permits. These are issued annually, and give details of the walks and rules of the Reserve (Appendix 2; Fig 2).

The kloof path with its numerous pools and running water, is extremely popular in summer. ${ }_{2}$ Most visitors to the! Reserve spend their day here, seldom venturing further into the Reserve. The route up to the plateau and the main pool at "Quark House" is also well utilized. Most people ascending the mountain go directly to this hut, situated at a major cross-road of the paths. A number of other huts are located around the Reserve at various points.

The paths have been constructed with a gentle gradient, zigzagging up slopes where necessary, following the contour as far as possible. Erosion barriers have been constructed along paths were necessary and are regularly maintained. Approximately 32 km of paths have been constructed.

1.7 INTRODUCED SPECIES

A number of indigenous species have been introduced into the Reserve in the past, generally with little success. Most of these introduced plants are rare and/or endangered in their natural habitat. Table 3 gives a detailed account of each species.

1.8 PEST PLANTS

When the area was purchased, various alien plants infested different parts of the Reserve. Densities of these plants varied from scattered to medium, with few areas being entirely free of them. These alien plants have been systematically removed with follow up work continually being done to prevent reinfestation. Neighbouring land has been cleared to act as a buffer zone around the Reserve. The work is done manually.

Table 3: Species introduced into the Reserve

1.8.1 Leptospermum laevigatum

This species has become successively more dense over the years where it occurs on the Municipal land south of the Reserve. The few trees which occurred in the Reserve have been removed and cleared to a distance of 50 m from the Reserve boundary at which point a tracer belt has been made. This area acts as a buffer zone to prevent the myrtles from entering the Reserve. It would appear that this is sufficient distance as their germination is stimulated by fire, and the area is cleared regularly.

1.8.2 Hakea gibbosa

The eastern portion of the Reserve was the most densely infested with hakea, particularly the area known as "Hakea Land" (Fig 2). The original adults have been removed. Capsules are removed from each individual plant, carried off the mountain and destroyed.

1.8.3 Pinus pinaster

Large specimens occurred scattered on the upper part of the Reserve but have been removed.

1.8.4 Acacia cyclops

This species was limited to a few individuals in the main kloof. These have been removed, but occasional seedlings are still found.

1.8.5 Eucalyptus lehmanii

A few trees were planted in the Reserve by the previous owners and shepherds. These trees have been removed, and no seedlings have been found.

VEGETATION

METHODS

The survey was based on the Braun-Blanquet method (Werger 1974) The method has been extensively tested within the fynbos and has been found reliable by a number of workers (Westhoff et al. 1978 Taylor 1969; Boucher 1977; McDonald 1983). This method is also used by the National Botanical Institute, and has become a standard method for their vegetation surveys. Werger (1972) regarded the optimum plot size as that which gives 50-55 \% of the species found in one hectare of uniform vegetation. Based on data from three fynbos sites, 50 \% of the hectare information was reached on an average quadrat size of $51,9 \mathrm{~m}^{2}$. Taylor (1969) and Boucher (1977) found this quadrat size to be suitable for homogeneous fynbos vegetation. Quadrats of this size and shape have become standard in vegetation surveys carried out by the National Botanical Institute. Quadrats of $5 \times 10 \mathrm{~m}$ were found to be inappropriate for riverine communities, so these communities were recorded by walking along the river for 100 m
and within a distance of $0,5 \mathrm{~m}$ of the banks. At other sites, for example, marshes and rocky outcrops, the plot shape and size was adjusted to fall within the specific community. Forest relevés were larger with $10 \times 20 \mathrm{~m}$ quadrats. Where practical the quadrats were subdivided into five $2 \times 5 \mathrm{~m}$ to aid with the recording of the data.

Colour 1:10 000 aerial photographs were studied, and preliminary community boundaries were drawn on them. These divisions were based mainly on aspect, slope and soil moisture content, ie dry and wet areas. Relevés were then located within these areas.

2.1.1 Data collection

All higher plant species within a relevé were identified and given a cover abundance value (Table 4) based on the Braun-Blanquet scale (Table 4)(Werger 1974). Species which could not be identified in the field, were collected for later identification in the Reserve's herbarium. Further data collected from each quadrat included estimates of total vegetation cover, height and stratification, slope, aspect, altitude and rock cover.

Field work was carried out during 1985, with most of the survey being done between October and December of that year. A total of 119 relevés were set out (Fig 3).

Table 4: Cover Abundance Values (after Werger 1974)

Symbol	Definition
r	Very rare and with negligible cover (usually a single individual).
6	Present but not abundant and with a small cover value (less than 1 of
1	Numerous but covering less than 1 of of the quadrat area, or not so abundant but covering 1 to 5% of the quadrat area.
2	Very numerous but covering less than 5 \% of the quadrat area, or covering 5 - 25 of quadrat area independent of abundance.
3	Covering 25-50 \% of the quadrat area independent of abundance.
4	Covering 50-75 of the quadrat area independent of abundance.
5	Covering 75-100 \% of the quadrat area independent of abundance.

2.1.2 Table preparation

Data were arranged into a species by site table, and then sorted using the Programme TABSORT, developed by the Forestry Branch of the Department of Water Affairs at Jonkershoek. It 'has been expanded and modified by the National Botanical Institute (Boucher 1977). A Burroughs B7 800 computer of the Department of Agriculture was used to run the data. Further refinements were made by hand. The complete table is given as Appendix 3.

The vegetation occurring on the Reserve can be subdivided into two main categories (Fig 4):

> (i) Mesic Mountain Fynbos communities (Moll et al. 1984), and
> (ii) Forest and riparian vegetation.

The communities were defined by means of floristic analysis, site characteristics and vegetation stratification, averaged over all the relevés within a community. A species-binomial (McDonald 1983; van Wilgen et al. 1985) and structural system was used to name the communities. The dominant, differential species were selected for the species-binomial part, while the structural classification (Table 5) follows the system proposed by Campbell et al. (1981) for vegetation classification in the Fynbos Biome. The term "community" was used as an abstract term (Shimwell, 1971) and does not imply any specific ranking.
*
Table 5: 'Structural Nomenclature (Campbell et al. 1981)

Height of dominant	Projective Canopy cover of dominant stratum (\%)		
Tall	$2 \mathrm{~m}+$	Closed	$75-100$
Mid-high	$1 \mathrm{~m}-2 \mathrm{~m}$	Mid-dense	$50-75$
Low	$0,25 \mathrm{~m}-1 \cdot \mathrm{~m}$	Open	$25-550$
Dwarf	$0,25 \mathrm{~m}$	Sparse	$5-25$

Legend: Plant Communities

Community Name

Brunia alopecuroides - Chondropetalum deustum, mid-dense, mid-high shrubland

Erica coccinea var coccinea - Widdringtonia cupressiodes, sparse to mid-dense, mid-high proteoid veld

Osmitopsis asteriscoides - Erica perspicua,
C sparse to mid-dense, mid-high to tall
shrubland

D
Restio similis - Hypodiscus argenteus, open mid-high proteoid veld

Chondropetalum èbracteatum - Villarsia capensis, mid-dense, mid-high shrubland

Aulax umbellata - Protea repens, mid-dense, mid-high proteoid veld

Erica onosmiflora - Brunia alopecuroides, mid-dense, low to mid-high, ericoid and restioid veld

H Phaenocoma prolifera - Chondropetalum hookerianum, open low restioid veld

Passerina vulgaris - Pentaschistis capensis, sparse to open, mid-high to tall shrubland

Protea nitida - Protea repens, sparse, tall Waboomveld

Psoralea aculeata - Phylica buxifolia,
sparse to open, mid-high to tall ericioid veld

Curtisia dentata - Ilex mitis, closed, tall
L kloof forest
Erica caffra - Blechnum capense, open, midhigh riverine veld

Young veld, not mapped

One kilometer

Fig 4: Plant Communities

Chondropetalum $\frac{\text { ebracteatum }}{\text { mid-high shrubland }}$ Villarsia capensis, mid-dense,

$\frac{\text { Osmitopsis }}{\text { dense, mid-high to tall shrubland }} \frac{\text { asteriscoides }}{}$ Erica

$\frac{\text { Aulax }}{\overline{\text { proteid }} \text { umbellata }}$ - Protea repens, mid-dense, mid-high

to tall ericioid veld

2.2.1 Mesic Mountain Fynbos

The general structure of the communities falling within this category is of three distinct layers. Adamson (1938) found these layers to be typical of the fynbos vegetation. The upper canopy is composed mainly of the families Proteaceae and Bruniaceae, the middle layer of Bruniaceae and Ericaceae, and the lower layer predominantly Restionaceae , and Cyperaceae. Smaller herbaceous and geophytic plants are also common at this level.
2.2.1.1 Phaenocoma prolifera - Chondrópetalum
hookerianum, open low restioid veld (Map
symbol H)

RELEVéS

92	84	58	11	46
3	35	106	9	90
42	85			

TYPE SPECIES

2
Phaenocoma prolifera
Syncarpha vestita (was Helichrysum vestitum)
Chondropetalum hookerianum
Erica longiaristata
Staberoha distachya
Indigofera alopecuroides var alopecuroides
Saltera sarcocolla
Thamnochortus pulcher
Erica onosmiflora
Nebelia paleacea
Drosera glabripes
Drosera aliciae
Restio burchellii
Elegia filacea
Grubbia tomentosa
Phylica ericoides
Protea cynaroides
Erica cumuliflora
Restio ambiguus
Tetraria brevicaulis
Chondropetalum deustum
Leucadendron gandogeri
Ursinia paleacea
Gerbera crocea
Chondropetalum mucronatum

The differential species of this community form the basis of the mountain fynbos group on the Reserve, and are common to the communities described under this heading. It emerges as a separate community in small localized areas which do not have suitable conditions for the more habitat sensitive species. It occurs on any aspect, within the mid-altitudinal range of between 300 m and 550 m . Slopes are steep and well drained. Restionaceae are the visually dominant species, with the dark shape of Phaenocoma prolifera scattered throughout.

2.2.1.1.1 Brunia alopecuriodes - Chondropetalum deustum, mid-dense, mid-high shrubland (Map symbol A)

RELEVéS:
$\begin{array}{lllll}98 & 102 & 100 & 96 & 97\end{array}$
1019995

TYPE SPECIES

Erica plukenetii var bicarinata
Erica lutea
Berzelia squarrosa

This community occurs on the limited east-northeast aspects of the Reserve at altitudes of between 500 m and 600 m , with the slope varying from gentle $\left(2^{\circ}\right)$ to moderately steep (15°). The soils are well drained, consisting of a coarse sand with numerous stones and pebbles (Mispah series). The species richness varies between nine and 16 species per $5 \times 10 \mathrm{~m}$ relevé (average 10,4), and is the lowest recorded species richness of all the Reserve's communities. This low species richness could be accounted for by the fact that these slopes are particularly hot the dry due to its aspect.

Structurally two layers can be distinguished. The tallest layer ($0,75 \mathrm{~m}$ to $1,5 \mathrm{~m}$) is open and dominated by Brunia alopecuroides and Leucadendron xanthoconus. The lower layer $(0,25 \mathrm{~m}$ to $0,50 \mathrm{~m})$ is mid-dense, and contains
both the Ericaceae type species. Chondropetalum deustum is the dominant restioid. Other common restioids include Restio bifarius and Thamnochortus gracilis. Common ericoid species are Erica aristata and Penaea mucronata. The latter two species are common within the community but have a wide distributional range, occurring in other communities.

The community is similar to the mixed ericoid and restioid fynbos of the upper mesic slopes (northerly aspect community of the inland mountain fynbos), described by Boucher (1978) in the Cape Hangklip area.

2.2.1.1.2 Chondropetalum ebracteatum, sparse to middense, mid-high to tall shrubland

TYPE SPECIES

Chondropetalum ebracteatum
Penaea cneorum ssp ruscifolia
Villarsia capensis
Restio dispar
Centella eriantha var eriantha

The greater part of the Reserve is covered by this community. It has a wide altitudinal rage and occurs on most aspects of the Reserve. Three sub-communities can be recognized, characterized by Specific habitat requirements. Eight of the relevés within this grouping do not
fall into any of these sub-communities, but form part of the general community.

Abstract

2.2.1.1.2.1 Chondropetalum ebracteatum - Villarsia capensis, mid-dense, mid-high shrubland (Map symbol E)

RELEVéS

34	61	64	48	53
49	63	60		

The community occurs in the north-east section of the Reserve at mid (360 m) to high altitudes $(750 \mathrm{~m})$ on the west-south-west to north-west aspects. The characteristic species of the community are those which are diagnostic for the community as a whole. This basic community becomes clearer where the habitat requirement is not met for the more habitat sensitive subcommunities. The species richness varies between 11 and 21, with an average of 16,2 species per $5 \times 10 \mathrm{~m}$ relevé.
*
Structurally there are three layers, namely a mid-high, a lower and a dwarf layer. The midhigh layer is mid-dense, dominated by Leucadendron xanthoconus and Brunia alopecuroides, both species having a wide habitat range. Restioid and ericoid shrubs dominate the lower layer, particularly the characteristic species, Chondropetalum ebracteatum, which occurs in 75 of the releves
describing this community. Other commonly occurring species in this lower level include Thamnochortus pulcher, Nebelia paleacea, Tetraria fasciata and Erica onosmiflora. The dwarf layer is generally sparse to open in density. Commonly occurring species include type species, Villarsia capensis, and the generalist, Anaxeton laeve, both of which occur at low densities.
2.2.1.1.2.2 Erica coccinea var coccinea - Widdringtonia cupressiodes, sparse to mid-dense, mid-high proteoid veld (Map symbol B)

RELEVÉS

94	78	79	81	31

$\begin{array}{lllll}80 & 88 & 41 & 51 & 82\end{array}$
$\begin{array}{lllll}32 & 43 & 39 & 33 & 50\end{array}$
$\begin{array}{llll}44 & 87 & 56 & 113\end{array}$

TYPE SPECIES

Erica coccinea var coccinea
$\stackrel{\rightharpoonup}{2}$
Hermas depauperata
Restio perplexus .
Euryops abrotanifolius
Laurophyllus capensis
Widdringtonia cupressiodes
Protea lepidocarpodendron
Schizaea pectinata
Thaminophyllum latifolia
Berzelia rubra

Carpobrotus pillansii
Dilatris pillansii
Erica corydalis
Selago serrata

This sub-community occurs east of the main kloof, with a wide altitudinal range of 150 m to 600 m , with the main range lying between 150 m and 300 m . The main aspect of the community varies between south-east and west-south-west. Slopes are moderately steep, well drained and dry. The soils are white, sandy, shallow with numerous small stones scattered throughout. In places where the shale band has been exposed, Protea lepidocarpodendron becomes dominant. The soils here have a higher clay content and better soil moisture retention than those derived from sandstone. The species richness of the community is one of the highest, with an average of 22 species per $5 \times 10 \mathrm{~m}$ relevé, ranging from 16 to 34 species.

Of the type species, Erica coccinea var coccinea occurred in 56 \% of the 16 relevés representing the community; Hermas depauperata, 50 \%; Restio perplexus, Euryops abrotanifolius and Widdringtonia cupressiodes 31 \%.

Three strata can be distinguished. The upper, at between $1,5 \mathrm{~m}$ and 2 m is generally sparse, increasing to mid-dense on moister sites. It is dominated by Widdringtonia cupressiodes, Penaea cneorum, Leucadendron gandogeri, and

L xanthoconus. Protea lepidocarpodendron, dominates on shale outcrops. The middle stratum at about 1 m is mid-dense, increasing to dense in the absence of the lower stratum on wetter sites. Shrubs, and taller restios are common in this layer, particularly Chondropetalum ebracteatum. The lowest stratum at $0,25 \mathrm{~m}$ to $0,50 \mathrm{~m}$ is absent on wet areas, reaching middensity on drier sites. Restionaceae, Cyperaceae, Poaceae and Ericaceae dominate at this level.

The Mixed lower slope fynbos of the inland mountain fynbos at Cape Hangklip (Boucher 1978) can be compared to this community.

```
2.2.1.1.2.3 Osmitopsis asteriscoides - Erica perspicua, sparse to mid-dense, mid-high to tall shrubland (Map symbol C)
```

RELEVéS

118	119	40	45	116
65	117	6	5	4

TYPE SPECIES

Osmitopsis asteriscoides
Erica perspicua
Brunia albiflora
Grubbia rosmarinifolia var rosmarinifolia
Disa tripetaloides ssp tripetaloides
Erica brevifolia

Erica tenuifolia
Gleichenia polypodioides
Pseudobaeckia africana
Roridula gorgonias
Isolepis digitata (was Scripus)
Ursinia eckloniana
Brunia laeve

The community is confined to the upper river courses of the Reserve, occurring on a wide range of slopes, varying from gentle to very steep ($5^{\circ}-10^{\circ}$), and on aspects from south-east to west, similar to the community described above. The altitudinal range is between 300 m and 700 m . Higher areas are subject to mist rain. Soils are deep, dark brown to black, and humus rich. Although the soil is permanently wet and saturated, the water is not stagnant. Compared to the above described community, there were fewer species noted, averaging only 13,7 species per relevé with a range of between 9 and 19. A number of the types species have high cover abundance values, for example, Osmitopsis asteriscoides and Villarsia capensis have an average cover abundance value (Table 4) of three for the ten sampled relevés; Chondropetalum ebracteatum and Erica perspicua two. The type species of Osmitopsis asteriscoides and Erica perspicua occurred in 90% and 70% of the relevés respectively.

Four strata can be identified. The upper stratum occurs at $1,5 \mathrm{~m}$ to 3 m above ground
level, variation depending on the wetness of the site: the wetter the site, the taller and more dense it is varying between sparse and middense. Dominant species in this stratum include Osmitopsis asteriscoides, Brunia alopecuroides, Restio dispar and Brunia albiflora. The intermediate stratum is approximately 1 m tall, usually mid-dense, increasing in density on the drier sites where the upper stratum is more open. Leucadendron xanthoconus, Erica sessiliflora, Chondropetalum ebracteatum and Erica hispidula dominate. The lower stratum, occurring at between $0,25 \mathrm{~m}$ and $0,50 \mathrm{~m}$ varies from mid-dense to dense, and is dominated by restioid and fern species. The lowest stratum occurs at ground level to about $0,25 \mathrm{~m}$. It is sparse on wet sites, becoming mid-dense on sites which are slightly drier. Villarsia capensis and Drosera glabripes dominate.

The Upper hygric fynbos of the Cape Hangklip area described by Boucher (1978) is similar.

2.2.1.1.2.4 Restio similis - Hypodiscus argenteus, open, mid-high proteoid veld (Map symbol D)

RELEVéS

12	10	8	7	26
1	89	2	21	47
103	36	37	20	25
27	24	23	22	

TYPE SPECIES

```
Restio similis
Restio bifarius
Hypodiscus argenteus
Staberoha banksii
Restio sarcocladus
Erica coccinea var pubescens
Thamnochortus lucens
Berzelia incurva
Drosera cistiflora
Serruria rubicaulus
```

The community dominates the western half of the Reserve, occurring within the middle altitudinal range of the reserve at between 200 m and 670 m , on dry sites. The aspect varies between north to south-east, with the south-east aspect dominating. Slopes are moderate, but can become very steep in places. Species richness varies between seven and 24 with and average of 18,3 species per $5 \times 10 \mathrm{~m}$ relevé.

The type species, Restio similis, occurs in the 'greatest percentage (47) of the 19 relevés sampled in the community; Restio bifarius in 37 \%; Hypodiscus argenteus and Staberoha banksii in 32 . The cover abundance value of these species is generally low (one to two). In places the type species increase in cover abundance value, becoming mid-dense, particularly at the higher altitudinal range (above 400 m) of the community.

Structurally, two distinct layers are formed in the mature vegetation: a mid-high, open upper layer ($1,0 \mathrm{~m}$ - $1,5 \mathrm{~m}$) dominated by the thin small leafed Aulax umbellata, and a lower layer mid-dense layer dominated by restioid and ericacious shrubs.

```
2.2.1.1.3 Aulax umbellata - Protea repens, mid-dense, mid-high proteoid veld (Map symbol F)
```


RELEVéS

114	111	115	110	112
104	28	105	120	29

TYPE SPECIES

Blaeria ericoides
Leucospermum gracile
Aspalathus serpens
Watsonia schlechteri
Erica tenella var gracilior
Disparago laxifolia
Leucadendron spissifolium var spissifolium
Retzia capensis
Erica cerinthoides var cerinthoides
Merciera tenuifolia var aurea
Aspalathus ciliaris
Aristea oligocephala
Ficinia trichodes
Mairea coriacea
Pentaschistis malouinensis

Thesium euphrasioides
Cassine peragua

The community is limited to south to south-west aspects at low altitudes of between 150 m and 300 m . Slopes vary from gentle (5°) to steep $\left(30^{\circ}\right)$. The sandy soil is littered with stones, with a rock cover of $5-10 \%$ and well drained with low water retention.

Of the ten sampled releves, the type species Blaeria ericoides, occurred in 50 \%; Leucospermum gracile, Aspalathus serpens and Erica tenella var gracilior in 40% and Retzia capensis in 30%. The community has one of the highest species richness of all the indentified communities, averaging 23,4 species per $5 \times 10 \mathrm{~m}$ relevé, varying between 14 and 30 species.

Two structural layers can be distinguished within the community. The upper stratum (1 m to $1,5 \mathrm{~m})$ is mid-dense. The lower stratum at between $0,25 \mathrm{~m}$ and $0,75 \mathrm{~m}$ is open, increasing to mid-dense where Protea repens, as opposed to Aulax umbellata, dominates the upper stratum. It is dominated by restios.
2.2.1.1.4 Erica onosmiflora - Brunia alopecuroides, middense, low to mid-high ericoid and restioid veld (Map symbol G)

RELEVéS

70	67	71	54	57
59	55	68	62	66
69				

TYPE SPECIES

Metalasia cymbifolia
Ceratocaryum argenteum (was Willdenowia)
Erica coccinea var inflata
Ehrharta setacea
Diastella divaricata ssp montana
Tetraria compar
Thesium capitatum
Thesium euphorbioides
Thesium quinqueflorum
Paranomus septrum-gustavianus
Restio filiformis

The community occurs in the north-eastern part of the Reserve where it is confined to the upper altitudes (520 m to 700 m) on moderate to steep slopes $\left(10^{\circ}-30^{\circ}\right)$. The aspect is predominantly south-west, but varies from south-west to north on stoney soils.

Metalasia cymbifolia is the main type species of the community, occurring at a low cover
abundance value of one, in 90% of the ten sampled relevés. The other diagnostic species, Ceratocaryum argenteum occurred in 50 \%, with a cover abundance value of two; Erica coccinea var inflata occurred in 40% with a cover abundance value of one. The remaining seven types species occurred in only 10% of the sampled relevés, with a cover abundance value of one. The number of species per relevé averaged 21,7 , with a range of between 14 and 27 .

Structurally, three levels can be recognized in the mature community. The upper stratum, often absent on drier sites, reaches a height of between 1 m and $1,5 \mathrm{~m}$. It is sparse in density, dominated by Thesium euphorbioides, Erica onosmiflora, Saltera sarcocolla, and Brunia alopecuroides. The intermediate layer is middense, between $0,75 \mathrm{~m}$ and 1 m tall, dominated by restioid and ericioid shrubs. The lower stratum at $0,25 \mathrm{~m}$ to $0,50 \mathrm{~m}$ in height, is middense in the absence of the upper stratum, dropping to sparse. Ericoid and restioid species are common.
2.2.2 Forest and Riparian Communities
2.2.2.1 Passerina vulgaris - Pentaschistis capensis, sparse to open, mid-high to tall shrubland

The community occurs at low altitudes (50 m to 100 m above sea level), generally within a limited range of aspects (south to west-south-
west). It can also occur at low altitudes on east-north-east aspects.

Two sub-communities can be identified, namely Protea nitida - Protea repens sparse, tall Waboomveld and Psoralea aculeata - Phylica buxifolia sparse to open, mid-high to tall ericoid shrubland. A possible third subcommunity can be indentified (map symbol I). This community is limited to low altitudes (50 m - 100 m) and south to west-south-west aspects.

2.2.2.1.1 Protea nitida - Protea repens, sparse, tall Waboomveld (Map symbol J)

RELEVéS

$$
\begin{array}{llll}
14 & 15 & 13 & 18
\end{array}
$$

TYPE SPECIES

Protea nitida
Diospyros glabra
Knowltonia capensis
Pelargonium longicaule
Myrsiphyllum declinatum
Erica parviflora
Ehrharta rehmanni
Pentaschistis thunbergii
Lachenalia peersii
Eriospermum nanum
Mohria caffrorum
Tephrosia capensis

The aspect on which the community occurs is only east-north-east at low altitudes (50-100 m) in the kloof: The slope is moderately steep. Soils are relatively deep and sandy. The average number of species per relevé is high for the Reserve at 30,5 , varying between 27 and 34 .

The type species, Protea nitida, is visually dominant in the community, giving it a characteristic blue/grey colour. It has a high cover abundance value (three), and occurred in all the sampled relevés. The other type species, Knowltonia capensis, Diospyros glabra, Tephrosia capensis, Pelargonium longicaule and Eriospermum nanum are also commonly occurring species.

Structurally there are three distinct layers. The tall upper layer at a height of 3 m to 5 m , is sparse and dominated by the type species Protea nitida. The middle layer is dominated by Protea repens and Passerina vulgaris. This is a dense layer reaching a height of between $1,5 \mathrm{~m}$ and 2 m . The lower layer, at between $0,50 \mathrm{~m}$ and $0,75 \mathrm{~m}$ dominated by grasses, restios and Erica imbricata. It is a mid-dense layer.symbol K)RELEVéS
$\begin{array}{llll}76 & 73 & 17 & 83\end{array}$ 19
$75 \quad 74$ 107
TYPE SPECIES
Phylica buxifolia
Lampranthus emarginatus
Indigofera angustifolia
Crassula biplanata
Arctotis semipapposa
Briza maxima
Erica villosa
Psoralea aculeata
Agathosma ciliaris
Ehrharta erecta
Erica discolor
Helichrysum cymosum
Rhus glauca
2.2.2.1.2 Psoralea aculeata - Phylica buxifolia sparseto open, mid-high to tall ericioid veld (Map
This community occurs mainly on south-south-west to west-south-west aspects of the kloof at low altitudes of between 40 m to 100 mm . The slope varies from gentle to very steep. The number of species per relevé varies from 11 to 26 , with an average of 17,1 .

No one type species is particularly dominant in the community. Phylica buxifolia is the most commonly occurring of the type species.

Two layers can be distinguished in the mature vegetation. The upper layer at between 1 m and $2,5 \mathrm{~m}$, is sparse to open in density. The lower layer, between $0,50 \mathrm{~m}$ and $0,75 \mathrm{~m}$, is mid-dense to dense, dominated by Erica hispidula, restios and grasses.

```
2.2.2.2.1 Curtisia dentata - Ilex mitis closed, tall
    kloof forest (Map symbol L)
```

 RELEVé
 93
 TYPE SPECIES
 Curtisia dentata
 Ilex mitis
 Blechnum tabulare
 Elaphoglossum angustatum
 Rumohra adiantiformis
 Myrsiphyllum asparagoides
 Elegia thyrsifera
 It occurs on south-south-west aspects, at an
 altitude from 100 m to 250 m . Only 13 species
 were recorded in the relevé.
 The more rapid weathering of the shaleband is the Table Mountain Sandstone provides deeper soils than those of in situ weathered sandstones, sometimes resulting in steep-sided ravines, particularly where the shales meet the lower sandstones (Boucher 1978). These steep walls provide the forest with a degree of protection from fires. The forests are thus limited in extent, occurring only in the protective kloofs along the water courses. One relevé of $10 \times 20 \mathrm{~m}$ was used to sample the community.

Rumohra adiantiformis, Blechnum tabulare (both types species for the community) and Todea barbara are common components of the interior ground cover (cover abundance value two), attaining heights up to $0,75 \mathrm{~m}$. They do not build up large amounts of litter, thus help to keep fires out of the forest (Boucher 1978).

The canopy is closed, and varies in height between 10 m and 15 m . Other species typical of the forest include olea capensis ssp capensis, Rapanea melanophloeos, Pterocelastrus rostratus and Maytenus acuminata (cover abundance value two). Another discontinuous, sparse shrub layer occurs at between 1 m and 3 m , comprising mainly of tree saplings.

The Podocarpus-Rapanea Shale forest described by Boucher (1978) for the Cape Hangklip area can be compared to this community.

2.2.2.2.2 Erica caffra - Blechnum capense open, mid-high riverine veld (Map symbol M)

RELEVéS

$$
77 \quad 91
$$

TYPE SPECIES
Prionium serratum
Blechnum capense
Ehrharta rehmanni var filiformis
Erica caffra
Empleurum unicapsulare
Psoralea pinnata
Laurentia secunda
Ficinia distans
Scriptus prolifera
Juncus capensis

This community occurs as a narrow stripe along river courses above and below the forest community described above. The altitude varies from 40 m to 280 m , on south-south-east aspects.

There is not physical protection for the community against fire, and it burns on a similar rotation as that experienced by the fynbos communities. Thirteen to 14 species were recorded per relevé.

The vegetation is much lower than that of the forest, reaching a height of 2 m to 5 m , and is
mid-dense. Erica caffra and Empleurum unicapsulare are dominant. A lower layer of $0,50 \mathrm{~m}$ to $0,75 \mathrm{~m}$ is mid-dense with Blechnum capense and Prionium serratum being dominant. Mosses form a sparse ground layer (0 m $0,10 \mathrm{~m})$.

The tall fynbos of the rocky streams under the riparian vegetation of the Cape Hangklip area (Boucher 1978) can be compared to this community.

DISCUSSION

Werger (1974) found that the Braun-Blauquet approach to vegetation mapping, could be applied successfully to the fynbos. However, Campbell (1985) felt that it would be appropriate for use in small areas only. From this study, I would support the latter statement for the following reasons:
(a) the method is expensive in terms of time, each relevé taking approximately one hour to complete.
(b) a high degree of floristic knowledge is necessary to identify species, both in the field and herbarium (also a time consuming activity!).
(c) not all plants noted were at a stage where they could be identified in either the field or herbarium at the time of the survey, and

a number of relevés had to be revisited to collect. previously tagged plants.
 (d) some plants could have been mistaken for other species, and hence incorrectly indentified.

Although these factors can be considered disadvantageous and costly, Reserve field personnel can learn a great deal about field conditions, and develop their knowledge of species names, habitat requirements, and interactions with other species by using the methodology. The method is also a very efficient way of compiling an initial species list and to set up a herbarium of an area. In this study a total of 242 species were identified of the 707 higher plant species which have been collected within the 603 ha of the Reserve (de Lange 1992). In approximately 0,1 \% of the area 34% of the recorded higher plant species were collected. A further advantage is that a detailed vegetation map can be compiled.

One of the objectives of the Reserve is that it should be used for research, the present survey has therefore provided a good baseline study for further studies. As the Reserve is only 603 ha, with an established herbarium and an extensive network of paths allowing for easy access, as well as an even aged, mature vegetation at the time of the study (10 years), it was an ideal site for the study.

A total of 13 communities and sub-communities were identified in the Braun-Blanquet table, indicating a great diversity of habitats within the Reserve. Each community had its own environmental requirements. Aspect, altitude and soil moisture appear to be particularly important in this regard. Once the communities were defined, their extent was determined by extrapolation to the surrounding areas using the prepared classification and by referring to aerial photographs.

The vegetation divided into two broad categories: mesic mountain fynbos, and forest and riparian communities. Of the forest and riparian communities, the forest had distinct physical boundaries which offer protection from fire. Soils here were generally deeper then those in the rest of the Reserve, mainly as a result of exposure and eroding of the shale band.

The mesic mountain fynbos communities were divided into two groups, namely those of the steep kloof slopes and the rest of the reserve. These communities vary in complexity depending on such environmental factors as altitude, aspect, slope and moisture conditions. Communities on wetter sites generally had a lower species richness.

The whole Reserve was burnt in February 1985, and a repeat survey was carried out 18 months

The whole Reserve was burnt in February 1985, and a repeat survey was carried out 18 months later, when fifty of the original relevés were re-assessed. The table (Appendix 4) for the latter survey gave the same communities as for the mature vegetation, but with different type species. When all the pre-fire species were excluded from the table the remaining species (predominantly geophytes) showed similar groupings to those previously recorded (Appendix 5). New species recorded after the fire were predominantly sprouters only visible and identifiable for a few years after a fire. These species are by nature subjected to the pressures of short or long fire rotations, and could possibly be used as indicators of community changes due to various management actions. For example, an increase in the density of geophytic plants could be indicative of short rotation burning since fire stimulates flowering of these.plants.

ACOCKS J P H 1975: Veld Types of South Africa (Second Edition). Mem Bot Surv of S A No 40.

ADAMSON R S 1938: The vegetation of South Africa. London: British Empire Vegetation Committee.

BOUCHER C 1977: Cape Hangklip area: I. The application of association analysis, homogeneity functions and BraunBlanquet techniques in the description of South-western Cape vegetation. Bothalia Vol. 12:293-300.

BOUCHER C 1978: Cape Hangklip area: II. The vegetation. Bothalia 12:455-497.

CAMPBELL B M 1985: A classification of the mountain vegetation of the fynbos biome. Mem Bot Surv S A No 50.

CAMPBELL B M, R M COWLING, W BOND AND F J KRUGER 1981: Structural characterization of vegetation in the Fynbos Biome. South African National Scientific Programmes Report Number 52. CSIR, Pretoria.

DE LANGE C 1992: An analysis of the flora species of Vogelgat Nature Reserve. Unpulb MSc thesis Univ Cape Town.

FUGGEL 1981: Macro-climatic patterns within the fynbos biome. Fynbos biome project. Nat Prog Enviro Sci CSIR. Final report, December.

Geological Survey 1966: Dept. Mines. 3319C Worcester and 3419A Caledon.

JACKSON S P and P D TYSON 1971: Aspects of weather and climate over Southern Africa. Environment Stud Occas Pap 6. Univ Witwatersrand.

KRUGER F J 1974: The physiography and plant communities of the Jakkalsrivier Catchment. Unpubl MSc thesis, Univ Stellenbosch.

KRUGER F J 1978: A description of the Fynbos Biome Project. South African National Scientific Programmes Report No 28. CSIR, Pretoria.

MCDONALD D J 1983: The vegetation of Swartoschkloof, Jonkershoek, Cape Province, South Africa. Unpubl MSc Thesis, Univ Cape Town.

MOLL E J, B M CAMPBELL, R M COWLING, L BOSSI, M L JARMAN AND C BOUCHER 1984: A description of the major vegetation categories in and adjacent to the fynbos biome. South African National Scientific Programmes Report No 83. CSIR, Pretoria.

SCHULZE R E and O S MC GEE 1978: Climatic indices and classifications in relation to the biogeography of Southern Africa. Junk, The Hague. pp. 19-52.

SHIMWELL D W 1971: The description and classification of vegetation. London: Sidgwick and Jackson. pp 322.

TAYLOR H C 1969: A vegetation survey of the Cape of Good Hope Nature Reserve. Unpubl MSc thesis, Univ Cape Town.

TAYLOR H C 1978: Capensis. In: Werger M J A (ed) The biogeography and ecology of southern Africa. Junk, The Hague.

TRUSWELL J. F.: 1977: The Geological Evolution of South Africa. Purnell, Johannesburg.

VAN WILGEN $B \quad W$ AND F KRUGER 1985: The physiography and fynbos vegetation communities of the Zachariashoek catchments, south-western Cape Province. S Afr J Bot 51 (5) 379-399.
${ }^{2}$ WERGER M. J. A.: 1972: Species-area Relationships and plot size with some examples from South African Vegetation. Bothalia 10:583-594.

WERGER M J A 1972: Species-area relationships and plot size with some examples from South African Vegetation. Bothalia 10:583-594.

WERGER M. J. A.: 1974: On concepts and techniques applied in the zurichMontpellier method of vegetation survey. Bothalia 11 (3):309-323.

WESTHOFF, V., E. VAN DER MAAREL: 1978: "The Braun-Blauquet approach. Ordination and classification of vegetation. In: R. H. Whittaker (ed.). Handbookd of Vegetation Science Vol 5. Junk, the Hague

WILDLIFE SOCIETY OF SOUTHERN AFRICA 1980: The policy and strategy for environmental conservation in South Africa.

SECONDARY SUCCESSION

AND
SPECIES RESPONSE TO FIREIN
COASTAL MOUNTAIN FYNBOS
CAPE PROVINCE, SOUTH AFRICA
CHERYL DE LANGE1992
Thesis presented for the Degree of Master of Science University of Cape Town

CONTENTS

page
1 INTRODUCTION 3
2 STUDY AREA 5
3. METHODS 7
3.1 DATA COLLECTION 7
3.2 MECHANISMS GOVERNING SPECIES RESPONSES TO DISTURBANCE 11
3.2.1 Method by which a Species Persists on the Site of Disturbance 13
3.2.2 Conditions for Establishment 14
3.3 FIRE-RESPONSE CATEGORIES 15
3.4 DIVERSITY 15
4 RESULTS AND DISCUSSION 17
4.1 SPECIES RICHNESS PATTERNS IN RELATION TO FIRE 17
4.1.1 Species Lost from Relevés Post-Fire 17
4.1.2 Species Gained in Relevés post-fire 19
4.1.3 Species which remained in Sampled Relevés 22
4.2 SPECIES VITAL ATTRIBUTES AND FIRE-RESPONSE 24
4.3 COVER ABUNDANCE VALUE AND EMERGENCE OF SPECIES POST-FIRE 26
4.4 ORDINATION 29
5 CONCLUSION 32
6 REFERENCES 38

INTRODUCTION

Fynbos areas are coming under increasing pressure from society in terms of recreation, water supplies and the cut flower trade. As more areas of fynbos disappear and become degraded, particularly in the south-western Cape, it is vitally important that those areas which have been set aside for conservation are managed in the best way possible to ensure their long term survival (Wildlife Society, 1980). Fire plays an integral role in these communities and is the main tool of management. It is important to be able to predict its effect on fynbos vegetation under a given fire regime particularly for small private, Municipal and Provincial reserves.

Fire causes repeated disturbances in fynbos. It is argued that fire is necessary to allow some plants to complete their life cycles, and that fires should take place in a fairly predictable manner to allow for the survival of these species (Seydack et al. 1986; Kruger 1987).

Disturbance can be defined as an external factor leading to the complete or partial destruction of the vegetation (Grime 1979). Two forms of succession can be distinguished, namely primary and secondary (McIntosh 1980). Primary succession occurs where a site is so disturbed that no effects
of the previous biota are evident. Secondary succession is said to occur when the disturbance is of such a nature as to result in fairly large changes, but where the effects of the previous biota remain. Primary succession affects only small areas of the fynbos biome (Kruger 1987) and was not investigated in this study. Pyric succession is a form of secondary succession being a process whereby those species which were present before the fire recover on the site (Hanes 1971). The initial phase of pyric succession in fynbos was the focus of this study.

A limited number of studies on pyric succession have been carried out on mountain fynbos communities (Bond 1980; van Wilgen 1981; van Wilgen et al. 1981; Kruger 1984; Kruger 1987). This study was designed to add to the available data of the early successional pattern in fynbos, using the analytic approach of Noble and slayter (1980), the fire response categories of Bell et al. (1984) and multivariate methods to compare results on different communities in order to evaluate the applicablitity of current successional models. These data should help provide a greater understanding of the succession, particularly the initial and most critical stage, eventually allowing the prediction of the consequences of a given disturbance regime within the fynbos.

The objectives of this study were to:
a) improve the description of the initial stage of pyric succession in mountain fynbos, particularly changes in species composition and cover abundance of species within a community;
b) examine the effects of fire with respect to phenological changes and population dynamics of selected species;
c) to categorize the species according to their survival mechanisms (Noble and Slayter 1980; Bell et al. 1984);
d) assess the applicability of some current successional models.

STUDY AREA

The study was carried out on a private nature reserve, Vogelgat, situated approximately 10 km east from the center of Hermanus, in the Kleinrivier Mountains ($34^{\circ} 24^{\prime} \mathrm{S}$ and $19^{\circ} 18^{\prime} ;$ Fig 1). The Reserve covers an area of 603 ha, varying in altitude from 10 m in the kloof near the "Old Gate" in the south (Fig 2), to 805 m at "Beacon Head", in the north. Details of the climate, topography and mature vegetation are given in de Lange (1992).
Fig 1: Location of Reserve

10 km

The mountain fynbos of the Kleinrivier Mountains falls within the fynbos biome (Kruger 1978) and Acocks veld type 69, fynbos (Acocks 1953). The area experiences a mediterranean type climate with most rain falling in the winter months, between June and September. Summers are usually hot and dry (Schulze et al. 1978). The annual average rainfall recorded in the Reserve is 181 mm (rain gauge located at "Quark House" - see Fig 2). Hot, dry, north-easterly winds, locally known as "Berg winds", are common during winter. Soils are typically those of the Table Mountain Group, generally being sandy, stoney, infertile and acidic (Taylor 1978).

As is common to this climate type, fire plays an integral role in community composition, structure and succession patterns (Kruger et al. 1984). Fire is also likely to have had an influence on the evolution of plant histories (Bond 1980; Kruger 1984) •

The Reserve vegetation was about 10 years old (Table 1) when two.fires, one in December 1985, and the other in February 1986, occurred (Fig 3).

During 1985 a total of 119 permanently marked relevés were set out over the Reserve for a phytosociological survey. Twelve communities (including subcommunities) were identified during
this survey. Fifty of these relevés were selected, covering nine communities, for further investigation in this study (Fig 4). A brief summary of each of these communities are given in Table 2. The communities were dominated by the growth forms of restioid, ericoid and proteoid shrubs. The predominant families in the mature vegetation were the Asteraceae, Fabaceae, Restionaceae and Proteaceae (de Lange 1992).

Table 1: Fire History 1974 - 1991

Date of fire	Cause
$29 / 12 / 1974$	Unknown
$19 / 12 / 1981$	Visitors to Reserve - Smoking
$07 / 12 / 1982$	Farmer burning on northern slopes
$08 / 12 / 1985$	Farmer burning on northern slopes
$02 / 02 / 1986$	Picnickers braaing at lagoon
$07 / 11 / 1990$	Smokers

METHODS
3.1 DATA COLLECTION

After a fire in February 1986, 50 of the 119 five by ten meter relevés set out prior to the fire (de Lange 1992) were selected to represent nine of the pre-fire communities (Table 2; Fig 5). The relevés were sampled at monthly intervals from February 1986 to November 1987. For all communities, it was assumed that the mature (pre-fire) vegetation represented a stage in the development of the

(12) Relevés surveyed post-fire

Fig 4: Location of Relevés
successional communities. Note was not made on the behaviour patterns of the fire although it was observed from skeletal remains that the intensity of the fire varied. At some sites (particularly communities H, G and I)(see Table 2 for abbreviations used in text), rocks had burst, while at others, leaves still remained on the bushes three weeks after the fire had passed.

The following data was collected for each relevé:

1 Each species was identified.
2 All species within a relevé were given a cover abundance value (Werger 1974; Table 3) each time the relevé was surveyed. The species were classified according to Raunkiaer's life-form categories (Table 4).

3 The mechanisms governing a species response to a disturbance was determined (Section 3.2):
3.1 The method by which a species remains on the site of disturbance (Section 3.2.1).
3.2 The condition of the site which allows the species to re-establish itself (Section 3.2.2).

Table 2: Communities studied post-fire

Community Name	Habitat	Richness	Releves	Referral Name in text
Plateau Communities: Sparse to mid-dense, to tall Shrubland	Gentle to steep slopes. Aspect SE - W Altitude 300-700m Higher altitudes subject to mist rain. Soils deep, dark brown, humus rich; permanently wet and saturated.	13,7 sp/ releve Range $9-19$	56	Community A
Sparse to mid-dense, mid-high Proteoid veld	Aspect ESE - WSW Altitude 150 - 600 m (mainly 300 m) Soil well drained; shale outcrops	$22 \mathrm{sp} /$ relevé Range $16-34$	31 50 79 41 43 32 51 82 39 33	Community B
Transitional between communities A and B	Aspect NNE - WSW Altitude 360 - 750m soil moist and dry		$\begin{array}{lll} 34 & 61 & 48 \\ 49 & & \end{array}$	Community C
Mid-dense, low to mid-high Ericoid and Restioid veld	Aspect $\mathbf{S W}-N$ Altitude 520-700m slope moderate to steep.	21,7 sp/ releve Range $14-27$	$\left\|\begin{array}{lll} 70 & 71 & 54 \\ 57 & 59 & 55 \end{array}\right\|$	Community D
open, mid-high Proteoid veld	Aspect SE - W Altitude 200-670m slope moderate to very steep		$\left\|\begin{array}{rrr} 7 & 26 & 20 \\ 12 & 21 & 24 \\ 25 & 37 & 36 \\ 2 & 27 & 10 \\ 47 & & \end{array}\right\|$	Community E
Intermediate plateau Community Kloof Communities:	Aspect s - NE		$\begin{array}{rrr} 92 & 84 & 58 \\ 11 & 3 & 35 \\ 69 & 9 & \end{array}$	Community F
Transitional Community	Aspect SSW - WSW Altitude 50 - 360 m soils well drained		1672	Community G
Sparse, tall Waboom veld	Aspect ENE Altitude 50-100m slope moderate to steep Soils deep and sand	$30,5 \mathrm{sp} /$ releve Range 27-34	14	Community H
Sparse to open, mid-high to tall Ericoid veld	Aspect SSW - WSW Altitude 40 - 100 m slope gentle to moderate	$17,1 \mathrm{sp} /$ releve Range 11-26	$\begin{array}{lll} 17 & 83 & 19 \\ 74 & & \end{array}$	community I

Legend: Plant Communities

Community Name

Brunia alopecuroides - Chondropetalum deustum, mid-dense, mid-high shrubland

B Erica coccinea var coccinea - Widdringtonia cupressiodes, sparse to mid-dense, mid-high proteoid veld

A Osmitopsis asteriscoides - Erica perspicua, sparse to mid-dense, mid-high to tall shrubland

E Restio similis - Hypodiscus argenteus, open mid-high proteoid veld
c Chondropetalum ebracteatum - Villarsia capensis, mid-dense, mid-high shrubland

Aulax umbellata - Protea repens, mid-dense, mid-high proteoid veld

D Erica onosmiflora - Brunia alopecuroides, mid-dense, low to mid-high, ericoid and restioid veld

Phaenocoma prolifera - Chondropetalum
F hookerianum, open low restioid veld
Passerina vulgaris - Pentaschistis
I capensis, sparse to open, mid-high to tall shrubland

H
Protea nitida - protea repens, sparse, tall Waboomveld

Psoralea aculeata - Phylica buxifolia,
G sparse to open, mid-high to tall ericioid veld

Curtisia dentata - Ilex mitis, closed, tall kloof forest

Erica caffra - Blechnum capense, open, midhigh riverine veld

Young veld, not mapped

- one kilometer

Fig 5: : Plant communities

The data for all relevés were hand sorted, creating two Braun-Blanquet tables for the data at eighteen months. One table (Appendix 4) incorporated all post-fire data, while the second table (Appendix 5) is made up of only those species not previously recorded in those relevés in the pre-fire survey (de Lange 1992).

Detrended correspondence analysis (DCA) was used to ordinate the site-time data (mature and postdisturbance relevés) from all the communities to reveal successional patterns (Austin 1977). The post-disturbance data was ordinated separately in order to display more clearly the time trajectories of the replicate sites in the compositional space of the ordination.

Comparisons were made of total species richness and equitability (Shannon-Wiener function) (Whittaker 1972), as well as richness and relative cover of growth form and regeneration groups for the mature and successional relevés.
3.2 MECHANISMS GOVERNING SPECIES RESPONSES TO DISTURBANCE

Each species noted within a relevé, was classified according to it's vital attribute proposed by Noble and Slayter (1980).

Table 3: Cover Abundance Values (Werger 1974)

Code for tables	$\begin{gathered} \text { Density } \\ \text { Value } \\ (\%) \\ \hline \end{gathered}$	Description
r	0,1	Very rare and with negligible cover (usually a single individual).
6	0,5	Present but not abundant, with a small cover value (less than 1% of
1	3	the quadrant area). Numerous but covering less than 1% of the quadrant area, or not so abundant but covering 15 \% of the quadrant area.
2	15	Very numerous but covering less than 5% of the quadrant area, or covering 5-15 \% of the quadrant area independent of abundance.
3	38	Covering 25-50\% of the quadrant area, independent of abundance.
4	65	Covering 50-75\% of the quadrant area, independent of abundance.
5	88	Covering 75-100 \% of the quadrant area, independent of abundance.

Table 4: Raunkiaer Plant life-forms (Shimwell 1971)

Life-form	Abbreviation	Description
Cryptophytes (Geophytes)	CR	Herbaceous plants with their survival organs protected in the soil Broomy or bunching from the ground up to about 50 cm Complete their life-cycles within a year Vines Short trees up to about 2 m
Therophytes (Annuals) Lianas Nanophanerophytes\quadCH	T	NA

Three main groups of vital attributes were recognized, but only the first aspect was investigated in this paper:
a) How a species arrives at, or persists on a site during or after a disturbance.
b) Time taken for selected species to reach maturity.
c) Ability of a particular species to establish and grow to maturity in the developing community.
3.2.1 Method by which a Species Persists on the Site of
Disturbance

Species were divided into the following categories:

Seed regenerating species:
a) D-species: killed by disturbance, but replaced by migration.
b) S-species: survive by seed being stored in the soil, and which usually persist longer than the parent plants.
C) G-species: as for S-species, but seed stores are exhausted by one germination event.
d) C-species: seed is available while mature plants are alive on the site. Normally stored in serotinous organs in the canopy of the plant.

Vegetatively regenerating species:
e) V-species: sprout and form juvenile shoots.
f) U-species: sprout and form reproductively mature shoots if mature at the time of disturbance.

Some species persist or recolonize a site by both vegetative and germinative methods. The species encountered in the study fell into the category:
g) δ-Species: where S and U, or G and U are combined.

For the study short dispersal distances of seed for seeders was presumed, i.e. few D-species. Seed of C-species (seed stored on plant i.e. serotinous, for example Proteaceae and Bruniaceae) were presumed to have a short life span after release (Kruger 1987).

3.2.2 Conditions for Establishment

Species were further categorized according to the condition of the site before establishment could take place (Noble and Slayter 1980).

I-species: intolerant, can only establish under the conditions immediately following disturbance.

$$
\begin{aligned}
\text { R-species: } & \text { cannot establish under conditions } \\
& \text { immediately after a disturbance. Must } \\
& \text { wait until certain modifying effects } \\
& \text { have taken place by pioneer plants. }
\end{aligned}
$$

These two forms of vital attributes occur in real, 'natural' combinations amounting to a number of distinct 'species types' or 'behavior patterns', each denoted by a two-letter combination (Appendix 1).

FIRE-RESPONSE CATEGORIES

Each plant was classified according to its response to fire. This was based on Bell's et al. (1984) classification of Australian heathland. The categories are described in Table 5.
3.4 DIVERSITY

Simpson's index (C), a measure of dominance concentration, was used to calculated species diversity for each community.
$c=\Sigma^{2} p_{i} s$
$s=$ number of species in sample
$p_{i}=$ the proportional abundance of the ith species

Table 5: Fire response categories (Bell et al. (1984)

Primary Category	Sub-category	Description
Fire ephemerals	Monocarpic, \{MFE \} Polycarpic \{PFE\}	Fire-stimulated, sometimes fireobligate germination growth early maturity, life-spans of three months to four years.
Obligate seeders	\{OS \}	No capacity for vegetative regeneration; life-spans potentially less than 15 years and growth cycles terminated prematurely by fire.
Sprouters	Obligate vegetatively reproducing sprouter \{OVS \}	Vigorous vegetative multiplication, virtually no seed regeneration, clonal populations
	Facultative sprouterseeder \{FSS $\}$	Variable vegetative regeneration; but usually poor, some or even abundant seed regeneration:
	Auto- regenerating long-lived sprouter \{ALS \}	Abundant vegetative regeneration; seed regeneration adequate to replace parent mortality.

The Shannon-Wiener index (H), which reflects evenness of relative species abundances in the community, was calculated as:
$\mathrm{H}=-\sum \mathrm{p}_{\mathrm{i}} \log _{10} \mathrm{p}_{\mathrm{i}}$

RESULTS AND DISCUSSION
4.1 SPECIES RICHNESS PATTERNS IN RELATION TO FIRE

During the study a total of between 33 and 148 species, per community, were indentified in the 18 month post-fire vegetation, with an average of 88,3 species. The mature communities had an average of between 25 and 92 species (average 52,7)(de Lange 1992). Of these species, individuals with the ability to sprout accounted for between 51 \% and 67 \% of the post-fire species, slightly more than half the recorded number of species. This is lower than the 73 of recorded by van der Moezel et al. (1987) working in Australia, and the 66 of the species recorded by Bell et al. (1984) in the Northern sand plain of Australia. The mean number of species per mature community varied between 11 (Community A) and 21,4 (Community B).
4.1.1 Species Lost from Relevés Post-Fire

The cover abundance value for species lost from any relevé generally was less than three, and often
less than six (Table 3). This was similar to the "+" of Kruger (1987)(Appendix 6). Species which had a relatively high cover abundance value (> 3), usually had only occurred in one relevé, often as a single specimen, in the particular community prior to the fire (de Lange, 1992). A year post-fire many of these apparently lost species were noted outside the relevés but still within the particular community. Few parasitic species had reappeared in the relevés eighteen months post-fire.

In Community C (see Table 2 for list of abbreviations used), 2 of the sprouting species were lost i.e. one species, Osmitopsis afra. This species had occurred in only one of the pre-fire relevés at a cover abundance value of less than 3 (Appendix 6). Communities B, D and E lost no sprouting species, while communities G, H and I lost the greatest percentage of these species $(9$, 11 and 7 \% respectively). The loss of these species from the relevés, for example Leucadendron salignum, and Pterocelastrus rostratus, were mainly due to the fact that the individual had not recovered after the fire, or had sprouted and died shortly afterwards.

A greater percentage of seeding species disappeared from the relevés than sprouting species. Community C was the only community not to loose any seeding species. Communities H and I lost the
greatest percentage of seeders, 25 and 27 \% respectively. Both these communities occur at low altitudes ($40-100 \mathrm{~m}$) on the hot (Community H) dry slopes of the kloof (Fig 4)(de Lange 1992). Community H was represented by only one relevé in the post-fire survey, and this could account for the apparently high loss of species. The other communities ($\mathrm{A}, \mathrm{B}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ and G), had an average percentage loss of 8,5 species, less than half that of the formerly mentioned communities.

The average loss of species, both seeders and sprouters, per community varied between 2 \% (Community C) and 36 of (Community H), averaging 15 \% of species, per community, being lost from the sampled relevés. These species were observed growing in other areas of the community at a later survey, and were hence not lost from the system (de Lange pers obs).

4.1.2 Species Gained in Relevés post-fire

Geophytes and seeding chamaephytes accounted for the greatest gains in species richness (Fig 6 a i). A small amount of short range migration was also involved for example Protea nitida and Rhus lucida. Parent plants of these species had been noted in the nearby vicinity of the relevés before the fire. A minimum increase of 50 of previously unrecorded species per community, ranging up to

Fig 6 a - f: Growth forms

COMMUNITY A

COMMUNTY C

COMMUNITY E

COMMUNITY B

COMMUNITY D

COMMUNITY F

COMMUNITY G

COMMUNITY H

COMMUNITY I

Abstract

127 \% in Community I was noted, with an average of 15,2 new taxa being added to each of the sampled communities 18 months post-fire. This is lower than the average of 29 and 47 noted at Jakkalsrivier and Zachariashoek respectively by Kruger (1987) (Appendix 7).

Sprouting species accounted for the greatest increase in the number of "new" species in each community varying between 31% (Community D), and 73 \% (Community I). Community H had the lowest percentage of previously unrecorded sprouting species, namely 11 \%.

New seeding species accounted for between 16 \% (Community A) and 53 \% (Communities H and I). Sprouters generally accounted for a greater percentage of species gains than that of the seeders. The exceptions were Communities G and H where seeders accounted for 53% and 39%, sprouters 41% and 11% respectively.

Of the different life form categories (Table 4), the greatest increase in the number of species was among the cryptophytes, which generally accounted for at least 30 of the species richness in the post-fire communities. The reverse situation regarding geophytes was found by Hoffman et al. (1987) at a lowland fynbós site, Pella, in the south western Cape. Community H reflected the trend in geophytes
as recorded at Pella in that it had high pre-fire levels of geophytes, but by 18 months post-fire this growth form accounted for only about 2 \% of the species richness. These differences at the two sites could possibly be due, in part, to the greater amount, and more reliable rainfall experienced in the mountain fynbos, allowing larger shrubs to out compete the geophytic species. The marked increase in geophytes in the post-fire communities can be accounted for by the fact that they are particularly difficult to identify in mature veld as some species loose their leaves at certain times of the year, while others only have above ground parts for a few years after a burn, for example Geissorhiza ovata and Monadenia bracteata, surviving until the next fire underground, and are hence missed in a survey of mature veld, leading to an underestimation. Kruger (1987) experienced similar difficulties with geophytic plants in his study. The one exception to the increase in geophytes was Community H. Here they accounted for only 13% of the increase. This was also the only community in which the seeding nanophanerophytes's accounted for a significant amount of the previously unrecorded species (33 \%).

Seeding chamaephytes were the second most important group, accounting for an average of 25% of the newly recorded species. The only community which did not reflect this general tendency was Community A where they accounted for only 5%,
sprouting chamaephytes accounted for the greatest increase in this community of 38% Overall, sprouting chamaephytes accounted for the third greatest increase of species, but as a group, were the least consistent in accounting for the increase of species varying between 7% (Community H) and 38 \% (Community A).

Annuals accounted for only 4% of the overall increase of species, and were not represented in all communities (A and C). In the remaining communities they accounted for little of the increase in species richness (2-6 \%), with the exception of Community H, where it was the third largest group, accounting for 13 \% of the increase.
4.1.3 Species which remained in Sampled Relevés

The percentage species common to both mature and year old veld varied between 64% and 98% (Table 6), with a strong correlation between species recorded prior to the fire, and those added a year post-fire ($\mathrm{r}=0,95$). Communities which lost the greatest percentage of species were the wet marshy community (A: 64 \%), and the three kloof communities (G, H and I: 80, 68 and 70 \% respectively). These apparently high loses could be accounted for by the low sampling intensity of these communities. Some of the greatest apparent gains where experienced within these communities,
which could again be largely attributed to the low sampling intensity (Table 6). The remaining communities retained 87 to 98% of their pre-fire species. It would appear that the communities are relatively stable in their species composition, but there is some movement of species within the community. This movement, although low, could be of great importance for the evolutionary development of a species, as well as the recolonisation of sites where the species has become extinct.

Table 6: Summary Table of Species lost and gained post-fire

Community	Number relevés	Total pre- fire species	Post-fire species (year post-fire) remaining lost lost\| gain gain				
A	2	25	64	9	36	21	84
B	10	92	98	2	2	69	75
C	4	44	98	1	2	34	77
D	6	64	87	8	13	33	52
E	13	73	91	7	9	57	78
F	8	55	95	3	5	58	105
G	2	34	80	7	20	32	94
H	1	28	68	9	32	15	54
I	4	59	70	18	30	75	127

4.2 SPECIES VITAL ATTRIBUTES AND FIRE-RESPONSE CATEGORIES

The vital attributes and fire-response categories for some of the species recorded in the Reserve are given in Appendix 1.

In young veld the number of species were evenly divided between obligate seeders and sprouters. In Communities A and I sprouters accounted for a larger percentage of the recorded species (58\%35 \%; 58 \% - 39 \% respectively). These figures are considerably lower than those recorded by Kruger (1987) of 67,8 \% and 69,4 \% at Jakkalsrivier and Zachariashoek respectively.

Obligate seeders accounted for more than 50 of recorded species in mature veld, except for Community H, where the sprouting fire survival strategy predominated.

Sprouting species accounted for between 51 \% and 67 \% of species richness in all communities sampled, averaging slightly lower than that recorded at Jakkalsrivier and Zachariashoek (67,8 \% and 69,4 \% respectively;Kruger 1987). Autoregenerating, long-lived sprouting species predominated in all communities (as was found at Jakkalsrivier and Zachariashoek: 88-97\% and 9798 \% respectively). These comprised of similar
life forms as Kruger's (1987) classes, namely broad and narrow sclerophyllous shrubs, graminoides and both deciduous and evergreen geophytes. The remaining species within this group were faculative sprouter-seeders for example Villarsia capensis. No known obligate sprouters were recorded within the relevés. Within the sampled relevés, only one sprouting species, Nebelia palacea (Kruger 1978), was recorded as having a secondary post-fire juvenile period. The remaining species were classified as UI species according to the NobleSlayter system (see Section 3.2).

Seeders accounted for between 41% and 49% of the species richness, excepting Community A, with only 32 \% seeding species. Of the seeders, those with soil stored seeds accounted for between 63 and 80 \%. Fire ephemerals accounted for between 0 \% (Community A) and 34% with the main range lying between 20% and 30%. This is considerably lower than those recorded at Zachariashoek and Jakkalsrivier (54 \% and 48 of respectively).

Widely dispersed (D-species) occurred in low numbers in all communities (7% \{Community A\} - 16 \% of species). These, as for Zachariashoek and Jakkalsrivier were mainly wind- with a few birddispersed species for example Rhus species.

All communities had serotinous species (C-species), but they accounted for very little of the species richness (7 \% - 17 \%).
4.3 COVER ABUNDANCE VALUE AND EMERGENCE OF SPECIES POSTFIRE

Seeding chamaephytes are the most important component of the mature vegetation, accounting for the greatest cover abundance value with the exception of Community H (Waboomveld) occurring in the kloof where sprouting nanophanerophytes had the greatest cover (Fig 7 a - i). Seeding chamaephytes were the most variable group between communities. Communities A and E both showed a similar trend in that there was a steady increase in cover with Community E recovering slightly faster than A. Both these communities occur at mid- to high altitudes, on south-east to westerly aspects, with Community A occurring on wet sites dominated by Osmitopsis asteriscoides. By 18 months post-fire, in both communities, seeding chamaephytes had reached a density value of approximately 25% (Table 3).

Community D had shown little signs of recovery by three months post-fire. At six months a plateau was reached (density value 25 \%), considerably lower than that of the mature vegetation. The density remained more or less constant until the

Fig 7 a - f: Growth form densities

COMMUNITY B

COMMUNITY C

COMMUNITY E

COMMUNITY G

COMMUNITY H

COMMUNITY I

termination of the study 18 months post-fire. This community occurs at high altitudes (500-700 m) on south-westerly to northerly aspects.

The remaining communities ($\mathrm{B}, \mathrm{C}, \mathrm{F}, \mathrm{G}, \mathrm{H}$ and I) all showed similar patterns, namely increasing in density value, then dropping by about a third before levelling out. Peaks were reached by the sixth month in Communities B and G, both occurring on well drained sites with a wide altitudinal range, but predominantly between 200 m and 300 m .

Communities F and H recovered slowly up to about a year post-fire, at which stage they dropped down to about half of their cover-abundance value at 18 months. Community F is a generalist community of the plateau area, while Community H occurs at low altitudes in the kloof.

Community I, occurring at an altitude of between 40 m to 100 m on south-south-west to west-southwest aspects reached it's peak at between nine months and a year post-fire. In this community, in contrast to the others, the density value increased by almost twice that of the mature phase. By 18 months post-fire it had declined to its pre-fire level. This large increase in density can mainly be attributed to the germination of five species, Pentaschistis capensis, Pelargonium cucullatum, P. elongatum, Erica imbricata and E. sessiliflora.

The former three species all grew rapidly, flowered set seed and then died back. Pelargonium cucullatum became straggly after its initial burst of growth, declining rapidly in cover abundance. The two Erica species which germinated in great profusion six to nine months after the fire, occurred in only one of the four sampled relevés of this community, many had died a year and a half after the fire.

Sprouting chamaephytes peaked three to nine months prior to the seeding chamaephytes. A year postfire they had declined to their lowest density value, and were again starting to increase in density by 18 months post-fire, often reaching their pre-fire densities by this stage, and showing an upward tendency. This group forms an important component in the mature veld of Communities A and E and to a lesser extent in Communities C, F, and H.

The third most important life-form in the mature communities was that of the seeding nanophanerophytes. This group is composed mainly of Proteaceae, for example Leucadendron xanthoconus and Aulax umbellata. Although the data given in the graphs are density values, they can also be related to mass seed germination. Some communities showed a peak in germination at between six and nine months post-fire. This is particularly so in Community B , where this group had provided the

Fig 8 a-f: Ordination Graphs

COMMUNITY A

PLote: 86

COMMUNITY C

PLOTE: 94484061

COMMUNITY E

COMMUNITY D

PLOTS: 648687697071

PLOTB: 31-9 304143 80/1 7982

COMMUNITY B

COMMUNITY F

COMMUNITY G

PLOTS: 1072

COMMUNITY H

PLOTS: 14

COMMUNITY'I

indicated little to no directional change in any of the communities between sampling time. The kloof communities (G, H and I) had the greatest change in composition (Fig 9 a - i).

Species richness had generally reached pre-fire levels six month post-fire. A year to 18 months post-fire it had increased by 50 \% or more over the mature levels (Fig 10 a - i). Similar patterns of increases in species richness have been noted in coastal dune fynbos (Cowling et al. 1988). Species richness was considerably higher for the kloof communities, for example Community I had increased in richness by 150% over the mature community at 18 months post-fire. This increase was similar to that found by Kruger (1987), and reflected his findings where the maximum number of species occurs in the second season after the burn. As for the sand plain lowland fynbos community (Musil et al. 1990), within days of the fire, various individuals had already begun to sprout and 50% of the total recorded post-fire species had appeared by May (four months post-fire). This increase continued monthly until October (excluding August) whereafter there were almost no further gains in species numbers (Table 7)

Equitability of the kloof communities was only about half as high as that of the plateau fynbos communities. Maximum equitability was generally

Fig 9 a - f: Ordination trajectories

COMMUNITY A

PLOTE: 66

COMMUNITY C

PLOTB: 34484961

COMMUNITY E

PLOT8: 27122021 24-7 38/7 47

COMMUNITY B

PLOTB: 31-3 394143 60/1 7082

PLOTS: 648687807071

COMMUNITY G

PLOTS: 1672

COMMUNITY H

PLOTS: 14

COMMUNITY I

Fig 10 a - f: Species Richness

COMMUNITY A

COMMUNITY E

COMMUNITY B

COMMUNITY D

COMMUNITY G

COMMUNITY H

COMMUNITY I

Table 7: species Diversity data for pre- and post-fire surveys

| | COMMUNITY A
 Mature | 3 months | 6 months | 12 months | 18 months |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| NUMBER OF SPECIES | 22 | 20 | 33 | 39 | 44 |
| MEAN NUMBER OF SPECIES | 11 | 12 | 21 | 22.5 | 25.5 |
| STD DEV | 4.2 | 4.4 | 8.5 | 9.2 | 7.8 |
| MAXIMUM NUMBER SPECIES | 14 | 15 | 17 | 29 | 31 |
| MINIMUM NUMBER SPECIES | 8 | 9 | 15 | 16 | 20 |
| NUMBER COMMON TO MATURE | | 8 | 17 | 19 | 20 |
| SIMPSONS INDEX | 31.9 | 9.2 | 10.9 | 12.9 | 13.9 |
| SHANNON-WEINER INDEX | 7.6 | 0 | 2.9 | 1.6 | 9.2 |
| NUMBER OF RELEVES | 2 | | | | |


	```COMMUNITY B Mature }3\mathrm{ months }6\mathrm{ months }12\mathrm{ months }18\mathrm{ months```				
NUMBER OF SPECIES	84	59	107	123	121
MEAN NUMBER OF SPECIES	21.4	17.3	33	38.7	38.3
STD DEV	4.4	5.7	7.2	7.5	6.9
MAXIMUM NUMBER SPECIES	28	30	49	52	50
MINIMUM NUMBER SPECIES	16	12	27	29	30
NUMBER COMMON TO MATURE		29	58	65	68
SIMPSONS INDEX	3	0.1	6.8	5.5	6.7
SHANNON-WEINER INDEX	8.4	4.1	13.4	17.4	14.8
NUMBER OF RELEVES	9				


|  | COMMUNITY <br> Mature <br> 3 months | 6 months | 12 | months | 18 months |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| NUMBER OF SPECIES | 48 | 32 | 44 | 65 | 50 |
| MEAN NUMBER OF SPECIES | 17.7 | 15.9 | 22 | 29.3 | 29.5 |
| STD DEV | 4 | 5.7 | 6.1 | 7.6 | 7.4 |
| MAXIMUM NUMBER SPECIES | 21 | 19 | 26 | 37 | 38 |
| MINIMUM NUMBER SPECIES | 12 | 6 | 13 | 19 | 20 |
| NUMBER COMMON TO MATURE |  | 16 | 22 | 32 | 30 |
| SIMPSONS INDEX | 7.3 | 0 | 4.5 | 6.3 | 5.5 |
| SHANNON-WEINER INDEX | 3.3 | 2.7 | 7.4 | 7.6 | 6.3 |
| NUMBER OF RELEVES | 4 |  |  |  |  |

Table 7 (cont)

	COMMUNITY	D				
	Mature	3	months	6	months	12
	months	18	months			
NUMBER OF SPECIES	59	40	56	98	96	
MEAN NUMBER OF SPECIES	18.2	12	17.5	34.8	33.8	
STD DEV	4.4	3.7	6	6.9	5	
MAXIMUM NUMBER SPECIES	23	17	27	40	38	
MINIMUM NUMBER SPECIES	12	7	10	23	25	
NUMBER COMMON TO MATURE		23	35	54	53	
SIMPSONS INDEX	2.2	0.6	2.3	9.3	10.3	
SHANNON WEINER INDEX	6.4	4.3	9.1	10.1	9.4	
NUMBER OF RELEVES	6					


	COMMUNITY E   Mature 3 months 6 months 12 months 18 months				
NUMBER OF SPECIES	69	57	80	121	114
MEAN NUMBER OF SPECIES	17.8	10.7	25.8	38.9	37.9
STD DEV	4.5	4.6	6.9	8.8	8.8
MAXIMUM NUMBER SPECIES	24	25	38	53	51
MINIMUM NUMBER SPECIES	10	11	12	19	18
NUMBER COMMON TO MATURE		35	41	68	66
SIMPSONS INDEX	4.5	0.4	1.3	2.8	11.9
SHANNON-WEINER INDEX	10.8	4.1	9.7	15.5	12.7
NUMBER OF RELEVES	12				


	COMMUNITY	$F$				
	Mature	3 months	6	months	12	months
18	months					
NUMBER OF SPECIES	64	31	59	97	81	
MEAN NUMBER OF SPECIES	16.9	7.9	17.9	30.9	29.3	
STD DEV	4.5	3.9	3.9	4.4	6.8	
MAXIMUM NUMBER SPECIES	24	12	22	37	38	
MINIMUM NUMBER SPECIES	14	2	11	23	20	
NUMBER COMMON TO MATURE		16	29	53	56	
SIMPSONS INDEX	7.6	0.1	3.7	3.8	10.1	
SHANNON-WEINER INDEX	6.9	0	9.1	12.4	9.8	
NUMBER OF RELEVES	8					

Table 7 (cont)

	COMMUNITY G   Mature 3 months 6 months 12 months 18 months				
NUMBER OF SPECIES	31	27	41	39	43
MEAN NUMBER OF SPECIES	17.5	18.5	27	26.5	29.5
STD DEV	4.9	2.1	0	0.7	2.1
MAXIMUM NUMBER SPECIES	21	20	27	27	31
MINIMUM NUMBER SPECIES	14	17	27	26	28
NUMBER COMMON TO MATURE		11	15	15	16
SIMPSONS INDEX	1.9	24.2	31.3	13.4	8.8
SHANNON-WEINER INDEX	4.2	4.9	0.7	4.2	3.6
NUMBER OF RELEVES	2				


	COMMUNITY I					
	Mature 3 months	6	months	12	months	18
months						
NUMBER OF SPECIES	39	50	86	98	99	
MEAN NUMBER OF SPECIES	17.7	24.7	39.7	45.7	46	
STD DEV	8	10.1	18.2	24.1	25	
MAXIMUM NUMBER SPECIES	26	31	53	66	66	
MINIMUM NUMBER SPECIES	10	13	19	19	18	
NUMBER COMMON TO MATURE		21	30	39	38	
SIMPSONS INDEX	7.5	0.1	4.4	18.9	18.6	
SHANNON-WEINER INDEX	1.8	5.4	9	7.4	6.3	
NUMBER OF RELEVES	3					

reached a year post-fire, after which it started to decline slightly (Fig 11 a - i, excluding Community H, as there was only one relevé sampled in this community). Community $A$ was an exception, in that equitability remained low for the first year, reaching pre-fire levels only after 18 months. This was mainly due to the dominance of two species namely Villarsia capensis and Brunia alopecuroides. The trend in equitability mirrored that of species richness for the different communities.

All dominant species in the mature communities had re-established 18 months after the fire (Table 8) Seeding chamaephytes were the most dominant lifeform of all the communities, in both mature and post-fire stages (ie >5 \% cover) (Fig 6 a - i). The mature vegetation had more dominant species than did the young post-fire communities. Seeding and sprouting chamaephytes accounted for the highest and second highest species numbers in the mature communities. The increase in species richness a year post-fire was mainly due to the latter category and the increase in recorded geophytes. Sprouting species dominated the first six months post-fire. A year post-fire at least $80 \%$ of the pre-fire dominant species had re-established, and by eighteen months the remaining 20 of had also reestablished. Community $G$ had the greatest number of new post-fire dominant species.

Table 8: Growth form, fire response, percentage cover and frequency (8) of occurance in plots of dominant species ( $>5 \%$ cover) in mature and post-fire communities. Species dominant in mature vegetation but also present in post-disturbance fynbos indicated by +. (See text for explanation of abbreviations).

GROWTH   FORM	COMMUNI   MATURE	Y A MONTHS POST-FIRE SIX TWELVE	EIGHTEEN
DR OS NA Erica hispidula	14(70)		+
UIALS CH Restio dispar	7.4(50)	+	+
SI OS CH Chondropetalum ebracteatum	16(50)	+	+
CI OS NA Leucadendron xanthoconus	24(70)	+ +	+
UI ALS NA Osmitiopsis asteriscoides	40(90)	+ +	+
SI OS NA Grubbia rosmarinifolia sub ros	16 (30)	+	+
SI OS CH Erica perspicua	20(70)	+	+
UI ALS CH Brunia laevis	6.5(10)	+ +	+
SI OS NA Brunia albiflora	21(40)	+	+
SI OS CH Simocheilus consors	5.3(30)		+
UI ALS CH Restio ambiguus	19(30)	+	+
CI ALS CH Erica sessiliflora	5.7(70)	+	+
SI OS CH Chondropetalum mucronatum	10(40)	+	+
SI OS CH Chondropetalum hookerianum	5.3(20)	+	+
SI OS CH Blaeria ericoides	6.5(10)	+	+
USI FSS CH Villarsia capensis	34(70)	19(50) 19 (50)	+
SI OS NA Brunia alopecuroides	35(70)	$7.5(50)$	+
UI ALS CH Osmitopsis afra		$7.5(50)$	
UI ALS CR Bobartia longicyma		7.5(50) 7.5(50)	7.5(50)
OI FSS CH Maxuerlla rufa		8(100)	
UI ALS CH Pentaschistis colorata		8(100) 8(100)	
UI LAS CH Diospyros glabra		17.5(50)	17.5(50)

Table 8 (cont):

GROWTH FORM	COMMUNITY B   MONTHS POST-FIRE:   MATURE SIX TWELVE EIGHTEEN			
DR OS NA Erica hispidula	12 (52)			+
UIALS CH Restio dispar	5(23)	+	+	+
SI OS CH Chondropetalum ebracteatum	8(52)		+	+
CI OS NA Leucadendron xanthoconus	6.6 (7)	$7.4(50)$	+	5.5 (90)
UI ALS CH Restio perplexus	$7.2(35)$	+	+	+
CI OS NA Protea lepidocarpodendron	6(17)	+	+	+
SI OS NA Penaea cneorum ssp ruscifolia	5(52)	+	+	+
SI OS CH Erica onosmaeflora	5 (29)		+	+
CI OS NA Aulax umbellata	16(47)	+	+	+
SI OS CH Pseudopentameris brachyphylla		11.5(70)		
SI OS NA Osteospermum rotundifolium		5 (50)		
SI PFE CH Ehrharta rehmannii var filifor			7.8(40)	

Table 8 (cont)

GROWTH FORM	COMMUNI   MATURE	TY C   MONTHS   SIX	POST-FIR   TWELVE	EIGHTEEN
SI OS CH Chondropetalum ebracteatum	18(75)		+	+
CI OS NA Leucadendron xanthoconus	23(100)		5(100)	$5(100)$
SI OC CH Chondropetalum mucronatum	11(12)	+	+	+
USI FSS CH Villarsia capensis		13.3(50)	) $4.5(50)$	4.5(50)
SI OS NA Brunia alopecuriodes	31(62)	10.3(50)	10.3(50	19.8(75)
UI ALS CR Bobartia longicyma			7.5(50)	
SI OS CH Erica onosmaeflora	5.8(50)		$+$	+
SI OS CH Pseudopentameris brachyphylla		$9.8(50)$	$9.8(50)$	
SI OS CH Erica cumuliflora	9.5(25)		+	+

Table 8 (cont):

GROWTH FORM				
CI OS NA Leucadendron xanthoconus	21(100	8.3(83)	15.8(100)	10.5(100)
UI ALS CH Thamnochortus pulcher	5.4(60)	+	+	+
SI OS CH Elegia filacea	7.1(80)		$9(67)$	+
VI CH Nebelia paleacea	6.6(60)	+	+	13.5(50)
SI OS CH ceratocaryum argentea	9.8 (50)	+	+	+
SI OS CH Leucospermum gracile	5.6(30)		+	+
SI OS CH Hypodiscus albo-aristatus	6.5(10)		+	+
SI OS CH Elegia parviflora	7.7(60)		+	+
USI FSS CH villarsia capensis		12.7(33)	20.3(50)	13.5(50)
SI OS NA Brunia alopecuroides			38.3(33)	21.6(33)
UI ALS CH Hypodiscus aristatus			6(67)	
SI OS CH Syphocolon debilis			9.5(17)	
Ul ALS CH Tetraria fasciata				13.3(67)

Table 8 (cont):

GROWTH FORM	```COMMUNITY E MONTHS POST-FIRE: MATURE SIX TWELVE EIGHTEEN```			
CI OS NA Leucadendron xanthoconus	18 (73)		5.5 (93)	+
USI FSS CH Villarsia capensis			20.3 (50)	
UI ALS CH Hypodiscus aristatus	5.6 (63)		+	+
SI OS CH Syphocolon debilis			9.5 (17)	
DR OS NA Erica hispidula	8.3 (31)			+
CI OS NA Aulax umbellata	15 (63)		+	+
SI OS CH Simocheilus consors	5.7 (47)		+	+
UI ALS CH Restio ambiguus	5.1 (21)		+	+
SI OS CH Chondropetalum hookerianum	11,(52)	+	+	+
SI OS CH Elegia juncea	7.6 (52)		+	+
UI ALS CR Corymbium glabrum	5.1 (47)	+	+	$+$
UI ALS CH Restio bifarius	9.8 (36)	+	+	+
DI OS CH Phaenocoma prolifera	5 (63)		+	+
SI OS CH Nagelocarpus serratus	7.4 (42)		+	+
CI OS NA Leucadendron gandogeri	13 (21)		+	+
SI OS CH Erica imbricata	13 (84)		+	+

Table 8 (cont):

NOBLE   SLAYTER   FIRE   RESP	GROWTH FORM	COMMUNITY FMONTHS POST-FIRE:MATURE SIX TWELVE			EIGHTEEN
CO os N	NA Leucadendron xanthoconus	29(90)		+	+
UI ALS C	CH Thamnochortus pulcher				5.1(57)
SI OS C	CH Elegia filacea	5.6(3)		+	+
SI OS N	NA Brunia alopecuroides	9.1(20)		+	+
UI ALS C	CH Tetraria fasciata			5 (100)	
DR OS N	NA Erica hispidula	5.6 (30)			+
CI OS N	NA Aulax umbellata	5.6 (30)		+	+
SI OS C	CH Simocheilus consors	5.6 (30)		+	+
UI ALS C	CH Restio ambiguus	6.8 (30)		+	+
SI OS C	CH Chondropetalum hookerianum	10 (40)	+	+	+
SI OS C	CH Elegia juncea	12 (40)		+	+
SI OS C	CH Erica imbricata	12 (80)		+	+
SI OS C	CH Erica onosmaeflora	8.9 (50)		+	+
CI ALS C	CH Erica sessiliflora	5.6 (30)	+	+	+
UI ALS C	CH Restio burchellii	13 (60)		+	5.29 (71)
UI LAS C	CH Penaea mucronata	11 (80)	+	+	+
SI OS C	CH Chondroptealum deustum	5.3 (20)		+	+
UI ALS C	CH Restio triticeus	6.5 (10)		+	+


NOBLE/ GROWTH SLAYTER FORM FIRE RESP	COMMUNITY GMONTHS POST-FIRE:MATURE SIX $\quad$ TWELVE EIGRTEEN			
SI OS CH Erica onosmaeflora	$7.6(20)$		+	+
SI OS CH Blaeria ericoides	6(40)		+	+
SI OS CH Lampranthus emarginatus	6(40)	+	+	+
SI OS CH Blaeria dumosa	7.6 (20)		+	+
CI OS NA Protea repens	13(20)	+	+	+
SI OS CH Pentaschistis capensis	8.2 (40)	+	+	+
SI OS NA Passerina vulgaris	6(40)	+	+	+
SI OS CH Erica lanuginosa	B. 2 (40)		+	+
UI ALS CH Cymbopogon marginatus	8. 2 (40)		+	+
DI CH Cassytha ciliolata	7.6 (20)			
UI ALS CR Protasparagus compactus		$9(100)$		
SI OS CH Crassula capensis		7.5 (50)		
SI OS CH Commelina africana		7.5(50)		
dI ALS CH Pteridium aquilium	.	44(50)	7.5(50)	
SI PFE CH Nemesia diffusa		9(100)	9(1.00)	
UI ALS NA Montinia caryophyllacea		$9(100)$	9(100)	15(100)
SI OS CA Pelargonium cucullatum		26.5(100)	26.5(100)	) 38(100)
UI ALS CH Tetraria thermalis			7.5(50)	
UI ALS CH Arctotis semipapposa			7.5(50)	15(100)
UI ALS NA Rhus Iucida			9(100)	

Table 8 (cont):

NOBLE/ GROWTH SLAYTER FORM FIRE RESP				
CI OS NA Protea repens	16 (25)	+	+	+
SI OS CH Pentaschistis capensis	9.6(75)	13.3(50)	10.2(50)	5 (33)
UI ALS CH Cymbopogon marginatus	5.6 (37)	+	+	+
UI ALS NA Montinia caryophyllacea				6.3 (100)
SI OS CA Pelargonium cucullatum		13.8(100)	) $8(100) 1$	3.3 (100)
SI OS CH Simocheilus consors			16.5(50)	22 (67)
SI OS CH Erica imbricata			9.8(50)	
dI ALS NA Rhus tomentosa				5 (33)
UI ALS MI Protea nitida	8.1(12)	+	+	+
SI OS CH Stachys aethiopica			38(100	
SI OS CH Pelargonium elongatum			9.5(25	

## Fig 11 a - f: Equitability (Shannon-Wiener function)

COMMUNITY A


## COMMUNITY C



COMMUNITY B


COMMUNITY D


COMMUNITY F


Fig 11 g-i (cont)

COMMUNITY G


## COMMUNITY I



At first it appeared that a number of species had been lost from the different communities, but a brief survey of each community resulted in the location of these species, often just outside the relevé close to the site of the dead parent plant. The species which appeared to have disappeared post-fire from the relevés, had occurred at low densities, or as a single plant within the relevé prior to the fire. The problem of apparent losses could have been reduced by using smaller (e.g. $1 \times 1 \mathrm{~m}^{2}$ or $1 \times 2 \mathrm{~m}^{2}$ ) and more relevés, as in some instances a community was represented by only one post-fire relevé (Community $H$ ). The size of the relevés was also a problem. As the succession progressed a profusion of plants emerged making it difficult to observe all that was happening within the relevé, and when it occurred. Consequently a great deal of time had to be spent at each site, often more than an hour.

Most of the apparent "gains" of species were from species already within the relevés prior to the fire in the form of seed and/or underground organs. Most of these species are extremely difficult to see or identify in the mature veld and were missed in the initial survey of 1985. Migration appears to play a small role in adding to species richness, but is of great importance in the long term
survival of individual species, particularly those with bird and wind dispersed seed.

The species turnover in the communities would appear to be at its greatest at about one year post-fire, and mostly due to "gains". The number of "new" species being added to a community's species; list was still showing an upward trend when the study was terminated at eighteen months. This supports what Kruger (1987) found at Jakalsrivier and Zachariashoek.

Although the study was carried out for a period of eighteen months, the communities recognized in the mature veld could be identified within a year to eighteen months post-fire. The communities which were not very clear in the mature phase, were more clearly defined in the young veld for example Community C .

Only the immediate post-fire phase (1-2 years) of Kruger's (1979) model of succession was studied. Observations from this study supports his model, as in this phase seed germination, and vegetative regeneration occurred. Most of the geophytes e.g. Orchidaceae, and annuals reproduced in this phase. The pre-fire assessment fell into the mature phase (10-30 years), in that the tall shrubs had reached their maximum height and reproductive potential, there was also virtually no seed
germination. Communities $G, H$ and $I$ separated out from the other communities ( $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$ and F ) in both the pre- and post-fire phytosociological tables (Appendix 3 and 4), with only totally generalist species linking them.

Serotinous species were presumed to deplete their seed bank by germination and other losses after a fire, and were all classified as C-species (Kruger 1987 op cit Bond 1985). Those who stored their seed in the soil, were classified as S-species as it would be unlikely that they would exhaust their seed bank by a single post-fire germination event (Kruger, 1987 op cit Haper 1977).

Frost (1984) found that most sprouting species obtained the ability to sprout within two to three years from germination, hence it was assumed that they would all survive a fire in the juvenile state as fires do not generally occur during this period (de Lange pers obs). The majority of the sprouting species flowered and set seed within a year of the fire (U-species). A few had longer secondary juvenile stages eg Nebelia palacea (V-species) (Kruger 1987; de Lange pers obs).

All species were classified as being intolerant ie the seed only being able to germinate and establish within a few years after a fire. One exception noted in this and other studies, was Erica
hispidula in that it has been observed as seedlings and young plants in mature and senescent fynbos. Germinating seeds of this species only being noted two to three years after a fire suggesting that they have need of an altered environment for their establishment (R-species) (Kruger 1987). The relevés were visited again three years after the fire, when it was noted that plants of a parasitic nature had appeared, becoming the dominant cover in some relevés. At about five years post-fire these parasitic species had been reduced to the occasional plant within the relevé (de Lange pers obs). It would appear that these plants need to have their hosts become established and growing vigorously (including sprouting species) before they can germinate and establish themselves. What gives these plants their cue to germinate, or what the conditions of the site must be to allow for their survival was not investigated in this study. It was noted that the Ericaceae generally germinate between December and February within a year of a February fire. These species were therefore not classified as R-species.

As at Zachariashoek and Jakkalsrivier, C-species accounted for only a limited part of the overall species richness, and of these Leucadendron xanthoconus dominated almost all the fynbos communities. According to Kruger's (1987) model of the influence of fire on C-species this would
indicate a fire recurrence rate of about 10 to 15 years for the Reserve. This is impossible to confirm, as the fire history of the Reserve has not been well documented. A fire swept through the area in 1974, 10 years prior to the study fire of 2 February 1985. Previous to this, the record is unknown. Shepherds passing over the mountain could possibly have burnt the veld at fairly frequent intervals to allow for the easier passage of the sheep; This would suggest support for Kruger's model, at least for the 10 year fire cycle.

Not all the plants encountered in the study could be classified according to Noble and Slayter (1980) or Bell et al. (1984) systems, mainly due to the limited available data on the reaction of plants to fire. Kruger's (1987) thesis provided a framework on which to base the classification on. Vlok (1990; Vlok pers comm) aided with other species and others were classified according to observations made in the field. Discrepancies were noted in some cases, particularly among the Restionaceae. Kruger (1987) noted that this family mainly rely on being able to sprout after a fire, but it has been noted by vlok (1990 pers comm), and during the course of this study that there are numerous genera and individual species, for example Elegia, which are obligate seeders, or sprout and seed freely, for example Staberoha distachya. Although every effort was made to classify the species correctly,
this was not always possible with the available data.

At all sites more than half the species present in the mature fynbos, including previously dominant species, had re-established a year after the disturbance. Multivariate analyses showed no clear separation in the ordination space between mature and post-fire communities.

The post-disturbance increase in species richness is a common phenomenon in mediterranean-type communities (Hanes 1971; Trabaud \& Lepart 1980; Gill \& Groves 1981; Kruger \& Bigalke 1984; Hoffman et al. 1987). The equitability was also high indication a lack of dominance by one or two species in the young vegetation.

REFERENCES

ACOCKS J P H 1953: Veld Types of South Africa. Mem Bot Surv of S A No 40 .

AUSTIN M P 1977: Use of ordination and other multivariate descriptive methods to study succession. Vegetatio 35: 165-175.

BELL D T, A J M HOPKINS \& J S PATE 1984: Fire in the Kwongan. In: PATE $J S$ and $J$ S BEARD (eds). Kwongan: Plant life of the Sandplain. University of Western Australia Press, Nedlands, Western Australia.

BOND W 1980: Fire and Succession in fynbos in the Swartberg, southern Cape. S. Afr. For. J. 114: 68-71.

COWLING $R$ M \& S M PIERCE 1988: Secondary succession in coastal dune fynbos: variation due to site and disturbance. Vegetatio 76: 131-139.

DE LANGE C 1992: A Phytosociological survey of the Vogelgat Nature Reserve, Cape Province, South Africa. Unpulb MSc Thesis. Univ Cape Town.

FROST P G H 1984: The Responses and Survival of Organisms in Fire-prone Environments. In: BOOYSEN P DE $V$ and $N$ M TAINTON (eds). Ecological effects of fire in South African Ecosystems. Springer-Verlag, Berlin.

GILL A M \& GROVES R H 1981: Fire regimes in heathlands and their plant ecological effects. In: Specht R L (ed), Ecosystems of the World 9B. Heathlands and related shrublands, pp 61-84. Elsevier, Amsterdam.

GRIM J P 1979: Plant Strategies and vegetation processes. New York, Wiley.

HANES $T$ L 1971: Succession after fire in the Chaparral of southern California. Ecological Monographs 41: 27 - 52 .

HOFFMAN M T, MOLL E J \& BOUCHER C 1987: Postfire succession at Pella, a South African lowland fynbos site. S Afr J Bot 53: 370-374.

KRUGER F J 1978: A Description of the Fynbos Biome Project. S Afr Nat Sci Prog. Report 28. CSIR, Pretoria.

KRUGER F J 1979: South African Heathlands. In: SPECHT $R$ (ed). Ecosystems of the world, Vol 9 A. Heathlands and related shrublands: descriptive studies. Elsevier, Amsterdam.

KRUGER F J 1984: Effects of Fire on Vegetation Structure and dynamics. In: Ecological Effects of Fire in South African Ecosystems, Eds de Booysen $P$ and $N M$ Tainton. Vol 48, Ecological Studies, pp 219-243. Springer-Verlag, Berlin.

KRUGER $F$ J 1987: Succession after Fire in Selected Fynbos Communities of the SouthWestern Cape. PhD Thesis, Univ Wit.

KRUGER F J \& R C BIGALKE 1984: Fire in fynbos. In: Ecological Effects of Fire in South African Ecosystems, Eds de Booysen $P$ and N M Tainton. Vol 48, Ecological Studies, pp 67 - 114. Springer-Verlag, Berlin.

MCINTOSH $R \quad \mathrm{P}$ 1980: The relation between Succession and the Recovery process in Ecosystems. In: CAIRNS J (ed). The Recovery Process in Damaged Ecosystems. Ann Arbor Science Publishers Inc, Ann Arbor, Michigan.

MUSIL C F, D M DE WITT 1990: Post-fire regeneration in a sand plain low land fynbos community. S Afr J Bot 56(2):167 - 184.

NOBLE I R \& R O SLATYER 1980: The use of Vital Attributes to Predict Successional Changes in Plant Communities Subject to Recurrent Disturbances. Vegetatio 43: 5-21.

SCHULZE R E \& O S McGEE 1978: Climatic indices and Classification in Relation to the Biogeography of Southern Africa. Junk, The Hague.


## TABLE OF APPENDICIES

APPENDIX	1:	Species list including vital attributes and fire-response categories for selected species
APPENDIX	2 :	Permit for entry onto Reserve
APPENDIX	3:	Phytosociological table of mature vegetation
APPENDIX	4:	Phytosociological table eighteen months post-fire
APPENDIX	5:	Phytosociological table eighteen months post-fire: newly recorded species
APPENDIX	6:	List of species lost from relevés eighteen months post-fire
APPENDIX	7:	List of species gained in relevés eighteen months post-fire

Species list for Vogelgat Nature Reserve, including Vital Attributes and Fire-response Categories
aud
LICHBNES
CLADONIACEAE
cladonia

sp
sp
sp
sp

(Hedw) Jaeg
咅
W
W
steph
AUTHOR AND SUBSP
(Fr) Sommer $f$
Lung-1ike lichen
FIRE
RESPON



$\qquad$ $\xrightarrow{2}$ $\qquad$

$\begin{array}{ll} \text { COLL } & \\ \text { No } & \text { GENERA } \end{array}$	Spectes	AUTHOR AND SUBSP	common name	FIRE   RESPO NOBLE SLAYTER		als	bRNT	FLOH	bRNT FLOW	notes
osmundacrae										
Todea	barbara	(L) Moore	Royal Fern	unsk	ch					
sceizazaceam										
Schizaea	pectinata	(L) Swartz	Curly Grase Fern	di ALS	Ch					
Schizaea	pectinata caffrorum	Kaulf	Small Curly Grass Fern	UNK	$\mathrm{ch}_{\text {ch }}$					
$\underset{\text { Mohria }}{\substack{\text { gleicasmiaceas }}}$	caffrorum	(L) Desv	Scented Fern	UNK						
gleichenia	polypodioides	(L) J Esin	Coral Fern	UNK	ch					
HYMENOPHYLLACEAE										
Hymenophyllum	capense	Schrad	Filmy Fern	uns						
dennistaediaceae										
Pteridium	aquilinum	(L) Ruhn	Bracken	di als	cr					
Histiopteris	incisa	(Thunb) J Sm	Web Fern	UNK						
adiantacrae										
Pteris	dentata	Forsk	Sawtooth Fern	UNK						
Cheilanthes Cheilanthes	hastata viridia	(L f) Kunze	Backbone Fern Spear Pern	UNR						
Pellaea	pteroides	(L) Prantl var viridis	Myrtle Fern	di als	ch					
polypodiaceas										
pleopeltis	macrocarpa	L	Spotted Fern	unk						
aspleniaceas										
Aspenium	aethiopicum	(Burn) Becherer		unk						
LOMARIOPSIDADEAE										
Elaphoglossum	angustatum	(Schrad) Hieron	Tongue Fern	unk						
aspidiaceas Rumohra	adiantiformia	(Forst) Ching	Seven Weeks Fern	unk						
blbchnacear										
blechnum	capense	(L) Schlechtd		Unk						
blechnum	giganteum	(Raulf) Schlechtd		UNK						
blechnum	punctulaturn	Swartz var punctulatum		UNK						
blechnum	tabulare	(Thunb) Ruhn		unk						
SPERMATOPHYTA gymnospermae										
Pinaceaz										
pinus	pinaster	Ait (Not in hab)		dt os	Mi					
cupressacear										
Widdringtonia	cupressoides	(L) Endl	Mountain Cedar; Bergcypres	UI als	Mi					
angiospermar										
MONOCOTYLEDONEAB POACEAE										
w3229 Cymbopogon	marginatus	(Steud) Stapf ex Burtt Davy	Lemon grass; Akkerwani	OI ALS	Ch	1				dry sites; 75 cm ta
W3166 Paspalum	vaginatum	sm	Upright paspalufa	UNK	ch	h				
W3115 Stenotaphrum	secundatum	(Walter) Kuntze		unk						


$\begin{aligned} & \text { COLL } \\ & \text { No } \end{aligned}$	genera	SPECIES	AUTEOR AND SUBSP	COMMON NAME		GROHTR   FORM	ALT		FLow	\|fRNT PLOW	\|notes
W3171	Pennisetum	macrourum	Trin		UNK	Ch	1				wet; $1-2 \mathrm{~m}$
W2898	Ehrharta	calycina	Sm	polgras	SI os	ch	1				1-1,5m
w3720	Ehrharta	erecta	Lam	Lamarick's Ehrharta	SI os	ch	1				weed
W3327	Ehrharta	ottonis	Kunth ex Nees	Nut-root Grass	UI ats	cr	1				
W3325	Ehrharta	rehmanni	Stapf	Creeping Grass	USI fsS	ch	1				
W3354	Ehrharta	rehmanni	Stapf var filiformis	Cushion grase	SI pre	ch	1 m				moist; dense tufte
w3150	Ehrharta	setacea	Nees	Lax-tufted Grass	USI fis	ch	1 m				dense tufte .
w3105	Ehrharta	tricostata	Stapf	Reed-1ike Grass	Unk	ch	m				moist; 40cm; dense
w3086	Ehrharta	uniflora	Burch ex Stapf	Curly Tuft Grass	UnR	ch	h				5-25 cm
W3667	Anthoxanthum	tongo	(Trin) Stapf	Scented Vernal grass	SI os	ch	1				moist; 20 cm
W3322	Aira	caryophyliea	1	Haasgras	SI os	T	1				dry
W3272	Merxmullera	rufa	(Nees) Conert	Koperdraadgras	USI FSS	ch					
W2749	Pentaschistis	holciformis	(Nees) Linder	Slender Grass	UNR	${ }_{\text {ch }}^{\text {ch }}$	mh				shale
W3633	Pentaschistis Pentaschistis	capensis colorata	(Nees) Stapf	Falls Grase	$\begin{aligned} & \text { SI OS } \\ & \text { UI ALS } \end{aligned}$	ch	m				moist
w3574	Pentaschistis	malouinensis	(Steud) Clayton	Hair stalked Grass	ut als	ch					
W3324	Pentaschistis	thunbergii	(Kunth) Stapf	Black knot-grass	SI prs	ch	1				
W2932	Pentaschistis				SI os	ch	1				30 cm
W2610	Pentaschistis				SI os	Ch	1				50 cm
W3271	Pseudopentameris	brachyphy11a	(Stapf) Conert	Rough Grass	SI os	ch	1				purple head; 1 m
W3149	Pseudopentameris	macrantha	(Scrad) Conert		UI fiss	Ch	1				
W3204	Agrostis	bergiana	Trin	Slender Grabs	SI OS	ch	1				moist
W3529	Agrostis	montevidensis	Sprengel ex Nees	Wisp Grabe		ch	1				moist
W3193	polypogon	monspeliensis	(I) Deaf	Annual Beard Grass	SI	ch	m				annual; $10-20 \mathrm{~cm}$
W3371	Lagyrus	ovatus	${ }^{\text {L }}$ (Willd) Runth	Hassgras	SI						annual; weed
W3827	${ }_{\text {Eragrostis }}^{\text {Sporobolus }}$	capensis elatior	(Willd) Kunth	Rate Tail Grasb	SI	ch ch	1				moist; 25 cm
w3121	cynodon	dactyion	(L) Pers	Coarge Quick	sI	ch					
W3370	cynosurus	echinatus			SI	ch					
W3356	koeleria	capensis	(Thumb) Nees	Tuft Grass; Polgras	SI os	ch					
W3066	plagiochloa	uniolae	(L f) Adamson \& Sprague	koringgras	USI FSS	ch	1				sand sail; 50 cm
W3318	briza	maxima	L	Quaking Grass	SI	Ch	1				annual; weed
W3344	briza	minor	$\underline{L}$	Little Quaxing Grass	SI	ch					annual; weed
W3273	Festuca	scabra	Vahl	Munnikegrae	USI FSS	ch	1				dry; $30-55 \mathrm{~cm}$
$\begin{gathered} \text { W3151 } \\ \text { CYPER } \end{gathered}$	Bromus aceat	willdenowii	Kunth			ch	1				sandy soil: 1 m
W3279	carpha	glomerata	(Thunb) Nees	Brittle-Star Grass	SI os	ch	1				moist; 1m;Asteracha
W3210	русreus	polystachyus	(Rottb) Beauv			ch	1				moist; $20-40 \mathrm{~cm}$
W3772	Marisous	congestus	(Vahl) C B Clarke		SI	ch	h				weed
W2847	Mariscus	thunbergii	(Vahl) Schrade	Monkey bulb; Aapuintjie	ur	ch	1				1-1,5m
W3065	ficinia	brevifolia	Nees ex kuntz		sI	ch	1				Ficinia indica
W3234	Ficinia	bulbosa	(L) Nees		sur	ch	1				runners
W2467	Ficinia	deusta	(Berg) Levyns		UI	ch	1 m				
W2745	Ficinia	distans	$\mathrm{CB} \mathrm{B} \mathrm{Cl}^{\text {c }}$		Onk	ch	1				
W3012	Ficinia	monticola	Kunth		OI	Ch					


$\begin{aligned} & \text { COLL } \\ & \text { No } \end{aligned}$	genera	SPECIES	AUTHOR AND SUBSP	COMmon name	FIRE   RESPON   NOBLE   SLAYTER	GROWTH   FORM	ALT	BRNT	FLOW	BRNT	FLOW	\|notes
W2441	Ficinia	oligantha	(Steud) J Raynal		SI os	ch	mh					Ficinia filiformis
W2466	Ficinia	pinguior	c BCl			ch	lm					
W2991	Ficinia	trichodes	(Schrad) Benth \& Hook f		SI os	Ch	1					30 cm
W3313	Ficinia					ch	1					
W3318	Ficinia				SI	Ch	h					
W3409	Ficinia				SI	ch	1					
W3667	Ficinia				SI	ch	1					
w3547	Ficinia				SI	ch	1					
W2678	Isolepis	digitata	Schrad	Biesie	ui als	Ch	1					wet; Scripus digita
W2676	Isolepis	prolifer	R Br	bieaie	UNK	Ch	1					wet; Scripue prolif
W3401	Epischoenus	quadrangulatis	(Boeck) C a cl		UNK	ch	1 m					wet
W3091	Tetrafia	brevicaulis	C B Cl		SI PFE	ch	m					
W2527	tetraria	bromoides	(Lam) Pfeiffer	Berg palmiet	UI	Ch	m					1 m
W3433	Tetraria	burmannii	(schrad) $C^{\text {a }} \mathrm{Cl}$		uI	Ch	1					
W3739	Tetraria	compar	(L) Lestib		UI	Ch	${ }^{\text {m }}$					
W2445	tetraria	cuspidata	c B Cl ${ }_{\text {(Rottb) }}$		UI	Ch	m					40-50 cm
W2452	Tetraria	fasciata	(Rottb) C E Cl		UT	Ch ch	$\mathrm{m}_{\mathrm{w}}$					60-80 cm
W3436	tetraria	microstachys thermalis	(L) $\mathrm{C}_{\text {B Cl }}$	Bergpalmiet		Ch	mh					${ }_{1,5 \mathrm{~cm}}^{10}$
W3104	Totraria				uns	ch	m					1,3 m
W3208	Tetraria				UNK	Ch	1					30 cm
W3158	Macrochaetium	hexandrum	(Nees) Pheiffer	Dark-collared cyp	unk	ch	m					moist
W2440	Neesenbeckia	punctoria	(Vahl) Levyns	Raffia Reed	UNR	Ch	1 m					moist
W3240	Chrysithrix	capensis	L	Flatleaved	uI	ch	1 m					moist
W3243	chrysithrix	junciformis	Nees	Round-leaved	UI	ch	$\mathrm{m}^{\text {m }}$					60 cm
W3010	Schoenoxiphium	sparteum	(Wahl) С в cl		unk	ch	1					moist; Carex bisexu
w3373	Carex EAB	clavata	Thunb	Swamp Grase	sI	ch	1					moist
$\begin{gathered} \text { W3280 } \\ \text { RESTI } \end{gathered}$	zantedeschia tonaceaz	aethiopica	(L) Spreng	Arum Lily; varkblom	ur	cr	1					moist
日	Restio	ambiguus	Mast		ur	Ch	mh					moist
W3219	Restio	bifarlus	Mast	Big Brown Buga	uI	ch	mh					50 cm
W3056	Restio	bifidus	Thunb	Light Brown Buga	ur	ch	m					45 cm
W3053	Restio	burchellii	Pillans	Small Blobs	UI	$\mathrm{ch}^{\text {ch }}$	mh					
W2463	Restio	cuspldata	Thunb		UI	Ch						
W2468	Restio	dispar	Hochst	Jumpa	UI	ch ch	$\mathrm{m}_{\mathrm{m}}^{\text {m }}$					moist; 2 m
вп	Restio	filiformis	Poir	Slender ateme	UI	ch						
H2988	Restio	perplexus	Kunth	Balhare	ur	Ch	1					thick mat; 30 cm
W2494	Restio	satcocladus	Mast	Light Brown Darte	UI	ch	mh					50 cm
W2446	Restio	similis	Pillans	Slender blobs	uI	ch	m					
W2764	Restio	triticeus	Rottb	Nondescript Reed ${ }^{\text {d }}$	uI	ch	1					1 m
W3057	Restio Restio				UNR	ch						


$\begin{aligned} & \text { COLIL } \\ & \text { No } \end{aligned}$	GENERA	SPECIES	AUTHOR AND SUESP	COMmon name	FIRE noble SLAyter	GROWTH FORM	ALT	brnt	FLOW	Brant flow	notes
W3315	Ischyrolepis	capensis	(L) Linder	Loose тips	UI	ch	1				Restio cuspidatus
W3429	Ischyrolepis	gaudichaudiana	(Runth) Linder	May the Lord help us	UI	ch	1				70 cm
W3810	Nevillea	obtusissima	(Steud) Linder	spruce cones	SI os	Ch	mh	2/86	3/88		60 cm ; Reatio o
H3144	platycaulos	cascadensis	(Pillana) Linder	Flat snakes	UNK	Ch	m				moist30 cm
W2497	Chondropetalum	deustum	Rottb	Small Millet Reed	SI OS	ch	1 m				40 cm
W3131	Chondropatalum	ebracteatum	(Kunth) Pillans	Large Millet Reed		ch	1 lm				80 cm
W3202	Chondropetalum	hookerianum	(Mast) Pillans	Medium Millet Reed	SI	ch	$m$				70 cm
W2577	Chondropetalum	mucronatum	(Nees) Pillans	Giant Millet Reed	SI	Ch	mh				2 m
W3419	Blegia	capensis	(Burn f) Schelpe	Tufted Golden Curls	sI	ch	m				
W2478	Elegia	filacea	Mast	Little Golden Curla	si	ch	1				40-70cmiE parviflor
W2536	Elegia	juncea	$\underline{~ L ~}$	Golden Curls	SI	ch	m				wet; 2,5 m .
W3480	Elegia	neesii	Mast	Rough Golden Curls	SI	ch	mh				moist; 2 m
W3141	Elegia	thyrsifera	(Rottb) Pers	Large Golden Curls	SI	ch	m				moist; 2 m
W3167	Elegia				SI	ch	h				moist; 1-1,4m
W3548	calopsis	aspera	(Mast) Linder	Beaemriet	SI	ch					20 cm ; Leptocarpus
W3539	Calopsie	membranacea	(Pillang) Linder	Besemriet	UI	Ch		12/81	3/84		moist; Leptocarpus
W3059	Thamnochortus	fruticosus	Berg	Besemriet	UI	ch	1				40-70 cm
W3428	Thamnochortus	gracilis	Mast		UI	Ch	1	12/81	3/83		45-70 cm
W3113	Thamnochortus	insignis	Mast	Dekriet	UI	ch	1				weed; 1,6 m
W3122	Thamnochortus	1ucens	(Poir) Linder	Jakkalsatert	UI	ch	1				70 cm ; T dichotonus
W2904	Thamnochortus	pulcher	Pillans		UI	ch					60 cm ; Restio P
W3434	Staberoha Staberoha	distachyos	(Rottb) Runth		USI	ch	1 m	12/81	4/83		40 cm
W3578	Mastersiella	digitata	(Mast) Gilg-Benedict			Ch	m				
W2905	нypodiscus	albo-aristatus	(Nees) Mast	Trout Plies	si	ch	m				north; 50 cm
W3811	Hypodiscus	argenteus	(Thunb) Mast	Minks	UI	ch	1m				north; $60-90 \mathrm{~cm}$
W3484	Hypodiseus	aristatus	(Thunb) Rrause	Hedgehogs	UT	ch	m	12/81	8/83		50
W2902 COMME	Ceratocaryum linaceas	argenteum	Nees ex Kunth	Olifanteriet	SI OS	Ch	m				$1 \mathrm{~m} ;$ Willdenewia a
W2720	Commelina cras	africana	L var africana	Geelselblommetjie	SI	ch	1				moist; prostrate
W2927	prionium	serratum	(Lf) Drege ex Meyer	Palmiet	ut	ch					moist
W3165	Juncus	capensis	Thunb	Cape Rush	UI	ch	mh				$30-40 \mathrm{~cm}$
H2976 colce	Juncus hicacear	Lomatophyllus	Sprengel	Fringe-leafed Rush	Ux\%	ch	1				wat
W2881	Baeometra	uniflora	(Jacq) Lewis	Baeometra	UNK	cr					
W3495	Onixotis	punctata	(L) Mabberley	Hanekammetjie	UNR	cr	1 m				thk Ixia; Dipidax $p$
W3211	delaceas	triquetra									
W2995	Bulbinella	favosa	(Thunb) Roem a Schult	Yellow Morning		cr	$\left\lvert\, \begin{aligned} & \mathrm{lm} \\ & \mathrm{~lm} \end{aligned}\right.$	12/81	3/82		thread leaves;wh fl
	Bulbine			Asphodel							thk rnd leaf; yel fl
W2574	Bulbine	1agopus	(Thunb) NEEBr	Hare's foot Aaphodel	Ui als	cr					25-90 cm; flr yel
W3124	Bulbine	tuberosa	(Miller) Oberm	Wildekopieva	\|ut als	$\mathrm{Cr}_{5}$	1				60-9cm; pugioniformi


COIL NO GENERA	spectes	AUTEOR AND SUBSP	COMMON Name	$\begin{array}{\|c\|c} \text { FIRE } \\ \text { RBSPON } \\ \text { NOBLE } & \text { G } \\ \text { SLAYTER } & \mathbf{F} \\ \hline \end{array}$	GROWTH FORM	ALT	BRNT PI	PLOW	brat Plow	notes
W2417 Trachyandra	esterhuysenae	oberm	slender Cabbaga Flower	UI ALS	cr	m				
W259日 Trachyandra	hirsuta	（ （hunb）Runth	Hairy Cabbage flower	UI ALS	${ }_{\text {cr }}$	1	12／81 1	10／82		50 cm ；thick leaf
W3269 Trachyandra	hirsutiflora	（Adambon）Oberm	Hairy－flowered Cabbage	ui als	${ }_{\text {cr }}$	1	12／819	9／82		15－30cm；purp flrs
W3286 Trachyandra	revoluta	（L）kunth	Water Graes； Hotnotskool	uI als	cr	1	12／819	9／82		wet；like grass； 30
W3675 Trachyandra	tabularis	（Baker）Oberm		Ui ais	Cr	m	12／85 9	9／86		
W3559 Caesia ERIOSPERMACEAE	contorta	（Lf）Dur \＆Schinz	Grase Abphodel	Ui als	cr	m				40 cm
W3199 Eriospermum	nanum	Marloth	Woolly Seeda	ui ais	cr	1				
W3422 Eriospermum	schlechterin	Baker	Woolly Seeds	ui als	${ }_{\text {cr }}$	1	12／日1 3	3／83		
W3642 Eriospermum				ui als	${ }^{\text {c }}$	m	12／85 1	1／86		15 cm
W3566 Kniphofia	uvaria	（I）Hook f	Red Hot Poker；Soldaat	ui als	ch	h				moist
w3024 Aloe	succotrina	Lam	Bergaalwyn	ui ais	ch	1				
allimaceae										
W3374 Agapanthus	africanus	（I）Hoffegg	Klein bloulelie	ui als	$c_{r}$		12／81 1	11／82		
w3197 Tulbaghia	alliacea	If	wild Garlic； Wildeknofel	ut als	cr	1	12／81 2	2／82		15－30 cm
hyacintbaceas										
w3330 Albuca	cooperi	Baker	Sentry Boxes	vi ans	Cr	1	12／91 1	10／82		＂Ixia＂
w3387 Urginea	dregai	Baker	Mountain Squill	Ui ans	${ }_{\text {cr }}$	1	12／81 1	11／82		Ornithogalum uncifo
W2731 drimea	media	Jacq ex Willd	Jeukbolui	Ui als	${ }_{\text {cr }}$	1	12／81 3	3／82		petals fold back
W3758 Ornithogalum	dubium	Houtt	Yellow Chink	UI ais	$\mathrm{Cr}_{\mathbf{r}}$	$m$	2／86 12／	12／86		shale
W2692 ornithogalum	juneifolium	Jacq	Skilpadkos	UI als	${ }^{\text {cr }}$					10 cm
W3343 ornithogalum	thyrsoides	Jacq	Chinkerinchee； viooltjie	Ui als	cr	1	12／81 1	10／82		
W3729 Lachenalia	montana	Schltr ex w Barker		UI ais	$\mathrm{Cr}_{5}$	1	2／86 1	11／86		
W3364 Lachenalia asparagacear	peersii	Marloth ex Barker	Bekkies	ut ais	$\mathrm{c}_{\text {r }}$	1	12／81 1	10／82		35 cm
w2599 Myrsiphyllum	asparagoides	（L）willd	Breeblaarklimop	ui ais	$c_{\text {c }}$	1				
w34日1 Myrsiphyllum	declinatum	（L）Oberm	Rruilkranaie	ui ais	${ }_{\text {cr }}$	1				Bhady
W2628 Myrsiphy 11 um	scandens	（Thunb）Oberm	Plorists Asparagus	ui ais	cr	1				forest
w3541 Protasparagus	aethiopicus	（L）oberma	Haakdoring	Ui als	cr	1				
W3192 Protasparagus	compactus	（Salter）Oberm		Ui ais	Cr	1				
W3123 Protagparagus haemodoraceae	rubicundus	（Berg）Oberm	Wag＇n bietjie	Ui als	cr	1				1，4 m
W3396 Dilatris	pillansii	Baker	Rooiwortel	UI AIS	cr		12／81 1	12／82		leaver up to 30 cm
an Dilatris	viscosa	I $\mathbf{f}$	Yellow head	Ui als	${ }^{\text {cr }}$					wet； 60 cm ；aticky orn
W3366 Wachendorfia	paniculata	Burm	Rooikanol	UI ALS	${ }_{\text {cr }}$	1	12／81 1	11／82		70 cm ；pleated leav
W3812 Wachendorfia lanariaceas	thyrsiflora	Burm		UI ALS	Cr	m				wet；1，8m
w338日 Lanaria	lanata	（I）Dur \＆Schinz	Cape Edelweiab； Kapokblom	ut ais	cr	1 m	12／81 1	11／82		80 cm
amaryluidaceas										
w3001 Nerine	sariensia	（L）Herb		UT ALS	$\mathrm{cr}_{5}$	1				
w2989 Haemanthus	coccineus	I	Paintbrush；Rooikwas	UI als	Cr	1				6－20 cm
W2983 Amaryllis	belladonna	1	March Lily	UI als	${ }_{\text {cr }}$	1				40－90cm flr $20-60 \mathrm{~cm}$
W3418 Cyrtanthus	leucanthus	Schltr	White Fire Lily	UI ALS	${ }^{\text {cr }}$					25 cm
W3644 Cyxtanthus	ventricosus	（Jacq）Willd	Brandielie	Ui als	cr	，	2／86 2／86	2／86	12／81 1／82	10－20 cm


noll ${ }_{\text {col }}$	Spectes	AUTHOR AND SUBSP	Common name		$\begin{aligned} & \text { GROWTA } \\ & \text { FORM } \end{aligned}$	ALT	BRNT	FLOW	BRNT	FLOw	notrs
aypoxidaceas											
w3231 Empodium	plicatum	(Thunb) Garside	Golden Star	UI ALS	$c_{r}$	1	12/81	5/82			2-3plt lve;fly tip
W3654 Spiloxene	curculigaides	(Bolue) Garaide	Yellow star	UT als	$c_{r}$	m	2/86	4/86	12/81	9/82	shale
W2454 spilaxene TECOPBILACEAE	monophylla	(Schltr) Garside	Little Yellow star	Ui als	cr	h	2/86	1/87			
W3719 Cyanella IRIDAcEas	hyacinthoides	1		UI ALS	$\mathrm{cr}^{\text {r }}$	1	2/86	10/86			
W3251 Romulea	flava	(Lam) de vos var flava	White Fruitang	ut ais	${ }_{\text {cr }}$	1	12/81	6/82			yellow or white flo
w3257 Romulea	rosea	(L) Eckl var reflexa (Eckl) Beg	Pink Fruitang	UI als	$\mathrm{c}_{\mathrm{r}}$	1	12/81	7/82			3-8 $\mathrm{cm} ;$ needle-like
W3692 Moraea	lurida	Ker Gawler	Black Irig	ui als	$c_{r}$	h	2/86	10/86			shale
W2580 Moraea	neglecta	Lewis	Yellow Iria	Ui als	cr	${ }^{\text {m }}$	12/日1	9/82	2/86	10/96	20-50 cm
W3552 Moraea	papillonacea	(Lf) Ker Gawl	Hairy Iris	UI als	cr	1					$10-20 \mathrm{~cm}$
w3703 Moraea	ramosissima	(Lf) Druce	Giant Irib	SI mpe	cr	2m	12/81	11/82	2/86	10/86	wet; branch inflare
w3731 Moraes	tricuspidata	(I f) Lewis	Blouooguintjie	Ui als	cr	Im	12/81	10/82	2/86	11/86	25-60 cm; whte fl
W3298 Moraea	tripetala	(L f) Rer Gawler	Small blue Iris	UI als	cr	1 m	12/81	9/82			50 cm ; unbranched
w3770 Moraea	vallisavium	Goldblatt	Vogelgat Iris	Ui als	cr		2/86	12/86			moist
W3641 Homeria	galpinii	L Bolue	$\begin{aligned} & \text { Yellow Tulip; } \\ & \text { Geel Tulp } \end{aligned}$	Ui als	cr		12/81	2/82	12/85	1/86	25-30 cm
w3694 Homeria	ochroleuca	Salibbury	$\begin{aligned} & \text { Giant Tulip; } \\ & \text { Groot tulp } \end{aligned}$	ut als	cr	1	2/86	10/86			
w3362 Hobartia	filiformis	(L f) Ker Gawler	Biesie	ui ais	$c_{r}$	1	12/81	11/82			50 cm
W3741 Bobartia	gladiata	(Lf) Ker sap gladiata	Flat-leaf Bobartia	UI als	cr		2/86	11/86			
W2947 Bobartia	longicyma	Gillet sap magna	Gillet ex Strid	UI als	$\mathrm{cr}_{5}$	1					1,8m
w2548 Bobartia	gladiata	(Lf) Rer		Uit als	$\mathrm{cr}_{\mathrm{c}}$	m					30-40 cm
w2852 Aristea	africana	(L) Hoffegg	Maagbossie	UI als	cr	1					
W3790 Aristea	confusa	Goldblatt		Ui ALS	${ }_{\text {cr }}$	h	2/86 $2 / 85$	$2 / 87$ $1 / 87$			moist; $1,3 \mathrm{~m}$
W3779 Aristea W2623 Aristea	juncifolia	Haker	Blousuurkanol	UI ALS OI ALS	cr $c_{r}$	1	2/85	1/87			wet; $30-50 \mathrm{~cm}$
W25 23 W3397 Aristea Whtea	major ${ }_{\text {aligocephala }}$	Andrewe Baker	Blousuurkanol Few flowered Aristea	OI Als	${ }_{\text {cr }}$	$\underline{1}$	12/81	12/82			$\left\lvert\, \begin{aligned} & 1,5 \mathrm{~m} \\ & \text { paper aristea } \end{aligned}\right.$
w3659 Aristea	spiralis	(Lf) Ker Gawler		Ui als	$\mathrm{Cr}_{5}$		2/86	8/86			50cm;unbrh flr;pape
W2929 Aristea	zeyheri	Baker	Grabsy-leafed Aristea	Ui als	cr	m					moist; 30 cm
W2597 Geissorhiza	aspera	Goldblatt	syblom; Rough	ut aus	cr	1	12/81	9/82			
w3693 Geissorhiza	bryicola	Goldblatt	Mose loving	UI als	cr	1	2/86	9/86			kloof
W3754 Geissorhiza	burchellii	Foster	Burchell's	Ui als	cr	,	2/86	12/86			shale
W3404 Geissorhiza	cataractarum	Goldblatt	of the waterfalls	UI als	${ }_{\text {cr }}$	m					moist
w3685 Geissorhiza	hesperanthoides	schltr		UI als	cr	mh	2/86	9/86			
W3675 Golssorhiza	hispidula	(Foster) Goldblatt	Hairy	ui als	cr	ln	2/86	9/86			
W3299 Geissorhiza	ovata	(Burm f) Asch \% Graeb	Pink satin	UI als	$\mathrm{c}_{5}$	Im	12/81	9/82			15 cm
w3676 Geissorhiza	parva	Baker	Baby	UI ALS	${ }_{\text {cr }}$	m	2/86	9/86			moist
W3267 Hesperantha	falcata	(Lf) Rer Gawler	Aandblommetjie	UI ALS	${ }_{\text {cr }}$	1	12/81	9/82			15 cm
W3304aHesperantha	pilosa	(L f) Ker Gawler	Aandblom	UI ALS	${ }_{\text {cr }}$	1	12/81	9/82			
W3323 Hesperantha W3311 Ixia	radiata	(Jacq) Ker Gawler		UT ALS	${ }_{\text {cr }}^{\text {c }}$	1	12/01	9/82			
W3311 Ixia	dubia	Vent	Kalobsie	UI ALS		1	12/81	9/82			20-70cm; Btem unbh; ${ }^{\text {c }}$
W2922 W3281 Txia	flexuosa	1	Koringblom	UUT als		1					
W3281 ${ }_{\text {Wxia }}$	$\underset{\text { micrandra }}{\text { stricta }}$	${ }_{\text {Baker }}$ (Eckl ex Rlatt) Lewis	${ }_{\text {Kalobsie }}^{\text {Kalobsie }}$	UI als UI als	cr cr		12/81	9/82			20-6cm; wht-pk fl;cy
W3753 Ixia	stricta	(Eckl ex Rlatt) Lewib	Kalobsie	Uui als	cr	[II	2/86	12/86			\|shale


$\begin{aligned} & \text { CoLL } \\ & \text { No } \end{aligned}$	genera	Species	AUTHOR AND SUBSP	Common nams		GROFTH   FORM	alt	Brat	FLow	BRNT	FLOW	NOTES
W3025	Chasmanthe	aethiopica	(L) NE Br	Suurkanol	ui mis	cr	1					
W2990	gladiolus	brevifolius	Jacq var minor Lewib	Pypie	ui als	cr	1					15-65 cm
942	Gladiolus	bravitubus	Lewis	Little Salmon Tube	ui als	${ }_{\text {cr }}$	m					moint
W2854	Gladiolus	bullatus	(Thunb) ex Lewis	Caledon Bluebell	ui al	${ }_{\text {cr }}$	m					35-70 cma
W3807	Gladiolus	carneus	Delaroche	Painted Lady	UI A	${ }_{\text {cr }}$	h	2/86	10/86			wet; 1 m ; shale
W2836	Gladiolus	debilis	Ker var cochleatus Sweet	Painted Lady	UI AI	cr	1 m					30-65 cm; marks
W1393	gladiolus	maculatus	Sweet sep maculatus		ui als	$\mathrm{Cr}_{5}$	1 m	2/86	8/86			30-80cm;dull fl; ace
W3662	gladiolus	maculatus	Sweet bep hibernue (Ingram) Oberm		ui als	${ }_{\text {cr }}$	1					
w3270	gladiolus	punctulatus	Shrank var punctulatus	Pypie	ui als	cr	1	12/81	9/82			25-90 cm; no scen
W3399	Tritoniopsis	doddii	(Lewis) Lewis	Rietpypie	ui als	$\mathrm{cr}^{\text {r }}$	1	12/81	12/82			15-50 cm
W3000	tritoniopsis	lata	(L Bolus) Lewib var lata	Rietpypie	UI ALS	${ }_{\text {cr }}$	1 m	12/81	4/82			moist;1-3 narrow 19
W2981	Tritoniopsis	nervosa	(Thunb) Goldblatt	Plo	ui als	cr	1 m					40cm; 1 lva ven;fl pk ;
w3780	Tritoniopsis	pulchra	(Baker) Goldblatt	Rooipypie	Ui als	${ }_{\text {cr }}$	$\ldots$	12/85	2/87	2/86	2/87	
	tritoniopsis	triticea	(Burta f) Goldblatt		Ui als	cr						40 cmilleaf with ${ }^{\text {ape }}$
W3776	Tritoniopsis	williamsiana	Goldblatt		ui ais	cr	m	2/86	1/87			wet
W2710	micranthug	alopecuroides	(L) Eckion	Vleiblommetjie	ui als	Cr						
W2710	Micranthus	junceus	(Baker) N E Br	Vleiblounetjie	ui als	cr						
W3394	Thereianthus	bracteolatus	(Lan) Lewis	Bloupypie	ui als	cr	m	12/81	12/82			30 cm ; dark pypie
W3785	Thereianthus	juncifolius	(Baker) Lewis	Vleibloupypie	Ui als	${ }_{\text {cr }}$	m	2/86	3/87			
W2912	Lapeirousia	corymbosa	(L) Ker Gawl esp corymbosa		UI als	${ }^{\text {cr }}$						10-15 cm; purple
W3355	Lapeitousia	micrantha	(Meyer ex Klatt) Baker		UI ALS	$c_{r}$	1	12/81	11/82			light pypie
W3153	Watsonia	pyramidata	(Andr) Stapf	Kanolpypie	ui als	${ }_{\text {c }}$	m					80-1,5 m
W3718	Watsonia	rogaraii	L Bolus	Kanolpypie	ui ais	${ }^{\text {cr }}$	m	2/	10/86			20-50 cm; ohale
H2972	Watsonia	schlechter	L Bolus	Kanolpypie	ut als	${ }_{\text {cr }}$	m					30-90cm; edge lf thk
W3316	Watsonia	stenosiphon	L Bolus	Kanolpypie	UI ALS	${ }_{\text {cr }}$	1	12/81	9/83			
$\begin{gathered} \text { W2899 } \\ \text { ORCEI } \end{gathered}$	$\begin{aligned} & \text { Fillansia } \\ & \text { IDACEAE } \end{aligned}$	templemannii	L Bolus	Fire Lily	ui als	${ }_{\text {cr }}$	1 m					1,2 m; 1 leaf
3353	Holothrix	cernua	(Burta f) Schelpe	Tryphia	dI als	$c_{r}$	1	12/81	10/82			wet; 15-30cm; hairy 1
W2924	Holothrix	villosa	Lindley	Tryphia	di als	${ }_{\text {cr }}$	1					
W3725	Bartholina	etheliae	( H Bolus) Kraenzl	Spider orchid	dI als	${ }^{\text {cr }}$	m					8-15 cm
W3766	Pachites	bodkinii	E Bolus		di als	Cr	h	2/86	12/86			9-12 cm
W36日9	Satyrium	bicallosum	Thunberg		di als	${ }_{\text {cr }}$	1	2/86	10/86			S bracteatum (L.f.)
on	Satyrium	coriifolium	Sw		dI ALS	$c_{\text {c }}$	m	12/85	9/86			77em;thk leaf;orng
W3748	Satyrium	humile	Lindley		di als	cr	m	2/86	11/86			
W3701	satyrium	Iupulinum	Lindley		di ALS	${ }_{\text {cr }}$	m	2/86	10/86			50 cm ; red orchid
W3321	Satyrium	retusum	Lindley	Ewwatrewwa	dr als	cr	1	12/81	9/82			
W3742	Satyrium	rostratum	Lindley		dI ALS	${ }_{\text {cr }}$	m	2/86	11/86			
w370	Satyrium	atenopatalum	Lindley sep brovicalcaratum ( B Bol) Hall		di ALS	cr	m	2/86	10/86			35cm; Btm red;fl gre
W2800	Shizodium	obliquum	Lindley	Rapotjie	dI als	$\mathrm{cr}_{5}$	II					wet; 30 cm
W3740	Disa	bivalvata	(Lf) Dur \& Schine		dI ats	cr	m	2/86	11/86			wet; 30 cm
W2985	disa	cornuta	(L) Sw	Horned Diba	di ats	$\mathrm{Cr}^{\text {r }}$	m					35 cm ; thk w maroon a
w3706	Disa	cylindrica	(Thunb) Sw		dI ALS	cr	m	2/86	10/86			peat -
W3688	Disa	fagciata	Lindley	Adenandra Orchid	di als	cr	m	2/86	10/86			
W2753	Disa	ferruginea	(Thunb) Sw	Cluater Disa	dI ALs	cr	m					20-50 cm; red flo
W3173	Disa	filicornis	( L f) Thunb		dI ALS	${ }_{\text {cr }}$	m					wet; $10-20 \mathrm{cm;pk}$ f1;
W3161	Disa	glandulosa	Burchell ex Lindley		dT als	cr	m					moist; 5 cm


$\begin{aligned} & \text { COLI } \\ & \text { No } \end{aligned}$	GENERA	SPECIES	AUTHOR AND SUBSP	Common namb	$\begin{array}{\|c} \text { FIRE } \\ \text { RESPON } \\ \text { NOBLE } \\ \text { SLAYTER } \end{array}$	GROWTE   FORM	aut	BRNT	FLOW	BRNT FLDW	NOTES
W3674	Disa	lineata	H Bolus		dI ALS	Cr	m	2/86	10/86		moist
W3680	Disa	obtusa	Lindley		di als	cr		2/86	9/86		
W2711	Disa	patens	(Lf) Thunb		di ats	cr	m				wet; 5-15cm;yel fl;
W3730	Disa	racemosa	Lf		di ais	$\mathrm{c}_{5}$	m	2/96	11/86		wet; pink flower; 9
W2941	Disa	tripetaloides	(Lf) NE Er sep tripetaloides	Streamside Disa	dI ALS	$\mathrm{c}_{\text {r }}$					wet; 8 cm
	Disa	uncinata	日 вolus		dI ALS	${ }_{\text {cr }}$					wet; $10-30 \mathrm{~cm}$
W2977	Disa	uniflora	Berg	Red Disa	dI ALS	${ }_{\text {cr }}$	m				wet; 60 cm
W2982	Horschelia Herschalia	graminifolia	(Lindl) Schelpe	Brown orchid	dI ALS	${ }_{\text {cr }}$					
W2914	Herschelia	purpurescens	(Bol) Rraenzl		di ALS	$c_{r}$	1				shal
W3627	Monadenia	atrorubens	(Schltr) Rolfe		di ais	cr	m				peat
W3805	Monadenia	bolusiana	(Schltr) Rolfe		dI als	Cr	m				
W3309	Monadenia	bracteata	(Sw) Durand © Schinz		dI ALS	${ }_{\text {cr }}$		12/81	9/82		
W3724	Monadenia	conferata	(H Bol) Kreanzl		dI ALS	Cr	m	2/86	11/86		dry
on	Monadenia	opyrydea	Lindley		dI ALS	${ }_{\text {cr }}$	m	2/86	9/86		dry
W3736	Monadenia	pygmaea	( H Bol) Durand 6 Schinz		dI ALS	${ }_{\text {cr }}$	m	2/86	11/86		dry
sn	Monadenia	rufescens	(Thunb) Lindley		di als	Cr	m				
W3722	Disperis	capensis	(Lf) $\mathrm{Sw}_{\mathrm{w}}$	Moederkappie	dI ALS	cr	m	2/86	10/86		dry
W3716	Disperis	paludosa	Harvey	Helmets	dI ALS	cr	m	2/86	10/86		wet
W3554	Pterygodium	acutifolium	Lindl	Coeled Friar; oumakappie	dI ALS	$c^{\text {c }}$	h	12/81	10/82	12/85 10/86	
W3707	Ceratandira	atrata	(L) Dur \& Schinz		dI ALS	$c_{\text {c }}$	m	2/86	10/86		dry
W3103	Ceratandra	globosa	Lindley		dI ALS	${ }^{\text {cr }}$	m				
W3710	Corycium	carnosum	(Lindl) Rolfe		dI ALS	$\mathrm{Cr}_{5}$	m	2/96	10/86		wet
W3728	Corycium	rubiginosum	(Sond) Rolfe	Green Orchid	dI ALS	$\mathrm{Cr}_{5}$	$\pm$	2/96	11/86		shale
W3665	Liparis	capensis	Lindley		di als	${ }_{\text {cr }}$	m	2/96	6/86		shale
W2665	Acrolophia	capensis	(Berg) Fourc var lamellata (Lindl) Schelpe	Brown Orchid	dI ALS	$\mathrm{Cr}_{5}$	m				dry
W3806	Acrolophia	ustulata	( E Bol) Schltr \& Bol	Black orchid	di ais	$\mathrm{c}_{\mathrm{r}}$	m				dry
en	Eulophia	aculeata	(L f) Spreng osp acculeata	Aandblommetjie	dI ALS	${ }_{\text {cr }}$	${ }^{\text {m }}$	2/86	12/86		moist; $10-30 \mathrm{~cm}$
W3573	Eulophia	tabularis	(L f) E Bolus	Yellow orchid	dI ALS	cr	h				peat
DICOT	tYLEDONAE										
W2754 myRIC	peperomia caceas	retusa	(Lf) A Dietr var retusa		SI		1				rocks advoids fire
W3 365	Myrica	kraussiana	Buchinger ex Meianer	Oval-leaf waxberry	Ui ais	Na	1				
W3191	Myrica	quercifolia	L	Maagpynbossie	UI als	Na	1				
W2415	Myrica	gerrata	Lam	Lanceleaf waxberry	UI ALS	ch	1				moist
PROTE	eaceab										
W2999	Paranomus	septrum-gustavianus	(Sparrm) \#yl	Perdebos	SI os	Na	${ }^{4}$	12/74	4/80		dry; 1 m
W2375	Serruria	adscendens	(Lam) R br var adscendens	Spinnekopborsie	SI Os	ch	1	12/74	10/77		dry
W3138	Serruria	elongata	R Br	Langbeenapinnekopboasie	SI os	ch	1				$50-80 \mathrm{~cm}$
W2355	Serruria	rubricaulis	R Br	Spinnekopbossie	ui ais	ch	m				30 cm
W2 337	Serruria	caputpharotis	mex		SI os	ch					50 cm

FIRE
RESPON



$\begin{aligned} & \text { COLIL } \\ & \text { NO } \end{aligned}$	GENERA	SPECIES	aUthor and subsp	Common name	FIRE RESPO noble SLAYTER	GROWTB FORM	ALT	bRNT	FLOW	BRNT	FLOW	notes
monti	niacbas											
w2833 CUNON	Montinia iAcear	caryophyllacea	Thusb	Bergklapperbos	Ui als	Na	1	12/81	4/82			1 m
W2270 BRUNT	Cunonia acear	capensis	L	Butterspoons; Rooiels	ut als	Mi	1					
w3587	Respalia	microphylla	(Thunb) Brogn	Palse Cedar	UnR	Ch	h					90 cmi ; rocke
W3505	Nebelia	paleaces	(Berg) Sweet	Bergstompie	vi	Ch	m					dry; 1 m ; small bal
W3039	Stavia	radiata	(L) Dahl	Altydbossie	UI als	ch	1					90 cm
W3502	Pseudobaeckia	africana	(Burm f) Pillans	Stream bush		Na	m					wet; 3 m
H3557a	Pseudiobaeckia	cordata	(Burm f) Niedenzu	Eeart-leaf brunia		Ch	mh					moist
W2180	brunia	albiflora	Phillipg	Coffee bush	SI os	Na						wet; 3 m
W3507	brunia	alopecuroides	Thunb	Red berries	cr os	Na	m					wet; 1,5 m
W2855	Brunia	laevis	Thunb	Stompie	UI als	Ch	m					90cm; large balls;
W3241	Brunia	nodiflora	L	Volstruisien	UI' ALS	Na	m					$90 \mathrm{cm;} \mathrm{large} \mathrm{open} \mathrm{f}$
W3002	Berzelia	incurva	Pillans	Klipknopbossie	UI als	Na	h					1 m
W2074	Berzelia	lanuginosa	(L) Brongn	Kolkol	$\mathrm{CI}^{\text {cr }}$ OS	Na	1					wet; 3 m
W2174	Berzelia	rubra ${ }_{\text {squarosa }}$	Schlechtd	Slender Buttons	UI ALS	${ }^{\mathrm{Na}}$	mh					1 m
W2558	Berzelia	arachnoidea	(Wendl) Eckl a zeyh	Spider Bush	UNR,	ch	mh					moist; 2 m
rosac	cab											
W3367	Rubus	pinnatus	willd	Bramble; Braambos	UI als	ch	1					moist; weed; shade
W2411	cliffortia	atrata	Weim	Climbers Friend	SI os	ch	n					1 m
W2457	cliffortia	graminea	L $f$ var graminea	Poaceae-like	UI als	Ch	mh					2 m
W3619   fabac	cliffortia ceas	stricta	Heim		unk	ch	m					$1 \mathrm{~m} ;$ shale
W3148	virgilia	divaricata	Adambon	Keurboom	SI os	Mi	1					weed; 4 m
W2911	cyclopia	genistoides	(L) R Br var genistoides	Eoney Tea	UI ALS	Ch	1 m					70 cm
W2808	Podalyria	calyptrata	willd	Ertjiebor	SI os	Na						moist; 3 m
W3491	Podalyria	cunaifolia	Ver	Wilde-ertjie	SI OS	Na	1					
W3494	Podalyria	speciosa	Eckl ${ }^{\text {a }}$ zeyh	Klapperbos	UT als	Na	m					
W3489	Liparis	splendens	(Burm f) J J Bos a de Wit   sep comantha ( $\mathrm{s}_{\mathrm{a}} \mathrm{z}$ ) Bos \& de Wit	Orange Nodding head	Ui als	ch		12/81	9/83			1 m
W2344	Priestleya	calycina	E Bol	Fleeting silver Pea	SI os	cr						
W2303	priestleya	vestita	(Thunb) D C	Silver Pea	UI aus	ch	m					moist; 2 m
W3135	Amphithalea	ericifolia	Ef zapericifolia		SI so	cB	m					$30-50 \mathrm{~cm}$
W3802	Amphithelea	intermedia	E 62		SI OS	CE	1					
W3903	Amphithalea	virgata	E ¢ z		UI ALS	CE	1	12/81	10/82	2/86	9/87	
W2605	Rafnia	cuneifolia	Thunb	Soethoutbossie	Ui als	ch	m	2/86	9/89			$1 \mathrm{~m} ;$ colpoon leavee;
W3693	Lebeckia	inflata	E Bol		SI PFE	Ch	1					
W3712	Lebeckia	wrightii	(Harv) 且 Bol	Twisted Pea Flower	SI PFE	ch	m	2/86	7/95			
W3514	Aspalathus	abientina	Thunb	Broom	SI os	Ch	1	12/81	11/83			30 cm
W3751	Aspalathus	aspalathoides	(L) Dahlge	Silver Pea	SI os	Ch	${ }^{\text {m }}$	12/81	11/82	2/86	12/96	20 cm
W2513	Aspalathus	batodes	E ¢ 2 sap batodes	Prickly Pea	Ui als	Ch	mh					30-40 cm
w3384	Aspalathus	batedes	E \& 2 asp spinulifer Dahlger	Little Prickly Pea	Unsk	ch	m					
¢3820	Aspalathus	ciliaris	L	Hairy Pea	Uut als	Ch	mh	12/81	11/92			1,5 m

FIRE

RESPO | Noble |
| :--- |
| SLAYTER |

$\begin{aligned} & \text { COLT } \\ & \text { NO } \end{aligned}$	GENERA	SPECTES	AUTHOR AND SUBSP	COMMON NAME	Noble SLAYTER	GROWTH FORM	ALT	ERNT	FLOW	brast	FLOW	notes
W3797	Aspalathus	dunsdoniana	Alston ex Dahlgr	Silly Pea	SI	Ch	$\square$	2/86	3/87			
W2595	Aspalathus	excelsa	Dahlgr	Sweet Sented Pea	sI	Na	1	2/86 9/9	9/89			2,5 m; site 17
W2934	Aspalathus	hispida	Thunb sep hispida	Wasblommetjiesbosaie	unk	ch	1					
W3823	Aspalathus	intervallaris	H Bol		Unk	ch	1m					
W3617	Aspalathus	marginata	Harvey	-leaved Pea	UI	ch	mh	12/81 1	11/82	2/86	12/86	
W3787	Aspalathus	oblongifolia	Dahlgr	Slender Pea	SI	ch	1					2 II
W3 309	Aspalathus	ramulosa	E Mey	Mini-branched Pea	UI als	ch	1	12/81 9	9/82			
W3515	Aspalathus	serpens	Dahlgr	Little Creeping Pea		ch	1	12/81 1	11/83			aprawling
W3283	Hypocalyptus	oxalidifolius	(Simb) Baill	Sorrel-leafed Pea	SI Pre	ch		12/81 9	9/82			30 cm
W3332	Medicago	polymorpha	L	Burr Clover		ch	1	12/81 9	9/82			weed
W3305	trifolium	angustifolium	1	Pink Bunny-Tail	SI	ch	1					annual; weed
W3499	Indigofera	angustifolia	L var angustifolia	wildeboontjie	SI Pre	ch	1	12/81	10/83			30 cm
W3792	Indigofera	cytisoides	Thunb			ch	1	2/86	3/87			1 m
W3768	Indigofera	coriacea	Ait var hirta Harv		USI	ch	h	2/85	12/86			
W3563	Indigofara	filifolia	Thunb	Leafles Pea	SI PFE	ch	1					wet; 2 m
W3759	Indigofera	filifolis	Thunb var minor Salt	Little leafless Pea		ch	1	2/86 11	11/86			moist
W3499	Indigofera Indigofera	glomerata gracilis	${ }_{\text {E Mey }}$	Hairy Pea Slender Pea	$\mathrm{SI}_{\text {SI }} \mathbf{S F E}$	ch ch		12/81 1	10/83			20 cm moist
W3201	Indigofera	ionii	Jarvie d Stirton	Ion's Pea		ch	m	2/86	10/83			moist; 35 cm
W2554	Indigofera	mauritanica	(I) Thunb	Sprawling Pea		ch						
W3922	Indigofera	ovata	Thunb	Round-leaf Pea	SI PFE	Ch	h	2/86	12/86			
W2439	Indigofera	superba	Stirton	Superb Pea		ch		2/86	2/87			moist; 2 m
W3757	Indigofera	alopecuroides	(Burm f) D C var alopecuroides		SI Pre	ch		2/86 1	12/86			
w3738	Indigofera	sammentosa	Lf			ch	m	2/86 1	11/86			
w2 566	Psoralea	aphylla	L	Blue Broom; Bloukeur	SI os	Na						wet; $1-3 \mathrm{~m}$
W3524	Psoralea Psoralea	$\underset{\text { pinnata }}{\text { aculeata }}$	L	Fonteinbor	SI os	Mi Mi	1	12/81 1	12/83			wet; 4 m
W3456	Psoralea	restioides	E \& z	Siren's Tresses	SI os	${ }^{\text {ch }}$	1	12/81	8/83			
W3808	peoralea	usitata	stirton	weeping Broom	Ui ats	ch	mh	2/86 1/81	1/88			shale
W	otholobium	fruticans	(L) Thunb		ut als	ch						
W3562	тephrosia	capensis	Pers var capensis		ui als	Ch	1					
世3319	vicia -	hirsuta	(L) S F Gray	Wilde-ertjie	Ui ais	ch	1	12/81	9/82			
W3646	Rhynchosia	angustifolia	DC		UI ALS	ch		12/85 3	3/86			shale
W3686	Rhynchosia	chrysoscias	Benth		UI als	Ch	$1{ }^{1}$	2/86	9/86			
W3292	Rhynchosia	capensis	(Burm) Schinz		Ui als	L	1	12/819/9191919	9/82			yellow £lower
W3297	Rhynchosia	leucoscias	Benth	Blink-ertjie	Ui ais	L	1	12/81 9	9/82			
W3800	Rhynchosia Dipogon	leucoscias lignosus	Benth var angustifolia Harv (L) verds	Wilde-ertije	Ui als	L	1	$\begin{array}{ll}2 / 86 & 8 \\ 12 / 81 & 1\end{array}$	8/87 $10 / 82$			
geran	viaceas											creep
W3265	Geranium	molle	L	Dove's Foot	SI os	ch	1					annual, perennial;
W3774	pelargonium	capitatum	(L) L' Lerit		SI os	ch	$1 m$					$30-90 \mathrm{~cm}$
W3310	Pelargonium	chamaedryfolium	Jacq	Fleeting Pelargonium	SI os	ch	1	12/81 9	9/82			aprawling
W3338	Pelargonium	cucullatum	(L) L'Herit gep cucullatum	wildemalva	si os	Na	1	12/81 1	10/82			2 m ; red edge
พ3377	Pelargonium	cucullatum	(L) L'Rerit sup strigifolium Volschenk	Mountain Pelargonium	ui als	ch	h					
W3277	Pelargonium	elongatum	(Cav) Salisb	Table Mountain	SI os	ch	1	12/818	8/82			15-30 cm; red rin


COLL No GENERA	Species	AUTHOR AND SUBSP	COMMON NAME	FIRE   RESPON   NOBLE   SLAYTER	GROWTH FORM	ALT	BRNT FLOW	BRNT	FLOW	NOTES
W2607 Pelargonium	longicaule	Jacq	Myrrh Leaved Pelargonium	UI als	Ch	1				P. myrrhifolium var
W3743 Pelargonium	longifollum	(Burm f) Jacq	Bearded Pelargonium	ut als	Ch	1	12/81 11/82	2/86	11/86	
W2606 Pelargonium	papilionsceum	(L) L'Herit	Scented Geranium	SI OS	ch	1				
Oxalis	corniculata	L	Procumbent Oxalis	UI ALS	Cr	1				
W2747 oxalis	dentata	Jacq	Sorrel; Suring	ut als	Cr	1	12/81 5/82			moiat; $30 \mathrm{~cm} ;$ shade d
W3235 oxalis	eckloniana	Presl var sonderi Salt	Purple sorrel	Ui als	Cr	1.	12/81 5/82			
W3684 Oxalis	heterophylla	D C	Tufted gorrel	UI als	Cr	1	2/86 9/86			
w3147 oxalis	incarnata	L	White gorrel	UI als	cr	1.				
W3236 Oxalis	luteola	Jacq	Yellow Sorrel	UI ALS	$\mathrm{Cr}_{5}$	1.				8 cm ; leaves roset g
W3655 Oxalis	polyphylla	Jacq var polyphyila		UI als	Cr	1				30 cm
W3237 Oxalis	truncatula	Jacq	$\begin{aligned} & \text { Purple Eairy-back } \\ & \text { sorrel. } \end{aligned}$	UI als	Cr	1 m	12/81 5/82			
W2747 Oxalis				UI als	Cr					
LINACEAE										
W2871 Linum rutaceas	thunbergii	E 52	Flax	SI PFE	Ch	1.				dry; 50 cm
W3176 Agathosma	bifida	(Jacq) Bartl \& Wendl	Mountain Buchu	ut ovs	Ch	m				30 cm
W2237 Agathosma	capensis			UI als	Ch	1				30 cm
W1532 Agathosma	ciliaris	(L) Druce	Berg Buchu	UI ALS	Ch	1				dry $\rightarrow$
W2235 Agathosme	imbricata	(L) Willd	Wi.ld Buchu	ur als	Ch	1				25-30 cm
W1937 Agathosma	serratifolia	(Curtis) Spreeth	Long leaved Buchu	SI os	Ch	1				moist
W2804 Adenandra	uniflora	(L) Willd	China flower	SI os	Ch	1				30 cm
W3618 Adenandra	viscida	E \& 2	Sticky China flower	ur als	Ch	h	12/82 7/85			50 cm
w3602 Coleonema	album	(Thunb) B \& W	Cape May	SI os	Ch	1				2 mj rock
W2198 Diosma	hirsuta	L	Hottentote Boegoe	ul als	$\mathrm{Ch}_{\text {- }}$	1 m				30-50 cm
W1948 Diosma	oppositifolia	1	Bitte-boegoe	Ui als	Ch	m	12/81 4/82			
W3083 Empleurum POLYGALACEAE	unicapsulare	(Lf) Skeels	False Buchu	SI os	Ch	h				3-4m
W2555 polygala	bracteolata	I	Skaapertjie	SI os	ch	m				80 cm
W2872 Polygala	garcini	D C	Milk Maker	UI als	Ch	1				30-40 cm
W2815 Polygala	myrtifolia	1	Septemberbos	UNK	Ch	1				2 II
W2872 Polygala	umbellata	1	Clustered Milk Maker	SI os	ch	1.				dry; 40 cm
W2675 Muraltia	bulusii	Levyni	Soft muraltia	UI ALS	Ch	1m	12/81 12/82			10-15 cm; M. ericoi
W3750 Muraltia	concava	Levyns		SI pre	ch	h	2/86 11/86			
w3157 Muraltia	filiformis	(Thunb) D C var caledonensis Levyng	Swamp Muraltia		Ch	h				
W2788 Muraltia euphorbiaceaz	heigteria	(L) D C	Pyp-in-die-sybosaie	SI	Ch	1.				40-50 cm
W3666 clutia	alaternoides	L var alternoides	Broad-leaf Clutia	vI	Ch	m	2/86 6/86			ahale
W3041 Clutia	polygonoides	1	Narrow-leaf clutia	UI als	ch	mh				60 cm
w2835 Euphorbia	erythrina	Link	Pisgoed	UI als	Ch	1				dry; 70 cm ; east
W2820 Euphorbia	silenifolia	(Haw) Sweet	Silene-leaved milk root	UI als	Cr	m	12/81 4/82			7 cm


$\begin{aligned} & \text { COLL GENERA } \\ & \text { NO } \end{aligned}$	SPECIES	AUTHOR AND SUssp	COMMON NAME	FIRE   RESPON Noble SLAYTER		aLt	BRNT	FLOW	ERNT	FLOW	notes
anacardiaceas											
W2 148 Laurophyllus	capensis	Thunb	Iron Martin; Ystermartiens	ui als	Mi	m					wet; 6 m
W3255 Rhus	glauca	Thunb	Bloukoenibos	ut als	Ma	1					
W3483 Rhus	lucida	1	Taaibos	Ui als	Mi	1	12/81	8/83			
W3259 Rhus	scytophylla	E 42	Red $£$ lowered Rhus	UI ALS	Na	m					
W2 317 Rhus aqutfoliacear	tomentosa	L	wild Currant	dT als	Mi	1					
W2414 flex	mitis	(L) Radik	Africa Holly; without	UI ALS	Mi	1					
celastracear											
W2733 Maytenus	acuminata	(I f) Loes var acuminata	Silky Bark	UI als	Na	1m					
W3087 Putterlickia	pyracantha	(L) Szybzyl	Wildegranat	Ui als	Mi	1					dry; $30-40 \mathrm{~cm}$
W1949 Pterocelastros	rostratus	(Thunb) Walp	Red Cherry Wood	UI ALS	Mi	1					2 m
W2752 Cassine	peragua	${ }^{\text {L }}$	Bastard Saffron Wood	UI ALS	$\mathrm{Mi}^{\text {Mi }}$	1					
W1947 Hartogiella tCACINACEAE	schinoides	(Spreng) Codd	Lepelhout	UI als	Mi	1					
W3828 Apodytes		(Braam) A E van Wyk		UI ALS	Mi	1 m					moist; A. dimidata
${ }_{\text {RHamNaceat }}^{\text {W2737 Phylica }}$											
W2737 Phylica W2428 Phylica	buxifolia	${ }_{L}$	Wild Box Snow Flakeg	$\begin{array}{\|l\|} \text { USI FSS } \\ \text { SI OS } \end{array}$	Na	${ }_{\text {lm }}^{1}$	12/74	1/78			$\left\lvert\, \begin{aligned} & 2-3 \mathrm{~m} \\ & 90 \mathrm{~cm} \end{aligned}\right.$
w3228 phylica	imberbis	Berg var imberbis	Beardlees Phylica	ui als	ch	1.	12/81	5/82			
W3426 Phylica	lasiocarpa	Sond	woolly-Fruit Phylica	UI als	ch	1	12/日1	1/83			dry; 60 cm
W2845 Phylica	stipularis	L	Phylica with gtipules	UI als	Na	1					
Maivaceal											
W2816 Anisodonta	scabrosa	(L) Bates	Cape Mallow	SI OS	ch	1					2-3m; like hybis
W3649 Hibiscus	aethiopicus	L var aethiopicus	Wildestakroos	UI ALS	ch	1	2/86	3/86			
W3660 Hibiscus sterculiacear	trionium	L		SI OS	ch	1	2/86	5/86			$25 \mathrm{~cm} ;$ yel fl w blk
w3304 Hermannia	hyssopifolia	L	Agtdaegeneesbossie	SI OS	ch	1	12/81	9/82			
w2823 Hermannia	rudis	Ne Br	Stick Eermannia	SI OS	ch	1					
w2922 Hermannia	salviifolia	Lf var salviifolia	Salvia-leafed Hermannia	SI os	Na	1					60 cm
violaceae											
w3249 Viola flacourtacear	decumbens	L var decumbens	wild violet	ut aus	ch	1					30 cm
W2236 Kiggelaria penaceae	africana	L	wild Peach; Rershout	UI ALS	Mi	1					
W3503 Penaea	cneorum	Meerb enp ruscifolia Dahly	Stream Penaea	SI os	Na	m					moist; 2 m
W2315 Penaea	mucronata	L	Mountain Penaea	UI als	ch	1m					30 cm
W2260 Brachysiphon	acutus	(Thunb) Juss	Pink clump	UI ALS	Na	1					30 cm
W1946 Brachysiphon	rupestris	Sond	Rock flower	SI OS	Na	m					4-8 cm
W3068 Sonderothamnus		(Sond) Dahly	Beautiful Penaea	UI ALS	${ }^{\text {ch }}$	m					
W2282 Saltera oliniaceas	sarcocolla	(L) Bullock	Vlieëboraie	Ui als	Na		2/86	9/89			
w2007 Olinia	ventosa	(L) Cufod	Hard Pear; Eardepeer	ui als	Mi	1					


$\begin{aligned} & \text { COLL } \\ & \text { No } \end{aligned}$	SPECtes	author and subsp	Common name	FIRE RESPO noble SLAYTER	GROWTH   FORM	alt	BRNT FLOW	BRNT	FLOW	notes
thymblaeaceae										
w2e27 Gnidia	galpinii	c $\mathrm{H}^{\text {Wr }}$	Yellow stripper	SI os	ch	m				north
w3571 Gnidia	humilis	Meisn	Little Stripper	SI OS	Ch	m				moist
W2561 Gnidia	oppositifolia	I	Streamside Stripper	SI OS	Na	m				wet; 3 m
W356e gnidia	penicillata	Licht ex Meisn	Blue Paint Brush	sI os	ch	h	12/81 10/64			moist
W3357 Gnidia	pinifolia	1	Resprouting Stripper	Ur als	${ }^{\text {ch }}$	1 m	12/81 11/82			1 m
W2856 Struthiola	ciliata	(L) Lan epp ciliata		SI OS	ch					dry; 30 cm
w3487 Struthiola	confusa	c H Wr	Cate Tail	SI os	Ch	1	12/81 8/83			hairy flowers
W2575 struthiola	myrsinites	Lam		SI os	ch	1 m				${ }^{2} \mathrm{~m}$; willow bush
W2459 Struthiola W2624 Passerina	tomentosa	Andr Thoday	Roemenaggie Gonna	SI Os	Na	1m				$45 \mathrm{~cm}$
haloragidaceas		Thoday	Gonna	SI os	Na	1				
W3637 Laurembergia	repens	Berg app brachypoda (Hiern) oberm		UI als	ch	1				moist; Laurentia se
w3258 Centella	difformis	( E \& Z ) Adambon	Hairy Pawe	SI PFE	Ch	1 m	12/81 7/82			dry
w2531 centella	eriantha	(Rich) Drude var oriantha	Little Fans	SI pfe	ch	m				
W2987 Centella	rupertris	( E \& 2) Adamson	Rock Centella		ch	m				dry
W2900 Centella	triloba	(Thunb) Drude	Paddy Pawe	UI ALS	Ch	mh				
W3735 Centella	virgata	(Lf) Drude var virgata	Slender Centella	SI PFE	Ch		2/86 11/85			shale
w3640 Hermas	capitata	L f var minima ( E \& z ) Sond		UI als	Ch					
w3585 Hermas	ciliata	Lf	Comb edged Tinder-leaf	UI Als	$\mathrm{IP}^{\text {P }}$	h	12/81 11/82			
W26日9 Hermas	depauperata	L	Tontelblaar	UY ais	Na	m				1 m ; H. villosa
W3363 Thunbergiella	fillformis	(Lam) Wolff	Slender Umbellifer	UI ALs	Ch cr		$\begin{array}{ll}2 / 86 & 1 / 87 \\ 12 / 81 & 11 / 81\end{array}$			
w2707 Peucedanum	capillaceum	Thunb var rigidum (E\&2) Sond	Eair-like Blister Bubh	Ui aus	Na	1				
н3413 Peucedanum	ferulaceum	(Thunb) Sond var ferulaceum	Fennel-like Bliater Bush	UI ALS	$c_{\text {r }}$	1	?			dry
W2672 Peucedanum	galbanum	(I) Benth 6 Hook f	Blister Bush; Berg aelerie	ui als	ch	1				moist; 3 m ; Bhelter
Cornaceas										
w2418 Curtisia ericaceae	dentata		Assegaiai Tree	UI als	Mi	1				
W2810 Erica	aristata	Andr var aristata		SI os	ch	m				20-30 cm
W2557 Erica	articularis	L var articularis		SI os	Ch	m				wet; 30-40cmicarifol
W2828 Erica	azaleifolia	Salieb		SI os	ch	m				40 cm
R319 Erica	banksia	Andr var banksla	Tutu Heath	SI os	ch	h				
09691 Erica	blanchana	L Bol			ch					Prior only Cape Poi
W3556 Erica	brewifolia	Soland ex Salisb		SI OS	ch	h				60 cm
W2600 Erica	caffra	$L_{\text {L }}$		SI OS	${ }^{\text {ch }}$	1				dry; 3 m
W2787 Erica	cerinthoides	L var cerinthoides	Red Erica	UT ALS	ch	m	12/81 2/82			1,8 m
W2718 Erica	coccinea	L var coccinea		SI os	Na	m				30 cm
W2560 Erica	coccinea	L var inflata Ha A Bak		st os	Na	m				50 cm
W2757 Erica	coccinea	L var pubescens ( E ( Bol) Bulfer		SI os	Na	1				dry; 1,3 m
W2802 Erica	corifolla	L		SI 0 S	ch	1 m				30 cm


$\begin{aligned} & \text { coLL } \\ & \text { No } \end{aligned}$	gENERA	Species	AUTHOR AND SUBSP	common name	FIRE   RESPON noble SLAYTER	GROWTH   FORM	aut	BRNT	FLOW	BRNT	FLOW	notes
W2957	Erica	corydalis	Salisb		SI os	Ch	mh					30 cm
W2715	Erica	cristata	Dulfer		SI os	ch	-					$30-40 \mathrm{~cm} ; \mathrm{E}$. pycu
W2622	brica	cumuliflora	Salisb		SI OS	ch	m					moist; 40 cm
W2873	brica	curviflora	L var curviflora		SI OS	Ch	m					moist; 50 cm
W2461	Erica	curvirostris	Salibb var curvirostria		SI os	Ch	mh					40 cm
W2 725	Erica	desmantha	Benth var urceolata m A Bak		SI OS	Ch	mh					$1,2 \mathrm{~m}$
W2709	Brica	discolor	Andr var discolor		SI OS	ch	1					dry; $40-50 \mathrm{~cm}$
W2857	Erica	fastigiata	L var coventryana E Bol		si os	ch	m					moist
W2815	brica	hispidula	L var hispidula		DR os	Na	1 m					
W2839	erica	holosericea	Salisb var holosericea		SI os	Ch	m					moist
W2760	Erica	lanuginosa	Andr		SI OS	Ch	m					dry
W3829	Erica	imbricata	L		SI OS	ch	h					
W3580	brica	ioniana	Oliver mss	Small Nodding Heath	Ui als	ch	m					moist
W2697	brica	longiaristata	Benth		SI os	Ch	1 m					40 cm
W2824	brica	lutea	Berg	Yellow Heath	SI os	ch	1					40 cm
W2692	Erica	massonit	$\underline{L} \mathrm{f}$ var minor Benth		UI ALS	ch	m					30 cm
W2993	Brica	nudiflora			SI Os	ch						shale; $20-30 \mathrm{~cm}$
W2702	brica	obliqua	Thunb		SI os	Ch	a					30-40 cm
H3351	Erica	obtusata	Rlotzsch ex Benth		SI OS	ch	m					
W2727	Erica	onosmiflora	Salisb	Langblaar Heide	SI OS	Ch	m					40-70 cm
W2807	Erica	parviflora	L var parviflora		SI os	Ch	1					70 cm
H2759	brica	parvula	Guth 8 Bol	Rock erica	sI os	Ch	m					25-30 cm
W3545	Erica	perspicua	Wendl var perspicua	Six penny Heath	SI OS	Ch	1					moist; 1,6 m
W2724	Erica	perspicua	Wendl var latifolia Benth	Nine penny lleath	SI os	Ch	${ }^{1}$					moist; $50-1,5 \mathrm{~m}$
Den	Erica	petiolaris	Lam		SI OS	Ch						
D254	Erica	patrophila	H Bol	,	SI OS	ch	m					
R279	brica	physophylla	Benth		SI os	ch	m					
W2786	Erica	placentiflora	Salisb	Pregnant Eeath	SI os	ch	m					50 cm
W2794	Erica	plukenetii	L var plukenetti	Hangertjie	SI OS	Ch	1					30-50 cm
W2986	Erica	plukenetii	L var bicarinata H Bol		SI Os	Na	m					
W3069	Erica	pogonanthena	Bartl		SI OS	Ch	m					moist; 25 cm
W3581	Erica	rhopalantha	Dulfer var rhopalantha		SI OS	Ch	1	12/81	2/85			
W2697	Erica	sessiliflora	L f var sessiliflora		CI ALS	Ch	m					moist; 60 cm
W2837	Erica	spumosa	1		SI os	Ch	m					ahale; $20-30 \mathrm{~cm}$
W3564	Erica	suffulta	Wendl ex Benth		SI os	Ch	m					25 cm
W3579	Erica	tenella	Andr var gracilior a Bol		SI os	ch	1	12/81	2/85			20-30 cm
W2693	Erica	tenella	Andr var tenella 日 Bol		SI os	Ch	m					35 cm
W3383	Erica	tenuifolia	${ }^{\text {L }}$		SI os	Ch	m					30 cm
W2601	Erica	villosa	Andr	Kapkoppie	SI os	ch	1					30-40 cm
W3551	Erica	sp			SI OS	ch	m					
W2701	blaeria	barbigera	(Salisb) P Don	Bearded Heath	SI os	Ch	m					moist; 30-40 cm
W3582	blaeria	dumosa	Wendl var dumosa	Bushy Heath	SI os	ch	1	12/81	2/85			
W2703	Blaeria	dumosa	Wendl var breviflora Ne Er		SI os	Ch	ta					30 cm
w3583	Blaeria	ericoides	L	Honey Eeath	SI os	ch	1	12/81	2/85			
W2719	Simocheilus	consors	Ne br		SI OS	ch	m					30-40 cm


COLL GENERA	SPECIES	AUTHOR AND SUBSP	COMMON NAME	FIRE RESPON noble SIAYTER SLaytra	GROWTH   FORM	ait	BRNT	FLOW	BRNT	FLOW	NOTES
w3589 Sympleza	labialis	(Salisb) Druce		SI os	ch	1					50 cto
W2723 Sympieza	williamsiorum	Oliver mas		SI Os	ch	h					50ctu; capitellata Li
W3630 Scyphogyne	muscosa	(Ait) Druce	Mosay-she-cup	SI os	${ }^{\text {ch }}$	1	12/81	2/85			60 cm
W3052 Nagelocarpus MYRSINACEAE	serratus	(Thunb) Bullock	Worthless Heather	SI OS	Ch	m					75 cm
W2974 Myrsine	africana	L	Cape Myrtle; Myrting	Oi als	Na	1					
W2629 Rapanea	melanophiosos	(L) Mez	Rappee Boekenhout	Ui als	Mi	1					
sapotaceae											
W3111 Sideroxylon ebenacear	inerme	L	Melkhoutboom	UI ALS	Mi	1					
W3476 Euclea	polyandra	(Lf) E Mey ex Biern	Rerbbos	ui ans	Na	1					
W3120 Euclea	racemosa	Murray	Sea Guarri	Ui als	Na	1					
w2407 Diospyros oleacear	glabra	(L) de Winter	Blueberry Bush	UI als	Na	1	12/81	10/82			
w3544 Chionanthus	foveolatus	(E Mey) Stearn asp foveolatus	Fine-leaved Iron wood	unk	Mi	1					
w3414 Olea GENTIANACEAE	capensis	L msp capensis	Ironwood; Yeterhout	UI ais	Mi	1	12/81	1/83			
w350] Sebaea	aurea	( $\mathrm{L}_{\mathrm{f} \text { ) Roem } 6 \text { Schult }}$	Sebaea; Naeltjieeblom	SI	ch	h					
W2942 Sebaea	micrantha	(Cham \& Schlechtd) Schinz var micrantha			Ch	1					
W2621 Chironia	jasminoides	L	Large Chironia	SI PFE	ch	$\ldots$					moist
w3516 Chironia	linoides	L sep nana Verdoorn	Dwarf Chironia		Ch	1	12/81	11/83			
w2940 Chironia	melampyrifolia	Lam	Streamside Chironia	SI	ch	m					moist
W2945 Chironia	tetragona	1 f	Sticky Chironia		Ch	m					dry
W2821 Villarsia asclepiadaceae	capensis	(Houtt) Merrill	Yellow frills	USI FSS	Ch	m					wet
W3440 Astephanus	triflorus	( L ) Schultes	Feather Duater								
W3652 Aspidoglossum	heterophyllum	$E$ Mey	,	UI ALS	Cr	1	2/86	3/86			
W3763 Asclepias	erispa	Berg		OI ALS	${ }^{\text {cr }}$	1	2/86	12/86			
W3160 Secamone	alpinii	Schultes	Monkey Rope	UI als		1					
W2992 Orbea convolvulaceae	variegata	(L) Haw	Toad Plant: Aasblom	UNR	herb	1					
W2690 Cuscata boraginacear	angulata	Engelm	Dodda	SR os	parsit	m					
W2793 Lobostemon STILbaceas	montanus	( $\mathrm{D} \mathrm{C}^{\text {) Buek }}$	Douvurmbossie	SI	shrub	1					1 m
W3076 Stilbe	rupestris	compton	Rock stilbe	SI os	ahrub	m					
Lamiaceas											
W2889 Stachys solanacrar	aethiopica	L	Katpisbossie	SI	ch	1					shade; forest
W3530 Solanum	hermannii	Dunal	Apple of Sodom	Ui ans	shrub	1					weed
W2744 Solanum	retroflexum	Dunal	Black nightshade		shrub	1					weed
w3216 Datura retz iaceae	ferox	L	Grootstinkblaar	SI		1		*			weed
w3504 Retzia	capensis	Thunb	Hedgehogs	UI ALs	${ }_{\text {Na }}$	,					12 m


$\begin{aligned} & \text { COLIL } \\ & \text { NO } \end{aligned}$	genera	SPECIES	AUTHOR AND SUBSP	Common name	FIRE RESPO noble SLAYTER		ALT	BRNT	FLOW	BRNT	FLOW	\|notes
scrop	hulariaceas											
W3276	Hemimeris	racemosa	(Houtl) Merrill	Tiny yellow flowers		ch	1	12/81	9/82			moist; annual
W3275	Nemesia	diffusa	Benth	witleenbekkie	SI pre	ch	1	12/81	9/82			moist
W2316	Halleria	lucida	1	Tree Puchsia; witolyf		Mi	1	12/74	7/77	2/85	9/89	
W2875	Teedia	lucida	Rudolphi	Stinkbos	sI	Na	m					1,2 m
W2 248	oftia	africana	(L) Bocq	Sweet Scroph	sI	Na	1					
W2843	manulea	benthamiana	Hiern Benthamus	Hand Plower		ch	1					
W2546	Sutera	hispida	(Thunb) Druce	Honey Flower	SI PFE	ch	1					
W2841	polycarena					ch	1					15 cm
W3482 SELAG	Zaluzianskya ginaceas	capensis	(L) Walp	Verfblommetjie	sI	ch	1					annual;2 dentata ( ${ }^{\text {a }}$
W2584	Dischisma	ciliatum	(Berg) Choisy sep ciliatum		SI	ch	1	12/81	9/82			annual, perennial
W2705	Selago	serrata	Berg	Blou-aarboseie		ch						30 cm
W2574	Selago	spuria	${ }_{\text {L }}^{\text {L }}$		SI PFE	T						annual, perennial;
W2686	Selago	verbenacea angustifolia	$\mathrm{L}_{\text {(Thunb) choi }}$		SI PFE	$\mathrm{T}^{\text {T }}$		12/81	11/82			
W29 73	Melama	scabrum	Berg .	Love Flower	unk	ch ch	m					A dubia (L.) Hutch. moist; parasite; we
W2670	Harveya	eapensis	Hook	White Harveya; Inkblam	Ux	ch	m					dry; parasite
W2671	Harveya	tubulosa	Harv ex Hiern	Red larveya; Rooi Inkblom	Unk	ch	1					dry; parasite
$\begin{gathered} \text { W2829 } \\ \text { LENTI } \end{gathered}$	Hyobanche tbulariaceas	sanguinea	L	Cat's Clawe Katnaels	unx	ch	m					dry; parasite
W2984 RUBI	Utricularia aceas	bisquamata	Schrank	Bladderworst	sI	ch	$\mathrm{m}^{\text {m}}$					wet; annual
W3072	Anthospermum	aethiopicum	L		sI	ch	1					1,5\%
W2967	Anthospermum	galioides	Reichb f sbp reflexifolium (0 Ktze) Puff		sI	ch	1					20 cm
W3071	Anthospermum	spathulatum	Spreng sap spathulatum		sI	ch	1		-			1,5-2m
H3075	Carpacoce	heteromorpha	(Buek) L Bol	Curlies	SI	ch	lm					
W2604	Carpacoce	spermacocea	(Reichb f) Sond sap spermacocea			ch	m					moist
W3621	Carpacoce acacear	vaginellata	Salter		UI als	ch	m	12/81	6/82			
स3082 CuCUR	Scabiosa bittaceab	africana	L wild	Scabius	SI	Ch	1					25 cm
W3372	zehneria	scabra	(L f) Sond esp scabra	Dawedjies		I	1					
W3577	Kedrost is	nana	(Lam) Cogn var nana bryony		UI ALS	$\pm$	1					
w3389	Merciera	leptoloba	A D C	White Fox-tail		ch	1	12/81				
+2937	Merciera	tenuifolia	( L f) A dC var aurea (Schltr) Adamen	Blue fox-tail	ut ais	ch	m					dry
W3910	Roella	incurva	A dC var incurva	blue Roella	SI pfi	ch	1	12/81	1/83			
W3809	Roella	muscosa	${ }_{\text {L }} \mathrm{f}$	Mossy Roella		ch	mh	2/86	1/88			dxy
W3423	Roella	psanmiophila	Schltr	White Roella	SI PFE	ch	1	12/81	3/83			
W3416	Prismatocarpus	brevilobus	A DC			ch	1					-
W3423	Prismatocarpus	schlechteri	Adambon		SI	ch	1	12/81	4/83			
W2953	Prismatocarpus	sessilis	Ecklon var sessilis		SI	ch	m					
W3786	Prismatocarpus				sI	ch	1	2/86	3/87			
W2968	siphocodon	debilis	Schltr		SI	ch	1					


$\begin{aligned} & \text { COLLI } \\ & \text { NO } \end{aligned}$	grnera	Spbcies	AUTHOR AND SUBSP	comyon name	FIRE   RESPO NOBLE SLAYtER		ALT	BRNT	FLOW	brat	PLOW	NOTES
ผ3782	Helichrysum	cymosum	(L) D Don aep cymosum	Golden Sage	SI OS		1					
W3090	Helichrysum	humile	-	Velvet Herb	SI PFB							
W2952	Helichrysum	litorale	H Bol	Sewejartjie	DI PFE	T	m					annual
W2950	Helichrysum	mucronatum	Lese var niveum (DC) Harv	Baby Everlasting		ch	in					shale
W2916	Helichrysum	pandurifolium	Schrank	Hottentotekooigoed	sI	Na	1					H. auriculatum Less
W3804	Helichrysum	tinctum	(Thunb) Hillard \& Burtt			ch	m					shale
W2620	Syncarpha	vestita	(L) B Nord com nov	Cape Everlasting	di pre	Na	m					Helichrysum dry
W2706	Edmondia	fasciata	(Andr) Eilliard		UI ALS	ch	m					
W2631	Edmondia	pinifolia	(Lam) Hilliard		SI os	ch	m					
W3511	Edmondia	sesamoides	(L) Eilliard		di pre	ch	1	12/81	11/日3			
W2609	Stoebe	aethiopica	L	Rnoppiesbos	SI os	ch	1					
W2721	Stoobe	capitata	Berg		SI os	ch	1					30 cm
W2996	Stoebe	cinerea	Thunb	Vaalrenosterbossie	DI PFE	ch	m					50-70 cm; shale
W2460	stoebe	incana	Thunb		di pre	ch	\%					dry; $40-50 \mathrm{~cm}$
W2997	Stoebe	plumosa	(L) Thunb	Slangbos		ch	m					30-1mx
W2750	Stoebe	spiralis	Leвs		di pfe	ch	1					50 cm
W3227	Disparago	lasiocarpa	Савв		Ui ans	ch	1	12/81	5/82			
W2909	Disparago	laxifolia	DC			ch	m					dry
W2512	Metalasia	cymbifolia	Hary	Thick-leaf Blombos	SI OS	Na	m					dry; 30 cm
H3116	Metalasia	muricata	(L) D Don	Blombos	di os	Na	1					1,5 m
W2553	Metalasia	seriphiifolia	DC	Fine-leaf Blombos	SI os	ch	1					dry
W3112	Bryomorphe	lycopodioides	(Sch Bip) Levyns	Mose Daisy	SI os	Hp	h					
W3700	Athrixia	heterophylla	(Thunb) Less asp heterophylla		ui ais	ch	h	2/86	10/86			
W339	Heterolepsis	aliena	(L f) Druce	Rock Daiay	UI ALS	ch	1	12/81	12/82			
W3415	Osmitopsis	afra	(L) Bremer	Belbkruie	ut ais	ch	1 m	12/81	1/83			
W2784	Osmitopsis Oedera	asteriscoides capensis	(Beig) Less	Mountain Daigy; Bels	Ui als	$\left\lvert\, \begin{gathered} \mathrm{Na} \\ \mathrm{Cb} \end{gathered}\right.$	m					1,5 m
W3492	oedera	prolifera	Lf	Multiple Daigy		ch	1	12/81	9/83			dry
W3098	Athanasia	trifureata	(L) L	Klaaslouwsbos	si	ch	h					weed
W2551	Thaminophyllum	latifolia	Bond	Shade Daiby	SI	Na	m					wet
W3253	cenia	turbinata	(L) Pers	Ganekos	SI	ch	1	12/81	6/82			dry
W2576	Hippia	frutescens	(L) L	Small Wormwood; Rankerale	SI	ch	1					
W3496	hippia	pilosa	(Berg) Druce	Dwarf Wormwood		Ch	mh					dry
W3302	Senecio	cymbalariifolius	(Thunb) Less		UI ALS	Ch	1	12/81	9/82			
W3650	Senecio	erubesceus	Ait var erubescens		UI ALS	Ch	1.	2/86	3/86			dry
W3560	Senecio	filifolius	Harv			ch						30 cm
W3301	Senecio	hastifolius	(Thunb) Leas		UI Aus	Ch	1	12/81	9/82			dry
W3521	Senecio	1ittoreus	Thunb var hispidulus Harv	Hongerblom	SI	Ch				,		
W2663	Senecio	lyratus	L $\mathrm{f}^{\text {f }}$	Ragwort		$\mathrm{ch}^{\text {ch }}$	1	12/81	10/82			moist; 2 m
W2734	Senecio	pinifolius			UI ALS	ch	m					dry; $15-20 \mathrm{~cm}$
W3431	Seлecio	pubigerus	L	Roghrabosaie	DI PFE	Ch	1	12/81	4/83			dry; 1 m
W2742	Serecio	repers	G Rowley	Fingeretteis	SI os	ch	1					
W2635	Senecio	umbellatus	L		DI PFE	ch	1					

Appendix 2: Permit PERMIT:

TO ENTER VOGELGAT NATURE RESERVE Name: Hiss CHERYi DE Lange

Address: P:B. 6546


PERMISSION : is hereby given to the abovenamed person or his wife, or son, or daughter accompanied by his or her party to enter the Vogelgat Private Nature Reserve. $1 / 9 / 89-31 / 5 / 90$
This permit is not transferable to anybody else, and the total number of persons at any one time entering the Reserve under this permit is to be limited to ten.
The holder of this permit undertakes to obey the rules attached hereto relating to this Reserve and furthermore to be responsible for seeing that all members of his or her party obey these same rules.

This permit is issued on behalf of the Board of - Vogelgat Nature Reserve (Pty) Ltd, by Dr. Ion Williams. 29 Tenth Street, Voëlklip 7203.
 introduce into the Nature, Reserve or be in possession, or in charge of dogs within the Nature Reserve, unless witer proper control. Any foose-running dogs found in the Nature Reserve will be destroyed;
damage, climb over or through any wire fence, or other fence, within or bounding the Nature Reseserv;
at any time unnecessarily or unreasonably make or cause to be made a noise, or do anything which may be a nuisance, impediment or hindrance to other persons, or which may give offence to any person within the Nature Reserve.
camp within the reserve.
sons found contravening these rules will be prouted under the Nature and Environmental Conseron Ordinance of 1974.

By Order of the. Board of Directors, Vogelgat Nature Reserve (Pty) Ltd., 29, Tenth Street, Voëlklip 7203.

## NOTICE

an express condition of your visit to this Reserve the Company known as Vogelgat Nature Reserve Lid., shall not be responsible for any bodily injury her fatal or otherwise, nor shall the Company be onsible for any damage you may suffer arising the loss or damage to your property brought

## VOGELGAT:NATURE RESERYE

## RULES

No persoñ shäll:"

1. enter the. Reserve without a permit to do so
2. introduce into or be in possession of any flora, fauna, weapon, trap, explosive or poison within the Nature Reserve; ....
3. remove from the Nature Reserve any flora, fauna, nests, objects of historical, archaeological or scientific interest or any property therein;
4. damage, injure or destroy any flora, fauna or nests within the Nature Reserve;
5. damage, destroy or deface in any manner any natural object or any property, including that belonging to the Municipality, within the Nature Reserve;
6. make a fire within the Nature Reserve or commit any act whereby a fire may be caused therein;
7. introduce into, operate or use within the Nature Reserve any class of vehicle;
8. discard any refuse whatsoever within the Nature Reserve;
9. in any way pollute or throw anything into waters within the Nature Reserve;

4
into the Reserve irrespective of whether such bodily injury, loss or damage arises as the result of fire, theft, floods or from the negligence or intentional act of any person whether or not in the employ of the Company, or caused by any animal in the Reserve.
All visitors, whether or not they occupy accommodation within the Reserve are deemed to contract with the Company on this basis.

## HERBARIUM

The Vogelgat Herbarium is available for plant identification and lists of species may be had on request.

## AVIFAUNA

A check list of birds to be seen in the Reserve is available on request.
Appendix 3 : Table of mature relevés

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline PLOT
ASPECT
ALTITUDE

LAND
FACET
SLOPE
PERCENTAGE
ROCR
NUMBER
SPECIES
SOIL
MOISTURE \& $11 \quad 1$
90099099
92067195
ENEEEEEE
MNNNNNNN
EEEEEEEE
55556556
00050550
00000000
11111
00005025
111
55555525
66
00000000
11
99894699

mddddddd \&  \&  \&  \& | 36645466 |
| :--- |
| 41483930 |
| WWWNNWW |
| SSSSNNSN |
| WWHWWEWW |
| 36677766 |
| 60350530 |
| 00000000 |
| 111111 |
| 30005500 |
| 21113111 |
| 00555555 |
| 112 |
| 00005000 |
| 21111211 |
| 14877109 |
| mumdddrm | \&  \& 76755556666

07147958269
W W
NSSSSS
WWWWWWNWWE
56576576666
85502230550
00000000000
111111111
00050050000
22311212213
50055005550
1
1 212
55550000550
22112212221
76860342476

ddddddwdddd \&  \& $$
\left.\begin{array}{|rr|} 
& 11 \\
31700 \\
86289 \\
W & S S W \\
S & S S S \\
W S W W W \\
3 & 12 \\
65500 \\
00000 \\
111111 \\
33440 \\
313 \\
55358 \\
2 \\
500 \\
11211 \\
63323 \\
\text { ddddd }
\end{array} \right\rvert\,
$$ \& \[

$$
\begin{gathered}
11111 \\
4538 \\
\text { EEEE } \\
\text { NNNN } \\
\text { EEEE } \\
1 \\
5550 \\
0000 \\
1111 \\
3333 \\
1113 \\
0503 \\
1 \\
5505 \\
2333 \\
7140 \\
\text { dddd }
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
1 \\
77181770 \\
63739547 \\
\text { W SEEWWS } \\
\text { SSSNNSES } \\
\text { WFWEEWWW } \\
1 \quad 1 \\
55550440 \\
00000000 \\
11111111 \\
43633894 \\
3713312 \\
70443350 \\
4941 \\
0050500 \\
11212111 \\
74146816 \\
\text { dddddddd }
\end{array}
$$
\] \& 79

71
SS
SS
EE
2
48
00
22
11

31
11
00
11
34
mw <br>

\hline PLOT \& $$
\begin{gathered}
11 c \\
90099099 \\
82067195
\end{gathered}
$$ \& 1

97783884583438354851

48911081122396304763 \& $$
\begin{array}{ll}
11 \quad 1 & 1 \\
1144161 \\
8905657654
\end{array}
$$ \& \[

\left|\right|

\] \& \[

$$
\begin{aligned}
& 36645466 \\
& 41483930
\end{aligned}
$$

\] \& \[

\left|$$
\begin{array}{l}
1111111 \\
11111020223 \\
41502485090
\end{array}
$$\right|
\] \& 76755556666

07147958269 \& $$
\begin{gathered}
1 \\
9851430948 \\
248163569025
\end{gathered}
$$ \& \[

$$
\begin{array}{r}
11 \\
31700 \\
86209
\end{array}
$$

\] \& \& \[

$$
\begin{array}{r}
1 \\
77181770 \\
63739547
\end{array}
$$
\] \& 79 <br>

\hline Erica plukenetii v bicarinata Erica lutea Berzelia squarrosa \& $$
\begin{array}{r}
121111 \\
221221 \\
22
\end{array}
$$ \& 1 \& \& \& \& \& \& 1 \& \& \& \& <br>

\hline | Erica coccinea var coccinea |
| :--- |
| Hermas depauperata |
| Restio perplexus |
| Euryops abrotanifolius |
| Laurophyllus capensis |
| widdringtonia cupressiodes |
| Stoebe incana |
| Anthospermum aethiopicum |
| Cuscuta angulata |
| protea lepidocarpodendron |
| Schizsea pectinata |
| Thaminophyllum latifolium |
| Barzelia rubra |
| Carpacoce spermacocea |
| Carpobrotus pillansii |
| Dilatris pillansii |
| Erica corydalis |
| Mimetes cucullatus |
| phyllca lasiocarpa |
| Selago serrata | \&  \&  \& \& 11 \& 1 \& 2 \& $\checkmark$ \& \& \& \& \[

2
\] \& <br>

\hline
\end{tabular}

Appendix 3 (cont)

PLOT	$\begin{gathered} 11 \quad 1 \\ 90099099 \\ 82067195 \end{gathered}$	1 97783884583438354851 48911081122396304763	$\begin{array}{\|lcc\|} 11 & 1 & 1 \\ 1144 & 161 \\ 0905657654 \\ \hline \end{array}$	$$	$\left.\begin{array}{\|l\|} 36645466 \\ 41483930 \end{array} \right\rvert\,$	11111111   11111020223   41502485090	$\begin{array}{\|l} 76755556666 \\ 07147958269 \end{array}$	$\left\|\begin{array}{ccc}  & 1 \\ 98514 & 30 & 948 \\ 248163569 & 025 \end{array}\right\|$	$\begin{array}{r} 11 \\ 31700 \\ 86289 \end{array}$	1111	$\begin{array}{r} 1 \\ 77181770 \\ 63739547 \end{array}$	79 71
Osmitopsis asteriscoides Erica perspicua Brunia albiflora Grubbia rosmarinifolia Disa tripetaloides Erica brevifolia Erica tenuifolia Gleichenia polypodioides Pseudobaeckia africana Roridula gorgonias rsolepis digitata Ursinia eckloniana Brunia laevis		2	$$									1
Restio similis   Restio bifarius   Hypodiscus argenteus   Staberoha banksii   Restio sarcocladus   Erica coccinea var pubescens   Thamnochortus lucens   berzelia incurva   prosera cistiflora   Sarruria rubricaulis   Agathelpis angustifolia	$\begin{array}{ll} 3 & 3 \\ & 3 \\ & \\ & \\ & 1 \end{array}$	21	3		1	2 ${ }^{\mathbf{2}}$	3	${ }^{1}$	$1{ }^{2}$			
Chondropetalum ebracteatum   Penaes cneorum ssp ruscifolium   Villarsia capensis   Restio dispar   Centella eriantha	$\int^{8}$	$\left\lvert\, \begin{array}{ccccccccc} 2 & 1 & 1 & 4 & 21 & 2 & 2 & 2 & \\ 1 & 12 & 31 & 2 & 11 & & & & 1 \\ & & & & & & & 1 \\ 1 & 4 & 2 & & & 1 & & \\ 1 & 1 & & & & & & \end{array}\right.$	$\begin{aligned} & 41242 \\ & 2212 \\ & 53242 \\ & 21132 \\ & 12 \end{aligned}$	$\begin{array}{llll} 1 & & 1 & \\ & 1 & & 1 \\ 2 & & 1 & \end{array}$	$\begin{array}{lll} 411313 \\ 211 & 1 & 11 \end{array}$			1				11
Blaeria ericoides   Leucospermum gracile   Aspalathus sexpens   Watsonia schlechteri   Erica tenella var gracilior   Disparago laxifolia   Leucadendron spissifolium   Retzia capensis   Erica cerinthoides   Merciera tenaifolia var aurea   Aspalathus ciliarie   Aristea oligocephala		3 1 2 2          1    1	2				213		22		$\begin{array}{ll} 1 & \\ 1 & 2 \\ 1 & \end{array}$	

Appendix 3 (cont)

PLOT	$\left\lvert\, \begin{array}{cc} 11 & 1 \\ 90099099 \\ 82067195 \end{array}\right.$	$\begin{array}{r} 1 \\ 97783884583438354851 \\ 48911081122396304763 \end{array}$	$\begin{array}{\|lcc} 11 & 1 & 1 \\ 1144161 \\ 8905657654 \end{array}$	$$	$\begin{array}{\|l\|} 36645466 \\ 41483930 \end{array}$	$\begin{aligned} & 11111111 \\ & 11111020223 \\ & 41502495090 \end{aligned}$	$\begin{aligned} & 76755556666 \\ & 07147958269 \end{aligned}$	1    98514 30 948   248163569025	31700 86289	$\begin{aligned} & 1111 \\ & 4538 \end{aligned}$	$\begin{array}{r} 1 \\ 77181770 \\ 63739547 \end{array}$	9
Peucedanum galbanum   Stachys aethiopica   Myraine africana   Ischyrolepis capensis   Ischyrolepia gaudichaudiana   Rhynchosia capensis   Chrysanthemoldes monilifera   Lobelia erinus.   Protea repens		-		2		1		2	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$	$\left\|\begin{array}{ll} 1 & 2 \\ 2 & 1 \\ & 2 \\ & \\ & 1 \\ 1 & 1 \\ 1 & 2 \end{array}\right\|$	$\left\|\begin{array}{cccc}  & & & 2 \\ & & 1 & \\ 1 & & & \\ & & & 2 \\ & 1-1 & \\ 1 & 1 & 1 \\ & 4 & 4 \end{array}\right\|$	
MyrsiphyIIum asparagoides Rumohra adiantiformis   Curtisia dentata   slaphoglossum angustatum   Elegia thyraifera   Blechnum tabulare   rlex mitis												2 1 1 2 1
alea capensis esp capensis Rapanea melanophloeos Pterocelastrus rostratus						r			2	$1^{21}$	[2	2
Erica caffra   Blechnum capense   prionium serratum   Ehrharta rehmannii var filif   Bmpleurum unicapsulare   Ficinla distans   Juncus capensis   Psoralea pinnata   Tsolepis prolifera		1	2								${ }_{1}^{1}$	
Todea barbara   Maytenus acuminata   Brachylaena neriffolia			1			2					111	2
Leucadendron xanthoconus Brica imbricata Penaea mucronata Hypodiscus aristatus Erica hispidula Aulax umbellata Anaxeton laeve Simocheilus consors Erica sessiliflora	$\left\|\begin{array}{cc} 4 & 244444 \\ 21 & 2222 \\ 3 & \\ 22 & \\ 2 & 11 \end{array}\right\|$	21 12 311212 42       11111 2 11 2 1 31 2       1 22 12 12     5 21  2 1121     21 14 33 3 1 21 2     4252 3 4 2 5 4    1 11151 111  11       1111 $2 r$ 1  12      1  5 1 1  2	25 232 33   2 212    2 2 12    21 3   21 211 43    2    $3 x$ 2    2211112		$\left\|\begin{array}{ccccc} 3 & 15 & 3 & 12 I I \\ 2 & 1 & & & \\ 1 & 1 & 1 & 1 \\ & & 11 & \\ 12 & & & 21 \\ 1 & & & & I \\ 1 & 111111 \\ & 2 & 2 & \\ 2 & 1 & & 11 \end{array}\right\|$	2  1 $r$   2 2 21    2 2 12 1   22222213 11     2 2222 21    4254425 4     1111 1 11    3 333  2   2 32 1 15		$\left.\begin{array}{rcccc}34125313122 \\ 1112142 & 3111 \\ 2312222 & 2 \\ 11 & & 2 & 112 \\ & 3 & 1 & 2 & \\ 13 & & 2 & & 2 \\ 1 & 1 & & & 1 \\ 1 & 2 & 3 & & 1\end{array}\right)$	$\left\|\begin{array}{ll} 1 & 1 \\ 1 & \\ 1 & \\ & 1 \end{array}\right\|$	$\begin{array}{cc} 2 & \text { r } \\ 1 & 1 \\ 1 & 33 \\ & 2 \\ 2 & 2 \\ 2 & 4 \\ 2 & \\ 2 \end{array}$	$\left.\left\lvert\, \begin{array}{ccc}  & 2 & \\ & & 2 \\ & 2 & 2 \end{array}\right.\right) 2 \mid$	

Appendix 4: Table of relevés at eighteen months post-fire


Appendix 4 (cont)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \& \[
\left\lvert\, \begin{gathered}
3574435833 \\
1091321293 \\
B
\end{gathered}\right.
\] \& A 4 \& \[
\begin{gathered}
3644 \\
4189 \\
c
\end{gathered}
\] \& \[
775555
\]
\[
014795
\]
D \& \[
\begin{aligned}
\& 7221222332214 \\
\& 60214576707 \\
\& \mathrm{E}
\end{aligned}
\] \& \[
\left\lvert\, \begin{gathered}
98513349 \\
248159 \\
F
\end{gathered}\right.
\] \& \[
\left.\begin{aligned}
\& 17 \\
\& 62
\end{aligned} \right\rvert\,
\] \& 1817
7394
I \\
\hline Metalasia cymbifolia Ceratocaryum argenteum Erica coccinea var inflata Syncarpha speciosiseima Senecio pinifolius Anapalina w3776 \& \[
\int_{1}^{7}
\] \& \& 1 \& \[
\left|\begin{array}{cc}
77 \& 77 \\
21 \& \\
77 \& 7 \\
77 \& 7 \\
7 \& \\
\& 7
\end{array}\right|
\] \& \[
\begin{array}{ll}
7 \& 7 \\
7 \& 7
\end{array}
\] \& \(\begin{array}{ll}7 \& \\ \\ \& 7\end{array}\) \& \& \\
\hline \begin{tabular}{l}
Restio sarcocladus \\
Helichrysum litorale \\
Lightfootia axillaris \\
Berzelia incurva \\
Erice coccinea var pubescens \\
Staberoha banksif \\
Leucadendron gandogeri \\
Aspalathus aspalathoides \\
Chondropetalum deustum \\
Corymbium seabrum forma filiforma \\
Hypodiscus argenteus \\
Euphorbia silenifolia \\
Restio similis \\
stoebe incana \\
Mimetes cucullatus \\
Restio bifarius \\
Aspalathus oblongifolia
\end{tabular} \& \[
\begin{array}{cc}
7 \& 7 \\
\& 7 \\
1 \& \\
\& \\
\& \\
\& \\
\& \\
\& 7
\end{array}
\] \& 2 \& 7 \& \[
{ }^{1} 7
\] \&  \& 3
\[
\begin{array}{ll}
7 \& 1 \\
\&
\end{array}
\] \& \& \[
7
\] \\
\hline \begin{tabular}{l}
Lobelia erinus \\
Brachylaena neriifolia \\
Calopsis agerer \\
Sutera hispida \\
Disa cylindrica \\
Monadenia ophrydea \\
Linum thunbergii \\
Edmondia pinifolia \\
Elegia thyrsifera
\end{tabular} \& \& \& \& \& \& \[
\begin{array}{llll}
7 \& \& \\
7 \& \& \\
7 \& \& \\
7 \& \& \\
\& 7 \& 7 \\
\& 7 \& \& \\
\& \& 7 \& \\
\& \& \& 7 \\
7 \& \& \&
\end{array}
\] \& \& \\
\hline \begin{tabular}{l}
Thamnochortus pulcher \\
Roella incurva \\
Disa cornuta \\
Rafnia cunaifolia \\
Erica tenella var tenella \\
Restio ambigurs \\
Brunia laevis \\
Corymbium congestum
\end{tabular} \& \& 1

1

7 \&  \& $$
\left(\begin{array}{llll}
1 & 1 & 7 & 1 \\
& & & \\
& & & \\
& & 7 & \\
& & & 1
\end{array}\right)
$$ \& \[

\left.\left\lvert\, $$
\begin{array}{cccc}
177 & 7 & 711 \\
& 7 & & \\
& 7 & 7 & \\
& & 7 & 1
\end{array}
$$\right.\right]

\] \& \[

\left\lvert\, $$
\begin{array}{ccc}
71172 & \\
7 & \\
7 & 7 & 1 \\
7 & 7 & \\
& &
\end{array}
$$\right.
\] \& \& <br>

\hline | Staberoha distachya |
| :--- |
| Watsonia schlechteri |
| protea cynaroides |
| Erica onosmiflora |
| Drosera glabripes |
| Indigofera alopecuroides |
| Anaxeton lasve |
| Erica aristata |
| Centella triloba |
| Schizaea pectinata |
| Micranthus alopecuroides |
| Thereianthus bracteolatus |
| Osmitopsis afra |
| Merciera tenuifolia var azurea |
| Mairea coriacea |
| Drosera aliciae |
| Chondropetalum hookerianum |
| Merxmullera rufa |
| Tritoniopsis doddii |
| villarsia eapensis |
| phaenocoma prolifera |
| Edmondia sesamoides | \&  \& 7

7
1
1
7
7
2
71

73 \&  \&  \&  \&  \& 7 \& | $777$ $7$ |
| :--- |
| 日 |
| 1 | <br>

\hline
\end{tabular}

Appendix 4 (cont)

	3574435833 1091321293 B	65	3644 4189 $C$	$\left\lvert\, \begin{gathered} 775555 \\ 014795 \\ D \end{gathered}\right.$	$\begin{aligned} & 7221222332214 \\ & 60214576707 \\ & E \end{aligned}$	$\left\lvert\, \begin{gathered} 98513349 \\ 248159 \\ F \end{gathered}\right.$	17		1817 7394 I
Dilatris pillansii   Erica cumuliflora   Nebelia paleacea   Drosera cistiflora   Lobelia jasionoides var jasionoides   Gerbera crocea   Hypodiscus alho-aristatus   Mastersiella digitata   Elegia filacea   Ficinia monticola   Pentaschistis capensis   Erica plukenetil var bicarinata   Blaeria dumosa var brevifolia   Anthospermum aethiopicum   Disa bivalvata		7	$\begin{array}{\|cc} 7 & 11 \\ 7 \\ 7 & 7 \\ & \\ & \\ & \\ 7 \end{array}$	$\left\|\begin{array}{ccc} 77 & & \\ & 7 & 7 \\ 7 & 7 \\ 12 & & \\ 7 & & \\ 221 & & \\ 2 & & \\ 7 & & \\ & & \\ & & \\ & & \\ \hline \end{array}\right\|$	7  7       77 7      7 7 7   7  7     7  1              12 1    77                               77				
Aspalathus excelsa   Selago serrata   Myrsine africana   Lapeirousia corymbosa   Spiloxene curculigoides   Protasparagus compactus   Koeleria capensis   Ficinia brevifolia   Rumex cordatus   Cyanella hyacinthoides   Erica lanuginosa   Geiasorhiza aspera			7				7 1 1 71 7 11 77 1 7 7 7 7		$7$
Eriospermum nanum   Protea repens   Hermannia salvilfolia   pelargonium longicaule   Colpoon compressum								7	
Struthiola tomentosa   Aira caryophyllea   Cotula turbinata   Festucs scabra   Gazania pectinata   Pentaschistis thunbergii   lightfootia longifolia var longifolia   Wachendorfia paniculata   Erica villosa   Agathosma ciliaris   Helichrysum pandurifolium   Geissorhiza byricola   Drosera hilaris   Castalis nudicaulis var nudicaulis   Eriospermum schlechteri   Senecio repens   Crassula biplanata   phylica lasiocarpa   Chrysanthemoides monilifera									$\begin{aligned} & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 17 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \\ & 7 \end{aligned}$
Pelargonium cucullatum var cucullatum   Pelargonium elongatum   Ornithogalum juncifolium   Nemesia diffusa,   Rhus lucida   Selago spuria   Montinia caryophyllacea   Lachenalis pearsii   Arctotis semipapposa   Cymbopogon marginatus   Commelina africana   Diospyros glabra   Passerina vulgaris   Rapanea melanophloeos   Paoralea pinnata	$\begin{array}{\|lll}  & 7 & \\ 7 & & 1 \\ 7 & 7 & \\ 7 & & 7 \end{array}$	7			7 ,		23 31 72 21 21 71 71 77 2 1 1 1 1 77	7 7 1 7 1 7 7	

## Appendix 4 (cont)



Appendix 5 : Table of species not recorded prior to fire

Communities	$\left\lvert\, \begin{array}{\|l} B \\ 3574435933 \\ 1091321293 \end{array}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{A} \\ & 65 \end{aligned}\right.$	$\begin{aligned} & C \\ & 3644 \\ & 4189 \end{aligned}$	$\begin{array}{\|l\|} D \\ 775555 \\ 014795 \end{array}$	$\left\|\begin{array}{ll} \mathrm{E} & \\ 72212223322214 \\ 602145764 & 707 \end{array}\right\|$	$\begin{array}{\|l} \mathbf{F} \\ 98513369 \\ 249159 \end{array}$	$\left\lvert\, \begin{aligned} & \mathbf{G} \\ & 17 \\ & 62 \end{aligned}\right.$	H	$\begin{aligned} & \mathrm{I} \\ & 1817 \\ & 7394 \end{aligned}$
Lebeckia inflata Indigofera superba Monadenia bracteata Indigofera filifolia Lobelia chamaepitys gladiolus bullatus Hypocalyptus oxalidifolius Struthiola ciliata Carpacoce vagirellata Bobartia filiformis	$\left\lvert\, \begin{array}{cccc}  & 7 & & \\ 7 & 77 & & \\ & 7 & & \\ & & 7 & \\ & & 7 & \\ & & 7 & \\ & & & 7 \\ & & 77 & \\ & & & \\ 7 & & & \\ & & & \\ & & & \\ \hline \end{array}\right.$					7		7	
Hermas ciliata Gnidia oppositifolia		$7$							
Pentaschistis colorata Disparago lasiocarpa Indígofera glomerata Indigofera ovata Polygala bracteolata Centella difformis Corymbium cymosum Geissorhiza ovata Pillansia templemanii	$\left\lvert\, \begin{array}{ccc} 1 & 7 & 7 \\ -7 & 7 & 7 \\ & & 77 \\ 1 & & \\ & 7 & 7 \\ 7 & & \\ & 1 & \\ 7 & & \\ 1 & 2 & \end{array}\right.$	$72$	$\left\lvert\, \begin{array}{cc} 7 \\ 7 & \\ & 7 \\ & 71 \\ 7 & \\ & 7 \end{array}\right.$	7	7   7				
Heliehrysum litorale Lightfootia axillaris   Aspalathus aspalathoides   Corymbium acabrum   Euphorbia silenifolia   Aspalathus oblongifolia				7	$\begin{array}{\|lllll}  & & & & 7 \\ 7 & 77 & & & 7 \\ & 777 & 7 & & \\ & 777 & 7 & 7 \\ & 7 & & 7 \end{array}$	7			7
Sutera hispidula Diga cylindrica						77			
Roella incurva   Disa cornuta   Rafnia cuneifolia   Chironia jasminoides   Disa patens   Corymbium congestum		7	$\begin{aligned} & 7 \\ & 7 \end{aligned}$		$\begin{array}{lll}  & 7 & 7 \\ 7 & 7 & \\ 7 & & \end{array}$	$7$			
Centella triloba   Micranthus alopecuroides   Therelanthus bracteolatus   Mermuellera rufa   Lobelia jasionoides   Elegia parviflora   Ficinia monticola	$\left\|\begin{array}{ccc} 7 & 77 & 77777 \\ & 7 & 7 \\ 7 & 777 \\ 7777771 \\ 777 & 7 & \\ & & 1 \\ & 7 & \end{array}\right\|$	$\left\lvert\, \begin{gathered} 7 \\ 71 \\ 7 \end{gathered}\right.$	$\left\lvert\, \begin{array}{cc} 7 & 7 \\ 7 & \\ 7 & 7 \\ 71 & 77 \end{array}\right.$	$\left\lvert\, \begin{array}{cc} 7 & 717 \\ 77 \\ 7 & 777 \\ 7111 & 7 \\ 1 & 7 \end{array}\right.$	7 377777 377   7 7 77777   17177777711771     7 7 7   77	$\left\|\begin{array}{ccc} 7 & 17 & 7 \\ 7 & 7 & 77 \\ 77 & & 7 \\ 77 & 7 & 7777 \\ 7 & 7 & 7 \end{array}\right\|$			
Spiloxene curculigoides   Ficinia brevifolia   Rumex cordatus   cyanella hyacinthoides   Geissorhiza aspera   Lapeirousia corymbosa   Roeleria capensis							$\begin{array}{r} 7 \\ 1 \\ 7 \\ 7 \\ 7 \\ 71 \\ 77 \end{array}$		$\begin{aligned} & 7 \\ & 7 \end{aligned}$
Hermannia salviifolia   Aita caryophyllea   Cotula turbinata   Gazania pectinata   Lightfootia longifolia   Wachendorfia paniculata   Helichrysum pandurifolium   Geissorhiza bryicola   Festuca scabra   Drosera hilaris   Castalis nudicaulis   Senecio repens								7	$\left\lvert\, \begin{gathered} 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 17 \\ \hline \end{gathered}\right.$

## Appendix 5 (cont)

Communities	$\begin{array}{\|l} \text { B } \\ 3574435833 \\ 1091321293 \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{A} \\ & 65 \end{aligned}\right.$	$\begin{array}{\|l\|} \hline c \\ 3644 \\ 4189 \end{array}$	$\left\lvert\, \begin{aligned} & \mathrm{D} \\ & 775555 \\ & 014795 \end{aligned}\right.$	$\left\|\begin{array}{l} E \\ 72212223322214 \\ 602145764 \\ 707 \end{array}\right\|$	$\begin{array}{\|l\|} \hline F \\ 98513369 \\ 2481 \quad 59 \end{array}$	G 17 62	4 1 4	$\begin{aligned} & I \\ & 1817 \\ & 7394 \end{aligned}$
Pelargonium elongatum Ornithogalum juncifolium Nemesia diffusa Selago spuria	$\begin{array}{\|llll}  & & & 7 \\ & & & \\ 7 & & 1 & \\ 7 & & & 7 \end{array}$				7		$\begin{aligned} & 31 \\ & 72 \\ & 21 \\ & 71 \end{aligned}$		$\begin{array}{ll}  & 3 \\ 711 \\ 7 & 7 \\ 7 & 2 \end{array}$
Zantedeschia aethiopica   Dipogon lignosus   Restio cuspidatus   Ficinia W 3313   Senecio cymbalariifolius   Lobelia setacea					7	7	$\begin{array}{\|l} 7 \\ 7 \end{array}$		$$
Homeria galpinii   Aristea juncifolia   Lobelia coronopifolia   Othonna quinquedentata   Ficinia w 3547   Ehrharta ottonis   Ixia dubia   Anapalina triticea   Selago verbenacea   Disa bivalvata   Gerbera piloselloides   Moraea ramosissima   Spiloxene monophylla   Trachyandra hirsutiflora   Senecio pinifolius   Anapalina sp nov   Monadenia ophrydea   Linum thunbergii   Edmondia pinifolia   Corymbium enerve   Carpacoce heteromorpha		7 7 7 7 7	$\left\lvert\, \begin{array}{cc} 7 & 77 \\ 7 & 7 \\ & 77 \\ 7 & 7 \\ 7 \\ 7 \\ \\ 7 \\ 7 & \\ 7 & \\ 7 \end{array}\right.$	$\begin{array}{\|ccc} 77777 \\ 7 & 77 \\ & 777 \\ & & \\ & & \\ 7 & \\ & 7 & \\ & 7 & \\ & 1 & \\ & & 1 \\ & & 7 \\ 7 & & \\ & 7 \end{array}$	$\left.\left\lvert\, \begin{array}{ccccc} 77777777777 \\ 7 & 7 & 77 & 7 & 7 \\ 7 & 7 & 77 & 77 \\ & 7 & 7 & & \\ & 77 & & & \\ & & & & \\ & 7 & 7 & 7 & 7 \end{array}\right.\right)$	$\left\|\begin{array}{ccc} 77 & 7 & 7 \\ 7 & 77 & 1 \\ & 71 & 7 \\ 72 & & \\ 7 & & \\ 7 & & 7 \\ & 9 & \\ & & 1 \end{array}\right\|$	7	7	

## APPENDIX 6: Species lost from relevés post-fire

Pre-fire cover-abundance
(No. relevés lost from)
Communities (See text:
Table 2.1 for abbreviations)


| OI FSS Phylica buxifolia | - | - | - | - | - | - | - | - | $4(1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SI OS Lampranthus emarginatus | - | - | - | - | - | - | - | - | $5(2)$ |
| UI ALS Psoralea aculeata | - | - | - | - | - | - | - | - | $1(1)$ |
| SI OS Passerina vulgaris | - | - | - | - | - | - | - | - | $1(1)$ |
| UI ALS Protasparagus compactus | - | - | - | - | - | - | - | - | $1(1)$ |
| SI OS Hypodiscus albo-aristatus | - | - | - | - | - | - | - | - | $4(1)$ |
| UI ALS Pterocelastrus rostratus | - | - | - | - | - | - | - | - | $1(1)$ |
| dI ALS Prionium serratum | - | - | - | - | - | - | - | - | $1(1)$ |
| UI ALS Brachylaena neriifolia | - | - | - | - | - | - | - | - | $2(2)$ |
| SI OS Calopsis asper | - | - | - | - | - | - | - | - | $4(1)$ |
| SI OS Berkheya armata | - | - | - | - | - | - | - | $-10(1)$ |  |
| SI OS Erica aristata | - | - | - | - | - | - | - | - | $1(1)$ |
| SI OS Scyphogyne muscosa | - | - | - | - | - | - | - | - | $1(1)$ |

[^0]Nomenclature after Gibbs Russell

## APPENDIX 7: Species gained in relevés post-fire

Mean post-fire density values rounded to nearest hole number (Table 3)
species

$a \mathrm{~b}$	A	B	C	D	E	F	G	H	I
UT ALS	Geissorhiza ovata 1(2)	$0(1)$	-	-	-	-	-	-	-
UI ALS	Hermas ciliata 0(1)	-	-	-	-	-	-	-	-
SI OS	Gnidia oppositifolia 0(1)	-	-	-	-	-	-	-	-
UI ALS	Pentaschistis colorata8(2)	O(4)	O(1)	O(1)	-	-	-	-	-
UI ALS	Corymbium congestum 0(1)	-	-	-	-	0(1)	-	-	-
dI ALS	Drosera glabripes 0(1)	-	-	-	-	-	-	-	-
UI ALS	Centella triloba 0(1)	O(8)	O(2)	1(4)	$3(9)$	0(4)	-	-	-
UI ALS	Osmitopsis afra 2(1)	$1(7)$	-	1(3)	-	0(2)	$0(1)$	-	-
UI ALS	Mairea coriacea 0(1)	0 (5)	O(1)	O(4)	$0(7)$	0(2)	-	-	O(1)
dI ALS	Drosera aliciae 0(1)	-	-	-	-	-	-	-	-
OI FSS	Merxuellera rufa 2(2)	1 (8)	1 (4)	2(5)	1(13)	1 (8)	-	-	-
dI ALS	Drosera cistiflora 0(1)	O(2)	-	-	-	O(1)	-	-	O(1)
UI ALS	Gerbera crocea 0(1)	-	-	-	-	-	-	-	-
UI ALS	Ficinia monticola 0(1)	0 (1)	-	-	O(2)	-	-	-	-
dI ALS	Disa bivalvata 0(1)	0 (1)	O(1)	$0(1)$	0 (2)	O(1)	-	-	-
UI ALS	Homeria galpinii 0(1)	$1(7)$	0(3)	$0(5)$	1(13)	O(4)	-	-	O(2)
UI ALS	Aristea juncifolia 0(1)	0 (5)	$0(2)$	0 (3)	0 (9)	1(4)	0 (1)	-	O(1)
UI ALS	Lobelia coronopifolia 0(1)	O(4)	$0(2)$	0 (3)	0(5)	O(3)	-	-	O(2)
SI OS	Ficinia W 3547 0(1)	0 (1)	O(1)	-	0(2)	-	-	-	4(2)
UI ALS Bot	Bobartia longicyma 8(1)	$0(2)$	-	-	0(1)	-	1(1)	-	O(1)
UI ALS Sp	Spiloxene monophylla 0(1)	0 (1)	O(1)	0 (1)	0 (1)	O(1)	-		
UI ALS	Osmitopsis asteriscoides -	O(1)	-	-	-	-	-	-	-
SI OS	Lampranthus emarginatus -	O(1)	-	-	-	-	-	-	-
SI OS	Psoralea aculeata -	0(1)	-	-	-	-	-	-	
SI OS	Lebeckia inflata -	O(1)	-	-	-	-	-	-	
SI OS	Indigofera superba -	O(3)	-	-	-	-	-	O(1)	-
dI ALS	Monadenia bracteata -	O(1)	-	-	-	-	-	-	
SI PFE	Indigofera filifolia	0(1)	-	-	-	-	-	-	
SI OS	Lobelia chamaepitys -	$0(1)$	-	-	-	-	-	-	-
UI ALS Gla	Gladiolus bullatus -	0(1)	-	-	-	-	-	-	-
SI PFE	Hypocalyptus oxalidifolius	-0 (2)	)	-	-	-	-	-	
UI ALS P	Pillansia templemanii - 2	2(2)	-	-	0(1)	O(1)	-	-	
SI OS	Carpacoce spermacocea -	0(2)	-	-	-	O(1)	-	-	
SI OS	Polygala bracteolata -	0(2)	O(1)	-	-	-	-	-	-
SI PFE	Indigofera glomerata -	0(2)	O(1)	$\cdots$	-	-	-	-	-
UI ALS	Bobartia filiformis -	0(1)	-	-	-	-	-	-	-
SI PFE	Ehrharta rehmannii var. filiformis	5(4)	-	-	-	-	-	3(1)	O(1)
UI ALS	Ehrharta ottonis - 0	0(4)	-	-	-	-	O(1)	1(1)	-
UI ALS E	Erica cerinthoides - 0	O(2)	-	-	-	-	-	-	-
UI ALS	Thamnochortus lucens -	0(1)	10(1)	-	-	-	-	-	-
SI PFE	Indigofera ovata -	O(1)	1(2)	-	-	-	-	-	-
SI PFE	Centella difformis -	0(1)	O(1)	$0(1)$	-	-	-	-	-
UI ALS	Corymbium cymosum -	0(1)	-	-	O(1)	-	-	-	
SI OS	Metalasia cymbifolia -	0(1)	-	-	-	-	-	-	-
SI OS A	Aspalathus aspalathoides -0	0(1)	-	-	-	-	-	-	-
UI ALS	Corymbium scabrum - 0	0(1)	-	0(1)	O(4)	0 (1)	-	-	-
UI ALS W	Watsonia schlechteri - 0	0(4)	0(2)	$0(3)$	$0(6)$	$0(6)$	-	-	-
dI ALS $P$	Pellaea pteroides - 0	O(4)	0(1)	1(2)	$0(3)$	$1(2)$	-	-	-
UI ALS M	Micranthus alopecuroides -0	O(2)	O(1)	0(2)	O(1)	O(4)	-	-	-



UI	FsS	Lobelia jasionoides	-	-	-	-	$0(2)$	-	-	-	-
SI	OS	Aspalathus serpens	-		-	-	$0(1)$	$0(1)$	-	-	1(1)
OI	FSS	Ehrharta rehmannii	-	-	-		3(1)	$0(1)$	-	-	-
SI	prs	Lobelia setacea	-	-			$0(1)$	-	-	-	-
UI	ALS	Aristea oligocephala	-	-	-		$0(3)$	-	-	-	$0(1)$
UI	ALS	Tetraria compar	-	-	-		$0(3)$	-	-	-	0(1)
UI	als	Tetraria cuspidata	-	-	-		$0(2)$	-	-	-	-
SI	os	Lobelia pinifolia var.		foli		-	$0(5)$	-	-	-	-
UI	als	Anapalina triticea		-	-	-	$0(1)$	-	-	-	-
UI	als	corymbium enerve	-	-	-		$0(1)$	-	-	-	-
SI	os	Carpacoce heteromorpha	-				$0(1)$	-	-	-	-
SI	os	Indigofera glomerata	-	-	-		-	0(1)	-	-	-
SI	os	Chondropetalum ebracte	tum	-	-		-	0(1)	-	-	-
UI	als	mimetes cucullatus	-	-	-		-	0(1)	-	-	-
SI	os	Lobelia erinus	-	-	-		-	$0(1)$	-	-	-
UI	als	brachylaena neriifolia	-	-	-		-	$0(1)$	-	-	-
SI	os	Calopsis asper	-	-	-		-	0(1)	-	-	-
	PFS	Sutera hispidula	-	-	-		-	$0(1)$		-	-
dI	ALS	Disa cylindrica	-		-		-	0(2)		-	-
dI	ALS	Monadenia ophrydea	-	-	-		-	0(1)	-	-	-
SI	PFS	Linum thunbergii	-	-	-	-	-	0(1)	-	-	-
SI	PFS	Helichrysum humile	-	-	-	-	-	0(1)	-	-	-
SI	os	Elegia thyrsifera	-	-	-	-	-	$0(1)$	-	-	-
UI	als	Brunia laevis	-	-	-	-	-	$0(1)$	-	-	-
81	FsS	Protea cynaroides	-	-	-		-	0(1)	-	-	-
UI	als	Ischyrolepis capensis	-	-	-		-	2(1)	-		4(1)
SI	os	Ficinia w 3313	-	-	-		-	0(1)	$0(1)$	-	0(1)
UI	als	Senecio cymbalariifolius	us -	-	-		-	$0(1)$	-	-	0(1)
UI	ALS	Ischyrolepis gaudichau	diana	-	-	-	-	0(1)	-	-	$0(1)$
SI	os	Ursinia paleacea	-	-	-	-	-	$0(7)$	-	-	$0(1)$
$\delta_{1}$	FSS	Pseudopentameris macran	ntha		-	-	-	0(1)	-	-	-
SI	os	Gnidia galpinii	-	-	-	-	-	$0(1)$	-	-	, -
	os	selago serrata	-	-	-		-	-	2(1)	-	-
UI	als	Lapeirousia corymbosa	-	-	-		-	-	2(2)	-	0(1)
UI	aLS	Spiloxene curculigoides		-	-		-	-	0(1)	-	-
SI	os	Koeleria capensis	-	-	-	-	-	-	1(2)	-	
SI	os	Ficinia brevifolia	-	-	-	-	-	-	2(1)	-	
SI	PFS	Rumex cordatus	-	-	-	-	-	-	$0(1)$	-	-
UI	als	Cyanella hyacinthoides	-	-	-	-	-	-	$0(1)$	-	-
UI	als	Geissorhiza aspera	-	-	-	-	-	-	$0(1)$	-	0(1)
UI	als	Ornithogalum juncifoliu	um -	-	-	-	-	-	$8(2)$	-	-
UI	als	Lachenalia peersii	-	-	-		-	-	1(2)	-	$0(1)$
UI	als	Arctotis semipapposa	-	-	-	-	-	-	8(1)	1(1)	-
SI	os	Psoralea pinnata	-	-	-	-	-	-	$0(1)$	1(1)	O(1)
SI	os	Ehrharta erecta	-	-	-	-	-	-	$0(1)$		
SI	os	Dipogon lignosus	-	-	-	-	-	-	$0(1)$	-	$0(1)$
CI	os	Aulax umbellata	-	-	-	-	-	-	$0(1)$	-	-
UI	als	Tetraria thermalis	-	-	-	-	-	-	$0(1)$	-	0(1)
SI	os	Indigofera angustifolia		-	-	-	-	-	$0(1)$	-	-
	os	Protea repens	-	-	-	-	-	-		1(1)	-
	OS	Hermannia salviifolia	-	-	-	-	-	-	-	1(1)	-
UI	ALS	colpoon compressum	-	-	-	-	-	-	-	1(1)	-
	os	Pelargonium cucullatum		-	-	-	-	-		1(1)	-
	als	zantedeschia aethiopica		-	-	-	-	-		4(1)	0 (1)
	FSS	Ehrharta rehmannii	-	-	-	-	-	-	-		)
	aLS	Restio filiformis	-	-	-	-	-	-			1(1)
81	aLs	Ehrharta setacea	-	-	-	-	-	-	-		1(1)
CI	os	Leucadendron gandogeri	-	-	-	-	-	-	-	-	0(1)


UI ALS	Hypodiscus argenteus	-	-	-	-	-	-	1(1)
SI OS	Chondropetalum hookerianum-	-	-	-	-	-	-	1(1)
SI OS	Aira caryophyllea	-	-	-	-	-		O(1)
SI PFS	Cotula turbinata	-	-	-	-	-	-	O(1)
OI FSS	Festuca scabra	-	-	-	-	-	-	1(2)
SI ALS	Gazania pectinata	-	-	-	-	-	-	O(1)
SI PFE	Pentaschistis cf thunbergii- -	-	-	-	-	-	-	O(1)
UI ALS	Lightfootia longifolia var. longifolia	-	-	-	-	-	-	0(1)
UI ALS	Wachendorfia paniculata -	-	-	-	-	-	-	O(1)
SI OS	Helichrysum pandurifolium-	-	-	-	-	-	-	O(1)
UI ALS Ge	Geissorhiza bryicola -	-	-	-	-	-	-	O(1)
UI ALS	Drosera hilaris	-	-	-	-	-	-	0(1)
UI ALS	Castalis nudicaulis	-	-	-	-	-	-	O(1)
UI ALS E	Eriospermum schlechteri -	-	-	-	-	-	-	O(1)
SI OS S	Senecio repens	-	-	-	-	-	-	O(1)
UI ALS	Phylica lasiocarpa -	-	-	-	-	-	-	0(1)
UI ALS	Ornithogalum juncifolium -	-	-	-	-	-	-	$2(3)$
UI ALS P	Protea nitida	-	-	-	-	-	-	0(1)
UI ALS	Phylica stipularis	-	-	-	-	-	-	O(1)
SI OS	Stachys aethiopica	-	-	-	-	-	-	$0(2)$
SI OS	Oedera capensis	-	-	-	-	-	-	1(1)
UI ALS	Myrsiphyllum declinatum -	-	-	-	-	-	-	1(1)
SI PFS	Lobelia setacea	-	-	-	-	-	-	0(1)
CI OS	Leucadendron xanthoconus	-	-	-	-	-	-	1(3)
SI OS	Pseudopentameris brachyphylla -	-	-	-	-	-	-	O(1)
UI ALS H	Hypodiscus aristatus	-	-	-	-	-	-	4(1)
SI OS S	Syncarpha vestita	-	-	-	-	-	-	O(1)
UI ALS P	Penaea mucronata	-	-	-	-	-	-	0(1)
SI OS N	Nevillea obtusissimus	-	-	-	-	-	-	1(1)
UI ALS S	Saltera sarcocolla	-	-	-	-	-	-	O(1)
UI ALS Ag	Agapanthus africanus	-	-	-	-	-	-	O(1)

Column a: Noble and slayter classification Column b: Bell et al. Fire Response Categories


[^0]:    Column a: Noble and slayter classification Column b: Bell et al. Fire Response Categories

