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Abstract

Anticipation problem has been studied considering dif-
ferent aspects such as predicting humans’ locations, pre-
dicting hands and objects trajectories, and forecasting ac-
tions and human-object interactions. In this paper, we stud-
ied the short-term object interaction anticipation problem
from the egocentric point of view, proposing a new end-to-
end architecture named StillFast. Our approach simulta-
neously processes a still image and a video detecting and
localizing next-active objects, predicting the verb which de-
scribes the future interaction and determining when the in-
teraction will start. Experiments on the large-scale ego-
centric dataset EGO4D [17] show that our method out-
performed state-of-the-art approaches on the considered
task. Our method is ranked first in the public leaderboard
of the EGO4D short term object interaction anticipation
challenge 2022 and it is the official baseline for the 2023
one. Please see the project web page for code and ad-
ditional details: https://iplab.dmi.unict.it/
stillfast/.

1. Introduction
Anticipating human behavior in the near future from the

first person (egocentric) point of view allows to build in-
telligent systems able to support users in different domains.
Anticipation is crucial in scenarios where one needs to react
before actions are executed, such as in autonomous driv-
ing, where a vehicle has to anticipate pedestrians’ trajec-
tories before they even begin crossing the street [21, 24],
in kitchens where smartglasses could alert the users when
they are about to touch the hot stove [2, 3] or in the indus-
trial domain, where an intelligent helmet can improve the
worker’s safety alerting them in case of a dangerous inter-
action [29, 30].

Previous works have investigated different forms of an-

ticipation tasks, including next-active object predictions [4,
9,17,19,29], predicting future actions [8,10–12,27,32,34],
forecasting human-object interactions [23], predicting fu-
ture hands [5, 18] or user trajectory prediction [28].

In this paper we address the problem of short-term object
interaction anticipation [17] which consists in detecting and
localizing the next-active objects in the scene, predicting the
verb which describes the interaction and determining when
the interaction will start. This task has been studied con-
sidering multiple domains [17] as well as focusing specif-
ically on the industrial scenario [29]. We define the task
as proposed in [17]. Given a video V and a timestamp t,
models can process the video up to time t (denoted as V:t)
and are required to output a set of future object interaction
predictions which will happen after a time interval δ. Each
prediction consists in:

• A bounding box localizing the future interacted object
(also referred to as next-active object);

• A noun label describing the class of the detected object
(e.g., “wooden block”);

• A verb label describing the interaction which will take
place in the future (e.g., “take”);

• A real number indicating the “time to contact”, i.e., the
time in seconds between the current timestamp and the
beginning of the interaction (e.g., 0.75s);

• A confidence score used to rank future predictions for
evaluation.

Figure 1 illustrates the considered task.
Current state-of-the-art works [17, 29] have addressed

this task in two steps: 1) an object detector detects and
recognizes next-active objects in still frames, 2) a 3D net-
work predicts the verb and the time to contact analyzing a
video segment. Also in [6], the authors figured out the ac-
tion detection task on AVA dataset considering a two steps
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Figure 1. Short-term object interaction anticipation task. Models can process a video V up to time t (denoted as V:t) predicting the bounding
box and the class related to the next-active objects, the verb which describes the future interaction, a real number which indicating when
the interaction will happen (t+ δ) and a score. δ represents the time interval between the last observable frame Vt and the frame of contact
at time t+ δ.

approach. Since past works showed that composite methods
have been outperformed by end-to-end methods [14,15,31],
we believe that a similar behavior could be obtained even in
the considered task. Therefore, we propose StillFast net-
work. Similarly to SlowFast networks [6], StillFast has
two branches which simultaneously process two versions
of the input video. The “still” branch processes a high res-
olution still image, i.e., a video with a high spatial resolu-
tion, but low temporal resolution (a single frame), whereas
the “fast” branch processes a video with a low spatial res-
olution, but a high temporal resolution (different frames).
Our method can be trained end-to-end in a single stage in-
creasing the training speed over traditional two-branches
approaches [17].

Experiments on the large-scale dataset of egocentric
videos EGO4D [17] show that the proposed method out-
performs state-of-the-art approaches highlight that the
proposed architecture benefits from the unified branches
trained simultaneously. Additionally, we performed an ab-
lation study to assess the impact of each component of the
proposed method on the overall performance. Our method
is ranked first in the public leaderboard of the EGO4D short
term object interaction anticipation challenge 2022 and it is
the official baseline for the 2023 one1. To encourage future
research in the field, we release the code implementing the
proposed approach at: https://iplab.dmi.unict.
it/stillfast/.

1https://eval.ai/web/challenges/challenge-page/1623/leaderboard/3910

The contributions of this work are as follows: 1) we pro-
posed a new approach which is able to simultaneously pro-
cesses a still image and a video, 2) by performing experi-
ments with state-of-the art approaches and several ablation,
we show the effectiveness of the proposed design, 3) we
release the source code of the proposed approach as an ex-
tensible framework to encourage future research.

2. Related Work
Our work is related to past research on anticipation con-

sidering both third and first-person point of view.

2.1. Anticipation in Third Person Vision

Different works aimed to predict future actions before
they happen from a third person point of view [8,12,20,34].
The authors of [20] proposed a new hierarchical represen-
tation called hierarchical movemes which describes human
movements considering multiple levels of granularity to in-
fer future actions from still images or short video clips. The
authors of [34] explored the task of anticipating future ac-
tions and objects learning to predict future visual represen-
tations from unlabeled videos. The authors of [12] proposed
a reinforced encoder-decoder architecture (RED) for action
anticipation which contains a reinforcement module to en-
courage the system to predict the correct action as early as
possible. Also long-term action anticipation task has been
explored in previous works [16] with the aim to predict
minutes-long sequences of future actions. Even in the sport
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Figure 2. StillFast is composed of a two-branch backbone. Given an input video V and a timestamp t, the proposed model takes as
input a high resolution frame Vt (top) and a low resolution video (V(t−τo):t) (bottom). A 2D Backbone (“still” branch) processes the high
resolution frame Vt, producing a stack of 2D features Φ2D(Vt). A 3D Backbone (“fast” branch), processes a low resolution video V(t−τo):t

obtaining a stack of 3D features Φ3D(V(t−τo):t). The Combined Feature Pyramid Layer is responsible to: 1) up-sample the stack of 3D
features with nearest neighbor interpolation to match the spatial resolution of the 2D features and averages over the temporal dimension
obtaining the Φ2D

3D(V(t−τo):t) features which have the same dimension of 2D features Φ2D(Vt), 2) fuse these stack of features obtaining the
final combined feature pyramid Pt. Before and after the sum operation we added 3x3 convolutional layers to remove artifacts introduced
with the up-sampling and sum operations.

domain the problem of forecasting human moves has been
explored [8]. Indeed, the authors of [8] proposed a generic
framework to anticipate future events in team sports videos
directly from visual inputs. The anticipation problem has
been explored even predicting the future location of users
which allows to build an advanced surveillance systems able
to predict people’s activities [21, 26] or for autonomous ve-
hicles to understand pedestrian intents to avoid accidents
[24, 25]. In particular, the authors of [24] tackled the prob-
lem to jointly predicting the future spatial position and the
body keypoints of pedestrians to have a deeper understand-
ing of pedestrians behavior. The authors of [25] proposed
a factorized multimodal approach to predict long-term tra-
jectories of the user focusing on RGB observations and past
motion history. Recently, the authors of [26] studied the
problem of using few input observations to predict accurate
pedestrians position proposing a new teacher-student tech-
nique. While prediction’s tasks addressed from the third
person point of view are useful in different scenarios, we fo-
cused on user-object interactions anticipation for which the
egocentric point of view offers several advantages, there-
fore, we considered this anticipation problem relying on the

large-scale egocentric dataset EGO4D [17].

2.2. Anticipation in First Person Vision

Different past works have explored problems related to
anticipation from the first person point of view. Furnari et
al. [10, 11] proposed a model based on LSTM networks to
encode past features and predict future actions from ego-
centric videos. The authors of [27] extended RULSTM [11]
with a novel attention-based technique to consider simulta-
neously “slow” and “fast” features. The authors of [37] pro-
posed a novel transform-based fusion approach which com-
bines multi-modal features (i.e., audio and visual) to pre-
dict future actions. To better understand future human’s be-
havior, past works also focused on predicting future hands
and objects locations. The authors of [23] presented a two-
stream fully convolutional network to forecast the presence
and location of hands and objects in egocentric videos. Liu
et al. [23] focused on hands movements as visual represen-
tations to predict future interaction hotspots and future ac-
tions.

While different tasks related to the anticipation problem
have been deeply studied, the considered task have not been
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addressed systematically.

2.3. Short-Term Object Interaction Anticipation

The problem of Short-Term Object Interaction Anticipa-
tion has been addressed in different forms. Some works
studied the problem of predicting the objects which will
be involved in a future human interaction (next-active ob-
jects). The authors of [9] have been the first to explore ex-
plicitly this task proposing to analyze objects trajectories.
The authors of [4] focused on the prediction of hand-objects
contact representations to anticipate future actions. The au-
thors of [19] investigated the prediction of a visual attention
probability map from images considering hands and objects
features. The authors of [29] presented a new egocentric
dataset captured in a procedural scenario specifically anno-
tated to address the next-active object detection task, which
is tackled using simple object detectors. All these works
addressed different versions of the considered task, which
made the proposed approaches difficult to compare and ex-
tend over. The first attempt to systematically study the prob-
lem of Short-Term Object Interaction Anticipation has been
done by the authors of [17], provided a formal definition
of the task which includes the prediction of next-active ob-
jects and associated verbs and time to contact (see Figure 1).
Despite this effort, few approaches have been proposed so
far to tackle the task in the form defined in [17]. Among
them, the baseline proposed in [17] consists of two compo-
nents trained independently: A Faster R-CNN [31] object
detector to detect next-active objects in the last frame of the
input video, and a SlowFast [7] action recognition model to
attach each bounding box a verb and a time to contact pre-
diction. The model works as a two-branch network. The
2D Faster R-CNN model processes a high resolution image
(the most recent frame of the input video) to predict next-
active objects and their related classes. The high resolution
is needed to have enough detail in order to detect objects
at different scales. The 3D SlowFast model processes a
low-resolution video clip ending at the current timestamp
to predict verb labels and time-to-contact values. The ap-
proach is trained in two stages. First, the Faster RCNN
model is trained using all training next-active object bound-
ing box and class labels. This object detector is hence run
over the training, validation and test data examples to com-
plement them with a set of next-active object bounding box
proposals with associated noun labels and detection scores.
In a separate stage, a SlowFast model is trained to predict
a verb label and a positive time-to-action real number for
each bounding box proposal. The authors of [1] extended
this approach by employing a DINO [36] object detector to
detect and recognize next-active objects in keyframes and a
VideoMAE-pretrained transformer network [33] to extract
features to predict verbs and time to contact for each de-
tected bounding box.

In this work, we propose an end-to-end approach specif-
ically designed to anticipate the location of next-active ob-
jects, the verb which describes the future interaction and
how soon the interaction will take place (time to contact).
The proposed method can be trained in a single stage, re-
ducing training times nd simplifying the research cycle.

3. Still Fast Network

The proposed approach simultaneously processes a still
image, i.e., a video with a high spatial resolution, but a low
temporal resolution (a single frame) and a video with a low
spatial resolution, but a high temporal resolution (different
frames). We refer to the first branch as the “still” branch,
as it processes a still image, whereas we refer to the second
branch as the “fast” branch, as it processes a video with high
temporal resolution. We hence term our model “StillFast”
network. The model processes the two inputs simultane-
ously and can be trained end-to-end in a single stage, which
increases training speed and allows to better optimize the
feature extraction process. The proposed method is com-
prised of two main components: a backbone with processes
2D (still image) and 3D (video) inputs and outputs a set of
spatial features, and a prediction head, which takes as input
the spatial features and outputs the detected next active ob-
jects together with the associated verbs and time to contact
predictions.

The following subsections detail the main components
of the proposed method.

3.1. StillFast Backbone

Figure 2 reports a diagram of the StillFast backbone.
Given an input video V and a timestamp t, the proposed
model takes as input a high resolution frame Vt sam-
pled from video V at time t and a low resolution video
S(V(t−τo):t) which is obtained by spatially subsampling
with function S the video v(t−τo):t of length τo (observa-
tion time) starting at time t− τo and ending at time t.

To process the input image and video simultaneously, the
proposed model comprises a two-branch backbone.

A 2D CNN Φ2D (the “still” branch) processes the high
resolution frame Vt and produces a stack of 2D features at
different spatial resolutions Φ2D(Vt). The stack of features
is obtained by collecting activations at the inner layers of
the 2D network. As detailed later, we follow [22] to ob-
tain the stack of features to produce a feature pyramid in
order to enable multi-scale object detection as done in the
standard [31] architecture.

A 3D CNN Φ3D (the “fast” branch) processes the video
V(t−τo):t and outputs a stack of 3D features Φ3D(V(t−τo):t).
We perform mid-level feature fusion by combining the 2D
and the 3D feature stacks with a Combined Feature Pyramid
Layer illustrated in the center part of Figure 2. This layer

3639



Figure 3. StillFast Prediction Head is based on the Faster R-CNN prediction head. From the Combined Feature Pyramid Pt we obtain
global and local features. Local features are obtained through a Region Proposal Network (RPN) which predicts region proposals, from
which we compute local features through a RoI Align layer. Global features are obtained with a Global Average Pooling operation and are
concatenated with local features. These features are fed in a fusion network and then are summed to the original local features through
residual connections. These local-global representations are finally used to predict object (noun) and verb probability distributions and
time-to-contact (ttc) through linear layers along with the related prediction score s.

first up-samples the 3D feature map with nearest neigh-
bor interpolation to match the spatial resolution of the 2D
features and averages over the temporal dimension to ob-
tain the Φ2D

3D(V(t−τo):t) features, which now have the same
shape as the 2D features Φ2D(Vt). These features are hence
passed through a 3x3 convolutional layer, summed to the
2D features Φ2D(Vt) and then passed through another 3x3
convolutional layer. The rationale behind these 2D convo-
lutional layers is to cope with artifacts introduced with the
up-sampling and sum operations. The resulting feature map
is fed to a standard Feature Pyramid Layer [22] to obtain
the final feature pyramid Pt.

In our experiment we use a ResNet-50 as 2D CNN and
an X3D-M as 3D CNN. See the supplementary material for
more details.

3.2. Prediction Head

Figure 3 shows a diagram of the proposed prediction
head, which is based on the Faster R-CNN prediction
head [31] as implemented in Detectron2 [35]. A Region
Proposal Network (RPN) predicts region proposals from the
feature pyramid Pt. A RoiAlign layer is used to extract lo-
cal features from the region proposals. We found it useful
to enrich these local features with global representations of
the scene. To do so, we apply global average pooling to
the upper layer of the combined feature pyramid and ob-
tain a global image representation, which we concatenate to
each local feature extracted from the region proposals. The
concatenated features are passed through a fusion network

comprising two fully connected layers. The resulting repre-
sentations are summed to the original local features through
a residual connection. This allows to use global features to
modulate the content of local features rather than to replace
them. These fused local-global representations are used
to predict object (noun) probability distributions and class-
specific bounding box regression offsets using linear lay-
ers as in [31]. The predicted noun probability distributions
p(n) include a background class to reduce the magnitude
of positive prediction probabilities in the case of uncertain
predictions or proposals falling in background areas. The
same features are used to predict a verb probability distribu-
tion p(v) and time-to-contact TTC using linear layers. We
include a background class in the verb prediction layer as
well to further discard false positives when the verb cannot
be reliably predicted. A softplus activation is used to predict
positive TTC values. For each object proposal, we multiply
the noun probability p(n) by the predicted probability of the
Top-1 verb, excluding the background class. This is done to
make sure that the uncertainty in verb prediction influences
the final prediction score s = p(n) · maxv{p(v)}. The fi-
nal predictions are obtained by considering objects with a
prediction score larger than or equal to 0.05. The model is
trained end-to-end adding a cross entropy verb loss Lv and
a smooth L1 [31] time-to-contact loss Lttc to the standard
Faster R-CNN losses. We weigh the Lv with 0.1 and the
Lttc with 0.5 in our experiments. See the supplementary
material for more details.
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4. Experimental Settings

In this section, we report details on the considered
dataset and evaluation measures (Section 4.1) and the com-
pared methods (Section 4.2). Please see the supplementary
material for the implementation details.

4.1. Dataset and Evaluation Measures

We performed experiments on the large-scale egocentric
dataset EGO4D [17]. We consider both the initial version
of the dataset described in [17] (denoted as “v1” in this pa-
per), and the recently released update of the dataset (de-
noted as “v2”), described at this page: https://ego4d-
data.org/docs/updates/#v20-update, follow-
ing the official training/evaliuation/testing splits. We focus
on the subset of the EGO4D dataset which has been explic-
itly labeled for the Short-Term Object Interaction Anticipa-
tion task. Version v1 of this dataset consists in 120 hours of
annotated clips, including 27, 801 training, 17, 217 valida-
tion, and 19, 780 test examples, annotated with a taxonomy
of 87 noun and 74 verb classes. Version v2 consists in 243
hours of annotated clips, including 98, 276 training, 47, 395
validation, and 19, 780 test examples, annotated with a tax-
onomy of 128 noun and 81 verb classes. It should be noted
that v1 and v2 have different training and validation sets,
but they share the same test set, which makes test results
obtained on the two dataset comparable. Annotations for
this shared test set are not publicly available and results can
be obtained by sending predictions to an evaluation server2.

The evaluation has been performed using Top-K mean
Average Precision, which does not penalize methods pre-
dicting up to K - 1 next-active objects which are not anno-
tated as defined in [17]. In particular, we evaluated meth-
ods with different Top-5 mAP measures, i.e., Top-5 mAP
Noun, Top-5 mAP Noun+Verb, Top-5 mAP Noun+TTC
and Top-5 mAP Noun+Verb+TTC which we named Top-5
mAP Overall, to assess the ability of the model to anticipate
next-active object interactions considering different levels
of granularity (i.e., nouns, verbs, time-to-contact). We used
K = 5 as defined in [17].

4.2. Compared Methods

We compare our method with respect to different ap-
proaches which addressed the considered Short-Term Ob-
ject Interaction Anticipation problem.

• Faster R-CNN + Random [17]: uses Faster R-CNN to
detect and recognize next active objects, then predicts
verbs and time to contact randomly following the dis-
tributions of training labels;

2https://eval.ai/web/challenges/challenge-page/
1623/

Set Method Ver Noun N+V N+TTC Overall
Val FRCNN+Rnd. [17] v1 17.55 1.56 3.21 0.34
Val FRCNN+SF [17] v1 17.55 5.19 5.37 2.07
Val StillFast (ours) v1 16.20 7.47 4.94 2.48
Val FRCNN+SF [17] v2 21.00 7.45 7.04 2.98
Val StillFast (ours) v2 20.26 10.37 7.16 3.96
Test FRCNN+Rnd. [17] v1 20.45 2.22 3.86 0.44
Test FRCNN+SF [17] v1 20.45 6.78 6.17 2.45
Test FRCNN+Feat. v1 20.45 4.81 4.40 1.31
Test InternVideo [1] v1 24.60 9.18 7.64 3.40
Test StillFast (ours) v1 19.51 9.95 6.45 3.49
Test FRCNN+SF [17] v2 26.15 9.45 8.69 3.61
Test StillFast (ours) v2 25.06 13.29 9.14 5.12

Table 1. Results% in Top-5 mean Average Precision on the val-
idation and test sets of EGO4D v1 and v2. In the header of the
table, Ver stands for Version, V+N stands for Verb + Noun and
N+TTC stands for Noun + Time to Contact. Best results per col-
umn within a section of comparable results (horizontal lines) are
reported in bold.

• Faster R-CNN + SlowFast [17]: the baseline defined
in [17] composed of two components trained indepen-
dently. A Faster R-CNN [31] object detector which
detects and recognizes next-active objects and a Slow-
Fast [6] 3D network to predict for each bounding box
a verb and a time to contact;

• InternVideo [1]: follows the same two-stage recipe
of Faster R-CNN + SlowFast. A DINO [36] ob-
ject detector is used to predict next-active objects
and a VideoMAE-pretrained trasnformer video back-
bone [33] to predict verb and time to contact for each
detected next-active object.

• Faster R-CNN + Features: a Faster R-CNN ob-
ject detector is used to detect and recognize next
active objects, then pre-extracted Ominvore fea-
tures [13] are used to predict the associated verb
and time to contact. This baseline has been pro-
posed as a quickstart approach with the EGO4D
dataset. In our experiments, we consider the
results reported in this document: https://
colab.research.google.com/drive/1Ok_
6F1O6K8kX1S4sEnU62HoOBw_CPngR.

5. Results

This section compares the proposed StillFast method to
competitors (Section 5.1) and analyses the contribution of
the different components of the approach to performance
(Section 5.2).

5.1. Comparison with the State of the Art

Table 1 reports the results of the compared methods the
validation and test sets of both v1 and v2 of the EGO4D
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dataset [17] using the aforementioned Top-5 mAP evalua-
tion measure. As can be noted from Table 1, the proposed
method improves over the FRCNN+Rnd. and FRCNN+SF
baselines by significant margins in the v1 validation set on
verb-related metrics: 7.47% vs 5.19% Noun+Verb Top-5
mAP (+2.28%), and 2.48% vs 2.07% Overall Top-5 mAP
(+0.41%). These results suggest that the ability of the pro-
posed approach to process images and video with a uni-
fied backbone and accounting for the uncertainty in verb
prediction as described in Section 3.2 is beneficial to per-
formance. Indeed, it should be noted that both are based
on components with similar performance: a ResNet-50 2D
backbone in both cases, a SlowFast 3D backbone for FR-
CNN+SF and an X3D-M backbone for StillFast. On the
downside, the proposed StillFast approach achieves worse
performance on Noun Top-5 mAP (16.20% vs 17.55%,
hence −1.35%) and on Noun + TTC Top-5 mAP (4.94%
vs 5.37%, hence −0.43%). We speculate that this is due
to training instabilities due to the multi-task nature of our
training procedure, as compared with FRCNN+SF, which is
trained in two separate stages (Section 5.2 further analyses
performance when multi-tasking is reduced within our ar-
chitecture). This seems to be mitigated when more training
data is available. Indeed, when training on v2 (fourth and
fifth row of Table 1), StillFast consistently outperforms FR-
CNN+SF on Noun + Verb, Noun + TTC and Overall Top-5
mAP, while the loss of performance on Noun Top-5 mAP is
much smaller (20.26% vs 21.00%, hence only −0.74%).

The advantages of StillFast are more evident in the
test set, which suggests better generalization of the pro-
posed approach. In v1, the proposed method outperforms
FRCNN+SF by +3.17% (9.95% vs 6.78%) according to
Noun+Verb Top-5 mAP, +0.28% (6.45% vs 6.17%) ac-
cording to Noun+TTC Top-5 mAP, and +1.04% (3.49% vs
2.45%) according to Overall Top-5 mAP. Noun Top-5 mAP
results are still lower, but closer to the ones of FRCNN+SF
(19.51% vs 20.45%, hence −0.95%). Also in the test set,
using more training data brings larger performance margins
to StillFast. In v2 test set, the proposed approach surpasses
FRCNN+SF by +3.84% (13.29% vs 9.45%) according to
Noun + Verb Top-5 mAP, +0.45% (9.14% vs 8.69%) ac-
cording to Noun + TTC Top-5 mAP, and +1.51% (5.12%
vs 3.61%) according to Overall Top-5 mAP. If we consider
that v1 and v2 share the same test set, StillFast jumps from a
9.95% of v1 to 13.29% of v2 Noun + Verb Top-5 mAP and
from 3.49% of v1 to 5.12% of v2 Overall mAP, by merely
adding more training data, which suggests that the proposed
approach can scale in the presence of larger datasets.

In the v1 test set, we are able to also compare StillFast
with other methods for which results are publicly available,
including InternVideo [1] and FRCNN+Feat. StillFast out-
performs FRCNN+Feat. on all evaluation measures except
Noun Top-5 mAP, where it achieves slightly worse perfor-

Method Noun N+V N+TTC Overall
FRCNN+SF [17] 17.55 5.19 5.37 2.07
Nouns Only 19.69 - - -
Standard Head 18.42 6.39 5.28 2.17
Proposed Head 16.20 7.47 4.94 2.48

Table 2. Comparison of the performance of different heads.

Method Noun N+V N+TTC Overall
Proposed Head 16.20 7.47 4.94 2.48
-global features 16.90 5.77 4.60 1.94
-res. connections 15.44 6.40 4.80 2.25
-verb-noun product 14.95 6.29 4.28 1.78
Sum Fusion 15.26 6.68 4.93 2.49

Table 3. Ablation study of the proposed head.

mance (19.51% vs 20.45%). Note that FRCNN+Feat. uses
the same Faster RCNN object detector component as FR-
CNN+SF and is trained in two stages, hence similar con-
siderations as the ones made while comparing the proposed
approach with FRCNN+SF apply here as well. StillFast still
outperforms InternVideo with respect to Noun+Verb Top-5
mAP (9.95% vs 9.18%) and Overall Top-5 mAP (3.49%
vs 3.40%) despite being based on less advanced compo-
nents (StillFast relies on a Faster R-CNN object detector,
while InternVideo relies on DINO [36], StillFast relies on
an X3D video backbone, while InternVideo relies on Video-
MAE [33] pre-trained transform-based video backbones)
and being trained end-to-end (InternVideo is trained in two
stages as FRCNN+SF). We leave the integration of higher
performing components in StillFast to future works.

Figure 4 reports two success (left) and two failure ex-
amples (right). The model struggles with uncertain future
actions (“put cement” vs “mold cement”) and unusual ac-
tions (“clean book” vs “put book”).

5.2. Ablation study

In this section, we further investigate other aspects of
the proposed StillFast architecture including the verb/noun
prediction trade-off introduced by the prediction head de-
scribed in Section 3.2, and the contribution of different ar-
chitectural choices to the overall performance. The tables
in this section report validation results of experiments per-
formed on EGO4D v1 data. All results are in Top-5 mAP%.

Prediction Head Table 2 compares the results obtained
by the proposed model when different prediction heads are
used. The results of FRCNN+SF are also reported for ref-
erence. “Nouns Only” predicts only next-active objects
and does not predict any verb or time to contact, “Stan-
dard Head” refers to the standard prediction head proposed
in [17] which uses a SlowFast model to attach a verb and
a time to contact prediction to each detected bounding box.
“Proposed Head” refers to the head described in 3.2, in-
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Figure 4. Two success examples (left) and two failure cases (right).

Noun N+V N+TTC Overall
Proposed backbone 16.20 7.47 4.94 2.48
w/o 3D backbone 14.54 6.17 4.10 1.82
w/o conv. block post sum 15.13 6.79 4.80 2.25
post-pyramid fusion 15.01 6.74 4.69 2.34

Table 4. Ablation study considering the contribution of each com-
ponent of the proposed architecture.

cluding global features and accounting for verb prediction
uncertainty. As can be noted, predicting only nouns out-
performs the FRCNN+SF baseline by +2.05% (19.69% vs
17.55%) with respect to Noun Top-5 mAP. Adding verb and
time to contact prediction with a standard head decreases
Noun Top-5 mAP performance to 18.42%, which still out-
performs FRCNN+SF (17.55%), while obtaining better or
comparable performance on the other metrics. This sug-
gests that the proposed approach is penalized by the training
instabilities caused by multi-tasking (i.e., predicting simul-
taneously nouns, verbs and time to contact). The proposed
head achieves the best results in terms of Noun+Verb Top-5
mAP and Overall performance thanks to the use of global
features and verb-noun score product, which effectively ac-
counts for the uncertainty in the prediction of verbs. Ta-
ble 3 assesses the impact of the main components of the pro-
posed head, comparing the performance of the overall mod-
ule with versions in which we remove global features, resid-
ual connections, and the verb-noun score product module.
We also compare the head with a version which replaces
the proposed global-local fusion mechanism by a simple
sum (last row). As can be observed, the proposed archi-
tecture obtains overall the best results. Sum fusion achieves
slightly better overall Top-5 mAP (+0.01%), but lower re-
sults according to the other metrics, for which we prefer the
proposed concatenation + residual connection design.

Backbone Table 4 shows the impact of the different
components in the backbone when the proposed head is
used. We observe that without a 3D branch (second row)
the performance of the method drops according to all mAP
measures by significant margins (e.g., 1.82% vs 2.48%
Overall Top-5 mAP). This suggests that the proposed back-
bone design succesfully combines 3D and 2D features to
anticipate future interactions. The third row shows that re-

moving 2D convolutional blocks after the sum operation in
the combined feature pyramid layer negatively affect per-
formance (e.g., 2.25% vs 2.48% Top-5 Overall mAP). We
speculate that the use of these layers allows to deal with
artifacts potentially introduced in the upsampling and sum
operations. The last row reports the performance of an al-
ternative design of the network which attaches a 2D feature
pyramid to the 2D network and a 3D feature pyramid to the
3D network and then fuses the resulting feature pyramids.
As can be noted, this design is less effective than the pro-
posed one, with a Top-5 Overall mAP score equal to 2.34%
(vs 2.48% of the proposed design).

6. Conclusion

In this paper, we have presented StillFast, an end-to-end
approach to tackle the Short Term Object Interaction Antic-
ipation task. Differently from previous methods, StillFast
is designed to process video and image inputs simultane-
ously and encourage future research in this field by pro-
viding a practical framework designed to be easily exten-
sible. While the proposed method achieves promising per-
formance EGO4D, we are aware of some of the limitations
of the approach, which we leave to future works. Specif-
ically, the current implementation of the method is based
on convolutional 2D and 3D backbones, while benefits may
arise from the use of more recent transformer-based compo-
nents as done in previous works [1]. Moreover, the current
end-to-end training procedure seems to be penalized by the
multi-tasking arising from predicting noun, verb and time
to contact within a single model. We trust that future works
will be able to address such limitations and extend on the
proposed work.
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