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1 General Introduction 
 

 

Cornsalad, radish, and celeriac are vegetable crops whose cultivation in Central Europe has 

considerably increased over the last couple of decades. Cornsalad [Valerianella locusta 

(L.) Betcke, formerly V. olitoria (L.) Poll.; fam. Valerianaceae], also known as lamb’s 

lettuce, is found in southern Europe, but probably originated in the Mediterranean area. It 

is a diploid crop with a chromosome number 2n = 14, but further genetic information is 

scanty. Of 181 species classified into the genus Valerianella (USDA 2003; The Royal 

Botanic Gardens Kew 2003), only V. locusta is cultivated. Owing to its mild and delicate 

taste as well as richness in iron, cornsalad is a favourite leafy salad vegetable in France, 

Germany, and The Netherlands. Based on the production area in greenhouses (200 ha), 

cornsalad is the third most important vegetable crop in Germany, after tomato and 

cucumber, whereas 1700 ha are planted in open fields (Bundessortenamt 1997). 

Radish [Raphanus sativus L. var. sativus convar. radicula (DC.) Pers.; fam. 

Brassicaceae] is an ancient domesticate, native to the eastern Mediterranean and the 

Middle East, although some taxonomists consider China the centre of origin (Werth 1937; 

Rubatzky and Yamaguchi 1997). The first records about radish consumption in human 

nutrition date back to about 2000 BC in the ancient Egypt, whereas its cultivation started in 

China and Korea about 400 BC (Becker 1962; George and Evans 1981; Kaneko and 

Matsuzawa 1993). The first European variety of cultivated garden radish, however, was 

not recorded before the 16th century (Wein 1964; George and Evans 1981). Cultivated 

radish is a diploid species with a chromosome number 2n = 18 and small genome size (C-

value = 0.55 pg; The Royal Botanic Gardens Kew 2003). Its economic importance is high 

and increasing. It is an important vegetable in Japan, Korea, China, India, and other East 

Asian countries (Kaneko and Matsuzawa 1993). Based on the latest available information, 

the production of radish in Europe amounts to 120000 t, with France, Greece, The 

Netherlands, Italy, and Spain being the main producers (Vogel 1996). From 1985 to 2000 

in Germany, the area of radish cultivation under glass decreased from 74 to 52 to ha, 

whereas the open field cultivation increased almost six times, from 400 to 2700 ha 

(Bundessortenamt 1986, 2001; Statistisches Bundesamt Deutschland 2004). 

The cultivation of celeriac (Apium graveolens L. var. rapaceum; fam. Apiaceae), the 

only cultivated species of the Apium genus (Quiros 1993), most likely started as early as 
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400 BC, when ancient Egyptians and Romans used it as a medicinal crop. First records on 

its domestication as a true vegetable date back to 16th century in the Mediterranean region 

(Smith 1979; Quiros 1993). Celeriac is a biennial crop with a chromosome number 2n = 22 

and genome size of 3x109 bp DNA. Its flowers are small, with different developmental 

stages within the same umbel, which makes the emasculation of individual anthers 

difficult. A single genetic male sterile is reported as a spontaneous mutant in some weedy 

Iranian species (Quiros 1993). Therefore, nearly all celeriac varieties currently produced 

are open-pollinated. The area cultivated with celeriac is steadily increasing, and currently 

amounts to 1720 ha in Germany, which is approximately 4% of the total vegetable growing 

area in the country (Bundessortenamt 2001; Statistisches Bundesamt Deutschland 2004). 

Cornsalad, radish, and celeriac are three economically important vegetable species in 

Europe, representing three different pollination types: autogamy (cornsalad; Ryder 1979), 

strict allogamy (radish; Kaneko and Matsuzawa 1993), and partial allogamy (celeriac; 

Quiros 1993). Establishment of the method to estimate genetic diversity in these three 

crops, using PCR-based molecular markers, can serve as a model in a wide range of 

vegetable crops. 

Assessment of genetic relationships among cultivated plants is a fundamental 

component of crop improvement programs, as it serves to provide information about 

genetic diversity, and creates a platform for stratified sampling of breeding populations. 

Numerous studies have so far been conducted to analyse genetic relationships in a number 

of cultivated crops of major economic importance (for review, see Mohammadi and 

Prasanna 2003), but little has been done in so-called minor crops, such as cornsalad, radish, 

and celeriac. 

Accurate assessment of levels and patterns of genetic diversity can be invaluable in 

crop breeding for various purposes, including (i) analysis of genetic variability of cultivars 

(Smith 1984; Cox et al. 1986), (ii) identification of diverse parental combinations to 

develop segregating progenies with maximum genetic variability for further selection 

(Barret and Kidwell 1998), and (iii) introgression of desirable genes or chromosome 

segments from diverse sources into elite germplasm (Thompson et al. 1998). 

Understanding genetic relationships among varieties can be particularly useful in planning 

crosses, in defining heterotic pools and assigning lines to specific heterotic groups 

(Hallauer and Miranda 1988), as well as for distinctiveness, uniformity and stability testing 
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and the protection of breeders’ rights in the frame of essentially derived varieties (Lombard 

et al. 2000; Lefebvre et al. 2001; Heckenberger et al. 2002, 2003). 

Furthermore, the knowledge of genetic diversity in the available germplasm is of an 

indispensable importance for plant genetic resources management in gene banks. Analysis 

of genetic diversity in germplasm collections facilitates reliable classification of 

accessions, detection of duplicates, and identification of useful accessions for specific 

breeding purposes (Engels et al. 2002; Mohammadi and Prasanna 2003). 

 

 

Breeding objectives and genetic diversity in cornsalad, radish, and celeriac 

 

Cornsalad breeding aims at the production of line varieties with round, dark green leaves, 

tolerant to extreme temperature stress, and resistant to Phoma sp., Peronospora 

valerianelle, and Acidovorax valerianelle, where new sources of resistance are required 

(Schieder and Hermens, personal communication). Radish breeding was practiced for 

centuries, by means of mass or pedigree selection. Since two decades, the production of F1 

hybrids using cytoplasmatic male sterility has widely replaced fairly simple breeding 

methods based on morphological traits (Schieder, personal communication) to generate 

genetically uniform varieties. The uniformity of a variety is becoming a high priority goal 

in radish breeding. Of 54 currently grown radish varieties in Germany, 19 (35.2%) are F1 

hybrids (Bundessortenamt 2001), thus indicating a significant increase during the last 15 

years when only four of 41 (9.8%) registered radish varieties were hybrids 

(Bundessortenamt 1986). Most breeding work is aimed at further adaptation to different 

growing conditions, improved resistance to Peronospora parasitica and Albugo candida 

(Vogel 1996), specific market preferences, and improved marketing conditions. The main 

objectives in celeriac breeding are uniformity (in colour, size, and yield), quality, and 

disease resistance (Bundessortenamt 2001). The preferred celeriac varieties are 

characterised with round-shaped tubers, whitish colour of skin, and low insertion of roots 

(Schilling and Dijkstra, personal communication). Tubers of higher inner quality possess a 

firm consistency and weak internal rust spots of the flesh. Furthermore, varieties whose 

flesh remains white after cooking are favoured. Major diseases in celeriac are foliar late 

blight (Septoria apiicola) and celery root rot (Phoma apiicola Kleb.). Genes for resistance 
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to Septoria are found in some wild species, such as Apium nodiflorum. Nevertheless, the 

attempts to hybridize A. gaveolens with other species failed (Quiros 1993). 

Based on breeders’ knowledge and experiences, genetic diversity available in current 

assortments of cornsalad, radish, and celeriac can be described as narrow. Breeding 

programs in different companies rely on germplasm of geographically limited origin, and 

are based on phenotypic selection of varieties. Breeders preferably make crosses between 

already selected genotypes proven for their outstanding performance per se and/or as 

progenitors of superior cultivars. In consequence, the number of genotypes being recycled 

is small, thus reducing the genetic basis of the elite germplasm and ultimately increasing 

potential vulnerability to pests and abiotic stresses, which is also known from other major 

crops of agricultural importance (Graner et al. 1994). Improvements in breeding 

approaches applied for the selection of cornsalad, radish, and celeriac could be expected if 

hybrid breeding in open-pollinated species (radish and celeriac) or introgression of 

desirable traits from gene bank accessions (landraces and wild relatives) is made possible. 

Exploitation of heterotic patterns between different sources of germplasm (particularly in 

open-pollinated crops) is a major goal in hybrid breeding (Melchinger and Gumber 1998). 

A systematic and exact approach is necessary for the identification of heterotic patterns 

and concentrated introgression of new germplasm into breeding populations of cornsalad, 

radish, and celeriac. 

The abundance of cornsalad, radish, and celeriac germplasm accessions in gene bank 

collections is relatively poor (Quiros 1993) and their relationship to commercially grown 

varieties is generally unknown. Wild species of Valerianella, Raphanus, and Apium might 

contribute to the introgression of new genes (such as resistance genes) into cultivated 

material. Species most closely related to the respective elite germplasm would be the most 

promising candidates for successful inter-specific crosses. Hence, wild species conserved 

in gene banks require an accurate description and classification. 

 

 

Approaches to study relationships among varieties 

 

Information on pedigree or geographic origin (passport data), as well as various kinds of 

phenotypic and genotypic descriptors (e.g., morphological, cytological, biochemical, and 

DNA markers), have so far been employed to study phylogenetic relationships among and 
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the genetic variation within varieties (Messmer et al. 1991; Messmer et al. 1993; Ben-Har 

et al. 1995; Schut et al. 1997; Lübberstedt et al. 2000; Roldán-Ruiz et al. 2001). 

Calculation of the co-ancestry coefficient f (Malécot 1948) requires reliable and detailed 

pedigree records (Bernardo 1993; Messmer et al. 1993; van Hintum and Haalman 1994). 

For remote ancestors, these prerequisites are often not fulfilled because breeding records 

are either incomplete or names of cultivars are ambiguous. For elite cultivars, pedigrees are 

also becoming increasingly protected as trade secrets by private breeding companies 

(Graner et al. 1994). Moreover, pedigree-based diversity measurements can result in an 

overestimation of the actual level of genetic diversity present in the genepool as a 

consequence of the assumptions that are made regarding genetic drift, selection pressure, 

and relatedness of ancestors without known pedigree (Cox et al. 1985; Messmer et al. 

1993; Graner et al. 1994; Kim and Ward 1997; Barrett et al. 1998; Soleimani et al. 2002). 

Comprehensive genetic diversity studies have been conducted in major crops, using 

passport, morphological (Smith and Smith 1992; Ben-Har et al. 1995), and biochemical 

data obtained by analyses of isozymes (Cox et al. 1985; Hamrick and Godt 1997) or 

storage proteins (Smith et al. 1987). Nevertheless, their usefulness for obtaining reliable 

estimates of genetic similarity is limited because of the small number of marker loci 

available and the low degree of polymorphism generally found in elite breeding materials 

(Messmer et al. 1991). 

The major strength of molecular markers is their ability to detect genetic diversity at 

levels of resolution that exceed by far those achievable with other, previously applied 

methods (Karp 2002). Owing to the great number of polymorphic marker loci, DNA 

markers possess the ability to bypass the assumptions inherent to pedigree analysis. 

Regarding their nature, DNA-assays are more robust and independent of environmental 

conditions. Nevertheless, the extent of their utility may depend on the nature of the marker 

system, their number, genome coverage, and the population under investigation (Karp 

2002). 

Development of the polymerase chain reaction (PCR; Mullis and Faloona 1987) was a 

technological breakthrough in genome analysis because it enabled the amplification of 

specific fragments from the total genomic DNA. Compared to other techniques, PCR-

based DNA markers are less labour- and time-consuming, and provide an estimate of 

genetic similarity by direct sampling from the entire genome with unprecedented precision. 

Most widely applied DNA marker techniques differ not only in principle, but also in the 
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type and amount of polymorphism detected (Russell et al. 1997). Techniques such as non-

PCR based restriction fragment length polymorphisms (RFLPs; Botstein et al. 1980) and 

PCR-based microsatellites or simple sequence repeat polymorphisms (SSRs; Tautz 1989) 

possess the ability to distinguish multiple bands (alleles) per locus, thus giving more 

information on a single locus. By contrast, individual bands detected with PCR-based 

fingerprinting techniques, such as randomly amplified polymorphic DNA (RAPDs; 

Williams et al. 1990) and amplified fragment length polymorphisms (AFLPs; Vos et al. 

1995), are scored on a biallelic basis, as marker band present or absent. The major 

advantage of fingerprinting techniques is that multiple marker bands – fingerprints - are 

generated in a single assay. 

Amplified fragment length polymorphism is a DNA fingerprinting technique based on 

selective amplification of restriction fragments. This PCR-based method is able to generate 

complex fingerprints of up to at least 100 DNA fragments in each reaction. AFLPs are 

highly reproducible (Jones et al. 1997), and possess a high multiplex ratio, which means 

that a large number of markers can be generated in a single reaction. By using different 

combination of selective primers, an almost unlimited number of markers can be obtained. 

The high multiplex ratio and the fact that no sequence information is needed represent big 

advantages of AFLPs over a number of other molecular marker methods. Therefore, they 

have successfully been employed for genetic diversity analysis of various plant species, 

including maize (Lübberstedt et al. 2000), wheat (Soleimani et al. 2002), barley (Turpeinen 

et al. 2003), soybean (Powell et al. 1996), and rice (Aggarwal et al. 2002). 

Inter simple sequence repeats (ISSRs), as another PCR-based molecular marker 

method, involve anchoring of designed primers to a subset of microsatellite sequences, and 

amplify the region between two closely spaced, oppositely oriented microsatellites 

(Zietkiewitcz et al. 1994). Regarding the multiplex banding profile, high throughput, and 

relatively low cost, ISSRs have also been widely applied to estimate genetic diversity in 

various crops (Wu and Tanksley 1993; Gupta et al. 1994; Kantety et al. 1995; Charters et 

al. 1996; Sánchez de la Hoz et al. 1996; Yang et al. 1996; Nagaoka and Ogihara 1997; 

Parsons et al. 1997; Prevost and Wilkinson 1999; Métais et al. 2000). 
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Objectives 

 

The objective of this PhD study was to investigate genetic diversity in germplasm of 

cornsalad, radish, and celeriac, using PCR-based molecular markers. More specifically, the 

objectives were to: 

 

1. establish and optimise protocols for two DNA-marker systems (AFLPs and ISSRs) 

for cornsalad, radish, and celeriac, 

2. evaluate the applicability and reliability of AFLPs and ISSRs in genetic diversity 

studies of cornsalad, radish, and celeriac, 

3. analyse relationships and genetic diversity in breeding materials of cornsalad, 

radish, and celeriac (further referred to as elite material) using AFLPs, 

4. define the genetic structure among radish varieties to establish heterotic pools for 

hybrid breeding, 

5. analyse relationships and genetic diversity in formerly grown varieties and gene 

bank accessions of cornsalad, radish, and celeriac (further referred to as exotic 

material) using AFLPs, and  

6. evaluate the usefulness of introducing exotic materials for broadening the genetic 

basis of the elite germplasm in cornsalad, radish, and celeriac. 
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Abstract

Fifteen amplified fragment length polymorphism (AFLP) EcoRI/

MseI-based primer combinations with five selective bases (Eco

RI-ANN, MseI-CN) were used to estimate genetic diversity among

45 line varieties of cultivated cornsalad and 19 genebank accessions

classified into nine different species related to cornsalad. Polymorphic

fragments were scored for calculation of Jaccard’s coefficient of genetic

similarity (GS). The average GS estimate in elite germplasm

(GS ¼ 0.90) was substantially higher than in exotic germplasm

(GS ¼ 0.47). UPGMA-cluster analysis revealed genetic relationships

among recently bred varieties, old varieties and genebank accessions.

Analysis of molecular variance indicated almost threefold variability

within sets compared with between sets due to a high level of

polymorphism among wild species. Sources for increasing genetic

diversity in elite germplasm of cornsalad were suggested and a

duplicate among the genebank accessions was detected. AFLPs could

be considered a powerful tool for genetic diversity estimation in

cornsalad germplasm and are recommended for systematic finger-

printing of remaining cornsalad species.

Key words: Valerianella locusta — AFLP — AMOVA — cluster
analysis — genetic similarity

Cornsalad, also known as lamb’s lettuce, is a member of the

family Valerianaceae. It is a diploid, autogamous crop, with
the chromosome number 2n ¼ 14 but otherwise little genetic
information. Although 181 species are classified into the

genus Valerianella (The Royal Botanic Gardens 2003), only
V. locusta is cultivated and inter-species crosses have been
established with V. carinata (Nunhems-Hild, personal com-
munication).

Cornsalad is a favourite salad plant in Europe because of its
mild and delicate taste and richness in iron. Based on its
production area in greenhouses (200 ha), cornsalad is the third

most important vegetable crop in Germany, after tomato and
cucumber, while 1700 ha are planted in open fields (Bundes-
sortenamt 1997, Juliwa-Enza personal communication).

Breeding of cornsalad aims at the production of line varieties
with round, dark green leaves, tolerant to extreme temperature
stress, and resistant to Phoma sp., Peronospora valerianellae,
and Acidovorax valerianellae, where new sources of resistance

are required.
Estimation of genetic diversity in cultivated crops has

important implications in breeding programmes and in the

conservation of genetic resources (Soleimani et al. 2002). The
currently available germplasm of cultivated cornsalad is
assumed to be narrow as breeding programmes in different

companies rely on germplasm of geographically limited origin
(Nunhems-Hild and Juliwa-Enza, personal communication).

According to the standard criteria of International Union for
the Protection of New Varieties of Plants (UPOV), cornsalad
varieties are described and differentiated using morphological

traits such as seed size and shape, leaf length, shape, profile,
glossiness, colour, thickness, and prominence of veins. Never-
theless, genetic diversity within cornsalad elite germplasm

cannot be accurately described when based on these data.
Information about co-ancestry, as another possibility of
estimating genetic diversity, is ambiguous or not available in
cornsalad varieties because pedigree records of modern culti-

vars are becoming increasingly protected as trade secrets of
private breeding companies (Graner et al. 1994). Alternatively,
molecular markers such as amplified fragment length poly-

morphisms (AFLPs) (Vos et al. 1995) can be employed to
investigate more precisely genetic diversity within species, and
to devise suggestions for broadening the germplasm used in

breeding.
The AFLP marker technique generates complex banding

patterns (DNA fingerprints) in one reaction, using small
amounts of DNA without requiring prior sequence informa-

tion. Compared with other fingerprinting techniques, AFLPs
proved to be highly reproducible and transferable between
laboratories (Jones et al. 1997). In intensively studied crops,

such as maize (Marsan et al. 1998, Lübberstedt et al. 2000),
wheat (Bohn et al. 1999, Soleimani et al. 2002), or barley
(Becker et al. 1995, Ellis et al. 1997, Russell et al. 1997, Schut

et al. 1997), AFLPs clearly assigned genotypes to known
heterotic or other groups (e.g. winter and spring cereals). They
were also applied in genetic diversity studies of other crops

(Kim et al. 1998, Zhu et al. 1998, Abdalla et al. 2000,
Lombard et al. 2000, Simioniuc et al. 2002), as well as in
characterization of genebank accessions (Capo-chichi et al.
2001, McGregor et al. 2002). Finally, AFLPs proved highly

efficient in cultivar identification due to their high discrimin-
ation power (Lombard et al. 2000, Lefebvre et al. 2001,
Heckenberger et al. 2003).

The objectives of this new study were to establish and apply
AFLP fingerprinting in cornsalad to estimate the genetic
diversity among (1) currently used cornsalad varieties and (2)

old cornsalad varieties and genebank accessions from the
genus Valerianella, as well as (3) to facilitate a further
systematic choice of sources for introgressing specific, valuable
traits from exotic into elite germplasm.
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Materials and Methods

Plant materials: Sixty-four accessions of cornsalad [Valerianella

locusta (L.)] and related species were divided into two sets. The first

set, further referred to as elite germplasm, contained 34 modern line

varieties of V. locusta. Nineteen line varieties, originating from either

of two collaborating breeding companies Nunhems-Hild and Juliwa-

Enza, were designated with CS-codes (�CS-2�, �CS-7�, �CS-10�, �CS-11�,
�CS-12�, �CS-16� to �CS-22�, �CS-27� to �CS-32�, and �CS-37�), whereas
variety names were given for the remaining 15 line varieties. The

second set, further referred to as exotic germplasm, consisted of 12

V. locusta line varieties from former breeding periods (designated with

codes: �CS-1�, �CS-5�, �CS-8�, �CS-44� to �CS-46�, �CS-50�, and �CS-59�, or
variety names – depending on the origin), and 18 genebank or

botanical garden accessions of V. locusta wild types and related species

(Table 1). In addition, the reliability and reproducibility of the AFLP

protocol was tested by (1) blind checks: genotypes sown twice under

coded numbers (six in the elite and three in the exotic germplasm), and

(2) laboratory duplicates: randomly chosen genotypes duplicated after

DNA extraction and re-duplicated in consecutive steps of AFLP

analysis (four per set). Four standard genotypes were used in both

germplasm sets to ensure scoring of identical AFLP fragments in both

sets of material.

DNA extraction, AFLP protocol: From a bulk of 20–30 plants per

genotype, 2–3 g of fresh leaf material was ground to a fine powder in

liquid nitrogen. The extraction of genomic DNA followed the modified

CTAB procedure (Hoisington et al. 1994). The extracted genomic

DNA was diluted in TE buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA)

and the final concentration adjusted to 125 ng/ll.
AFLP fingerprints were produced according to Vos et al. (1995),

with modifications. Approximately 250 ng DNA was double-digested

with 4.25 U EcoRI (Amersham Biosciences Europe GmbH, Freiburg,

Germany) and 3 U MseI (New England BioLabs GmbH, Frankfurt

am Main, Germany) restriction enzymes at 37�C for 3 h, in 1 · One-

Phor All Buffer Plus. To ligate the adapters, a ligation mixture

consisting of 0.5 lM each EcoRI and MseI adapter (both Metabion

GmbH, Martinsried, Germany), 1 mM ATP, 2 · One-Phor All Buffer

Plus, and 1 U of T4 DNA ligase (Roche Diagnostics GmbH,

Mannheim, Germany) was added to the restriction digest, and

incubated at 20�C (room temperature) for 2 h. The adapter sequences

were:

EcoRI adapter: 50-CTC GTA GAC TGC GTA CC

CAT CTG ACG CAT GGT TAA-50

MseI adapter: 50-GAC GAT GAG TCC TGA G

A CTC AGG ACT CAT-50

The ligation product was diluted 1 : 20 in sterile water and used as a

template in the pre-amplification reaction with 1 · PCR buffer,

0.2 mM of each dNTP, 0.75 U Taq DNA polymerase (Amersham

Biosciences Europe GmbH), and 0.4 lM of each of the two AFLP

primers having a single selective base (5¢GAC TGC GTA CCA ATT

CA, 5¢GAT GAG TCC TGA GTA AC). The PCR programme

consisted of 20 cycles of 94�C for 30 s, 50�C for 60 s and 72�C for 60 s.

Prior to a selective amplification, pre-amplification PCR products were

diluted 1 : 20 in sterile water. EcoRI selective primers with three

selective nucleotides were [33P]-c-ATP 5¢-end labelled with T4 polynu-

cleotide kinase (Invitrogen Life Technologies GmbH, Karlsruhe,

Germany) and combined with MseI primers carrying two selective

nucleotides. In total, 15 EcoRI/MseI primer combinations were

employed for selective amplification reactions. The selective PCR

was performed in 1 · PCR buffer, 0.25 mM each dNTP, 0.4 U Taq

DNA polymerase, 0.45 lM MseI primer, and 0.125 lM labelled EcoRI

primer (Invitrogen Life Technologies GmbH). The following amplifi-

cation profile was used: an initial cycle of 94�C for 30 s, 65�C for 30 s,

72�C for 60 s, followed by 11 touchdown cycles in which the annealing

temperature was reduced by 0.7�C per cycle. The annealing tempera-

ture was then kept constant at 56�C for the remaining 25 cycles,

followed by an additional extension at 72�C for 2 min. After selective

amplification, an equal volume of formamide-loading dye (98%

formamide, 10 mM EDTA pH 8.0, and bromo-phenol blue and xylene

cyanol, as tracking dyes) was added to PCR products. Amplified DNA

fragments were denatured at 95�C for 3 min and separated by

electrophoresis in a 6% denaturing polyacrylamide gel. One set of

germplasm, genotyped with one AFLP primer combination, fitted to

one gel. Each gel was run in 0.5 · TBE buffer (100 mM Tris, 100 mM

boric acid, 2 mM EDTA pH 8.0), at 23 W for 5 min, followed by 60 W

for 2 h. After drying on Whatman paper, gels were exposed to X-ray

films for 5–7 days before developing.

Table 1: Genebank and botanical garden accessions of cornsalad (Valerianella locusta L.) and related species analysed with amplified fragment
length polymorphism markers1

Scientific name2 Cultivar name
Accession
number

Country
of origin Original donor of accession

Maintainer
of accession

Valerianella carinata Loisel. – – France Unknown Nunhems-Hild
Valerianella carinata Loisel. – VALE 12 France Bot. Garden, Bordeaux, France IPK Gatersleben
Valerianella coronata DC. – – Unknown Bot. Garden, University of Göttingen,

Germany
Nunhems-Hild

Valerianella dentata (L.) Pollich – VALE 4 Unknown Bot. Garden, University of Cluj-Napoka,
Romania

IPK Gatersleben

Valerianella echinata (L.) DC. – – Unknown Bot. Garden, University of Göttingen,
Germany

Nunhems-Hild

Valerianella eriocarpa Desv. – VALE 13 France Bot. Garden, Bordeaux, France IPK Gatersleben
Valerianella locusta (L.) Laterrade – – Unknown Unknown Nunhems-Hild
Valerianella locusta (L.) Laterrade Valeriana Dolcetta VALE 14 Italy Unknown IPK Gatersleben
Valerianella locusta (L.) Laterrade Deutscher VALE 3 Germany DSG Quedlinburg, Germany IPK Gatersleben
Valerianella locusta – – Sweden Unknown Nunhems-Hild
Valerianella locusta (Wild type 1) BAZ 54288 Unknown BAZ Braunschweig, Germany BAZ Braunschweig
Valerianella locusta (Wild type 2) BAZ 58375 Unknown BAZ Braunschweig, Germany BAZ Braunschweig
Valerianella pumila DC. – VALE 8 Unknown Bot. Garden, University of Bonn,

Germany
IPK Gatersleben

Valerianella rimosa Bast. – VALE 10 Unknown Bot. Garden, University of Mainz,
Germany

IPK Gatersleben

Valerianella rimosa Bast. – VALE 11 Unknown Bot. Garden, Antwerpen, Belgium IPK Gatersleben
Fedia cornucopiae (L.) Gaertn.3 – – Unknown Gehlsen, Halle, Germany Nunhems-Hild

1 All accessions supplied from the working collection of Nunhems-Hild.
2 Taxonomical classification taken from http://www.rbgkew.org.uk.
3 Three samples supplied for the study; syn. Valeriana cornucopiae Loisel.
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Statistical analyses: Polymorphic bands in both genotype sets were

first scored individually to estimate genetic diversity within both sets.

Subsequently, data sets were combined using the DNA ladder and four

standard genotypes, to identify common bands in both sets. For

combined data analysis, monomorphic bands within elite germplasm

were included if they were polymorphic in the exotic set. Only distinct

major bands, ranging in length from 50 to 350 base pairs, were

manually scored as present (1) or absent (0). As recommended for

dominant marker systems in self-pollinated species or inbred lines

(Link et al. 1995), genetic similarity (GS) between any of two

genotypes i and j was estimated applying the formula of Jaccard

(1908):

GSij ¼
Nij

Ni þ Nj � Nij

where Ni is the number of detected bands in the genotype i and not

in genotype j, Nj is the number of detected bands in the genotype j

and not in genotype i, and Nij is the number of bands common to

genotypes i and j. Estimation of GS values from the AFLP binary

matrices, as well as the calculation of standard errors (SE) of GS

estimates by the jackknife procedure with re-sampling over primers

(Miller 1974), were done using the Plabsim software (Frisch et al.

2000). The GS matrix of combined data (elite and exotic germplasm)

was further analysed using the unweighted pair group method using

arithmetic averages (UPGMA) (Sneath and Sokal 1973) clustering

method in the NTSYSpc version 2.0 (Rohlf 1998). Reliability of a

dendrogram was tested by bootstrap analysis with 1000 replications

to assess branching support, using the software package Winboot

(Yap and Nelson 1996).

The average polymorphic information content (PIC) and the marker

index (MI) were calculated for AFLP markers across assay units,

assuming an AFLP primer combination an assay unit. Each polymor-

phic DNA fragment within an AFLP assay unit was considered a

single dominant marker locus. The PIC value provides an estimate of

the discriminatory power of a marker by taking into account not only

the number of alleles at a locus but also the relative frequencies of these

alleles. It was calculated by applying the formula of Roldán-Ruiz et al.

(2000):

PICi ¼ 2fið1� fiÞ;

where PICi is the PIC of marker i, fi is the frequency of the amplified

allele (band present), and (1)fi) is the frequency of the null allele (band
absent). Marker indices were calculated as the product of PIC and the

number of polymorphic bands per assay unit, as suggested by Powell

et al. (1996).

The co-ancestry coefficient f (Malécot 1948) was used to estimate the

identity by descent of line pairs with known pedigree relationships,

according to Falconer and Mackay (1996) and the assumptions

proposed by Melchinger et al. (1991). Correlation between data

matrices of f values and GS estimates from AFLP data, as well as

the normalized Mantel test (Mantel 1967) were carried out in

NTSYSpc.

To divide the molecular genetic variance into components attrib-

utable to the variance between and within sets, an analysis of

molecular variance (AMOVA) (Excoffier et al. 1992) was performed.

Groups of material (elite and exotic germplasm) were considered sets

and genetic data (AFLPs) were presented as haplotypes in the Arlequin

ver. 2.000 software (Schneider et al. 2000).

Results
AFLP data

The 15 AFLP primer combinations tested in 64 accessions of
cornsalad and related species revealed a total number of 1536

bands, with 285 selected as clearly distinct and reliable for data
processing (Table 2). The number of polymorphic bands in the
selected set of bands amounted to 54 in the elite germplasm.
The degree of polymorphism detected in the exotic germplasm

was substantially higher, with no monomorphic band detected.
The number of polymorphic bands selected for data processing
ranged from four to 46 per AFLP primer combination, with an
average of 19. Average PIC values ranged from 0.19 to 0.34,

whereas marker indices varied between 1.35 and 8.85
(Table 2).
Reliability of AFLP data was confirmed by a significant

correlation of 0.99 (P < 0.05) among four standard genotypes
employed both in the elite and exotic germplasm. The lowest
genetic similarity between genotypes duplicated at the plant

level (blind checks) was 0.95, whereas the only deviation from
an absolute identity (GS ¼ 0.99) among laboratory duplicates
was detected at the level of restriction digestion of DNA in a
single duplicate (data not shown).

Genetic similarities among varieties and accessions

Genetic similarities within elite germplasm ranged from 0.79
(�CS-17� · �Louvier�) to 1.00 (�Gala� · �CS-11�), with a mean of
0.90. In the exotic germplasm, the lowest GS value of 0.10 was

detected between V. coronata and V. carinata, the accessions of
the IPK genebank in Gatersleben. The highest GS estimate
(1.00) in the exotic set was obtained between two V. carinata

genebank accessions, one originating from IPK Gatersleben
and the other from the Botanical Garden of Bordeaux. The
average GS value in the exotic germplasm was 0.47. Genetic
similarity in the whole set of 64 genotypes of elite and exotic

germplasm ranged from 0.09 (V. coronata · �CS-37�) to 1.00
(�Gala� · �CS-11�), with a mean of 0.63. Standard errors of the
individual GS estimates were calculated only in the joint set

and they varied from 0 to 0.08.
Pedigree information was available for only six modern line

varieties in the study. The matrix of f estimates consisted of 21

data points in total. The association between f-matrix and a
respective GS-matrix was low 0.19 (P < 0.05).

UPGMA cluster analysis and AMOVA

UPGMA cluster analysis using 15 AFLP primer combinations
clearly separated the cultivated material of V. locusta from

other Valerianella species and wild populations (Fig. 1). The
first major cluster (Fig. 1a) consisted mainly of cultivated

Table 2: Polymorphic information content (PIC) and marker indices
(MI) per amplified fragment length polymorphism primer combination
in cornsalad (Valerianella locusta L.) and related species

Primer combination
Total

no. of bands
No. of selected

polymorphic bands PIC MI

EcoAAG/MseCT 104 4 0.34 1.35
EcoAAC/MseCC 112 23 0.22 5.08
EcoAAC/MseCG 132 30 0.22 6.45
EcoAAG/MseCA 97 10 0.27 2.65
EcoACA/MseCA 127 32 0.23 7.25
EcoACA/MseCC 76 25 0.23 5.72
EcoAGC/MseCG 77 11 0.25 2.72
EcoAGC/MseCT 97 18 0.25 4.48
EcoACG/MseCA 76 15 0.20 3.02
EcoACG/MseCC 66 46 0.19 8.85
EcoACT/MseCT 125 13 0.24 3.13
EcoACT/MseCC 132 12 0.32 3.85
EcoAGG/MseCA 124 16 0.29 4.69
EcoAGG/MseCT 99 12 0.27 3.27
EcoAGG/MseCC 92 18 0.25 4.50
Total 1536 285 – –
Average 102 19 0.25 4.47
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Fig. 1: Association among 64 genotypes of cornsalad (Valerianella locusta L.) and related species revealed by average linkage (UPGMA) cluster
analysis of Jaccard’s genetic similarity (GS) coefficients calculated from AFLP data of 15 primer combinations. Major sub-cluster a grouped
V. locusta and V. carinata accessions, whereas the remaining species grouped to sub-cluster b. Letters A–E designate detected sub-clusters in the
major sub-cluster a. Numbers at the nodes indicate the bootstrap values of the consensus tree obtained (branches lacking a value received <50%
bootstrap support). Squares, circles and triangles designate a rough evaluation of morphological traits
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cornsalad and was further split into five divergent sub-clusters.
The first and second sub-cluster (A and B) consisted exclu-
sively of modern line varieties of cornsalad and former
breeding materials, with the exception of one V. locusta wild

form in the sub-cluster A. The third sub-cluster (C) gathered
mostly the accessions of �Louvier�-germplasm, while the fourth
sub-cluster (D) grouped three V. locusta wild forms (�Deut-

scher�, �Laterrade� and V. locusta – wild form) and two older
line varieties. Two genebank accessions of V. carinata and one
V. locusta genebank accession formed the fifth sub-cluster (E).

The second major cluster (Fig. 1b) gathered Valerianella
species different from V. locusta and V. carinata. Accessions
of V. echinata and Fedia cornucopiae clearly clustered apart
from other Valerianella species, forming two independent

sub-clusters. Three additional sub-clusters were formed by (i)
V. pumila and V. coronata, (ii) V. dentata and two accessions of
V. rimosa, and (iii) �CS-59� and V. eriocarpa.

The major clusters and sub-clusters were supported at
54–100% confidence interval limits in the bootstrap analysis
(Fig. 1). AMOVA indicated that a higher proportion of variation

was present within (76.4%) compared with between sets
(23.6%).

Discussion
Reliability of the AFLP protocol established for cornsalad

DNA marker data are generally produced without replications
or duplications because of high production costs and because
they are considered (almost) error-free. Thus, experimental
errors for marker data cannot be estimated for most published

DNA marker studies. To establish the AFLP protocol for
cornsalad, two control types were included and five and six
selective nucleotides were tested in main amplification reac-

tions using silver-staining and [33P]-labelling approaches for
visualization of AFLP fragments (data not shown). Five
selective bases performed better than six selective bases in main

amplification reactions, indicating the small genome size of the
species, whereas the AFLP protocol using [33P]-labelled
primers resulted in a high reproducibility of laboratory

duplicates (GS ¼ 0.99–1.00). GS estimates lower than 0.99
for blind checks may be attributable to residual heterogeneity
in older varieties (Nunhems-Hild and Juliwa-Enza, personal
communication).

An average PIC value of 0.25 across all AFLP bands scored
and an average marker index of 4.47 across all AFLP primer
combinations (Table 2) corroborated results obtained in

AFLP-based genetic diversity studies in other autogamous
crops such as wheat (PIC ¼ 0.32, MI ¼ 3.41; Bohn et al.
1999) and soybean (PIC ¼ 0.32, MI ¼ 6.14; Powell et al.

1996). The studies on wheat and soybean additionally
compared AFLPs to other molecular-marker systems. Owing
to the high MI values of AFLPs, this marker system has been

recommended for fingerprinting cultivars in plant variety
protection, quality control, and the identification of essentially
derived varieties (Bohn et al. 1999), which is an issue of a
growing relevance in cornsalad breeding.

Genetic diversity in cornsalad elite germplasm

The range of AFLP-based genetic similarities in cornsalad elite
germplasm (0.79 to 1.00) was comparable and slightly wider
than in some other autogamous crops studied with AFLPs.

Within autogamous crops, the available elite germplasms of

cornsalad, barley, pea, and velvet-bean (Russell et al. 1997,
Schut et al. 1997, Capo-chichi et al. 2001, Simioniuc et al.
2002) seem to be narrower than in wheat and soybean (Powell
et al. 1996, Bohn et al. 1999, Soleimani et al. 2002), which may

also be attributable to the differences in assortments of
material in different studies (winter and spring cultivars of
wheat, two- and six-row barley varieties, European and US

soybean germplasm), or to the AFLP primer combinations
used. The low variation in cornsalad might be the consequence
of a narrow germplasm in the breeding programmes of

different companies (Nunhems-Hild and Juliwa-Enza, perso-
nal communication).
The assumption that the currently used cornsalad germ-

plasm relies on a rather narrow genetic base was supported

with the apparent grouping of all modern line varieties
studied (except the �CS-5�) in two sub-clusters of the major
UPGMA cluster. Nevertheless, four old varieties interspersed

the �elite� cluster (�CS-8�, �CS-45�, and �CS-46� in the sub-
cluster A, �CS-50� in sub-cluster B), whereas some of
the genebank accessions studied formed neighbouring sub-

clusters D and E (Fig. 1). Morphologically similar varieties
originating from the old variety �Louvier� grouped in sub-
cluster C. A high genetic similarity was confirmed between

two old, phenotypically different but related lines �CS-44� and
�CS-1� (GS ¼ 0.93) in the sub-cluster D. Lines in sub-clusters
C and D were known to be distinct from the rest of cornsalad
germplasm spectrum (Nunhems-Hild and Juliwa-Enza, per-

sonal communication).
The matrix of co-ancestry estimates among six cornsalad

genotypes was poorly correlated with the respective matrix of

GS values (r ¼ 0.19, P < 0.05), comparable with barley
(Graner et al. 1994) and soybean (Cox et al. 1985). Low-to-
moderate correlations between marker-based GS values and

pedigree estimates may be due to a high �background similarity�
among unrelated accessions at the marker level (Graner et al.
1994). Marker-based GS estimates provide more information

than pedigree data because they detect sequence variation and
bypass assumptions inherent to pedigree analysis.
Morphological traits such as prominence of veins on the leaf

surface, concave profile of the leaf (�spoon-forming� ability),
and seed size have been selected as reliable descriptors of
cornsalad. Line varieties characterized with a concave leaf
profile, large seed sizes, and a strong prominence of veins on

the leaf surface, were present in almost each AFLP-based
sub-cluster, the latter two being moderately concentrated in
sub-cluster B. Nevertheless, the strongly-veined leaf line

�Etampes� clustered with weak-veined lines �CS-27� and
�CS-30� (sub-cluster A). In conclusion, AFLP-based groups
in elite cornsalad germplasm revealed no apparent morpholo-
gical pattern, which was in contrast to cereals (Russell et al.

1997, Bohn et al. 1999) or maize (Pejic et al. 1998, Lübberstedt
et al. 2000).

Fingerprinting of Valerianella and Fedia species

Compared with elite germplasm of cornsalad, the average GS

estimate in exotic germplasm was considerably lower (GS ¼
0.47). As a consequence, the second major cluster in UPGMA
analysis demonstrated a greater genetic diversity within exotic

germplasm accessions and contained mostly the species related
to V. locusta (Fig. 1). Different species were clearly divided
into separate sub-clusters, V. echinata being the most distant to
all others. Three accessions of F. cornucopiae clustered
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together and separately from Valerianella accessions, which is
in accordance with allogamy and distinct morphology in Fedia.
Formerly classified as Valeriana cornucopiae, Fedia was
recently re-classified into a separate genus (USDA 2003), and

is currently tested for broadening the genetic base of V. locusta
(Nunhems-Hild, personal communication). The only cultiva-
ted variety clustering with other species was the formerly

grown accession �CS-59�, which was consistent with its origin
from V. eriocarpa (Juliwa-Enza, personal communication).
The UPGMA clustering of Valerianella and Fedia species,

established by AFLPs, generally confirmed their taxonomic
classification. Closer clustering of one V. rimosa accession to
V. dentata (GS ¼ 0.92) than to the other accession of V. rimosa
(GS ¼ 0.89) might denote that either the classification of these

accessions was not correct or that both species are genetically
very close.

Molecular variance measured with AMOVA was three times

higher within than between cornsalad germplasm sets. This is
in disagreement with results in wheat (Soleimani et al. 2002)
and with the genetic structure usually observed within

self-pollinated plants (Hamrick and Godt 1997), but can be
explained by the presence of different species in the study.

Application of molecular-marker technology is becoming a

common practice for studying various aspects of plant
genetic resources management (Bretting and Widrlechner
1995, Brown and Kresovich 1996, McGregor et al. 2002). In
the present study, two independent V. carinata accessions

(sub-cluster E) were identical (GS ¼ 1). One of the acces-
sions was obtained from the genebank at IPK Gatersleben,
the other from the germplasm collection of Nunhems-Hild.

However, both institutions obtained seed of the same
accession from the Botanical Garden in Bordeaux, and
named and propagated it independently. Thus, AFLP

fingerprinting proved efficient in detecting duplicates in
germplasm collections.

Application of AFLP fingerprinting in cornsalad breeding

Cornsalad breeding currently relies on phenotypic selection.
AFLPs proved to be a robust and informative marker

technique for detecting genetic diversity in cornsalad and can
further be applied for (i) selection of divergent parent
genotypes in order to develop segregating populations with

increased genetic variation for subsequent selection, (ii)
marker-assisted selection for the introgression of desirable
chromosome segments from a wild species into an elite

variety, (iii) distinctiveness, uniformity and stability (DUS)
testing, as well as for the protection of breeders� rights
regarding the approaches of essentially derived variety (EDV)
concept.

Former breeding materials and V. locusta genebank
accessions that carry favourable or phenotypically attractive
traits, which clustered close to the cultivated cornsalad

germplasm in the study, might serve as an immediate genetic
resource for broadening the elite germplasm base, as those
crosses are easy to perform. Alternatively, recently developed

interspecific crosses might contribute to the introgression of
new genes (such as resistance genes) from related species into
cultivated material. Systematic fingerprinting of all 181

taxonomically classified Valerianella species should provide
valuable information about those most closely related to
V. locusta as the most promising candidates for successful
interspecific crosses.

Acknowledgements

The authors are grateful to the breeding companies Nunhems-Hild and

Juliwa-Enza for contributing the plant material for the study and for

communicating their valuable breeding experiences with the crop. The

supply of information about Valerianella genebank accessions from
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Abstract 
 

Twelve AFLP (EcoRI/MseI) primer combinations and ten ISSR primers were applied to 

estimate genetic diversity among 68 cultivated radish varieties. The material consisted of 

open-pollinated varieties, inbred lines, diploid and a few tetraploid hybrid varieties of garden 

radish (Raphanus sativus var. sativus) and Black radish (R. sativus var. niger). Two 

accessions of uncultivated relatives of radish that as weeds cause serious contamination 

during the process of hybrid radish production were added to the analyses. Polymorphic 

AFLP and ISSR fragments were scored for calculation of Jaccard’s coefficient of genetic 

similarity (GS). Substantial levels of genetic variability (average AFLP-based GS = 0.70; 

average ISSR-based GS = 0.61) were detected in the available germplasm of cultivated 

radish. UPGMA cluster analyses separated two weedy species from the cultivated germplasm 

and indicated diversification within cultivated material. Black radish and French Breakfast 

radish types formed separate clusters, apart from the remaining germplasm. Based on AFLP 

data, a principal coordinate analysis (PCoA) and model-based approach revealed the genetic 

structure within cultivated radish germplasm and confirmed the existence of divergent pools. 

Although the model-based approach did not separate Black radish from French Breakfast 

radish varieties, it offered a clear sub-division within garden radish germplasm. The results of 

this study are relevant for the creation of heterotic pools for hybrid radish breeding. 

 

Keywords: AFLP, Cluster analysis, Genetic diversity, Genetic structure, ISSR, Principal 

coordinate analysis, Radish 
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Introduction 
 

Radish (Raphanus sativus L.) is an important commercial vegetable, consumed worldwide. It 

is an ancient domesticate, initially cultivated in China and Korea (Kaneko and Matsuzawa, 

1993). The first European variety of cultivated radish was recorded in the 16th century (Wein, 

1964; George and Evans, 1981). Based on the latest available information, the production of 

radish in Europe amounts to 120 000 t (Vogel, 1996). 

Taxonomy classifies radish within the family Brassicaceae into the section Raphanis DC 

(Kaneko and Matsuzawa, 1993). Of six species in the section, only Raphanus sativus L. var. 

sativus convar. radicula (DC.) Pers. (garden or European radish) and R. sativus L. var. niger 

(Mill.) (Black or Spanish radish) are cultivated and commonly grown for their thickened 

fleshy hypocotyle and the upper part of the root. They cross freely and easily with related 

species, such as Chinese small radish (R. sativus L. var. sativus convar. sinensis) and R. 

raphanistrum L. Radish is a self-incompatible, open-pollinated, diploid species with a 

chromosome number 2n = 18 and small genome size (C-value = 0.55 pg, 

http://www.rbgkew.org.uk/cval/homepage.html). 

Radish breeding was practiced for centuries, by means of mass or pedigree selection. 

Since two decades, the production of F1 hybrids using cytoplasmatic male sterility has widely 

replaced simple breeding methods based on morphological traits (Banga, 1976). Uniformity 

of varieties is becoming a high priority goal in radish breeding. Over a third (35%) of 

currently grown radish varieties in Germany are F1 hybrids, thus indicating a significant 

increase during the period of last 15 years (Bundessortenamt, 1986, 2001). Most breeding 

work is aimed at further adaptation to different growing conditions, improved resistance to 

pests (Peronospora parasitica, Albugo candida) (Vogel, 1996), and improved marketing 

conditions. Specific market preferences strongly influence the selection of morphological 

traits of root considered in the breeding process of radish (A. Schieder, personal 

communication). Thus, garden radish is bred for round, light-red colored roots, French 

Breakfast radish type has a unique oblong red root shading to white at tip, whereas Giant 

radish type possesses a stronger, red-fleshed root, wider in diameter and not prone to 

sponginess and glassiness. 

Advanced practices in breeding major crops have demonstrated the superiority of inter-

group over intra-group hybrids. For the optimum exploitation of heterosis, the parental lines 

should be derived from genetically unrelated germplasm pools, commonly referred to as 
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heterotic groups (Melchinger and Gumber, 1998). Only few studies have so far been 

conducted to estimate phenotypic (George and Evans, 1981) or genetic diversity of radish 

cultivars (Ellstrand and Marshall, 1985; Demeke et al., 1992; Thormann et al., 1994; Rabbani 

et al., 1998; Huh and Ohnishi, 2003). None of the currently available studies has focused on a 

wider set of European radish cultivars. Molecular markers, such as amplified fragment length 

polymorphisms (AFLPs, Vos et al., 1995) and inter simple sequence repeats (ISSRs, 

Zietkiewitcz et al., 1994), were already successfully applied in genetic diversity analyses in 

various crops (Zhu et al., 1998; Bohn et al., 1999; Simioniuc et al., 2002), and confirmed the 

classification of germplasm into known heterotic groups (Pejic et al., 1999; Lübberstedt et al., 

2000). 

Our objectives were to establish the AFLP and ISSR protocols for radish, and apply them 

to (i) investigate the genetic diversity of a set of radish varieties that have currently been 

commercially produced in Europe, and (ii) identify possible heterotic pools within available 

cultivated radish germplasm. Furthermore, a method for an early detection of weed (Chinese 

small radish and R. raphanistrum) in cultivated radish can be derived from our study. 

 

 

Materials and Methods 
 

Plant materials and DNA extraction 

 

Sixty-eight accessions of cultivated radish grown in Europe were chosen for the study. The 

materials consisted of inbred lines, diploid and tetraploid hybrid varieties, and open-pollinated 

varieties of garden radish and Black radish. One accession of Chinese small radish (R. sativus 

var. sativus convar. sinensis) and one accession of R. raphanistrum were added to the study 

(Table 1). Two control types were included to test the reliability and reproducibility of the 

AFLP and ISSR protocols: (1) blind check – an accession sown twice under coded numbers, 

and (2) laboratory duplicate – a randomly chosen accession duplicated after DNA extraction 

and re-duplicated in consecutive steps of the analyses. 

Plants were grown either in the open field or greenhouse, depending on their preferred 

growing conditions. Distinctive morphological traits for Giant radish, Black radish, and 

French Breakfast radish were estimated according to the standard criteria of UPOV 

(International Union for the Protection of New Varieties of Plants). 
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From a bulk of 20-30 plants per accession, 2-3 g of fresh leaf material was ground to a 

fine powder in liquid nitrogen. The extraction of genomic DNA was done following the 

modified CTAB procedure (Hoisington et al., 1994). 

 

AFLP and ISSR protocols 

 

AFLP fingerprints were produced according to the original protocol of Vos et al. (1995), 

modified by Muminović et al. (2004). For selective amplifications, each of the EcoRI and 

MseI primers carried three selective nucleotides. In total, 12 EcoRI/MseI primer combinations 

were employed. 

For ISSR amplification reactions a protocol of Ratnaparkhe et al. (1998) was modified: 

100 ng genomic DNA, 1 µM ISSR primer (Sigma-Ark, Darmstadt), 0.5 mM dNTPs, 1 mM 

MgCl2, 1 x PCR buffer, and 1 U Taq DNA polymerase (Amersham Biosciences Europe 

GmbH, Freiburg). Amplifications were performed with an initial step at 95 °C for 1 min, 

followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 48 °C for 30 s, and 

elongation at 72 °C for 2 min. The final step of an additional extension was at 72 °C for 10 

min. In total, 10 ISSR primers were tested. Amplified products were separated by 

electrophoresis on 2% agarose gels (Biozym agarose DNA, Oldendorf), stained in ethidium-

bromide, and visualized under UV light. 

AFLP fragments ranging from 50 to 350 bp in length, and ISSR fragments between 350 

and 2100 bp, were scored manually as present (1) or absent (0), and transferred to a respective 

(AFLP or ISSR) binary matrix to be separately analyzed. Only distinct and polymorphic 

major bands were chosen for the study. 

 

Statistical analyses 

 

To evaluate the discriminatory power of molecular markers, polymorphic information content 

(PIC) and marker index (MI) were calculated across assay units. Each single AFLP primer 

combination and ISSR primer was assumed an assay unit. PIC value was calculated applying 

the formula of Roldán-Ruiz et al. (2000): PICi = 2fi(1 - fi), where fi is the frequency of the 

amplified allele (band present), and (1 – fi) is the frequency of the null allele (band absent) of 

marker i. MI was determined as the product of PIC and the number of polymorphic bands per 

assay unit (Powell et al., 1996). 
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To estimate the level of genetic diversity, genetic similarity (GS) between the two 

varieties i and j was calculated by applying the formula of Jaccard (1908): GSij = Nij / (Ni + Nj 

- Nij), where Ni is the number of detected bands in a variety i and not in variety j, Nj is the 

number of detected bands in a variety j and not in variety i, and Nij is the number of bands 

common to varieties i and j. Estimation of GS values and the calculation of their standard 

errors (SE) by jackknife procedure with re-sampling over primers (Miller, 1974) were done 

with Plabsim software (Frisch et al., 2000), which is implemented as an extension of the 

statistical software R (Ihaka and Gentleman, 1996). The calculation of correlation between 

matrices of GS estimates based on AFLPs and ISSRs, as well as the UPGMA (unweighted 

pair group method using arithmetic averages, Sneath and Sokal, 1973) clustering method were 

conducted with the NTSYSpc version 2.0 (Rohlf, 1998). Reliability of dendrograms was 

tested by bootstrap analyses with 1000 replications to assess brunch support, using Winboot 

software (Yap and Nelson, 1996). 

To obtain a clear view of the classification pattern in the available radish germplasm and 

thus detect possible heterotic groups, F1 hybrids and the two accessions of weedy crops were 

excluded from the initial set of materials, and only AFLP data were used. A principal 

coordinate analysis (PCoA, Gower, 1966), was applied to graphically represent the 

relationship structure in radish germplasm. Computations were performed on the basis of 

GS−1  matrix which possesses Euclidean distance properties (Gower and Legendre, 1986), 

applying the Plabsim software. Additionally, a model-based approach described by Pritchard 

et al. (2000) and extended by Falush et al. (2003) was used to infer population structure of the 

data set. Given a value for the number of subpopulations (clusters), this method assigns 

individuals from the entire sample to clusters in a way that Hardy-Weinberg disequilibrium 

and linkage disequilibrium are maximally explained. Three independent runs of 

STRUCTURE 2.1 software were conducted by setting the number of populations (K) from 1 

to 6, and applying the “No admixture” model. For each run, we set 100000 repetitions for the 

burn-in time and additional 150000 for replication number. The run with the maximum 

likelihood was used to assign varieties to inferred clusters. The proportions of individual 

radish varieties assigned to inferred clusters were used to identify so-called meaningful 

groups. For each number of populations (K) a cluster was defined meaningful if it contained 

at least one variety represented with a proportion of 50% or more. 
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Results 
 

AFLP and ISSR data 

 

The 12 AFLP primer combinations tested revealed a total number of 349 bands, with 267 

(76.5%) selected as clearly distinct and reliable for data processing (Table 2). Average PIC 

values ranged from 0.18 to 0.29, whereas MI varied between 2.68 and 9.01 (Table 2). 

Applying 10 ISSR primers 116 bands were detected, with 45 (38.8%) being clearly distinct 

and reliable for data processing (Table 3). Average PIC values were between 0.14 and 0.43, 

and MI varied from 0.37 to 2.56 (Table 3).  

Reliabilities of established AFLP and ISSR protocols were confirmed by high GS 

estimates between blind checks (GS ranged from 0.89 to 0.98 for AFLPs, and from 0.81 to 

1.00 for ISSRs), as well as between laboratory duplicates (GS from 0.98 to 1.00 for AFLPs, 

and from 0.95 to 1.00 for ISSRs) (data not shown).  

 

Genetic similarities among varieties and UPGMA cluster analyses 

 

Genetic similarities based on AFLPs ranged from 0.16 (R. raphanistrum x April Cross) to 

1.00 (Wernar x Isar), with the mean of GS = 0.70. Standard errors for GS estimates varied 

from 0 to 0.07. GS estimates based on ISSRs ranged from 0.20 (JW 18 x April Cross) to 1.00 

(Wernar x Isar and JW 18 x JW 19), with a mean of GS = 0.61. Standard errors for those GS 

estimates varied between 0 and 0.2. The correlation between AFLP- and ISSR-based GS 

estimates was high (r = 0.80, P < 0.01). 

UPGMA cluster analyses of GS estimates based on AFLPs (Fig. 1) or ISSRs (Fig. 2) 

generated similar clustering patterns, although the cluster order in the dendrograms was not 

absolutely identical. Both analyses clearly separated R. raphanistrum from R. sativus (Fig. 1; 

Fig. 2). Although Black radish varieties (R. sativus var. niger) did not create a clearly 

independent cluster, their separation from garden radish (R. sativus var. sativus) was apparent. 

Within garden radish varieties, separate clusters were evident for French Breakfast radish and 

Giant radish types, with three Giant radish varieties (Falco, Rota, and Riesenbutter) apart 

from their main cluster. Additionally, garden radish varieties clustered closer if they 

originated from the same breeding company (Table 1; Fig. 1 and 2). 
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Principal coordinate analysis and analysis of genetic structure 

 

First two principal coordinates in the PCoA accounted for 12.8 and 7.4% of the total variation 

(Fig. 3). Separate groups of Black radish, French Breakfast radish, and Giant radish could be 

detected. Only two Giant radish varieties (Falco and Rota) grouped away from the main Giant 

radish unit, and were closer to garden radish. The varieties and lines of garden radish made 

almost a compact group. 

Applying the model-based approach, all varieties were assigned to meaningful clusters at 

the number of populations K = 3. The estimated likelihoods for K = 3 were comparable or 

higher than for K = 4-6 among the independent runs of the program. The run with highest ln-

likelihood at K = 3 was used to define the model-based groups (Table 4). The largest group 

(49% of varieties) consisted of three inbred lines and 15 varieties of garden radish or Giant 

radish varieties. The second group contained 11 varieties (30%) and included Black radish, 

French Breakfast radish types, and two garden radish varieties (Neckarperle, Red Silk). The 

last model-based group had eight garden radish varieties (21%). 

 

 

Discussion 
 

Reliability of AFLP and ISSR protocols for radish 

 

Molecular marker approaches are considered accurate in fingerprinting plant genome, so the 

inclusion of duplicates is not a general practice. To optimize our AFLP protocol for radish, 

we analyzed primers with a total of five and six selective nucleotides in the main 

amplification reactions, and tested silver-staining and radioactive labeling approaches for the 

visualization of amplified fragments. Main amplification reactions with six selective 

nucleotides produced a clear banding pattern with a reduced background “noise” on 

polyacrylamide gels. Compared with silver-staining for visualization of AFLP fragments, the 

protocol using radioactive labeling of the EcoRI primers resulted in a higher reproducibility 

of control types (data not shown). 

Di-nucleotide repeat ISSR primers produced the highest average number of bands (Table 

3) and were generally more frequent in radish genome than tri-nucleotide repeats. 

Nevertheless, they could not be used alone to efficiently differentiate between radish varieties. 



Muminović et al. (2004) Journal of the American Society for Horticultural Science. In press 
 
 
 

 27

Similar results were found in wheat (Nagaoka and Ogihara, 1997), rice (Akagi et al.,1997; 

Blair et al., 1998), and Diplotaxis (Brassicaceae) (Martín and Sánchez-Yélamo, 2000). Tri-

nucleotide repeat ISSR primers yielded the highest amount of polymorphic bands and 

indicated their specificity within radish genome (Table 3). Primers having tetra-nucleotide 

repeats of the core sequence produced no fragments in radish (data not shown), which is in 

contrast to studies on pea (Lu et al., 1996), maize (Gupta et al., 1994), and Diplotaxis 

(Brassicaceae) (Martín and Sánchez-Yélamo, 2000). The 5’-end anchored primers yielded the 

highest average number of bands in our study, whereas the unanchored primers yielded the 

highest average number of polymorphic bands. Primers anchored at the 5’-end generate a 

higher number of fragments because they display broader specificity than the others (Bornet 

and Branchard, 2001). In general, the higher the density of repeats in a genome is, the more 

specific primers and more stringent PCR conditions should be used to limit the number of 

amplified products and to optimise their resolution on a gel (Fang et al., 1997). 

In both molecular marker systems, the range of variation in GS estimates of blind checks 

was wider than of laboratory duplicates. This may be due to heterozygosity and heterogeneity 

present in radish varieties (A. Schieder, personal communication). Even F1 hybrids in radish 

cannot be considered homogeneous because a critical level of inbreeding depression of 

parental inbreds is reached after only a few selfing generations (Kaneko and Matsuzawa, 

1993). 

An average PIC value of 0.24 across all scored AFLP bands (Table 2) agreed with the 

results obtained in AFLP-based genetic diversity studies of soybean, wheat, maize, and 

Lolium (Powell et al., 1996; Bohn et al., 1999; Lübberstedt et al., 2000; Roldán-Ruiz et al., 

2000). The average PIC value of 0.26 across all scored ISSR bands (Table 3) was in harmony 

with the results obtained in an ISSR-based analysis of rice varieties (Nagaraju et al., 2002). A 

comparison of the two marker systems applied in our study indicated that the average MI of 

5.14 in AFLPs (Table 2) was much higher than the average MI of 1.18 in ISSRs (Table 3). 

Thus, AFLPs proved to be a more informative marker system. This may also be the result of a 

comparatively low proportion of bands per ISSR analysis using agarose gels of low resolution 

(Charters et al., 1996; Fang and Roose, 1997). Additionally to their high multiplex ratio, 

AFLPs are highly reproducible and very efficient in detecting polymorphism (Powell et al., 

1996). Owing to their high MI values, AFLPs have been recommended for fingerprinting 

cultivars in plant variety protection, quality control, and the identification of essentially 
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derived varieties (Bohn et al., 1999), which is an issue of a growing relevance in radish 

breeding. 

 

Genetic diversity in radish germplasm 

 

AFLPs and ISSRs differ in the nature of evolutionary mechanisms underlying their variation 

and their distribution in plant genome (Powell et al., 1996). Nevertheless, the results obtained 

from these marker systems were highly correlated, which was in accordance with similar 

studies on amaranth (Xu and Sun, 2001) and Cucurbita pepo (Paris et al., 2003). AFLPs and 

ISSRs generated comparable ranges of variation in GS estimates within the studied radish 

germplasm, and similar to the diversity of other members of the family Brassicaceae studied 

with AFLPs (Srivastava et al., 2001). 

Distribution pattern of radish varieties into different clusters indicated the formation of 

well characterized and coherent groups that were in accordance with their taxonomical order – 

R. sativus var. sativus (convar. radicula and convar. sinensis), R. sativus var. niger, and R. 

raphanistrum. In addition, we confirmed that R. sativus var. niger and R. sativus var. sativus 

were more closely correlated to one another than either was to R. raphanistrum (Fig. 1 and 2). 

The findings that GS estimates between R. sativus varieties and the accessions of R. 

raphanistrum and Chinese small radish were low (Fig. 1 and 2) can be valuable for radish 

breeders who face serious problems in F1 hybrid radish production. Out-crossings between 

cultivated radish and either of the weedy species (that are morphologically hard to 

differentiate from cultivated radish) is easy and frequent (A. Schieder, personal 

communication). In all hybrid radish varieties tested in our study, a band of 1600 kb was 

detected with the ISSR primer (CAA)6, whereas neither Chinese small radish nor R. 

raphanistrum accession produced a band at the same position (Fig. 4). With the ISSR marker 

UBC 890 hybrid varieties did not produce a band at 800 kb as Chinese small radish did, nor at 

580 kb where a band was detected in R. raphanistrum. Those simple ISSR assays could assist 

in estimating the level of seed purity before sowing hybrid radish varieties in the field, and 

could thus further reduce the costs of hybrid radish production. 

The assumption that the currently used European radish germplasm relies on a narrow 

genetic basis (A. Schieder, personal communication) was supported with the apparent 

grouping of all studied radish varieties in sub-clusters with GS estimates higher than 0.70, 

both in AFLPs and ISSRs. Black radish did not mix with garden radish varieties in either 
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AFLP or ISSR cluster, whereas morphologically similar types (French Breakfast radish and 

Giant radish) formed distinct groups. The observation of high GS estimates between garden 

radish varieties originating from the same breeding company agrees with assumed closer 

pedigree relationships. Owing to a high degree of heterogeneity and heterozygosity within 

any radish variety, the detected between-variety diversity is low, but there still is a sufficient 

overall diversity in available radish germplasm. Of 267 AFLP bands used for the analyses, on 

average 156 (58.6%) were polymorphic among open-pollinated varieties, 150 (56.4%) among 

F1 hybrids, and 138 (51.6%) among inbred lines (data not shown). Variation in average values 

of GS estimates within each of the variety groups did not indicate significant differences 

(open-pollinated varieties GS = 0.70, F1 hybrids GS = 0.70, inbred lines GS = 0.60). For an 

accurate diversity study among or within radish varieties, a co-dominant marker system is 

recommended to compensate for a disadvantageous property of AFLPs and ISSRs in masking 

the detection of heterozygous individuals. 

 

Genetic structure of radish germplasm 

 

Radish is an autogamous species with a high degree of self-incompatibility (Banga, 1976; 

George and Evans, 1981), and populations are composed of heterogeneous individuals. PCoA 

based on AFLPs clearly separated radish varieties into morphologically diverse groups, such 

as Black radish, French Breakfast radish, Giant radish, and garden radish varieties (Fig. 3). 

Among Black radish, Duro was slightly separate. It is a unique cross between Black radish 

and garden radish in our study, which explains its close positioning to other garden radish 

varieties. The main reasons why PCoA did not indicate any further division within garden 

radish varieties may rest on a high heterogeneity assumed within them (A. Schieder, personal 

communication) and on the inability of a dominant marker system (such as AFLP) in 

detecting heterozygosity. 

The model-based approach of Pritchard et al. (2000) clearly classified radish varieties 

into three groups (Table 4), comparable to PCoA analysis. The most compact group consisted 

of all Black radish varieties and French Breakfast radish types. Although those varieties are 

characterized with a similar root morphology (long strong roots), it may still be surprising that 

the model-based approach clustered them together when they belong to taxonomically 

different species. Similar results were obtained in wheat diversity study, where Triticum 

durum landraces formed a cluster with T. dicoccum cultivars and were clearly separated from 
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T. durum cultivars (Pujar et al., 1999). The authors supposed that a limited number of 

domestication events during the evolution of T. dicoccum cultivars was the reason for the 

observed clustering. An analogous example was given in a study of Trifolium pratense 

(Kölliker et al., 2003), where Mattenklee landraces were more closely related to field clover 

than to Mattenklee cultivars. The strong selection of Mattenklee cultivars targeted at a single 

trait (persistence) was postulated as the main justification of the unexpected clustering. Based 

on allozyme variation within and among cultivars of Raphanus sativus, domesticated radish 

retained a population structure similar to that of wild populations (Ellstrand and Marshall, 

1985). Regarding the targeted selection of radish, the regional breeding of French Breakfast 

radish was aimed at elongated roots, very different to the small-size round roots of garden 

radish. Finally, another reason why taxonomically distant species grouped to the same 

inferred population may be that French Breakfast radish was represented by too few varieties 

to form a distinct cluster, whereas they are too divergent from garden radish varieties to fit 

into the common cluster. 

Nevertheless, the model-based clustering method of Pritchard et al. (2000) based on three 

inferred populations revealed an unambiguous division within garden radish varieties. The 

available pedigree information (data not shown) was not sufficient to confirm the reliability of 

the applied model-based approach, as it did in studies on maize (Liu et al., 2003) and 

Trifolium pratense (Kölliker et al., 2003). Considering the fact that the model-based approach 

does not rely on a prior population information but only on genotypic data consisting of 

unlinked markers, it may be regarded a clear and independent indication of germplasm 

grouping. The inferred sub-groups within garden radish germplasm can be employed to 

establish heterotic pools in radish. This could serve breeders as a valuable information in the 

creation of further breeding approaches for utilization of the existing substantial level of 

genetic variation within European modern cultivars of radish, which we detected with AFLPs 

and ISSRs. It can assist them in the choice of parents for crossing, defining priorities, and 

reducing the costs in radish variety improvement. For any further elucidation of the garden 

radish complex and for a confirmation of division within its germplasm, additional studies 

involving a larger number of varieties, and preferably a co-dominant molecular marker system 

would be essential. 
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Tables and Figures 
 

Table 1: Varieties of garden radish and Black radish z, as well as the accessions of wild 
relatives of radish analyzed with AFLP and ISSR molecular markers 
 
Variety name (or code) Genetic constitution Production type y Breeding company 
JW 6 inbred line OF Juliwa - Enza 
JW 9 inbred line OF Juliwa - Enza 
JW 14 inbred line OF Juliwa - Enza 
April Cross z F1 hybrid  Juliwa - Enza 
Cheriette F1 hybrid  Sakata Seed 
Content F1 hybrid UG Enza Zaden 
Donar F1 hybrid UG Syngenta 
Favorella F1 hybrid UG Nickerson-Zwaan 
Florent F1 hybrid UG Enza Zaden 
Fluo F1 hybrid  Vilmorin 
Hyronda F1 hybrid  Juliwa – Enza 
Isar F1 hybrid OF Syngenta 
JW 16 F1 hybrid OF Juliwa – Enza 
JW 17 F1 hybrid OF Juliwa – Enza 
JW 18 F1 hybrid OF Juliwa – Enza 
JW 19 F1 hybrid OF Juliwa – Enza 
JW 20 F1 hybrid OF Juliwa – Enza 
Masterred F1 hybrid OF Royal Sluis 
Novella F1 hybrid UG Nickerson-Zwaan 
Picard F1 hybrid OF Rijk Zwaan 
Printo F1 hybrid OF Nickerson-Zwaan 
Radius F1 hybrid UG Enza Zaden 
Rondar F1 hybrid OF/UG Syngenta 
R3 F1 hybrid OF Juliwa - Enza 
R6 F1 hybrid OF Juliwa - Enza 
R16 F1 hybrid OF Juliwa - Enza 
R49 F1 hybrid UG Nunhems - Hild 
R50 F1 hybrid UG Nunhems - Hild 
R51 F1 hybrid UG Nunhems - Hild 
Sunto F1 hybrid OF Nickerson-Zwaan 
Tarzan F1 hybrid UG Enza Zaden 
Trespa F1 hybrid UG Enza Zaden 
Vitella F1 hybrid UG Nickerson-Zwaan 
Wernar F1 hybrid OF Syngenta 
Boy 4n  Nunhems - Hild 
Duro z 4n  Chrestensen 
Fanal 4n  Nunhems - Hild 
Cherry Belle op  Nickerson-Zwaan 
Eiszapfen z op  Juliwa - Enza 
Eterna op  Juliwa - Enza 
Falco op OF Juliwa - Enza 
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Flair op UG/OF Rijk Zwaan 
Flamboyant op  Juliwa - Enza 
Hilds Blauer Herbst z op  Nunhems - Hild 
Hilmar op UG Nunhems - Hild 
JW 30 op  Juliwa - Enza 
JW 31 op  Juliwa - Enza 
Karissima op UG Nunhems - Hild 
Marabelle op OF/UG Nickerson-Zwaan 
Neckarperle op OF Nunhems - Hild 
Neckarruhm rot z op  Nunhems - Hild 
Neckarruhm weiss z op  Nunhems - Hild 
Nelson op  Gautier Graines 
Parat op  Juliwa - Enza 
Patricia op  Nunhems - Hild 
Raxe op  Nunhems - Hild 
Red Silk op  Harris Moran 
Ribella op OF Nickerson-Zwaan 
Riesenbutter op  Juliwa - Enza 
Rondeel op  Rijk Zwaan 
Rota op  Rijk Zwaan 
Rudi op OF Juliwa - Enza 
Runder Schwarzer Winter z op  Nunhems - Hild 
Saxa – Rafine op OF Rijk Zwaan 
Silva op OF Juliwa - Enza 
Sirri op OF Rijk Zwaan 
Sora op  Nunhems - Hild 
Topsi op UG/OF Nunhems - Hild 
Chinese small radish (wild species) weed - 
R. raphanistrum (wild species) weed - 
z Black radish varieties 
y OF designates production in the open field; UG designates the production under glass 
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Table 2: Polymorphic information content (PIC) and marker indices (MI) per AFLP primer 
combination in 70 accessions of radish (Raphanus sativus L.), Chinese small radish, and R. 
raphanistrum 
 
Primer 
combination z 

Total No. 
of bands 

No. of selected 
polymorphic bands

PIC MI

E33/M59 51 42 0.21 9.01
E33/M60 29 20 0.28 5.63
E33/M62 35 28 0.24 6.72
E35/M59 31 31 0.23 7.00
E35/M60 43 35 0.22 7.84
E38/M47 30 19 0.18 3.46
E38/M48 23 17 0.29 4.90
E39/M48 19 11 0.24 2.68
E39/M50 29 19 0.25 4.72
E40/M47 24 17 0.28 4.76
E41/M59 18 16 0.27 4.39
E41/M61 17 12 0.23 2.71
Total 349 267 - -
Average 29.08 22.25 0.24 5.14
z EcoRI and MseI primer codes correspond to the official nomenclature available at 
http://www.keygene.com/html/nomenclature.htm 
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Table 3: Polymorphic information content (PIC) and marker indices (MI) per ISSR primer in 
70 accessions of radish (Raphanus sativus L.), Chinese small radish, and R. raphanistrum 
 
Primer Sequence z Total No.

of bands
No. of selected

polymorphic bands
PIC MI 

CAA (CAA)6 9 7 0.22 1.51 
GCT-Y (GCT)4Y 11 6 0.14 0.81 
UBC 811 (GA)8C 16 6 0.43 2.56 
UBC 825 (AC)8T 8 2 0.24 0.47 
UBC 855 (AC)8YT 9 4 0.29 1.17 
UBC 857 (AC)8GG 18 2 0.18 0.37 
UBC 864 (ATG)6 8 6 0.27 1.64 
UBC 866 (CTC)6 11 5 0.33 1.67 
UBC 889 DBD(AC)7 15 3 0.29 0.86 
UBC 890 VHV(GT)7 11 4 0.19 0.75 
Total - 116 45 - - 
Average - 11.6 4.5 0.26 1.18 
z Primer motif is bolded; Y = pyrimidine; B = C, G, or T; D = A, G, or T; H = A, C, or T; V = 
A, C, or G 
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Fig. 1: Association among 68 varieties of radish (Raphanus sativus L.) and two related 
species revealed by average linkage (UPGMA) cluster analysis of Jaccard’s genetic similarity 
(GS) coefficients calculated from AFLP data of 12 primer combinations. Numbers at the 
nodes indicate the bootstrap values of the consensus tree obtained (branches lacking the value 
received < 30% bootstrap support). Symbols designate genetic constitution of a variety and an 
evaluation of specific morphological traits. 

Legend:
- open-pollinated variety; - F1 hybrid; - tetraploid variety; - inbred line
- Black radish; - French Breakfast radish; - Giant type radish
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Fig. 2: Association among 68 varieties of radish (Raphanus sativus L.) and two related 
species revealed by average linkage (UPGMA) cluster analysis of Jaccard’s genetic similarity 
(GS) coefficients calculated from ISSR data of 10 primer combinations. Numbers at the nodes 
indicate the bootstrap values of the consensus tree obtained (branches lacking the value 
received < 30% bootstrap support). Symbols designate genetic constitution of a variety and an 
evaluation of specific morphological traits. 

Legend:
- open-pollinated variety; - F1 hybrid; - tetraploid variety; - inbred line
- Black radish; - French Breakfast radish; - Giant type radish
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Fig. 3: Association among three inbred lines and 34 open-pollinated varieties of cultivated 
radish (Raphanus sativus L.) revealed by principal coordinate analysis (PCoA) performed on 
genetic similarity estimates calculated from AFLP data of 12 primer combinations. Symbols 
designate an evaluation of specific morphological traits. 
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Table 4: Model-based grouping of three inbred lines and 34 open-pollinated varieties of 
cultivated radish (Raphanus sativus L.), using AFLP data 
 
Group Variety 
I JW6 z, JW9 z, JW14 z, Boy, Fanal, Falco y, Flair, JW30, JW31, Marabelle, 

Parat y, Raxe y, Rota y, Rudi, Silva, Sirri, Sora y, Topsi 
II Duro x, Eiszapfen x, Flamboyant w, Patricia w, Hilds Blauer Herbst x, 

Neckarperle, Neckarruhm rot x, Neckarruhm weiss x, Nelson w, Red Silk, 
Runder Schwarzer Winter x 

III Cherry Belle, Eterna y, Hilmar, Karissima, Ribella, Riesenbutter y, Rondeel, 
Saxa-Rafine 

z Inbred lines 
y Giant radish variety 
x Black radish varieties 
w French Breakfast radish varieties
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Fig. 4: Image of (a) a sample of hybrid varieties of radish and (b) accessions of weedy species 
(A – Chinese small radish; B – Raphanus raphanistrum) tested with ISSR marker (CAA)6. 
Only hybrid varieties produced a band of 1600 kb in size. 
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Abstract
Genetic relationships among elite celeriac varieties and celeriac accessions conserved in gene-

banks are generally unknown. The objective of this study was to use amplified fragment length

polymorphism (AFLP) markers and morphological characterization to identify material that

could be of use in celeriac breeding. Genetic relationships were estimated in 34 elite celeriac var-

ieties bred inEurope and28 celeriac accessions conserved at theGermangenebank. Twovarieties

of celery, two varieties of leaf celery and three genebank accessions of wild Apium species were

additionally analysed. Fifteen Eco RI/Mse I-based AFLP primer combinations were used. Poly-

morphic AFLP fragments were scored for calculation of Jaccard’s coefficient of genetic similarity

(GS). Morphological distances (MD) were determined based on 11 morphological traits. Average

GS estimate in elite germplasm (GS ¼ 0.90) was higher than in exotic germplasm (GS ¼ 0.80). An

AMOVA (analysis of molecular variance) revealed that a high proportion of variation was due to

variation within elite celeriac varieties and genebank accessions. Although GS and MD matrices

were poorly correlated (r ¼ 0.22), UPGMA (unweighted pair group method using arithmetic

averages) cluster analyses revealed clear genetic groupings of celeriac germplasm, which was

supported by morphological traits. Elite, moderately bred and exotic varieties formed distinct

clusters, indicating that only a part of the available genetic diversity in celeriac germplasm has

been exploited in breeding. Distinct Apium species might be useful for the introgression of

new genes into cultivated celeriac material. Broadening of celeriac collections in genebanks

and detection of new genetic resources are vital for improvements in celeriac breeding.

Keywords: AFLP; AMOVA; Apium graveolens; cluster analysis; genetic resources; genetic similarity;

morphological distance

Introduction

Apium graveolens L. (family Apiaceae) is the only culti-

vated species of the Apium genus (Quiros, 1993).

Although the Mediterranean basin is considered the

centre of origin, Argentina and Chile are the countries

richest in Apium species. They are most commonly

found in coastal areas, which implies that water currents

may have played a significant role in their distribution.

Cultivation of A. graveolens most likely started as early

as 400 BC, when ancient Egyptians and Romans used it

as a medicinal crop. First records on its domestication

as a true vegetable date back to the 16th century in the

Mediterranean region (Smith, 1979; Quiros, 1993).* Corresponding author. E-mail: Thomas.Luebberstedt@agrsci.dk
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Very early, selection started in two directions: for solid

and succulent petioles in one, and for enlarged hypoco-

tyls in the other. A. graveolens L. comprises three distinct

taxonomic varieties, grown for different economic pur-

poses. Most widely grown is A. graveolens var. dulce

(common name celery), which develops succulent, solid

petioles. A. graveolens var. rapaceum (common name cel-

eriac or root celery) is characterized by swollen hypocotyl

and root tissue that results in a strongly flavoured, globe-

like structure. The plants of A. graveolens var. secalinum

(common name leaf celery or smallage) have slender,

leafy petioles and are used mostly for their leaves as a

condiment garnish or for medicinal purposes.

A. graveolens is a biennial crop (2n ¼ 22; 3 £ 109 bp

DNA) with a very high degree of outcrossing (approxi-

mately 70%) due to wind and insect pollination (Quiros,

1993). Its flowers are small, with different developmental

stages within the same umbel, thus making the emascula-

tion of individual anthers difficult. A genetic male sterile

genotype has been observed in weedy Iranian species

(Quiros, 1993). Therefore nearly all celeriac varieties pro-

duced at the moment are open-pollinated. Regarding the

latest available information (Bundessortenamt, 2001), the

area cultivated with celeriac is steadily increasing, and

currently reaches 1720 ha in Germany (approximately

4% of the total vegetable-growing area in the country).

The main objectives in celeriac breeding are uniformity

(in colour, size and yield), quality and disease resistance

(Bundessortenamt, 2001). The preferred celeriac varieties

are characterized by round-shaped tubers, white skin

colour and low insertion of roots. Tubers of high inner

quality possess a firm consistency and weak internal

rust spots of the flesh. Furthermore, varieties with white

flesh after cooking are favoured. Major diseases in celer-

iac are foliar late blight (Septoria apiicola) and celery

root rot (Phoma apiicola Kleb.). Genes for resistance to

Septoria are found in some wild species, such as A. nodi-

florum. Nevertheless, the attempts to hybridize A. grave-

olens with wild species have failed so far (Quiros, 1993).

The variability of germplasm used in celeriac breeding

is assumed to be narrow and demands broadening

(J. Dijkstra, personal communication). Nevertheless, cel-

eriac accessions are poorly represented in genebanks

(Quiros, 1993) and their relationships to commercially

grown celeriac varieties have not been studied. In

addition to the large working collection of Apium germ-

plasm maintained at the University of California, USA

(Quiros, 1993), the German genebank (Gatersleben,

Germany) conserves a collection of 166 accessions of

diverse Apium species, of which 36 are the accessions

of celeriac.

Morphological, isozyme, restriction fragment length

polymorphism (RFLP) and randomly amplified poly-

morphic DNA (RAPD) studies (Quiros et al., 1987;

Huestis et al., 1993; Yang and Quiros, 1993) have been

conducted for the characterization of celery. Genetic

variability of celeriac varieties that are either commer-

cially grown or available in genebanks has not yet been

studied. Development of reliable molecular marker sys-

tems such as amplified fragment length polymorphisms

(AFLPs; Vos et al., 1995) allows estimation of the diversity

present in crop plants, thus facilitating future breeding

and genebank management activities. AFLPs have been

successfully applied to analyse genetic diversity in var-

ious crops (Kim et al., 1998; Zhu et al., 1998; Abdalla

et al., 2000; Lombard et al., 2000; Simioniuc et al.,

2002), as well as to characterize genebank accessions

(Capo-chichi et al., 2001; McGregor et al., 2002).

The objective of our study was to use morphological

characterization and AFLP fingerprinting in celeriac to

(i) estimate the genetic diversity among (a) European cel-

eriac varieties and (b) a set of old celeriac varieties and

genebank accessions from the genus Apium conserved

at the genebank of the Institute of Plant Genetics and

Crop Plant Research (IPK, Gatersleben, Germany), as

well as to (ii) identify genetically diverse material that

might have potential in celeriac breeding.

Materials and methods

Plant materials and DNA extraction

Sixty-nine accessions of celeriac and related species were

included in the study. They were divided into two sets.

The first set, further referred to as elite germplasm, con-

tained 31 open-pollinated and three F1 hybrid celeriac

varieties that have undergone more or less intensive

breeding in Europe. The second set, further referred to

as exotic germplasm, consisted of 28 open-pollinated for-

merly grown celeriac varieties, two varieties of celery,

two varieties of leaf celery and three genebank acces-

sions of wild Apium species (Table 1).

To extract genomic DNA, 2–3 g of fresh leaf material

(originating from a pool of 20–30 plants per accession)

were frozen in liquid nitrogen and ground to a fine

powder. The extraction of genomic DNA was done

following the modified CTAB procedure (Hoisington

et al., 1994).

AFLP analysis

The AFLP fingerprints were produced according to the

original protocol of Vos et al. (1995), modified by

Muminović et al. (2004). Eco RI selective primers with

three selective nucleotides were [33P]g-ATP 50-end

labelled and combined with Mse I primers carrying
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three selective nucleotides. In total, 15 Eco RI/Mse I

primer combinations were employed for selective ampli-

fication reactions (Table 2). Amplified DNA fragments

were denatured at 958C for 3 min and separated by elec-

trophoresis in a 6% denaturing polyacrylamide gel.

To test the reliability and reproducibility of the AFLP

protocol, duplications were included in the form of

(i) blind checks—accessions sown twice under coded

numbers, and (ii) laboratory duplicates—randomly

chosen accessions duplicated after DNA extraction and

re-duplicated in consecutive steps of the AFLP analysis.

To ensure scoring of identical AFLP fragments in both

sets of materials, 20 bp DNA-ladder and four standard

varieties were additionally used in both germplasm sets.

One set of germplasm (including blind checks and lab-

oratory duplicates), genotyped with one AFLP primer

combination, fitted to one gel. Each gel was run in

0.5 £ TBE buffer (100 mM Tris, 100 mM boric acid,

2 mM EDTA pH 8.0), at 23 W for 5 min, followed by

60 W for 2 h. After drying on Whatman paper, gels were

exposed to X-ray films for 5–7 days before developing.

Evaluation of morphological traits

Morphological characterization of celeriac varieties

was conducted at Nunhems-Hild in October 2001. Old var-

iety Prazsky Obrovsky was not provided for the morpho-

logical evaluation due to a low seed germination rate.

Table 1. Elite and exotic germplasm of celeriac (Apium graveolens var. rapaceum), celery,a

leaf celeryb and related Apium species analysed with AFLP molecular markers

Elite germplasm Exotic germplasm

Variety Breeding company Variety Acc. no.c

Alba Nunhems-Hild Ajax Nunhems-Hild
Anita Saatz. Quedlin. Alabaster API 19
Arvi Nickerson Zwaan Alabastrom API 76
Bergers Weiße Kugel Nunhems-Hild Apfel API 102
Brilliantd Bejo Apia API 103
Cascade Rijk Zwaan Balder Nunhems-Hild
Cesard Huizer Ceva API 66
Ciskod Rijk Zwaan Dresdner Markt API 18
Diamantd Bejo Erfurter Nunhems-Hild
Dolvi Sperling Eureka API 65
Goliathd Juliwa-Enza Galina API 73
Hans GHG Iram API 121
Ibis Juliwa-Enza Kompakt API 127
Ilonad Bejo Magdeburger Markt API 22
Invictus Sonnensaat Marble Ball API 70
Kojak Juliwa-Enza Montblanc Nunhems-Hild
Luna (F1)d Bejo Neckarland Nunhems-Hild
Makar Planti Oderdörfer API 21
Marsd Nunhems-Hild Phoenix Nunhems-Hild
Mentord Royal Sluis Pionier API 72
Monarchd Nunhems-Hild Prager Riesen API 101
Neve Clause Prazsky Obrovsky API 24
Odrzanski Planti Robust Nunhems-Hild
Ofir Rijk Zwaan Roka API 26
Ortho Demeter Rokary Nunhems-Hild
Presidentd Rijk Zwaan Saxa API 69
Prinzd Nunhems-Hild Tellus API 67
Radiantd Bejo Wiener Markt API 17
Regent Nunhems-Hild Giant Reda Juliwa-Enza
Rexd Nunhems-Hild White Pascala Juliwa-Enza
Snehvide Daehnfeldt Aromatischer Schnittb Juliwa-Enza
Tania Daehnfeldt Gewöhnlicher Schnittb Juliwa-Enza
Terra (F1) Bejo A. graveolens var. lusitanicum API 32
Volltreffer Terra A. inundatum API 145

A. nodiflorum API 146

a Celery variety (Apium graveolens var. dulce).
b Leaf celery variety (Apium graveolens var. secalinum).
c Refers to the accession numbers of the genebank at IPK (Gatersleben, Germany) or the
company that supplied the accession from the breeders’ collection.
d Commercial variety.
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Evaluation of the traits was conducted on 10 randomly

chosen plants per variety. Regarding the criteria of the

International Union for the Protection of New Varieties of

Plants (UPOV, 2002), the following morphological traits

were evaluated: presence of anthocyanin coloration of

the petiole, main colour of tuber skin (whitish or brown),

tuber width (cm), tuber shape (irregular to round, on a

scale of 3 to 9, where 9 designates round), presence of

side shoots, presence of cracks, insertion of roots (low,

medium or high), tuber uniformity, tuber inner cavity

(low, medium or large), flesh discoloration after cutting,

and yield (average weight of 10 tubers, expressed in kg).

Data analyses

Polymorphic bands in both germplasm sets were first

scored separately to estimate genetic diversity within

each of the sets. Subsequently, datasets were combined

using the DNA-ladder and four standard varieties, to

identify common bands in both sets. For combined data

analysis, monomorphic bands within the first set were

included if they were polymorphic in the second,

exotic set. Only distinct major bands, ranging in length

from 50 to 350 bp, were manually scored as present

(1) or absent (0). The proportion of polymorphic bands

per set, as well as within different types of material

(celeriac, celery, leaf celery) was calculated.

To evaluate the discriminatory power of AFLPs, the

polymorphic information content (PIC) and marker

index (MI) were calculated across assay units, assuming

that a single AFLP primer combination was an assay

unit, and each polymorphic DNA fragment within an

assay unit was a single dominant marker locus. The PIC

value was calculated applying the formula of Roldán-

Ruiz et al. (2000): PICi ¼ 2fi(1 2 fi), where fi is the fre-

quency of the amplified allele (band present), and

(1 2 fi) is the frequency of the null allele (band absent)

of marker i. MI was determined as the product of PIC

and the number of polymorphic bands per assay unit

(Powell et al., 1996).

To estimate the level of genetic variability, genetic simi-

larity (GS) between the two varieties i and j was calcu-

lated by applying the formula of Jaccard (1908):

GSij ¼ Nij/(Ni þ Nj 2 Nij), where Ni is the number of

detected bands in a variety i and not in variety j, Nj is

the number of detected bands in a variety j and not in

variety i, and Nij is the number of bands common to var-

ieties i and j. Estimation of GS values and the calculation

of their standard errors (SE) by a jackknife procedure

with re-sampling over primers (Miller, 1974) were done

with the Plabsim software (Frisch et al., 2000), which is

implemented as an extension of the statistical software

R (Ihaka and Gentleman, 1996).

To divide the molecular genetic variance of celeriac

varieties into components attributable to the variance

between and within sets, an analysis of molecular var-

iance (AMOVA; Excoffier et al., 1992) was performed

without celery and leaf celery varieties, as well as without

wild Apium species. Groups of material (elite and exotic

celeriac germplasm) were considered sets and genetic

data (AFLPs) were presented as haplotypes in the Arle-

quin version 2.000 software (Schneider et al., 2000).

For calculation of morphological distances (MD),

observations for each trait were standardized by dividing

with the phenotypic standard deviation of the particular

trait. Euclidean distance (Eij) was calculated based on

standardized observations for each pairwise comparison

of varieties, applying the formula E2
ij ¼ Skðxki 2 xkjÞ

2;

where i and j designate varieties, and k is observed trait

(Sneath and Sokal, 1973). The calculations were done

using the NTSYSpc version 2.0 (Rohlf, 1998).

To estimate the correlation between matrices of AFLP-

based GS estimates and MD values based on morphologi-

cal traits, GS estimates were transferred to genetic dis-

tance (GD) estimates using the function GD ¼ 1 2 GS

(Gower and Legendre, 1986). Calculation of correlation

between matrices of GD and MD estimates, normalized

Mantel test (Mantel, 1967), as well as the UPGMA

(unweighted pair group method using arithmetic

averages; Sneath and Sokal, 1973) clustering method

were conducted with the NTSYSpc version 2.0. Reliability

Table 2. Polymorphic information content (PIC) and mar-
ker indices (MI) per AFLP primer combination in 69 acces-
sions of celeriac (Apium graveolens var. rapaceum), celery
(A. graveolens var. dulce), leaf celery (A. graveolens var.
secalinum) and related Apium species

Primer
combinationa

Total no.
of bands

No. of selected
polymorphic

bands PIC MI

E39/M53 25 20 0.26 5.14
E39/M57 33 8 0.24 1.89
E31/M48 39 6 0.30 1.79
E34/M48 28 15 0.13 1.93
E34/M61 55 25 0.11 2.74
E32/M59 61 52 0.12 6.45
E33/M54 27 17 0.04 0.76
E40/M47 68 22 0.20 4.37
E40/M54 59 34 0.14 4.73
E37/M60 48 31 0.11 3.56
E37/M62 52 35 0.21 7.44
E38/M49 50 4 0.24 0.96
E38/M56 39 8 0.20 1.58
E38/M57 37 10 0.24 2.37
E38/M48 39 5 0.23 1.16
Total 660 292 – –
Average 44 19.47 0.18 3.12

a Eco RI and Mse I primer codes correspond to the official
nomenclature available at http://www.keygene.com/html/
nomenclature.htm
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of the GS-based dendrogram was tested by bootstrap

analyses with 1000 replications to assess the branching

support, using the Winboot software (Yap and Nelson,

1996).

Results

AFLP data

The 15 Eco RI/Mse I primer combinations generated a

total of 660 bands, with 292 (44%) selected as clearly

distinct and reliable for data processing (Table 2).

The number of polymorphic bands selected for data

processing ranged from four to 52 per AFLP primer

combination, with an average of 19. Average PIC values

ranged from 0.04 to 0.30, whereas MI varied between

0.76 and 7.44 (Table 2).

Reliability of AFLP data was confirmed by a significant

correlation of 0.99 (P , 0.05) among GS estimates of four

standard varieties employed both in the elite and exotic

set. Genetic similarities between genotypes duplicated

on the plant level (blind checks) ranged from 0.93 to

0.97, and between laboratory duplicates from 0.98 to

1.00 (data not shown).

Genetic similarities among varieties

Genetic similarities within the elite set ranged from 0.68

(Goliath–Ofir; Mentor–Snehvide) to 0.95 (Monarch–Pre-

sident; Monarch–Diamant), with a mean of 0.90. In the

exotic set, the lowest GS value of 0.05 was detected

between Magdeburger Markt and the accession of

Apium inundatum, and the highest (GS ¼ 0.95) in two

pairs of varieties (Ceva–Eureka; Marble Ball–Balder).

The average GS value in the exotic set was 0.80. Genetic

similarity in the whole set of 69 varieties ranged from 0.05

(Magdeburger Markt–Apium inundatum) to 0.96 (Ajax–

President), with a mean of 0.75. Standard errors of the

individual GS estimates varied from 0.01 to 0.06 in the

elite, and from 0.02 to 0.07 in the exotic set.

AMOVA and UPGMA cluster analysis of AFLP data

According to the AMOVA, a higher proportion of vari-

ation was present within (88.6%) compared to between

sets (11.4%). The UPGMA cluster analysis using the 15

AFLP primer combinations clearly separated the culti-

vated material of A. graveolens from the accessions of

A. nodiflorum and A. inundatum (Fig. 1). The major

A. graveolens cluster further split into six divergent sub-

clusters (Fig. 1). Sub-clusters A, D and F consisted

almost exclusively of celeriac varieties that have under-

gone substantial selection and breeding. The only var-

ieties from the exotic set were Ajax, Iram and

Montblanc in sub-cluster A, and Apia, Wiener Markt

and Galina in sub-cluster D. Similarly, sub-clusters B

and C consisted of only formerly grown celeriac varieties

(exotic set), with minor exceptions of Neve in sub-cluster

B and Odrzanski in sub-cluster C. Finally, sub-cluster E

was composed of the two celery and two leaf celery var-

ieties, with the accession of A. graveolens var. lusitani-

cum being more closely related to leaf celery varieties.

UPGMA cluster analysis of morphological data and
correlation to AFLP data

Estimates of MD varied from 0.93 (Magdeburger Markt–

Dresdner Markt) to 8.41 (Invictus–Ibis), with a mean of

4.7. Cluster analysis of MD values separated celeriac var-

ieties into clusters that, similarly to the AFLP-based GS

cluster, reflected the previous classification of varieties

into elite or exotic set (Fig. 2). Exotic varieties Apfel

and Iram (sub-cluster F) were most widely separated

from the other materials. Sub-clusters A, C and D con-

sisted mainly of elite materials, with the exception of

five exotic varieties (Ajax, Robust, Apia, Dresdner Markt

and Montblanc) in sub-cluster A. Consequently, sub-

cluster B was composed of exotic varieties, with just

one representative of the first set, variety Odrzanski.

The single sub-cluster where varieties of elite and

exotic sets were equally present was sub-cluster E (Fig. 2).

Regarding two morphological traits, anthocyanin

coloration of the petiole and the main colour of tuber

skin, varieties with white-coloured tubers clearly separated

into sub-clusters A and E (Fig. 2). Consequently, all of

the varieties in sub-clusters B, C and D had anthocyanin

in the petioles and brown-coloured tubers (Fig. 2). Other

morphological traits offered no support to the MD-based

dendrogram.

Correlation between data matrices of GD estimates

based on AFLP data and MD values based on morpho-

logical traits was low, with r ¼ 0.22 (P , 0.01).

Discussion

Reliability of AFLP protocol established for celeriac

Inclusion of replications or duplications in molecular

marker analyses is not a common practice because DNA

marker data are considered highly accurate in fingerprint-

ing plant genomes. In our study, the range of variation in

AFLP-based GS estimates of blind checks was slightly

wider than that of laboratory duplicates, which may be
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due to (i) errors during seed sowing and sampling leaf

material for DNA extraction, or (ii) heterogeneity present

in celeriac cultivars. Genetic similarity between laboratory

duplicates was theoretically expected to be near to unity.

Nevertheless, DNA quality differences may have affected

the AFLP banding pattern (Vos et al., 1995). The results

of our study were comparable to those obtained in genetic

diversity studies with RFLP, RAPD and AFLP markers

(Messmer et al., 1993; Hahn et al., 1995; Lübberstedt

et al., 2000; Zeid et al., 2003; Muminović et al., 2004),

where replicated samples were also used.

An average PIC value of 0.18 across all scored AFLP

bands, as well as an average MI of 3.12 across all primer

combinations (Table 2) were in harmony with other

AFLP-based genetic diversity studies in various crops

(Powell et al., 1996; Bohn et al., 1999; Lübberstedt et al.,

2000; Roldán-Ruiz et al., 2000; Muminović et al., 2004).

Owing to their high multiplex ratio, AFLPs proved to be

a highly informative molecular marker system, which rec-

ommends them for fingerprinting cultivars in cultivar

identification, protection and quality control, as well as

for the identification of essentially derived varieties

(Bohn et al., 1999; Heckenberger et al., 2003), the latter

being of increasing relevance in celeriac breeding.

Morphological diversity in celeriac germplasm

Regarding the presence of anthocyanin in the petioles

and the colour of the tuber, dendrograms based both

Fig. 1. Association among varieties of celeriac (Apium graveolens var. rapaceum), celery (A. graveolens var. dulce),
leaf celery (A. graveolens var. secalinum) and related species, as revealed by average linkage (UPGMA) cluster analysis of
Jaccard’s genetic similarity (GS) coefficients calculated from AFLP data of 15 primer combinations. Numbers at the nodes
indicate the bootstrap values of the consensus tree obtained (branches lacking the value received ,30% bootstrap support).
Letters A to F designate detected sub-clusters in the major A. graveolens cluster. Symbols designate colour of the tuber and
presence of anthocyanin.
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on GS and MD estimates indicated a clear morphological

structure in celeriac germplasm (Figs 1 and 2).

As expected, this was more clear in the MD-based den-

drogram, where varieties with white-coloured tubers cre-

ated distinct sub-clusters A and E (Fig. 2). In the GS-based

dendrogram, varieties with white-coloured tubers were

present in the sub-clusters A, E and F, but to a minor

extent also in the clusters created mostly of varieties pos-

sessing brown-coloured tubers (sub-clusters B, C and D).

Nevertheless, the distance matrices based on AFLPs and

morphological data showed only a weak correlation

(r ¼ 0.22). This may be explained with the assumption

that the observed morphological traits inadequately rep-

resented the underlying genetic relationships. Similarly

to the results obtained in an AFLP study of barley

(Schut et al., 1997), the reasons for this could be (i) a lim-

ited number of traits evaluated, (ii) a limited variation of

these traits, (iii) a limited number and irregular genome

distribution of genes underlying these traits, and (iv)

epistatic interactions among these genes. Morphological

differentiation is the result of natural and/or artificial

selection (Thierry d’Ennequin et al., 2000). Although

they are cheaper and easier to measure than diversity

estimates using molecular markers, morphological traits

cannot serve as unambiguous markers and should there-

fore be used with caution in systematic studies, especially

in investigations of relationships between accessions.

Genetic diversity in celeriac germplasm

The range of AFLP-based genetic similarity estimates in

elite celeriac germplasm (0.68–0.95) was comparable to

AFLP-based diversity estimates in soybean, barley, pea

and wheat (Powell et al., 1996; Schut et al., 1997; Simio-

niuc et al., 2002; Soleimani et al., 2002). Nonetheless,

Fig. 2. Association among celeriac (Apium graveolens var. rapaceum) varieties, as revealed by average linkage (UPGMA)
cluster analysis of Euclidean genetic distance (GD) coefficients calculated from morphological data. Letters A to F designate
detected sub-clusters. Symbols designate colour of the tuber and presence of anthocyanin.
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the variation of GS estimates revealed with AFLP analysis

in the exotic set of celeriac was significantly higher (GS

from 0.05 to 0.95), indicating its high level of genetic

diversity. Lower genetic variation measured among elite

celeriac varieties is most likely the result of selection

pressure and genetic drift in breeding programmes.

Such practices, which are aimed at genetic homogeniz-

ation and purity of cultivars, may result in an improve-

ment in yield and other agronomically important traits

at the expense of reducing the genetic base of crops

(Soleimani et al., 2002).

Dendrograms based on GS- and MD-estimates illus-

trate the intensity of selection and breeding which

elite celeriac varieties have undergone (J. Dijkstra, per-

sonal communication). Varieties that are currently most

important in the market and, therefore, considered

commercially elite (Table 1) grouped closely together

and were present only in sub-clusters A and F in the

GS-based dendrogram, and in sub-clusters A and E in

the MD-based dendrogram (Figs 1 and 2). Conse-

quently, the celeriac varieties originally classified as

the elite germplasm (Table 1), but which have not

been intensively bred and are not widely represented

on current markets (because they express unfavourable

morphological traits, such as brown-coloured tubers)

were dispersed in the sub-clusters consisting mainly

of exotic materials (Figs 1 and 2). Although not

morphologically distinct (Fig. 2), varieties Mentor and

Goliath were distinct from other elite materials in

GS-based dendrograms (Fig. 1, sub-clusters A and F).

Varieties of these two sub-clusters might be considered

to establish divergent germplasm pools (heterotic

pools) in view of hybrid cultivar production.

Although the values of genetic similarity estimates did

not seem significantly different and wide, and molecular

variance measured with AMOVA was much higher within

than between celeriac germplasm sets, elite and exotic

celeriac varieties were clearly separated in distinct clus-

ters using either AFLP or morphological data. Even if

the order of varieties in GS- and MD-based clusters was

not identical (Figs 1 and 2), those clustering patterns

might indicate that current breeding of celeriac utilizes

only a small fraction of genetic diversity available in cel-

eriac. The proportion of polymorphic AFLP bands

detected in elite celeriac varieties (32.2%) was lower

than the proportion of polymorphic bands revealed in

exotic celeriac germplasm (38%, data not shown), with

38 AFLP bands (13% of the total number of detected

bands) being monomorphic in elite but polymorphic in

the exotic germplasm. Thus, the inclusion of exotic var-

ieties into celeriac breeding might substantially support

the improvement of elite varieties.

This study demonstrated the ability of AFLPs to esti-

mate accurately the distribution of diversity within and

among Apium graveolens subspecies (celery, celeriac

and leaf celery). The three cultivated forms of A. grave-

olens shared a large proportion (55.1%) of common

AFLP bands, which implied a high degree of genetic

similarity among these cultivated types and was in

agreement with the findings of Yang and Quiros

(1993). Nevertheless, clear separation was observed

among celery, leaf celery and celeriac varieties, as in

an RAPD-based study of celery diversity (Yang and

Quiros, 1993). The values of the average GS estimates

between elite celeriac and celery, and between elite cel-

eriac and leaf celery varieties were 0.73 and 0.78,

respectively, which is lower than the average GS esti-

mate within elite celeriac varieties (GS ¼ 0.90). Even

though the number of varieties representing each of

the three A. graveolens subspecies was not equal in

our study, it can be concluded that a substantial genetic

diversity is present among them. So far, celeriac was suc-

cessfully used in celery breeding in the development of

breeding lines resistant to a vascular disease incited by

Fusarium oxysporum f. sp. apii (Quiros, 1993). Accord-

ing to our results, celery and leaf celery varieties could

contribute substantially in broadening of the celeriac

germplasm.

A high level of unexploited genetic diversity was

detected in wild relatives of A. graveolens. The accessions

of A. inundatum and A. nodiflorum were distinct from

the cultivated Apium forms, whereas A. graveolens var.

lusitanicum indicated a closer relationship to celery

and leaf celery than to celeriac (Fig. 1). Regarding the

high proportion of AFLP bands that were polymorphic

in wild species but monomorphic in elite celeriac germ-

plasm (62%; i.e. 181 ‘new’ bands), a large potential for

broadening the genetic base of celeriac is found in wild

Apium species. Further breeding efforts should be under-

taken to utilize them as genetic resources for celeriac

breeding. In addition, these accessions of wild species

could contribute to the introgression of new genes

(such as resistance genes) into cultivated celeriac

material, applying recently developed methods of inter-

specific crosses.

The average GS estimate in the analysed celeriac

material was 0.75, whereas sub-clusters based on AFLPs

started branching at the level higher than GS ¼ 0.80

(Fig. 1). These results of our study indicate that the celer-

iac germplasm collection, conserved at the German gene-

bank of IPK, covers a smaller part of variation compared

to that usually expected in crop plants. A rising concern

about possible genetic erosion of landraces and wild rela-

tives due to current cultivation practices, as well as an

increasing need for a steady flow of new germplasm

(Scarascia-Mugnozza and Perrino, 2002), encourage the

creation of comprehensive collections in which also

minor crops, such as celeriac, must be better represented.
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Understanding the significance or assessing the real

(applicable) value of the diversity detected in plant

genetic resources still remains a challenge (Karp, 2002),

in terms of identifying alleles that may confer crop

improvement. Celeriac germplasm collection at the

German genebank demands broadening and use of

molecular markers for detecting further valuable genetic

resources, to the benefit of celeriac breeding.
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5 General Discussion 
 

 

Reliability and reproducibility of the AFLP protocol established for cornsalad, radish 

and celeriac 

 

The usual routine of molecular markers work does not include replications or duplications, 

because DNA marker data demand high production costs and are considered accurate in 

fingerprinting of plant genomes. Nevertheless, this approach does not allow an estimation 

of experimental error for marker data. To establish and optimize the AFLP laboratory 

protocol for cornsalad, radish, and celeriac the following steps were taken: (i) main 

amplification reactions with five (EcoRI-NNN x MseI-NN) and six selective nucleotides 

(EcoRI-NNN x MseI-NNN) were tested, (ii) silver-staining and [33P]-labelling approaches 

for visualisation of AFLP fragments were applied, and (iii) two types of duplicates (on the 

plant level – blind checks, and on the DNA level – laboratory duplicates) were included. 

Furthermore, an additional, independent scoring was carried out by a third skilled person, 

to minimize errors due to scoring. 

The AFLP primer combinations carrying a total of five selective nucleotides 

performed better than those with six selective nucleotides in the main amplification 

reactions with cornsalad DNA, suggesting a relatively small genome size of this crop. In 

both radish and celeriac, AFLP fragments produced clearer banding patterns with a 

significantly reduced background “noise” on polyacrylamide gels when primer 

combinations with six selective nucleotides were applied in the main amplification 

reactions. 

In all three crops, the silver-staining protocol for visualization of AFLP fragments 

resulted in a lower reproducibility of the controls than the protocol using radioactive 

labelling of the EcoRI primers. Additionally, the documentation system applied with 

silver-staining AFLP protocol (direct scanning of dried gel from glass plates) was not 

optimal in terms of its handling and possible re-scoring feasibilities. Although significantly 

more expensive, radioactive labelling of the main amplification reaction primers resulted in 

clear images of AFLP fingerprints, whereas autoradiograms allowed a reliable long-term 

storage. 
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Applying the silver-staining AFLP protocol, genetic similarity (GS) estimates between 

blind checks and their respective original samples (GS = 0.74 to 0.77) did not reach 

sufficiently high levels, whereas laboratory duplicates indicated considerable error at the 

level of scoring. In contrast, the AFLP protocol using radioactive labelling of the main 

amplification primer resulted in a high reproducibility and reliability of the obtained data 

in all three studied crops, which was reflected in high GS values for blind checks (GS from 

0.89 to 1.00) and laboratory duplicates (GS from 0.98 to 1.00). The obviously wider range 

of variation in GS estimates for varieties duplicated on a plant level (blind checks), 

particularly in radish, may be due to the heterozygosity and heterogeneity present in 

varieties. F1 hybrids in radish, as in a number of other vegetable crops, can not be 

considered homogeneous and uniform because a critical level of inbreeding depression of 

parental inbreds is reached after only a few generations of selfing (Kaneko and Matsuzawa 

1993; Schieder, personal communication). Finally, the reliability of the established AFLP 

protocol was re-confirmed by a high correlation (r = 0.91; P < 0.01) between the original 

and independently conducted scorings. 

In a limited number of studies, where similar but not as numerous and reaction-

specific DNA-controls were included (Messmer et al. 1993; Hahn et al. 1995; Lübberstedt 

et al. 2000), comparable GS estimates between the replicated samples were found for 

RFLP, RAPD and AFLP marker data in maize. The AFLP protocol established and 

optimized in this study proved to be reliable and reproducible in three vegetable crops of 

diverse pollination patterns, such as cornsalad, radish, and celeriac. It can, therefore, be 

suggested for further application of molecular marker technologies in a wide range of 

vegetable crops. If known, the genome size of a particular crop should to be taken into 

consideration when the choice of number of selective nucleotides in the main amplification 

reactions is made. 

 

 

Genetic diversity in germplasm of cornsalad 

 

Breeding practices in cornsalad rely mostly on phenotypic selection and on a narrow-based 

germplasm available in breeding companies. To investigate genetic diversity in cornsalad 

germplasm and to suggest possible ways of its broadening, 34 modern line varieties of 

cornsalad (referred to as elite germplasm) were analyzed, as well as 12 old cornsalad 
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varieties and 18 germplasm accessions of cornsalad and related species, conserved in gene 

banks and botanical gardens (referred to as exotic germplasm). Variability present in the 

elite cornsalad germplasm was comparable with the AFLP-based genetic diversity 

estimates in other autogamous crops, such as barley (Russell et al. 1997; Schut et al. 1997), 

pea (Simioniuc et al. 2002), or velvet-bean (Capo-chichi et al. 2001), though narrower than 

in wheat (Bohn et al. 1999; Soleimani et al. 2002) or soybean (Powell et al. 1996). The low 

variation among elite cornsalad varieties might be the consequence of a narrow-based 

germplasm in the breeding programs of different companies (Schieder and Hermens, 

personal communication), which is supported by the apparent grouping of the majority of 

studied modern line varieties in only two sub-clusters of the major UPGMA cluster. 

Additionally, the sub-clusters based on AFLP data revealed no apparent morphological 

pattern, even when reliable morphological descriptors of cornsalad (prominence of veins 

on the leaf surface, concave profile of the leaf, and seed size) were considered. This was in 

contrast to wheat (Bohn et al. 1999) or maize (Pejic et al. 1998; Lübberstedt et al. 2000), 

but in agreement with the results on barley (Schut et al. 1997), and may be a result of 

inadequate representation of genetic relationships by the observed morphological traits. To 

confirm the reliability of AFLP-based genetic diversity estimates, pedigree information of 

six elite cornsalad varieties was provided to calculate the coefficient of co-ancestry f 

(Malécot 1948). However, the matrix of co-ancestry estimates was poorly correlated with 

the respective matrix of GS values (r = 0.19, P < 0.05). This was comparable to barley 

(Graner et al. 1994) and soybean (Cox et al. 1985), and might be due to a high 

“background similarity” among unrelated accessions at the marker level (Graner et al. 

1994). Furthermore, pedigree data should correspond to molecular marker-based GS 

estimates in cases of large populations produced by random-mating. Breeding processes, 

on the other hand, focus at populations of limited sizes, where the influences of drift and 

selection play a major role. Marker-based GS estimates provide more information than 

pedigree data because they detect sequence variation and bypass the assumptions common 

to pedigree analysis. 

The average value of genetic similarity (GS) estimate in the exotic germplasm (GS = 

0.47) was significantly wider than in the elite (GS = 0.90), thus indicating a substantial 

level of genetic diversity conserved in the material not yet utilized in cornsalad breeding. 

An extensively larger genetic diversity within exotic germplasm accessions was also 

demonstrated with the UPGMA analysis. Four old cornsalad varieties (‘CS-8‘, ‘CS-45‘, 
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‘CS-46‘, and ‘CS-50‘) were grouped within the “elite” cluster, whereas some of the studied 

gene bank accessions formed sub-clusters close to the elite germplasm. Only the species 

related to V. locusta were clearly divided from the elite germplasm. 

These results indicated that old cornsalad varieties and V. locusta genebank accessions 

that clustered close to the elite germplasm might serve as a direct genetic resource for 

broadening the elite cornsalad germplasm base, as those crosses are easy to perform. Along 

with them, V. locusta-related species might contribute to the introgression of new genes 

(such as resistance genes) into cultivated cornsalad material by applying recently 

developed inter-specific crosses. 

 

 

Genetic diversity in and genetic structure of radish germplasm  

 

Since the discovery of cytoplasmatic male sterility in radish two decades ago, there has 

been a significant increase in the production of F1 hybrid varieties. To optimally exploit 

heterosis in F1 hybrid production, parental lines should be derived from genetically 

unrelated germplasm pools, commonly referred to as heterotic groups (Melchinger and 

Gumber 1998). However, none of the currently published studies on genetic diversity of 

radish (Ellstrand and Marshall 1985; Demeke et al. 1992; Thormann et al. 1994; Rabbani 

et al. 1998; Huh and Ohnishi 2003) has focused on the estimation of genetic diversity and 

determination of genetic structure of a wider set of cultivars representing European radish 

germplasm. 

Once the AFLP protocol was optimized, 68 cultivated radish varieties were selected 

for the study. The material consisted of open-pollinated varieties, inbred lines, diploid and 

a few tetraploid hybrid varieties of garden radish (Raphanus sativus var. sativus) and Black 

radish (R. sativus var. niger). Additionally, two accessions of wild relatives of radish (R. 

raphanistrum, and Chinese small radish - R. sativus var. sativus convar. sinensis) that 

cause serious contamination during the process of hybrid radish production were included 

in the analysis. Variation in GS estimates within the studied radish germplasm was 

comparable to the diversity of other members of the family Brassicaceae studied with 

AFLPs (Srivastava et al. 2001). An apparent grouping of all studied cultivated radish 

varieties in sub-clusters with GS estimates higher than 0.70 supported the assumption that 

the currently used radish germplasm in Europe relies on a narrow genetic basis (Schieder, 
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personal communication). High GS estimates observed between garden radish varieties 

originating from the same breeding company were in agreement with the assumed closer 

pedigree relationships. Owing to a high degree of heterogeneity and heterozygosity within 

radish varieties, the detected between-variety diversity is low, but there still is a substantial 

overall diversity in the available radish germplasm. On average 58.6% of the detected 

AFLP bands were polymorphic among open-pollinated varieties, 56.4% among F1 hybrids, 

and 51.6% among inbred lines. 

In both UPGMA and PCoA analyses, morphologically similar garden radish varieties 

types (such as “French Breakfast radish” and “Giant radish”) formed separate groups, and 

Black radish varieties were distinct from garden radish. Nevertheless, garden radish 

germplasm could not be further divided into possible heterotic groups by applying the 

PCoA approach. An unambiguous and independent separation within garden radish 

varieties was made with the model-based clustering method of Pritchard et al. (2000), 

which relies on genotypic data consisting of unlinked markers, and not on a prior 

population information. Although the available pedigree data were not sufficient to 

confirm the reliability of the applied model-based approach in radish, as they did in studies 

on maize (Liu et al. 2003) and Trifolium pratense (Kölliker et al. 2003), the inferred sub-

groups can be employed for the establishment of heterotic pools within European modern 

cultivars of garden radish. An efficient utilization of the existing substantial level of 

genetic variation (detected with AFLPs) can facilitate the choice of parents for crossing, 

definition of priorities, and reduction of costs in hybrid radish variety improvement. 

Genetic similarity estimates between cultivated radish varieties and the accessions of 

R. raphanistrum and Chinese small radish were low, which can be valuable for radish 

breeders facing serious problems in F1 hybrid radish production. Out-crossings between 

cultivated radish and either of the weedy species (that are morphologically hard to 

differentiate from cultivated radish) is easy and frequent (Schieder, personal 

communication). Regarding the results of this study, two simple ISSR assays (with the 

ISSR primers (CAA)6 and UBC 890) can assist in estimating the level of seed purity of 

hybrid radish varieties before their sowing in the field. This significantly reduces the costs 

of hybrid radish production. 
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Genetic diversity in germplasm of celeriac 

 

Breeding of Apium graveolens germplasm started as early as 400 BC, when ancient 

civilizations used it as a medicinal crop. Selection was conducted in two directions: for 

solid and succulent petioles in one, and for enlarged hypocotyls in the other. Nowadays, A. 

graveolens comprises three distinct taxonomic varieties: celery (A. graveolens var. dulce), 

celeriac (A. graveolens var. rapaceum), and leaf celery (A. graveolens var. secalinum), 

grown for different economic purposes. Nearly all celeriac varieties produced at the 

moment are open-pollinated, but with a recently detected genetic male sterility in weedy 

Iranian species (Quiros 1993) progresses in hybrid celeriac production are expected 

(Dijkstra, personal communication). Along with the narrow-based germplasm used in 

celeriac breeding, the accessions of celeriac germplasm conserved in genebanks are not 

numerous (Quiros 1993) and their relationship to commercially grown varieties is 

unknown. Thirty-one open-pollinated and three F1 hybrid celeriac varieties (elite 

germplasm), as well as 28 open-pollinated formerly grown celeriac varieties, two varieties 

of celery, two varieties of leaf celery, and three gene bank accessions of wild Apium 

species (exotic germplasm) were analysed morphologically (UPOV 2002) and with 

AFLPs. 

Regarding only two of eleven morphological traits (presence of anthocyanin in the 

petioles and colour of the tuber), clear structure in celeriac germplasm was observed in a 

dendrogram based on morphological distance estimates. By contrast, varieties with white-

coloured tubers and absence of anthocyanin coloration of the petiole were present in more 

than one sub-cluster based on GS estimates. Moreover, the matrices based on AFLPs and 

morphological data were poorly correlated (r = 0.22, P < 0.01). A disparity between 

genetic distances based on morphological traits and on molecular markers was reported by 

many authors (Ben-Har et al. 1995; Burstin and Charcosset 1997; Smith et al. 1997; Noli et 

al. 1997; Senior et al. 1998; Roldán-Ruiz et al. 2001). Such observations should not be 

regarded as indicating weakness or limitation of either of these systems. Varieties that 

display high phenotypic similarity need not be genetically similar as different genepools 

can be manipulated to create similar phenotypes (Roldán-Ruiz et al. 2001). Furthermore, 

when using morphological traits, the developmental and genotype-by-environment noise 

that is super-imposed on the genetic basis need to be accounted for, plus the various 

measurement limitations and inaccuracies. Therefore, consistency should only be expected 
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if varieties had shared genetic resources and parallel breeding objectives, or, conversely, 

were very different in both genepool source and selection targets (Roldán-Ruiz et al. 

2001). 

The ranges of AFLP-based genetic similarity estimates in elite celeriac germplasm 

(GS = 0.68-0.95) were significantly narrower than those in the exotic set (GS = 0.05-0.95). 

This is most likely due to selection pressure and genetic drift present in breeding 

programmes, where targeting genetic homogenisation and purity of cultivars cause a 

reduction in the genetic basis of crops (Soleimani et al. 2002). Nevertheless, commercial 

elite celeriac varieties clustered in two distinct clusters, thus pointing out the possibility 

that an undetected heterotic pool exists in the germplasm currently exploited in celeriac 

breeding. On the other hand, a higher proportion of polymorphic AFLP bands revealed in 

exotic celeriac germplasm, as well as the high level of genetic diversity “hidden” in exotic 

celeriac varieties and their clear separation from the elite varieties with UPGMA analysis 

indicate that current breeding of celeriac utilizes only a small fraction of the available 

germplasm diversity. Celeriac varieties might be considerably improved with the inclusion 

of exotic germplasm into breeding. Although the three A. graveolens subspecies (celery, 

celeriac, and leaf celery) were not equally represented in the study, a substantial genetic 

diversity was revealed among them. Values of the average GS estimates between elite 

celeriac and celery (GS = 0.73) and between elite celeriac and leaf celery varieties (GS = 

0.78) were lower than the average GS estimate within elite celeriac varieties (GS = 0.90). 

On the other hand, a high degree of homology among these cultivated types (Yang and 

Quiros 1993) was confirmed with a large proportion (55.1%) of common AFLP bands. 

Consequently, celery and leaf celery varieties could be suggested as valuable contributors 

to the broadening of the celeriac germplasm. The highest level of unused genetic diversity 

was detected in wild relatives of A. graveolens in the study, which contributed 62% 

polymorphic AFLP bands that were absent (monomorphic) in the elite celeriac germplasm. 

Their utilization in celeriac breeding, either for germplasm broadening or introgression of 

new genes (such as resistance genes) into cultivated material, requires further efforts and 

the application of recently developed methods of inter-specific crosses. 

A growing danger of a possible genetic erosion of landraces and wild relatives of 

crops due to ever-improving cultivation practices, along with a continual demand for a new 

germplasm, encourages the creations of broad and well-studied germplasm collections 

(Brown und Kresovich 1996; McGregor et al. 2002; Scarascia-Mugnozza and Perrino 
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2002). Sub-clusters containing celeriac gene bank accessions started branching at the level 

higher than GS = 0.80, thus confirming the reports of Quiros (1993) that celeriac 

germplasm collections worldwide are not abundant and cover a limited part of variation 

compared to that usually expected in crop plants. As the 20 gene bank accessions analysed 

in this study were good representatives of the celeriac collection (36 accessions, some of 

which are duplicates) conserved in the gene bank of the Institute of Plant Genetics and 

Crop Plant Research (IPK, Gatersleben, Germany), it can be concluded that celeriac 

germplasm collection demands immediate broadening. Furthermore, the application of 

molecular markers is recommended for detecting valuable genetic resources that could 

present an improvement for current and future celeriac breeding. 

 

 

Conclusion and Outlook 

 

Knowledge of genetic variation and genetic relationships is an important consideration for 

the optimal design of further breeding programs in cornsalad, radish, and celeriac, because 

it assists in the process of decision-making in breeding and helps addressing key issues of 

germplasm management. Genetic similarity estimates, based on the AFLP protocol 

optimized in this study, allowed a first insight into the genetic diversity present in the 

germplasm of the three vegetable crops and offered suggestions for their broadening. 

Furthermore, genetic structure of radish germplasm was revealed, which may influence the 

choice of genotypes to cross, thus being of an outstanding importance for successful hybrid 

radish breeding. Finally, an efficient rationalization and utilization of available germplasm 

resources was proposed. 

An increasing number of studies has demonstrated the capacity of molecular markers 

to be highly discriminating between varieties in a wide range of species. Large progress 

made in molecular genetics, illustrated by the current rate of growth in complete genome 

sequence information, as well as important technical advances such as DNA chip 

technology allowing multi-parallel marker assays, have been astonishing and have 

revolutionized the possibilities of characterizing genetic diversity. Developments of 

genomics could further influence diversity studies by allowing the genetic profiling of the 

accessions, as to determine which have the highest potential for use in breeding programs 

(van Tienderen et al. 2002). This could be expected by developing marker systems for 
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functional genes (Andersen and Lübberstedt 2003), and by using the existing sequence 

information to develop markers that tag variation within the gene or in a flanking region 

(van Tienderen et al. 2002). Broadening the knowledge of the candidate genes for the traits 

of interest, understanding the linkage between molecular markers and traits, and the 

development of new statistical tools to handle the data can be considered successful 

strategies for the large-scale profiling of germplasm. 
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6 Summary 
 

 

During the last couple of decades, production and economic importance of cornsalad 

(Valerianella locusta L.; fam. Valerianaceae), radish (Raphanus sativus L. var. sativus 

convar. radicula; fam. Brassicaceae), and celeriac (Apium graveolens L. var. rapaceum; 

fam. Apiaceae) have been considerably increasing in Europe. Nevertheless, genetic 

diversity currently utilized for breeding cornsalad, radish, and celeriac is narrow, whereas 

their germplasm collections in gene banks are relatively poor. 

Assessment of genetic diversity among breeding materials and genetic resources is an 

important consideration for the optimal design of further breeding programs. The major 

objective of this study was to investigate genetic diversity in germplasm of cornsalad, 

radish, and celeriac, applying amplified fragment length polymorphisms (AFLPs) and inter 

simple sequence repeats (ISSRs) molecular markers. In particular, the objectives were to 

(i) analyze relationships among breeding materials of the three vegetable crops (referred to 

as elite germplasm), as well as among their formerly grown varieties, gene bank and 

botanical garden accessions (referred to as exotic germplasm), (ii) reveal genetic structure 

of radish germplasm to establish heterotic pools for hybrid breeding, and (iii) evaluate the 

usefulness of introducing exotic materials for broadening of the elite germplasm in 

cornsalad, radish, and celeriac. 

Average genetic similarity in 34 elite varieties of cornsalad was very high (GS = 

0.90), which is comparable with other autogamous crops. The majority of elite varieties 

clustered closely applying the UPGMA analysis because of a narrow-based germplasm in 

cornsalad breeding. A substantial level of genetic diversity (GS = 0.47) was detected in 30 

cornsalad varieties representing exotic germplasm. Exotic varieties that interspersed the 

sub-clusters of the elite may serve as a direct genetic resource for broadening the elite 

cornsalad germplasm base, whereas Valerianella locusta-related species that were distinct 

from cultivated germplasm can contribute to the introgression of new (resistance) genes. 

Sixty-eight varieties of cultivated radish (garden and Black radish) created sub-

clusters with GS estimates higher than 0.70, thus supporting the assumption that the 

currently used radish germplasm in Europe relies on a narrow genetic base. Owing to a 

high degree of heterogeneity and heterozygosity within radish varieties, the detected 

between-variety diversity was low, but there still was a substantial overall diversity in 
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available radish germplasm. Applying both UPGMA and principal coordinate analyses, 

Black radish varieties were distinct from garden radish. A further unambiguous division 

within garden radish germplasm was revealed with the model-based clustering approach. 

These sub-groups can be employed for establishment of heterotic pools within European 

modern cultivars of garden radish. In addition, ISSRs can substantially reduce hybrid 

radish production costs by an early detection of two closely related weed species (R. 

raphanistrum and R. sativus L. var. sativus convar. sinensis). 

AFLPs and the evaluation of morphological traits were used to investigate genetic 

diversity in 34 varieties of elite celeriac germplasm and 35 accessions of exotic 

germplasm. Only two morphological traits supported the clustering pattern obtained with 

UPGMA analysis of morphological distance estimates. AFLP-based GS estimates offered 

a clearer view of diversity present in elite (GS = 0.68-0.95) and exotic germplasm (GS = 

0.05-0.95), and clustered the two sets in distinct UPGMA-based sub-clusters. This 

indicated that only a small fraction of available genetic diversity is exploited for current 

breeding of celeriac. Exotic celeriac germplasm as well as varieties of celery and leaf 

celery might substantially improve commercial celeriac breeding. Wild relatives of Apium 

graveolens are valuable resources for the introgression of resistance genes. Regarding the 

generally high level of GS in celeriac germplasm conserved in the German gene bank, a 

broadening of the germplasm collection was suggested. 

This study demonstrated the capacity of molecular markers to be highly 

discriminating among varieties of cornsalad, radish, and celeriac. AFLP-based genetic 

similarity estimates in the three vegetable crops (i) allowed the first insight into the genetic 

diversity and structure present in the germplasm, (ii) offered suggestions for germplasm 

broadening, and (iii) proposed a way of rationalization and utilization of available 

germplasm resources. 
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7 Zusammenfassung 
 

 

Während der letzten Jahrzehnte ist in Europa die Produktion und wirtschaftliche 

Bedeutung von Feldsalat (Valerianella locusta L.; Fam. Valerianaceae), Radies (Raphanus 

sativus L. var. sativus convar. radicula; Fam. Brassicaceae) und Knollensellerie (Apium 

graveolens L. var. rapaceum; Fam. Apiaceae) beachtlich gestiegen. Allerdings ist die 

genetische Diversität dieser drei Kulturarten stark eingeschränkt. 

Für eine Optimierung von Züchtungsprogrammen sind Informationen über die 

vorhandene genetischen Diversität innerhalb des Zuchtmaterials und die Verwandtschaft 

des Zuchtmaterials zu genetischen Ressourcen entscheidend. Ziel dieser experimentellen 

Arbeit war, die genetische Diversität von Feldsalat, Radies und Knollensellerie mit zwei 

unterschiedlichen DNA-Markersystemen, „amplified fragment length polymorphism 

(AFLPs)“ und „inter simple sequence repeats (ISSRs)“, zu untersuchen. Die einzelnen 

Ziele waren (i) die Untersuchung der Verwandtschaftsbeziehungen von Zuchtmaterial der 

drei Kulturarten (nachstehend als Elitematerial bezeichnet) sowie von historischen Sorten 

und Genbankmuster (nachstehend als exotisches Material bezeichnet), (ii) die Analyse von 

Möglichkeiten zur Etablierung von heterotischen Gruppen in Radies, und (iii) die 

Erörterung des Nutzens von exotischem Material zur Erweiterung des Elitezuchtmaterials 

in alle drei Kulturarten. 

Die beobachtete durchschnittliche genetische Ähnlichkeit zwischen 34 

Feldsalatelitelinien war sehr hoch (GS = 0.90). Dies ist vergleichbar mit Ergebnissen aus 

Studien anderer selbstbefurchtender Kulturarten. Dagegen verdeutlicht die niedrige 

durchschnittliche genetische Ähnlichkeit zwischen 30 exotischen Feldsalatlinien (GS = 

0.47) eine hohe genetische Diversität des exotischen Materials. Exotische Feldsalatlinien, 

welche nahe mit dem Elitematerial verwandt sind, können direkt zur Erweiterung der 

genetischen Basis des Elitezuchtmaterials eingesetzt werden. Die mit Feldsalat weniger 

eng verwandten Arten könnten dagegen als Donor neuer (Resistenz-) Gene dienen. 

Achtundsechzig Radiessorten (Radieschen und Rettich) bildeten Untergruppen mit 

einer hohen genetischen Ähnlichkeit (GS = 0.70). Diese Tatsache unterstützt die These, 

dass die genetische Basis von europäischem Radies eng ist. Infolge der hohen 

Heterozygotie und Heterogenität innerhalb von Radies war die Diversität zwischen Sorten 

gering. Die gesamte genetische Diversität des untersuchten Radiesmaterials war allerdings 
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ausreichend. Sorten von Rettich waren sowohl in einer Hauptkoordinaten- als auch in einer 

Clusteranalyse deutlich von Sorten von Radieschen getrennt. Eine weitere klare 

Untergruppierung innerhalb der Radieschensorten wurde mittels einer Modell-basierenden 

Clusteranalyse beobachtet. Diese Untergruppen können für die Etablierung heterotischer 

Gruppen von europäischem Radies benutzt werden. Weiterhin sind die Ergebnisse der 

ISSR-Studie hilfreich, die Kosten bei der Hybridproduktion von Radies zu reduzieren, da 

sie eine frühzeitige Erkennung zweier Unkrautarten (R. raphanistrum und R. sativus L. var. 

sativus convar. sinensis) in Radies ermöglichen. 

AFLPs und morphologische Daten wurden dazu benutzt, die genetische Diversität in 

34 Elite- und 35 exotischen Knollenselleriesorten zu untersuchen. Nur zwei 

morphologische Merkmale bestätigten die Gruppierung, die in einer Clusteranalyse 

basierend auf den morphologischen Distanzen beobachtet wurden. Andererseits kann mit 

AFLP-basierenden genetischen Ähnlichkeiten klar die Diversität des Elite- (GS = 0.68-

0.95) und des exotischem Materials (GS = 0.05-0.95) beschrieben werden und eine 

UPGMA-Clusteranalyse erlaubt eine deutliche Trennung in Untergruppen. Diese 

eindeutige Unterteilung des Materials und der hohe Anteil polymorpher AFLP-Banden in 

exotischen Sorten deutet darauf hin, dass das aktuelle Knollenselleriezuchtmaterial nur 

einen kleinen Bruchteil der verfügbaren genetischen Diversität nutzt. Die Introgression von 

exotischen Knollenselleriesorten sowie von Stiel- und Schnittsellerie in das 

Knollenselleriezuchtmaterial könnte kommerziell genutzte Sorten verbessern. Die 

Wildarten von Apium können durch interspezifische Kreuzungen als Donoren für 

Resistenzgene genutzt werden. Die hohe genetische Ähnlichkeit zwischen exotischen 

Akzessionen von Knollensellerie der Genbank IPK deutet auf die Notwendigkeit hin, diese 

Sammlung zu erweitern. 

Diese Studie belegt die Einsatzmöglichkeiten molekularer Marker im Feldsalat, 

Radies und Knollensellerie zur Unterscheidung von Sorten. AFLP-basierende genetische 

Ähnlichkeiten ermöglichten (i) erste Einblicke über die vorhandene genetische Diversität 

und Struktur der drei Kulturarten, (ii) Vorschläge zur Erweiterung der genetischen Basis, 

und (iii) eröffneten die Möglichkeit, vorhandene genetische Ressourcen effektiv zu nutzen. 
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8 Appendix 
 

 

8.1 AFLP protocol 
 
 
Restriction digestion of genomic DNA 
 
A per reaction: 
 final conc. 

 
template DNA 2.00 µl (250 ng) 
10x OPA+  buffer (Pharmacia) 4.00 µl 1x 
EcoRI (Pharmacia) 4.25 U 
MseI (New England BioLabs) 3 U 
ddH2O (up to volume) 
 ____________ 
 total: 40.00 µl 

 
B mix gently, centrifuge briefly to collect reaction 
 
C incubate at 37°C, for 2-3 hours 
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Ligation of adapters 
 
A per reaction: 
 final conc. 
 (in 40+10 µl) 

10x OPA+  buffer (Pharmacia) 2.00 µl 0.4x 
EcoRI – adapter (5 pmol/µl) 1.00 µl 0.1 µM 
MseI - adapter (5 pmol/µl) 1.00 µl 0.1 µM 
ATP (10mM) 1.00 µl 0.2 mM 
T4 DNA ligase 1 U 
ddH2O (up to volume) 
 ____________ 
 total: 10.00 µl 
  (+ 40.00 µl digestion) 

 
B add mixture to each 40.0 µl of digestion reaction 
 
C mix gently, centrifuge briefly to collect reaction 
 
D incubate at 20°C (room temperature), for 2 hours 
 
E dilute 1:20 in ddH2O: 
 ligation products 10 µl 
 ddH2O 190 µl 
  mix well 
 
F store unused portion of ligation products at –20°C 
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Pre-amplification reaction 
 
A per reaction: 
 final conc. 
  

ligation products (dilution 1:20) 5.00 µl 
ddH2O 8.35 µl 
10x PCR buffer (Pharmacia) 2.50 µl 1x 
dNTP´s (1mM) 5.00 µl 0.2 mM 
EcoRI + 1 (5 pmol/µl) 2.00 µl 0.4 µM 
MseI + 1 (5 pmol/µl) 2.00 µl 0.4 µM 
Taq DNA polymerase 0.15 µl 
 ________ 

 total:  25.00 µl 
 
B mix gently, centrifuge briefly to collect reaction 
 
C run 20 cycles in the PCR 1. 30 sec at 94°C 
 2. 60 sec at 50°C 
 3. 60 sec at 72°C 
 
D dilute 1:20 in ddH2O: 
 pre-amplification  products 10 µl 
 ddH2O 190 µl 
  mix well 
 
E store unused portion of pre-amplification products at –20°C 
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Primer labelling 
 
A per reaction: 
  

ddH2O 0.10 µl 
EcoRI + 3 (5 pmol/µl) 0.18 µl 
5x kinase buffer 0.10 µl 
T4 polynucleotide kinase 0.02 µl 
[33P]-γ-ATP (200 Ci/mmol) 0.10 µl 
 ________ 

 total:  0.50 µl 
 
B mix gently, centrifuge briefly to collect reaction 
 
C incubate at 37°C, for 1 hour 
 
D heat inactivate the enzyme at 70°C for 10 min. 
 
E centrifuge briefly to collect reaction contents 
 
F store at –20°C until use 
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Main-amplification reaction 
 
A per reaction: 
  

pre-amplification products (dilution 1:20) 5.00 µl 
Mse-mix: 

 ddH2O 0.20 µl 
 dNTP’s (1mM) 5.00 µl 
 MseI + 2 (5 pmol/µl) 1.80 µl 
 sub-total 1: 7.00 µl 

Eco-mix: 
 ddH2O 5.42 µl 
 10x PCR buffer (Pharmacia) 2.00 µl 
 Taq DNA polymerase 0.08 µl 
 EcoRI + 3 (5 pmol/µl) 0.50 µl 
 sub-total 2: 8.00 µl 
 ________ 
 total: 20.00 µl 
 
B pipette 7.00 µl of the Mse-mix and 5.00 µl of diluted pre-amplification products, mix 

gently, centrifuge briefly to collect reaction 
 
C add 8.00 µl of Eco-mix into the tube, and carefully pipette up/down several times (8-10) 

to mix reagents 
 
D run the PCR  1. 2 min at 94°C 
  2. 30 sec at 94°C 
  3. 30 sec at 65°C (-0.7°C per cycle) 
  4. 1 min at 72°C 
  5. repeat steps 2 to 4, 11 times 
  6. 30 sec at 94°C 
  7. 30 sec at 56°C 
  8. 1 min at 72°C 
  9. repeat steps 6 to 8, 25 times 
  10. 2 min at 72°C 
  11. hold at 4°C 
   
E load 20 µl of AFLP loading dye into the tube, pipette up/down several times (8-10) to 

mix 
 
F denature for 3 min at 90°C and place immediately on ice 
 
G load 2.5 µl into the gel (keep samples on ice during loading) 
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8.2 ISSR protocol 
 
 
 
 
A per reaction: 
 final conc. 
template DNA (100ng/µl) 1.00 µl 
10x PCR buffer (Pharmacia) 2.50 µl 1 x 
ISSR primer (5pmol/µl) 5.00 µl 1 µM 
MgCl2 (100mM) 0.25 µl 1 mM 
dNTP’s (10mM) 1.25 µl 0.5 mM 
ddH2O 14.80 µl 
Taq DNA polymerase (Pharmacia) 0.20 µl (1U) 1 U 
 __________ 
 total amount: 25.00 µl 
 
 
B mix gently, centrifuge briefly to collect reaction 
 
C run the PCR: 

1. 95°C for 1min 
2. 94°C for 30sec 
3. 50°C for 30sec 1 
4. 72°C for 2min 
5. repeat steps 2 to 4 35 times 
6. 72°C for 10min 

 
keep the PCR product at –20°C 

 

1 optimized annealing temperatures: 
 cornsalad 45.2°C 
 radish 48.0°C 
 celeriac 45.2°C 
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8.3 Basic solutions for DNA extraction, AFLP and ISSR analyses 

 (in alphabetical order) 

 
 
AFLP-loading buffer 
 100 % formamide 20 ml 
 0.5M EDTA 400 µl 
 0.1% brom-phenol blue 10 – 20 mg 
 0.1% p-xylol blue 10 – 20 mg 
 
 
10% APS (10 ml) 
 ammonium-persulfate 1 g 
 ddH2O 10 ml 
 DO NOT autoclave 
 
 
chloroform / isoamylalcohol (24:1) 
(work under the fume hood!!) 
 chloroform 960 ml 480 ml 384 ml 
 isoamylalcohol 40 ml 20 ml 16 ml 
 
 
CTAB 
      final conc. 
 1M Tris-HCl (pH 7.5) 20 ml 50 ml 60 ml 100 mM 
 5M NaCl 28 ml 70 ml 84 ml 700 mM 
 0.5M EDTA (pH 8.0) 20 ml 50 ml 60 ml 50 mM 
 bi-destilled H2O up to 200 ml up to 500 ml up to 600 ml 
 CTAB* 2.00 g 4.5 g 6.0 g 1% 
 autoclave 

* before adding CTAB, preheat the solution to 60-65°C and stir vigorously! Do not put the 
whole amount of ddH2O at once, but add it at the end, when CTAB dissolves. 
 
Na-disulfite is added to the extraction buffer just before use, directly into the extraction 
tube. 

 
 
Developing solution 
 sodium-carbonate (Na2CO3) 48 g 
 millipore H2O 1.6 l 
 (37%, 1 vial) formaldehyde 2.4 ml - ADD BEFORE USE 
 sodium-thiosulfate (10 mg/ml) 320 µl - ADD BEFORE USE 
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dNTP´s (1mM) (10mM) 
 dATP (100mM) 10 µl 100 µl 
 d CTP (100mM) 10 µl 100 µl 
 d TTP (100mM) 10 µl 100 µl 
 d GTP (100mM) 10 µl 100 µl 
 ddH2O 960 µl 600 µl 
 ________ 
 total: 1000 µl 
 
 
0.5M EDTA (pH 8.0) 
 for 1 l for 2 l 
 EDTA 186.10 g 372.20 g 
EDTA dissolves in pH 8.0. Add EDTA into H2O (less than final volume), add NaOH pellets 
(approx. 20 g for 1 l of solution) and stir vigorously. Add H2O up to the final volume, and 
adjust pH to 8.0. 
 
 autoclave 
 
 
Fix/stop solution 
 glacial acetic acid 160 ml 
 millipore H2O 1.44 l 
 
 
Glacial acetic acid dilution (for Bind Silane) 
 100% Et-OH 99.5 ml 
 glacial acetic acid 0.5 ml 
 
 *  1 ml of dilution 
 *  5 µl of Bind – Silane 

vortex, apply to short glass-plate 
leave 4 – 5 min and wipe 2 times with ethanol 

 
 
MgCl2 (1M) (100mM) 
 MgCl2 x 6H2O 20.33 g 2.03 g 
 millipore H2O up to volume up to volume 
 ____________ ____________ 
 100 ml 100 ml 
 autoclave 
 
 
5M NaCl 
 NaCl 292.2 g 
 add millipore H2O up to 1000 ml 
  __________ 
 autoclave 
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2.5M Na-O-Ac 
 Na-acetate (anhydrous) 20.50 ml 51.25 ml 102.50 ml 
 bi-destilled H2O up to 100 ml up to 250 ml up to 500 ml 
 
 autoclave 
 
 
Na-thiosulfate (10mg/ml) 
 Na-thiosulfate 1 g 
 ddH2O 100 ml 
 
 
1M NH4-O-Ac 
 ammonium acetate (MW=77.08) 7.71 ml 19.27 ml 38.55 ml 
 bi-destilled H2O up to 100 ml up to 250 ml up to 500 ml 
 sterilize by filtration 
 
 
RNAse A (10mg/ml) 
 RNAse 100 mg 
 bi-destilled H2O 10 ml 
 dissolve 
 place in water bath and put to boil 
 let it boiling for 10-15 min 
 allow to cool down slowly to RT 
 dispense in 500 µl aliquots 
 store at –20°C 
 
 
Staining solution (not to be used if older than 1 week) 
 silver-nitrate (AgNO3) 2 g 
 millipore H2O 1.6 l 
 
 
50x TAE 
 for 1 l for 2 l 
 Tris 242.00 g 484.00 g 
 glacial acetic acid 57.10 ml 114.20 ml 
 0.5M EDTA (pH 8.0) 100 ml 200 ml 
 millipore H2O up to volume up to volume 
 
 
10x TBE 
 for 1 l for 2 l 
 0.5M Tris 121.13 g 242.26 g 
 0.45M boric acid 55.65 g 111.30 g 
 0.5M EDTA (pH 8.0) 20 ml 40 ml 
 millipore H2O up to volume up to volume 
 set pH to 8.3 
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TE (pH 8.0) 
 1M Tris-HCl (pH 8.0) 2 ml 2.5 ml 5.0 ml 
 0.5M EDTA (pH 8.0) 400 µl 500 µl 1.0 ml 
 bi-destilled H2O up to 200 ml up to 250 ml up to 500 ml 
 ___________ ___________ ___________ 
 set pH to 8.0 
 autoclave 
 
 
1M Tris – HCl (pH 7.5 or 8.0) 
 Tris-Base 121 g 
 millipore H2O approx. 750 ml 
 ___________ 
 dissolve 
 add millipore H2O up to 1000 ml 
add HCl until desired pH is reached 75 ml = pH 7.5 
  42 ml = pH 8.0 
 autoclave 
 
 
WASH – I (76% Et-OH, 0.2M Na-O-Ac) 
 Et-OH (absolute) 76 ml 152 ml 228 ml 304 ml 380 ml 
 2.5M Na-O-Ac 8 ml 16 ml 24 ml 32 ml 40 ml
 bi-destilled H2O 16 ml 32 ml 48 ml 64 ml 80 ml 
 ______ ______ ______ ______ ______ 
  100 ml 200 ml 300 ml 400 ml 500 ml 
 
 
WASH – II (76% Et-OH, 10mM NH4-O-Ac) 
 Et-OH (absolute) 76 ml 152 ml 228 ml 304 ml 380 ml 
 1M NH4-O-Ac 1 ml 2 ml 3 ml 4 ml 5 ml
 bi-destilled H2O 23 ml 46 ml 69 ml 92 ml 115 ml 
 ______ ______ ______ ______ ______ 
 100 ml 200 ml 300 ml 400 ml 500 ml 
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