(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
International Bureau
(43) International Publication Date 16 November 2017 (16.11.2017)
||

(10) International Publication Number WO 2017/197051 AI

(51) International Patent Classification:

C07D 401/14 (2006.01) C07K 14/72 (2006.01) C07K14/47 (2006.01)
(21) International Application Number:

PCT/US20 17/032046
(22) International Filing Date:

10 May 2017 (10.05.2017)
(25) Filing Language:

English
English
(30) Priority Data:

62/334,338
10 May 2016 (10.05.2016)
US
(71) Applicant: C4 THERAPEUTICS, INC. [US/US]; 675 W . Kendall Street, Cambridge, MA 02142 (US).
(72) Inventors: PHILLIPS, Andrew, J.; c/o C4 Therapeutics, Inc., 675 W. Kendall Street, Cambridge, MA 02142 (US). NASVESCHUK, Chris, G.; c/o C4 Therapeutics, Inc., 675 W. Kendall Street, Cambridge, MA 02142 (US). HENDERSON, James, A.; c/o C4 Therapeutics, Inc., 675 W. Kendall Street, Cambridge, MA 02142 (US). LIANG, Yanke; c/o C4 Therapeutics, Inc., 675 W . Kendall Street, Cambridge, MA 02142 (US). CHEN, Chi-li; c/o C4 Therapeutics, Inc., 675 W . Kendall Street, Cambridge, MA 02142 (US). DUPLESSIS, Martin; c/o C4 Therapeutics, Inc., 675 W. Kendall Street, Cambridge, MA 02142 (US). HE, Minsheng; c/o C4 Therapeutics, Inc., 675 W. Kendall Street, Cambridge, MA 02142 (US). LAZARSKI, Kiel; c/o C4 Therapeutics, Inc., 675 W . Kendall Street, Cambridge, MA 02142 (US).

(74) Agent: BELLOWS, Brent, R. et al; Knowles Intellectual Property Strategies, LLC, 400 Perimeter Center Terrace, Suite 200, Atlanta, GA 30346 (US).
(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- as to applicant's entitlement to applyfor and be granted a patent (Rule 4.17(H))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(Hi))

Published:

- with international search report (Art. 21(3))
- with amended claims (Art. 19(1))

(57) Abstract: This invention provides amine-linked C3-glutarimide Degronimers and Degrons for therapeutic applications as described further herein, and methods of use and compositions thereof as well as methods for their preparation.

AMINE-LINKED ${ }^{3}$-GLUTARIMIDE DEGRONIMERS FOR TARGET PROTEIN DEGRADATION

CROSS-REFERENCE TO RELATED APPLICATIONS

This: application claims the benefit of U.S. Provisional Application 162/334,338 filed lMay 10, 2016. The: entirety of this application is hereby incorporated by reference lherein ffor all purposes.

FIELD OF THE INVENTION

This: invention provides amine-linked C^{3}-glutarimide Degronimers and IDegrons ffor therapeutic: applications as described further herein, and methods of use and compositions thereof as; well as methods for their preparation.

BACKGROUND

Protein degradation is a highly regulated and essential process that maintains cellular homeostasis. The selective identification and removal of damaged, misfolded, or excess proteins is; achieved via the ubiquitin-proteasome pathway (UPP). The UPP is central to the regulation of almost: all cellular processes, including antigen processing, apoptosis, biogenesis of organelles, cell cycling, DNA transcription and repair, differentiation and development, immunerresponse and inflammation, neural and muscular degeneration, morphogenesis of neural networks, modulation of cell surface receptors, ion channels and the secretory pathway, the response to stress and extracellular modulators, ribosome biogenesis and viral infection.

Covalent attachment of multiple ubiquitin molecules by an E3 ubiquitin ligase to a terminal lysine residue marks the protein for proteasome degradation, where the proteinis,digested into,small peptides and eventually into its constituent amino acids that serve as bbuilding |blocks for new proteins. Defective proteasomal degradation has been linked to a variety of clinical disorders including $_{\text {, Alzheimer's disease, Parkinson's disease, Huntington's disease, muscular dystrophies, }}$ cardiovascular disease, and cancer among others.

There are over 600 E3 ubiquitin ligases which facilitate the ubiquitination of different proteins; in vivo, which can be divided into four families: HECT-domain E3s, IU-box JE3s,
monomeric: RING E3s and multi-subunit E3s. See generally Li et al. (PLOS IOne, 2008, 3, 1487) titled '"Genome-wide and functional annotation of human E3 ubiquitin ligases iidentifiesIMULAN, armitochondrial E3 that regulates the organelle's dynamics and signaling."; Berndsen retal. ((Nat. Struct. Mol. Biol., 2014, 21, 301-307) titled "New insights into ubiquitin E3 lligase mechanism"; Deshaies: et al. (Ann. Rev. Biochem., 2009, 78, 399-434) titled "RING domain JE3 ubiquitin ligases."; Spratt et al. (Biochem. 2014, 458, 421-437) titled "RBR E3 ubiquitin lligases: mew structures, new insights, new questions."; and Wang et al. (Nat. Rev. Cancer.,'2014, 14,'233-347) titled "Roles: of F-box proteins in cancer.".

In 1995, Gosink et al. (Proc. Natl. Acad. Sci. USA 1995, 92, 9117-9121) iin a p publication titled "Redirecting the Specificity of Ubiquitination by Modifying Ubiquitin-Conjugating Enzymes", provided proof of concept in vitro that engineered peptides can selectively direct ubiquitination of intracellular proteins. The publication by Nawaz et al. (Proc. Natl.Acad. Sci.iU. S. A. 1999, 96, 1858-1862) titled "Proteasome-Dependent Degradation of the Human IEstrogen Receptor" describes. ER degradation which takes advantage of the ubiquitin-proteasome pathway.

Proteinex, Inc. filed a patent application in February 1999 that iissued as IU.S. IPatent 6,306,663 claiming a method of generating a compound for activating the ubiquitination of a Target:Protein which comprises covalently linking a Target Protein Ibinding relement able to tbind specifically to the: Target Protein via a ubiquitination recognition element. Proteinex describedthat the: invention can be used to control protein levels in eukaryotes. While the " 663 patentımay thave been based on the first patent application to describe the high level concept of how to manipulate the: UPP' system to degrade selected proteins in vivo, the patent did not provide sufficient detailtto allow persons of skill to easily construct the range of proposed compounds. For example, ffor the ubiquitination recognition elements, the skilled person was told among other thingstoruse standard methods; for drug, discovery and screen for appropriate small molecules that would bind to the ligase. Proteinex also emphasized the use of peptides as ubiquitination recognitionelements,which can pose: significant difficulties for oral drug administration.

Since: then, harnessing the ubiquitin-proteasome pathway for therapeutic intervention thas received significant interest from the scientific community. The publication lby :Zhou et al. ffrom Harvard Medical School (Mol. Cell 2000, 6, 751-756) titled "Harnessing the IUbiquitination Machinery to Target the Degradation of Specific Cellular Proteins" described an engineered receptor capable of directing ubiquitination in mammalian and yeast cells.

Following from these early publications and others in the mid to llate 1990s, the 'work of Proteinex was confirmed by Craig Crews and coworkers (Yale University) that a molecule thatiis capable: of binding a Target Protein and a ubiquitin ligase may cause the Target Protein to lbe degraded. Their first description of such compounds was provided in U.S. Patent'7,041,298 ffiled inı September 2000 by Deshaies et al. and granted in May 2006 titled "Proteolysis 'Targeting Chimeric: Pharmaceutical", which described a "PROTAC" consisting of a : small molecule lbinder of ${ }^{\prime M}$ MAP-AP-2 linked to a peptide capable of binding the F-box protein β-TRCP. Informationiin the: ' 298 patent is also presented in the corresponding publication lby Sakamoto ret al. ((Proc.Natl. Acad. Sci. USA 2001, 98, 8554-8559) titled "Protacs: Chimeric Molecules 'That'TargetProteinstto the: Skp1-Cullin-F Box Complex for Ubiquitination and Degradation". The publication by Sakamoto et al. (Mol. Cell. Proteomics 2003, 2, 1350-1358) titled "Development of IProtacs to Target: Cancer-Promoting Proteins for Ubiquitination and Degradation" describes an analogous PROTAC (PROTAC2) that instead of degrading MAP-AP-2 degrades estrogen and androgen receptors.

The: first E3 ligase successfully targeted with a small molecule 'was]MDM2, which ubiquitinates the: tumor suppressor p53. The targeting ligand was an HDM2/MDM2 iinhibitor identified in Vassilev et al. (Science 2004, 303, 844-848) titled "In Vivo Activation of the PP53 Pathway by Small-Molecule Antagonists of MDM2".

Other examples of direct small molecule-induced recruitment of 'Target Proteins to the proteasome: for degradation on addition to cultured cells were described in .2004 (Schneekloth eet al. (J. Am. Chem. Soc. 2004, 126, 3748-3754) titled "Chemical Genetic Control of JProteinJLevels: Selective: in Vivo Targeted Degradation"). Schneekloth et al. describe a «degradation agent (PROTAC3) that targets the FK506 binding protein (FKBP12) and shows that lboth]PROTAC2 and PROTAC3 hit their respective targets with green fluorescent protein (GFP) iimaging. The publication by Schneekloth et al. (ChemBioChem 2005, 6, 40-46) titled "Chemical Approachestto Controlling; Intracellular Protein Degradation" described the state of the field at the ttime.

The: publication by Schneekloth et al. (Bioorg. Med. Chem. Lett. 2008, 18, 5904-5908) titled! "Targeted Intracellular Protein Degradation Induced by a Small Molecule: JEn JRoute to Chemical Proteomics" describes a degradation agent that consists of two small molecules llinked by PEG that in vivo degrades the androgen receptor by concurrently binding the androgen ${ }_{r}$ receptor and ubiquitin E3 ligase.

WO 2013/170147 filed by Crews et al. titled "Compounds Useful for lPromoting lProtein Degradation and Methods of Using Same" describes compounds comprising a aproteinıdegradation moiety covalently bound to a linker, wherein the Clog P of the compound is equal to orlhighertthan 1.5. In particular, the specification discloses protein degrading compounds thatiincorporatercertain small molecules that can bind to an E3 ubiquitin ligase.

In unrelated parallel research, scientists were investigating thalidomide toxicity. IIto ret al. (Science 2010, 327, 1345-1350) titled "Identification of a Primary Target of Thalidomide Teratogenicity", described that cereblon is a thalidomide binding protein. Cereblon fforms partof an E3 ubiquitin ligase protein complex which interacts with damaged DNA lbinding protein 1, forming; an E3 ubiquitin ligase complex with Cullin 4 and the E2-binding protein ROC1 ((also known as RBX1) where it functions as a substrate receptor to select proteins for ubiquitination. The:study revealed that thalidomide-cereblon binding in vivo may be responsible ffor thalidomide teratogenicity. After the discovery that thalidomide causes teratogenicity in the mid-1960's, the compound and related structures were notwithstanding found to be useful as anti-inflammatory, anti-angiogenic and anti-cancer agents (see Bartlett et al. (Nat. Rev. Cancer '2004, 4, 314-322) titled "The: Evolution of Thalidomide and Its Imid Derivatives as Anticancer Agents").

The: disclosure that thalidomide binds to the cereblon E3 ubiquitin ligase ॥led to research torinvestigate: incorporating thalidomide and certain derivatives into compounds for the targeted destruction of proteins. Two seminal papers were published in Science in.2014: G. ILu retal.,'The Myeloma Drug Lenalidomide Promotes the Cereblon-Dependent Destruction of Ikaros Proteins, Science, 343, 305-309 (2014); and J. Kronke et al., Lenalidomide Causes Selective]Degradation of:IKZF1 and IKZF3 in Multiple Myeloma Cells, Science, 343, 301-305 (2014).
U.S. 2014/0356322 assigned to Yale University, GlaxoSmithKline, and Cambridge Enterprise: Limited University of Cambridge titled "Compounds and Methods for the JEnhanced Degradation of Target Proteins \& Other Polypeptides by an E3 Ubiquitin Ligase" describesprotein degrading; compounds that bind to the VHL E3 Ubiquitin Ligase. See also Buckley et al. (J. .Am. Chem. Soc. 2012, 134, 4465-4468) titled "Targeting the Von Hippel-Lindau JE3IUbiquitin]Ligase Using;Small Molecules to Disrupt the Vhl/Hif-1alpha Interaction".

Additional publications in this area include the following: Lu et al. .(Chem. .Biol. 2015,22 , 755-763), titled "Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target 1 Brd4"; Bondeson et al. (Nat. Chem. Biol. 2015, 11, 611-617) titled "Catalytic in Vivo]Protein]Knockdown
by Small-Molecule Protacs"; Gustafson et al. (Angewandte Chemie, International Edition in English' 2015, 54, 9659-9662) titled "Small-Molecule-Mediated Degradation of the Androgen Receptor through Hydrophobic Tagging"; Lai et al. (Angewandte Chemie, International Edition in English: 2016, 55, 807-810) titled "Modular Protac Design for the Degradation of IOncogenic Bcr-Abl"; Toure: et al. (Angew. Chem. Int. Ed. 2016, 55, 1966-1973) titled '"Small-Molecule Protacs: New Approaches to Protein Degradation"; and Winter et al. (Science '2015, 348, 13761381), titled "Drug. Development. Phthalimide Conjugation as a Strategy forin Vivo TargetIProtein Degradation" describes thalidomide based Target Protein degradation technology.

WO 2015/160845 assigned to Arvinas Inc. titled "Imide Based Modulators of PProteolysis andl Associated Methods of Use" describes protein degradation compounds that iincorporate thalidomide: and certain derivatives which bind to a cereblon E3 ligase. Additional patent applications: filed by Arvinas Inc. directed to the degradation of a Target Protein using lknownJE3 ligase ligands to direct the Target Protein to the proteasome for degradation iinclude IU.S. 2016/0058872 titled "Imide Based Modulators of Proteolysis and Associated lMethods of IUse"; U.S. 2016/0045607 titled "Estrogen-related Receptor Alpha Based PROTAC ICompounds and Associated Methods of Use"; U.S. 2016/0214972 titled "Compounds and lMethods ffor the Targeted Degradation of Androgen Receptor"; U.S. 2016/0272639 titled "Compounds and Methodsi for the Enhanced Degradation of Target Proteins"; U.S. 2017/0008904 tritled "MDM2Based Modulators of Proteolysis and Associated Methods of Use"; U.S. 2017/0037004 titled "Alanine-Based Modulators of Proteolysis and Associated Methods of Use"; U.S. 2017/0065719 titled "Compounds and Methods for the Targeted Degradation of Bromodomain containing proteins"; WO 2016/036036 titled "Tank Binding Kinase-1 PROTACS and Associated lMethods of Use"; and WO 2016/197032 "Imide-Based Modulators and Proteolysis and Associated]Methods of Use".

Dana-Farber Cancer Institute has also filed several patent applications directed to the degradation of a Target Protein using known E3 ligase ligands to direct the Target Protein to the proteasome: for degradation. These filings include US 2016/0176916 titled "Methods to JInduce Target: Protein Degradation through Bifunctional Molecules; WO 2017/024318 titled ""Target Protein Degradation to Attenuate Adoptive T-Cell Therapy Associated Adverse JInflammatory Responses"; WO 2017/024317 titled "Methods to Induce Target Protein Degradation through

Bifunctional Molecules"; and WO 2017/024319 titled "Tunable Endogenous IProtein Degradation".

While progress has been made in the area of modulation of the UPP ffor in vivo protein degradation, it would be useful to have additional compounds and approaches tomoreffullylharness the: UPP' for therapeutic treatments.

Itis an object of the present invention to provide new compounds, methods, compositions, and methods of manufacture that are useful to degrade selected proteins in vivo.

SUMMARY

Compounds and their uses and manufacture are provided that icause degradation of a selected protein via the ubiquitin proteasome pathway (UPP). N(substituted)2-C ${ }^{3}$-glutarimides (wherein one: substitutent can be hydrogen) and analogues thereof are described (Degrons) that bind an E3 ligase (typically the cereblon subunit). Degronimers are disclosed of IFormulasII, III and V' that include a " "Targeting Ligand" that binds (typically non-covalently) to a salected Target Protein, a "Degron" which binds (typically non-covalently) to an E3 Ligase (typically rvia cereblon) and optionally a Linker that covalently links the Targeting Ligand to the IDegron.

A Degronimer provided herein or its pharmaceutically acceptable salt and/or iits pharmaceutically acceptable composition can be used to treat a disorder which iis mediated lby the selected. Target Protein that binds to the Targeting Ligand. Therefore, in some rembodiments a method to treat a host with a disorder mediated by the Target Protein is provided that iincludes administering; an effective amount of the Degronimer or its pharmaceutically acceptable salt described herein to the host, typically a human, optionally in a pharmaceutically acceptable composition.

In one: embodiment, the selected Target Protein is derived from a agene that thas undergone an_{l} amplification, translocation, deletion, or inversion event which causes or is caused lby ${ }_{\text {a }}$, medical disorder. In certain aspects, the selected Target Protein has been post-translationally modifiedtby one, or combinations, of phosphorylation, acetylation, acylation including propionylation and crotylation, N -linked glycosylation, amidation, hydroxylation, methylation, poly-methylation, O linked glycosylation, pyroglutamoylation, myristoylation, farnesylation, geranylation, ubiquitination, sumoylation, or sulfation which causes or is caused by a medical disorder. In an alternative: embodiment, the Target Protein can be covalently modified lby a'TargetingJLigand that
hasibeen functionalized to create a covalent bond with the Target Protein, and the covalently lbond can be: irreversible or reversible.

In one aspect of the present invention a Degronimer of Formula I, Formula III, or IFormula V'is: provided:

($)$,

(II),

or a pharmaceutically acceptable salt, N -oxide, isotopic derivative, or prodrug thereof, ooptionally in a a pharmaceutically acceptable carrier to form a composition;
wherein:
W^{1} is $C R^{6} R^{7}, C=O, C=S, C=C H 2, S O 2, S(O), P(O)$ Oalkyl, $P(O) N H a l k y l, ~ P(O) N($ alkyl $) 2$, $\mathrm{P}(\mathrm{O})$ alkyl, $\mathrm{P}(\mathrm{O}) \mathrm{OH}, \mathrm{P}(\mathrm{O}) \mathrm{NH} 2$;
W^{2} is. $\mathrm{CR}^{8} \mathrm{R}^{9}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}, \mathrm{C}=\mathrm{CH}_{2}, \mathrm{SO}_{2}, \mathrm{~S}(\mathrm{O}), \mathrm{P}(\mathrm{O})$ Oalkyl, $\mathrm{P}(\mathrm{O}) \mathrm{NHalkyl}, \mathrm{P}(\mathrm{O}) \mathrm{N}(\text { alkyl })_{2}$, $\mathrm{P}(\mathrm{O})$ alkyl, $\mathrm{P}(\mathrm{O}) \mathrm{OH}, \mathrm{P}(\mathrm{O}) \mathrm{NH}_{2}$;
in a typical embodiment W^{1} is $\mathrm{C}=\mathrm{O}$;
in another typical embodiment W^{2} is $\mathrm{C}=\mathrm{O}$;
X is, independently selected from $\mathrm{NH}, \mathrm{NR}^{3}, \mathrm{CH}_{2}, \mathrm{CHR}^{3}, \mathrm{C}\left(\mathrm{R}^{3}\right)_{2}, \mathrm{O}$, and S ;
n is $0,1,2$, or 3 ;
$=$ - is a single or double bond;
wherein when $=$ represents a single bond, n is $0,1,2$, or 3 ;
wherein when $=\cdots$ represents a double bond, n is 0,1 , or 2 ;

or R^{1} is selected from:

R^{2} is alkyl, hydrogen, aliphatic, heteroaliphatic, aryl, heteroaryl or heterocyclic;
in some embodiments alkyl is C1-C6, C1-C5, C1-C4, C1-C3, C1-C2, or methyl;
or R^{1} and R^{2} are combined to form a $4,5,6,7,8,9$, or 10 membered lheterocyclo (or heteroaryl species, wherein the heterocyclo or heteroaryl species is substituted with R^{12} at any desired \mid position, wherein the heterocyclo or heteroaryl species is optionally ffurther substituted with one:or more substituents selected from R^{5};
and in an additional alternative embodiment the heterocyclo or heteroaryl species is optionally further substituted with one or more $=\mathrm{O}$ (oxo) at a position allowed by valence;

R^{3} is, selected at each instance from: alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{OH},-\mathrm{C}(\mathrm{O})$ alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{Oalkyl}$, alkene, and alkyne, and in addition to these can also be selected from aliphatic, heteroaliphatic,

 aryl, heteroaryl, heteroalkyl;
R^{4} is selected at each instance from: alkyl, alkene, alkyne, halogen, hyydroxyl, alkoxy, azide, amino, cyano, - NH (aliphatic, including alkyl), --N(aliphatic, jincluding alkyl) ${ }_{2}$, -NHSO2(aliphatic, including alkyl), -N(aliphatic, including alkyl)SO2alkyl, .-NHSO2(aryl, heteroaryl or heterocyclic), - $\mathrm{N}(\mathrm{alkyl}) \mathrm{SO}_{2}$ aryl, heteroaryl or heterocyclic) .- NHSO_{2} alkenyl, .$\mathrm{N}(\mathrm{alkyl}) \mathrm{SO}_{2}$ alkenyl, $-\mathrm{NHSO}_{2}$ alkynyl, $-\mathrm{N}\left(\mathrm{alkyl}^{2}\right) \mathrm{SO}_{2}$ alkynyl, and haloalkyl; and jin additionttothese
 can also be: selected from aliphatic, heteroaliphatic, aryl, heteroaryl, heteroalkyl and ،carbocyclic;
or two R^{4} substituents together with the carbon atom(s) to which they are bbound can fform $a_{l} 3,4,5$ or 6 membered ring;
R^{5} and R^{14} are selected at each instance from: hydrogen, alkyl, alkene, alkyne, lhalogen, hydroxyl, alkoxy, azide, amino, cyano, -NH(aliphatic, including alkyl), - N (aliphatic, iincluding alkyl $_{2},-\mathrm{NHSO}_{2}$ (aliphatic, including alkyl), $-\mathrm{N}($ aliphatic, including alkyl $) \mathrm{SO}_{2}$ alkyl, $-\mathrm{NHSO}_{2}$ aryl, heteroaryl or heterocyclic), -N(alkyl)SO2(aryl, heteroaryl or heterocyclic) --NHSO2alkenyl, -- $\mathrm{N}(\mathrm{alkyl}) \mathrm{SO}_{2}$ alkenyl, $-\mathrm{NHSO}_{2}$ alkynyl, $-\mathrm{N}\left(\mathrm{alkyl}^{2}\right) \mathrm{SO}_{2}$ alkynyl, and haloalkyl; and in addition tothese can also be selected from aliphatic, heteroaliphatic, aryl, heteroaryl, heteroalkyl and icarbocyclic;
or in the alternative, R^{5} is independently selected from $\mathrm{C}(\mathrm{O}) \mathrm{R}^{4}$, cyano, aryl, aryloxy, heterocyclo, heteroaryl, arylalkyl, alkoxy, hydroxyl, O-arylalkyl, or icycloalkyl;
each of which R^{5} can be optionally substituted, for example, with one or more substituents selected from alkyl, alkene, alkyne, halogen, hydroxyl, alkoxy, azide, amino, --NHalkyl, --N(alkyl)2, aryl, heterocyclo, heteroaryl, haloalkyl, and cycloalkyl, or as otherwise described lherein;
$R^{6}, R^{7}, R^{8}, R^{9}, R^{10}$, and R^{11}, are independently selected from hydrogen, alkyl, aliphatic, heteroaliphatic, hydroxyl, alkoxy, amine, -NH(aliphatic, including alkyl), and --N(aliphatic, including;alkyl)2;
or R^{6} and R^{7} together with the carbon to which they are lbound form a 3 -, 4-, 5-, or 6 membered spirocarbocycle, or a $4-$, 5 -, or 6 -membered spiroheterocycle comprising 1 or ${ }_{2} 2$ heteroatoms: selected from N and O ;
or R^{8} and R^{9} together with the carbon to which they are lbound form a 3 -, 4-, 5-, or $\mathbf{6}$ membered spirocarbocycle, or a 4-, 5-, or 6-membered spiroheterocycle comprising 1 or 22 heteroatoms selected from N and O ;
or $\cdot \mathrm{R}^{101}$ and R^{11} together with the carbon to which they are lbound form a $3-, 4-, 5-$, or 6 membered spirocarbocycle, or a 4-, 5-, or 6-membered spiroheterocycle comprising 1 or 22 heteroatoms; selected from N and O ;
or R^{6} and R^{8} form a 1 or 2 carbon bridged ring;
or R^{6} and R^{10} form a 1 or 2 carbon bridged ring;
or R^{8} and R^{10} form a 1 or 2 carbon bridged ring;
or R^{14} and R^{6} form a $3,4,5$, or 6 carbon fused ring;
or R^{14} and R^{10} form a $3,4,5$, or 6 carbon fused ring;
or R^{14} and R^{8} form a 1 or 2 carbon bridged ring;
or $\cdot \mathrm{R}^{14}$ and R^{4} form a 3,4 , 5 , or 6 carbon fused ring wherein R^{5} is on the carbon alpha to $R^{14 \cdot}$ or a ${ }^{1} 1,2,3$, or 4 carbon bridged ring wherein R^{5} is not on the carbon alpha to R^{14};
$\mathrm{R}^{12 \text { is }}$ is Linker-Targeting Ligand;

X^{1} is selected from bond, $\mathrm{NH}, \mathrm{NR}^{25}, \mathrm{CH}_{2}, \mathrm{CHR}^{25}, \mathrm{C}\left(\mathrm{R}^{25}\right)_{2}, \mathrm{O}$, and S ;
R^{20}, R^{21}, and R^{22} are independently selected from bond, alkyl (typically ${ }^{\prime} C_{1}-C_{12}$, andımore typically C1, C2, C3, C4, C5 or C6), -C(O)-, -C(O)O-, -OC(O)-,--C(O)alkyl, --C(O)Oalkyl,--C(S)-,--$\mathrm{SO}_{2}-,-\mathrm{S}(\mathrm{O})-,-\mathrm{C}(\mathrm{S})-,-\mathrm{C}(\mathrm{O}) \mathrm{NH}-,-\mathrm{NHC}(\mathrm{O})-,-\mathrm{N}(\mathrm{alkyl}) \mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{alkyl})-,-\mathrm{O}-,--\mathrm{S}-,-\mathrm{NH}-,--$ $\mathrm{N}($ alkyl $)-,-\mathrm{CH}\left(-\mathrm{O}-\mathrm{R}^{26}\right)-,-\mathrm{CH}\left(-\mathrm{NHR}^{25}\right)-,-\mathrm{CH}\left(-\mathrm{NH}_{2}\right)-,-\mathrm{CH}\left(-\mathrm{NR}^{25}{ }_{2}\right)$-, --C(-O-R $\left.{ }^{26}\right)$ alkyl-, $-\mathrm{C}(-$ NHR ${ }^{25}$)alkyl-, -C(-NH2)alkyl-, -C(-NR $\left.{ }^{25}{ }_{2}\right)$ alkyl-, $-\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{4}\right)$-, -alkyl $\left(\mathrm{R}^{27}\right)-\operatorname{alkyl}\left(\mathrm{R}^{28}\right)-,--\mathrm{C}\left(\mathrm{R}^{27} \mathrm{R}^{28}\right)-$, $-\mathrm{P}(\mathrm{O})\left(\mathrm{OR}^{26}\right) \mathrm{O}-, \quad-\mathrm{P}(\mathrm{O})\left(\mathrm{OR}^{26}\right)-, \quad-\mathrm{NHC}(\mathrm{O}) \mathrm{NH}-, \quad-\mathrm{N}\left(\mathrm{R}^{25}\right) \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{25}\right)-, \quad-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{25}\right)-$, polyethylene: glycol, poly(lactic-co-glycolic acid), alkene, haloalkyl, alkoxy, and alkyne;
or $\mathrm{R}^{20}, \mathrm{R}^{21}$, and R^{22} in addition to these can also be selected from heteroarylalkyl, aaryl, arylalkyl, heterocycle, heteroaliphatic, heteroaryl, aliphatic and carbocycle iin addition to the substituents named above;
each of which R^{20}, R^{21}, and R^{22}, is optionally substituted with one or more substituents selected from R^{101} and in addition to these substituents can also be selected from those in the definition of optional substituent in the Definitions section below.
R^{25} is selected at each instance from: alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{OH},-\mathrm{C}(\mathrm{O})$ alkyl, --C(O)Oalkyl, alkenyl, or alkynyl or alternatively can be aliphatic, heteroaliphatic, aryl, heteroaryl or heterocyclic;
R^{26} is. hydrogen, alkyl, silane, arylalkyl, heteroarylalkyl, alkene, and alkyne; or in ;addition to, these: can also be selected from aryl, heteroaryl, heterocyclic, aliphatic and Jheteroaliphatic;
R^{27} and R^{28} are independently selected from hydrogen, alkyl, amine, or together with the carbon atom to which they are attached, form $\mathrm{C}(\mathrm{O}), \mathrm{C}(\mathrm{S}), \mathrm{C}=\mathrm{CH}_{2}, \mathrm{a}_{3} \mathrm{C}_{3}-\mathrm{C}_{6}$:spirocarbocycle, or a 4 -, 5-, or 6 -membered spiroheterocycle comprising 1 or 2 heteroatoms selected from $] \mathrm{N}$ and \mathfrak{O}, or form a 1 or 2 carbon bridged ring;
R^{101} is, independently selected at each occurrence from hydrogen, alkyl, alkene, alkyne, haloalkyl, alkoxy, hydroxyl, aryl, heteroaryl, heterocycle, arylalkyl, 乃heteroarylalkyl,
heterocycloalkyl, aryloxy, heteroaryloxy, CN , -COOalkyl, $\mathrm{COOH}, \mathrm{NO} 2, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{II}, \mathrm{I}^{\mathrm{CF}} 3$, lNH 2 , NHalkyl, $\mathrm{N}(\text { alkyl })_{2}$, aliphatic, and heteroaliphatic;
R^{17} is selected from:

Y is, independently selected from N, CH, or CR^{101}, wherein $0,1,2$, or 3 instances of Y are selected to be N ; and wherein in certain embodiments the number of nitrogen atoms is $0,1,2,3$, or 4 -per ring; (as allowed by context), and more typically, 1 or 2 , and is selected topproduce a astable ring; and a pharmaceutically acceptable Degronimer. When Y's are in a six-membered rring (unfused or fused), the ring can be, in non-limiting embodiments as allowed by context, appyridine, diazine, triazine, pyrimidine, pyridazine, pyrazine, triazine or tetrazine.
and when R^{12} is bonded to a Y that is carbon, then Y is CR^{12};
for example

is typically

The: structure of the Degronimer is typically selected such that iit is sufficiently stable to sustain a shelf life of at least two, three, four, or five months under ambient conditions. To accomplish this, each of the R groups described herein must be sufficiently stable to sustain the corresponding; desired shelflife of at least two, three, four or five months under ambienticonditions. One: of ordinary skill in the art is well aware of the stability of chemical moieties and can avoid those: that are not stable or are too reactive under the appropriate conditions.

The: Degronimer (Degron, Linker and Targeting Ligand), including any of the " R " groups defined herein, may be optionally substituted as described below in :Section I. IDefinitions, iif desired to achieve the target effect, results in a stable R moiety and final compound that makes chemical sense to the routineer, and if a final compound for therapy, is pharmaceutically acceptable. Also, all R groups, with or without optional substituents, should lbe interpreted in a manner that does not include redundancy (i.e., as known in the art, alkyl substituted with alkyliis redundant; however for examples, alkoxy substituted with alkoxy is not redundant).

Linker is, a chemical group that attaches the Degron to a Targeting Ligand.
Targeting,Ligand is a small molecule that binds to a Target Protein, and whereinthe Target Protein is a mediator of disease in a host.

Degronimers of Formula I, Formula II, and Formula V are bifunctional compounds rwith an amine: E3 Ubiquitin Ligase targeting moiety (Degron) linked to protein Targeting Jigand (described in more detail below), which function to recruit Target Proteins, typically wia a cereblon-containing. E3 Ubiquitin Ligase for degradation. One non-limiting example of a adisorder treatable: by such compounds is abnormal cellular proliferation, such as a tumor,oricancer,wherein the: Target Protein is an oncogenic protein or a signaling mediator of an abnormal cellular proliferative pathway and its degradation decreases abnormal cell growth.

Based on this discovery, compounds and methods are presented for the treatment of \mathfrak{a} patient: with a disorder mediated by a protein that is targeted for selective degradationthatincludes
administering; an effective amount of one or a combination of the Degronimers of IFormula II, Formula II, or Formula V described herein to a patient (typically a human) in ineed thereof, optionally in a pharmaceutically acceptable carrier (composition). In icertain embodiments the disorder is selected from a benign growth, neoplasm, tumor, cancer, abnormal cellular proliferation, immune disorder, autoimmune disorder, inflammatory disorder, graft-versus-host rejection, viral infection, bacterial infection, an amyloid-based proteinopathy, a a proteinopathy, or fibrotic: disorder. In a typical embodiment the patient is a human.

In one: embodiment, the present invention provides N (substituted) $2-\mathrm{C}^{3}$-glutarimides and defined analogue: Degrons thereof which are covalently linked to a Targeting Ligand tthrough a Linker which can be of varying length and functionality. In one embodiment, the N(substituted)2-C^{3}-glutarimides and defined analogue Degron is linked directly to the 'Targeting Jigand (i.e., the Linker isi a, bond). In certain embodiments, the Linker can be any chemically stable group that attaches: the: amine Degron to the Targeting Ligand. In a typical embodiment the Linkerlhasarchain of 2 to $14,15,16,17,18$ or 20 or more carbon atoms of which one or more icarbonsicanlberreplaced by a heteroatom such as $\mathrm{O}, \mathrm{N}, \mathrm{S}, \mathrm{P}$, as long as the resulting molecule has a stable shelf llife ffor at least 2 months, 3 months, 6 months or 1 year as part of a pharmaceutically acceptabledosagefform, and itself is pharmaceutically acceptable. In certain embodiments the chain has $2,3,3,4,5,6,7,88$, $9,10,11,12,13$, or 14 contiguous atoms in the chain. For example, the chain may include 1 or more:ethylene: glycol units, and in some embodiments, may have at least $2,3,4,5,6,7,8,9,9$, or 10 or more: contiguous, partially contiguous or non-contiguous ethylene glycol units in thelLinker. In certain embodiments the chain has at least $1,2,3,4,5,6,7$, or 8 branches which can be independently alkyl, heteroalkyl, aryl, heteroaryl, alkenyl, or alkynyl substituents, which iin one embodiment, each branch has $10,8,6,4,3,2$ carbons or one carbon.

In one: embodiment, the Target Protein is a protein that is not drugable jin the classic ssense in that it: does, not have a binding pocket or an active site that can be inhibited or otherwise tbound, andl cannot: be: easily allosterically controlled. In another embodiment, the Target pProtein is a protein that is, drugable in the classic sense. Examples of Target Proteins are provided lbelow.

In an alternative embodiment, an N (substituted) 2 - C^{3}-glutarimide as described jherein (can be; used alone (i.e., not as part of a Degronimer) as an in vivo binder of cereblon, which can be administered to a host, for example, a human, in need thereof, in an effective amount, optionally as; a pharmaceutically acceptable salt, and optionally in a pharmaceutically acceptable
composition, for any therapeutic indication which can be treated by modulating the ffunction and or activity of the cereblon-containing E3 Ubiquitin Ligase Protein Complex, including lbut mot limited to uses. known for the cereblon binders thalidomide, pomalidomide or llenalidomide. In certain alternative embodiments, the compound of Formula III or IV ican activate, decrease or change; the: natural activity of cereblon. Nonlimiting examples of uses for cereblon lbinders are multiple: myeloma, a hematological disorder such as myelodysplastic syndrome, cancer, ttumors, abnormal cellular proliferation, HIV/AIDS, Crohn's disease, sarcoidosis, graft-versus-host disease, rheumatoid arthritis, Behcet's disease, tuberculosis, and myelofibrosis.

Thusi in another aspect of the present invention a compound of Formula III or IFormulaIIV is: provided:

(III) or

(IV)
or a.pharmaceutically acceptable salt, N -oxide, isotopic derivative, or prodrug thereof, optionally in a pharmaceutically acceptable carrier to form a composition;
wherein:
R^{13} is selected from:

A is independently selected from $\mathrm{C}\left(\mathrm{R}^{11}\right)$, and N wherein in certain embodiments the number of nitrogen atoms is $0,1,2,3$, or 4 per ring (as allowed by context) and is selected to produce: a stable: ring and a pharmaceutically acceptable Degronimer. When A's are iin a ssixmembered ring; (unfused or fused), the ring can be, in non-limiting embodiments as allowed tby context, a pyridine, diazine, triazine, pyrimidine, pyridazine, pyrazine, triazine or thetrazine.
or R^{13} and R^{2} are combined to form a 4 to 10 membered heterocyclo or heteroaryl species, wherein the: heterocyclo or heteroaryl species is optionally further substituted with one or imore substituents, selected from R^{5}, and wherein the heterocyclo or heteroaryl species iis optionally further substituted with one or more $=\mathrm{O}$ (oxo) at a position allowed lby valence;

The: compounds of Formulas III and IV do not include a Linker or a Targeting JLigand. IIn certain alternative embodiments, the compound of Formula III, IV or VIcan activate, decrease or change; the; natural activity of cereblon. These Formula III and IV compounds are useful as therapeutic: agents when administered in an effective amount to a host, including alhuman, ffor the treatment of a medical disorder that can be treated with thalidomide, pomalidomide or lenalidomide, and/or including, but not limited to, abnormal cellular proliferation, jincluding a tumor or cancer, or a myelo- or lymphoproliferative disorder such as B- or 'T-cell llymphomas, multiple: myeloma, Waldenstrom's macroglobulinemia, Wiskott-Aldrich syndrome, or a a posttransplant lymphoproliferative disorder; an immune disorder, including ;autoimmune „disorders such $_{1}$ as; Addison disease, Celiac disease, dermatomyositis, Graves disease, thyroiditis, multiple
sclerosis, pernicious anemia, reactive arthritis, lupus, or type I diabetes; a disease of cardiologic malfunction, including hypercholesterolemia; an infectious disease, including viral and/or bacterial infections; an inflammatory condition, including asthma, chronic peptic ulcers, tuberculosis, rheumatoid arthritis, periodontitis, ulcerative colitis, Crohn's idisease, or thepatitis.

In certain embodiments, the compound of Formula I, Formula II, FormulaIII, IFormulaIIV, or Formula. V has at least one desired isotopic substitution of an atom, at an amount above the natural abundance of the isotope, i.e., enriched. In one embodiment, the icompound of IFormulail, Formula. II, Formula III, Formula IV, or Formula V includes a deuterium or multiple deuterium atoms.

Unless, otherwise defined, all technical and scientific terms used lherein lhave the same meaning; as, commonly understood by one of ordinary skill in the art to which this application belongs. In the: specification, the singular forms also include the plural unless the contextclearly dictates otherwise. Although methods and materials similar or equivalent tothose describedlherein can be: used in the practice or testing of the present application, suitable methods andmaterials are described below. All publications, patent applications, patents, and other references imentioned herein are: incorporated by reference. The references cited herein are not admitted tolbe priorartto the: claimed application. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be limiting.

Other features and advantages of the present application will be apparent from the following; detailed description and claims.

The: present invention thus includes at least the following features:
(a) A Degronimer containing an N (substituted)2- C^{3}-glutarimide 1 Degron or (defined analogue thereof of Formula I, Formula II, or Formula V and pharmaceutically acceptable salts, isotopic derivative (including a deuterated derivative) and prodrugs thereof;
(b) An N(substituted) 2 - C^{3}-glutarimide Degron or defined analogue thereof of 1 Formula]III or Formula IV as described herein, and pharmaceutically acceptable salts, iisotopic derivative (including a deuterated derivative) and prodrugs thereof;
(c) A Degronimer containing an N (substituted) $2-\mathrm{C}^{3}$-glutarimide 1 Degron or (defined analogue thereof of Formula I, Formula II, or Formula V, and pharmaceutically
acceptable salts, isotopic derivative (including a deuterated derivative) and prodrugs thereof for the treatment of a disorder that is mediated by a'TargetProtein, 'whereinthe compound includes a Targeting Ligand for the Target Protein, and whereintthelDegron is optionally linked to the Targeting Ligand through a Linker;
(d) Use of a Degronimer containing an N (substituted) $)_{2}-\mathrm{C}^{3}$-glutarimide Degronor ordefined analogue thereof of Formula I, Formula II, or Formula V in an effective amountiintthe treatment of a patient, including a human, with any of the disorders idescribed lherein mediated by a Target Protein, including abnormal cellular proliferation such asatatumor or cancer, an immune or autoimmune disorder or inflammatory disorder, acardiologic disorder, an infectious disease, or other disorder that responds to suchttreatment;
(e) Use of a compound of Formula III or Formula IV in an effective amount, iin the treatment of a patient, including a human, with a disorder that responds to such treatment, including by decreasing the cereblon-based ubiquitination of a aprotein,such as. for example, abnormal cellular proliferation such as a tumor or icancer, aniimmune or autoimmune disorder or inflammatory disorder, a cardiac disorder, an infectious disease, or other disorder that responds to such treatment;
(f) Use of a compound of Formula I, Formula II, Formula III, Formula IIV, or IFormula'V and pharmaceutically acceptable salts, isotopic derivatives and prodrugsthereof iintthe manufacture of a medicament for the treatment of a medical disorder, as ffurther described herein;
(g), A method for manufacturing a medicament intended for the therapeutic treatment of \mathfrak{a} disorder in a host characterized in that a compound of Formula I, Formula III,,Formula III, Formula IV, or Formula V as described herein is used in the manufacture;
(h), A compound of Formula I, Formula II, Formula III, Formula IV, or JFormula ${ }^{\circ} \mathrm{V}$ as described herein, and pharmaceutically acceptable salts, jisotopic derivatives and prodrugs thereof that are useful in the treatment of an abnormal cellular proliferation such as cancer, including any of the cancers described herein;
(i), Use: of a compound of Formula I, Formula II, Formula III, Formula IV, or JFormulaV and pharmaceutically acceptable salts, isotopic derivatives and prodrugsthereof in the manufacture of a medicament for the treatment of an abnormal cellular proliferation such as cancer, including any of the cancers described herein;
(j)) A method for manufacturing a medicament intended for the therapeutic luse offtreating an abnormal cellular proliferation such as cancer, including any of the cancersiin alhost described herein, characterized in that a compound of Formula I, FormulaIII, IFormula III, Formula IV, or Formula V as described herein is used in the manufacture;
(k)' A compound of Formula I, Formula II, Formula III, Formula IV, or IFormula 'V as described herein, and pharmaceutically acceptable salts, iisotopic derivatives and prodrugs thereof that are useful in the treatment of a tumor in a a host, iincluding any of the tumors described herein;
(1) Use of a compound of Formula I, Formula II, Formula III, Formula IV or IFormula ${ }^{\text {'V }}$ and pharmaceutically acceptable salts and prodrugs thereof in the manufacture of a medicament for the treatment of a tumor, including any of the tumors idescribedlherein;
(m)A method for manufacturing a medicament intended for the therapeutic treatment of a tumor in a host, including any of the tumors described herein, characterized iin that a compound of Formula I, Formula II, Formula III, Formula IV, or IFormula 'V as described herein is used in the manufacture;
(n)। A compound of Formula I, Formula II, Formula III, Formula IV, or IFormula 'V as described herein, and pharmaceutically acceptable salts and prodrugs thereof that are useful in the treatment of an immune, autoimmune or inflammatory disorderiincalhost;
(o) Use: of a compound of Formula I, Formula II, Formula III, Formula IV or IFormula 'V and pharmaceutically acceptable salts, isotopic derivatives and prodrugsthereof in the manufacture of a medicament for the treatment of an immune, autoimmune or inflammatory disorder in a host;
(p), A method for manufacturing a medicament intended for the therapeutic treatment of an immune, autoimmune or inflammatory disorder in a host, characterized in that a compound of Formula I, Formula II, Formula III, Formula IV 〔or JFormula ${ }^{`} \mathrm{~V}$ as described herein is used in the manufacture;
(q), A compound of Formula I, Formula II, Formula III, Formula IV ،or JFormula ${ }^{`} \mathrm{~V}$ as described herein, and pharmaceutically acceptable salts, jisotopic derivatives and prodrugs thereof that are useful in the treatment of an infection, jincluding a aviral infection in a host, for example HIV, HBV, HCV and RSV;
(r) Use of a compound of Formula I-V and pharmaceutically acceptable salts, iisotopic derivaties and prodrugs thereof in the manufacture of a medicament Ifor the treatment of an infection infection in a host, for example. HIV, HBV, HCV and IRSV;
(s) A method for manufacturing a medicament intended for the therapeutic treatment of an infection, including a viral infection in a host, for example. HIV, $\mathrm{HBV}, \mathrm{JHCV}$ and RSV, characterized in that a compound of Formula I-V as idescribed lherein iis usediin the: manufacture;
(t) A pharmaceutical formulation comprising an effective host-treating amount of the compound of Formula I, Formula II, Formula III, Formula IV, or IFormula ${ }^{\text {V }}$ V or a pharmaceutically acceptable salt, isotopic derivative or prodrug thereof together with a pharmaceutically acceptable carrier or diluent;
(u) A compound of Formula I, Formula II, Formula III, Formula IV, or IFormula ${ }^{`} \mathrm{~V}$ as described herein as a mixture of enantiomers or diastereomers (as relevant), iincluding as a racemate;
(v), A compound of Formula I, Formula II, Formula III, Formula IV, or IFormula ${ }^{\text {V }}$ © as described herein in enantiomerically or diastereomerically (as relevant)enrichedfform, including as an isolated enantiomer or diastereomer (i.e., greater than $885,90,95,97$ or 99% pure); and
(w) A process for the preparation of therapeutic products that contain an effective amount of a compound of Formula I, Formula II, Formula III, Formula IV, or JFormula ${ }^{\text {V } V, ~ c a s ~}$ described herein.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A-1C present examples of Retenoid X Receptor (RXR)'Targeting Ligands wherein R is; the point at which the Linker is attached.

FIG. 1D-1F present examples of general Dihydrofolate reductase (DHFR) 'Targeting Ligands; wherein R is the point at which the Linker is attached.

FIG. 1G presents examples of Bacillus anthracis Dihydrofolate reductase (BaDHFR) Targeting Ligands wherein R is the point at which the Linker is attached.

FIG. 1H-1J present examples of Heat Shock Protein '90 (HSP90) 'Targeting lLigands wherein R is the point at which the Linker is attached.

FIG. 1K-1Q present examples of General Kinase and Phosphatase Targeting ILigands wherein R is the point at which the Linker is attached.

FIG. 1R-1S present examples of Tyrosine Kinase Targeting Ligands wherein)Riistthepoint at which the: Linker is attached.

FIG. 1T' presents examples of Aurora Kinase Targeting Ligands wherein R iis the pointaat which the: Linker is attached.

FIG. 1U presents examples of Protein Tyrosine Phosphatase 'Targeting Ligands'whereinIR is: the:point at which the Linker is attached.

FIG. 1V presents examples of ALK Targeting Ligands wherein R is the pointat whichtthe Linker is; attached.

FIG. 1W presents examples of ABL Targeting Ligands wherein Riis the pointat whichtthe Linker is attached.

FIG. 1X presents examples of JAK2 Targeting Ligands wherein R is the point at which the: Linker is attached.

FIG. 1Y-1Z present examples of MET Targeting Ligands wherein R is the point at which the: Linker is attached.

FIG. 1AA presents examples of mTORC1 and/or mTORC2 Targeting Ligands whereinlR is; the:point at which the Linker is attached.

FIG. 1BB-1CC present examples of Mast/stem cell growth factor receptor (SCFR), also known asic-KIT receptor, Targeting Ligands wherein R is the point at whichthe Linkerïs attached.

FIG. 1DD presents examples of IGF1R and/or IR Targeting Ligands wherein]Rjistheppoint at: which the: Linker is attached.

FIG. 1EE-1FF present examples of HDM2 and/or MDM2 Targeting Ligands wherein]R is; the:point at which the Linker is attached.

FIG. 1GG-1MM present examples of BET Bromodomain-Containing Protein Targeting Ligands; wherein R is the point at which the Linker is attached.

FIG. 1NN presents examples of HDAC Targeting Ligands wherein Ris the pointat, which the: Linker is attached.

FIG. 100 presents examples of RAF Receptor Targeting Ligands whereinlR is the point at which the: Linker is attached.

FIG. 1PP presents examples of FKBP Receptor Targeting Ligands whereinlRiis the point at which the: Linker is attached.

FIG. 1QQ-1TT present examples of Androgen Receptor Targeting.Ligands wherein IRiis the point at which the Linker is attached.

FIG. 1UU presents examples of Estrogen Receptor Targeting Ligands wherein IR iis the point at which the: Linker is attached.

FIG. 1VV-1WW present examples of Thyroid Hormone Receptor 'Targeting LLigands wherein R is the point at which the Linker is attached.

FIG. 1XX presents examples of HIV Protease Targeting Ligands wherein R iis the pointat which the: Linker is attached.

FIG. 1YY presents examples of HIV Integrase Targeting Ligands wherein IR iis the point at: which the: Linker is attached.

FIG. 1ZZ presents examples of HCV Protease Targeting Ligands wherein 1 R iis the point at: which the: Linker is attached.

FIG. 1AAA presents examples of AP1 and/or AP2 Targeting Ligands wherein IR is the point at which the: Linker is attached.

FIG. 1BBB-1CCC present examples of MCL-1 Targeting Ligands wherein 1 Ris the point at: which the: Linker is attached.

FIG. 1DDD presents examples of IDH1 Targeting Ligands wherein Ris the pointat which the: Linker is attached.

FIG. 1EEE-1FFF present examples of RAS or RASK Targeting Ligands wherein]Ristthe point at which the: Linker is attached.

FIG. 1GGG presents examples of MERTK or MER Targeting Ligands wherein]R is the point at which the: linker is attached.

FIG. 1HHH-1III present examples of EGFR Targeting Ligands wherein \mathbb{R} is the pointat which the: Linker is attached.

FIG. 1JJJ-1KKK present examples of FLT3 Targeting Ligands wherein R_{s} is the pointat which the: Linker is attached.

FIG. 1LLL presents examples of SMRCA2 Targeting Ligands wherein R is the point cat which the: Linker is attached.

FIG. 2A presents examples of the kinase inhibitor Targeting Ligands IU09-CX-5279 (derivatized) wherein R is the point at which the Linker is attached.

FIG. 2B-2C present examples of kinase inhibitor Targeting Ligands, including the lkinase inhibitor compounds Y1W and Y1X (derivatized) wherein R is the point at which the JLinkeriis attached. For additional examples and related ligands, see, the kinase inhibitorsiidentifiediinlMillan et:al. "Design and Synthesis of Inhaled P38 Inhibitors for the Treatment of Chronic Obstructive Pulmonary Disease" J. Med. Chem., 54: 7797 (2011).

FIG. 2D presents examples of kinase inhibitor Targeting Ligands, including the lkinase inhibitor compounds 6TP and 0TP (derivatized) wherein R is the point at which the lLinker iis attached. For additional examples and related ligands, see, the kinase iinhibitors iidentified in Schenkel et al. "Discovery of Potent and Highly Selective Thienopyridine Janus JKinase '2 2 Inhibitors"' J. Med. Chem., 54 (24): 8440-8450 (2011).

FIG. 2E presents examples of kinase inhibitor Targeting Ligands, including the lkinase inhibitor compound 07 U wherein R is the point at which the Linker is attached. IFor additional examples: and related ligands, see, the kinase inhibitors identified in Van Jis ret al. " 2 (6Naphthyridines as potent and selective inhibitors of the novel protein kinase © C iisozymes" ${ }^{\text {Biorg }}$. Med. Chem. Lett., 21(24): 7367-72 (2011).

FIG. 2F presents examples of kinase inhibitor Targeting Ligands, including the lkinase inhibitor compound YCF, wherein R is the point at which the Linker is attached. For additional examples and related ligands, see, the kinase inhibitors identified in Lountos et al. "Structural Characterization of Inhibitor Complexes with Checkpoint Kinase 2 ((Chk2) a Drug Target for Cancer-Therapy" J. Struct. Biol., 176: 292 (2011).

FIG. 2G-2H present examples of kinase inhibitor Targeting Ligands, including the kinase inhibitors, XK9 and NXP (derivatized) wherein R is the point at which the Linker is attached.JFor additional examples and related ligands, see, the kinase inhibitors identified in JLountos ret al. "Structural Characterization of Inhibitor Complexes with Checkpoint Kinase 2 ($(\mathrm{Chk} 2)$ a a JDrug Target-for Cancer Therapy" J. Struct. Biol., 176: 292 (2011).

FIG. 2I-2J present examples of kinase inhibitor Targeting Ligands wherein]Ris the point at: which the: Linker r is attached.

FIG. 2K-2M present examples of Cyclin Dependent Kinase '9 (CDK9)'TargetingILigands wherein R is the point at which the Linker is attached. For additional examples andrelatedlligands, see, Baumli et al. "The structure of P-TEFb (CDK9/cyclin T1) its complex with fflavopiridol and regulation by phosphorylation." Embo J., 27: 1907-1918 (2008); Bettayeb et al. "'CDK IInhibitors Roscovitine: and CR8 Trigger Mcl-1 Down-Regulation and Apoptotic Cell Death in Neuroblastoma Cells." Genes Cancer, 1: 369-380 (2010); Baumli et alal. "Halogen lbonds tformtthe basis: for selective P-TEFb inhibition by DRB." Chem.Biol. 17: 931-936 (2010); JHole ret al. "Comparative:Structural and Functional Studies of 4-(Thiazol- 5-Yl)-2-(Phenylamino)Pyrimidine-5-Carbonitrile Cdk9 Inhibitors Suggest the Basis for Isotype Selectivity." J.Med.Chem. 56 : 660 (2013); Lücking, et al. "Identification of the potent and highly selective PTEFb iinhibitor IBAY 1251152 for the treatment of cancer - From p.o. to i.v. application via scaffold lhops." ${ }^{\text {. }}$ Lücking fet al. U. AACR Annual Meeting, April 1-5, 2017 Washington, D.C. USA.

FIG. 2N-2P present examples of Cyclin Dependent Kinase 4/6 (CDK4/6) 'Targeting Ligands: wherein R is the point at which the Linker is attached. For additionalexamples andrelated ligands, see, Lu H.; Schulze-Gahmen U.; "Toward understanding the structural Ibasis of (cyclindependent kinase: 6 specific inhibition." J. Med. Chem., 49: 3826-3831 (2006); 4-(Pyrazol-4-yl)pyrimidines; as selective inhibitors of cyclin-dependent kinase 4/6. Cho ret al. (2010) J.Med.Chem. 53: 7938-7957; Cho Y.S. et al. "Fragment-Based Discovery of 7-Azabenzimidazoles as: Potent Highly Selective and Orally Active CDK4/6 Inhibitors." ACS.Med Chem Lett 3 : 445449' (2012); Li Z. et al. "Discovery of AMG 925 a FLT3 and CDK4 dual kinase inhibitor with preferential affinity for the activated state of FLT3." J. Med. Chem. 57: 3430-3449 (2014); Chen P. et al. "Spectrum and Degree of CDK Drug Interactions Predicts Clinical IPerformance." ${ }^{M o l}$. Cancer Ther. 15: 2273-2281 (2016).

FIG. 2Q presents examples of Cyclin Dependent Kinase 12 and/or ICyclin Dependent Kinase: 13 Targeting Ligands wherein R is the point at which the Linker is attached.JFor;additional examples, and related ligands, see, Zhang T. et al. "Covalent Targeting of Remote ©Cysteine Residues: to, Develop Cdk12 and Cdk13 Inhibitors." Nat. Chem. Biol. 12: 876 (2016).

FIG. 2R-2S present examples of Glucocorticoid Receptor Targeting Ligands wherein]Ris the: point at which the Linker is attached.

FIG. 2T-2U present examples of RasG12C Targeting Ligands wherein R is the point at which the: Linker is attached.

FIG. 2V presents examples of Her3 Targeting Ligands wherein R iis the ppoint at 'whichtthe Linker is attached and R' is

FIG. 2W presents examples of $\mathrm{Bcl}-2$ or $\mathrm{Bcl}-\mathrm{XL}$ Targeting Ligands whereinlRiistthepoint at which the: Linker is attached.

FIG. 2X-2NN present examples of BCL2 Targeting Ligands wherein R is the point cat which the: Linker is attached. For additional examples and related ligands, see, TourelB.lB. ret aal. "The:role: of" the acidity of N-heteroaryl sulfonamides as inhibitors of lbcl-2 family protein-protein interactions." ACS" Med' Chem Lett, 4: 186-190 (2013); Porter J. e.t al. "Tetrahydroisoquinoline Amide:Substituted Phenyl Pyrazoles as Selective Bcl-2 Inhibitors" Bioorg. Med. IChem. ILett. 19: 230 (2009); Souers A.J. et al. "ABT-199 a potent and selective BCL-2 inhibitor achievesantitumor activity while: sparing platelets." Nature Med. 19: 202-208 (2013); Angelo Aguilar retal."'AlPotent andl Highly Efficacious Bcl-2/Bcl-xL Inhibitor" J Med Chem. 56(7): 3048-3067 ((2013); Longchuan Bai et al. "BM-1197: A Novel and Specific Bcl-2/Bcl-xLInhibitor InducinglComplete andl Long-Lasting. Tumor Regression In Vivo" PLoS ONE 9(6): e99404; Fariba Ne'matil fet al. "Targeting; Bcl-2/Bcl-XL Induces Antitumor Activity in Uveal Melanoma Patient-Derived Xenografts" PLoS' ONE 9(1): e80836; WO2015011396 titled "Novel derivatives of indole and pyrrole: method for the production thereof and pharmaceutical compositions containing same"; WO2008060569A1 titled "Compounds and methods for inhibiting the interaction of $\mid \mathrm{Bcl}$ [proteins with binding; partners"; "Inhibitors of the anti-apoptotic Bcl-2 proteins: a patent review" Expert Opin. Ther. Patents" 22(1):2008 (2012); and, Porter et al. ""Tetrahydroisoquinoline amide substituted phenyl pyrazoles as selective Bcl-2 inhibitors" Bioorg Med Chem Lett., 19(1):230-3 (2009).

FIG. 2OO-2UU present examples of BCL-XL Targeting Ligands wherein R is the point at: which the: Linker is attached. For additional examples and related ligands, see, Zhi-Fu'Taortal. "Discovery of a Potent and Selective BCL-XL Inhibitor with in Vivo Activity", ACSiMed.ıChem. Lett., 5: 1088-1093 (2014); Joel D. Leverson et al. "Exploiting selective BCL-2 family inhibitors to, dissect cell survival dependencies and define improved strategies for cancer therapy" Science Translational' Medicine, 7:279ra40 (2015); and, the crystal structure]PDB 3ZK6 (Guillaume Lessene: et: al. "Structure-guided design of a selective BCL-XL inhibitor" Nature „Chemical Biology, 9: 390-397 (2013))

FIG. 2VV presents examples of PPAR-gamma Targeting Ligands wherein R iis the point at which the: Linker is attached.

FIG. 2WW-2YY present examples of EGFR Targeting Ligands that target the JEGFR L858R mutant, including erlotinib, gefitnib, afatinib, neratinib, and dacomitinib, whereinlRiistthe point at which the: Linker is attached.

FIG. 2ZZ-2FFF present examples of EGFR Targeting Ligands that ttarget the JEGFR T790M mutant, including osimertinib, rociletinib, olmutinib, naquotinib, mazartinib, IPF06747775, Icotinib, Neratinib Avitinib, Tarloxotinib, PF-0645998, 'Tesevatinib, 'Transtinib, WZ-3146, WZ8040, and CNX-2006, wherein R is the point at which the Linkeriis sattached.

FIG. 2GGG presents examples of EGFR Targeting Ligands that target the IEGFRIC797S mutant, including;EAI045, wherein R is the point at which the Linker is attached.

FIG. 2HHH presents examples of BCR-ABL Targeting Ligands that targetthelBCR-ABL T315I mutantm including Nilotinib and Dasatinib, wherein R is the point at which the JLinkeriis attached. See:for example, the crystal structure PDB 3CS9.

FIG. 2III presents examples of Targeting Ligands that target BCR-ABL, iincluding Nilotinib, Dasatinib Ponatinib and Bosutinib, wherein R is the point at which the linker is attached.

FIG. 2JJJ-2KKK present examples of ALK Targeting Ligands that target the ALK L1196M mutant including Ceritinib, wherein R is the point at which the Linker iis attached. See for example, the crystal structure PDB 4MKC.

FIG. 2LLL presents examples of JAK2 Targeting Ligands that target the JAK2V617F mutant, including Ruxolitinib, wherein R is the point at which the Linkeris attached.

FIG. 2MMM presents examples of BRAF Targeting Ligands that targetthe]BRAF`V600E mutant including. Vemurafenib, wherein R is the point at which the Linker jis attached. JFor additional examples and related ligands, see, the crystal structure PBD 30G7.

FIG. 2NNN presents examples of BRAF Targeting Ligands, jincluding JDabrafenib, wherein R is; the point at which the Linker is attached.

FIG. 2000 presents examples of LRRK2 Targeting Ligands that target the JLRRK2 R1441C mutant wherein R is the point at which the Linker is attached.

FIG. 2PPP presents examples of LRRK2 Targeting Ligands that target the JLRRK2 G2019S mutant wherein R is the point at which the Linker is attached.

FIG. 2QQQ presents examples of LRRK2 Targeting Ligands that target the lLRRK2 I2020T' mutant wherein R is the point at which the Linker is attached.

FIG. 2RRR-2TTT present examples of PDGFR α Targeting Ligands that target the PDGFR α T674I mutant, including AG-1478, CHEMBL94431, Dovitinib, erlotinib, !gefitinib, imatinib, Janex 1, Pazopanib, PD153035, Sorafenib, Sunitinib, and WHI-P180, whereinIRiis the point at which the Linker is attached.

FIG. 2UUU presents examples of RET Targeting Ligands that target the JRET G691S mutant, including; tozasertib, wherein R is the point at which the Linker iis attached.

FIG. 2VVV presents examples of RET Targeting Ligands that target the RET IR749T mutant, including; tozasertib, wherein R is the point at which the Linker iis attached.

FIG. 2WWW presents examples of RET Targeting Ligands that target the JRETIE762Q mutant, including; tozasertib, wherein R is the point at which the Linker is attached.

FIG. 2XXX presents examples of RET Targeting Ligands that target the JRET 'Y791F mutant, including; tozasertib, wherein R is the point at which the Linker iis attached.

FIG. 2YYY presents examples of RET Targeting Ligands that target the lRET 'V804M mutant, including; tozasertib, wherein R is the point at which the Linker is attached.

FIG. 2ZZZ presents examples of RET Targeting Ligands that target the JRET IM918T mutant, including tozasertib, wherein R is the point at which the Linker is attached.

FIG. 2AAAA presents examples of Fatty Acid Binding Protein TargetingLLigands'wherein R is; the point at which the Linker is attached.

FIG. 2BBBB presents examples of 5-Lipoxygenase Activating Protein ((FLAP)'Targeting Ligands: wherein R is the point at which the Linker is attached.

FIG. 2CCCC presents examples of Kringle Domain V 4BVV 'Targeting Ligands rwherein R is; the point at which the Linker is attached.

FIG. 2DDDD presents examples of Lactoylglutathione Lyase Targeting Ligands wherein R is; the point at which the Linker is attached.

FIG. 2EEEE-2FFFF present examples of mPGES-1 Targeting Ligands wherein]Ris the point at which the: Linker is attached.

FIG. 2GGGG-2JJJJ present examples of Factor Xa Targeting Ligands wherein $]$ Ris the point at which the Linker is attached. For additional examples and related ligands, see, „Maignan S. et: al. "Crystal structures of human factor Xa complexed with potent inhibitors." J. iMed.

Chem. 43: 3226-3232 (2000); Matsusue T. et al. "Factor Xa Specific Inhibitor that Induces the Novel Binding.Model in Complex with Human Fxa." (to be published); theicrystalstructuresIPDB 1iqh, 1iqi, liqk, and liqm; Adler M. et al. "Crystal Structures of 'Two Potent Nonamidine Inhibitors: Bound to Factor Xa." Biochemistry 41: 15514-15523 (2002); Roehrig iS. ret cal. "Discovery of" the Novel Antithrombotic Agent 5-Chloro-N-(\{(5S)-2-Oxo-3- |[4-(3-Oxomorpholin-4-Yl)Phenyl]-1 3-Oxazolidin-5-Yl\}Methyl)Thiophene-2- Carboxamide ((Bay 4597939): An. Oral Direct Factor Xa Inhibitor." J. Med. Chem. 48: 5900 (2005); Anselm IL. ret cal. "Discovery of a Factor Xa Inhibitor (3R 4R)-1-(2 2-Difluoro-Ethyl)-Pyrrolidine-3 4-Dicarboxylic Acidl 3-[(5-Chloro-Pyridin-2-Yl)-Amide] 4-\{[2-Fluoro-4-(2-Oxo-2H-Pyridin-1-Yl)-Phenyl]Amide\} asi a Clinical Candidate." Bioorg. Med. Chem. 20: 5313 (2010); and, Pinto ID.J. ret aal. "Discovery of 1-(4-Methoxyphenyl)-7-oxo-6-(4-(2-oxopiperidin-1-yl)phenyl)-4.5 (67-tetrahydro-1H-pyrazolo[3 4-c]pyridine-3-carboxamide (Apixaban BMS-562247) a Highly]Potent :Selective Efficaciousi and Orally Bioavailable Inhibitor of Blood Coagulation Factor Xa."J.IMed.IChem.'50: 5339-5356 (2007).

FIG. 2KKKK presents examples of Kallikrein 7 Targeting Ligands wherein)Riisthepoint at: which the: Linker is attached. For additional examples and related ligands, see, Maibaum J. eet al. "Small-molecule factor D inhibitors targeting the alternative complement pathway.".Nat.ıChem. Biol. 12: 1105-1110 (2016).

FIG. 2LLLL-2MMMM present examples of Cathepsin K Targeting Ligands wherein IR is; the: point at which the Linker is attached. For additional examples and related lligands, see, Rankovic:Z. et al. "Design and optimization of a series of novel 2-cyano-pyrimidines as cathepsin K inhibitors" Bioorg. Med. Chem. Lett. 20: 1524-1527 (2010); and, ©Cai J. fet al. "Trifluoromethylphenyl as P2 for ketoamide-based cathepsin S inhibitors.",Bioorg. iMed. IChem. Lett. 20: 6890-6894 (2010).

FIG. 2NNNN presents examples of Cathepsin L Targeting Ligands wherein $]$ is is the point at: which the Linker is attached. For additional examples and related ligands, see,]Kuhn〕B. et aal. "Prospective: Evaluation of Free Energy Calculations for the Prioritization of Cathepsin JL Inhibitors." J. Med. Chem. 60: 2485-2497 (2017).

FIG. 20000 presents examples of Cathepsin S Targeting Ligands wherein $\mathrm{R}_{\mathrm{is} \text { is the point }}$ at: which the: Linker is attached. For additional examples and related ligands, see, Jadhav]P.K. eet
al. "Discovery of" Cathepsin S Inhibitor LY3000328 for the 'Treatment of .Abdominal Aortic Aneurysm" ACS Med. Chem. Lett. 5: 1138-1142." (2014).

FIG. 2PPPP-2SSSS present examples of MTH1 Targeting Ligands whereinRRiisttheppoint at which the:Linker is attached. For additional examples and related ligands, see, Kettle J.G. cetaal. "Potent and Selective Inhibitors of Mth1 Probe its Role in Cancer Cell :Survival." J. IMed. Chem. 59: 2346 (2016); Huber K.V.M. et al. "Stereospecific 'Targeting of Mth1 lby ((S)-Crizotinib asi an Anticancer Strategy." Nature 508: 222 (2014); Gad H. et al. "MTH1 iinhibition eradicates cancer by preventing sanitation of the dNTP pool." Nature 508: 215-221 (2014); Nissink J.W.M. et: al. "Mth1 Substrate Recognition--an Example of Specific Promiscuity." Plos IOne 11: 51154 (2016); and, Manuel Ellermann et al. "Novel class of potent and selective innhibitors eeffaceIMTH1 as: broad-spectrum cancer target." AACR National Meeting Abstract 5226, 2017.

FIG. 2TTTT-2ZZZZ present examples of MDM2 and/or MDM4 Targeting lLigands wherein R is the point at which the Linker is attached. For additional lexamples and relatedlligands, see, Popowicz G.M. et al. "Structures of low molecular weight inhibitors lbound tol IMDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery." ${ }^{\text {CCell }}$ iCycle, 9 (2010); Miyazaki M. et al. "Synthesis and evaluation of novel orally active p53-MDM2iinteraction inhibitors." Bioorg. Med. Chem. 21: 4319-4331 (2013); Miyazaki M. et al.""DiscoveryoflDS-5272 asi a promising candidate: A potent and orally active p53-MDM2 interaction iinhibitor." Bioorg MedlChem. 23: 2360-7 (2015); Holzer P. et al. "Discovery of a DihydroisoquinolinonelDerivative (NVP-CGM097): A Highly Potent and Selective MDM2 Inhibitor Undergoing Phase 1 IClinical Trials; in p53wt Tumors." J. Med. Chem. 58: 6348-6358 (2015); Gonzalez-Lopez de'TurisoIF. eet al. "Rational Design and Binding Mode Duality of MDM2-p53 Inhibitors." J. IMed. IChem.56: 4053-4070 (2013); Gessier F. et al. "Discovery of dihydroisoquinolinone derivatives as movel inhibitors; of the p53-MDM2 interaction with a distinct binding mode." Bioorg. IMed. ıChem. Lett. 25: 3621-3625 (2015); Fry D.C. et al. "Deconstruction of a nutlin: dissecting the binding determinants of a potent protein-protein interaction inhibitor." ACS AMed Chem Lett 4: (660-665 (2013); Ding, Q. et al. "Discovery of RG7388 a Potent and Selective ןp53-MDM2 IInhibitor in Clinical Development." J. Med. Chem. 56: 5979-5983 (2013); Wang ;S. et ;al. "'SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression." Cancer Res. 74: 5855-5865 (2014); Rew Y. et al. "Discovery of AM-7209 a 3 Potent and Selective: 4-Amidobenzoic Acid Inhibitor of the MDM2-p53 Interaction." J. ${ }_{2}$ Med. 1 Chem. 5 .57:

10499-10511 (2014); Bogen S.L. et al. "Discovery of Novel 3 3-Disubstituted IPiperidines áas Orally Bioavailable Potent and Efficacious HDM2-p53 Inhibitors.".ACS.Med. 'Chem.iLett.'7:'324329 (2016); and, Sun D. et al. "Discovery of AMG 232 a Potent Selective:and IOrallylBioavailable MDM2-p53 Inhibitor in Clinical Development." J. Med. Chem. 57: 1454-1472 ((2014).

FIG. 2AAAAA-2EEEEE present examples of PARP1, PARP2, and/orlPARP3 Targeting Ligands: wherein R is the point at which the Linker is attached. For additionalexamplesandrelated ligands, see, Iwashita A. et al. "Discovery of quinazolinone and quinoxaline derivatives as potent andlselective:poly(ADP-ribose) polymerase-1/2 inhibitors." Febs Lett. 579: 1389-1393((2005);the crystal structure: PDB 2RCW (PARP complexed with A861695, Park C.H.); the crrystal structure PDB 2RD6 (PARP complexed with A861696, Park C.H.); the crystal structure PDB .3GN7; Miyashiro J. et al. "Synthesis and SAR of novel tricyclic quinoxalinone iinhibitors of poly(ADP-ribose)polymerase-1 (PARP-1)" Bioorg. Med. Chem. Lett. 19: 4050-4054 (2009); Gandhi'V.B. eet al. "Discovery and SAR of substituted 3-oxoisoindoline-4-carboxamides as potent iinhibitors of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer." Bioorg.IMed. 'Chem.ILett. '20: 1023-1026 (2010); Penning T.D. et al. "Optimization of phenyl-substituted lbenzimidazole carboxamide: poly(ADP-ribose) polymerase inhibitors: identification of I(S)-2-(2-fluoro-4-(pyrrolidin-2-yl)phenyl)-1H-benzimidazole-4-carboxamide (A-966492) a hhighly potent and efficacious, inhibitor." J. Med. Chem. 53: 3142-3153 (2010); Ye N. et al. "'Design, 'Synthesis, and Biological Evaluation of a Series of Benzo[de][1 7]naphthyridin-7(8H)-ones]Bearing a Functionalized Longer Chain Appendage as Novel PARP1 Inhibitors." .J. ${ }_{\text {.Med. }}$. Chem. 56: $2885-$ 2903 (2013); Patel M.R. et al. "Discovery and Structure-Activity Relationship of 1 Novel $2: 3-$ Dihydrobenzofuran-7-carboxamide and 2 3-Dihydrobenzofuran-3(2H)-one-7-carboxamide Derivatives, as. Poly(ADP-ribose)polymerase-1 Inhibitors." J. Med. Chem. 57: 5579-5601 ((2014); Thorsell A.G. et al. "Structural Basis for Potency and Promiscuity in PPoly(ADP-ribose) Polymerase: (PARP) and Tankyrase Inhibitors." J. Med. Chem. 60:1262-1271,(2012); the crrystal structure: PDB 4RV6 ("Human ARTD1 (PARP1) catalytic domain in complex with iinhibitor Rucaparib", Karlberg. T. et al.); Papeo G.M.E. et al. "Discovery of 2-[1-(4 4-Difluorocyclohexyl)Piperidin-4-Y1]-6-Fluoro-3-Oxo-2 3-Dihydro-1H-Isoindole-4-Carboxamide (Nms-P118): A Potent Orally Available and Highly Selective Parp- 1 Inhibitor for ICancer Therapy." J. Med. Chem. 58: 6875 (2015); Kinoshita T. et al. "Inhibitor-induced structuralcchange of the: active: site: of human poly(ADP-ribose) polymerase." Febs Lett. 556: 43-46 (2004); and,

Gangloff A.R. et al. "Discovery of novel benzo[b][1 4]oxazin-3(4H)-ones as poly(ADPribose)polymerase: inhibitors." Bioorg. Med. Chem. Lett. 23: 4501-4505 (2013).

FIG. 2FFFFF-2GGGGG present examples of PARP14 Targeting Ligands 'wherein IR iis the: point at: which the Linker is attached.

FIG. 2HHHHH presents examples of PARP15 Targeting Ligands wherein R iis the point att which the:Linker is attached.

FIG. 2IIIII presents. examples of PDZ domain Targeting Ligands wherein R is the point attwhich the: Linker(s) are attached.

FIG. 2JJJJJ presents examples of Phospholipase A2 domain Targeting Ligands wherein R.is; the;point at:which the: Linker is attached.

FIG. 2KKKKK presents examples of Protein S100-A7 2WOS Targeting Ligands wherein R_is; the:point at which the: Linker is attached.

FIG. , 2LLLLL-2MMMMM present examples of Saposin-B Targeting Ligands wherein R is; the pointtat: which the Linker is attached.

FIG. , 2NNNNN-2OOOOO present examples of Sec7 Targeting Ligands wherein R is the pointattwhich the: Linker is; attached.

FIG. .2PPPPP-2QQQQQ present examples of SH2 domain of pp60 Src Targeting.Ligands wherein R is; the;point: at which the Linker is attached.

FIG. , 2RRRRR . presents, examples of Tank1 Targeting Ligands wherein R is the point at which ${ }_{1}$ the:Linker-is; attached.

FIG., 2SSSSS; presents, examples of Ubc9 SUMO E2 ligase SF6D Targeting Ligands wherein $\mathrm{R}_{\text {, is; }}$ the: point at which the Linker is attached.

FIG. , 2TTTTT 'presents examples of Src Targenting Ligands, including AP23464, wherein R_{i} is; the; pointat-which the: Linker is, attached.

FIG., 2UUUUU-2XXXXX present examples of Src-AS1 and/or Src AS2 Targeting Ligands; wherein ${ }^{R}$ is; the point at which the Linker is attached.

FIG. , 2YYYYY presents; examples, of JAK3 Targeting Ligands, including Tofacitinib, wherein R_{1} is; the, point ${ }_{-}$at: which the Linker is attached.

FIG. , 2ZZZZZ ; presents; examples, of ABL Targeting Ligands, including Tofacitinib and Ponatinib, wherein $\mathrm{R}_{\text {. }}$ is; the; point at which the Linker is attached.

FIG. 3A-3B present examples of MEK1 Targeting Ligands, including PPD318088, Trametinib and G-573, wherein R is the point at which the Linker is attached.

FIG. 3C presents examples of KIT Targeting Ligands, including Regorafenib, whereinlR is: the:point at which the Linker is attached.

FIG. 3D-3E present examples of HIV Reverse Transcriptase TargetingLigands,iincluding Efavirenz, Tenofovir, Emtricitabine, Ritonavir, Raltegravir, and Atazanavir, wherein JR iis the point at which the: Linker is attached.

FIG. 3F-3G present examples of HIV Protease Targeting Ligands, ïncluding Ritonavir, Raltegravir, and Atazanavir, wherein R is the point at which the Linker is attached.

FIG. 3H-3I present examples of KSR1 Targeting Ligands wherein R is the point at which the: Linker is attached.

FIG. 3J-3L present examples of CNNTB1 Targeting Ligands wherein \mathfrak{R} is the point cat which the: Linker is attached.

FIG. 3M presents examples of BCL6 Targeting Ligands wherein R is the point at which the:Linker is attached.

FIG. 3N-3O present examples of PAK1 Targeting Ligands wherein Riis the point at which the: Linker is attached.

FIG. 3P-3R present examples of PAK4 Targeting Ligands wherein Riisthe pointat which the: Linker is attached.

FIG. 3S-3T present examples of TNIK Targeting Ligands wherein R is the pointat ${ }^{\prime}$ which the: Linker is attached.

FIG. 3U presents examples of MEN1 Targeting Ligands wherein R is the point at which the: Linker is attached.

FIG. 3V-3W present examples of ERK1 Targeting Ligands wherein Ris the pointat,which the: Linker is attached.

FIG. 3X presents examples of IDO1 Targeting Ligands wherein Ris the pointat whichthe Linker is; attached.

FIG. 3Y presents examples of CBP Targeting Ligands wherein R is the point at which the Linker is; attached.

FIG. 3Z-3SS present examples of MCL1 Targeting Ligands wherein R is the point sat which the: Linker is attached. For additional examples and related ligands, see, Tanaka 'Y. et al
"Discovery of" potent Mcl-1/Bcl-xL dual inhibitors by using a hybridization strategy lbased on structural analysis of target proteins." J. Med. Chem. 56: 9635-9645 (2013); FFriberg .A. et cal. "Discovery of potent myeloid cell leukemia 1 (Mcl-1) inhibitors using fragment-based methods andlstructure-based design." J. Med. Chem. 56: 15-30 (2013); Petros A. M. retal"'Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein.".Bioorg.Med. 'Chem.iLett. '24: 1484-1488 (2014); Burke J.P. et al. "Discovery of tricyclic indoles that potently iinhibitmcl-1 lusing fragment-based methods and structure-based design." J. Med. Chem. 58: 3794-3805 ((2015); IPelz N.F. et al. "Discovery of 2-Indole-acylsulfonamide Myeloid Cell Leukemia 1 (Mcl-1) IInhibitors Using; Fragment-Based Methods." J. Med. Chem. 59: 2054-2066 (2016); Clifton IM.C. ret al. "'A Maltose-Binding; Protein Fusion Construct Yields a Robust Crystallography Platform fforlMCL1." Plos: One 10: e0125010-e0125010 (2015); Kotschy A et al. "The MCL1 inhibitor 'S63845 iis tolerable: and effective in diverse cancer models. Nature 538:477-482 (2016); EP 2886545 „A1 titled "New thienopyrimidine derivatives a process for their preparation and pharmaceutical compositions. containing them"; Jeffrey W. Johannes et al. "Structure Based JDesign of INonNatural Peptidic Macrocyclic Mcl-1 Inhibitors" ACS Med. Chem. Lett. (2017); 1DOI: 10.1021/acsmedchemlett.6b00464; Bruncko M. et al. "Structure-Guided Design of a aSeries of MCL-1 Inhibitors with High Affinity and Selectivity." J. Med. Chem. 58: ،2180-2194 ((2015); Taekyu Lee et al. "Discovery and biological characterization of potent myeloid cell lleukemia-1 inhibitors." FEBS" Letters 591: 240-251 (2017); Chen L.et al. "Structure-Based IDesign of '3-Carboxy-Substituted 123 4- Tetrahydroquinolines as Inhibitors of Myeloid Cell Leukemia-1 (Mcl-1)." Org. Biomol. Chem. 14:5505-5510 (2016); US 2016/0068545 ttitled "Tetrahydronaphthalene derivatives that inhibit mcl-1 protein"; WO 2016207217 A1 titled "Preparation of new bicyclic derivatives as pro-apoptotic agents"; Gizem Akçay ret al.""Inhibition of : Mcl-1 through covalent modification of a noncatalytic lysine side cchain", Nature „Chemical Biology' 12: 931-936 (2016).

FIG. 3TT' presents examples of ASH1L Targeting Ligands wherein R iis the point ${ }^{\text {at }}$, which
 domain in complex with S-adenosyl methionine (SAM)" Rogawski D.S. et al.)

FIG. 3UU-3WW present examples of ATAD2 Targeting Ligands wherein R is the point at:which the: Linker is attached. For additional examples and related ligands, see, Chaikuad A.eet al. "Structure-based approaches towards identification of fragments for the llow-druggability

ATAD2 bromodomain" Med Chem Comm 5: 1843-1848 (2014); Poncet-Montange 'G. ret aal. "Observed bromodomain flexibility reveals histone peptide- and small molecule lligandcompatible forms, of ATAD2." Biochem. J. 466: 337-346 (2015); Harner M.J. et al. "FragmentBased Screening, of the Bromodomain of ATAD2." J. Med. Chem. 57:'9687-9692(2014); IDemont E.H. et al. "Fragment-Based Discovery of Low-Micromolar Atad2 Bromodomain Innhibitors." J. Med. Chem. 58: 5649 (2015); and, Bamborough P. et al. "Structure-Based 'Optimization of Naphthyridones into Potent Atad2 Bromodomain Inhibitors." J. Med. Chem. 58:16151((2015).

FIG. 3XX-3AAA present examples of BAZ2A and BAZ2B Targeting Ligands whereinIR is; the: point at which the Linker is attached. For additional examples and related lligands, see, the crystal structure PDB 4CUU ("Human Baz2B in Complex with Fragment-6 N09645" ${ }^{\text {IBradley }}$ A. et: al.); the: crystal structure PDB 5CUA ("Second Bromodomain of Bromodomain Adjacent to Zinc: Finger Domain Protein 2B (BAZ2B) in complex with 1-Acetyl-4-(4hydroxyphenyl)piperazine". Bradley A. et al.); Ferguson F.M. et al. "'Targeting llow-druggability bromodomains: fragment based screening and inhibitor design against the BAZ2Blbromodomain." J. Med. Chem. 56: 10183-10187 (2013); Marchand J.R. et al. "Derivatives of .3-Amino-2methylpyridine: as BAZ2B Bromodomain Ligands: In Silico Discovery and in ICrystallo Validation." J. Med. Chem. 59: 9919-9927 (2016); Drouin L. et al. "'Structure Enabled]Design of BAZ2-ICR A Chemical Probe Targeting the Bromodomains of BAZ2A and BAZ2B." J. iMed. Chem. 58: 2553-2559 (2015); Chen P. et al. "Discovery and characterization of IGSK2801 a selective: chemical probe for the bromodomains BAZ2A and BAZ2B." J. iMed. IChem. 59:1410-1424 (2016).

FIG. 3BBB presents examples of BRD1 Targeting Ligands wherein Riis the pointat which the: Linker is attached. For additional examples and related ligands, see, the icrystal structureJPDB 5AME, ("the Crystal Structure of the Bromodomain of Human Surface Epitope Engineered]Brd1A in $_{l}$ Complex with 3D Consortium Fragment 4-Acetyl-Piperazin-2-One Pearce", N.M. ret;al.); the crystal structure: PDB 5AMF ("Crystal Structure of the Bromodomain of Human;Surface]Epitope Engineered Brd1A in Complex with 3D Consortium Fragment Ethyl A 5 (6 7-Tetrahydro-1H-Indazole-5-Carboxylate", Pearce N.M. et al.); the crystal structure PPDB 5FG6 ("the "Crystal structure: of the bromodomain of human BRD1 (BRPF2) in complex with OF-1 chemical probe.", Tallant C. et al.); Filippakopoulos P. et al. "Histone recognition and llarge-scalestructuralanalysis of the: human bromodomain family." Cell, 149: 214-231 (2012).

FIG. 3CCC-3EEE present examples of BRD2 Bromodomain 1 'Targeting lLigands wherein R is the point at which the Linker is attached. For additional examples and relatedlligands, see, the: crystal structure PDB 2ydw; the crystal structure PDB 2yek; the crystal structure PPD 4a9h; the: crystal structure PDB 4a9f; the crystal structure PDB 4a9i; the crystal structure PPDB 4a9m; the crystal structure PDB 4akn; the crystal structure PDB 4alg, and the creystal structure PDB 4uyf.

FIG. 3FFF-3HHH present examples of BRD2 Bromodomain .2 Targeting LLigands wherein R is the point at which the Linker is attached. For additional examples and relatedlligands, see, the: crystal structure PDB 3oni; Filippakopoulos P. et al. "Selective Inhibition of IBET Bromodomains." Nature 468: 1067-1073 (2010); the crystal structure PDB $4 \mathrm{j} 1 \mathrm{p} ; \mathrm{McLure}$ IK.G. cet al. "RVX-208: an Inducer of ApoA-I in Humans is a BET Bromodomain Antagonist." iPlostOne 8: e83190-e83190 (2013); Baud M.G. et al. "Chemical biology. A lbump-and-hole approach to engineer controlled selectivity of BET bromodomain chemical probes" Science 346: 1638-641 (2014); Baud M.G. et al. "New Synthetic Routes to Triazolo-benzodiazepine Analogues: Expanding; the: Scope of the Bump-and-Hole Approach for Selective Bromo and Extra-Terminal (BET)। Bromodomain Inhibition" J. Med. Chem. 59: 1492-1500 (2016); Gosmini JR. et al. ""The Discovery of I-Bet726 (Gsk1324726A) a Potent Tetrahydroquinoline Apoa1 IUp-Regulator and Selective: Bet Bromodomain Inhibitor" J. Med. Chem. 57: 8111 (2014); the icrystal sstructure PPDB 5EK9' ("Crystal structure of the second bromodomain of human BRD2 in complex with a hydroquinolinone inhibitor", Tallant C. et al); the crystal structure PPDB 5BT5; the crystal structure: PDB 5dfd; Baud M.G. et al. "New Synthetic Routes to Triazolo-benzodiazepine Analogues: Expanding the Scope of the Bump-and-Hole Approach for SelectivelBromoandIExtraTerminal (BET) Bromodomain Inhibition" J. Med. Chem. 59: 1492-1500,(2016).

FIG. 3III-3JJJ present examples of BRD4 Bromodomain 1 Targeting Ligands wherein]R is; the point at which the Linker is attached. For additional examples and related \|ligands, see, the crystal structure: PDB 5WUU and the crystal structure PDB 5F5Z.

FIG. 3KKK-3LLL present examples of BRD4 Bromodomain .2 Targeting JLigands wherein R is, the point at which the Linker is attached. For additional examples and relatedlligands, see, Chung, C.W. et al. "Discovery and Characterization of Small Molecule Jnhibitors of the JBet Family Bromodomains" J. Med. Chem. 54:3827 (2011) and Ran X.et.al.""Structure-Based|Design
of gamma-Carboline Analogues as Potent and Specific BET Bromodomain Inhibitors" 'J.iMed. Chem. 58: 4927-4939 (2015).

FIG. 3MMM presents examples of BRDT Targeting Ligands wherein \mathbb{R} iis the point cat which the:Linker is attached. For additional examples and related ligands, see, the icrystalstructure PDB 4flp and the crystal structure PDB 4kcx.

FIG. 3NNN-3QQQ present examples of BRD9 Targeting Ligands wherein lR iis the point at: which the Linker is attached. For additional examples and related lligands, see, the crrystal structure: PDB 4nqn; the crystal structure PDB 4uit; the crystal structure PDB 4uiu; the creystal structure: PDB 4uiv; the crystal structure PDB 4z6h; the crystal structure PDB 4 z 6 ; ; the crrystal structure: PDB 5e9v; the crystal structure PDB 5eu1; the crystal structure PDB 5f1h; and, the crystal structure: PDB 5 fp2.

FIG. 3RRR presents examples of SMARCA4 PB1 and/or SMARCA2'TargetingILigands
 or 8 .

FIG. 3SSS-3XXX present examples of additional Bromodomain 'Targeting lLigands wherein R is the point at which the Linker is attached. For additional examples andrelatedlligands, see, Hewings et al. "3 5-Dimethylisoxazoles Act as Acetyl-lysine Bromodomain Ligands." J. Med. Chem. 54.6761-6770 (2011); Dawson et al. "Inhibition of BET Recruitment to IChromatinaas an Effective: Treatment for MLL-fusion Leukemia." Nature, 478, 529-533 (2011); IUS 2015/0256700; US 2015/0148342; WO 2015/074064; WO 2015/067770; WO 2015/022332; 'WO 2015/015318; and, WO 2015/011084.

FIG. 3YYY presents examples of PB1 Targeting Ligands wherein R is the point at which the: Linker is attached. For additional examples and related ligands, see, the icrystal structure JPDB 3 mb 4 ; the crystal structure PDB 4q0n; and, the crystal structure PDB 5fh6.

FIG. $3 Z Z Z$ presents examples of SMARCA4 Targeting Ligands wherein R is the pointat which the:Linker is attached. For additional examples and related ligands, see, the،crystal!structure 3 uvd and the: crystal structure 5 dkd .

FIG. 3AAAA presents examples of SMARCA2 Targeting Ligands wherein $]$ R is the point at which the Linker is attached. For additional examples and related ligands, see, the crrystal structure: 5 dkc and the crystal structure 5 dkh .

FIG. 3BBBB presents examples of TRIM24 (TIF1a) and/or BRPF1 'Targeting LLigands wherein R is the point at which the Linker is attached and m is 012.34517 or 18 .

FIG. 3CCCC presents examples of TRIM24 (TIF1a) Targeting Ligands whereinIR is the point at which the Linker is attached. For additional examples and related lligands, see, IPalmer W.S. et al. "Structure-Guided Design of IACS-9571: a Selective High-Affinity Dual'TRIM24BRPF1 Bromodomain Inhibitor." J. Med. Chem. 59: 1440-1454 (2016).

FIG. 3DDDD-3FFFF present examples of BRPF1 Targeting Ligands wherein IR is the point at which the: Linker is attached. For additional examples and related lligands, see, the ccrystal structure: PDB 4uye; the crystal structure PDB 5c7n; the crystal structure PDB 5c87; the crrystal structure PDB 5c89; the crystal structure PDB 5d7x; the crystal structure PDB 5dya; the ccrystal structure: PDB 5epr; the crystal structure PDB 5eq1; the crystal structure PDB 5etb; the creystal structure $\operatorname{PDB} 5 \mathrm{ev} 9$; the crystal structure PDB 5eva; the crystal structure PDB :5ewv; the creystal structure: PDB 5eww; the crystal structure PDB 5ffy; the crystal structure PPDB 5fg5; and, the crystal structure: PDB 5g4r.

FIG. 3GGGG presents examples of CECR2 Targeting Ligands wherein R iis the point at which the: Linker is attached. For additional examples and related ligands, see, MoustakimlM. eet al. Med. Chem. Comm. 7:2246-2264 (2016) and Crawford T. et al. Journal of iMed.ıChem. ‘59; 5391-5402.(2016).

FIG. 3HHHH-30OOO present examples of CREBBP Targeting Ligands wherein IR iis
 additional examples and related ligands, see, the crystal structure PDB 3p1d; the ،crystal structure PDB 3svh; the crystal structure PDB 4nr4; the crystal structure PDB 4nr5; the crrystal structure PDB 4ts8; the crystal structure PDB 4nr6; the crystal structure PDB 4nr7; the acrystal structure PDB 4nyw; the crystal structure PDB 4nyx; the crystal structure PDB 4tqn; the crystal structure PDB 5cgp; the: crystal structure PDB 5dbm; the crystal structure PDB 5ep7; the crystal structure PDB. 5i83; the crystal structure PDB 5i86; the crystal structure PDB 5i89; the crrystal structure PDB. 5i8g; the crystal structure PDB 5j0d; the crystal structure PDB 5ktu; the ccrystal structure PDB 5ktw; the crystal structure PDB 5ktx; the crystal structure PDB 5tb6.

FIG. 3PPPP presents examples of EP300 Targeting Ligands wherein R is the point at which the:Linker is attached. For additional examples and related ligands, see, the،crystalsstructure PDB 5BT3.

FIG. 3QQQQ presents examples of PCAF Targeting Ligands wherein R is the ppoint cat which the:Linker is attached. See for example, M. Ghizzoni et al. Bioorg.Med. IChem. 18: 5 :58265834 (2010).

FIG. 3RRRR presents examples of PHIP Targeting Ligands wherein R is the point at which the:Linker is attached. For additional examples and related ligands, see, Mol 'Cancer'Ther. 7(9): 2621-2632 (2008).

FIG. 3SSSS presents examples of TAF1 and TAF1L Targeting Ligands wherein IR iis the point at which the: Linker is attached. For additional examples and related lligands, see, Picaud S . et:al. $S c i^{\prime} A d v^{\prime} 2:$ e1600760-e1600760 (2016).

FIG. 3TTTT presents examples of Histone Deacetylase $21($ HDAC2) 'Targeting ILigands wherein R is the point at which the Linker is attached. For additional examples and relatedlligands, see, Lauffer B. E. J. Biol. Chem. 288: 26926-26943 (2013); Wagner F. F. Bioorg. Med.ıChem. '24: 4008-4015 (2016); Bressi J. C. Bioorg. Med. Chem. Lett. 20: 3142-3145 ((2010); and, LLaufferlB. E. J. Biol. Chem. 288: 26926-26943 (2013).

FIG. 3UUUU-3VVVV present examples of Histone Deacetylase 4 (HDAC4)'Targeting Ligands: wherein R is the point at which the Linker is attached. For additionalexamples:andrelated ligands, see, Burli R. W. J. Med. Chem. 56: 9934 (2013); Luckhurst C. A. ACSiMed.ıChem. LLett. 7: 34. (2016); Bottomley M. J. J. Biol. Chem. 283: 26694-26704 (2008).

FIG. 3WWWW presents examples of Histone Deaceytlase 6 Targeting Ligands 'wherein R is; the: point at which the Linker is attached. For additional examples and related lligands, ssee, Harding, R. J. (to be published); Hai Y. Nat. Chem. Biol. 12: 741-747, (2016); ;and, lMiyake 'Y. Nat. Chem. Biol. 12: 748 (2016).

FIG. 3XXXX-3YYYY presents examples of Histone Deacetylase 7 Targeting JLigands wherein R is, the point at which the Linker is attached. For additional examples and relatedlligands, see, Lobera. M. Nat. Chem. Biol. 9: 319 (2013) and Schuetz A. J. Biol. .Chem. 283: 11355-11363 (2008).

FIG. 3ZZZZ-3DDDDD present examples of Histone Deacetylase :8 Targeting JLigands wherein R is, the point at which the Linker is attached. For additional examples and \mathbf{r} relatedlligands, see, Whitehead L. Biol. Med. Chem. 19: 4626-4634 (2011); Tabackman A. A. J. Struct.,Biol. 195: 373-378. (2016); Dowling D. P. Biochemistry 47, 13554-13563(2008); Somoza J. R., Biochemistry 12, 1325-1334 (2004); Decroos C. Biochemistry 54: 2126-2135 (2015); Vannini A. AProc. iNatl

Acad. Sci. 101: 15064 (2004); Vannini A. EMBO Rep. 8: 879 (2007); the crystal structure PDB 5BWZ; Decroos. A. ACS Chem. Biol. 9: 2157-2164 (2014); Somoza J. R. Biochemistry 12: 13251334 (2004); Decroos C. Biochemistry 54: 6501-6513 (2015); Decroos A. ACS iChem. Biol. 99: 2157-2164.(2014); and, Dowling D. P. Biochemistry 47: 13554-13563 (2008).

FIG. 3EEEEE presents examples of Histone Acetyltransferase (KAT2B) 'Targeting Ligands: wherein R is the point at which the Linker is attached. For additionalexamplesandrelated ligands, see, Chaikuad A. J. Med. Chem. 59: 1648-1653 (2016); the icrystal structure IPDB 1ZS5; and, Zeng;L. J. Am. Chem. Soc. 127: 2376-2377 (2005).

FIG. 3FFFFF-3GGGGG present examples of Histone Acetyltransferase (${ }^{(K A T 2 A)}$ Targeting.Ligands wherein R is the point at which the Linker is attached. For additionalrexamples andlrelated ligands, see, Ringel A. E. Acta Crystallogr. D. Struct. Biol. 72: :841-848(2016).

FIG. 3HHHHH presents examples of Histone Acetyltransferase 'Type BB ICatalytic IUnit (HAT1) Targeting Ligands wherein R is the point at which the Linker is attached. For additional examples and related ligands, see, the crystal structure PDB 2P0W.

FIG. 3IIIII presents examples of Cyclic AMP-dependent Transcription IFactor ((ATF2) Targeting Ligands wherein R is the point at which the Linker is attached.

FIG. 3JJJJJ presents examples of Histone Acetyltransferase (KAT5) TargetinglLigands wherein R is the point at which the Linker is attached.

FIG. 3KKKKK-3MMMMM present examples of Lysine-specific lhistone demethylase 1A (KDM1A) Targeting Ligands wherein R is the point at which the Linker is attached. IFor additional examples and related ligands, see, Mimasu S. Biochemistry 49: 6494-6503 (2010); Sartori L. J. Med. Chem. 60 :1673-1693 (2017); and, Vianello P. JJ. Med. ıChem. 160: 1693-1715 (2017).

FIG. 3NNNNN presents examples of HDAC6 Zn Finger Domain Targeting JLigands wherein R is; the point at which the Linker is attached.

FIG. 300000-3PPPPP present examples of general Lysine Methyltransferase Targeting, Ligands wherein R is the point at which the Linker is attached.

FIG. 3QQQQQ-3TTTTT present examples of DOT1L Targeting JLigands wherein R iis
 additional examples and related ligands, see, the crystal structure PDB 5MVS ("Dot1Linicomplex with ${ }_{1}$ adenosine: and inhibitor CPD1" Be C. et al.); the crystal structure PDB 5MW4 ("Dot1L iin
complex inhibitor CPD7" Be C. et al.); the crystal structure PDB 5DRT ("Dot1L iin (complex inhibitor CPD2" Be C. et al.); Be C. et al. ACS Med. Lett. 8: 338-343 (2017); the crystal sstructure PDB 5JUW "(Dot1L in complex with SS148" Yu W. et al. Structural Genomics (Consortium).

FIG. 3UUUUU presents examples of EHMT1 Targeting Ligands wherein R iistheppointat which the:Linker is attached. For additional examples and related ligands, see, the icrystalstructure PDB 5TUZ ("EHMT1 in complex with inhibitor MS0124", Babault N. etial.).

FIG. 3VVVVV presents examples of EHMT2 Targeting Ligands wherein R iisthe pointeat which the:Linker is attached. For additional examples and related ligands, see, theicrystalstructure PDB 5TUY ("EHMT2 in complex with inhibitor MS0124", Babault N. et al.); the PPDB ccrystal structure: 5TTF ("EHMT2 in complex with inhibitor MS012", Dong A. et al.); the PPDB creystal structure 3RJW (Dong A. et al., Structural Genomics Consortium); the PPDB crrystal structure 3K5K; Liu. F. et al. J. Med. Chem. 52: 7950-7953 (2009); and, the PDB crystal structure 4NVQ ("EHMT2 in complex with inhibitor A-366" Sweis R.F. et al.).

FIG. 3WWWWW presents examples of SETD2 Targeting Ligands wherein)Riisthepoint at which the: Linker is attached. For additional examples and related ligands, see, the PPDB crrystal structure: 5LSY ("SETD2 in complex with cyproheptadine", Tisi D. et al.); 'Tisi ID. 九et al. „ACS Chem. Biol. 11: 3093-3105 (2016); the crystal structures PDB 5LSS, 5LSX, 5LSZ, 5LT6, 5LT7, andl 5LT8; the PDB crystal structure 4FMU; and, Zheng W. et al. .J. Am. IChem. Soc. 134: 1800418014.(2012).

FIG. 3XXXXX-3YYYYY present examples of SETD7 Targeting Ligands wherein R iis the:point at which the Linker is attached. For additional examples and related ligands,see,tthe]PDB crystal structure: 5AYF ("SETD7 in complex with cyproheptadine." Niwa $] \mathrm{H}$. et al.); ; the JPDB crystal structure: 4JLG ("SETD7 in complex with (R)-PFI-2", Dong A. et ;al.); the JPDB crystal structure: 4JDS (Dong, A. et. al Structural Genomics Consortium); the PDB crystal structure،4E47 (Walker J.R. et al. Structural Genomics Consortium; the PDB crystal ;structure 3 VUZ (" ${ }^{\text {(} S E T D 7}$ in complex with AAM-1." Niwa H. et al.); the PDB crystal structure 3 VVO ; and, NiwajHetal. Acta Crystallogr. Sect.D 69: 595-602 (2013).

FIG. 3ZZZZZ presents examples of SETD8 Targeting Ligands wherein $]$ is the point at which the: Linker is attached. For additional examples and related ligands, see, the 〕PDB creystal structure: 5TH7 ("SETD8 in complex with MS453", Yu W. et al.) and the PDB crystal structure 5T5G-(Yu W et. al.; to be published).

FIG. 4A-4B present examples of SETDB1 Targeting Ligands 'wherein R iis the ppoint cat which the: Linker is attached. For additional examples and related ligands, see, the JPDB ccrystal structure: 5KE2 ("SETDB1 in complex with inhibitor XST06472A", Iqbal .A. ret al.); the IPDB crystal structure: 5KE3 ("SETDB1 in complex with fragment MRT0181a", Iqbal A. ret alal.); the PDB crystal structure 5KH6 ("SETDB1 in complex with fragment methyl 3(methylsulfonylamino)benzoate", Walker J.R. et al. Structural Genomics Consortium); and, the PDB crystal structure 5 KCO ("SETDB1 in complex with [[N]-(4chlorophenyl)methanesulfonamide", Walker J.R. et al.)

FIG. 4C-4P present examples of SMYD2 Targeting Ligands wherein R iis the point cat which the: Linker is attached. For additional examples and related ligands, see, the IPDB crrystal structure: 5KJK ("SMYD2 in complex with inhibitor AZ13450370", Cowen iS.D. eet al.); the IPDB crystal structure 5 KJM ("SMYD2 in complex with AZ931", Cowen S.D. net al.); the PPDB creystal structure:5KJN ("SMYD2 in complex with AZ506", Cowen S.D. etal.); the PDB icrystal sstructure 5ARF" ("SMYD2 in complex with N-[3-(4-chlorophenyl)-1-\{N'-cyano-N-[3-(difluoromethoxy)phenyl]carbamimidoyl\}-4

5-dihydro-1H-pyrazol-4-YL]-N-ethyl-2hydroxyacetamide", Eggert E. et al.); the PDB crystal structure 5ARG ("SMYD2 in icomplex with BAY598", Eggert E. et al.); the PDB crystal structure 4YND ("SMYD2 in icomplex with_A893", Sweis R.F. et al.); the PDB crystal structure 4WUY ("SMYD2 in icomplex withILLY-507", Nguyen. H. et al.); and, the PDB crystal structure 3S7B ("N-cyclohexyl-N~3~-[2-(3 4-dichlorophenyl)ethyl]- $\quad \mathrm{N}$-(2-\{[2-(5-hydroxy-3-oxo-3 4 -dihydro-2H- 1 4-benzoxazin-8-yl)ethyl]amino\}ethyl)-beta- alaninamide", Ferguson A.D. et al.).

FIG. 4Q-4R present examples of SMYD3 Targeting Ligands wherein R iis the point at which the:Linker is attached. For additional examples and related ligands, see, the ،crystalsstructure 5H17 ("SMYD3 in complex with 5'-\{[(3S)-3-amino-3-carboxypropyl][3-(dimethylamino)propyl]amino\}-5'-deoxyadenosine", Van Aller G.S. et al.); the crrystal structure 5CCL. ("SMYD3 in complex with oxindole compound", Mitchell L.H. ret al.); and, the crrystal structure: 5CCM ("Crystal structure of SMYD3 with SAM and EPZ030456").

FIG. 4S presents examples of SUV4-20H1 Targeting Ligands wherein R is the point at which the: Linker is attached. For additional examples and related ligands, see, the 〕PDB creystal structure 5 CPR ("SUV4-20H1 in complex with inhibitor A-196", Bromberg K.D. et al.).

FIG. 4T-4AA present examples of Wild Type Androgen Receptor 'Targeting lLigands wherein R is the point at which the Linker is attached. For additional examples and relatedlligands, see, the PDB crystal structures 5T8E and 5T8J ("Androgen Receptor in complex with 4-(pyrrolidin-1-yl)benzonitrile derivatives", Asano M. et al.); Asano M. et al..Bioorg.iMed.ıChem. Lett. 27: 1897-1901 (2017); the PDB crystal structure 5JJM ("Androgen Receptor", NadallM. cet al.); the: PDB crystal structure 5CJ6 ("Androgen Receptor in complex with.2-Chloro-4-[[(1R'2R)-2-hydroxy-2-methyl-cyclopentyl]amino]-3-methyl-benzonitrile derivatives", [Saeed .A. ret al.); the: PDB crystal structure 4QL8 ("Androgen Receptor in complex with 3-alkoxy-pyrrolo[1 2b]pyrazolines derivatives", Ullrich T. et al.); the PDB crystal structure 4HLW ("Androgen Receptor Binding; Function 3 (BF3) Site of the Human Androgen Receptor through 'Virtual Screening", Munuganti R.S. et al.); the PDB crystal structure 3V49 ("Androgen Receptorllbd'with activator peptide: and sarm inhibitor 1", Nique F. et al.); Nique F. et al..J. IMed. .Chem. ‘55: $88225-$ 8235 (2012); the PDB crystal structure 2YHD ("Androgen Receptor in complex with .AF2 small molecule: inhibitor", Axerio-Cilies P. et al.); the PDB crystal structure.3RLJ ("Androgen)Receptor ligandl binding domain in complex with SARM S-22", Bohl IC.E. et al.); BohlıC.E. et al..J.iMed. Chem. 54: 3973-3976 (2011); the PDB crystal structure 3B5R ("Androgen Receptorlligandbinding domain in complex with SARM C-31", Bohl C.E. et al.); Bohl C.E. et al. Bioorg. iMed. IChem. Lett.18: 5567-5570 (2008); the PDB crystal structure 2PIP ("Androgen Receptor lligand lbinding domain in complex with small molecule", Estebanez-Perpina E. et al.); Estebanez-Perpina. $\mathbb{I E}$. Proc. Natl. Acad. Sci. 104:16074-16079 (2007); the PDB crystal structure `2PNU ("Androgen Receptor ligand binding domain in complex with EM5744", Cantin L. et al.); and, the]PDB crystal structure: 2HVC ("Androgen Receptor ligand binding domain in complex with JLGD2226", 'Wang F. et: al.). For additional related ligands, see, Matias P.M. et al. "Structural JBasis ffor the Glucocorticoid Response in a Mutant Human Androgen Receptor ($\mathrm{Ar}(\mathrm{Ccr})$) Derived from an Androgen-Independent Prostate Cancer." J. Med. Chem. 45: 1439 (2002); ;Sack J.S. ret al. "Crystallographic structures of the ligand-binding domains of the androgen receptor andjits T877A mutant complexed with the natural agonist dihydrotestosterone." Proc. Natl. Acad. Sci. 98:490449091 (2001); He: B. et al. "Structural basis for androgen receptor interdomain and coactivator interactions; suggests a transition in nuclear receptor activation function dominance." ${ }^{\prime} M o l$. . 1 Cell 16 : 425-438 (2004); Pereira de Jesus-Tran K. "Comparison of crystal structures of jhuman androgen receptor ligand-binding domain complexed with various agonists reveals molecular determinants
responsible: for' binding affinity." Protein Sci. 15: 987-999 (2006); Bohl C.E. et al. "'Structural Basisi for Accommodation of Nonsteroidal Ligands in the Androgen Receptor." ${ }^{\prime}$ Mol.Pharmacol. 63(1):211-23 (2003); Sun C. et al. "Discovery of potent orally-active and muscle-selective androgen receptor modulators based on an N-aryl-hydroxybicyclohydantoin scaffold." J. iMed. Chem. 49: 7596-7599 (2006); Nirschl A.A. et al. "N-aryl-oxazolidin-2-imine muscle sselective androgen receptor modulators enhance potency through pharmacophore reorientation." J. IMed. Chem. 52: 2794-2798 (2009); Bohl C.E. et al. "Effect of B-ring substitution pattern on lbinding mode of propionamide selective androgen receptor modulators." Bioorg. Med. "Chem. Lett. 18: 5567-5570' (2008); Ullrich T. et al. "3-alkoxy-pyrrolo[1 2-b]pyrazolines as selective androgen receptor modulators with ideal physicochemical properties for transdermal administration." J. Med. Chem. 57: 7396-7411 (2014); Saeed A. et al. "2-Chloro-4-[[(1R.2R)-2-hydroxy-2-methyl-cyclopentyl]amino]-3-methyl-benzonitrile: A Transdermal Selective Androgen Receptor Modulator (SARM) for Muscle Atrophy." J. Med. Chem. 59: 750-755 (2016); INique ret al. "Discovery of diarylhydantoins as new selective androgen receptor modulators." J. iMed. Chem. 55: 8225-8235 (2012); and, Michael E. Jung et al. "Structure-Activity Relationship ffor Thiohydantoin Androgen Receptor Antagonists for Castration-Resistant PProstate ICancer (CRPC)." J. Med. Chem. 53: 2779-2796 (2010).

FIG. 4BB presents examples of Mutant T877A Androgen Receptor Targeting ILigands wherein R is the point at which the Linker is attached. For additional examples and relatedlligands, see, the: PDB crystal structure 4OGH (‘Androgen Receptor T877A-AR-LBD", HsuiC.L.retal.)and the: PDB crystal structure $2 \mathrm{OZ7}$ ("Androgen Receptor T877A-AR-LBD",BohliC.E. ret al.).

FIG. 4CC presents examples of Mutant W741L Androgen Receptor 'Targeting JLigands wherein R is, the point at which the Linker is attached. For additional examples and relatedlligands, see, the: PDB crystal structure 4OJB ("Androgen Receptor T877A-AR-LBD",HsuiC.L.etal.).

FIG. 4DD-4EE presents examples of Estrogen and/or Androgen Targeting JLigands wherein R is; the point at which the Linker is attached.

FIG. 5A presents examples of Afatinib, a Targeting Ligands for the EGFR and JErbB2/4 receptors. R is, the point at which the Linker is attached.

FIG. 5B presents examples of Axitinib, a Targeting Ligands for the VEGFR1/2/3, PDGFR β, and Kit receptors. R is the point at which the Linker is attached.

FIG. 5C-5D present examples of Bosutinib, a Targeting Ligands for the 1BCR-Abl, STrc, Lynand Hck receptors. R is the point at which the Linker is attached.

FIG. 5E presents examples of Cabozantinib, a Targeting Ligands for the IRET, c-Met, VEGFR1/2/3, Kit, TrkB, Flt3, Axl, and Tie 2 receptors. R is the point at which the lLinker iis attached.

FIG. . 5F' presents examples of Ceritinib, a Targeting Ligands for the ALK, IGF-1R, InsR, andlROS1 receptors. R is the point at which the Linker is attached.

FIG. .5G presents, examples of Crizotinib, a Targeting Ligands for the ALK, cc-Met,HHGFR, ROS1, andlMST1R receptors. R is the point at which the Linker is attached.

FIG. . 5 H presents examples of Dabrafenib, a Targeting Ligands for the B-Raf receptor. 1 R is; the point; at: which the Linker is attached.

FIG. , 5I presents, examples of Dasatinib, a Targeting Ligands for the BCR-Abl, Src, Lck, Lyn,, Yes,,Fyn, Kit, EphA2, and PDGFR β receptors. R is the point at which the Linker ïs attached.

FIG. , 5J /presents, examples of Erlotinib, a Targeting Ligands for the EGFR receptor. R iis the:pointatewhich, the: Linker is, attached.

FIG. , 5K-5M presents, examples of Everolimus, a Targeting Ligands for the HER2 breast cancer- receptor, the PNET receptor, the RCC receptors, the RAML receptor, and the 'SEGA receptor. R is; the; point at which the Linker is attached.

FIG. , 5N presents, examples of Gefitinib, a Targeting Ligands for the EGFR and PDDGFR receptors. R is; the; point at which the: Linker is attached.

FIG. , 50 presents, examples, of Ibrutinib, a Targeting Ligands for the BTK receptor. R is

FIG. ,5P-5Q present examples of Imatinib, a Targeting Ligands for the BCR-Abl, Kit, and PDGFR receptors. R is; the; point at which the Linker is attached.

FIG. , 5R-5S; present examples of Lapatinib, a Targeting Ligands for the EGFR and ErbB2 receptors. R is; the point at which the Linker is attached.

FIG. . 5T` presents; examples; of Lenvatinib, a Targeting Ligands for the VEGFR1/2/3, FGFR1/2/3/4, PDGFR α, Kit, and RET receptors. R is the point at which the Linker is attached.

FIG. . $5 \mathrm{U}-5 \mathrm{~V}^{\prime} \mathrm{a}_{\iota}$ present examples, of Nilotinib, a Targeting Ligands for the BCR-Abl, PDGRF, and!DDR1 receptors. R is; the point at which the Linker is attached.

FIG. 5W-5X present examples of Nintedanib, a Targeting Ligands ffor the IFGFR1/2/3, Flt3, Lck, PDGFR α / β, and VEGFR1/2/3 receptors. R is the point at which the Linkeriis attached.

FIG. 5Y-5Z present examples of Palbociclib, a Targeting Ligands for the $\mathbf{I C D K} 4 / 6$ receptor. R is the point at which the Linker is attached.

FIG. 5AA presents examples of Pazopanib, a Targeting Ligands for the VEGFR1/2/3, PDGFR α / β, FGFR $1 / 3$, Kit, Lck, Fms, and Itk receptors. R is the point at which the lLinker iis attached.

FIG. 5BB-5CC present examples of Ponatinib, a Targeting Ligands for the lBCR-Abl, T315I VEGFR, PDGFR, FGFR, EphR, Src family kinases, Kit, RET, Tie2, and IFlt3 receptors.IR is the: point at which the Linker is attached.

FIG. 5DD presents examples of Regorafenib, a Targeting Ligands for the VEGFR1/2/3, BCR-Abl, B-Raf, B-Raf (V600E), Kit, PDGFR α / β, RET, FGFR1/2, Tie2, and Eph2A. JR iis the point at which the: Linker is attached.

FIG. 5EE presents examples of Ruxolitinib, a Targeting Ligands for the JAK1/2receptors. R is the: point at which the Linker is attached.

FIG. 5FF-5GG present examples of Sirolimus, a Targeting Ligands for the FKBP12/mTOR receptors. R is the point at which the Linker is attached.

FIG. 5HH presents examples of Sorafenib, a Targeting Ligands for thelB-Raf,ICDK8,IKit, Flt3, RET, VEGFR1/2/3, and PDGFR receptors. R is the point at which the Linker iis attached.

FIG. 5II-5JJ present examples of Sunitinib, a Targeting Ligands for PPDGFR $\alpha \beta$, VEGFR1/2/3, Kit, Flt3, CSF-1R, RET. R is the point at which the Linker is attached.

FIG. 5KK-5LL present examples of Temsirolimus, a Targeting.LigandsIFKBP12/mTOR. R is; the point at which the Linker is attached.

FIG. 5MM presents examples of Tofacitinib, a Targeting Ligands for JAK3 receptors.]R is; the point at which the Linker is attached.

FIG. 5NN presents examples of Trametinib, a Targeting Ligands for the]MEK1/2 receptors. R is, the point at which the Linker is attached.

FIG. 50O-5PP presents examples of Vandetanib, a Targeting Ligands for the JEGFR, VEGFR, RET, Tie2, Brk, and EphR. R is the point at which the Linker is attached.

FIG. 5QQ presents examples of Vemurafenib, a Targeting Ligands for the A/B/C-Raf, KSR1, and $\mathrm{B}-\mathrm{Raf}(\mathrm{V} 600 \mathrm{E})$ receptors. R is the point at which the Linker is attached.

FIG. 5RR presents examples of Idelasib, a Targeting Ligands for thelPI3Karreceptor.IRiis the: point at which the Linker is attached.

FIG. 5SS presents examples of Buparlisib, a Targeting Ligands ffor the PI3Ka receptor.JR is: the:point at which the Linker is attached.

FIG. 5TT' presents examples of Taselisib, a Targeting Ligands for the JPI3Ka receptor.JR is; the point at which the Linker is attached.

FIG. 5UU presents examples of Copanlisib, a Targeting Ligands for the PI 3 Ka . 1 R iis the point at which the: Linker is attached.

FIG. 5VV presents examples of Alpelisib, a Targeting Ligands for the PI3Ka. IR iis the point at which the: Linker is attached.

FIG. 5WW presents examples of Niclosamide, a Targeting Ligands for the ICNNTB1.IR is; the:point at which the Linker is attached.

FIG. 6A-6B present examples of the BRD4 Bromodomains of PCAF andiGCN5 receptors 1 Targeting,Ligands wherein R is the point at which the Linker is attached.For additionalexamples andl related ligands, see, the PDB crystal structure 5tpx ("Discovery of a PCAF]Bromodomain Chemical Probe"); Moustakim, M., et al. Angew. Chem. Int. Ed. Engl. $56: 827$ (2017); the JPDB crystal structure 5 mlj ("Discovery of a Potent, Cell Penetrant, and Selective p300/CBP-Associated Factor (PCAF)/General Control Nonderepressible 5 (GCN5) Bromodomain Chemical IProbe"); and, Humphreys, P. G. et al. J. Med. Chem. 60: 695 (2017).

FIG. 6C-6D present examples of G9a (EHMT2) Targeting Ligands wherein]R is the point at which the: Linker is attached. For additional examples and related ligands, see, the]PDB crrystal structure: 3k5k; ("Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and sselective inhibitor of histone lysine methyltransferase G9a"); Liu, F. et al. J. Med. IChem. 52:'7950((2009); the: PDB crystal structure 3rjw ("A chemical probe selectively jinhibits G9a and GLP methyltransferase activity in cells"); Vedadi, M. et al. Nat. Chem. Biol. 7: 566 (2011); the JPDB crystal structure: 4 nvq ("Discovery and development of potent and selective jinhibitors of histone methyltransferase g9a"); and, Sweis, R.F. et al. ACS Med Chem Lett 5: 205,(2014).

FIG. 6E-6G present examples of EZH2 Targeting Ligands wherein R is the point ${ }_{\text {at }}$, which the: Linker is attached. For additional examples and related ligands, see, the]PDB crystal structure 5ij8: ("Polycomb repressive complex 2 structure with inhibitor reveals a a mechanism of activation andldrug; resistance"); Brooun, A. et al. Nat Commun 7: 11384 (2016); the PDB crystal structure

51s6i ("Identification of" (R)-N-((4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl)methyl)-2-methyl-1-(1-(1-(2,2,2-trifluoroethyl)piperidin-4-yl)ethyl)-1H-indole-3-carboxamide ((CPI-1205), al Potent and Selective Inhibitor of Histone Methyltransferase EZH2, Suitable ffor IPhase IIIClinical Trialsi for B-Cell Lymphomas"); Vaswani, R.G. et al. J. Med. Chem. 59: '9928 (2016); ;and, the PDB crystal structures 5 ij 8 and 51s6.

FIG. 6H-6I present examples of EED Targeting Ligands wherein R is the point at which the:Linker is attached. For additional examples and related ligands, see, the PPDB icrystal structures 5h15 and 5h19 ("Discovery and Molecular Basis of a Diverse Set of Polycomb Repressive Complex 2. Inhibitors Recognition by EED"); Li, L. et al. PLoS ONE 12: e0169855 ((2017); ;and, the: PDB crystal structure 5 h 19 .

FIG. 6J presents examples of KMT5A (SETD8) Targeting Ligands wherein Riisthe point at: which the: Linker is attached. See for example, the PDB crystal structure 5 t5g.

FIG. 6K-6L present examples of DOT1L Targeting Ligands wherein R iis the point at which the: Linker is attached. For additional examples and related ligands, see, the JPDB crrystal structure: 4 eki ("Conformational adaptation drives potent, selective and durable inhibition of the human protein methyltransferase DOT1L"); Basavapathruni, A. et al. Chem. Biol. _Drug ${ }_{\text {IDes. }}$. 880: 971 (2012); the: PDB crystal structure 4hra ("Potent inhibition of DOT1L as treatment of lMLLfusion leukemia"); Daigle, S.R. et al. Blood 122: 1017 (2013); the PDB icrystal structure "5dry ("Discovery of Novel Dot1L Inhibitors through a Structure-Based Fragmentation Approach") Chen, C. et al. ACS' Med. Chem. Lett. 7: 735 (2016); the PDB crystal structure :5dt2 ("'Discovery of Novel Dot1L Inhibitors through a Structure-Based Fragmentation Approach"); and, ©Chen,,C.et al. ACS'Med. Chem. Lett. 7: 735 (2016).

FIG. 6M-6N present examples of PRMT3 Targeting Ligands wherein R is the point at which the: Linker is attached. For additional examples and related ligands, see, the JPDB crystal structure: 3 smq ("An allosteric inhibitor of protein arginine methyltransferase 3 "); ;Siarheyeva, A. et:al. Structure 20: 1425 (2012); PDB crystal structure 4ryl ("A Potent, Selective;andiCell-Active Allosteric: Inhibitor of Protein Arginine Methyltransferase 3 (PRMT3)"); and JKaniskan, JH.U. et al. Angew. Chem. Int. Ed. Engl. 54: 5166 (2015).

FIG. 60 presents examples of CARM1 (PRMT4) Targeting Ligands wherein]Rjisthe point at: which the: Linker is attached. For additional examples and related ligands, see, the JPDB creystal
structures 2y1x and 2y1w and related ligands described in "Structural Basis for 'Carm1 IInhibition by Indole: and Pyrazole Inhibitors." Sack, J.S. et al. Biochem. J. 436: 331 (2011).

FIG. 6P presents examples of PRMT5 Targeting Ligands wherein R iis the point at which the: Linker is attached. For additional examples and related ligands, see, the PPDB icrystal sstructure 4×61 and related ligands described in "A selective inhibitor of PRMT5 with in vivo and iin vitro potency in MCL models". Chan-Penebre, E. Nat. Chem. Biol. 11: 432 (2015).

FIG. 6Q presents examples of PRMT6 Targeting Ligands wherein R iis the point at which the:Linker is attached. For additional examples and related ligands, see, the lPDB icrystal structure $4 y 30$ and related ligands described in "Aryl Pyrazoles as Potent Inhibitors of Arginine Methyltransferases: Identification of the First PRMT6 Tool Compound". Mitchell,LL.H.retaal.ACS Med. Chem. Lett. 6: 655 (2015).

FIG. 6R presents examples of LSD1 (KDM1A) Targeting Ligands wherein 1 Ris the point at which the: Linker is attached. For additional examples and related ligands, see, the PPDB crrystal structure 5lgu and related ligands described in "Thieno[3,2-b]pyrrole-5-carboxamides as \mathbb{N} New Reversible: Inhibitors of Histone Lysine Demethylase KDM1A/LSD1. Part '2: 'Structure-Based Drug; Design and Structure-Activity Relationship". Vianello, P. et al. J. ıMed. ıChem. 60: 1693 (2017).

FIG. 6S-6T present examples of KDM4 Targeting Ligands wherein R iis the pointat which the: Linker is attached. For additional examples and related ligands, see, the PPDB icrystal sstructure 3rvh; the: PDB crystal structure 5a7p and related ligands described in " Docking and JLinking of Fragments, to, Discover Jumonji Histone Demethylase Inhibitors." Korczynska, M., et al.. J. iMed. Chem. 59: 1580' (2016); and, the PDB crystal structure 3f3c and related lligands described iin " " 8 Substituted Pyrido[3,4-d]pyrimidin-4(3H)-one Derivatives As Potent, 1 Cell]Permeable, JKDM4 (JMJD2), and KDM5 (JARID1) Histone Lysine Demethylase Inhibitors." Bavetsias, 'V. et ¿al. .J. Med. Chem. 59: 1388 (2016).

FIG. 6U presents examples of KDM5 Targeting Ligands wherein R is the point at which the:Linker is attached. For additional examples and related ligands, see, the JPDB icrystal structure 3fun and related ligands described in "Structural Analysis of Human Kdm5B Guides]Histone Demethylase: Inhibitor Development". Johansson, C. et al. Nat. Chem. Biol. 12: 539 (2016) and the: PDB crystal structure 5ceh and related ligands described in "An jinhibitor of JKDM5
demethylases reduces survival of drug-tolerant cancer cells". Vinogradova, M. et aal. ${ }^{\text {Nat. }}$. Chem. Biol. 12: 531 (2016).

FIG. 6V-6W present examples of KDM6 Targeting Ligands wherein R is the point cat which the: Linker is attached. For additional examples and related ligands, see, the JPDB crrystal structure:4ask and related ligands described in "A Selective Jumonji.H3K27.DemethylaseIInhibitor Modulates: the Proinflammatory Macrophage Response". Kruidenier, L. et ial. .Nature 488: 404 (2012).

FIG. 6X presents examples of L3MBTL3 targeting ligands wherein Riisthe point at which the: Linker isi attached. See for example, the PDB crystal structure 4 fl .

FIG. 6Y presents examples of Menin Targeting Ligands wherein R is the point at which the: Linker is attached. For additional examples and related ligands, see, the PPDB icrystal sstructure $4 \times 5 y$ and related ligands described in "Pharmacologic Inhibition of the Menin-MLL Interaction Blocksi Progression of MLL Leukemia In Vivo" Borkin, D. et al. Cancer Cell'27:589 (2015) and the: PDB crystal structure 4og8 and related ligands described in "High-Affinity :Small-Molecule Inhibitors of the: Menin-Mixed Lineage Leukemia (MLL) Interaction Closely Mimic a 1 Natural Protein-Protein Interaction" He, S. et al. J. Med. Chem. 57: 1543 (2014).

FIG. 6Z-6AA present examples of HDAC6 Targeting Ligands wherein R is the point at which the: Linker is attached. See for example, the PDB crystal structures 5 kh 3 and 5 eei.

FIG. 6BB presents examples of HDAC7 Targeting Ligands wherein Riisthe pointat which the: Linker is attached. For additional examples and related ligands, see, the 〕PDB icrystal structure 3c10i and related ligands described in "Human HDAC7 harbors a class IIa histone deacetylasespecific:zinc; binding motif and cryptic deacetylase activity." Schuetz, A. et al.,J. Biol.،Chem.283: 11355 (2008) and the PDB crystal structure PDB 3zns and related ligands described iin "'Selective Class; Iia Histone: Deacetylase Inhibition Via a Non-Chelating Zinc Binding Group"., Lobera, ${ }^{\prime} \mathrm{M}$. etal. Nat. Chem. Biol. 9: 319 (2013).

FIG. 7A-7C present examples of Protein Tyrosine Phosphatase, Non-Receptor 'Type 1, PTP1B. Targeting Ligands $^{\text {wherein } R}$ is the point at which the Linker is attached. JFor additional examples; and related ligands, see, the PDB crystal structure 1bzj described in ""Structurallbasisffor inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide ,mimetics" ${ }^{\prime}$ Groves, M.R. et al. Biochemistry 37: 17773-17783 (1998); the PDB crystal structure .3cwe described in "Discovery of [(3-bromo-7-cyano-2-naphthyl)(difluoro)methyl]phosphonic acid, a ppotent and
orally active small molecule PTP1B inhibitor". Han Y, Bioorg.Med Chem.Lett. 18:3200-5((2008); the: PDB crystal structures 2azr and 2b07 described in "Bicyclic and tricyclic thiophenes asiprotein tyrosine: phosphatase 1B inhibitors." Moretto, A.F. et al. Bioorg. Med. 1Chem. 14: ‘2162-2177 (2006); the: PDB crystal structures PDB 2 bgd , $2 \mathrm{bge}, 2 \mathrm{~cm} 7,2 \mathrm{~cm} 8,2 \mathrm{cma}, 2 \mathrm{cmb}, 2 \mathrm{cmc}$ describediin ""Structure-Based Design of Protein Tyrosine Phosphatase-1B Inhibitors"..Black,,E.etial.IBioorg. Med. Chem. Lett. 15: 2503 (2005) and "Structural Basis for Inhibition of IProtein-Tyrosine Phosphatase: 1B by Isothiazolidinone Heterocyclic Phosphonate Mimetics." . Ala, IP.J. ret al.J.J. B Biol. Chem. 281: 32784 (2006); the PDB crystal structures 2 f 6 t and 2 f 6 w described in '" $1,2,3,4$ Tetrahydroisoquinolinyl sulfamic acids as phosphatase PTP1B inhibitors". Klopfenstein, 'S.R. eet al. Bioorg. Med. Chem. Lett. 16: 1574-1578 (2006); the PDB crystal structures $.2 \mathrm{~h} 4 \mathrm{~g}, 2 \mathrm{~h} 4 \mathrm{k}, .2 \mathrm{hb} 1$ described in. ""Monocyclic thiophenes as protein tyrosine phosphatase 1B innhibitors: lCapturing interactions: with Asp48." Wan, Z.K. et al. Bioorg. Med. Chem. Lett. 16: 4941-4945 ((2006); the PDB crystal structures 2zn7 described in "Structure-based optimization of protein tyyrosine phosphatase-1 B inhibitors: capturing interactions with arginine 24 ". Wan, Z.IK. ret al.ıChemiMed Chem. 3:1525-9' (2008); the PDB crystal structure 2nt7, 2nta described in "'Probing acid replacements of thiophene PTP1B inhibitors." Wan, Z.K. et al. Bioorg. Med.Chem.LLett. 17:29132920 (2007); and, WO 2008148744 A1 assigned to Novartis AG titled ""Thiadiazole derivativesas antidiabetic: agents". See also, the PDB crystal structures 1c84, 1c84, 1c85, 1c86, 1c88, 118g and described in ""2-(oxalylamino)-benzoic acid is a general, competitive iinhibitorof protein-tyrosine phosphatases". Andersen, H.S. et al. J. Biol. Chem. 275: 7101-7108 (2000); "'Structure-based design of a low molecular weight, nonphosphorus, nonpeptide, and highly selective inhibitor of protein-tyrosine phosphatase 1B." Iversen, L.F. et al. J. Biol. Chem. 275: 10300-10307 ((2000); and, "Steric hindrance as a basis for structure-based design of selective inhibitors of proteintyrosine: phosphatases". Iversen, L.F. et al. Biochemistry 40: 14812-14820(2001).

FIG. 7D presents examples of Tyrosine-protein phosphatase non-receptor tyype 11, ,SHP2 Targeting.Ligands wherein R is the point at which the Linker is attached. For additional examples and related ligands, see, the crystal structures PDB 4pvg and 305x and described in "'Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine; phosphatase-2 (SHP2)." Zhang, X. et al. J. Med. Chem. 53: 2482-2493 (2010); ;and, the crystal structure: PDB 5ehr and related ligands described in "Allosteric Inhibition of 【SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor." «Garcia

Fortanet, J. et al. J. Med. Chem. 59: 7773-7782 (2016). Also, see the icrystal structure IPDB 3 5ehr described in "Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious: Phosphatase Inhibitor." Garcia Fortanet, J. et al. J. Med. Chem. 59: 7773-7782((2016) andl "Allosteric inhibition of SHP2 phosphatase inhibits cancers driven lby receptor ttyrosine kinases." Chen, Y.P. et al. Nature 535: 148-152 (2016).

FIG. 7E presents examples of Tyrosine-protein phosphatase mon-receptor tyype ${ }^{2} 22$ Targeting, Ligands wherein R is the point at which the Linker is attached. For additionalrexamples andlrelated ligands, see, the crystal structure PDB 4 j 51 described in "'APotentiand Selective'SmallMolecule: Inhibitor for the Lymphoid-Specific Tyrosine Phosphatase (LYP), a' Target Associated with Autoimmune Diseases." He, Y. et al. J. Med. Chem. 56: 4990-5008 ((2013).

FIG. 7F presents examples of Scavenger mRNA-decapping enzyme JDcpS Targeting Ligands wherein R is the point at which the Linker is attached. For additionalexamplesandrelated ligands, see, the crystal structures PDB 3b17, 3b19, 3bla, 4qde, 4qdv, 4qeb and related lligands described. in. "DcpS as a therapeutic target for spinal muscular atrophy." :Singh, J. et al. ACS Chem.Biol. 3: 711-722 (2008).

FIG. 8A-8S present examples of BRD4 Bromodomain 1 Targeting Ligands wherein]Riis the: point at: which the Linker is attached. For additional examples and related lligands, ssee, the crystal structures. PDB 3u5k and 3 u 51 and related ligands in Filippakopoulos, \mathbb{P}. ret al. "Benzodiazepines and benzotriazepines as protein interaction inhibitors targeting lbromodomains of the: BET' family", Bioorg. Med. Chem. 20: 1878-1886 (2012); the crystal structure]PDB 3 3 51; the:crystal structure PDB 3zyu and related ligands described in Dawson, M.A. et al."'Inhibitionof Bet:Recruitment to Chromatin as an Effective Treatment for Mll-Fusion Leukaemia." ${ }^{\text {Nature }} 478$: 529 (2011); the crystal structure PDB 4bw1 and related ligands described in $]$ Mirguet, iO. set aal. "Naphthyridines, as Novel Bet Family Bromodomain Inhibitors." Chemmedchem $9: 589$ (2014); the:crystal structure PDB 4 cfl and related ligands described in Dittmann, A. et ;al.""TherCommonly Used Pi3-Kinase: Probe Ly294002 is an Inhibitor of Bet Bromodomains" ACSIChem. Biol. 99:495 (2014); the: crystal structure PDB 4 e 96 and related ligands described in JFish, JP.V. et al. "Identification of a chemical probe for bromo and extra C-terminal bromodomain inhibition through optimization of a fragment-derived hit." J. Med. Chem. 55: 9831-9837,(2012); the ©crystal structure: PDB 4clb and related ligands described in Atkinson, S.J. et ;al. "The ;Structure 〕Based Design of:Dual Hdac/Bet Inhibitors as Novel Epigenetic Probes.", Medchemcomm:5:342 ((2014);
the:crystal structure PDB 4f3i and related ligands described in.Zhang, G. et al. "Down-regulation of NF-\{kappa\}B Transcriptional Activity in HIV-associated Kidney.Diseaselby]BRD4IInhibition." J. Biol. Chem. 287: 28840-28851 (2012); the crystal structure PDB 4hxl and related lligands described in Zhao, L. "Fragment-Based Drug Discovery of 2-Thiazolidinones as Inhibitors of tthe Histone:Reader BRD4 Bromodomain." J. Med. Chem. 56: 3833-3851 (2013); the icrystalsstructure PDB 4hxs and related ligands described in Zhao, L. et al. "Fragment-Based Drug Discovery of'2Thiazolidinones. as Inhibitors of the Histone Reader BRD4 Bromodomain." J. IMed. IChem. ‘56: 3833-3851 (2013); the crystal structure PDB 4lrg and related ligands described in 'Gehling, 'V.S. et al. "Discovery, Design, and Optimization of Isoxazole Azepine BET Inhibitors." ACSiMed Chem Lett 4: 835-840 (2013); the crystal structure PDB 4mep and related lligands described in Vidler, L.R. "Discovery of Novel Small-Molecule Inhibitors of BRD4 Using 'Structure-Based Virtual Screening." et al. J. Med. Chem. 56: 8073-8088 (2013); the crystal structures PDB 4nr8 and PDB 4c77 and related ligands described in Ember, S.W. et al. "Acetyl-lysine Binding 'Site of Bromodomain-Containing Protein 4 (BRD4) Interacts with Diverse Kinase Innhibitors". ACS Chem.Biol. 9: 1160-1171 (2014); the crystal structure PDB 4o7a and related lligands described iin Ember, S.W. et al. "Acetyl-lysine Binding Site of Bromodomain-Containing Protein 4 ((BRD4) Interacts; with Diverse Kinase Inhibitors." ACS Chem. Biol. 9: 1160-1171 (2014); the crrystal structure:PDB 407b and related ligands described in "Acetyl-lysine Binding SiterfiBromodomainContaining;Protein 4 (BRD4) Interacts with Diverse Kinase Inhibitors." Ember, 'S.W.et al.((2014) ACS' Chem. Biol. 9: 1160-1171; the crystal structure PDB 4o7c and related ligands described iin Ember, S.W. et al. "Acetyl-lysine Binding Site of Bromodomain-Containing JProtein 4 ((BRD4) Interacts; with Diverse Kinase Inhibitors". ACS Chem. Biol. 9: 1160-1171 (2014); the crystal structure: PDB 4gpj; the crystal structure PDB 4uix and related ligands idescribed jin'Theodoulou, N.H. et al. "The: Discovery of I-Brd9, a Selective Cell Active Chemical Probe for Bromodomain Containing; Protein 9 Inhibition". J. Med. Chem. 59: 1425 (2016); the crystal structure]PDB 4 uiz andl related ligands described in Theodoulou, N.H., et al. "The Discovery of II-Brd9, a aSelective Cell Active: Chemical Probe for Bromodomain Containing Protein '9 Inhibition". J. IMed.ıChem. 59: 1425 (2016); the crystal structure PDB 4wiv and related ligands described jin]McKeown,1M.R. et:al. "Biased multicomponent reactions to develop novel bromodomain inhibitors." J. iMed.ıChem. 57: 9019-9027 (2014); the crystal structure PDB 4x2i and related ligands described in 'Taylor,
A.M. et al. "Discovery of Benzotriazolo[4,3-d][1,4]diazepines as Orally Active Inhibitors oflBET Bromodomains." ACS Med. Chem. Lett. 7: 145-150 (2016); the crystal structureJPDB 4yh3; Andl related. ligands described in Duffy, B.C. "Discovery of a new chemical series of lBRD4(1) inhibitors. using protein-ligand docking and structure-guided design." Bioorg. Med. ©Chem. ILett. 25: 2818-2823 (2015); the crystal structure PDB 4yh4 and related ligands idescribediinlDuffy,IB.C. "Discovery of" a new chemical series of BRD4(1) inhibitors using protein-ligand docking and structure-guided design." Bioorg. Med. Chem. Lett. 25: 2818-2823 (2015); the icrystal structure PDB 4 zlq and related ligands described in Taylor, A.M. "Discovery of IBenzotriazolo[4,3d][1,4]diazepines as Orally Active Inhibitors of BET Bromodomains." ACSiMed. IChem. ILett. '7: 145-150' (2016); the crystal structure PDB 4zw1; the crystal structure PDB 5a5s andrelatedlligands described.in. Demont, E.H. "Fragment-Based Discovery of Low-Micromolar.Atad21Bromodomain Inhibitors. J. Med. Chem. 58: 5649 (2015); the crystal structure PDB 5a85 and related lligands described in Bamborough, P. "Structure-Based Optimization of Naphthyridones IntoIPotent.Atad2 Bromodomain Inhibitors" J. Med. Chem. 58: 6151 (2015); the crystal structure PPDB ‘5acy and related ligands described in Sullivan, J.M. "Autism-Like Syndrome is InducedlbyPPharmacological Suppression of Bet Proteins in Young Mice." J. Exp. Med. 212: 1771 (2015); the icrystal sstructure PDB. 5ad2 and related ligands described in Waring, M.J. et al. "Potent and 'Selective lBivalent Inhibitors of Bet Bromodomains". Nat. Chem. Biol. 12: 1097 (2016); the crrystal structure IPDB 5cfw and related ligands described in Chekler, E.L. et al. "Transcriptional Profiling of a 'Selective CREB Binding, Protein Bromodomain Inhibitor Highlights Therapeutic Opportunities." IChem. Biol. 22: 1588-1596 (2015); the crystal structure PDB 5cqt and related ligands described in Xue, X. et al. "Discovery of Benzo[cd]indol-2(1H)-ones as Potent and Specific]BET]Bromodomain Inhibitors: Structure-Based Virtual Screening, Optimization, and Biological Evaluation"., J. iMed. Chem. 59: 1565-1579 (2016); the crystal structure PDB 5d3r and related ligands described in Hugle, M. et al. "4-Acyl Pyrrole Derivatives Yield Novel Vectors for Designing Jnhibitors of the Acetyl-Lysine: Recognition Site of BRD4(1)". J. Med. Chem. 59: 1518-1530 (2016); the crrystal structure: PDB 5dlx and related ligands described in Milhas, S. et al. "Protein-Protein Interaction Inhibition (2P2I)-Oriented Chemical Library Accelerates Hit Discovery." (2016)ACSIChem.Biol. 11: 2140-2148; the crystal structure PDB 5dlz and related ligands described in Milhas, ©S. et aal. "Protein-Protein Interaction Inhibition (2P2I)-Oriented Chemical Library Accelerates JHit Discovery." ACS' Chem. Biol. 11: 2140-2148 (2016); the crystal structure PPDB 5dw2 and related
ligandsi described in Kharenko, O.A. et al. "RVX-297- a novel BD2 selective iinhibitor of IBET bromodomains." Biochem. Biophys. Res. Commun. 477: 62-67 (2016); the crrystal sstructure IPDB 5dlx; the: crystal structure PDB 5his and related ligands described in .Albrecht, JB.K. cet al. "Identification of"a Benzoisoxazoloazepine Inhibitor (CPI-0610) of the Bromodomain andIExtra- Terminal (BET) Family as a Candidate for Human Clinical Trials." J. .Med. 'Chem. 59: 1330-1339 (2016); the: crystal structure PDB 5ku3 and related ligands described in Crawford, T.D. ret aal. "Discovery of" a Potent and Selective in Vivo Probe (GNE-272) for the JBromodomains of CBP/EP300". J. Med. Chem. 59: 10549-10563 (2016); the crystal structure PDB :51j2 and related ligandsi described in Bamborough, P. et al. "A Chemical Probe for the ATAD21Bromodomain." Angew. Chem. Int. Ed. Engl. 55: 11382-11386 (2016); the crystal structure PDB 5dlx and irelated ligandsi described in Wang, L. "Fragment-based, structure-enabled discovery of novel pyridones andl pyridone: macrocycles as potent bromodomain and extra-terminal domain ((BET) ffamily bromodomain inhibitors". J. Med. Chem. 10.1021/acs.jmedchem.7b00017 ((2017); WO 2015169962 A1 titled "Benzimidazole derivatives as BRD4 inhibitors and their preparation andl use for the treatment of cancer" assigned to Boehringer Ingelheim IInternational GmbH, Germany; and, WO 2011143669 A2 titled "Azolodiazepine derivatives and their preparation, compositions and methods for treating neoplasia, inflammatory disease and other disorders" assigned to Dana-Farber Cancer Institute, Inc, USA.

FIG. 8T-8V present examples of ALK Targeting Ligands wherein R iis the point at which the:Linker is attached. For additional examples and related ligands, see, the icrystalstructures]PDB 2xb7' and 2xba and related ligands described in Bossi, R.T. et al. "Crystal Structures of Anaplastic Lymphoma. Kinase in Complex with ATP Competitive Inhibitors" Biochemistry 49: 16813-6825 (2010); the: crystal structures PDB 2yfx, 4ccb, 4ccu, amd 4cd0 snd related ligands described in Huang, Q. et al. "Design of Potent and Selective Inhibitors to Overcome Clinical Anaplastic Lymphoma Kinase Mutations Resistant to Crizotinib." J. Med. Chem. 57: 1170,(2014);the crrystal structures, PDB, 4cli, 4cmo, and 4cnh and related ligands described jin Johnson, 'T.W. ret al. "Discovery of (10R)-7-Amino-12-Fluoro-2,10,16-Trimethyl-15-Oxo-10,15,16,17-Tetrahydro-2H-8,4-(Metheno)Pyrazolo[4,3-H][2,5,11]Benzoxadiazacyclotetradecine-3-Carbonitrile (Pf06463922), a Macrocyclic Inhibitor of Alk/Ros1 with Pre-Clinical Brain Exposure and 〕Broad Spectrum Potency Against Alk-Resistant Mutations." J. Med. Chem. 57: 4720 (2014); the ccrystal structure: PDB 4fny and related ligands described in Epstein, L.F. et al. '"The JR1275Q

Neuroblastoma Mutant and Certain ATP-competitive Inhibitors Stabilize Alternative Activation Loop,Conformations of Anaplastic Lymphoma Kinase." J. Biol. Chem. 287:37447-37457((2012). the: crystal structure PDB 4dce and related ligands described in Bryan, M.C. et al '"Rapid development of piperidine carboxamides as potent and selective anaplastic llymphoma lkinase inhibitors. '" J. Med. Chem. 55: 1698-1705 (2012); the crystal structure PDB 4joa and related ligands' described in Gummadi, V.R. et al. "Discovery of 7-azaindole based anaplastic llymphoma kinase: (ALK) inhibitors: wild type and mutant (L1196M) active compounds with uniquelbinding mode."' (2013)'Bioorg. Med. Chem. Lett. 23: 4911-4918; and, the icrystal structure IPDB ‘5iui and related ligands described in $\mathrm{Tu}, \mathrm{C} . \mathrm{H}$. et al. "Pyrazolylamine Derivatives 1 Reveal the Conformational Switching between Type I and Type II Binding Modes of AnaplasticILymphoma Kinase:(ALK)." J. Med. Chem. 59: 3906-3919 (2016).

FIG. 8W-8X present examples of BTK Targeting Ligands wherein R is the point at which the:Linker is attached. For additional examples and related ligands, see, the icrystal structure IPDB 3gen, 3pizi and related ligands described in Marcotte, D.J. et al. "Structures of human IBruton's tyrosine: kinase: in active and inactive conformations suggest a mechanism of activation ffor TEC family kinases." Protein Sci. 19: 429-439 (2010) and Kuglstatter, A. et al. "Insights into the conformational flexibility of Bruton's tyrosine kinase from multiple ligand complex sstructures" Protein: Sci. 20: 428-436" (2011); the crystal structure PDB 3ocs, 4ot6 and related lligands described in. Lou, Y. et al. "Structure-Based Drug Design of RN486, a Potent and Selective Bruton'si Tyrosine: Kinase (BTK) Inhibitor, for the Treatment of Rheumatoid Arthritis" . J. iMed. Chem. 58: 512-516 (2015); the crystal structures PDB 5fbn and 5fbo and relatedlligands described in Liu, J. et: al. "Discovery of 8-Amino-imidazo[1,5-a]pyrazines as Reversible BTK Inhibitors ffor the: Treatment of Rheumatoid Arthritis." ACS Med. Chem. Lett. 7: 198-203 (2016); the crrystal structure: PDB 3pix and related ligands described in Kuglstatter, A. et al. '"Insights into the conformational flexibility of Bruton's tyrosine kinase from multiple ligand complex structures." Protein:Sci. 20: 428-436 (2011); and, the crystal structure PDB 3pij and related lligands described in Bujacz, A. et al. "Crystal structures of the apo form of beta-fructofuranosidase ffrom Bifidobacterium longum and its complex with fructose. " Febs.J. 278: 1728-1744 (2011).

FIG. 8Y presents examples of FLT3 Targeting Ligands wherein Ris the jpointat, whichthe Linker is, attached. For additional examples and related ligands, see, the crystal structures JPDB 4xuf and 4rt7 and related ligands described in Zorn, J.A. et al. "Crystal ;Structure of the JFLT3

Kinase: Domain Bound to the Inhibitor Quizartinib (AC220)". Plos One 10: e0121177-e0121177 (2015).

FIG. 8Z-8AA present examples of TNIK Targeting Ligands wherein \mathbb{R} iis the point cat which the:Linker is attached. For additional examples and related ligands, see, the icrystalstructure PDB 2x7f; the crystal structures PDB 5ax9 and 5d7a; and, related ligands idescribed iin lMasuda, M. et:al. "TNIK inhibition abrogates colorectal cancer stemness." Nat Commun'7: 12586-12586 (2016).

FIG. 8BB-8CC present examples of NTRK1, NTRK2, and NTRK3 Targeting ILigands wherein R is the point at which the Linker is attached. For additional examples and relatedlligands, see, the:crystal structure PDB 4aoj and related ligands described in Wang,'T. etal. "Discoveryof Disubstituted Imidazo[4,5-B]Pyridines and Purines as Potent Trka Inhibitors." ACSiMed. IChem. Lett. 3: 705 (2012); the crystal structures PDB $4 \mathrm{pmm}, 4 \mathrm{pmp}, 4 \mathrm{pms}$ and 4 pmt and related lligands described in Stachel, S.J. et al. "Maximizing diversity from a kinase screen: iidentificationofmovel andl selective: pan-Trk inhibitors for chronic pain." J. Med. Chem. 57: 5800-5816 (2014); the crystal structures. PDB 4yps and 4yne snd related ligands described in Choi, JH.S. et al. ""(R)-2Phenylpyrrolidine: Substituted Imidazopyridazines: A New Class of Potent:and SelectiveIPan-TRK Inhibitors." ACS" Med. Chem. Lett. 6: 562-567 (2015); the crystal structures PPDB 4at5 and 4 at 3 andl related ligands described in Bertrand, T. et al. "The Crystal Structures of 'Trka and 'Trkb Suggest Key Regions. for Achieving Selective Inhibition." J. Mol. Biol. 423:439!(2012); and, the crystal structures. PDB 3v5q and $4 y m j$ and related ligands described in Albaugh, IP. eet al. "Discovery of GNF-5837, a selective TRK Inhibitor with efficacy in rodent cancertumorımodels." ACS" Med. Chem. Lett. 3: 140-145 (2012) and Choi, H.S. et al. ""(R)-2-Phenylpyrrolidine Substitute: Imidazopyridazines: a New Class of Potent and Selective Pan-TRK Inhibitors." $A C S$ Med!Chem Lett 6: 562-567 (2015).

FIG. 8DD-8EE present examples of FGFR1 Targeting Ligands wherein R is the pointat which the:Linker is attached. For additional examples and related ligands, see, the,crystal;structures PDB. 3tto and 2 fgi and related ligands described in Brison, Y. et al. "Functional and structural characterization of alpha-(1-2) branching sucrase derived from DSR-E glucansucrase." J. .Biol. Chem. 287: 7915-7924 (2012) and Mohammadi, M. et al. "Crystal ;structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase domain." EMBO J. 17: 5896-5904_(1998); the crystal structure $\operatorname{PDB} 4 \mathrm{fb} 3$; the crystal structure PDB 4rwk and related ligands described in

Harrison, C. et al. "Polyomavirus large T antigen binds symmetrical repeats at the 'viral originiin an asymmetrical manner." J. Virol. 87: 13751-13759 (2013); the crystal structure JPDB 4 rrwl and related ligands described in Sohl, C.D. et al. "Illuminating the Molecular.Mechanisms of Tyrosine Kinase: Inhibitor Resistance for the FGFR1 Gatekeeper Mutation: 'The Achilles'IHeel of Targeted Therapy." ACS' Chem. Biol. 10: 1319-1329 (2015); the crystal structure PDB 4uwc; the rcrystal structure PDB 4v01 and related ligands described in Tucker, J.A. et al. "Structural IInsights JInto Fgfr Kinase: Isoform Selectivity: Diverse Binding Modes of Azd4547 and Ponatinib iin IComplex with Fgfr1 and Fgfr4." Structure 22: 1764 (2014).; the crystal structure PDB :5a46 and related ligandsi described in Klein, T. et al. "Structural and Dynamic Insights Into the IEnergetics of Activation Loop Rearrangement in Fgfr1 Kinase." Nat. Commun. 16: 7877 (2015); and, thercrystal structure PDB 5ew8 and related ligands described in Patani, H. et al. "Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in cclinical use." Oncotarget 7: 24252-24268 (2016).

FIG. 8FF presents examples of FGFR2 Targeting Ligands wherein Riis the point at which the:Linker is attached. For additional examples and related ligands, see, the icrystal structure PPDB 2pvfand related ligands described in Chen, H. et al. "A molecular brake in the lkinaselhingerregion regulates; the activity of receptor tyrosine kinases." Mol. Cell 27: 717-730 (2007).

FIG. 8GG presents examples of FGFR4 Targeting Ligands wherein Riisthe pointat which the: Linker is attached. For additional examples and related ligands, see, the icrystal structure PDB 4tyi and related ligands described in Lesca, E. et al. "Structural analysis of the lhuman ffibroblast growth factor receptor 4 kinase." J. Mol. Biol. 426: 3744-3756 (2014).

FIG. 8HH-8II present examples of MET Targeting Ligands wherein R iis the point at which the:Linker is attached. For additional examples and related ligands, see, the crrystalstructures PDB 3qti and 3zcl; the crystal structures PDB 4xmo, 4xyf, and 3zcl and related jligands described in ${ }_{\|}$Peterson, E.A. et al. "Discovery of Potent and Selective 8-Fluorotriazolopyridine c-Met Inhibitors." J. Med. Chem. 58: 2417-2430 (2015) and Cui, J.J. et al. "Lessons from((S)-6-(1-(6-(1-Methyl-1H-Pyrazol-4-Yl)-[1,2, 4]Triazolo[4,3-B]Pyridazin-3-Yl)Ethyl)Quinoline,(Pf-04254644), an $_{l}$ Inhibitor of Receptor Tyrosine Kinase C-met with High Protein Kinase ;Selectivity]But]Broad Phosphodiesterase: Family Inhibition Leading to Myocardial Degeneration in Rats." "J./Med.ıChem. 56: 6651 (2013); the crystal structure PDB 5eyd and related ligands described jin 3Boezio, A.A.et al. "Discovery of (R)-6-(1-(8-Fluoro-6-(1-methyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-a]pyridin-

3-yl)ethyl)-3-(2-methoxyethoxy)-1,6-naphthyridin-5(6H)-one (AMG 337), alPotent and 'Selective Inhibitor of "MET with High Unbound Target Coverage and Robust In Vivo .Antitumor .Activity." J. Med. Chem. 59: 2328-2342 (2016); the crystal structure PDB 3ce3 and related lligandsidescribed inı Kim, K.S. et al. "Discovery of pyrrolopyridine-pyridone based inhibitors of lMet lkinase: synthesis, X-ray crystallographic analysis, and biological activities." "J. .Med.|Chem. 51:5330-5341 (2008); the crystal structure PDB 2rfn and related ligands described in Bellon, S.F. et aal. '"c-Met inhibitors: with novel binding mode show activity against several hereditary papillary renal ccell carcinoma-related mutations." J. Biol. Chem. 283: 2675-2683 (2008); and, the icrystal structure PDB 5dg5 and related ligands described in Smith, B.D. et al "Altiratinib Inhibits 'Tumor IGrowth, Invasion, Angiogenesis, and Microenvironment-Mediated Drug Resistance via lBalanced Inhibition of MET, TIE2, and VEGFR2.". Mol. Cancer Ther. 14: 2023-2034 (2015).

FIG. 8JJ presents examples of JAK1 Targeting Ligands wherein R is the point at which the: Linker is attached. For additional examples and related ligands, see, the icrystal structure IPDB 4ivdl and related ligands described in Zak, M. et al. "Identification of $\mathrm{C}-2$ 1Hydroxyethyl Imidazopyrrolopyridines as Potent JAK1 Inhibitors with Favorable Physicochemical IProperties and|High Selectivity over JAK2." J. Med. Chem. 56: 4764-4785 (2013); the icrystal sstructureJPDB 5e1e: and related ligands described in Vasbinder, M.M. et al. "Identification of azabenzimidazoles ass potent JAK1 selective inhibitors." Bioorg. Med. Chem. Lett. 26: 160-67 (2016); the crrystal structure: PDB 5hx8 and related ligands described in Simov, V., et al. "'Structure-basedidesign and development of (benz)imidazole pyridones as JAK1-selective kinase inhibitors." ,Bioorg. iMed. Chem. Lett. 26: 1803-1808 (2016); the crystal structure PDB 5hx8 and related ligands described in_Caspers, N.L. et al. "Development of a high-throughput crystal structure-determination platform for JAK1 using a novel metal-chelator soaking system". Acta Crystallogr. Sect. ,F'72: 840-845 (2016); and, Kettle, J. G. "Discovery of the JAK1 selective kinase inhibitor AZD4205", AACR National Meeting, April 2017.

FIG. 8KK-8LL present examples of JAK2 Targeting Ligands wherein \mathbb{R} is the point at which the:Linker is attached. For additional examples and related ligands, see, the,crystalstructure PDB. 3ugc; and related ligands described in Andraos, R. et al. "Modulation of activation-loop phosphorylation by JAK inhibitors is binding mode dependent." Cancer.Discov:2:512-523((2012); the:crystal structures PDB 5cf4, 5cf5, 5cf6 and 5cf8 and related ligands described jin]Hart, A.C.et al. "Structure-Based Design of Selective Janus Kinase 2 Imidazo[4,5-d]pyrrolo[2,3-b]pyridine

Inhibitors." ACS' Med. Chem. Lett. 6: 845-849 (2015); the crystal structure JPDB 5aep and trelated ligands: described in Brasca, M.G. et al "Novel Pyrrole Carboxamide Inhibitors of Jak2asIPotential Treatment of" Myeloproliferative Disorders" Bioorg. Med. Chem. .23: 2387 (2015); the crrystal structures PDB 4ytf, 4yth and 4yti and related ligands described in Farmer, L.J. ettal. '"Discovery of ${ }^{\prime}$ VX-509' (Decernotinib): A Potent and Selective Janus Kinase 3 Inhibitor for the 'Treatment of Autoimmune:Diseases." J. Med. Chem. 58: 7195-7216 (2015); the crystal structurePPDB 4ytf,4yth, 4yti and related ligands described in Menet, C.J. et al. "Triazolopyridines as 'Selective JAK1 Inhibitors: From Hit Identification to GLPG0634." J. Med. Chem. 57: 9323-9342 ((2014); the crystal structure PDB 4 ji 9 and related ligands described in Siu, M. ret cal. "'2-Amino-[1,2,4]triazolo[1,5-a]pyridines as JAK2 inhibitors." Bioorg. Med. Chem. Lett. '23: :5014-5021 (2013); and, the crystal structures PDB 3io7 and3iok and related ligands idescribed in Schenkel, L.B. et al. "Discovery of potent and highly selective thienopyridine janus \|kinase: 2 inhibitors." J. Med. Chem. 54: 8440-8450 (2011).

FIG. 8MM presents examples of JAK3 Targeting Ligands wherein R is the point tat which the:Linker is attached. For additional examples and related ligands, see, the icrystal structure lPDB 3zc6i and related ligands described in Lynch, S.M. et al. "Strategic Use of Conformational IBias andl Structure: Based Design to Identify Potent Jak3 Inhibitors with Improved 'Selectivity ${ }^{\text {Against }}$ the: Jak: Family and the Kinome." Bioorg. Med. Chem. Lett. 23 : $2793_{\text {I (2013); and, the crystal }}$ structures PDB 4hvd, 4i6q, and 3zep and related ligands described in :Soth, M. et al. "'3-Amido Pyrrolopyrazine: JAK Kinase Inhibitors: Development of a JAK3 vs JAK1 Selective JInhibitorand Evaluation in Cellular and in Vivo Models." J. Med. Chem. 56: 345-356 (2013) and JaimeFigueroa, S. et al. "Discovery of a series of novel 5H-pyrrolo[2,3-b]pyrazine-2-phenyl ethers, as potent JAK3 kinase inhibitors." Bioorg. Med. Chem. Lett. 23: 2522-2526,(2013).

FIG. 8NN-8OO present examples of KIT Targeting Ligands wherein R jis the point sat which the:Linker is attached. For additional examples and related ligands, see, the،crystal!structure PDB. 1t46 and related ligands described in Mol, C.D. et al. "Structural basis for the autoinhibition andl STI-571 inhibition of c-Kit tyrosine kinase." J. Biol. Chem. 279: 31655-31663 (2004); and, the: crystal structure PDB 4u0i and related ligands described in Garner, A.P. et al. "Ponatinib Inhibits,Polyclonal Drug-Resistant KIT Oncoproteins and Shows Therapeutic PPotentialin]Heavily Pretreated Gastrointestinal Stromal Tumor (GIST) Patients." Clin. Cancer Res. 20: 5745-5755 (2014).

FIG. 88PP-8VV present examples of EGFR Targeting Ligands wherein R is the point tat which the:Linker is attached. For additional examples and related ligands, see, the crrystalstructures PDB 5hcy, 4rj4, and 5cav; Heald, R., "Noncovalent Mutant Selective Epidermal GrowthIFactor Receptor Inhibitors: A Lead Optimization Case Study", J. Med. Chem. 58, 8877-8895 ((2015); Hanano, E. J., "Discovery of Selective and Noncovalent Diaminopyrimidine-Based IInhibitors of Epidermal Growth Factor Receptor Containing the T790M Resistance Mutation."'J.iMed.ıChem., 57, 10176-10191 (2014); Chan, B. K. et al. "Discovery of a Noncovalent, Mutant-Selective Epidermal Growth Factor Receptor Inhibitor " J. Med. Chem. 59,9080,(2016); the icrystalstructure PDB 5d41 and related ligands described in Jia, Y. et al., "Overcoming IEGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors " .Nature 534, 129 ((2016); Ward, R. A. "Structure- and reactivity-based development of covalent inhibitors of the activating andlgatekeeper mutant forms of the epidermal growth factor receptor (EGFR)".J.iMed.IChem. ‘56, 7025-7048 (2013); the crystal structure PDB 4zau and related ligands idescribed iin "Discovery of al Potent: and. Selective EGFR Inhibitor (AZD9291) of Both Sensitizing and T790M IResistance Mutations:That: Spares the Wild Type Form of the Receptor " J. Med. 'Chem., 57 (20), $8249-8267$ (2014); the: crystal structure PDB 5em7 and related ligands described in JBryan, lM. IC. ret aal. "Pyridones as. Highly Selective, Noncovalent Inhibitors of T790M Double Mutants offEGFR"ACS Med. Chem. Lett., 7 (1), 100-104 (2016); the crystal structure PDB 3IKA and related lligands described in Zhou, W. et al. "Novel mutant-selective EGFR kinase inhibitors against IEGFR T790M" Nature 462(7276), 1070-1074 (2009); the crystal structure :see PDB :5feq and related ligands; described in Lelais, G., J. "Discovery of (R,E)-N-(7-Chloro-1-(1-[4-(dimethylamino)but-2-enoyl]azepan-3-yl)-1H-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (EGF816), a 1 Novel, Potent, and WT Sparing Covalent Inhibitor of Oncogenic (L858R, ex19del) and IResistant (T790M) EGFR Mutants for the Treatment of EGFR Mutant Non-Small-Cell LLung ${ }_{\text {ICancers }}{ }^{i}$ IMed. Chem., 59 (14), 6671-6689 (2016); Lee, H.-J. "Noncovalent Wild-type-Sparing IInhibitors of EGFR T790M" Cancer Discov. 3(2): 168-181 (2013); the crystal structure PDB :5j7h and related ligandsi described in Huang, W-S. et al. "Discovery of Brigatinib (AP26113), alPhosphine ©OxideContaining, Potent, Orally Active Inhibitor of Anaplastic Lymphoma Kinase." .J. IMed.ıChem. 59 : 4948-4964. (2016); the crystal structure PDB 4v0g and related ligands described jin]Hennessy, E . J. et al. "Utilization of Structure-Based Design to Identify Novel, Irreversible Inhibitors of JEGFR Harboring; the: T790M Mutation." ACS. Med. Chem. Lett. 7: 514-519,(2016); the crystal structure

PDB 5hg7' and related ligands described in Cheng, H. "Discovery of 1-\{(3R,4R)-3-[(\{5-Chloro-2-[(1-methyl-1H-pyrazol-4-yl)amino]-7H-pyrrolo[2,3-d]pyrimidin-4-yl\}oxy)methyl]-4-methoxypyrrolidin-1-yl\}prop-2-en-1-one (PF-06459988), a Potent, WT Sparing, Irreversible Inhibitor of 'T790M-Containing EGFR Mutants." J. Med. Chem. 59: 2005-2024 (2016); HHao, 'Y. "Discovery and Structural Optimization of N5-Substituted 6,7-Dioxo-6,7-dihydropteridines as Potent and Selective Epidermal Growth Factor Receptor (EGFR) Inhibitors againstLL858R/T790M
 andl 5ugci and related ligands described in Planken, S. "Discovery of N-((3R,4R)-4-Fluoro-1-(6-((3-methoxy-1-methyl-1H-pyrazol-4-yl)amino)-9-methyl-9H-purin-2-yl)pyrrolidine-3-
yl)acrylamide (PF-06747775) through Structure-Based Drug Design: A High AffinityIIrreversible Inhibitor Targeting Oncogenic EGFR Mutants with Selectivity over Wild-Type EGFR." J.IMed. Chem. 60: 3002-3019 (2017); the crystal structure PDB 5gnk and related lligands described iin Wang, A. "Discovery of (R)-1-(3-(4-Amino-3-(3-chloro-4-(pyridin-2-ylmethoxy)phenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)prop-2-en-1-one (CHMFL-EGFR-202) as a a Novel Irreversible: EGFR Mutant Kinase Inhibitor with a Distinct Binding Mode." J. IMed.ıChem. 60: 2944-2962. (2017); and, Juchum, M. "Trisubstituted imidazoles with a a rigidized lhinge lbinding motif: act as single digit nM inhibitors of clinically relevant EGFR LL858R/T790M and L858R/T790M/C797S mutants: An example of target hopping." J. Med. ©Chem. 1DOI: 10.1021/acs.jmedchem. 7 b 00178 (2017).

FIG. 8WW-8XX present examples of PAK1 Targeting Ligands 'wherein $]$ iis the pointat which the: Linker is attached. For additional examples and related ligands, see, ,Rudolph, JJ. et aal. "Chemically Diverse Group I p21-Activated Kinase(PAK) Inhibitors Impart AcuteICardiovascular Toxicity with a Narrow Therapeutic Window." J. Med. Chem. 59, 5520-5541 (2016) and]Karpov AS, et al. ACS' Med'Chem Lett. 22;6(7):776-81 (2015).

FIG. 8YY presents examples of PAK4 Targeting Ligands wherein R is the point at which the: Linker is, attached. For additional examples and related ligands, see, Staben ;ST, et al. . JiMed Chem. 13;57(3):1033-45 (2014) and Guo, C. et al. "Discovery of pyrroloaminopyrazoles asınovel PAK inhibitors" J. Med. Chem. 55, 4728-4739 (2012).

FIG. 8ZZ-8AAA present examples of IDO Targeting Ligands wherein R is the point at which the: Linker is attached. For additional examples and related ligands, see, Yue, E. 'W.; cet al. "Discovery of potent competitive inhibitors of indoleamine 2,3-dioxygenase with in rvivo
pharmacodynamic activity and efficacy in a mouse melanoma model.".J. IMed. 'Chem. ‘52,'7364$7367^{\prime}$ (2009); Tojo, S.; et al. "Crystal structures and structure, and activity relationships of imidazothiazole derivatives as IDO1 inhibitors." ACS .Med. Chem. Lett. 5, 1119-1123 ((2014); Mautino, M.R. et al. "NLG919, a novel indoleamine-2,3- dioxygenase (IDO)-pathway iinhibitor drug; candidate: for cancer therapy" Abstract 491, AACR 104th Annual Meeting.2013; Apr 6-10, 2013; Washington, DC; and, WO2012142237 titled "Fused imidazole iderivatives useful as IIDO inhibitors".

FIG. 8BBB-8EEE present examples of ERK1 and ERK2 Targeting Ligands whereinlRiis the: point at: which the Linker is attached. For additional examples and related lligands, ssee, the crystal structures PDB 5K4I and 5K4J and related ligands described in Blake,J.F.etal.""Discovery of (S)-1-(1-(4-Chloro-3-fluorophenyl)-2-hydroxyethyl)-4-(2-((1-methyl-1H-pyrazol-5-yl)amino)pyrimidin-4-yl)pyridin-2(1H)-one (GDC-0994), an Extracellular :Signal-Regulated Kinase: 1/2. (ERK1/2) Inhibitor in Early Clinical Development" J. Med. 'Chem. '59: 5650-5660 (2016); the: crystal structure PDB 5BVF and related ligands described in Bagdanoff, J. 'T. set aal. "Tetrahydropyrrolo-diazepenones as inhibitors of ERK2 kinase" Bioorg. MMed. «Chem. LLett. '25, 3788-3792. (2015); the crystal structure PDB 4QYY and related ligands idescribed iin JDeng, 'Y.et al. "Discovery of Novel, Dual Mechanism ERK Inhibitors by Affinity ;Selection :Screening of an Inactive:Kinase" J. Med. Chem. 57: 8817-8826 (2014); the crystal structures PDB .5HD4and:5HD7 andl the: related ligands described in Jha, S. et al. "Dissecting Therapeutic Resistance to IERK Inhibition" Mol.Cancer Ther. 15: 548-559 (2016); the crystal structure PDB 4 XJ 0 and related ligands; described in Ren, L. et al. "Discovery of highly potent, selective, and refficacious small molecule: inhibitors of ERK1/2." J. Med. Chem. 58: 1976-1991 (2015); the icrystal structures]PDB 4ZZM, 4ZZN, 4ZZO and related ligands described in Ward, R.A. et al."'Structure-GuidedJDesign of:Highly Selective and Potent Covalent Inhibitors of Erk1/2." J. Med. IChem. 58: 4790 ((2015); Burrows, F. et al. "KO-947, a potent ERK inhibitor with robust preclinical single agentactivityin MAPK pathway dysregulated tumors" Poster\#5168, AACR National Meeting ;2017; Bhagwat, ‘S. V. et al. "Discovery of LY3214996, a selective and novel ERK1/2 inhibitor with potentantitumor activities; in cancer models with MAPK pathway alterations." AACR National Meeting،2017; the crystal structures, PDB 3FHR and 3FXH and related ligands described in Cheng, R. et ;al. '"Highresolution crystal structure of human Mapkap kinase 3 in complex with a high affinitylligand"

Protein'Sci. 19: 168-173 (2010); the crystal structures PDB 5NGU, $5 \mathrm{NHF}, 5 \mathrm{NHH}, 5 \mathrm{NHJ}, 5 \mathrm{NHL}$, $5 \mathrm{NHO}, 5 \mathrm{NHP}$, and 5 NHV and related ligands described in Ward, R.A. et al. "'Structure-Guided Discovery of Potent and Selective Inhibitors of ERK1/2 from a Modestly .Active andIPromiscuous Chemical StartPoint." J. Med. Chem. 60, 3438-3450 (2017); and, the crystal structuresIPDB3SHE and 3 R 1 N and related ligands described in Oubrie, A. et al. "Novel ATP competitive IMK2 inhibitors: with potent biochemical and cell-based activity throughout the series." Bioorg.iMed. Chem. Lett. 22: 613-618 (2012).

FIG. 8FFF-8III present examples of ABL1 Targeting Ligands wherein R iis the point at which the:Linker is attached. For additional examples and related ligands, see, theicrystalstructure PDB 1 fpu and 2 e 2 b and related ligands described in Schindler, T., et al. "Structural mechanism for-STI-571 inhibition of abelson tyrosine kinase", Science 289: 1938-1942 (2000); andJHorio,T. et: al. "Structural factors contributing to the Abl/Lyn dual inhibitory activity of 3 -substituted benzamide: derivatives", Bioorg. Med. Chem. Lett. 17: 2712-2717 (2007); the icrystal sstructures PDB 2hzn and 2hiw and related ligands described in Cowan-Jacob, S.W. .et al."'Structurallbiology contributions, to the discovery of drugs to treat chronic myelogenous leukaemia",ActaıCrystallog. Sect. D' 63: 80-93 (2007) and Okram, B. et al. "A general strategy for creating", IChem. ABiol. 13: 779-786; (2006); the crystal structure PDB $3 \operatorname{cs} 9$ and related ligands described in 'Weisberg, E. et al. "Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl", CanceriCell 7: 129-14 (2005); the crystal structure PDB 3ik3 and related ligands describedin IO'Hare, T. et aal. "AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently innhibits the 'T315I mutant and overcomes mutation-based resistance", Cancer Cell 16: 401-412 (2009); the crrystal structure: PDB 3mss and related ligands described in Jahnke, W. et al. "Binding or lbending: distinction of allosteric Abl kinase agonists from antagonists by an NMR-based conformational assay", J. Am. Chem. Soc. 132: 7043-7048 (2010); the crystal structure PDB 3oy3 and rrelated ligands; described in Zhou, T. et al. "Structural Mechanism of the PPan-BCR-ABL JInhibitor Ponatinib (AP24534): Lessons for Overcoming Kinase Inhibitor Resistance", ,Chem. „Biol. „Drug Des. 77: 1-11 (2011); the crystal structures PDB 3qri and 3qrk and related गligands described in Chan, W.W. et al. "Conformational Control Inhibition of the BCR-ABL1 Tyrosine JKinase, Including; the Gatekeeper T315I Mutant, by the Switch-Control Inhibitor DCC-2036", Cancer (Cell 19: 556-568 (2011); the crystal structure PDB 5hu9 and 2f4j and related ligands describedjinJLiu, F. et al. "Discovery and characterization of a novel potent type II native and mutant 1BCR-ABL
inhibitor (CHMFL-074) for Chronic Myeloid Leukemia (CML)", Oncotarget'7: 45562-45574 (2016) and Young, M.A. et al. "Structure of the kinase domain of an imatinib-resistant.Ablımutant ini complex: with the Aurora kinase inhibitor VX-680", Cancer Res. 166: 1007-1014 ((2006); the crystal structure: PDB 2gqg and 2qoh and related ligands described in Tokarski, J.S. ret al. "'The Structure: of ${ }^{\prime}$ Dasatinib (BMS-354825) Bound to Activated ABL Kinase Domain JElucidates IIts Inhibitory Activity against Imatinib-Resistant ABL Mutants", Cancer Res. 166:5790-5797((2006); andlZhou, T. et al. "Crystal Structure of the T315I Mutant of Abl Kinase", Chem. Biol._DrugiDes. 70: 171-181 (2007); the crystal structure PDB 2gqg and 2qoh and related lligands described iin Tokarski, J.S. et al. "The Structure of Dasatinib (BMS-354825) Bound to .Activated .ABLIKinase Domain Elucidates. Its Inhibitory Activity against Imatinib-Resistant ABL Mutants", ICanceriRes. 66: 5790-5797 (2006) and Zhou, T. et al. "Crystal Structure of the 'T315I Mutant of .AbllKinase", Chem. Biol. Drug-Des. 70: 171-181 (2007); the crystal structure PDB .2gqg and 2 qoh and related ligandsi described in Tokarski, J.S. et al. "The Structure of Dasatinib ॥(BMS-354825) IBound to Activated ABL Kinase Domain Elucidates Its Inhibitory Activity against Imatinib-Resistant ABL Mutants", Cancer Res. 66: 5790-5797 (2006) and Zhou, T. et al. "Crystal Structure of the 'T315I Mutant of Abl Kinase", Chem. Biol. Drug Des. 70: 171-181(2007); the crystal structures JPDB 3dk3 and 3dk8 and related ligands described in Berkholz, D.S. et al. "Catalytic cycle of lhuman glutathione: reductase near 1 A resolution" J. Mol. Biol. 382: 371-384 (2008); the icrystal structure PDB 3ue4 and related ligands described in Levinson, N.M. et al. "Structural and spectroscopic analysis; of the kinase inhibitor bosutinib and an isomer of bosutinib binding the the abl tyrosine kinase: domain", Plos One 7: e29828-e29828 (2012); the crystal structure PDB 4cy8 and related ligands: described in Jensen, C.N. et al."Structures of the Apo and Fad-Bound IForms of ${ }^{2}$ Hydroxybiphenyl 3-Monooxygenase (Hbpa) Locate Activity Hotspots Identified lby IUsing Directed Evolution", Chembiochem 16: 968 (2015); the crystal structure JPDB :2hz0 and related ligands; described in Cowan-Jacob, S.W. et al. "Structural biology contributions to the (discovery of drugs, to, treat chronic myelogenous leukaemia", Acta Crystallogr D Biol ,Crystallogr. 63(Pt 1):80-93 (2007); the crystal structure PDB 3pyy and related ligands described in 'Yang, J. et aal. "Discovery and Characterization of a Cell-Permeable, Small-Molecule c-Abl Kinase Activatorthat Binds; to the: Myristoyl Binding Site", Chem. Biol. 18: 177-186 (2011); and, the crystal structure PDB. 5k5v and related ligands described in Kim, M.K., et al. "'Structural basis for dual specificity
of 'yeast N-terminal amidase in the N-end rule pathway", Proc. Natl.Acad.Sci. U.S.A. 113: 1243812443 (2016).

FIG. 8JJJ presents examples of ABL2 Targeting Ligands wherein R iis the point at which the: Linker is attached. For additional examples and related ligands, see, the icrystal structure PPDB 2xyn and related ligands described in Salah, E. et al. "Crystal Structures of Abl-Related IGene (Abl2) in Complex with Imatinib, Tozasertib (Vx-680), and a Type I Inhibitor of the Triazole Carbothioamide:Class", J. Med. Chem. 54: 2359 (2011); the crystal structure PDB 4xli andrelated ligands'described in Ha, B.H. et al. "Structure of the ABL2/ARG kinase inncomplex withdasatinib" Acta! Crystallogr. Sect.F'71: 443-448 (2015); and the crystal structure PDB 3 gvv cand related ligandsi described in Salah, E. et al. "The crystal structure of human ABL2 in complex rwith Gleevec", to be: published.

FIG. 8KKK-8MMM present examples of AKT1 Targeting Ligands wherein]Riistheppoint at: which the: Linker is attached. For additional examples and related ligands, see, LLippa, IB. retaal. "Synthesis: and structure based optimization of novel Akt inhibitorsBioorg. Med. ${ }^{\text {Chem.ILett. 18: }}$ 3359-3363 (2008); Freeman-Cook, K.D. et al. "Design of selective, ATP-competitiveiinhibitorsof Akt", J. Med. Chem. 53: 4615-4622 (2010); Blake, J.F. et al "Discovery of pyrrolopyrimidine inhibitors of Akt", Bioorg. Med. Chem. Lett. 20: 5607-5612 (2010); Kallan, N.C. ettal.""Discovery and SAR of spirochromane Akt inhibitors", Bioorg. Med. Chem. Lett. 21: $2410-2414$ (2011); ILin, K. "An ATP-Site On-Off Switch That Restricts Phosphatase Accessibility of Akt", Sci.Signal. ${ }^{4} 5$: ra37-ra37' (2012); Addie, M. et al. "Discovery of 4-Amino-N-[(1S)-1-(4-chlorophenyl)-3-hydroxypropyl]-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (AZD5363), an Orally Bioavailable, Potent Inhibitor of Akt Kinases", J. Med. Chem. 56: 2059-2073 (2013); 'Wu, W.I., et al. "Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. Plos One 5: 12913-12913 (2010); Ashwell, M.A. at al. "Discovery and optimization of a series of 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amines: orally bioavailable, selective, and potent ATP-independent Akt inhibitors",,J.,Med.|Chem. 55:5291-5310 (2012); and, Lapierre, J.M. et al. "Discovery of 3-(3-(4-(1-Aminocyclobutyl)phenyl)-5-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine (ARQ 092): An Orally Bioavailable, Selective, and Potent Allosteric AKT Inhibitor", J. Med. Chem. 59: 6455-6469 (2016).

FIG. 8NNN-8OOO present examples of AKT2 Targeting Ligands wherein]Ris the point at: which the: Linker is attached. For additional examples and related ligands, see, the crrystal
structured PDB 2jdo and 2jdr and related ligands described in Davies, 'T.G.et ial. "'A 'Structural Comparison of Inhibitor Binding to Pkb, Pka and Pka-Pkb Chimera", J. sMol. siol. 367: 8882 (2007); the: crystal structure PDB 2uw9 and related ligands described iin Saxty, IG. et aal "Identification of Inhibitors of Protein Kinase B Using Fragment-Based Lead Discovery",,J.iMed. Chem. 50: 2293-2296 (2007); the crystal structure PDB 2×39 and 2×55 and related lligands described in Mchardy, T.et al. "Discovery of 4-Amino-1-(7H-Pyrrolo[2,3-D]Pyrimidin-4-Yl)Piperidine-4-Carboxamides as Selective, Orally Active Inhibitors of Protein IKinase IB ((Akt)", J. Med. Chem. 53: 2239d (2010); the crystal structure PDB 3d03 and related lligands describediin Hadler, K.S. et al. "Substrate-promoted formation of a catalytically competent lbinuclear icenter andl regulation of reactivity in a glycerophosphodiesterase from Enterobacter aerogenes', ${ }^{\prime}$ J..$A m$. Chem. Soc. 130: 14129-14138 (2008); and, the crystal structures PDB 3e87, 3e8d and 3 e 88 and related ligands. described in Rouse, M.B. et al. "Aminofurazans as potent inhibitors of ,AKT kinase"' Bioorg. Med. Chem. Lett. 19: 1508-1511 (2009).

FIG. 8PPP presents examples of BMX Targeting Ligands wherein R is the point at which the:Linker is attached. For additional examples and related ligands, see, the icrystal structureslPDB 3sxr and 3sxr and related ligands described in Muckelbauer, J. et al. "X-ray icrystal structure of bone: marrow kinase in the x chromosome: a Tec family kinase", Chem. Biol. Drug Des. '78: '739748: (2011).

FIG. 8QQQ-8SSS present examples of CSF1R Targeting Ligands wherein R is the point at: which the Linker is attached. For additional examples and related lligands, see, the crystal structures PDB 2i0v and 2i1m and related ligands described in Schubert, C. et al.""Crystalsstructure of the:tyrosine: kinase domain of colony-stimulating factor-1 receptor(cFMS) inicomplex'withttwo inhibitors", J. Biol. Chem. 282: 4094-4101 (2007); the crystal structure JPDB .3bea and related ligands; described in Huang, H. et al. "Design and synthesis of a pyrido[2,3-d]pyrimidin-5-one class; of anti-inflammatory FMS inhibitors", Bioorg. Med. Chem. Lett. 18: 2355-2361 ((2008); the crystal structure: PDB 3dpk and related ligands described in M.T., McKay, JD.B. IOvergaard, "Structure: of the: Elastase of Pseudomonas aeruginosa Complexed with Phosphoramidon", to tbe published; the crystal structures PDB 3krj and 3krl and related ligands described jinjlllig, IC.R. et al. "Optimization of a Potent Class of Arylamide Colony-Stimulating Factor-1 ReceptorJInhibitors Leading, to, Anti-inflammatory Clinical Candidate 4-Cyano-N-[2-(1-cyclohexen-1-yl)-4-[1-[(dimethylamino)acetyl]-4-piperidinyl]phenyl]-1H-imidazole-2-carboxamide (JNJ-28312141", J.

Med. Chem. 54: 7860-7883 (2011); the crystal structure PDB 4r7h and related lligands described inı Tap, W.D. et al. "Structure-Guided Blockade of CSF1R Kinase in 'Tenosynovial 'Giant-Cell Tumor:, N^{\top} Engl' J'Med' 373 : 428-437 (2015); the crystal structure PDB 3lcd and 3lcoa and related ligandsi described in Meyers, M.J. et al. "Structure-based drug design enables conversion of a DFG-in binding; CSF-1R kinase inhibitor to a DFG-out binding mod", Bioorg.Med. 1 Chem. LLett. 20: 1543-1547 (2010); the crystal structure PDB 4hw7 and related ligands idescribediin'Zhang, IC. et al. "Design and pharmacology of a highly specific dual FMS and KIT kinase inhibitor", iProc. Natl. Acad. Sci. USA 110: 5689-5694 (2013); and, the crystal structure PDB 4 r 7 i and related ligands: described in Tap, W.D. et al. "Structure-Guided Blockade of ICSF1R IKinase in Tenosynovial Giant-Cell Tumor", N Engl J Med 373: 428-437 (2015).

FIG. 8TTT presents examples of CSK Targeting Ligands wherein R iis the point at which the: Linker is, attached. For additional examples and related ligands, see, Levinson, iN.M. et al. "Structural basis for the recognition of c-Src by its inactivator Csk", Cell 134: 124-134 ((2008).

FIG. 8UUU-8YYY present examples of DDR1 Targeting Ligands wherein Riis the point at which the Linker is attached. For additional examples and related lligands, see, the crrystal structures PDB 3zos. and 4bkj and related ligands described in Canning, PP. at al. "Structural Mechanisms; Determining Inhibition of the Collagen Receptor Ddr1 lby :Selective and IMultiTargeted Type:II Kinase Inhibitors", J. Mol. Biol. 426: 2457 (2014); the icrystal structurePPDB 4 ckr andl related ligands described in Kim, H. et al. "Discovery of a Potent and SelectivelDdr11Receptor Tyrosine: Kinase: Inhibitor", ACS Chem.Biol. 8: 2145 (2013); the crystal structure 3 PDB $\vdots 5 \mathrm{bvk}, ‘ 5 \mathrm{bvn}$ andl 5 bvw and related ligands described in Murray, C.W et al. "Fragment-Based JDiscovery of Potent: and. Selective DDR1/2 Inhibitors", ACS Med.Chem.Lett. 6: 798-803 (2015); the crrystal structure: PDB 5fdp and related ligands described in Wang, Z. et al. "'Structure-Based JDesign of Tetrahydroisoquinoline-7-carboxamides as Selective Discoidin Domain Receptor 1 (DDR1) Inhibitors", J. Med. Chem. 59: 5911-5916 (2016); and, the crystal structure PPDB 5fdx and rrelated ligands; described in Bartual, S.G. et al. "Structure of DDR1 receptor tyrosine kinase in complex with ${ }^{D} 2164$ inhibitor at 2.65 Angstroms resolution", to be published.

FIG. 8ZZZ-8CCCC present examples of EPHA2 Targeting Ligands wherein R is the point at which the Linker is attached. For additional examples and related ligands, see, the scrystal structures $\mathrm{PDB} 5 \mathrm{i9x}$, 5i9y, 5ia0 and 5ia1 and related ligands described in Heinzlmeir, $\mathfrak{i S}$. et $\mathfrak{a l}$. "Chemical Proteomics and Structural Biology Define EPHA2 Inhibition|by IClinical]Kinase]Drug",

ACS' Chem. Biol. 11: 3400-3411 (2016); the crystal structure PDB 5i9z and related ligands described in Heinzlmeir, S. et al. "Crystal Structure of Ephrin A2 (EphA2) IReceptor JProtein Kinase: with danusertib (PHA739358)", ACS Chem Biol 11 3400-3411 (2016); and, the crrystal structures $\mathrm{PDB} 5 \mathrm{ia} 2,5 \mathrm{ia} 3$, 5ia4, and 5ia5 and related ligands described in Heinzlmeir, 'S. cet cal. "Chemical Proteomics and Structural Biology Define EPHA2 Inhibitionlby ClinicallKinaselDrug", ACS'Chem. Biol. 11: 3400-3411 (2016).

FIG. 8DDDD-8FFFF present examples of EPHA3 Targeting Ligands wherein IR iis the point at which the: Linker is attached. For additional examples and related lligands, see, the ccrystal structure: PDB 4 g 2 f and related ligands described in Zhao, H. et al. "Discovery of a movel chemotype: of tyrosine kinase inhibitors by fragment-based docking and molecular dynamics", ACS'Med. Chem. Lett. 3: 834-838 (2012); the crystal structure PDB 4 gk 2 and 4 gk 3 and related ligandsi described in Lafleur, K. et al. "Optimization of Inhibitors of the Tyrosine JKinase JEphB4. 2. Cellular Potency Improvement and Binding Mode Validation lby X-ray Crystallography", J. Med. Chem. 56: 84-96 (2013); the crystal structure PDB 4gk3 and related lligands described iin Lafleur, K. et al. "Optimization of Inhibitors of the Tyrosine Kinase EphB4.'2. 'Cellular IPotency Improvement and Binding Mode Validation by X-ray Crystallography",,J. AMed. IChem. ‘56:84-96 (2013); the: crystal structure PDB 4p4c and 4p5q and related ligands described in Unzue, A. retaal. "Pyrrolo[3,2-b]quinoxaline Derivatives as Types I1/2 and II Eph Tyrosine Kinase IInhibitors: Structure-Based Design, Synthesis, and in Vivo Validation",J..Med. Chem. 57:16834-6844((2014); the: crystal structure PDB 4p5z and related ligands described in Unzue, A. et al. "Pyrrolo[3,2b]quinoxaline: Derivatives as Types I1/2 and II Eph Tyrosine Kinase Inhibitors: 'Structure-Based Design, Synthesis, and in Vivo Validation", J. Med. Chem. 57: 16834-6844 (2014); the crrystal structure: PDB 4twn and related ligands described in Dong, J. et al. "Structural Analysis of the Binding; of Type: I, I1/2, and II Inhibitors to Eph Tyrosine Kinases", ACS ${ }^{\prime}$ Med.Chem.Lett. 6: '7983 (2015); the crystal structure PDB 3dzq and related ligands described in 'Walker, J.R."'Kinase Domain of Human Ephrin Type-A Receptor 3 (Epha3) in Complex with ALW-II-38-3", to tbe published.

FIG. 8GGGG presents examples of EPHA4 Targeting Ligands wherein $]$ R is the point at which the:Linker is attached. For additional examples and related ligands, see, the,crystalstructure PDB. 2 y 60 and related ligands described in Clifton, I.J. et al. "The Crystal;Structure of IIsopenicillin N Synthase with Delta((L)-Alpha-Aminoadipoyl)-(L)-Cysteinyl-(D)-Methionine]Reveals

Thioether Coordination to Iron", Arch. Biochem. Biophys. 516: 1031(2011):andtheicrystalstructure PDB 2xyu and related ligands described in Van Linden, O.P et al. "Fragment Based ILead Discovery of Small Molecule Inhibitors for the Epha4 Receptor Tyrosine Kinase", Eur. J. IMed. Chem. 47: 493 (2012).

FIG. 8HHHH presents examples of EPHA7 Targeting Ligands wherein R is the point sat which the:Linker is attached. For additional examples and related ligands, see, the crystalstructure PDB 3dko and related ligands described in Walker, J.R. et al."Kinase domain of lhuman rephrin type-areceptor 7 (epha7) in complex with ALW-II-49-7", to be published.

FIG. 8IIII-8LLLL presents examples of EPHB4 Targeting Ligands whereinlRiistheppoint at which the Linker is attached. For additional examples and related lligands, see, the crrystal structure: PDB 2vx1 and related ligands described in Bardelle, C. et al. "Inhibitors of the Tyrosine Kinase: Ephb4. Part 2: Structure-Based Discovery and Optimisation of 3,5-Bis :Substituted Anilinopyrimidines", Bioorg. Med. Chem. Lett. 18: 5717(2008); the icrystal structure IPDB 22 x 9 f andl related ligands described in Bardelle, C. et al. "Inhibitors of the Tyrosine IKinase IEphb4.IPart 3: Identification of Non-Benzodioxole-Based Kinase Inhibitors", Bioorg. Med. «Chem. Lett. '20: 6242-6245 (2010); the crystal structure PDB 2xvd and related ligands described in 1 Barlaam, B .et al."Inhibitors of the Tyrosine Kinase Ephb4. Part 4: Discovery and Optimization of a 1 Benzylic Alcohol Series", Bioorg. Med. Chem. Lett. 21: 2207 (2011); the crystal structure IPDB .3zew and related ligands. described in Overman, R.C.et al. "Completing the Structural Family Portraitof the Human Ephb Tyrosine Kinase Domains", Protein Sci. 23: 627 (2014); the crrystal structure JPDB 4aw5 and related ligands described in Kim, M.H. et al. "'The Design, Synthesis, and 〕Biological Evaluation of Potent Receptor Tyrosine Kinase Inhibitors", Bioorg. Med. 'Chem. Lett. '22: 4979 (2012); the: crystal structure PDB 4bb4 and related ligands described in Vasbinder, lM.M. et aal. "Discovery and Optimization of a Novel Series of Potent Mutant B-Raf V600E ;Selective]Kinase Inhibitors"J. Med. Chem. 56: 1996 .", (2013); the crystal structures PDB $2 \mathrm{vwu}, 2 \mathrm{vwv}$ and 2 vww andl related ligands described in Bardelle, C. et al "Inhibitors of the Tyrosine Kinase JEphb4.JPart 1: Structure-Based Design and Optimization of a Series of 2,4-Bis-Anilinopyrimidines", Bioorg. Med. Chem. Lett. 18: 2776-2780 (2008); the crystal structures PDB $2 \mathrm{vwx}, 2 \mathrm{vwy}$, and 2 vwz and related ligands, described in Bardelle, C. et al. "Inhibitors of the Tyrosine Kinase JEphb4.JPart'2: Structure-Based Discovery and Optimisation of 3,5 -Bis Substituted Anilinopyrimidines", Bioorg. Med. Chem. Lett. 18: 5717 (2008); and, the crystal structure PDB 2vxo and related ligands
described in Welin, M.et al. "Substrate Specificity and Oligomerization of JHuman 'Gmp Synthetas", J. Mol. Biol. 425: 4323 (2013).

FIG. 8MMMM presents examples of ERBB2 Targeting Ligands wherein R iisthe pointrat which the:Linker is attached. For additional examples and related ligands, see, the crystalstructure andl related ligands described in Aertgeerts, K. et al "Structural Analysis of the JMechanism of Inhibition and Allosteric Activation of the Kinase Domain of HER2 Protein",,J. ABiol. 'Chem.'286: 18756-18765 (2011) and the crystal structure and related ligands idescribed in Ishikawa, 'T.et aal. "Design and Synthesis of Novel Human Epidermal Growth Factor Receptor'2 (HER2)/Epidermal Growth Factor Receptor (EGFR) Dual Inhibitors Bearing a Pyrrolo[3,2-d]pyrimidine 'Scaffold" ${ }^{\prime} J$. Med. Chem. 54: 8030-8050 (2011).

FIG. 8NNNN presents examples of ERBB3 Targeting Ligands wherein R iis the point sat which the:Linker is attached. For additional examples and related ligands, see, Littlefield, \mathbb{P}.et aal. "An ATP-Competitive Inhibitor Modulates the Allosteric Function of the HER3 Pseudokinase", Chem. Biol. 21: 453-458 (2014).

FIG. 80000 presents examples ERBB4 Targeting Ligands wherein R is the point cat which the: Linker is attached. For additional examples and related ligands, see, IQiu, IC. ret aal. "Mechanism of Activation and Inhibition of the HER4/ErbB4 Kinase", Structure 16: 460-467 (2008)ı and Wood, E.R. et al. "6-Ethynylthieno[3,2-d]- and 6-ethynylthieno[2,3-d]pyrimidin-4anilines: as, tunable covalent modifiers of ErbB kinases", Proc. Natl. Acad. Sci. Usa 105: :27732778: (2008).

FIG. 8PPPP-8QQQQ present examples of FES Targeting Ligands wherein $]$ iis the point at: which the: Linker is attached. For additional examples and related ligands, see,,IFilippakopoulos, P. et: al "Structural Coupling of SH2-Kinase Domains Links Fes and Abl ;Substrate]Recognition and Kinase: Activation." Cell 134: 793-803 (2008) and Hellwig, S. et al. "Small-Molecule Inhibitors, of the: c-Fes Protein-Tyrosine Kinase", Chem. Biol. 19: 529-540 (2012).

FIG. 8RRRR presents examples of FYN Targeting Ligands wherein R is the point at which the:Linker is attached. For additional examples and related ligands, see, Kinoshita,'T.et. al. "Structure of human Fyn kinase domain complexed with staurosporine", Biochem. Biophys. Res. Commun. 346: 840-844 (2006).

FIG. 8SSSS-8VVVV present examples of GSG2 (Haspin) Targeting Ligands wherein]R is; the: point at which the Linker is attached. For additional examples and related lligands, see, the
crystal structures PDB 3e7v, PDB 3f2n, 3fmd and related ligands describedinlFilippakopoulos,IP. et al. "Crystal Structure of" Human Haspin with a pyrazolo-pyrimidine lligand", to lbe ppublished; the: crystal structure PDB 3iq7 and related ligands described in Eswaran, J. et al. "'Structure and functional characterization of the atypical human kinase haspin", Proc. Natl. Acad. Sci. USA 106: 20198-20203 (2009); and, the crystal structure PDB 4qtc and related ligands described iin Chaikuad, A. et al. "A unique inhibitor binding site in ERK1/2 is associated with slow lbinding kinetics", Nat. Chem. Biol. 10: 853-860 (2014).

FIG. 8WWWW-8AAAAA present examples of HCK Targeting Ligands whereinlRiistthe point at which the Linker is attached. For additional examples and related lligands, see, thercrystal structure: PDB 1qcf" and related ligands described in Schindler, T. et al. "Crystal structure of IHck inicomplex with a Src family-selective tyrosine kinase inhibitor",Mol. Cell.3:1639-648(1999);the crystal structure PDB 2c0i and 2c0t and related ligands described in Burchat, A. et alal."Discovery of ${ }^{\prime \prime}$ A-770041, a Src-Family Selective Orally Active Lck Inhibitor that Prevents IOrgan Allograft Rejection", Bioorg. Med. Chem. Lett. 16: 118 (2006); the crystal structure PDB .2 hk5 and related ligandsi described in Sabat, M.et al. "The development of 2-benzimidazole substituted pyrimidine based inhibitors. of lymphocyte specific kinase (Lck)", Bioorg. Med. 'Chem. Lett. 16: 5973-5977 (2006); the: crystal structures PDB 3vry, 3vs3, 3vs6, and 3vs7 and related गligands described iin Saito, Y. et al. "A Pyrrolo-Pyrimidine Derivative Targets Human Primary AML :Stem ICells iin Vivo", Sci'Transl'Med'5: 181ra52-181ra52 (2013); and, the crystal structure PDB 4lud andrelated ligands; described in Parker, L.J. et al "Kinase crystal identification and ATP-competitiveiinhibitor screening; using, the fluorescent ligand SKF86002",. Acta Crystallogr.,Sect.D'70: 392-404((2014).

FIG. 8BBBBB-8FFFFF present examples of IGF1R Targeting Ligands wherein]R iis the point at which the: Linker is attached. For additional examples and related ligands, see, thescrystal structure: PDB 2oj9 and related ligands described in Velaparthi, U. et al. "Discovery and initial SAR of 3-(1H-benzo[d]imidazol-2-yl)pyridin-2(1H)-ones as inhibitors of jinsulin-like growth factor 1-receptor (IGF-1R)", Bioorg. Med. Chem. Lett. 17: 2317-2321 (2007); the ccrystal structure PDB 3 i 81 and related ligands described in Wittman, M.D. et al. "Discovery of a a 2,4-disubstituted pyrrolo[1,2-f][1,2,4]triazine inhibitor (BMS-754807) of insulin-like growth factor receptor (IGF1R), kinase in clinical development.", J. Med. Chem. 52: 7360-7363 (2009); the crystal structure PDB. 3nw5 and related ligands described in Sampognaro, A.J. et al. "Proline jisosteres jin 〔a sseries of 2,4-disubstituted pyrrolo[1,2-f][1,2,4]triazine inhibitors of IGF-1R kinase and IR kkinase",

Bioorg. Med. Chem. Lett. 20: 5027-5030 (2010); the crystal structure PDB .3qqu and related ligandsi described in Buchanan, J.L. et al. "Discovery of 2,4-bis-arylamino-1,3-pyrimidines cas insulin-like: growth factor-1 receptor (IGF-1R) inhibitors", Bioorg. Med. 'Chem. Lett. '21: :2394$2399{ }^{\prime}$ (2011); the crystal structure PDB 4d2r and related ligands described in IKettle, J.G. et cal. "Discovery and Optimization of a Novel Series of Dyrk1B Kinase Inhibitors to JExplore alMek Resistance:Hypothesis". J. Med. Chem. 58: 2834 (2015); the crystal structure PDB.3fxqiandirelated ligandsidescribed in Monferrer, D. et al. "Structural studies on the full-length LysR-typerregulator TsaR.from Comamonas testosteroni T-2 reveal a novel open conformation of the ttetramericILTTR fold", Mol. Microbiol. 75: 1199-1214 (2010); the crystal structure PDB 5fxs and related lligands described in Degorce, S. et al. "Discovery of Azd9362, a Potent Selective'OrallyBioavailableand Efficacious: Novel Inhibitor of Igf-R1", to be published; the crystal structure PDB. 2 zm 3 ;andrelated ligandsidescribed in Mayer, S.C.et al. "Lead identification to generate isoquinolinedioneiinhibitors ofinsulin-like: growth factor receptor (IGF-1R) for potential use in canceritreatment", ${ }^{\text {Bioorg. }}$ IMed. Chem. Lett. 18: 3641-3645 (2008); the crystal structure PDB 3f5p and related lligands describediin "Lead identification to generate 3-cyanoquinoline inhibitors of insulin-like growth ffactorrreceptor (IGF-1R), for potential use in cancer treatment" Bioorg. Med. Chem. Lett. 19: 162-66 (2009); the crystal structure: PDB 3lvp and related ligands described in Nemecek, C. et al. "Design of lPotent IGF1-R. Inhibitors. Related to Bis-azaindoles" Chem. Biol. Drug Des. 76: 100-106 (2010); the crystal structure: PDB 3023 and related ligands described in Lesuisse, D. et al. "Discovery of the first:non-ATP competitive IGF-1R kinase inhibitors: Advantages in comparison with competitive inhibitors", Bioorg. Med. Chem .Lett. 21: 2224-2228 (2011); the crystal structure JPDB 3d94 and related ligands. described in Wu, J. et al. "Small-molecule inhibition and activation-loop ttransphosphorylation of the IGF1 receptor", Embo J. 27: 1985-1994 (2008); and, the crystal structure PDB 5hzn and related ligands described in Stauffer, F.et al. "Identification of a : 5-[3-phenyl-(2-cyclic-ether)-methylether]-4-aminopyrrolo[2,3-d]pyrimidine series of IGF-1R jinhibitors",Bioorg. Med. Chem. Lett. 26: 2065-2067 (2016).

FIG. 8GGGGG-8JJJJJ present examples of INSR Targeting Ligands wherein IR is the point at which the: Linker is attached. For additional examples and related ligands, see, the «crystal structure: PDB 2z8c and related ligands described in Katayama, N. et al. "Identification of a k key element for hydrogen-bonding patterns between protein kinases and their jinhibitors", Proteins 73 : 795-801 (2008); the crystal structure PDB 3ekk and related ligands described in ©Chamberlain,
S.D.et al. "Discovery of" 4,6-bis-anilino-1H-pyrrolo[2,3-d]pyrimidines: Potent iinhibitors of the IGF-1R. receptor tyrosine kinase", (2009) Bioorg. Med. Chem. Lett. 19: 469-473; the crystal structure:PDB 3ekn and related ligands described in Chamberlain, S.D. etal." "Optimizationof 4,6 -bis-anilino-1H-pyrrolo[2,3-d]pyrimidine IGF-1R tyrosine kinase inhibitors Howards JNK selectivity", Bioorg. Med. Chem. Lett. 19: 360-364 (2009); the crystal structure PPDB 5e1s and related ligands. described in Sanderson, M.P. et al. "BI 885578, a Novel IGF1R/INSR Tyrosine Kinase: Inhibitor with Pharmacokinetic Properties That Dissociate Antitumor JEfficacy and Perturbation of Glucose Homeostasis" Mol. Cancer Ther. 14: 2762-2772 "", (2015); the crrystal structure: PDB 3eta and related ligands described in Patnaik, S. et al. "Discovery of 3,5 -disubstituted-1H-pyrrolo[2,3-b]pyridines as potent inhibitors of the insulin-like !growth ffactor-1 receptor (IGF-1R) tyrosine kinase", Bioorg. Med. Chem. Lett. 19: 3136-3140 (2009); the crrystal structure: PDB 5hhw and related ligands described in Stauffer, F.et al. "Identification of a $\mathfrak{a} 5$-[3-phenyl-(2-cyclic-ether)-methylether]-4-aminopyrrolo[2,3-d]pyrimidine series of IIGF-1R inhibitors", Bioorg. Med. Chem. Lett. 26: 2065-2067 (2016); and, the icrystal structure PPDB 4ibm andl related ligands described in Anastassiadis, T. et al. "A highly selective dual insulin receptor (IR)/insulin-like growth factor 1 receptor (IGF-1R) inhibitor derived from an extracellular:signalregulated kinase (ERK) inhibitor", J. Biol. Chem. 288: 28068-28077 (2013).

FIG. 8KKKKK-8PPPPP present examples of HBV Targeting Ligands wherein 1 R is the point at: which the Linker is attached, Y is methyl or isopropyl, and X is N or IC. For additional examples and related ligands, see, Weber, O.; et al. "Inhibition of human hepatitis 1 B rvirus ((HBV) by a novel non-nucleosidic compound in a transgenic mouse model." Antiviral Res.54, 69-78 (2002); Deres, K.; et al. "Inhibition of hepatitis B virus replication by drug-induced depletion of nucleocapsids." Science, 299, 893-896 (2003); Stray, S. J.; Zlotnick, A. "BAY 41-4109 has multiple: effects, on Hepatitis B virus capsid assembly." J. Mol. Recognit. 19, 542-548 ((2006); Stray, S. J.; et al. "heteroaryldihydropyrimidine activates and can misdirect|hepatitis]B.virus capsid assembly." Proc. Natl. Acad. Sci. U. S. A., 102, 8138-8143 (2005); Guan, H.; et al.""The novel compound Z060228 inhibits assembly of the HBV capsid." Life Sci. 133, 1-7 (2015); 'Wang, XX. Y.; et al. " In vitro inhibition of HBV replication by a novel compound, GLS4, and jits fefficacy against adefovir-dipivoxil-resistant HBV mutations." Antiviral Ther. 17, 793-803((2012);1Klumpp, K.; et:al. "High-resolution crystal structure of a hepatitis B virus replication inhibitor bound tot the viral core: protein." 112, 15196-15201 (2015); Qiu, Z.; et al. "Design and synthesis of orally
bioavailable: 4-methyl heteroaryldihydropyrimidine based hepatitis B virus (HBV) capsid inhibitors." J. Med. Chem. 59, 7651-7666 (2016); Zhu, X.; et al. "'2,4-Diaryl-4,6,7,8-tetrahydroquinazolin- $5(1 \mathrm{H})$-one derivatives as anti-HBV agents targeting at capsid assembly." Bioorg. Med. Chem. Lett. 20, 299-301 (2010); Campagna, M. R.; et al. "'Sulfamoylbenzamide derivatives inhibit the assembly of hepatitis B virus nucleocapsids." J. Virol. 87, 16931-6942 (2013); Campagna, M. R.; et al. "Sulfamoylbenzamide derivatives inhibit the assembly oflhepatitis B virus: nucleocapsids." J. Virol. 87, 6931-6942 (2013); WO 2013096744 A1 titled "Hepatitis IB antivial agents"; WO 2015138895 titled "Hepatitis B core protein allosteric modulators"; 'Wang, Y. J.; et: al. "A novel pyridazinone derivative inhibits hepatitis B virus replication lby iinducing genome-free: capsid formation." Antimicrob. Agents Chemother. 59, 7061-7072 ((2015); 'WO 2014033167 ' titled "Fused bicyclic sulfamoyl derivatives for the treatment of Ihepatitis"; IU.S. 20150132258 titled "Azepane derivatives and methods of treating hepatitis 1 B infections"; and, WO' 2015057945 "Hepatitis B viral assembly effector".

FIG. 9 is a dendrogram of the human bromodomain family of proteins organizediintoreight sub families, which are involved in epigenetic signaling and chromatin lbiology. Any of the proteins: of the bromodomain family in FIG. 9 can be selected as a Target Protein according tto the present invention.

DETAILED DESCRIPTION

I. DEFINITIONS

Compounds are described using standard nomenclature. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as is commonly understood tby one: of:skill in the art to which this invention belongs.

The compounds in any of the Formulas described herein may be jin the form of ;arracemate, enantiomer, mixture of enantiomers, diastereomer, mixture of diastereomers, tautomer, 1 N -oxide, isomer; such as rotamer, as if each is specifically described unless specifically, excludedibycontext.

The: terms, "a" and "an" do not denote a limitation of quantity, but rather denote the presence: of at least one of the referenced item. The term "or" means "'and/or". .Recitation of ranges; of values are merely intended to serve as a shorthand method of referring jindividually to each separate: value falling within the range, unless otherwise indicated herein, and each separate
value:iss incorporated into the specification as if it were individually recited herein. 'Therendpoints of all ranges are included within the range and independently combinable. Allmethods sdescribed herein can be: performed in a suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of examples, or exemplary language (e.g., "suchas"), iisiintended merely to better illustrate the invention and does not pose a limitation on the scoperfthe iinvention unless: otherwise claimed.

The: present invention includes compounds of Formula I, Formula III, Formula IIII, and Formula IV with at least one desired isotopic substitution of an atom, at an amount above the natural abundance of the isotope, i.e., enriched. Isotopes are atoms having the same atomicmumber but different mass numbers, i.e., the same number of protons but a different number of meutrons. Examples. of isotopes that can be incorporated into compounds of the invention ïnclude iisotopes of hydrogen, carbon, nitrogen, oxygen, phosphorous, fluorine, chlorine and iodine such $\operatorname{ass}^{2{ }^{2}} \mathrm{H},{ }^{3} \mathrm{H}$, ${ }^{11} \mathrm{C},{ }^{13} \mathrm{C},{ }^{14} \mathrm{C},{ }^{15} \mathrm{~N},{ }^{18} \mathrm{~F}^{31} \mathrm{P},{ }^{32} \mathrm{P},{ }^{35} \mathrm{~S},{ }^{36} \mathrm{Cl}$, and ${ }^{125}$ I respectively. In one non-limiting embodiment, isotopically labelled compounds can be used in metabolic studies (with, for example ${ }^{1 / 4} \mathrm{C}$), reaction kinetic; studies. (with, for example ${ }^{2} \mathrm{H}$ or ${ }^{3} \mathrm{H}$), detection or imaging techniques, such as positron emission tomography (PET) or single-photon emission computed tomography (SPECT) iincluding drug; or substrate: tissue distribution assays, or in radioactive treatment of patients. In particular, an ${ }^{18}{ }^{8}$ labeled compound may be particularly desirable for PET or SPECT :studies. Isotopically labeled compounds of this invention and prodrugs thereof can generally lbe prepared lby ccarrying out the: procedures disclosed in the schemes or in the examples and preparations described lbelow by substituting, a readily available isotopically labeled reagent for a non-isotopically llabeled reagent.

Isotopic: substitutions, for example deuterium substitutions, can lbe partial or complete. Partial deuterium substitution means that at least one hydrogen is substituted with deuterium. In certain embodiments, the isotope is 90,95 or 99% or more enriched in an jisotope at any llocation of interest. In one non-limiting embodiment, deuterium is 90 , 95 or 99% enriched at \mathfrak{a} (desired location.

In one: non-limiting embodiment, the substitution of a hydrogen atomfor adeuteriumatom can be: provided in any compound of Formula I-V. In one non-limiting embodiment, the substitution of a hydrogen atom for a deuterium atom occurs within one or more groups selected from any of R's or variables described herein, Linker, and Targeting Ligand. For example, when
any of the groups are, or contain for example through substitution, methyl, ethyl, or methoxy, the alkyl residue may be deuterated (in non-limiting embodiments, $\mathrm{CDH}_{2}, \mathrm{CD}_{2} \mathrm{H}, \mathrm{ICD}_{3}, \mathrm{CH}_{2} \mathrm{CD}_{3}$, $\mathrm{CD}_{2} \mathrm{CD}_{3}, \mathrm{CHDCH}_{2} \mathrm{D}, \mathrm{CH}_{2} \mathrm{CD}_{3}, \mathrm{CHDCHD}_{2}, \mathrm{OCDH}_{2}, \mathrm{OCD}_{2} \mathrm{H}$, or OCD_{3} etc.). In icertain other embodiments, when two substituents are combined to form a cycle the unsubstituted carbonsımay be: deuterated.

The: compound of the present invention may form a solvate with a solvent (including water). Therefore, in one non-limiting embodiment, the invention includes a solvated fform of the compound. The term "solvate" refers to a molecular complex of a compound of the present invention (including a salt thereof) with one or more solvent molecules. Non-limiting examples of 'solvents are: water, ethanol, isopropanol, dimethyl sulfoxide, acetone and othericommonorganic solvents. The term "hydrate" refers to a molecular complex comprising a compound of the invention and water. Pharmaceutically acceptable solvates in accordance with the invention include: those: wherein the solvent may be isotopically substituted, e.g. $\mathrm{D}_{2} \mathrm{O}, \mathrm{d}_{6}$-acetone, d_{6}-DMSO. A. solvate: can be in a liquid or solid form.

A dash ("-") that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, $-(\mathrm{C}=\mathrm{O}) \mathrm{NH}_{2}$ is attached through icarbon of the carbonyl $(\mathrm{C}=\mathrm{O})$) group.
"Alkyl" is a branched or straight chain saturated aliphatic hydrocarbon group. In one monlimiting; embodiment, the alkyl group contains from 1 to about 12 carbon atoms, more generally from 1 to about 6 carbon atoms or from 1 to about 4 carbon atoms. In one mon-limiting embodiment, the: alkyl contains from 1 to about 8 carbon atoms. In certain embodiments, the alkyl is; $\mathrm{C}_{1}-\mathrm{C}_{2}, \mathrm{C}_{1}-\mathrm{C}_{3}, \mathrm{C}_{1}-\mathrm{C}_{4}, \mathrm{C}_{1}-\mathrm{C}_{5}$, or $\mathrm{C}_{1}-\mathrm{C}_{6}$. The specified ranges as used hereinindicate analkylgroup having; each member of the range described as an independent species. For example, the ttermiC1CGalkyl as, used herein indicates a straight or branched alkyl group having from 1, 2, 3, 4, 5, or 6 carbon atoms, and is intended to mean that each of these is described as anjindependentspecies and therefore:each subset is considered separately disclosed. For example, the termiC $\mathrm{C}_{1}-\mathrm{C}_{4}$ alkylasused herein indicates, a straight or branched alkyl group having from $1,2,3$, or 4 carbon atoms and iis intended to, mean that each of these is described as an independent species. Examples of alkyl include, but are: not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t tbutyl, n-pentyl, isopentyl, tert-pentyl, neopentyl, n-hexyl, 2-methylpentane, 3-methylpentane, 2,2dimethylbutane, and 2,3-dimethylbutane. In an alternative embodiment, the alkyl group is
optionally' substituted. The term "alkyl" also encompasses cycloalkyl or icarbocyclic !groups. IFor example, when a term is used that includes "alk" then "cycloalkyl" or "carbocyclic" can be considered part of the definition, unless unambiguously excluded by the icontext. For example and without: limitation, the terms alkyl, alkoxy, haloalkyl, etc. can all lbe considered to iinclude the cyclic; forms of alkyl, unless unambiguously excluded by context.
"Alkenyl" is a linear or branched aliphatic hydrocarbon groups having one ormorercarboncarbon double bonds that may occur at a stable point along the chain. The specified ranges assused herein indicate an alkenyl group having each member of the range described as an independent species, asidescribed above for the alkyl moiety. Examples of alkenyl radicals include, lbutaremot limited toethenyl, propenyl, allyl, propenyl, butenyl and 4-methylbutenyl. The term"'alkenyl" 'also embodies: "cis" and "trans" alkenyl geometry, or alternatively, "E" and "Z" alkenyl geometry. In an alternative: embodiment, the alkenyl group is optionally substituted. 'The term "'Alkenyl" also encompasses cycloalkyl or carbocyclic groups possessing at least one point of unsaturation.
"Alkynyl" is a branched or straight chain aliphatic hydrocarbon !group lhaving one orımore carbon-carbon triple bonds that may occur at any stable point along the chain. The specified rranges as; used herein indicate an alkynyl group having each member of the range described as an independent: species, as described above for the alkyl moiety. Examples of alkynyl iinclude, but are: not limited to, ethynyl, propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-pentynyl, 2-pentynyl, 3pentynyl, 4-pentynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl and 5-hexynyl. IIn an alternative: embodiment, the alkynyl group is optionally substituted. 'The term "Alkynyl" also encompasses cycloalkyl or carbocyclic groups possessing at least one triple lbond.
"Alkylene" is a bivalent saturated hydrocarbon. Alkylenes, for example, can lbe a $1,2,3$, $4,5,6,7$ to 8 carbon moiety, 1 to 6 carbon moiety, or an indicated number of carbon atoms, for example: C1-C2alkylene, C1-C3alkylene, C1-C4alkylene, C1-C5alkylene, or CC1-C6alkylene.
"Alkenylene" is a bivalent hydrocarbon having at least one carbon-carbon double bond. Alkenylenes, for example, can be a 2 to 8 carbon moiety, 2 to 6 carbon moiety, or an indicated number of carbon atoms, for example C2-C4alkenylene.
"Alkynylene" is a bivalent hydrocarbon having at least one carbon-carbon triple bond. Alkynylenes, for example, can be a 2 to 8 carbon moiety, 2 to 6 carbon moiety, or an indicated number of carbon atoms, for example C2-C4alkynylene.
"Halo" and "Halogen" refers to fluorine, chlorine, bromine or iodine.
"Haloalkyl" is a branched or straight-chain alkyl groupssubstituted with 1 or more halo atoms: described above, up to the maximum allowable number of lhalogen atoms. JExamples of haloalkyl groups. include, but are not limited to, fluoromethyl, difluoromethyl, ttrifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, lheptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl. "Perhaloalkyl" means an alkyl group having all lhydrogen atoms replaced wwith halogen atoms. Examples include but are not limited to, trifluoromethyl and pentafluoroethyl.
"Chain" indicates a linear chain to which all other chains, long or short or lboth, may lbe regarded as being ; pendant. Where two or more chains could equally be considered to the the tmain chain, "chain" refers to the one which leads to the simplest representation of the molecule.
"Haloalkoxy" indicates a haloalkyl group as defined herein attached through an oxygen bridge:(oxygen of an alcohol radical).
"Heterocycloalkyl" is an alkyl group as defined herein substituted with alheterocyclo ggroup asidefined herein.
"Arylalkyl" is an alkyl group as defined herein substituted with an aryl group as defined herein.
"Heteroarylalkyl" is an alkyl group as defined herein substituted with a lheteroaryl group asidefined herein.

Asi used herein, "aryl" refers to a radical of a monocyclic or polycyclic (e.g., bbicyclic or tricyclic) $4 \mathrm{n}+2$ aromatic ring system (e.g., having 6,10 , or 14π electrons shared jin a acyclic array) having ; 6-14 ring; carbon atoms and zero heteroatoms provided in the aromatic rring system (("C6-14 aryl"). In some :embodiments, an aryl group has 6 ring carbon atoms (" ${ }_{6}$, aryl"; e.e.g., phenyl). In some:embodiments, an aryl group has 10 ring carbon atoms !("C10aryl"; e e.g., naphthyl such as $1-$ naphthyl and 2-naphthyl). In some embodiments, an aryl group has 14 ring carbon atoms ("C14 aryl"; e.g., anthracyl). "Aryl" also includes ring systems wherein the aryl ring, as defined above, is; fused with one: or more carbocyclyl or heterocyclyl groups wherein the radical or point of attachment is on the aryl ring, and in such instances, the number of carbon atoms continue to designate :the : number of carbon atoms in the aryl ring system. The one or more ffused carbocyclyl or heterocyclyl groups can be 4 to 7 or 5 to 7 -membered saturated or partially unsaturated carbocyclyl or heterocyclyl groups that optionally contain 1,2 , or 3 heteroatoms jindependently selected from nitrogen, oxygen, phosphorus, sulfur, silicon and boron, to form, for example, a 3 , 4-
methylenedioxyphenyl group. In one non-limiting embodiment, aryl groups are pendant. «An example : of a pendant ring is a phenyl group substituted with a phenyl group. In san calternative embodiment, the: aryl group is optionally substituted as described above. In icertain rembodiments, the :aryl group is an unsubstituted C6-14 aryl. In certain embodiments, the aryl !group iis assubstituted C_{6-14} aryl. An aryl group may be optionally substituted with one or more functional groups that include : but: are : not limited to, halo, hydroxy, nitro, amino, cyano, haloalkyl, aryl, lheteroaryl, and heterocyclo.

The: term "heterocyclyl" (or "heterocyclo") includes saturated, and partially ssaturated heteroatom-containing ring radicals, where the heteroatoms may be selected from initrogen, sulfur and oxygen. Heterocyclic rings comprise monocyclic 3-8 membered rings, as 'well as 5-16 membered bicyclic ring systems (which can include bridged fused and spiro-fused lbicyclic ring systems). It does not include rings containing -O-O-.-O-S- or --S-S- portions. "Said "heterocyclyl" group may be: optionally substituted, for example, with $1,2,3,4$ or more substituents that include but are:not:limited to, hydroxyl, Boc, halo, haloalkyl, cyano, alkyl, aralkyl, oxo, alkoxy, and amino. Examples : of" saturated heterocyclo groups include saturated 3-to t6-membered lheteromonocyclic groups ; containing; 1 to 4 nitrogen atoms [e.g. pyrrolidinyl, imidazolidinyl, piperidinyl, pyrrolinyl, piperazinyl]; saturated 3 to 6 -membered heteromonocyclic group containing 1 to 2 oxygen atoms and $\lfloor 1$ toı 3 nitrogen atoms [e.g. morpholinyl]; saturated 3 to 6-membered lheteromonocyclic group containing ; to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., thiazolidinyl]. Examples of partially saturated heterocyclyl radicals include but are not limited to, dihydrothienyl, dihydropyranyl, dihydrofuryl, and dihydrothiazolyl. Examples of partially saturated and saturated lheterocyclo groups ; include : but are not limited to, pyrrolidinyl, imidazolidinyl, piperidinyl, pyrrolinyl, pyrazolidinyl, piperazinyl, morpholinyl, tetrahydropyranyl, thiazolidinyl, ddihydrothienyl, 2,3-dihydro-benzo[1,4]dioxanyl, indolinyl, isoindolinyl, dihydrobenzothienyl, «dihydrobenzofuryl, isochromanyl, chromanyl, 1,2-dihydroquinolyl, 1,2,3,4- tetrahydro-isoquinolyl, 1 ,2,3,4-tetrahydro-quinolyl, 2,3,4,4a,9,9a-hexahydro- $1 \mathrm{H}-3$-aza-fluorenyl, 5,6,7- trihydro-1,2,4-triazolo[3,4-a]isoquinolyl, 3,4-dihydro-2H-benzo[1,4]oxazinyl, benzo[1,4]dioxanyl, 2,3- dihydro-1H-1 λ^{\prime}-benzo[d]isothiazol-6-yl, dihydropyranyl, dihydrofuryl and dihydrothiazolyl.

Heterocyclo groups also include radicals where heterocyclic pradicals ;are ffused/condensed with ${ }^{\text {aryl }}$ or heteroaryl radicals: such as unsaturated condensed heterocyclic group containing 1 to 5i nitrogen atoms, for example, indoline, isoindoline, unsaturated condensed heterocyclic group
containing; 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, unsaturated condensed lheterocyclic group containing ; 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, and saturated, partially tunsaturated andlunsaturated condensed heterocyclic group containing 1 to 2 oxygen or sulfur atoms.

The: term "heteroaryl" denotes aryl ring systems that contain one or more lheteroatoms selected from O, N and S , wherein the ring nitrogen and sulfur atom(s) are optionally oxidized, and nitrogen atom(s) are optionally quarternized. Examples include lbut are mot llimited to, unsaturated 5 to 6 membered heteromonocyclyl groups containing 1 to 4 nitrogen atoms, such as pyrrolyl, imidazolyl, pyrazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrimidyl, pyrazinyl, ppyridazinyl, triazolyl [e.g., 4H-1,2,4-triazolyl, $\mathrm{IH}-1$,2,3-triazolyl, 2H-1,2,3-triazolyl]; unsaturated 5 - 1 to (6membered heteromonocyclic groups containing an oxygen atom, for example, ppyranyl, 22 -furyl, 3furyl, etc.; unsaturated 5 to 6 -membered heteromonocyclic groups icontaining a sulfur atom, ffor example, 2-thienyl, 3-thienyl, etc.; unsaturated 5- to 6-membered theteromonocyclic groups containing; 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, iisoxazolyl, oxadiazolyl [e.g., 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5- oxadiazolyl]; unsaturated 5 f to 6 (6 membered heteromonocyclic groups containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl [e.g., 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl].

The: term "optionally substituted" denotes the substitution of a group lherein lby a a moiety including, but not limited to, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, IC3-C12 ccycloalkyl, IC3C_{12} : cycloalkenyl, $\mathrm{C}_{1}-\mathrm{C}_{12}$ heterocycloalkyl, $\mathrm{C}_{3}-\mathrm{C}_{12}$ heterocycloalkenyl, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, amino, C1-C10 alkylamino, C1-C10 dialkylamino, aarylamino, diarylamino, C1-C10 alkylsulfonamino, arylsulfonamino, C1-C10 alkylimino, arylimino, 1 C1-C10 alkylsulfonimino, arylsulfonimino, hydroxyl, halo, thio, $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkylthio, arylthio, $\mathrm{IC}_{1}-\mathrm{C}_{10}$ alkylsulfonyl, arylsulfonyl, acylamino, aminoacyl, aminothioacyl, amidino, guanidine, ureido, cyano, nitro, azido, acyl, thioacyl, acyloxy, carboxyl, and carboxylic ester.

In one: alternative embodiment any suitable group may be present on a " "substituted" or "optionally substituted" position if indicated that forms a stable molecule and meets the (desired purpose of the invention and includes, but is not limited to, e.g., halogen (which ican jindependently be; $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ or I); cyano; hydroxyl; nitro; azido; alkanoyl (such as a IC2-C6 alkanoyl group); carboxamide; alkyl, cycloalkyl, alkenyl, alkynyl, alkoxy, aryloxy such as phenoxy; thioalkyl including; those: having one or more thioether linkages; alkylsulfinyl; :alkylsulfonyl groups including ;those :having one or more sulfonyl linkages; aminoalkyl groups jincluding groups lhaving
more: than one N atoms; aryl (e.g., phenyl, biphenyl, naphthyl, or the like, each ring teither substituted or unsubstituted); arylalkyl having for example, 1 to 3 separate or ffused rings and ffrom 6itouabout: 14 or 18 ring carbon atoms, with benzyl being an exemplary arylalkyl group; arylalkoxy, for example, having 1 to 3 separate or fused rings with benzyloxy lbeing an exemplary arylalkoxy group; or a saturated or partially unsaturated heterocycle having 1 to 3 separate or fused rings 'with one:or more: N, O or S atoms, or a heteroaryl having 1 to 3 separate or fused rings with one corımore N, O or S atoms, e.g. coumarinyl, quinolinyl, isoquinolinyl, quinazolinyl, pyridyl, pyrazinyl, pyrimidinyl, furanyl, pyrrolyl, thienyl, thiazolyl, triazinyl, oxazolyl, iisoxazolyl, iimidazolyl, indolyl, benzofuranyl, benzothiazolyl, tetrahydrofuranyl, tetrahydropyranyl, piperidinyl, morpholinyl, piperazinyl, and pyrrolidinyl. Such groups may be further substituted, re.g. wwith hydroxy, alkyl, alkoxy, halogen and amino. In certain embodiments "optionally ssubstituted" includes : one: or more substituents independently selected from halogen, lhydroxyl, amino, ccyano, $-\mathrm{CHO},-\mathrm{COOH},-\mathrm{CONH}_{2}$, alkyl including $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, alkenyl including ${ } \mathrm{C}_{2}-\mathrm{C}_{6}$ alkenyl, alkynyl including ;C2-C6alkynyl, -C1-C6alkoxy, alkanoyl including C2-C6alkanoyl, C1-C6alkylester,((monoand \mid di $-\mathrm{C}_{1}-\mathrm{C}_{6}$ alkylamino) $\mathrm{C}_{0}-\mathrm{C}_{2}$ alkyl, haloalkyl including $\mathrm{C}_{1}-\mathrm{C}_{6}$ haloalkyl, hydoxyC $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, eester, carbamate, urea, sulfonamide, $-\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl(heterocyclo), $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl(heteroaryl), $-\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl $\left(\mathrm{C}_{3}-\right.$ C7cycloalkyl), O-C1-C6alkyl(C3-C7cycloalkyl), $\mathrm{B}(\mathrm{OH}) 2$, phosphate, phosphonate and lhaloalkoxy including ; C1-C6haloalkoxy.
"Aliphatic" refers to a saturated or unsaturated, straight, branched, or icyclic lhydrocarbon. "Aliphatic" is, intended herein to include, but is not limited to, alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, and cycloalkynyl moieties, and thus incorporates each of these definitions. IIn one embodiment, "aliphatic" is used to indicate those aliphatic groups having 1-20 carbon atoms. The aliphatic: chain can be, for example, mono-unsaturated, di-unsaturated, tri-unsaturated, ъor polyunsaturated, or alkynyl. Unsaturated aliphatic groups can be in a cis or trans configuration. In one: embodiment, the aliphatic group contains from 1 to about 12 carbon atoms, more generally from 1 toabout 6 carbon atoms or from 1 to about 4 carbon atoms. In one embodiment, the aliphatic group contains from 1 to about 8 carbon atoms. In certain embodiments, the aliphatic group iis 1 Cl C2, C1-C3, C1-C4, C1-C5 or C1-C6. The specified ranges as used herein indicate an aliphatic group having; each member of the range described as an independent species. $]$ For example, the term C_{1} CGaliphatic as used herein indicates a straight or branched alkyl, alkenyl, or alkynyl group Jhaving from $1,2,3,4,5$, or 6 carbon atoms and is intended to mean that each of these jis described as an
independent:species. For example, the term C1-C4 aliphatic as used herein indicates a a straight or branched alkyl, alkenyl, or alkynyl group having from $1,2,3$, or 4 carbon atoms and is iintended tormean that:each of these is described as an independent species. In one embodiment, the aliphatic group isi substituted with one or more functional groups that results in the formation of a s stable moiety.

The: term "heteroaliphatic" refers to an aliphatic moiety that contains at lleast one heteroatom in the chain, for example, an amine, carbonyl, carboxy, oxo, thio, phosphate, phosphonate, nitrogen, phosphorus, silicon, or boron atoms in place of a a carbon atom. Inn one embodiment, the only heteroatom is nitrogen. In one embodiment, the only lheteroatom iis oxygen. In one:embodiment, the only heteroatom is sulfur. "Heteroaliphatic" is intended lherein tooiinclude, but: is not limited to, heteroalkyl, heteroalkenyl, heteroalkynyl, lheterocycloalkyl, heterocycloalkenyl, and heterocycloalkynyl moieties. In one embodiment, "'heteroaliphatic" iis used tor indicate : a heteroaliphatic group (cyclic, acyclic, substituted, unsubstituted, Ibranched or unbranched) having 1-20 carbon atoms. In one embodiment, the heteroaliphatic group iisoptionally substituted in a manner that results in the formation of a stable moiety. Nonlimiting examples of heteroaliphatic: moieties are polyethylene glycol, polyalkylene glycol, amide, polyamide, polylactide, polyglycolide, thioether, ether, alkyl-heterocycle-alkyl, -O-alkyl-O-alkyl, alkyl-Ohaloalkyl, etc.

A "dosage form" means a unit of administration of an active agent. JExamples of dosage forms; include tablets, capsules, injections, suspensions, liquids, emulsions, ïmplants, particles, spheres, creams, ointments, suppositories, inhalable forms, transdermal forms, lbuccal, sublingual, topical, gel, mucosal, and the like. A "dosage form" can also include an implant, for rexample an optical implant.

An "effective amount" as used herein, means an amount which provides a therapeutic or prophylactic : benefit.

As, used herein "endogenous" refers to any material from or produced jinside an organism, cell, tissue :or system.

As; used herein, the term "exogenous" refers to any material introduced from „or produced outside : an organism, cell, tissue or system.

By the term "modulating," as used herein, is meant mediating a detectable increase or decrease : in the level of a response in a subject compared with the level of a response inthe ssubject
in the: absence of a treatment or compound, and/or compared with the level of a response iin can otherwise identical but untreated subject. The term encompasses perturbing and/or affecting a native: signal or response thereby mediating a beneficial therapeutic response iin a s subject, preferably, a human.
"Parenteral" administration of an immunogenic composition includes, e.g., subcutaneous (s.c.), intravenous. (i.v.), intramuscular (i.m.), or intrasternal injection, or iinfusiontechniques.

Asiused herein, the terms "peptide," "polypeptide," and "protein"'areusedinterchangeably, andl refer to a compound comprised of amino acid residues covalently linked lby peptidelbonds.A protein or peptide must contain at least two amino acids, and no llimitation iis placed on the maximum number of amino acids that can comprise a protein's or peptide's sequence.IPolypeptides include any peptide or protein comprising two or more amino acids joined to each otherlby peptide bonds. Asi used herein, the term refers to both short chains, which also commonly are referred to inı the: art as peptides, oligopeptides and oligomers, for example, and to llonger chains, which generally are referred to in the art as proteins, of which there are many types. "Polypeptides" include, for example, biologically active fragments, substantially homologous polypeptides, oligopeptides, homodimers, heterodimers, variants of polypeptides, modified polypeptides, derivatives, analogs, fusion proteins, among others. The polypeptides include natural peptides, recombinant peptides, synthetic peptides, or a combination thereof.

To "treat" a disease as the term is used herein, means to reduce the frequency or sseverity of at:least one: sign or symptom of a disease or disorder experienced lby a : subject.

Ranges: throughout this disclosure, various aspects of the invention ican lbe presentedin ia range: format. It should be understood that the description in range format iis merely ffor convenience: and should not be construed as a limitation on the scope of the invention. The description of a range should be considered to have specifically disclosed all the possible subranges, as well as individual numerical values within that range. For example, description of a range; such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to, 3 , from 1 to 4 , from 1 to 5 , from 2 to 4 , from 2 to 6 , from 3 to 6 etc., as well;asindividual numbers, within that range, for example, $1,2,2.7,3,4,5,5.3$, and 6 . This ;applies regardless of the breadth of the range.

As; used herein, "pharmaceutical compositions" are compositions comprising at lleast one active; agent, and at least one other substance, such as a carrier. "Pharmaceutical combinations"
are: combinations of at least two active agents which may be combined in a a single dosage fform or provided together in separate dosage forms with instructions that the active agents are tolbe used together to treat any disorder described herein.

As: used herein, "pharmaceutically acceptable salt" is a derivative of the disclosed compound in which the parent compound is modified by making inorganic and organic, mon-toxic, acidl or base addition salts thereof. The salts of the present compounds can lbe synthesized ffrom a parent: compound that contains a basic or acidic moiety by conventional chemical methods. Generally, such salts can be prepared by reacting free acid forms of these compounds with a stoichiometric: amount of the appropriate base (such as $\mathrm{Na}, \mathrm{Ca}, \mathrm{Mg}$, or K hydroxide, carbonate, bicarbonate, or the like), or by reacting free base forms of these compounds with a stoichiometric amount: of the: appropriate acid. Such reactions are typically carried out in water or iin an organic solvent, or in a mixture of the two. Generally, non-aqueous media like ether, ethyl acetate, ethanol, isopropanol, or acetonitrile are typical, where practicable. Salts of the present compounds ffurther include: solvates of the compounds and of the compound salts.

Examples. of pharmaceutically acceptable salts include, but are not limited to, imineral cor organic: acid salts of basic residues such as amines; alkali or organic salts of acidic residues ssuch as; carboxylic acids; and the like. The pharmaceutically acceptable :salts include the conventional non-toxic: salts. and the quaternary ammonium salts of the parent compound formed, for example, from non-toxic inorganic or organic acids. For example, conventional non-toxic acidsaltsiinclude those derived from inorganic acids such as hydrochloric, hydrobromic, sulfuric, sulfamic, phosphoric, nitric and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, pamoic, maleic, hhydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, mesylic, esylic, besylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isethionic, HOOC -(CH2)n-COOH^{-}where: n is $0-4$, and the like, or using a different acid that produces the same counterion. Lists;of additional suitable salts may be found, e.g., in Remington's PharmaceuticaliSciences, 17th ed., Mack Publishing Company, Easton, Pa., p. 1418 (1985).

The: term "carrier" applied to pharmaceutical compositions/combinations of the invention refers; to, a diluent, excipient, or vehicle with which an active compound is provided.

A "pharmaceutically acceptable excipient" means an excipient that is useful jin preparing a pharmaceutical composition/combination that is generally safe, non-toxic and neither biologically
nor otherwise inappropriate for administration to a host, typically a human. In one rembodiment, an excipient is used that is acceptable for veterinary use.

A "patient" or "host" or "subject" is a human or non-human animaliin meed of titreatmentor prevention of any of the disorders as specifically described herein, for example that iis imodulated by a natural (wild-type) or modified (non-wild type) protein that can lbe idegradedaccordingtotthe present invention, resulting in a therapeutic effect. Typically, the host iis ia human. .A"host"ımay alternatively refer to for example, a mammal, primate (e.g., human), cow, sheep, goat, lhorse, (dog, cat, rabbit, rat, mice, fish, bird and the like.

A "therapeutically effective amount" of a pharmaceutical composition/combination oftthis invention means an amount effective, when administered to a host, to provide attherapeuticlbenefit such as an amelioration of symptoms or reduction or diminution of the disease iitself.

Formula I, Formula II, and Formula V

In one: aspect of the present invention a compound of Formula I, Formula III, or IFormula'V iss provided:

(II), or

or a pharmaceutically acceptable salt, N -oxide, isotopic derivative, or prodrug thereof, optionally in_{a} a pharmaceutically acceptable carrier to form a composition; with variables as defined above.

Linker is a chemical group that attaches the Degron to a Targeting Ligand; ;and Targeting Ligand is a moiety that binds to a Target Protein, and wherein the Target Protein is a a mediator of disease: in a host.

Non-limiting examples of compounds of Formula I include:

5

 , and

Additional non-limiting examples of compounds of Formula I include:

5

5

 and

Additional non-limiting examples of compounds of Formula I include:

Additional non-limiting examples of compounds of Formula I include:

, and

Additional non-limiting examples of compounds of Formula I include:

and

Additional non-limiting examples of compounds of Formula I include:

5

NC

Non-limiting; examples of compounds of Formula VII include:

In one embodiment the compound of Formula V is selected from the below:

(Va)

(Vc)

(Vd)

(Vf);
wherein X^{10} is selected from:

Non limiting examples of compounds of Formula V include:

5

and
 wherein A is CH_{2} or $\mathrm{C}(\mathrm{O})$.

In another embodiment the Degron is selected from:

,

and
;
wherein A is CH_{2} or $\mathrm{C}(\mathrm{O})$.

Embodiments of $\mathbf{N R}^{\mathbf{1}} \mathbf{R}^{\mathbf{2}}$

Non-limiting examples of R^{1} include:

Non-limiting examples of heterocyclo and heteroaryl species formed lby combining $\backslash \mathrm{R}^{1}$ and

, and

Non-limiting examples of heterocyclo and heteroaryl species formed lby combining $\backslash \mathrm{R}^{1}$ and R^{2} 'include:

10

 , and

Non-limiting examples of heterocyclo and heteroaryl species formed by combining R^{1} and R^{2} include:

Formula III and Formula IV
In another aspect of the present invention a compound of Formula III or IFormula IIV iis provided:

(III) or

(IV)
or a pharmaceutically acceptable salt, N -oxide, isotopic derivative, or prodrug thereof, optionally in a pharmaceutically acceptable carrier to form a composition as described above.

Non-limiting examples of heterocyclo and heteroaryl species formedibyicombining $\mid \mathrm{R}^{13}$ and R^{2} include:

Non-limiting examples of heterocyclo and heteroaryl species formed by combining R^{13} and R^{2} include:

Non-limiting examples of heterocyclo and heteroaryl species formedlbycombininglR ${ }^{13}$ cand R^{2} 'include:

Nonlimiting examples of compounds of Formula III include:

5

and

Additional non-limiting examples of compounds of Formula III include:

Additional non-limiting examples of compounds of Formula III include:

 5

and

Additional non-limiting examples of compounds of Formula I include:

Linker
A Linker is included in the Degronimers of Formula I, II, V and VII. Linkerjis a abondor a_{a} chemically stable group that attaches a Degron to a Targeting Ligand.

Any of the Linkers described herein can be used in either direction, i.e., either the lleftend is; linked to, the Degron and the right end to the Target Linker, or the leftend is linkedtothe Target Linker and the right end is linked to the Degron. According to the invention, any desired jlinker can be:used as, long as the resulting compound has a stable shelf life for at lleast' 2 , months, 3 , months,

6i months or 1 year as part of a pharmaceutically acceptable dosage fform, and iitself is pharmaceutically acceptable.

In a typical embodiment, the Linker has a chain of 2 to $14,15,16,17,18$ or 20 or ormore carbon atoms, of" which one or more carbons can be replaced lby a heteroatom such as $1 \mathrm{O}, \mathrm{N}$, S , or P. In certain embodiments the chain has $2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19$ or 20 ' contiguous atoms in the chain. For example, the chain may include 1 ormore ethylene!glycol units: that can be contiguous, partially contiguous or non-contiguous (for example, 2, 3, 3, 4, 5, 16, 7, $8,9,10,11$ or 12 ethylene glycol units). In certain embodiments the chain lhas atlleast $1,2,3,4,5$, 6 , 7 , or 8 contiguous chains which can have branches which can lbe iindependently alkyl, heteroalkyl, aryl, heteroaryl, alkenyl, or alkynyl, aliphatic, heteroaliphatic, ccycloalkyl or heterocyclic: substituents.

In other embodiments, the linker can include or be comprised of one or more of rethylene glycol, propylene glycol, lactic acid and/or glycolic acid. In general, propylene \mathfrak{g} lycol adds hydrophobicity, while propylene glycol adds hydrophilicity. Lactic acid segments ttend to lhave a longer half-life than glycolic acid segments. Block and random lactic acid-co-glycolic acid moieties, as well as ethylene glycol and propylene glycol, are known in the art to be pharmaceutically acceptable and can be modified or arranged to obtain the desired thalf-life and hydrophilicity. In certain aspects, these units can be flanked or interspersed with other imoieties, such as: aliphatic, including alkyl, heteroaliphatic, aryl, heteroaryl, heterocyclic, cycloalkyl, etc., as; desired to, achieve the appropriate drug properties.

In one: embodiment, the Linker is a moiety selected from Formula LI,FormulalLII,Formula LIII, Formula LIV, Formula LV, Formula LVI, and Formula LVII:

(LII),

(LV),

 (LVII),
wherein:
X^{1} and X^{2} are independently selected from bond, $\mathrm{NH}, \mathrm{NR}^{25}, \mathrm{CH}_{2}, \mathrm{CHR}^{25}, \mathrm{C}\left(\mathrm{R}^{25}\right)_{2}, \mathrm{O}$, and S;
$\mathrm{R}^{20}, \mathrm{R}^{21}, \mathrm{R}^{22}, \mathrm{R}^{23}$, and R^{24} are independently selected from lbond, alkyl, --C(O)- --C(O)O-, --$\mathrm{OC}(\mathrm{O})-,-\mathrm{C}(\mathrm{O})$ alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{Oalkyl}, \quad-\mathrm{C}(\mathrm{S})-,-\mathrm{SO}_{2}-,-\mathrm{S}(\mathrm{O})-,-\mathrm{C}(\mathrm{S})-,-\mathrm{C}(\mathrm{O}) \mathrm{NH}-, \quad-\mathrm{NHC}(\mathrm{O})-,--$ $\mathrm{N}(\mathrm{alkyl}) \mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{alkyl})-,-\mathrm{O}-,-\mathrm{S}-,-\mathrm{NH}-,-\mathrm{N}(\mathrm{alkyl})-,-\mathrm{CH}\left(-\mathrm{O}-\mathrm{R}^{26}\right)-,-\mathrm{CH}\left(-\mathrm{NHR}{ }^{25}\right)-,-\mathrm{CH}(-$ $\left.\mathrm{NH}_{2}\right)$-, - $\mathrm{CH}\left(-\mathrm{NR}^{25}{ }_{2}\right)-,-\mathrm{C}\left(-\mathrm{O}-\mathrm{R}^{26}\right)$ alkyl-, $-\mathrm{C}\left(-\mathrm{NHR}^{25}\right)$ alkyl-, $-\mathrm{C}(-\mathrm{NH} 2)$ alkyl-, $-\mathrm{C}\left(-\mathrm{NR}^{25}{ }_{2}\right)$ alkyl-, -$\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{4}\right)$-, -alkyl $\left(\mathrm{R}^{27}\right)-\operatorname{alkyl}\left(\mathrm{R}^{28}\right)-,-\mathrm{C}\left(\mathrm{R}^{27} \mathrm{R}^{28}\right)-,-\mathrm{P}(\mathrm{O})\left(\mathrm{OR}^{26}\right) \mathrm{O}-,-\mathrm{P}(\mathrm{O})\left(\mathrm{OR}^{26}\right)-,-\mathrm{NHC}(\mathrm{O}) \mathrm{NH}-, \quad-$ $\mathrm{N}\left(\mathrm{R}^{25}\right) \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{25}\right)$-, $-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{25}\right)$-, polyethylene glycol, poly(lactic-co-glycolic acid), alkene, haloalkyl, alkoxy, and alkyne;
or $\cdot \mathrm{R}^{20}, \mathrm{R}^{21}, \mathrm{R}^{22}, \mathrm{R}^{23}$, and R^{24} can in addition to those above be independently selected from heteroarylalkyl, aryl, arylalkyl, heterocycle, aliphatic, heteroaliphatic, Theteroaryl, ppolypropylene glycol, lactic acid, glycolic acid, carbocycle, or -O-(CH2)1-12-O-,--NH-(CH2)1-12-NH-,--NH-(CH2)1-12-O-, or - $-\mathrm{O}-(\mathrm{CH} 2) 1-12-\mathrm{NH}-,-\mathrm{S}-(\mathrm{CH} 2) 1-12-\mathrm{O}-,-\mathrm{O}-(\mathrm{CH} 2) 1-12-\mathrm{S}-,-\mathrm{S}-(\mathrm{CH} 2) 1-12-\mathrm{S}-,-\mathrm{S}-(\mathrm{CH} 2) 1-12-\mathrm{NH}-,--$ $\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{S}-$, (and wherein the 1-12 can be independently $1,2,3,4,5,6,7,8,9,10,11$ or 12 , and \mid wherein one: or more of the CH 2 or NH can be modified by substitution of $\mathfrak{a}] \mathrm{H}$ ffor ${ }_{\mathrm{a}} \mathrm{a}$ methyl, ethyl, cyclopropyl, F (if' on carbon), etc, as described herein), and optionally, a lheteroatom, heteroalkyl, aryl, heteroaryl or cycloaliphatic group is interspersed in the chain). (Certain
nonlimiting; examples include $-\mathrm{O}-\mathrm{CH}(\mathrm{CH} 3)-\mathrm{CH}(\mathrm{CH} 3) \mathrm{CH}-\mathrm{O}-$, $-\mathrm{O}-\mathrm{CH} 2-\mathrm{CH}(\mathrm{CH} 3) \mathrm{CH}-\mathrm{O}-$, --O-$\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2} \mathrm{CH}-\mathrm{O}-$, etc.
each of which $R^{20}, R^{21}, R^{22}, R^{23}$, and R^{24} is optionally substituted with one or more substituents : selected from R^{101} or alternatively as described in Section 1. Definitions;
R^{101} is independently selected at each occurrence from hydrogen, alkyl, alkene, salkyne, haloalkyl, alkoxy, hydroxyl, aryl, heteroaryl, heterocycle, arylalkyl, lheteroarylalkyl, heterocycloalkyl, aryloxy, heteroaryloxy, CN, -COOalkyl, COOH, NO2, $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{II}, \mathrm{ICF} 3, \mathrm{INH} 2$, NHalkyl, N (alkyl)2, aliphatic, and heteroaliphatic; and
R^{4} is selected at each instance from: alkyl, alkene, alkyne, halogen, lhydroxyl, alkoxy, azide, amino, cyano, -NH(aliphatic, including alkyl), -N(aliphatic, iincluding alkyl)2, -NHSO2(aliphatic, including alkyl), -N(aliphatic, including alkyl)SO2alkyl, --NHSO2(aryl, heteroaryl or heterocyclic), $-\mathrm{N}($ alkyl $) \mathrm{SO}_{2}$ aryl, heteroaryl or heterocyclic) -- NHSO_{2} alkenyl, $-\mathrm{N}($ alkyl $) \mathrm{SO}_{2}$ alkenyl, $-\mathrm{NHSO}_{2}$ alkynyl, $-\mathrm{N}($ alkyl $) \mathrm{SO}_{2}$ alkynyl, and haloalkyl; and iin addition tto these: can also be selected from aliphatic, heteroaliphatic, aryl, heteroaryl, Iheteroalkyl and carbocyclic.

In an additional embodiment, the Linker is a moiety selected from Formula JVIII, ILIX, andlLX:

(LVIII),

(LIX), and
 (LX),
wherein each variable is as it is defined in Formula LI. In alternative embodiments of LVIII, LIX and LX, a carbocyclic ring is used in place of the heterocycle.

The: following are non-limiting examples of Linkers that can lbe used in this iinvention. Based on this elaboration, those of skill in the art will understand how to use the full lbreadth of Linkers that will accomplish the goal of the invention.

Asi certain non-limiting examples, Formula LI, Formula LII, Formula LIII, FormulalLIV, Formula LV, Formula LVI, or Formula LVII include:

10

In an additional embodiment Linker is selected from:

5i $\quad \mathrm{In}_{\downarrow} \mathrm{an}_{\imath}$ additional embodiment Linker is selected from:

In one: embodiment X^{1} is attached to the Targeting Ligand. In another embodiment X^{2} is attached to the: Targeting Ligand.

Additional non-limiting examples of moieties of $\mathrm{R}^{20}, \mathrm{R}^{21}, \mathrm{R}^{22}, \mathrm{R}^{23}$, and R^{24} include:

5

Additional non-limiting examples of moieties of $\mathrm{R}^{20}, \mathrm{R}^{21}, \mathrm{R}^{22}, \mathrm{R}^{23}$, and R^{24} include:

In additional embodiments, the Linker group is an optionally substituted (poly)ethylene glycol having at least 1 , at least 2 , at least 3 , at least 4 , at least 5 , at least 6 , at lleast ' 7 , at lleast $\uparrow 8$, eat least: 9 , at:least: 10 , ethylene glycol units, or optionally substituted alkyl groups interspersed with optionally substituted, $\mathrm{O}, \mathrm{N}, \mathrm{S}, \mathrm{P}$ or Si atoms. In certain embodiments, the Linker iis fflanked, substituted, or interspersed with an aryl, phenyl, benzyl, alkyl, alkylene, or lheterocycle !group. IIn certain embodiments, the Linker may be asymmetric or symmetrical. In some embodiments, the Linker is a substituted or unsubstituted polyethylene glycol group ranging in size from about 1 to about: 12 ethylene glycol units, between 1 and about 10 ethylene glycol units, about .2 about 6 ethylene:glycol units, between about 2 and 5 ethylene glycol units, between about 2 and 4 sethylene glycol units. In any of the embodiments of the compounds described herein, the lLinker !group imay be:any suitable : moiety as described herein.

In additional embodiments, the Linker is selected from:
$-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 1}$-(lower alkyl)-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 1}$-(lower alkoxyl)-,
-NR ${ }^{61}$ (CH2)n1-(lower alkoxyl)-OCH2-, -NR ${ }^{61}$ (CH2)n1-(lower alkoxyl)-(lower alkyl)-OCH2-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 1}$-(cycloalkyl)-(lower alkyl)- $\mathrm{OCH}_{2}-,-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 1}$-(heterocycloalkyl)-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n} 1}$-(lower alkyl)-O-CH ${ }_{2}-,-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n} 1}$-(heterocycloalkyl)-O-CH ${ }_{2}-$, $-\mathrm{NR}^{61}(\mathrm{CH} 2 \mathrm{CH} 2 \mathrm{O}) \mathrm{n} 1-\mathrm{Aryl}-\mathrm{O}-\mathrm{CH} 2-,-\mathrm{NR}^{61}(\mathrm{CH} 2 \mathrm{CH} 2 \mathrm{O})$ n1-(heteroaryl)-O-CH2-, -NR ${ }^{61}$ (CH2CH2O)n1-(cycloalkyl)-O-(heteroaryl)-O-CH2-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n} 1}$-(cycloalkyl)-O-Aryl-O-CH ${ }_{2}$-, $-\mathrm{NR}^{61}(\mathrm{CH} 2 \mathrm{CH} 2 \mathrm{O}) \mathrm{n} 1$-(lower alkyl)-NH-Aryl-O- CH2-, -NR ${ }^{61}$ (CH2CH2O)n1-(lower alkyl)-O-Aryl-CH2, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n} 1}$-cycloalkyl-O-Aryl-, - $\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n} 1}$-cycloalkyl-O-heteroaryl-, $-\mathrm{NR}^{61}(\mathrm{CH} 2 \mathrm{CH} 2) \mathrm{n} 1$-(cycloalkyl)-O-(heterocycle)-CH2, $-\mathrm{NR}^{61}(\mathrm{CH} 2 \mathrm{CH} 2) \mathrm{n} 1$-(heterocycle)-(heterocycle)-CH2, and - NR^{61}-(heterocycle)-CH2; wherein n 1 is. $0,1,2,3,4,5,6,7,8,9$, or 10 ; and R^{61} is; H , methyl, or ethyl.

In additional embodiments, the Linker is selected from:
$-\mathrm{N}\left(\mathrm{R}^{61}\right)-(\mathrm{CH} 2) \mathrm{m} 1-\mathrm{O}(\mathrm{CH} 2) \mathrm{n} 2-\mathrm{O}(\mathrm{CH} 2) \mathrm{o} 1-\mathrm{O}(\mathrm{CH} 2) \mathrm{p} 1-\mathrm{O}(\mathrm{CH} 2) \mathrm{q} 1-\mathrm{O}(\mathrm{CH} 2) \mathrm{r} 1-\mathrm{OCH} 2-$,
$-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{\mathrm{m} 1}-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 2}-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{o} 1}-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{p} 1}-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{q} 1}-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{r} 1}-\mathrm{OCH}_{2}-$,
-O-(CH2)m1-O(CH2)n2-O(CH2)o1-O(CH2)p1-O(CH2)q1-O(CH2)r1-O-;
$-\mathrm{N}\left(\mathrm{R}^{61}\right)-(\mathrm{CH} 2) \mathrm{m} 1-\mathrm{O}(\mathrm{CH} 2) \mathrm{n} 2-\mathrm{O}(\mathrm{CH} 2) \mathrm{o} 1-\mathrm{O}(\mathrm{CH} 2) \mathrm{p} 1-\mathrm{O}(\mathrm{CH} 2) \mathrm{q} 1-\mathrm{O}(\mathrm{CH} 2) \mathrm{r} 1-\mathrm{O}-;$
-(CH2)m1-O(CH2)n2-O(CH2)o1-O(CH2)p1-O(CH2)q1-O(CH2)r1-O-;
$-\left(\mathrm{CH}_{2}\right)_{\mathrm{m} 1}-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 2}-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{o} 1}-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{p} 1}-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{q} 1}-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{r} 1}-\mathrm{OCH}_{2}-;$
$-\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{m} 1} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{p} 11} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{q} 1} \mathrm{OCH}_{2}-$;
$-\mathrm{O}(\mathrm{CH} 2) \mathrm{m} 1 \mathrm{O}(\mathrm{CH} 2) \mathrm{n} 2 \mathrm{O}(\mathrm{CH} 2) \mathrm{p} 1 \mathrm{O}(\mathrm{CH} 2) \mathrm{q} 1 \mathrm{OCH} 2-$; wherein

10
$\mathrm{m} 1, \mathrm{n} 2, \mathrm{o} 1, \mathrm{p} 1, \mathrm{q} 1$, and r 1 are independently $1,2,3,4$, or 5 ; and R^{61} isi H, methyl, or ethyl.

In additional embodiments, the Linker is selected from:

$\stackrel{\mathrm{O}\left(\mathrm{CH}_{2}\right)_{\mathrm{m}} \mathrm{O}_{\mathrm{O}}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OCH}_{2}}{\stackrel{\mathrm{NH}}{3}}$

$\mathrm{m} 1, \mathrm{n} 2, \mathrm{o} 1, \mathrm{p} 1, \mathrm{q} 2$, and $\mid \mathrm{r} 1$ are: independently $1,2,3,4$, or 5 .
Inıadditional embodiments, the Linker is selected from:

10

In additional embodiments, the Linker is selected from:

and

In additional embodiments, the Linker is selected from:

,

wherein R^{71} is - $\mathrm{O}-,-\mathrm{NH}$, Nalkyl, heteroaliphatic, aliphatic, or -NMe .
In additional embodiments, the Linker is selected from:

In additional embodiments, the Linker is selected from:

In additional embodiments, the Linker is selected from:

In additional embodiments, the Linker is selected from:

, and

In additional embodiments, the Linker is selected from:

In additional embodiments, the Linker is selected from:

In certain embodiments, the Linker is selected from:

In certain embodiments the Linker is selected from:

In certain embodiments, Linker can be a 4-24 carbon atom linear ichains, 'wherein one (or more: the: carbon atoms in the linear chain can be replaced or substituted with oxygen, nitrogen, amide, fluorinated carbon, etc., such as the following:
Conces)
(2)

10

In certain embodiments, Linker can be a nonlinear chain, and can Ibe, or jinclude, aliphatic or aromatic: or heteroaromatic cyclic moieties.

In certain embodiments, the Linker may include contiguous, partially contiguous or 1 noncontiguous, ethylene glycol unit groups ranging in size from about 1 to about 12 ethylene gglycol units, between 1 and about 10 ethylene glycol units, about 2 about 6 ethylene glycol,units,between
about 2 and 5 ethylene glycol units, between about 2 and 4 ethylene glycol tunits, for example, 1 , $2,3,4,6,6,7,8,9,10,11$ or 12 ethylene glycol units.

In certain embodiments, the Linker may have $1,2,3,4,5,16,7,8,9,10,11,12,13,14$, or 15 fluorine: substituents. In another embodiment the Linker is perfluorinated. In .yet another embodiment the Linker is a partially or fully fluorinated poly ether. Nonlimiting examples of fluorinated Linkers include:

In certain embodiments, where the Target Ligand binds more than one protein (i.e., iis not completely selective), selectivity may be enhanced by varying Linker llength where the lligand binds; some: of its, targets in different binding pockets, e.g., deeper or shallower lbinding pockets than others. Therefore, the length can be adjusted as desired.

In certain embodiments, the present invention includes the Degron-Linker,(DL) havingthe following structure:

DLI,

In another embodiment, the present invention provides the Degron-Linker(DL) lhavingtthe following structure:

DLIh,

 DLIa,

DLIab,

DLIac,

DLIad,

DLIag,

DLIai,
$\left(R^{4}\right)_{n}$
 DLIaj,

DLIak,

 DLIam,
 DLIan,
 DLIao,

DLIap,

DLIaq,

DLIar,

DLIat,

DLIau,

$\left(R^{4}\right)_{n}$

DLIaw,
 DLIax,
 DLIay,

DLIaz,

DLIaad,

DLIaae,

DLIaaf,

DLIaag,

DLIaam,

DLIaan,

DLIaap,

DLIaaq,

DLIaar,
wherein each of the variables is as described above in Formula I and Formula LII, and a'Targeting Ligand is covalently bonded to the DL with the - next to X^{2}.

Target Proteins

Degradation of cellular proteins is required for cell homeostasis and normal cell function, such as, proliferation, differentiation and cell death. When this system lbecomes dysfunctional or does; not identify and abate abnormal protein behavior in vivo, a disease state ican arise in alalhost, such as; a human. A large range of proteins can cause, modulate or amplify diseases in vivo, as well known to those skilled in the art, published in literature and patent filings as well as presented in_{\mid}scientific presentations.

Therefore, in one embodiment, a selected Degronimer compound of the presentinnvention can be; administered in vivo in an effective amount to a host in need thereof to degrade a $\mathfrak{\text { s selected }}$ protein that mediates a disorder to be treated. The selected protein target may modulate adisorder in_{\perp} a human via a mechanism of action such as modification of a biological pathway, pathogenic signaling; or modulation of a signal cascade or cellular entry. In one embodiment, the 'Target

Proteinis a protein that is not drugable in the classic sense in that it does not lhave albindingtpocket or an active site that can be inhibited or otherwise bound, and cannot lbe reasily allosterically controlled. In another embodiment, the Target Protein is a protein that iis idrugable iin the classic sense, yet for therapeutic purposes, degradation of the protein is preferred to iinhibition.

The: Target Protein is recruited with a Targeting Ligand, which iis a ligand ffor the Target Protein. Typically the Targeting Ligand binds the Target Protein in a non-covalentffashion.IIn an alternative: embodiment, the Target Protein is covalently bound to the Degroniin a mannerthatican be: irreversible: or reversible.

In one embodiment, the selected Target Protein is expressed from a undergone: an amplification, translocation, deletion, or inversion event which icauses or iis scaused by a medical disorder. In certain aspects, the selected Target Protein has Ibeen post-translationally modified by one, or a combination, of phosphorylation, acetylation, acylation including propionylation and crotylation, N -linked glycosylation, amidation, hydroxylation,methylationand poly-methylation, O-linked glycosylation, pyrogultamoylation, myristoylation, ffarnesylation, geranylgeranylation, ubiquitination, sumoylation, or sulfation which icauses or is scaused lby a medical disorder.

Asi contemplated herein, the present invention includes an Degronimer with a Targeting Ligand that binds to a Target Protein of interest. The Target Protein is any amino acid sequencetto which an Degronimer can be bound which by degradation thereof, causes a lbeneficial therapeutic effect in vivo. In one embodiment, the Target Protein is a non-endogenous peptide such as that from a pathogen or toxin. In another embodiment, the Target Protein can lbe an endogenousprotein that:mediates a disorder. The endogenous protein can be either the normal form of the protein or an_{1} aberrant form. For example, the Target Protein can be a mutant protein found in cancer cells, or a protein, for example, where a partial, or full, gain-of-function or loss-of-function is encoded by nucleotide polymorphisms. In some embodiments, the Degronimer targets the aberrantfform ${ }_{(}$of the: protein and not the normal form of the protein. In another embodiment, the Target]Protein ©can mediate: an inflammatory disorder or an immune disorder, including an auto-immune disorder.In one: embodiment, the Target Protein is a non-endogenous protein from a virus, as non-limiting examples, HIV, HBV, HCV, RSV, HPV, CMV, flavivirus, pestivirus, coronavirus, noroviridae, etc. In $_{\text {o }}$ one embodiment, the Target Protein is a non-endogenous protein from a lbacteria, which may be;for example, a gram positive bacteria, gram negative bacteria or other, and canlbe ;ådrug-
resistant form of bacteria. In one embodiment, the Target Protein is a anon-endogenouspproteinffrom arfungus. In one embodiment, the Target Protein is a non-endogenous proteinffromapaprion.IInone embodiment, the Target Protein is a protein derived from a eukaryotic pathogen, for example a protist, helminth, etc.

In one aspect, the Target Protein mediates chromatin structure and function. 'The 'Target Protein may mediate an epigenetic action such as DNA methylation or covalent modification of histones. An example is histone deacetylase (HDAC 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11). Alternatively, the: Target Protein may be a bromodomain, which are readers of lysine acetylation (for eexample, BRD1, 2, 3, 4, 5, 6, 7, 8,9 and T. FIG. 9 illustrates the proteins of the lbromodomain ffamily, which, for example, can act as Target Proteins according to the presentiinvention.

Other nonlimiting examples of Target Proteins are a structural protein, receptor, enzyme, cell surface: protein, a protein involved in apoptotic signaling, aromatase, helicase, mediator of a metabolic: process (anabolism or catabolism), antioxidant, protease, kinase, oxidoreductase, transferase, hydrolase, lyase, isomerase, ligase, enzyme regulator, signal transducer, structural molecule, binding activity (protein, lipid carbohydrate), cell motility protein, membrane ffusion protein, cell communication mediator, regulator of biological processes, behavioral protein, ccell adhesion protein, protein involved in cell death, protein involved in transport (including protein transporter activity, nuclear transport, ion transporter, channel transporter, carrier activity, permease, secretase or secretion mediator, electron transporter, chaperone regulator, mucleic acid binding, transcription regulator, extracellular organization and biogenesis regulator, and translation regulator).

In one: embodiment, the Target Protein is a modulator of a signaling cascade related to a known disease state. In another embodiment, the Target Protein mediates a disorder by a mechanism different from modulating a signaling cascade. Any protein in a a eukaryotic ssystem or almicrobial system, including a virus, bacteria or fungus, as otherwise described $]$ herein, are ${ }^{\text {targets }}$ for proteasomal degradation using the present invention. The Target Protein may lbe a a eukaryotic protein, and in some embodiments, a human protein.

In one embodiment, the Target Protein is RXR, DHFR, Hsp90, a a kinase, HDM2,1MDM2, BET' bromodomain-containing protein, HDAC, IDH1, Mcl-1, human lysine ${ }_{1}$ methyltransferase, a nuclear hormone receptor, aryl hydrocarbon receptor (AHR), RAS, RAF, FLT, ;SMARC, 〕KSR, NF2L, CTNB, CBLB, BCL.

In one: embodiment, a bromodomain containing protein has histone acetyl transferase activity.

In one embodiment, the bromodomain containing protein is BRD2, BRD3, BRD4, BRDT or ASH1L.

In one: embodiment, the bromodomain containing protein is a a non-BET pprotein.
In one embodiment, the non-BET protein is BRD7 or BRD9.
In one embodiment, the FLT is not FLT 3. In one embodiment, the RAS is mot IRASK.IIn one:embodiment, the RAF is not RAF1. In one embodiment, the SMARC iis not 'SMARC2.IIncone embodiment, the: KSR is not KSR1. In one embodiment, the NF2L is not NF2L2. In cone embodiment, the CTNB is not CTNB1. In one embodiment, the BCL is not BCL6.

In one embodiment, the Target Protein is selected from: EGFR, FLT3, RAF1, SMRCA 2 , KSR1, NF2L2, CTNB1, CBLB, BCL6, and RASK.

In another embodiment, the Target Protein is not selected from: EGFR, F FLT3, RAF1, SMRCA2, KSR1, NF2L2, CTNB1, CBLB, BCL6, and RASK.

In one embodiment, the Targeting Ligand is an EGFR ligand, a FLT3 lligand, alRAF1 ligand, a SMRCA2 ligand, a KSR1 ligand, a NF2L2 ligand, a CTNB1 ligand, a a CBLB lligand, a BCL6i ligand, or a RASK ligand.

In one embodiment, the Targeting Ligand is not a EGFR ligand, alFLT3 lligand, alRAF1 ligand, a SMRCA2 ligand, a KSR1 ligand, a NF2L2 ligand, a CTNB1 ligand, a a CBLB lligand, a BCL6 ligand, or a RASK ligand.

The present invention may be used to treat a wide range of disease states and/orconditions, including; any disease state and/or condition in which a protein is dysregulated and where apatient would benefit from the degradation of proteins.

For example, a Target Protein can be selected that is a known target for a lhuman therapeutic, and the therapeutic can be used as the Targeting Ligand when jincorporated into the Degronimer according to the present invention. These include proteins which may be used to restore: function in a polygenic disease, including for example B7.1 and B7, TINFR1m, 'TNFR2, NADPH oxidase, Bcl2/Bax and other partners in the apoptosis pathway, C 5 a , receptor,,HMG-CoA reductase, PDE V phosphodiesterase type, PDE IV phosphodiesterase type 4 , JPDE II, 〕PDEII, PDEIII, squalene: cyclase inhibitor, CXCR1, CXCR2, nitric oxide (NO);synthase, cyclo-oxygenase 1 , cyclo-oxygenase 2 , 5 HT receptors, dopamine receptors, G Proteins, e.g.., Gq , hhistamine
receptors, 5-lipoxygenase, tryptase serine protease, thymidylate synthase, purine inucleoside phosphorylase, GAPDH trypanosomal, glycogen phosphorylase, Carbonic anhydrase, chemokine receptors, JAW STAT, RXR and similar, HIV 1 protease, HIV 1 integrase, iinfluenza, neuraminidase, hepatitis B reverse transcriptase, sodium channel, multi drug resistance (MDR), protein P-glycoprotein (and MRP), tyrosine kinases, CD23, CD124, tyrosine lkinase pp561lck, ICD4, CD5, IL- 2 receptor, IL-1 receptor, TNF-alphaR, ICAM1, Cat+ channels, VCAM, VLA-4iintegrin, selectins, CD40/CD40L, neurokinins and receptors, inosine monophosphate dehydrogenase, p 38 MAP'Kinase, Ras/Raf/MER/ERK pathway, interleukin-1 converting enzyme, caspase, HCV ,INS3 protease, HCV NS3 RNA helicase, glycinamide ribonucleotide formyl transferase, rhinovirus.3C protease, herpes simplex virus-1 (HSV-I), protease, cytomegalovirus(CMV) protease, poly((ADPribose) polymerase, cyclin dependent kinases, vascular endothelial growth factor, oxytocin receptor, microsomal transfer protein inhibitor, bile acid transport inhibitor, 5 alpha reductase inhibitors, angiotensin 11, glycine receptor, noradrenaline reuptake receptor, endothelinireceptors, neuropeptide: Y and receptor, estrogen receptors, androgen receptors, adenosine receptors, adenosine: kinase: and AMP deaminase, purinergic receptors (P2Y1, P2Y2, P2Y4, P2Y $2, \mathrm{P} 2 \mathrm{X} 1-7$), farnesyltransferases, geranylgeranyl transferase, TrkA a receptor for NGF, beta-amyloid,tyrosine kinase: Flk-IIKDR, vitronectin receptor, integrin receptor, Her-2/neu, telomerase iinhibition, cytosolic phospholipaseA2 and EGF receptor tyrosine kinase. Additional protein targets include, for example, ecdysone 20-monooxygenase, ion channel of the GABA gated chloride channel, acetylcholinesterase, voltage-sensitive sodium channel protein, calcium release channel, and chloride channels. Still further Target Proteins include Acetyl-CoA carboxylase, adenylosuccinate synthetase, protoporphyrinogen oxidase, and enolpyruvylshikimate-phosphate synthase.

In certain embodiments, the Target Protein is derived from a kinase to whichthe Targeting Ligand is; capable: of binding or binds including, but not limited to, a tyrosine kinase ($(e . g .$, AATK, ABL, ABL2, ALK, AXL, BLK, BMX, BTK, CSF1R, CSK, DDR1, DDR2, JEGFR, JEPHA1, EPHA2, EPHA3, EPHA4, EPHA5, EPHA6, EPHA7, EPHA8, EPHA10, ןEPHB1, ןEPHB2, EPHB3, EPHB4, EPHB6, ERBB2, ERBB3, ERBB4, FER, FES, FGFR1, JFGFR2, JFGFR3, FGFR4, FGR, FLT1, FLT3, FLT4, FRK, FYN, GSG2, HCK, IGF1R, ILK, INSR, INSRR,IRAK4, ITK, JAK1, JAK2, JAK3, KDR, KIT, KSR1, LCK, LMTK2, LMTK3, LTK, ,LYN, „MATK, MERTK, MET, MLTK, MST1R, MUSK, NPR1, NTRK1, NTRK2, NTRK3, JPDGFRA, PDGFRB, PLK4, PTK2, PTK2B, PTK6, PTK7, RET, ROR1, ROR2,ROS1,RYK,;SGK493,SSRC,

SRMS, STYK1, SYK, TEC, TEK, TEX14, TIE1, TNK1, TNK2,'TNNI3K,'TXK,'TYK2,'TYRO3, YES1, or ZAP70).

In certain embodiments, the Target Protein is derived from a kinase to whichthe'Targeting Ligand isi capable: of "binding or binds including, but not limited to, a serine/threonine lkinase ($(e . g$., casein kinase: 2, protein kinase A, protein kinase B, protein kinase ${ }^{\mathrm{C}}$, Raf kinases, ${ }^{\mathrm{C}}$ CaM lkinases, AKT1, AKT2, AKT3, ALK1, ALK2, ALK3, ALK4, Aurora A, Aurora B, Aurora IC, ICHK1, CHK2, CLK1, CLK2, CLK3, DAPK1, DAPK2, DAPK3, DMPK, ERK1, ERK2, EERK5, IGCK, GSK3, HIPK, KHS1, LKB1, LOK, MAPKAPK2, MAPKAPK, MNK1, MSSK1,IMST1,IMST2, MST4, NDR, NEK2, NEK3, NEK6, NEK7, NEK9, NEK11, PAK1,PAK2,PAK3,IPAK4,PAK5, PAK6, PIM1, PIM2, PLK1, RIP2, RIP5, RSK1, RSK2, SGK2, SGK3, 'SIK1, 'STK33, 'TAO1, TAO2, TGF-beta, TLK2, TSSK1, TSSK2, ULK1, or ULK2).

In certain embodiments, the Target Protein is derived from a kinase to whichtthe Targeting Ligand is capable of binding or binds including, but not limited to a cyclin dependent lkinase ffor example: CDK1, CDK2, CDK3, CDK4, CDK5, CDK6, CDK7, CDK8, CDK9, ICDK10, ICDK11, CDK12, or CDK13.

In certain embodiments, the Target Protein is derived from a kinase to which the 'Targeting Ligand is: capable: of binding or binds including, but not limited to a leucine-rich repeat lkinase (e.g., LRRK2).

In certain embodiments, the Target Protein is derived from a kinase to whichtthe 'Targeting Ligand is capable of binding or binds including, but not limited to a lipid kinase (e.g., ,PIK3CA, PIK3CB) or a sphingosine kinase (e.g. S1P).

In certain embodiments, the Target Protein is derived from a BET lbromodomaincontaining; protein to which the Targeting Ligand is capable of binding or binds jincluding, lbutınot limited to, ASH1L, ATAD2, BAZ1A, BAZ1B, BAZ2A, BAZ2B, BRD1, BRD2,]BRD3, JBRD4, BRD5, BRD6, BRD7, BRD8, BRD9, BRD10, BRDT, BRPF1, BRPF3,]BRWD3, CECR2, CREBBP, EP300, FALZ, GCN5L2, KIAA1240, LOC93349, MLL, PB1,]PCAF, 〕PHIP, PRKCBP1, SMARCA2, SMARCA4, SP100, SP110, SP140, TAF1, TAF1L, 'TIF1a, 'TRIM28, TRIM33, TRIM66, WDR9, ZMYND11, and MLL4. In certain embodiments, a 〕BET bromodomain-containing protein is BRD4.

In certain embodiments, the Target Protein is derived from a nuclear protein to which the Targeting Ligand is capable of binding or binds including, but not limited to, $1 \mathrm{BRD} 2, \ldots \mathrm{BRD} 3$,

BRD4, Antennapedia Homeodomain Protein, BRCA1, BRCA2, CCAAT-Enhanced-Binding Proteins, histones, Polycomb-group proteins, High Mobility Group Proteins, 'Telomere IBinding Proteins, FANCA, FANCD2, FANCE, FANCF, hepatocyte nuclear factors, Mad2, $\mathbb{N} F-$ kappalB, Nuclear Receptor Coactivators, CREB-binding protein, p55, p107, p130, Rb proteins, p53, cc-fos, c-jun, c-mdm2, c-myc, and c-rel.

In certain embodiments, the Target Protein is a member of the Retinoid.XJReceptor((RXR) family and the disorder treated is a neuropsychiatric or neurodegenerative disorder. In certain embodiments, the: Target Protein is a member of the Retinoid X Receptor (RXR) ffamily and the disorder treated is. schizophrenia.

In certain embodiments, the Target Protein is dihydrofolate reductase (DHFR) and the disorder treated is cancer. In certain embodiments, the Target Protein is dihydrofolate reductase (DHFR) and the disorder treated is microbial.

In certain embodiments, the Target Protein is dihydrofolate reductase from lbacillus anthracis: (BaDHFR) and the disorder treated is anthrax.

In certain embodiments, the Target Protein is Heat Shock Protein '90 (HSP90) and the disorder treated is cancer.

In certain embodiments, the Target Protein is a kinase or phosphatase and the disorder treated is cancer.

In certain embodiments, the Target Protein is HDM2 and or MDM2 and the idisorderitreated is; cancer.

In certain embodiments, the Target Protein is a BET bromodomain containing protein and the: disorder treated is cancer.

In certain embodiments, the Target Protein is a lysine methyltransferase and the disorder treated is, cancer.

In certain embodiments, the Target Protein belongs to the RAF family and the disorder treated is cancer.

In certain embodiments, the Target Protein belongs to the JFKBP family and the disorder treated is, an autoimmune disorder. In certain embodiments, the Target Protein belongs to the FKBP family and the disorder treated is organ rejection. In certain embodiments, the Target Protein belongs to the FKBP family and the compound is given prophylactically to preventorgan failure.

In certain embodiments, the Target Protein is an androgen receptor andtherdisorderttreated is; cancer.

In certain embodiments, the Target Protein is an estrogen receptor and the rdisorderttreated is; cancer.

In certain embodiments, the Target Protein is a viral protein and the disorder treated iis á viral infection. In certain embodiments, the Target Protein is a viral protein andthe disorderttreated is: HIV, HPV, or HCV.

In certain embodiments, the Target Protein is an AP-1 or AP-2 transcription ffactorandthe disorder treated is cancer.

In certain embodiments, the Target Protein is a HIV protease and the disorder treatediis a HIV infection. In certain embodiments, the Target Protein is a HIV integrase and the disorder treated is a.HIV infection. In certain embodiments, the Target Protein is a HCV protease and the disorder treated is a HCV infection. In certain embodiments, the treatment iis prophylacticandtthe Target:Protein is a viral protein.

In certain embodiments, the Target Protein is a member of the histone deacetylase (HDAC) family and the disorder is a neurodegenerative disorder. In certain embodiments, the'Target|Protein is; al member of the histone deacetylase (HDAC) family and the disorder iis]Huntingon's, Parkinson's, Kennedy disease, amyotropic lateral sclerosis, Rubinstein-Taybisyndrome,orstroke.

In certain embodiments, the Target Protein as referred to herein is mamed lby the gene that expresses, it. The person skilled in the art will recognize that when agene is referredto as a'Target Protein, the protein encoded by the gene is the Target Protein. For example, ligands fforthe protein SMCA2 which is encoded by SMRCA2 are referred to as SMRCA2 Targeting Ligands.

Targeting Ligands

In certain aspects, the Targeting Ligand is a ligand which covalently or mon-covalently binds; to, a Target Protein which has been selected for proteasomal degradation lby the selected Degronimer. A Targeting Ligand is a small molecule or moiety (for example a apeptide, nnucleotide, antibody, antibody fragment, aptamer, biomolecule or other chemical structure) that binds to \mathfrak{a} Target Protein, and wherein the Target Protein is a mediator of disease in a host as described in detail below. Exemplary Target Ligands are provided in FIGS. 1A- :8PPPPP.

In one embodiment, the Targeting Ligand binds to an endogenous jprotein 'which lhaslbeen selected for degradation as a means to achieve a therapeutic effect on the lhost. Illustrative Targeting; Ligands include: RXR ligands, DHFR ligands, Hsp90 inhibitors, kinase iinhibitors, HDM2 and MDM2 inhibitors, compounds targeting Human BET lbromodomain-containing proteins, HDAC inhibitors, ligands of MerTK, ligands of IDH1, lligands of Mcl-1, ligands of SMRCA2, ligands of EGFR, ligands of RAF, ligands of cRAF, human llysine methyltransferase inhibitors, angiogenesis inhibitors, nuclear hormone receptor compounds, iimmunosuppressive compounds, and compounds targeting the aryl hydrocarbon receptor (AHR), among mumerous others. Targeting; Ligands also considered to include their pharmaceutically acceptable ssalts, prodrugs and isotopic derivatives.

In certain aspects, the Targeting Ligand binds to a dehalogenase enzyme in a patient or subject: or in a diagnostic assay and is a haloalkane (preferably a $\mathrm{C}_{1}-\mathrm{C}_{10}$ alkyl group which is substituted with at least one halo group, preferably a halo group at the distal iend of the alkyl group (i.e., away from the Linker). In still other embodiments, the Targeting Ligand iis alhaloalkyl group, wherein said alkyl group generally ranges in size from about 1 or 2 carbons to about 12 carbonsiin length, often about 2 to 10 carbons in length, often about 3 carbons to about i8 carbons in llength, more:often about: 4 carbons to about 6 carbons in length. The haloalkyl groups are generally llinear alkyl groupsi (although branched-chain alkyl groups may also lbe used) and are end-capped with cat least: one: halogen group, preferably a single halogen group, often a single chloride group. Haloalkyl PT, groups for use in the present invention are preferably represented by the chemical structure:-(CH2)v-Halo where v is any integer from 2 to about 12 , often about 3 to about $\$ 8$, more often about: 4 to about 6 . Halo may be any halogen, but is preferably Cl_{1} or Br, more often Cl .

In certain embodiments, the Targeting Ligand is a retinoid X receptor (RXR) agonist or antagonist. Non-limiting examples include retinol, retinoic acid, bexarotene, docosahexenoic acid, compounds: disclosed in WO 9929324, the publication by Canan Koch et al. (J.)Med. IChem. 1996, 39, 3229-3234) titled "Identification of the First Retinoid X Receptor Homodimer Antagonist", WO 9712853 , EP 0947496A1, WO 2016002968, and analogs thereof.

In certain embodiments, the Targeting Ligand is a DHFR agonist or antagonist.]Nonlimiting; examples include folic acid, methotrexate, 8,10-dideazatetrahydrofolate compounds disclosed by Tian et al. (Chem. Biol. Drug Des. 2016, 87, 444-454) titled "'Synthesis, Antifolate and Anticancer Activities of N5-Substituted 8,10-Dideazatetrahydrofolate Analogues",
compounds prepared by Kaur et al. (Biorg. Med. Chem. Lett. 2016, 26, 1936-1940)tititled'"Rational Modification of the Lead Molecule: Enhancement in the Anticancer and Dihydrofolate/Reductase Inhibitory Activity", WO 2016022890, compounds disclosed by Zhang et al. (Int. J. . Antimicrob. Agents: 46, 174-182) titled "New Small-Molecule Inhibitors of Dihydrofolate Reductase IInhibit Streptococcus Mutans", modified trimethoprim analogs developed lby Singh retial. (IJ. IMed. IChem. 2012, 55, 6381-6390) titled "Mechanism Inspired Development of Rationally JDesigned Dihydrofolate: Reductase Inhibitors as Anticancer Agents", WO20111153310, and analogs thereof.

In certain embodiments, the Targeting Ligand derived from estrogen, an estrogen analog, SERM (selective estrogen receptor modulator), a SERD (selective estrogen receptor degrader), a complete:estrogen receptor degrader, or another form of partial or complete estrogen antagonistor agonist. Examples are the partial anti-estrogens raloxifene and tamoxifen and the complete antiestrogen fulvestrant. Non-limiting examples of anti-estrogen compounds are providediin ${ }^{\text {'WO }}$ 2014/19176 assigned to Astra Zeneca, WO2013/090921, WO 2014/203129, 'WO 2014/203132, andl US2013/0178445 assigned to Olema Pharmaceuticals, and U.S. Patent Nos. 9,078,871, $8,853,423$, and $8,703,810$, as well as US 2015/0005286, WO 2014/205136, and 'WO'2014/205138. Additional non-limiting examples of anti-estrogen compounds include: SERMS such as anordrin, bazedoxifene, broparestriol, chlorotrianisene, clomiphene citrate, cyclofenil, llasofoxifene, ormeloxifene, raloxifene, tamoxifen, toremifene, and fulvestrant; aromatase iinhibitors such as aminoglutethimide, testolactone, anastrozole, exemestane, fadrozole, formestane, and lletrozole; andl antigonadotropins such as leuprorelin, cetrorelix, allylestrenol, chloromadinone acetate, cyproterone: acetate, delmadinone acetate, dydrogesterone, medroxyprogesterone acetate, megestrol acetate, nomegestrol acetate, norethisterone acetate, progesterone, and spironolactone. Other estrogenic ligands that can be used according to the present invention are describediinIU.S. Patent: Nos. 4,418,068; 5,478,847; 5,393,763; and 5,457,117, WO2011/156518, US JPatent JNos. 8,455,534 and 8,299,112, U.S. Patent Nos. 9,078,871; 8,853,423; 8,703,810; IUS 2015/0005286; and WO 2014/205138, US2016/0175289, US2015/0258080, WO 2014/191726, 'WO 2012/084711; WO 2002/013802; WO 2002/004418; WO 2002/003992; 'WO 2002/003991; 'WO 2002/003990; WO 2002/003989; WO 2002/003988; WO 2002/003986; 'WO 2002/003977; 'WO 2002/003976; WO 2002/003975; WO 2006/078834; US 6821989; US 2002/0128276; IUS 6777424; US 2002/0016340; US 6326392; US 6756401; US 2002/0013327; US 6512002; IUS

6632834; US 2001/0056099; US 6583170; US 6479535; WO 1999/024027; US 16005102 ; IEP 0802184; US 5998402; US 5780497, US 5880137, WO 2012/048058 and WO’2007/087684.

In certain embodiments, the Targeting Ligand is a HSP90 inhibitor identified iin 'Valleeret al. (J. Med. Chem. 2011, 54, 7206-7219) titled "Tricyclic Series of Heat Shock IProtein'90((Hsp90) Inhibitors PartI: Discovery of Tricyclic Imidazo[4,5-C]Pyridines as Potent InhibitorsoftthelHsp90 Molecular Chaperone", including YKB (N-[4-(3H-imidazo[4,5-C]Pyridin-2-yl)-9H-Fluoren-9-yl]-succinamide), a HSP90 inhibitors (modified) identified in Brough et al. (J.IMed. IChem.'2008, 51, 196-218) titled "4,5-Diarylisoxazole Hsp90 Chaperone Inhibitors: Potential Therapeutic Agents: for the Treatment of Cancer", including compound 2GJ (5-[2,4-dihydroxy-5-(1-methylethyl)phenyl]-n-ethyl-4-[4-(morpholin-4-ylmethyl)phenyl]isoxazole-3-carboxamide), the HSP90 inhibitor geldanamycin ((4E,6Z,8S,9S,10E,12S,13R,14S,16R)-13-hydroxy-8,14,19-trimethoxy-4,10,12,16-tetramethyl-3,20,22-trioxo-2-azabicyclo[16.3.1] (derivatized) or any of iits derivatives, (e.g. 17-alkylamino-17-desmethoxygeldanamycin ("17-AAG") or 17-(2-dimethylaminoethyl)amino-17-desmethoxygeldanamycin ("17-DMAG")), or a lHSP90 iinhibitor (modified) identified in Wright et al. (Chem. Biol. 2004, 11, 775-785) tititled "'Structure-Activity Relationships. in Purine-Based Inhibitor Binding to Hsp90 Isoforms", including the 1HSP90 inhibitor PU3. Other non-limiting examples of Hsp90 Targeting Ligands iinclude :SNX5422 currently in phase I clinical trials Reddy et al. (Clin. Lymphoma Myeloma Leuk. 2013, 13,.385391), titled "Phase: I Trial of the Hsp90 Inhibitor Pf-04929113 (Snx5422) in .Adult JPatients rwith Recurrent, Refractory Hematologic Malignancies", or NVP-AUY922 whose anti-cancer activity was; assessed by Jensen et al. (Breast Cancer Research : BCR 2008, 10, R33-R33) titled '"NvpAuy922: A Small Molecule Hsp90 Inhibitor with Potent Antitumor Activity jin_Preclinical]Breast Cancer-Models".

In certain embodiments, the Targeting Ligand is a kinase inhibitor identified in]Millan eet al. (J. Med. Chem. 2011, 54, 7797-7814) titled "Design and Synthesis of Inhaled 〕P38 JInhibitors for the: Treatment of Chronic Obstructive Pulmonary Disease", including the kinase inhibitors Y1W and Y1X, a kinase inhibitor identified in Schenkel et al. (J. „Med. IChem. 2011, 54, 884408450), titled "Discovery of Potent and Highly Selective Thienopyridine Janus Kinase ${ }_{2}$ _IInhibitors", including; the: compounds 6TP and 0TP, a kinase inhibitor identified in van Eis et ;al. (Biorg. ${ }^{\text {IMed. }}$ Chem. Lett. 2011, 21, 7367-7372) titled "2,6-Naphthyridines as Potent and Selective Jnhibitors of
the: Novel Protein Kinase C Isozymes", including the kinase inhibitors '07U and YCFiidentifiediin Lountos et al. (J. Struct. Biol. 2011, 176, 292-301) titled "Structural Characterization of IInhibitor Complexes with Checkpoint Kinase 2 (Chk2), a Drug Target for Cancer Therapy", iincluding the kinase: inhibitors XK9 and NXP, afatinib, fostamatinib, gefitinib, lenvatinib, vandetanib, Gleevec, pazopanib, AT-9283, TAE684, nilotanib, NVP-BSK805, crizotinib, JNJFMS, foretinib, IOSI-027, OSI-930, or OSI-906 .

In certain embodiments, the Targeting Ligand is a HDM2/MDM2 iinhibitor iidentified iin Vassilev et al. (Science 2004, 303, 844-848) titled "In Vivo Activation of the PP53 PPathway lby Small-Molecule: Antagonists of Mdm2", and Schneekloth et al. (Bioorg. IMed. 'Chem. Lett. '2008, 18, 5904-5908) titled "Targeted Intracellular Protein Degradation Induced by a a 'Small IMolecule: En Route: to Chemical Proteomics", including the compounds nutlin-3, nutlin-2, and mutlin-1.

In certain embodiments, the Targeting Ligand is a Human BET Bromodomain Targeting Ligand identified in Filippakopoulos et al. (Nature 2010, 468, 1067-1073) titled "'Selective Inhibition of Bet:Bromodomains" such as JQ1; a ligand identified in Nicodemeret:al.(Nature:2010, 468, 1119-1123) titled "Suppression of Inflammation by a Synthetic Histone Mimic"; Chung eetaal. (J. Med. Chem. 2011, 54, 3827-3838) titled "Discovery and Characterization of :Small IMolecule Inhibitors of the: Bet Family Bromodomains"; a compound disclosed in Hewings eet al. (J. IMed. Chem. 2011, 54, 6761-6770) titled "3,5-Dimethylisoxazoles Act as Acetyl-Lysine-Mimetic Bromodomain Ligands"; a ligand identified in Dawson et al. (Nature 2011, 478, 529-533) ttitled "Inhibition of Bet Recruitment to Chromatin as an Effective Treatment for lMLL-Fusion Leukaemia"; or a ligand identified in the following patent applications US 2015/0256700, IUS 2015/0148342, WO 2015/074064, WO 2015/067770, WO 2015/022332, WO :2015/015318, and WO 2015/011084.

In certain embodiments, the Targeting Ligand is a HDAC Targeting Ligand jidentified iin Finnin $_{l}$ et al. (Nature 1999, 401, 188-193) titled "Structures of a Histone DeacetylaseJHomologue Bound to, the: Tsa and Saha Inhibitors", or a ligand identified as Formula (I) in]PCT ${ }^{\prime}$ WO0222577.

In certain embodiments, the Targeting Ligand is a Human Lysine Methyltransferaselligand identified in Chang et al. (Nat Struct Mol Biol 2009, 16, 312-317) titled "'Structural]Basis fforıG9aLike; Protein Lysine Methyltransferase Inhibition by Bix-01294", a ligand jidentified jin JLiu „et ${ }_{\text {alal }}$. (Jr Med' Chem 2009, 52, 7950-7953) titled "Discovery of a ${ }^{\prime}$ 2,4-Diamino-7-

Aminoalkoxyquinazoline as a Potent and Selective Inhibitor of Histone Lysine Methyltransferase G9a", azacitidine, decitabine, or an analog thereof.

In certain embodiments, the Targeting Ligand is an angiogenesis iinhibitor. ${ }^{\text {Non-limiting }}$ examples of angiogenesis inhibitors include: GA-1, estradiol, testosterone, ovalicin, ffumagillin, and analogs: thereof.

In certain embodiments, the Targeting Ligand is an immunosuppressive compound.INonlimiting, examples of immunosuppressive compounds include: AP21998, lhydrocortisone, prednisone, prednisolone, methylprednisolone, beclometasone dipropionate, methotrexate, ciclosporin, tacrolimus, actinomycin, and analogues thereof.

In certain embodiments, the Targeting Ligand is an Aryl Hydrocarbon Receptor ((AHR) ligand. Non-limiting examples of AHR ligands include: apigenin, SR1, LGC006, and analogues thereof.

In certain embodiments, the Targeting Ligand is a MerTK or Mer 'Targeting lligand.INonlimiting; examples of MerTK Targeting Ligands are included in WO2013/177168 and WO2014/085225, both titled "Pyrimidine Compounds for the Treatment of Cancer" ffiled lby Wang, et al.

In certain embodiments, the Targeting Ligand is an EGFR ligand. In certain embodiments the: Targeting, Ligand is an EGRF ligand selected from Afatinib, Dacomitinib, Neratinib, Poziotinib, and Canertinib, or derivatives thereof.

In certain embodiments, the Targeting Ligand is a FLT3 Ligand. In icertain rembodiments, the: Targeting, Ligand is a FLT3 ligand selected from Tandutinib, Lestaurtinib, Sorafenib, Midostaurin, Quizartinib, and Crenolanib.

In certain embodiments, the Targeting Ligand is a RAF inhibitor. In certain embodiments the:Targeting,Ligand is a RAF inhibitor selected from Dabrafenib, Regorafenib,and Vemurafenib. Incertain embodiments the Targeting Ligand is a cRAF inhibitor.

In some embodiments, the Targeting Ligand is an Ubc9 SUMO E2 ligase:5F6D'Targeting Ligand including but not limited to those described in "Insights Into the Allosteric Innhibition of the: SUMO E2 Enzyme Ubc9."by Hewitt, W.M., et. al. (2016) Angew.Chem.Int.Ed.Engl. 555 5703-5707

In another embodiment, the Targeting Ligand is a Tank1 Targeting Ligand jincluding but not:limited to, those described in "Structure of human tankyrase 1 in complex with small-molecule
inhibitors'PJ34 and XAV939." Kirby, C.A., Cheung, A., Fazal, A., 'Shultz, M.D., 'Stams,'T,((2012) Acta Crystallogr.,Sect.F 68: 115-118; and "Structure-Efficiency Relationship of [[1,2,4]Triazol-3ylaminesi as. Novel Nicotinamide Isosteres that Inhibit Tankyrases." Shultz, IM.D., eet al. (2013) J.Med.Chem. 56: 7049-7059.

In another embodiment, the Targeting Ligand is a SH2 domain of ppp60 'Src Targeting Ligand including; but not limited to those described in "Requirements for SpecificlBindingoflLow Affinity Inhibitor Fragments to the SH2 Domain of pp60Src Are Identical to Those ffor IHigh Affinity Binding; of Full Length Inhibitors," Gudrun Lange, et al., J. Med. Chem. '2003,46, 51845195.

In another embodiment, the Targeting Ligand is a Sec 7 domain TargetinglLigandiincluding but:not:limited to those described in "The Lysosomal Protein Saposin B Binds iChloroquine, " ${ }^{\prime}$ Huta, B.P., et:al., (2016) Chemmedchem 11: 277.

In another embodiment, the Targeting Ligand is a Saposin-B 'Targeting Ligand iincluding but:not limited to those described in "The structure of cytomegalovirusimmune modulatorIUL141 highlights; structural Ig-fold versatility for receptor binding" I. Nemcovicova and ID. IM. 'Zajonc Acta Cryst. (2014). D70, 851-862.

In another embodiment, the Targeting Ligand is a Protein S100-A7 2OWS Targeting Ligand including; but not limited to those described in "2WOS STRUCTURE IOF IHUMAN S100A7 IN COMPLEX WITH 2,6 ANS" DOI: 10.2210/pdb2wos/pdb; and "Identification and Characterization of Binding Sites on S100A7, a Participant in Cancer and Inflammation Pathways." Leon, R., Murray, et al., (2009) Biochemistry 48: 10591-10600.

In another embodiment, the Targeting Ligand is a Phospholipase A2 Targeting ILigand including; but not limited to those described in "Structure-based design of the ffirst potent and selective: inhibitor of human non-pancreatic secretory phospholipase A2 " ;Schevitz, R.W., (et al., Nat. Struct. Biol. 1995, 2, 458-465.

In another embodiment, the Targeting Ligand is a PHIP Targeting Ligand jincluding but not limited to those described in "A Poised Fragment Library Enables Rapid :Synthetic \backslash Expansion Yielding; the: First Reported Inhibitors of PHIP(2), an Atypical Bromodomain" JKrojer, 'T.; „et aal. Chem. Sci. 2016, 7, 2322-2330.

In another embodiment, the Targeting Ligand is a PDZ Targeting Ligandiincludinglbutinot limited to those: described in "Discovery of Low-Molecular-Weight Ligands for the AF6 IPDZ Domain" Mangesh Joshi, et al. Angew. Chem. Int. Ed. 2006, 45, 3790-3795.

In another embodiment, the Targeting Ligand is a PARP15 Targeting Ligandiincludinglbut not limited to those described in "Structural Basis for Lack of ADP-ribosyltransferase Activityiin Poly(ADP-ribose) Polymerase-13/Zinc Finger Antiviral Protein." Karlberg, 'T., et al., ((2015) J.Biol.Chem. 290: 7336-7344.

In another embodiment, the Targeting Ligand is a PARP14 Targeting.Ligandiincludinglbut not:limited to those described in "Discovery of Ligands for ADP-RibosyltransferasesvialDockingBasedl Virtual Screening." Andersson, C.D., et al.,(2012) J.Med.Chem. 55:'7706-7718.;""Familywide chemical profiling and structural analysis of PARP and tankyrase inhibitors."Wahlberg, IE. , et: al. (2012) Nat.Biotechnol. 30: 283-288.; "Discovery of Ligands for ADP-Ribosyltransferases viaı Docking-Based Virtual Screening. "Andersson, C.D., et al. (2012) J.Med.Chem. '55: '77067718.

In another embodiment, the Targeting Ligand is a MTH1 Targeting Ligand including lbut not:limited to those described in "MTH1 inhibition eradicates cancer by preventing sanitation of the: dNTP' pool" Helge Gad, et. al. Nature, 2014, 508, 215-221.

In another embodiment, the Targeting Ligand is a mPGES-1 Targeting Ligand iincluding but not limited to those described in "Crystal Structures of mPGES-1 Inhibitor IComplexesIForm al $_{\bullet}$ Basisi for the Rational Design of Potent Analgesic and Anti-Inflammatory 'Therapeutics." ${ }^{\prime}$ Luz, J.G., et al., (2015) J.Med.Chem. 58: 4727-4737.

In another embodiment, the Targeting Ligand is a FLAP- 5-lipoxygenase-activating protein Targeting Ligand including but not limited to those described in "Crystal structure of inhibitor-bound human 5-lipoxygenase-activating protein,"Ferguson, A.D., McKeever,,B.M., XXu, S., Wisniewski, D., Miller, D.K., Yamin, T.T., Spencer, R.H., Chu, L., IUjjainwalla, JF., Cunningham, B.R., Evans, J.F., Becker, J.W. (2007) Science 317: 510-512.

In another embodiment, the Targeting Ligand is a FA Binding Protein Targeting Ligand including; but not limited to those described in "A Real-World Perspective on]Molecular]Design." Kuhn, B.; et al. J. Med. Chem. 2016, 59, 4087-4102.

In another embodiment, the Targeting Ligand is a BCL2 Targeting Ligand jincluding tbut not limited to those described in "ABT-199, a potent and selective BCL-2 inhibitor, achieves
antitumor'activity while sparing platelets." Souers, A.J., et al. (2013) NAT.MED.।(N.Y.) 19:'202208.

In another embodiment, the Targeting Ligand is a NF2L2 Targeting Ligand.
In another embodiment, the Targeting Ligand is a CTNNB1 Targeting Ligand.

In another embodiment, the Targeting Ligand is a CBLB Targeting.Ligand.
In another embodiment, the Targeting Ligand is a BCL6 Targeting.Ligand.
In another embodiment, the Targeting Ligand is a RASK Targeting Ligand.
In another embodiment, the Targeting Ligand is a TNIK Targeting Ligand.
In another embodiment, the Targeting Ligand is a MEN1 Targeting Ligand.
In another embodiment, the Targeting Ligand is a PI3Ka Targeting Ligand.
In another embodiment, the Targeting Ligand is a IDO1 Targeting Ligand.
In another embodiment, the Targeting Ligand is a MCL1 Targeting Ligand.
In another embodiment, the Targeting Ligand is a PTPN2 Targeting Ligand.
In another embodiment, the Targeting Ligand is a HER2 Targeting Ligand.
In another embodiment, the Targeting Ligand is an EGFR Targeting Ligand. In one embodiment the Targeting Ligand is selected from erlotinib (Tarceva), gefitinib (Iressa), afatinib (Gilotrif), rociletinib (CO-1686), osimertinib (Tagrisso), olmutinib (Olita), naquotinib(ASP8273), nazartinib (EGF816), PF-06747775 (Pfizer), icotinib (BPI-2009), neratinib (HKI-272; IPB272); avitinib (AC0010), EAI045, tarloxotinib (TH-4000; PR-610), PF-06459988 (Pfizer), thesevatinib (XL647; EXEL-7647; KD-019), transtinib, WZ-3146, WZ8040, CNX-2006, and dacomitinib ((PF00299804; Pfizer). The linker can be placed on these Targeting Ligands in any location that (does not interfere: with the Ligands binding to EGFR. Non-limiting examples of Linker binding locations are provided in the below tables. In one embodiment, the EGFR TargetingJLigandibinds the: L858R mutant of EGFR. In another embodiment, the EGFR Targeting Ligand binds the T790M mutant of EGFR. In another embodiment, the EGFR Targeting Ligand binds the (C797G or C797S mutant of EGFR. In one embodiment, the EGFR Targeting Ligand is selected ffrom erlotinib, gefitinib, afatinib, neratinib, and dacomitinib and binds the L858R mutant of JEGFR. IIn another embodiment, the EGFR Targeting Ligand is selected from osimertinib, prociletinib, olmutinib, naquotinib, nazartinib, PF-06747775, Icotinib, Neratinib, Avitinib, Tarloxotinib, JPF0645998, Tesevatinib, Transtinib, WZ-3146, WZ8040, and CNX-2006 and binds the 'T790M
mutant of EGFR. In another embodiment, the EGFR Targeting Ligand is EAI045 and lbinds the C797G or C797S mutant of EGFR.

In one embodiment, the protein target and Targeting Ligand pair are chosen lby sscreening a library of" ligands. Such a screening is exemplified in "Kinase Inhibitor Profiling IReveals Unexpected Opportunities to Inhibit Disease-Associated Mutant Kinases"lby Duong-Ly ettal.;'Cell Reports: 14, 772-781 February 2, 2016.

In one: embodiment, the protein target and Targeting Ligand pair are discovered lby screening; promiscuous kinase binding ligands for context-specific degradation. Non-limiting examples of"targeting ligands are shown below and are found in "Optimized Chemical Proteomics Assay for Kinase: Inhibitor Profiling" Guillaume Médard, Fiona Pachl, Benjamin Ruprecht,'Susan Klaeger,Stephanie: Heinzlmeir, Dominic Helm, Huichao Qiao, Xin Ku, Mathias'Wilhelm, Thomas Kuehne, Zhixiang. Wu, Antje Dittmann, Carsten Hopf, Karl Kramer, and Bernhard lKuster JJ. Proteome: Res., 2015, 14(3), pp 1574-1586:

CTX-related

DOI: 10.1021 acschembio. 5600847

Sunitinib

P0173074

CZC8004
These : ligands can be attached to linkers as shown below:

wherein:
R.isithe: point at which the Linker is attached.

According to the present invention, the Targeting Ligand ican lbe icovalently lbound to the Linker in any manner that achieves the desired results of the Degronimer ffor therapeutic use. IIn certain non-limiting embodiments, the Targeting Ligand is bound to the Linker with alfunctional group that:does not adversely affect the binding of the Ligand to the 'Target Protein. 'The attachment points :below are exemplary in nature and one of ordinary skill in the art would lbe able tordetermine different :appropriate : attachment points.

The: non-limiting compounds described below exemplify some of the members of these types ;of"small molecule :Targeting Ligands. In the Tables below, R is the point at which the]Linker is; attached to the Targeting Ligand.

In certain embodiments, the Targeting Ligand is a compound of Formula 'TL-I:

(TL-I),
or \cdot a pharmaceutically acceptable salt thereof, wherein:

A^{1} is S or $C=C$;
A^{2} is NRa^{5} or O ;
nn1 is, 0,1 , or 2 ;
each. Ra^{1} is independently $\mathrm{C} 1-\mathrm{C} 3$ alkyl, (CH2)0-3-CN, (CH 2)0-3-halogen, (CH 2)0-3-OH, (CH2)0-3-C1-C3 alkoxy, or R;
Ra^{2} is $\mathrm{H}, \mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl, $\left(\mathrm{CH}_{2}\right)_{0.3}$-heterocyclyl, $\left(\mathrm{CH}_{2}\right)_{0.3}$-phenyl, or R , wherein the heterocyclyl comprises one saturated 5-or 6-membered ring and 1-2 heteroatoms sselected ffrom
N, O, and S and is optionally substituted with C1-C3 alkyl and wherein the phenyl iis optionally substituted with $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl, CN , halogen, $\mathrm{OH}, \mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy;
nn 2 is $0,1,2$, or 3 ;
each Ra^{3} is independently $\mathrm{C} 1-\mathrm{C} 3$ alkyl, (CH2)0-3-CN, (CH2)0-3-halogen, or 1 R ;
Ra^{4} is. $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl;
Ra^{5} is. H or $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl; and
R is the: point at which the Linker is attached.
wherein the: compound of Formula TL-I is substituted with only one R.
In certain embodiments, the Targeting Ligand is a compound of Formula 'TL-VIII or Formula TL-IX:

wherein the compound of Formula TL-VIII or TL-IX is substituted with only one R .

In certain embodiments,

 is
In certain embodiments,
In certain embodiments, A^{1} is S .
In certain embodiments, A^{\prime} is $C=C$.

In certain embodiments, A^{2} is NRa^{5}. In further embodiments, Ra^{5} iis HH . IIn other embodiments, Ra^{5} is C1-C3 alkyl (e.g., methyl, ethyl, propyl, or ii-propyl). In further eembodiments, $\mathrm{Ra}^{5 \text { i }}$ is: methyl.

In certain embodiments, A^{2} is O .
In certain embodiments, nn 1 is 0 .
In certain embodiments, nn 1 is 1 .
In certain embodiments, $n n 1$ is 2 .
In certain embodiments, at least one Ra^{1} is $\mathrm{C} 1-\mathrm{C} 3$ alkyl (e.g., methyl, rethyl, propyl, or iipropyl). In further embodiments, at least one Ra^{1} is methyl. In further embodiments, ttwo Ra^{1} are methyl.

In certain embodiments, at least one Ra^{1} is $\mathrm{CN},\left(\mathrm{CH}_{2}\right)-\mathrm{CN},\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{CN}$, or $\left(\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{CN}\right.$. IIn further \cdot embodiments, at least one Ra^{1} is (CH 2)-CN.

In certain embodiments, at least one Ra^{1} is halogen $($ e.g., F, Cl, or Br$)$, ($\left(\mathrm{CH}_{2}\right)$-halogen, $\left(\mathrm{CH}_{2}\right)_{2}$-halogen, or $\left(\mathrm{CH}_{2}\right)_{3}$-halogen. In further embodiments, at least one Ra is $1 \mathrm{Cl},\left(\left(\mathrm{CH}_{2}\right)\right.$ - Cl , (CH2)2-Cl, or (CH2)3-Cl.

In certain embodiments, at least one Ra^{1} is $\mathrm{OH},(\mathrm{CH} 2)-\mathrm{OH},(\mathrm{CH} 2) 2-\mathrm{OH}$, or (CH 2) $3-\mathrm{OH}$.
In certain embodiments, at least one Ra^{1} is $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkoxy (e.g., methoxy, ethoxy, or propoxy), (CH2)-C1-C3 alkoxy, (CH2)2-C1-C3 alkoxy, or (CH2)3-C1-C3 alkoxy. In acertain embodiments, at least one Ra^{1} is methoxy.

In further embodiments, Ra^{5} is H . In other embodiments, Ra^{5} is $\mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl (e.g., methyl, ethyl, propyl, or i-propyl).

In further embodiments, Ra^{5} is H . In other embodiments, Ra^{5} is ${ }^{~} \mathrm{C} 1-\mathrm{C} 3$ alkyl ((e.g., Imethyl, ethyl, propyl, or i -propyl). In other embodiments, Ra^{5} is methyl.

In certain embodiments, one Ra^{1} is R .
In certain embodiments, Ra^{2} is H .

In certain embodiments, Ra^{2} is straight-chain $\mathrm{C}_{1}-\mathrm{C}_{6}$ or branched $\mathrm{C}_{3}-\mathrm{C}_{6}$ alkyl ($($ e.g., mmethyl, ethyl, propyl, i-propyl, butyl, i-butyl, t-butyl, pentyl, or hexyl). In further embodiments, Raa^{2} iis methyl, ethyl, or t-butyl.

In certain embodiments, Ra^{2} is heterocyclyl,(CH2)-heterocyclyl, ((CH2)2-heterocyclyl, or $\left(\mathrm{CH}_{2}\right)_{3}$-heterocyclyl. In further embodiments, Ra^{2} is $\left(\mathrm{CH}_{2}\right)_{3}$-heterocyclyl. IIn ffurther embodiments, the heterocyclyl is selected from pyrrolidinyl, pyrazolidinyl, iimidazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, isothiazolidinyl, piperidinyl, piperazinyl, hexahydropyrimidinyl, morpholinyl, and thiomorpholinyl. In further embodiments, the heterocyclyl is piperazinyl.

In certain embodiments, the heterocyclyl is substituted with C1-C3 alkyl (e.g., methyl, ethyl, propyl, or i-propyl).

In certain embodiments, Ra^{2} is phenyl, $\left(\mathrm{CH}_{2}\right)$-phenyl, $\left(\mathrm{CH}_{2}\right)_{2}$-phenyl, orl($\left(\mathrm{CH}_{2}\right)_{3}$-phenyl. IIn further embodiments, Ra^{2} is phenyl.

In certain embodiments, the phenyl is substituted with C1-C3 alkyl (e.g., methyl, rethyl, propyl, or i-propyl). In certain embodiments, the phenyl is substituted with CN . In (certain embodiments, the phenyl is substituted with halogen (e.g., F, Cl, or Br). In icertain rembodiments, the: phenyl is substituted with OH. In certain embodiments, the phenyl is substituted with 1 C 1 -C3 alkoxy (e.g., methoxy, ethoxy, or propoxy).

In certain embodiments, Ra^{2} is R .
In certain embodiments, nn 2 is 0 .
In certain embodiments, $n n 2$ is 1 .
In certain embodiments, $n n 2$ is 2 .
In certain embodiments, nn 2 is 3 .
In certain embodiments, at least one Ra^{3} is C1-C3 alkyl (e.g., methyl, ethyl, propyl, or jipropyl). In further embodiments, at least one Ra^{3} is methyl.

In certain embodiments, at least one Ra^{3} is CN , (CH2)-CN, (CH2)2-CN, or (CH2)3-CN. JIn further embodiments, at least one Ra^{3} is CN .

In certain embodiments, at least one Ra^{3} is halogen (e.g., F, Cl, or Br$)$, ((CH 2)-halogen, $\left(\mathrm{CH}_{2}\right)_{2}$-halogen, or $\left(\mathrm{CH}_{2}\right)_{3}$-halogen. In further embodiments, at least one Ra^{3} is $1 \mathrm{Cl}, \stackrel{(}{ }\left(\mathrm{CH}_{2}\right)-\mathrm{Cl}$, $\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{Cl}$, or $\left(\mathrm{CH}_{2}\right)_{3}-\mathrm{Cl}$. In further embodiments, at least one Ra^{3} is Cl .

In certain embodiments, one Ra^{3} is R .

In further embodiments, Ra^{5} is H . In other embodiments, Ra^{5} is ${ }^{1} \mathrm{C}_{1}-\mathrm{C}_{3}$ alkyl ($($ e.g., , methyl, ethyl, propyl, or i-propyl).

In certain embodiments, Ra^{4} is C1-C3 alkyl (e.g., methyl, ethyl, propyl, or ii-propyl). In further embodiments, Ra^{4} is methyl.

In certain embodiments, Ra^{5} is H .
In certain embodiments, Ra^{5} is C1-C3 alkyl (e.g., methyl, ethyl, propyl, or ii-propyl). In further embodiments, Ra^{5} is methyl.

In certain embodiments,

In certain embodiments, is , and A^{1} is $\mathrm{C}=\mathrm{C}$.

In certain embodiments, A^{2} is NH , and Ra^{2} is $\left(\mathrm{CH}_{2}\right)_{0,3}$-heterocyclyl. In ffurther embodiments, Ra^{2} is (CH 2)3-heterocyclyl.

In certain embodiments, A^{2} is NH , and Ra^{2} is (CH2)0-3-phenyl. In further eembodiments, Ra^{2} 'is; phenyl. In further embodiments, the phenyl is substituted with OH .

In certain embodiments, A^{2} is NH , and Ra^{2} is R .
In certain embodiments, A^{2} is NH , and Ra^{2} is H or C1-C6 alkyl. In further embodiments, Ra^{2} 'is; C1-C4 alkyl.

In certain embodiments, A^{2} is O , and Ra^{2} is H or $\mathrm{C}_{1}-\mathrm{C}_{6}$ alkyl. In further embodiments, JRa^{2} is; C1-C4 alkyl.
lecule or moiety (for example a peptide, nucleotide, antibody, antibody ffragment, 'aptamer, biomolecule: or other chemical structure) that binds to a Target Protein, and wherein the Target Protein is a mediator of disease in a host as described in detail below.

II. METHODS OF TREATMENT

The: N (substituted) $2-\mathrm{C}^{3}$-glutarimide or defined analogue thereof of Formula II, III, IIII, IIV andl V^{\prime} can be: used in an effective amount to treat a host, including a lhuman, in meed thereof, optionally in a pharmaceutically acceptable carrier to treat any of the disorders idescribed lherein.

The: terms. "treat", "treating", and "treatment", etc., as used herein, refer to any action providing; a benefit to a patient for which the present compounds may be administered, including the: treatment of any disease state or condition which is modulated through the protein to which the: present compounds bind. Illustrative non-limiting disease states or conditions, iincluding cancer, which may be treated using compounds according to the present invention are sset fforth hereinabove.

The: $\mathrm{N}(\text { substituted })_{2}-\mathrm{C}^{3}$-glutarimide or defined analogue thereof of Formula II and JFormula II compositions as described herein can be used to degrade a Target Protein which iis a mediator of the: disorder affecting the patient, such as a human. The control of protein llevel affordedlby the Formula I, Formula II, or Formula V Degronimers of the present invention provides treatment of a disease: state: or condition, which is modulated through the Target Protein lby llowering the llevel of that protein in the cell, e.g., cell of a patient. In certain embodiments, the method comprises administering; an effective amount of the compound as described herein, optionally including a pharmaceutically acceptable excipient, carrier, adjuvant, i.e., a pharmaceutically acceptable composition, optionally in combination with another bioactive agent or combination of agents.

The: term "disease state or condition" when used in connection with a a Formula II, Formula II, or Formula V compound is meant to refer to any disease state or condition wherein protein dysregulation (i.e., the amount of protein expressed in a patient is elevated) occurs via a Target Protein and where degradation of such protein in a patient may provide beneficial therapy or ${ }_{1}$ relief of symptoms, to a patient in need thereof. In certain instances, the disease :state or condition ${ }_{1}$ may be; cured. The: compounds of Formula I and Formula II, are for example useful as therapeutic
agentsi when administered in an effective amount to a host, including a human, tototreatalmyelo-cor lymphoproliferative disorder such as B- or T-cell lymphomas, multiple myeloma, 'Waldenstrom's macroglobulinemia, Wiskott-Aldrich syndrome, or a post-transplant lymphoproliferativedisorder; an immune: disorder, including autoimmune disorders such as Addison idisease, 'Celiac disease, dermatomyositis, Graves disease, thyroiditis, multiple sclerosis, pernicious anemia, reactive arthritis, lupus, or type I diabetes; a disease of cardiologic malfunction, iincluding hypercholesterolemia; an infectious disease, including viral and/or lbacterial iinfections; an inflammatory condition, including asthma, chronic peptic ulcers, tuberculosis, rheumatoid arthritis, periodontitis, ulcerative colitis, Crohn's disease, or hepatitis.

The: term "disease state or condition" when used in connection with a IFormula IIII or Formula, IV compound for example, refers to any therapeutic indication which ican lbe treated tby decreasing; the activity of cereblon or a cereblon-containing E3 Ligase, including lbut mot llimited to uses known for the cereblon binders thalidomide, pomalidomide or lenalidomide. INonlimiting examples of uses. for cereblon binders are multiple myeloma, a hematological disorder such as myelodysplastic syndrome, cancer, tumor, abnormal cellular proliferation, HIV/AIDS, IHBV, HCV, hepatitis, Crohn's disease, sarcoidosis, graft-versus-host disease, rrheumatoid arthritis, Behcet'si disease, tuberculosis, and myelofibrosis. Other indications iinclude a myelo- or lymphoproliferative disorder such as B- or T-cell lymphomas, Waldenstrom'sımacroglobulinemia, Wiskott-Aldrich syndrome, or a post-transplant lymphoproliferative disorder; an\#̈mmunedisorder, including;autoimmune disorders such as Addison disease, Celiac disease, dermatomyositis,,Graves disease, thyroiditis, multiple sclerosis, pernicious anemia, arthritis, and in particular rrheumatoid arthritis, lupus, or type I diabetes; a disease of cardiologic malfunction, iincluding hypercholesterolemia; an infectious disease, including viral and/or bacterialinfection, as,described generally herein; an inflammatory condition, including asthma, chronic peptic ,ulcers, tuberculosis, rheumatoid arthritis, periodontitis and ulcerative colitis.

In certain embodiments, the present invention provides for administering a compound of Formulasi I, II, III or IV to a method of treating a patient, for example, a hhuman, hhaving an infectious, disease, wherein the therapy targets a protein of the infectious agent, optionally in combination with another bioactive agent. The disease state or condition may lbe a disease caused by a microbial agent or other exogenous agent such as a virus (as non-limiting examples, JHIV, HBV, HCV, HSV, HPV, RSV, CMV, Ebola, Flavivirus, Pestivirus, Rotavirus, Influenza,

Coronavirus, EBV, viral pneumonia, drug-resistant viruses, Bird flu, RNA virus, IDNA rvirus, adenovirus, poxvirus, Picornavirus, Togavirus, Orthomyxovirus, Retrovirus or Hepadnovirus), bacteria. (Gram-negative, Gram-positive, , fungus, protozoa, helminth, worms, prion, parasite, or other microbe: or may be a disease state, which is caused by overexpression of a protein, which leads: to a disease: state and/or condition

In certain embodiments, the condition treated with a compound of the presentiinventioniis a disorder related to abnormal cellular proliferation. Abnormal cellular proliferation, motably hyperproliferation, can occur as a result of a wide variety of factors, including genetic mutation, infection, exposure to toxins, autoimmune disorders, and benign or malignant tumor iinduction.

There are a number of skin disorders associated with cellular hyperproliferation.IPsoriasis, for example, is a benign disease of human skin generally characterized lby plaques covered by thickened scales. The disease is caused by increased proliferation of epidermal cells of unknown cause. Chronic eczema is also associated with significant hyperproliferation of the eepidermis. Other diseases caused by hyperproliferation of skin cells include atopic dermatitis, llichen planus, warts, pemphigus vulgaris, actinic keratosis, basal cell carcinoma and squamous icell icarcinoma.

Other hyperproliferative cell disorders include blood vessel proliferationdisorders,ffibrotic disorders, autoimmune disorders, graft-versus-host rejection, tumors and icancers.

Blood vessel proliferative disorders include angiogenic and vasculogenic disorders. Proliferation of smooth muscle cells in the course of development of plaques in vascular ttissue cause, for example, restenosis, retinopathies and atherosclerosis. Both cell migration and cell proliferation play a role in the formation of atherosclerotic lesions.

Fibrotic disorders are often due to the abnormal formation of an extracellular matrix. Examples; of fibrotic disorders include hepatic cirrhosis and mesangial proliferative ceelldisorders. Hepatic; cirrhosis, is characterized by the increase in extracellular matrix sonstituents rresulting in the: formation of a hepatic scar. Hepatic cirrhosis can cause diseases such as cirrhosis of the liver. An increased extracellular matrix resulting in a hepatic scar can also be caused lby viral infection such as hepatitis. Lipocytes appear to play a major role in hepatic cirrhosis.

Mesangial disorders are brought about by abnormal proliferation of mesangial cells. Mesangial hyperproliferative cell disorders include various human renal diseases, such aas glomerulonephritis, diabetic nephropathy, malignant nephrosclerosis, thrombotic microangiopathy syndromes, transplant rejection, and glomerulopathies.

Another disease with a proliferative component is rheumatoid arthritis. lRheumatoid arthritis: is: generally considered an autoimmune disease that is thought to lbe associated 'with activity of autoreactive T cells, and to be caused by autoantibodies produced againsticollagen and IgE.

Other disorders that can include an abnormal cellular proliferative component iinclude Bechet'si syndrome, acute respiratory distress syndrome (ARDS), ischemic lheart disease, postdialysis syndrome, leukemia, acquired immune deficiency :syndrome, 'vasculitis, llipid histiocytosis, septic shock and inflammation in general.

Cutaneous contact hypersensitivity and asthma are just two examples of iimmune responses that can be: associated with significant morbidity. Others include atopic dermatitis, teczema, Sjogren's: Syndrome, including keratoconjunctivitis sicca secondary to 'Sjogren's :Syndrome, alopecia areata, allergic responses due to arthropod bite reactions, Crohn's idisease, aphthousulcer, iritis, conjunctivitis, keratoconjunctivitis, ulcerative colitis, cutaneous llupus erythematosus, scleroderma, vaginitis, proctitis, and drug eruptions. These conditions may result iin any one or more: of the: following symptoms or signs: itching, swelling, redness, blisters, crusting, ulceration, pain, scaling, cracking, hair loss, scarring, or oozing of fluid involving the skin, eye, or mucosal membranes.

In atopic: dermatitis, and eczema in general, immunologically mediated lleukocyte infiltration. (particularly infiltration of mononuclear cells, lymphocytes, meutrophils, and eosinophils), into the skin importantly contributes to the pathogenesis of these diseases. IChronic eczema also, is, associated with significant hyperproliferation of the epidermis. Immunologically mediated leukocyte infiltration also occurs at sites other than the skin, such as in the airways in asthma and in the: tear producing gland of the eye in keratoconjunctivitis sicca.

In one: non-limiting embodiment compounds of the present invention are used as topical agents; in treating contact dermatitis, atopic dermatitis, eczematous dermatitis, psoriasis, ‘Sjogren's Syndrome, including keratoconjunctivitis sicca secondary to Sjogren's Syndrome, alopecia;areata, allergic: responses due to arthropod bite reactions, Crohn's disease, aphthous ulcer, iiritis, conjunctivitis, keratoconjunctivitis, ulcerative colitis, asthma, allergic ;asthma, cutaneous llupus erythematosus, scleroderma, vaginitis, proctitis, and drug eruptions. The „novel ${ }_{\jmath}$ method ${ }_{1}$ may also be; useful in reducing the infiltration of skin by malignant leukocytes in diseases such as ımycosis fungoides. These compounds can also be used to treat an aqueous-deficient dry eye state ((such ans
immune mediated keratoconjunctivitis) in a patient suffering therefrom, lby administering the compound topically to the eye.

Disease: states of conditions which may be treated using compounds according to the present invention include, for example, asthma, autoimmune diseases such as multiple isclerosis, various cancers, ciliopathies, cleft palate, diabetes, heart disease, hypertension, iinflammatory bowel disease, mental retardation, mood disorder, obesity, refractive error, infertility, Angelman syndrome, Canavan disease, Coeliac disease, Charcot-Marie-Tooth disease, Cystic ffibrosis, Duchenne: muscular dystrophy, Haemochromatosis, Haemophilia, JKlinefelter's syndrome, Neurofibromatosis, Phenylketonuria, Polycystic kidney disease 1 (PKD1) or '2 (PKD2) IPraderWilli syndrome, Sickle-cell disease, Tay-Sachs disease, Turner syndrome.

Further disease states or conditions which may be treated by compounds according to the present invention include Alzheimer's disease, Amyotrophic lateral sclerosis (Lou 'Gehrig's disease), Anorexia nervosa, Anxiety disorder, Atherosclerosis, Attention deficit lhyperactivity disorder, Autism, Bipolar disorder, Chronic fatigue syndrome, Chronic obstructive pulmonary disease, Crohn's. disease, Coronary heart disease, Dementia, Depression, Diabetes imellitusitype 1, Diabetes mellitus, type 2, Epilepsy, Guillain-Barré syndrome, Irritable lbowel syyndrome, JLupus, Metabolic; syndrome, Multiple sclerosis, Myocardial infarction, Obesity, Obsessive-compulsive disorder, Panic disorder, Parkinson's disease, Psoriasis, Rheumatoid arthritis, 'Sarcoidosis, Schizophrenia, Stroke, Thromboangiitis obliterans, Tourette syndrome, Vasculitis.

Still additional disease states or conditions which can be treated lby compounds according to, the; present invention include aceruloplasminemia, Achondrogenesis type II, achondroplasia, Acrocephaly, Gaucher disease type 2, acute intermittent porphyria, Canavan disease, Adenomatous Polyposis Coli, ALA dehydratase deficiency, adenylosuccinate lyase deficiency, Adrenogenital syndrome, Adrenoleukodystrophy, ALA-D porphyria, ALA ddehydratase deficiency, Alkaptonuria, Alexander disease, Alkaptonuric ochronosis, alpha 1-antitrypsin deficiency, alpha-1 proteinase inhibitor, emphysema, amyotrophic lateral :sclerosis ,Alström syndrome, Alexander disease, Amelogenesis imperfecta, ALA dehydratase deficiency, AndersonFabry disease, androgen insensitivity syndrome, Anemia Angiokeratoma Corporis]Diffusum, Angiomatosis, retinae (von Hippel-Lindau disease) Apert syndrome, Arachnodactyly (Marfan syndrome), Stickler syndrome, Arthrochalasis multiplex congenital (Ehlers-Danlos syndrome\#arthrochalasia type) ataxia telangiectasia, Rett syndrome, primary pulmonary
hypertension, Sandhoff disease, neurofibromatosis type II, Beare-Stevenson cutis !gyrata syndrome, Mediterranean fever, familial, Benjamin syndrome, lbeta-thalassemia, IBilateral Acoustic: Neurofibromatosis (neurofibromatosis type II), factor V Leiden thrombophilia, IBlochSulzberger syndrome (incontinentia pigmenti), Bloom syndrome, X-linked sideroblastic anemia, Bonnevie-Ullrich syndrome (Turner syndrome), Bourneville disease (tuberous sclerosis), prion disease, Birt-Hogg-Dubé syndrome, Brittle bone disease (osteogenesis imperfecta), 1Broad'ThumbHallux: syndrome (Rubinstein-Taybi syndrome), Bronze Diabetes/Bronzed ICirrhosis (hemochromatosis), Bulbospinal muscular atrophy (Kennedy's disease), Burger-Grutz ssyndrome (lipoprotein lipase deficiency), CGD Chronic granulomatous disorder, Campomelic idysplasia, biotinidase: deficiency, Cardiomyopathy (Noonan syndrome), Cri idu ichat, ICAVD ((congenital absence: of the: vas deferens), Caylor cardiofacial syndrome (CBAVD), ICEP (congenital erythropoietic porphyria), cystic fibrosis, congenital hypothyroidism, Chondrodystrophy syndrome: (achondroplasia), otospondylomegaepiphyseal dysplasia, Lesch-Nyhan syndrome, galactosemia, Ehlers-Danlos syndrome, Thanatophoric dysplasia, Coffin-Lowry syydrome, Cockayne: syndrome, (familial adenomatous polyposis), Congenital erythropoietic porphyria, Congenital heart disease, Methemoglobinemia/Congenital methaemoglobinaemia, achondroplasia, X-linked sideroblastic anemia, Connective tissue disease, Conotruncal anomaly face: syndrome, Cooley's Anemia (beta-thalassemia), Copper storage disease (Wilson's disease), Copper transport disease (Menkes disease), hereditary coproporphyria, ICowden syndrome, Craniofacial dysarthrosis (Crouzon syndrome), Creutzfeldt-Jakob disease (prion disease), Cockayne: syndrome, Cowden syndrome, Curschmann-Batten-Steinert syndrome (myotonic dystrophy), Beare-Stevenson cutis gyrata syndrome, primary Ihyperoxaluria, spondyloepimetaphyseal dysplasia (Strudwick type), muscular dystrophy, Duchenne and JBecker types; (DBMD), Usher syndrome, Degenerative nerve diseases including de Grouchy syndrome and Dejerine-Sottas syndrome, developmental disabilities, distal spinal muscular atrophy, ttype'V, androgen insensitivity syndrome, Diffuse Globoid Body Sclerosis (Krabbe „disease), 1Di ¡George's syndrome, Dihydrotestosterone receptor deficiency, androgen insensitivity syndrome, 〕Down syndrome, Dwarfism, erythropoietic protoporphyria Erythroid 5-aminolevulinate ssynthetase deficiency, Erythropoietic porphyria, erythropoietic protoporphyria, erythropoietic uroporphyria, Friedreich's; ataxia-familial paroxysmal polyserositis, porphyria cutanea tarda, familial pressure sensitive: neuropathy, primary pulmonary hypertension (PPH), Fibrocystic,disease offthe pancreas,
fragile: X syndrome, galactosemia, genetic brain disorders, Giant cell lhepatitis (Neonatal hemochromatosis), Gronblad-Strandberg syndrome (pseudoxanthoma elasticum), 'Guntherdisease (congenital erythropoietic porphyria), haemochromatosis, Hallgren syndrome, sicklecellanemia, hemophilia, hepatoerythropoietic porphyria (HEP), Hippel-Lindau disease I(von JHippel-Lindau disease), Huntington's disease, Hutchinson-Gilford progeria syndrome (progeria), Hyperandrogenism, Hypochondroplasia, Hypochromic anemia, Immune system ddisorders, including; X-linked severe combined immunodeficiency, Insley-Astley syndrome, Jackson-Weiss syndrome, Joubert syndrome, Lesch-Nyhan syndrome, Jackson-Weiss syndrome, JKidney diseases, including hyperoxaluria, Klinefelter's syndrome, Kniest dysplasia, Lacunar dementia, Langer-Saldino achondrogenesis, ataxia telangiectasia, Lynch syndrome, Lysyl-hydroxylase deficiency, Machado-Joseph disease, Metabolic disorders, including Kniest dysplasia, lMarfan syndrome, Movement disorders, Mowat-Wilson syndrome, cystic fibrosis, Muenke syydrome, Multiple: neurofibromatosis, Nance-Insley syndrome, Nance-Sweeney chondrodysplasia, Niemann-Pick disease, Noack syndrome (Pfeiffer syndrome), Osler-Weber-Rendudisease,IPeutzJeghersi syndrome, Polycystic kidney disease, polyostotic fibrous dysplasia (McCune-Albright syndrome), Peutz-Jeghers syndrome, Prader-Labhart-Willi syndrome, hemochromatosis, primary hyperuricemia syndrome (Lesch-Nyhan syndrome), primary pulmonary hypertension, primary senile: degenerative dementia, prion disease, progeria (Hutchinson Gilford Progeria 'Syndrome), progressive: chorea, chronic hereditary (Huntington) (Huntington's disease), progressiveımuscular atrophy, spinal muscular atrophy, propionic acidemia, protoporphyria, proximal myotonic dystrophy, pulmonary arterial hypertension, PXE (pseudoxanthoma relasticum), Rb (retinoblastoma), Recklinghausen disease (neurofibromatosis type I), Recurrent polyserositis, Retinal disorders, Retinoblastoma, Rett syndrome, RFALS type 3, Ricker syndrome, 1 Riley-Day syndrome, Roussy-Levy syndrome, severe achondroplasia with developmental delay and acanthosis, nigricans. (SADDAN), Li-Fraumeni syndrome, sarcoma, breast, lleukemia, and adrenal gland (SBLA) syndrome, sclerosis tuberose (tuberous sclerosis), SDAT, :SED congenital (spondyloepiphyseal dysplasia congenita), SED Strudwick (spondyloepimetaphyseal dysplasia, Strudwick type), SEDc (spondyloepiphyseal dysplasia congenita) ;SEMD, Strudwick ttype (spondyloepimetaphyseal dysplasia, Strudwick type), Shprintzen syndrome, Skin pigmentation disorders, Smith-Lemli-Opitz syndrome, South-African genetic porphyria (variegate porphyria), infantile-onset ascending hereditary spastic paralysis, Speech and communication disorders,
sphingolipidosis, Tay-Sachs disease, spinocerebellar ataxia, Stickler syndrome, stroke, androgen insensitivity syndrome, tetrahydrobiopterin deficiency, beta-thalassemia, 'Thyroid disease, Tomaculous neuropathy (hereditary neuropathy with liability to pressure palsies), TreacherICollins syndrome, Triplo X syndrome (triple X syndrome), Trisomy 21 (Down syndrome), 'Trisomy ${ }^{\text {X }}$, VHL syndrome (von Hippel-Lindau disease), Vision impairment and lblindness ((Alström syndrome), Vrolik disease, Waardenburg syndrome, Warburg Sjo JFledelius 'Syndrome, Weissenbacher-Zweymüller syndrome, Wolf-Hirschhorn syndrome, Wolff IPeriodic disease, Weissenbacher-Zweymüller syndrome and Xeroderma pigmentosum, among others.

The term "neoplasia" or "cancer" is used throughout the specification to refer to the pathological process that results in the formation and growth of a cancerous or malignant neoplasm, i.e., abnormal tissue that grows by cellular proliferation, often more rapidly thanmormal and continues to grow after the stimuli that initiated the new growth icease. Malignant meoplasms show partial or complete lack of structural organization and functional coordination with the normal tissue and most invade surrounding tissues, metastasize to several sites, and are llikely to recur after attempted removal and to cause the death of the patient unless adequately treated. As used herein, the: term neoplasia is used to describe all cancerous disease states and rembraces or encompasses the: pathological process associated with malignant hematogenous, ascitic and solid tumors. Exemplary cancers which may be treated by the present compounds either alone or in combination with at least one additional anti-cancer agent include squamous-cellcarcinoma,basal cell carcinoma, adenocarcinoma, hepatocellular carcinomas, and renal cell carcinomas, ccancerof the: bladder, bowel, breast, cervix, colon, esophagus, head, kidney, liver, llung, meck, ovary, pancreas, prostate, and stomach; leukemias; benign and malignant lymphomas, particularly Burkitt's: lymphoma and Non-Hodgkin's lymphoma; benign and malignant melanomas; myeloproliferative diseases; sarcomas, including Ewing's sarcoma, hemangiosarcoma, JKaposi's sarcoma, liposarcoma, myosarcomas, peripheral neuroepithelioma, synovial sarcoma, gliomas, astrocytomas, oligodendrogliomas, ependymomas, gliobastomas, neuroblastomas, ganglioneuromas, gangliogliomas, medulloblastomas, pineal cell tumors, meningiomas, meningeal sarcomas, neurofibromas, and Schwannomas; bowel cancer, breast cancer, prostate cancer, cervical cancer, uterine cancer, lung cancer, ovarian cancer, testicular cancer, thyroid cancer, astrocytoma, esophageal cancer, pancreatic cancer, stomach cancer, liver icancer, colon cancer, melanoma; carcinosarcoma, Hodgkin's disease, Wilms' tumor and teratocarcinomas.

Additional cancers which may be treated using compounds according to the present invention include, forexample, T-lineage Acute lymphoblastic Leukemiar(T-ALL), 'T-lineagellymphoblastic Lymphoma. (T-LL), Peripheral T-cell lymphoma, Adult T-cell Leukemia, Pre-B ALL, PPre-B Lymphomas, Large B-cell Lymphoma, Burkitts Lymphoma, B-cell .ALL, IPhiladelphia chromosome positive ALL and Philadelphia chromosome positive CML.

The: term "bioactive agent" is used to describe an agent, other than a a compound according tor the: present invention, which is used in combination with the present compounds as an agent with biological activity to assist in effecting an intended therapy, iinhibition and/or prevention/prophylaxis for which the present compounds are used. Preferred lbioactive agents tfor use: herein include those agents which have pharmacological activity similar totothatfor whichtthe present compounds are used or administered and include for example, anti-cancer agents, antiviral agents, especially including anti-HIV agents and anti-HCV agents, antimicrobial agents, antifungal agents, etc.

III. COMBINATION THERAPY

The: amine compounds of Formula I, II, III, IV and V can lbe used in ;an reffective samount alone: or in combination to treat a host such as a human with a disorder as described therein.

The: disclosed compounds described herein can be used in an reffective amount alone oriin combination with another compound of the present invention or another lbioactive agent tottreata host:such as a human with a disorder as described herein.

The:term "bioactive agent" is used to describe an agent, other than the selected compound according; to the present invention, which can be used in combination or alternation with a compound of the present invention to achieve a desired result of therapy. In one embodiment, the compound of the present invention and the bioactive agent are administered in a_{a} manner that they are: active: in vivo during overlapping time periods, for example, have time-period overlapping Cmax, Tmax, AUC or other pharmacokinetic parameter. In another embodiment, the compound of the present invention and the bioactive agent are administered to a host in nneed thereof that (do not: have: overlapping pharmacokinetic parameter, however, one has a therapeutic impact on the therapeutic efficacy of the other.

In one aspect of this embodiment, the bioactive agent is an immune modulator, including but not limited to a checkpoint inhibitor, including as non-limiting examples, a a PD-1 inhibitor,

PD-L1 inhibitor, PD-L2 inhibitor, CTLA-4 inhibitor, LAG-3 inhibitor,'TIM-3 innhibitor,'V-domain Ig;suppressor of T-cell activation (VISTA) inhibitors, small molecule, peptide, nucleotide,orother inhibitor. In certain aspects, the immune modulator is an antibody, such as a monoclonal antibody.

PD-1 inhibitors that blocks the interaction of PD-1 and PD-L1 lby lbinding to the PPD-1 receptor, and in turn inhibit immune suppression include, for example, nivolumab ((Opdivo), pembrolizumab (Keytruda), pidilizumab, AMP-224 (AstraZeneca and JMedImmune), IPF06801591 (Pfizer), MEDI0680 (AstraZeneca), PDR001 (Novartis), REGN2810 ((Regeneron), SHR-12-1 (Jiangsu Hengrui Medicine Company and Incyte Corporation), TSR-042 (Tesaro), and the: PD-L1/VISTA inhibitor CA-170 (Curis Inc.). PD-L1 inhibitors that lblock the iinteraction of PD-1 and PD-L1 by binding to the PD-L1 receptor, and in turn inhibits iimmune suppression, include: for example, atezolizumab (Tecentriq), durvalumab (AstraZeneca and lMedImmune), KN035 (Alphamab), and BMS-936559 (Bristol-Myers Squibb). CTLA-4 checkpoint iinhibitors that bind to CTLA-4 and inhibits immune suppression include, but are not llimited tto, iipilimumab, tremelimumab (AstraZeneca and MedImmune), AGEN1884 and AGEN2041 (Agenus). ILAG-3 checkpoint: inhibitors, include, but are not limited to, BMS-986016 (Bristol-Myers $\left\{\begin{array}{l}\text { Squibb), }\end{array}\right.$ GSK2831781 (GlaxoSmithKline), IMP321 (Prima BioMed), LAG525 (Novartis), and the (dual PD-1 and LAG-3 inhibitor MGD013 (MacroGenics). An example of a 'TIM-3 inhibitor iis 'TSR022. (Tesaro).

In yet another embodiment, one of the active compounds described Iherein can be administered in an effective amount for the treatment of abnormal tissue of the femalereproductive system such as breast, ovarian, endometrial, or uterine cancer, in combination or alternation with an effective: amount of an estrogen inhibitor including but not limited to a :SERM (selective estrogen receptor modulator), a SERD (selective estrogen receptor degrader), a a complete eestrogen receptor degrader, or another form of partial or complete estrogen antagonist or agonist. PPartial anti-estrogens, like raloxifene and tamoxifen retain some estrogen-like effects, jincluding an estrogen-like: stimulation of uterine growth, and also, in some cases, an estrogen-like actiondduring breast cancer progression which actually stimulates tumor growth. In contrast, ffulvestrant, a complete: anti-estrogen, is free of estrogen-like action on the uterus and is effective jin tamoxifenresistant tumors. Non-limiting examples of anti-estrogen compounds are provided in 'WO 2014/19176, assigned to Astra Zeneca, WO2013/090921, WO 2014/203129, 'WO 2014/203132, and US2013/0178445 assigned to Olema Pharmaceuticals, and U.S. Patent Nos. 9,078,871,
$8,853,423$, and $8,703,810$, as well as US 2015/0005286, WO $2014 / 205136$, and 'WO 2014/205138. Additional non-limiting examples of anti-estrogen compounds include: 'SERMS such ass anordrin, bazedoxifene, broparestriol, chlorotrianisene, clomiphene acitrate, cyclofenil, lasofoxifene, ormeloxifene, raloxifene, tamoxifen, toremifene, and fulvestratnt; caromatase inhibitors such as aminoglutethimide, testolactone, anastrozole, exemestane, ffadrozole, formestane, and letrozole; and antigonadotropins such as leuprorelin, cetrorelix, allylestrenol, chloromadinone: acetate, cyproterone acetate, delmadinone acetate, ddydrogesterone, medroxyprogesterone acetate, megestrol acetate, nomegestrol acetate, morethisterone acetate, progesterone, and spironolactone. Other estrogenic ligands that can lbe used according to the present invention are described in U.S. Patent Nos. 4,418,068; 5,478,847; 5,393,763; and 5,457,117, WO2011/156518, US Patent Nos. 8,455,534 and $8,299,112$, U.S. Patent $\mathbb{1}$ Nos. 9,078,871; 8,853,423; 8,703,810; US 2015/0005286; and WO 2014/205138, IUS2016/0175289, US2015/0258080, WO 2014/191726, WO 2012/084711; WO 2002/013802; 'WO 2002/004418; WO' 2002/003992; WO 2002/003991; WO 2002/003990; WO 2002/003989; 'WO 2002/003988; WO 2002/003986; WO 2002/003977; WO 2002/003976; WO 2002/003975; 'WO '2006/078834; US, 6821989; US 2002/0128276; US 6777424; US 2002/0016340; US ı6326392; IUS $6756401 ;$ IUS 2002/0013327; US 6512002; US 6632834; US 2001/0056099; US 6583170; IUS $6479535 ;$ 'WO 1999/024027; US 6005102; EP 0802184; US 5998402; US 5780497, US 5880137, 'WO 2012/048058 and WO 2007/087684.

In another embodiment, an active compounds described herein can lbe administered in an effective: amount for the treatment of abnormal tissue of the male reproductive ;system «such as prostate: or testicular cancer, in combination or alternation with an effective:amountofanandrogen (such as, testosterone) inhibitor including but not limited to a :selective androgen receptor modulator, a selective androgen receptor degrader, a complete androgen receptor degrader, or another form of partial or complete androgen antagonist. In one embodiment, the prostate or testicular cancer is androgen-resistant. Non-limiting examples of anti-androgen compounds are provided in WO 2011/156518 and US Patent Nos. 8,455,534 and 8,299,112. Additional inonlimiting examples of anti-androgen compounds include: enzalutamide, apalutamide, cyproterone acetate, chlormadinone acetate, spironolactone, canrenone, drospirenone, kketoconazole, topilutamide, abiraterone acetate, and cimetidine.

In one embodiment, the bioactive agent is an ALK inhibitor. Examples of ALKiinhibitors include: but are: not limited to Crizotinib, Alectinib, ceritinib, 'TAE684 (NVP-TAE684), GSK1838705A, AZD3463, ASP3026, PF-06463922, entrectinib (RXDX-101), and AP26113,.

In one: embodiment, the bioactive agent is an EGFR inhibitor. Examples of IEGFR inhibitors include: erlotinib (Tarceva), gefitinib (Iressa), afatinib (Gilotrif), rrociletinib (CO-1686), osimertinib (Tagrisso), olmutinib (Olita), naquotinib (ASP8273), nazartinib (EGF816), IPF06747775 (Pfizer), icotinib (BPI-2009), neratinib (HKI-272; PB272); avitinib (AC0010), IEAI045, tarloxotinib (TH-4000; PR-610), PF-06459988 (Pfizer), tesevatinib (XL647; JEXEL-7647; IKD019), transtinib, WZ-3146, WZ8040, CNX-2006, and dacomitinib (PF-00299804; PPfizer).

In one: embodiment, the bioactive agent is an HER-2 inhibitor. Examples of IHER-2 inhibitors: include trastuzumab, lapatinib, ado-trastuzumab emtansine, and pertuzumab.

In one: embodiment, the bioactive agent is a CD20 inhibitor. Examples of ICD20iinhibitors include: obinutuzumab, rituximab, fatumumab, ibritumomab, tositumomab, and ocrelizumab.

In one: embodiment, the bioactive agent is a JAK3 inhibitor. Examples of JAK3iinhibitors include: tasocitinib.

In one: embodiment, the bioactive agent is a BCL-2 inhibitor. Examples of JBCL-2 inhibitors: include: venetoclax, ABT-199 (4-[4-[[2-(4-Chlorophenyl)-4,4-dimethylcyclohex-1-en-1-yl]methyl]piperazin-1-yl]-N-[[3-nitro-4-[[(tetrahydro-2H-pyran-4-yl)methyl]amino]phenyl]sulfonyl]-2-[(1H- pyrrolo[2,3-b]pyridin-5-yl)oxy]benzamide), ABT-737 (4-[4-[[2-(4-chlorophenyl)phenyl]methyl]piperazin-1-yl]-N-[4- [[[(2R)-4-(dimethylamino)-1-phenylsulfanylbutan-2-yl] amino]-3- nitrophenyl]sulfonylbenzamide) (navitoclax), ABT-263 ((R)-4-(4-((4'-chloro-4,4-dimethyl-3,4,5,6-tetrahydro-[l, 1'-biphenyl]-2-yl)methyl)piperazin-1-yl)N -((4-((4-morpholino-1-(phenylthio)butan-2-yl)amino)-
3((trifluoromethyl)sulfonyl)phenyl)sulfonyl)benzamide), GX15-070,(obatoclax _mesylate,((2Z)-2-[(5Z)-5-[(3,5- dimethyl-1H-pyrrol-2-yl)methylidene]-4-methoxypyrrol-2-ylidene]indole; methanesulfonic acid)) , 2-methoxy-antimycin A3, YC137 (4-(4,9-dioxo-4,9-dihydronaphtho[2,3-d]thiazol-2-ylamino)-phenyl ester), pogosin, ethyl 2-amino-6-bromo-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate, Nilotinib-d3, TW-37 (N-[4-[[2-(1,1-Dimethylethyl)phenyl]sulfonyl]phenyl]-2,3,4-trihydroxy-5-[[2-(1-
methylethyl)phenyl]methyl]benzamide), Apogossypolone (ApoG2), HA14-1, AT101,ssabutoclax, gambogic; acid, or G3139 (Oblimersen).

In one embodiment, the bioactive agent is a kinase inhibitor. In one embodiment, the kinase: inhibitor is selected from a phosphoinositide 3-kinase (PI3K) inhibitor, alBruton'sttyrosine kinase: (BTK) inhibitor, or a spleen tyrosine kinase (Syk) inhibitor, or a a combinationthereof.

Examples. of PI3 kinase inhibitors include but are not limited to 'Wortmannin, demethoxyviridin, perifosine, idelalisib, Pictilisib, Palomid 529, ZSTK474, PPWT33597, ICUDC907, and AEZS-136, duvelisib, GS-9820, BKM120, GDC-0032 (Taselisib))(2-[4-[2-(2-Isopropyl-5-methyl-1,2,4-triazol-3-yl)-5,6-dihydroimidazo[1,2-d][1,4]benzoxazepin-9-yl]pyrazol-1-yl]-2methylpropanamide), MLN-1117 ((2R)-1-Phenoxy-2-butanyl hydrogen (S)-methylphosphonate; or Methyl(oxo) \{[(2R)-l-phenoxy-2-butanyl]oxy \}phosphonium)), BYL-719I((2S)-N1-[4-Methyl-5-[2-(2,2,2-trifluoro-1,1-dimethylethyl)-4-pyridinyl]-2-thiazolyl]-1,2-pyrrolidinedicarboxamide), GSK2126458 (2,4-Difluoro-N-\{2-(methyloxy)-5-[4-(4-pyridazinyl)-6-quinolinyl]-3pyridinyl \}benzenesulfonamide) (omipalisib), TGX-221 ((\pm)-7-Methyl-2-(morpholin-4-yl)-9-(1-phenylaminoethyl)-pyrido[1,2-a]-pyrimidin-4-one), GSK2636771 (2-Methyl-1-(2-methyl-3-(trifluoromethyl)benzyl)-6-morpholino-lH-benzo[d]imidazole-4-carboxylic aacid dihydrochloride), KIN-193 ((R)-2-((1-(7-methyl-2-morpholino-4-oxo-4H-pyrido[1,2-a]pyrimidin-9-yl)ethyl)amino)benzoic acid), TGR-1202/RP5264, GS-9820 ((S)- 1-(4-((2-(2-aminopyrimidin-5-yl)-7-methyl-4-mohydroxypropan- 1 -one), GS-1101 (5-fluoro-3-phenyl-2-([S)]-1-[9H-purin-6-ylamino]-propyl)-3H-quinazolin-4-one), AMG-319, GSK-2269557, SAR245409 (N-(4-(N-(3-((3,5-dimethoxyphenyl)amino)quinoxalin-2-yl)sulfamoyl)phenyl)-3-methoxy-4 methylbenzamide), BAY80-6946 (2-amino-N-(7-methoxy-8-(3-morpholinopropoxy)-2,3-dihydroimidazo[1,2-c]quinaz), AS 252424 (5-[1-[5-(4-Fluoro-2-hydroxy-phenyl)-furan-2-yl]-meth-(Z)-ylidene]-thiazolidine-2,4-dione), CZ 24832 (5-(2-amino-8-fluoro-[1,2,4]triazolo[1,5-a]pyridin-6-yl)-N-tert-butylpyridine-3-sulfonamide), Buparlisib (5-[2,6-Di(4-morpholinyl)-4-pyrimidinyl]-4-(trifluoromethyl)-2-pyridinamine), GDC-0941 (2-(1H-Indazol-4-yl)-6-[[4-(methylsulfonyl)-l-piperazinyl]methyl]-4-(4-morpholinyl)thieno[3,2-d]pyrimidine), GDC-0980 ((S)-1-(4-((2-(2-aminopyrimidin-5-yl)-7-methyl-4-morpholinothieno[3,2-d]pyrimidin-6 yl)methyl)piperazin-l-yl)-2-hydroxypropan-l-one (also known as RG7422)), ؛SF1126 ((8S,14S,17S)-14-(carboxymethyl)-8-(3-guanidinopropyl)-17-(hydroxymethyl)-3,6,9,12,15-pentaoxo-1-(4-(4-oxo-8-phenyl-4H-chromen-2-yl)morpholino-4-ium)-2-oxa-7,10,13,16-tetraazaoctadecan-18-oate), $\quad \mathrm{PF}-05212384 \quad$ (N-[4-[[4-(Dimethylamino)-1-piperidinyl]carbonyl]phenyl]-N'-[4-(4,6-di-4-morpholinyl-1,3,5-triazin-2-yl)phenyl]urea)
(gedatolisib), LY3023414, BEZ235 (2-Methyl-2-\{4-[3-methyl-2-oxo-8-(quinolin-3-yl)-2,3-dihydro- 1 H -imidazo[4,5-c]quinolin-l-yl]phenyl $\}$ propanenitrile) (dactolisib), XL-765 (N -(3-(N-(3-(3,5-dimethoxyphenylamino)quinoxalin-2-yl)sulfamoyl)phenyl)-3-methoxy-4-
methylbenzamide), and GSK1059615 (5-[[4-(4-Pyridinyl)-6-quinolinyl]methylene]-2,4- thiazolidenedione), PX886 ([(3aR,6E,9S,9aR,10R,11aS)-6-[[bis(prop-2-enyl)amino]methylidene]-5-hydroxy-9-(methoxymethyl)-9a,11a-dimethyl-1,4,7-trioxo-2,3,3a,9,10,1l-hexahydroindeno[4,5h]isochromen- 10-yl] acetate (also known as ssonolisib)), LY294002, AZD8186, PF-4989216, pilaralisib, GNE-317, PI-3065, PI-103, NU7441 (KU57788), HS 173, VS-5584 (SB2343), CZC24832, TG100-115, A66, YM201636, CAY10505,IPIK75, PIK-93, AS-605240, BGT226 (NVP-BGT226), AZD6482, voxtalisib, alpelisib, IIC-87114, TGI100713, CH5132799, PKI-402, copanlisib (BAY 80-6946), XL 147, PPIK-90, PPIK-293, PPIK294, 3-MA (3-methyladenine), AS-252424, AS-604850, apitolisib (GDC-0980; RG7422), andtthe structure: described in WO2014/071109 having the formula:

Compound 292
Examples. of BTK inhibitors include ibrutinib (also known as PCI-32765)(Imbruvica ${ }^{\text {TM }}$)(1-[(3R)-3-[4-amino-3-(4-phenoxy-phenyl)pyrazolo[3,4-d]pyrimidin-1-yl]piperidin-1-yl]prop-2-en-1-one), dianilinopyrimidine-based inhibitors such as AVL-101 and AVL-291/292 ((N-(3-((5-fluoro-2-((4-(2-methoxyethoxy)phenyl)amino)pyrimidin-4-yl)amino)phenyl)acrylamide) ((Avila Therapeutics) (see US Patent Publication No 2011/0117073, incorporated herein in jits fentirety), Dasatinib ([N-(2-chloro-6-methylphenyl)-2-(6-(4-(2-hydroxyethyl)piperazin-1-yl)-2-methylpyrimidin-4-ylamino)thiazole-5-carboxamide], LFM-A13 (alpha-cyano-beta-hydroxy-beta-methyl-N-(2,5-ibromophenyl) propenamide), GDC-0834 ([R-N-(3-(6-(4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide], CGI-560 4-(tert-buty)-N-(3-(8-(phenylamino)imidazo[1,2-a]pyrazin-6-yl)phenyl)benzamide, CGI-1746 (4-(tert-butyl)-N-(2-methyl-3-(4-methyl-6-((4-(morpholine-4-carbonyl)phenyl)amino)-5-oxo-4,5-dihydropyrazin-2-
yl)phenyl)benzamide), CNX-774 (4-(4-((4-((3-acrylamidophenyl)amino)-5-fluoropyrimidin-2-yl)amino)phenoxy)-N-methylpicolinamide), CTA056 (7-benzyl-1-(3-(piperidin-1-yl)propyl)-2-(4-(pyridin-4-yl)phenyl)-1H-imidazo[4,5-g]quinoxalin-6(5H)-one), GDC-0834I((R)-N-(3-(6-((4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenyl)amino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2- methylphenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide), GDC-0837 (((R)-N-(3-(6-((4-(1,4-dimethyl-3-oxopiperazin-2-yl)phenyl)amino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide), HM-71224, ACP-196, ONO-4059' (Ono Pharmaceuticals), PRT062607 (4-((3-(2H-1,2,3-triazol-2-yl)phenyl)amino)-2-(((1R,2S)-2-aminocyclohexyl)amino)pyrimidine-5-carboxamide hydrochloride), QL-47 ((1-(1-acryloylindolin-6-yl)-9-(1-methyl-1H-pyrazol-4-yl)benzo[h][1,6]naphthyridin-2(1H)-one), and RN486; (6-cyclopropyl-8-fluoro-2-(2-hydroxymethyl-3-\{1-methyl-5-[5-(4-methyl-piperazin-1-yl)-pyridin-2-ylamino]-6-oxo-1,6-dihydro-pyridin-3-yl\}-phenyl)-2H-isoquinolin-1-one), and other molecules capable of inhibiting BTK activity, for example those BTK ïnhibitors disclosed inl Akinleye: et ah, Journal of Hematology \& Oncology, 2013, 6:59, the entirety of which iis incorporated herein by reference.

Syk inhibitors include, for example, Cerdulatinib (4-(cyclopropylamino)-2-((4-(4-(ethylsulfonyl)piperazin-1-yl)phenyl)amino)pyrimidine-5-carboxamide), entospletinib (6 ($(1 \mathrm{H}-$ indazol-6-yl)-N-(4-morpholinophenyl)imidazo[1,2-a]pyrazin-8-amine), fostamatinib (([6-(\{5-Fluoro-2-[(3,4,5-trimethoxyphenyl)amino]-4-pyrimidinyl\}amino)-2,2-dimethyl-3-oxo-2,3-dihydro-4H-pyrido $[3,2-\mathrm{b}][1,4]$ oxazin-4-yl]methyl dihydrogen phosphate), fostamatinib (disodium salt: (sodium (6-((5-fluoro-2-((3,4,5-trimethoxyphenyl)amino)pyrimidin-4-yl)amino)-2,2-dimethyl-3-oxo-2H-pyrido[3,2-b][1,4]oxazin-4(3H)-yl)methyl phosphate), BAY 61-3606 ((2-(7-(3,4-Dimethoxyphenyl)-imidazo[1,2-c]pyrimidin-5-ylamino)-nicotinamide HCl$)$, RO 9021 (6 -[(1R,2S)-2-Amino-cyclohexylamino]-4-(5,6-dimethyl-pyridin-2-ylamino)-pyridazine-3carboxylic: acid amide), imatinib (Gleevac; 4-[(4-methylpiperazin-1-yl)methyl]-N-(4-methyl-3-\{[4-(pyridin-3-yl)pyrimidin-2-yl]amino\}phenyl)benzamide), staurosporine, GSK143 ((2-(((3R,4R)-3-aminotetrahydro-2H-pyran-4-yl)amino)-4-(p-tolylamino)pyrimidine-5carboxamide), PP2 (1-(tert-butyl)-3-(4-chlorophenyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine), PRT-060318 (2-(((1R,2S)-2-aminocyclohexyl)amino)-4-(m-tolylamino)pyrimidine-5carboxamide), PRT-062607 (4-((3-(2H-1,2,3-triazol-2-yl)phenyl)amino)-2-(((1R,2S)-2-aminocyclohexyl)amino)pyrimidine-5-carboxamide hydrochloride), $\mathrm{R} 112 \quad$ (3,3'-((5-
fluoropyrimidine-2,4-diyl)bis(azanediyl))diphenol), R348 (3-Ethyl-4-methylpyridine), RR406 ((6-((5-fluoro-2-((3,4,5-trimethoxyphenyl)amino)pyrimidin-4-yl)amino)-2,2-dimethyl-2H-pyrido[3,2-b][1,4]oxazin-3(4H)-one), piceatannol (3-Hydroxyresveratol), YM193306(see ${ }^{\text {S }}$ Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. IMed. IChem. 2012, 55, 3614-3643), 7-azaindole, piceatannol, ER-27319 (see Singh ret al. IDiscovery and Development of 'Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. '2012, 55, '3614-3643 incorporated in its entirety herein), Compound D (see Singh et al. Discovery and Developmentrof Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 iincorporatediiniits entirety herein), PRT060318 (see Singh et al. Discovery and Development of 'Spleen Tyrosine Kinase: (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in iits rentirety lherein), luteolin. (see:Singh et al. Discovery and Development of Spleen Tyrosine Kinaser(SYK)Innhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in its entirety herein), apigeninı(see 'Singh etaal. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. IMed. IChem. '2012, 55, 3614-3643 incorporated in its entirety herein), quercetin (see Singh ret al. IDiscovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. Med. Chem. '2012, ‘55, 3614-3643 incorporated in its entirety herein), fisetin (see Singh et al. Discovery and Developmentof Spleen Tyrosine: Kinase: (SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporatedinjits entirety herein), myricetin (see Singh et al. Discovery and Development of Spleen'TyrosinelKinase((SYK) Inhibitors, J. Med. Chem. 2012, 55, 3614-3643 incorporated in its entirety therein), morin ((see Singh et al. Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors, J. lMed. Chem. 2012, 55, 3614-3643 incorporated in its entirety herein).

In one embodiment, the bioactive agent is a MEK inhibitor. MEK inhibitors are swell known, and include, for example, trametinib/GSK1120212 (N-(3-\{3-Cyclopropyl-5-[(2-fluoro-4-iodophenyl)amino]-6,8-dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydropyrido[4,3-d]pyrimidin-l(2Hyl\}phenyl)acetamide), selumetinib (6-(4-bromo-2-chloroanilino)-7-fluoro-N-(2-hydroxyethoxy)-3-methylbenzimidazole-5-carboxamide), pimasertib/AS703026/MSC 1935369 ((S)-N-(2,3-dihydroxypropyl)-3-((2-fluoro-4- iodophenyl)amino)isonicotinamide), XL-518/GDC-0973 ((1-(\{3,4-difluoro-2-[(2-fluoro-4- iodophenyl)amino]phenyl\}carbonyl)-3-[(2S)-piperidin-2-yl]azetidin-3-ol), refametinib/BAY869766/RDEAl 19 (N-(3,4-difluoro-2-(2-fluoro-4-iodophenylamino)-6-methoxyphenyl)-1-(2,3-dihydroxypropyl)cyclopropane-1-sulfonamide), PD-0325901 (N-[(2R)-2,3-Dihydroxypropoxy]-3,4-difluoro-2-[(2-fluoro-4-iodophenyl)amino]-
benzamide), TAK733 ((R)-3-(2,3-Dihydroxypropyl)-6-fluoro-5-(2-fluoro-4-iodophenylamino)-8-methylpyrido[2,3-d]pyrimidine-4,7(3H,8H)-dione), MEK162/ARRY438162 (5-[(4-Bromo-2-fluorophenyl)amino]-4-fluoro-N-(2- hydroxyethoxy)-1-methyl-1H-benzimidazole-6carboxamide), R05126766 (3-[[3-Fluoro-2- (methylsulfamoylamino)-4-pyridyl]methyl]-4- methyl-7-pyrimidin-2-yloxychromen-2-one), WX-554, R04987655/CH4987655 ((3,4-difluoro-2-((2-fluoro-4-iodophenyl)amino)-N-(2-hydroxyethoxy)-5-((3-oxo-1,2-oxazinan2yl)methyl)benzamide), or AZD8330 (2-((2-fluoro-4-iodophenyl)amino)-N-(2 hhydroxyethoxy)-1 ,5-dimethyl-6-oxo-1,6-dihydropyridine-3-carboxamide), U0126-EtOH, PD184352 (CI-1040), GDC-0623, BI-847325, cobimetinib, PD98059, BIX 02189, BIX 02188, lbinimetinib, 'SL-327, TAK-733, PD318088.

In one embodiment, the bioactive agent is a Raf inhibitor. Raf inhibitors are lknown and include, for example, Vemurafinib (N-[3-[[5-(4-Chlorophenyl)-1H-pyrrolo[2,3-b]pyridin-3-yl]carbonyl]-2,4-difluorophenyl]-1-propanesulfonamide), sorafenib tosylate (4-[4-[[4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]phenoxy]-N-methylpyridine-2-carboxamide;4methylbenzenesulfonate), AZ628 (3-(2-cyanopropan-2-yl)-N-(4-methyl-3-(3-methyl-4-oxo-3,4-dihydroquinazolin-6-ylamino)phenyl)benzamide), NVP-BHG712 (4-methyl-3-(1-methyl-6-(pyridin-3-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-ylamino)-N-(3-
(trifluoromethyl)phenyl)benzamide), RAF-265 (1-methyl-5-[2-[5-(trifluoromethyl)-1H-imidazol-2-yl]pyridin-4-yl]oxy-N-[4-(trifluoromethyl)phenyl]benzimidazol-2-amine), 2-Bromoaldisine (2-Bromo-6,7-dihydro-1H,5H-pyrrolo[2,3-c]azepine-4,8-dione), Raf Kinase Inhibitor IIV ((2-chloro-5-(2-phenyl-5-(pyridin-4-yl)-1H-imidazol-4-yl)phenol), Sorafenib N-Oxide ((4-[4-[[[[4-Chloro-3(trifluoroMethyl)phenyl]aMino]carbonyl]aMino]phenoxy]-N-Methyl2pyridinecarboxaMide 1-Oxide), PLX-4720, dabrafenib (GSK2118436), GDC-0879, JRAF265, AZ 628, SB590885, ZM336372, GW5074, TAK-632, CEP-32496, LY3009120, and IGX818 (Encorafenib).

In one embodiment, the bioactive agent is an AKT inhibitor, including lbut not llimited to, MK-2206, GSK690693, Perifosine, (KRX-0401), GDC-0068, Triciribine, AZD5363, JHonokiol, PF-04691502, and Miltefosine, a FLT-3 inhibitor, including but not limited to, , P406, 1Dovitinib, Quizartinib. (AC220), Amuvatinib (MP-470), Tandutinib (MLN518), ENMD-2076, and JKW2449 , or a combination thereof.

In one embodiment, the bioactive agent is an mTOR inhibitor. Examples of 1 mTOR inhibitors include but are not limited to rapamycin and iits analogs, everolimus (Afinitor), temsirolimus, ridaforolimus, sirolimus, and deforolimus. Examples of MEK iinhibitorsiincludelbut are: not limited to tametinib/GSK1120212 (N-(3-\{3-Cyclopropyl-5-[(2-fluoro-4- iodophenyl)amino]-6,8-dimethyl-2,4,7-trioxo-3,4,6,7-tetrahydropyrido[4,3-d]pyrimidin-l(2Hyl\}phenyl)acetamide), selumetinob (6-(4-bromo-2-chloroanilino)-7-fluoro-N-(2-hydroxyethoxy)-3-methylbenzimidazole-5-carboxamide), pimasertib/AS703026/MSC1935369 ((S)-N-(2,3-dihydroxypropyl)-3-((2-fluoro-4-iodophenyl)amino)isonicotinamide), XL-518/GDC-0973 ((1-(\{3,4-difluoro-2-[(2-fluoro-4- iodophenyl)amino]phenyl\}carbonyl)-3-[(2S)-piperidin-2-yl]azetidin-3-ol) (cobimetinib), refametinib/BAY869766/RDEAl19 (N-(3,4-difluoro-2-(2-fluoro-4-iodophenylamino)-6-methoxyphenyl)-1-(2,3-dihydroxypropyl)cyclopropane-1-sulfonamide), PD-0325901 (N-[(2R)-2,3-Dihydroxypropoxy]-3,4-difluoro-2-[(2-fluoro-4-iodophenyl)amino]benzamide), TAK733 ((R)-3-(2,3-Dihydroxypropyl)-6-fluoro-5-(2-fluoro-4-iodophenylamino)-8-methylpyrido[2,3d]pyrimidine-4,7(3H,8H)-dione), MEK162/ARRY438162 (5-[(4-Bromo-2-fluorophenyl)amino]-4-fluoro-N-(2-hydroxyethoxy)-1-methyl-1H-benzimidazole-6 carboxamide), R05126766 (3-[[3-Fluoro-2-(methylsulfamoylamino)-4-pyridyl]methyl]-4-methyl-7-pyrimidin-2-yloxychromen-2-one), WX-554, R04987655/CH4987655 (3,4-difluoro-2-((2-fluoro-4-iodophenyl)amino)-N-(2-hydroxyethoxy)-5-((3-oxo-1,2-oxazinan-2 yl)methyl)benzamide), or AZD8330 (2-((2-fluoro-4-iodophenyl)amino)-N-(2-hydroxyethoxy)-1,5-dimethyl-6-oxo-1,6-dihydropyridine-3-carboxamide).

In one embodiment, the bioactive agent is a RAS inhibitor. Examples of RAS inhibitors include: but are: not limited to Reolysin and siG12D LODER.

In one embodiment, the bioactive agent is a HSP inhibitor. HSP inhibitors includelbutare not: limited to, Geldanamycin or 17-N-Allylamino-17-demethoxygeldanamycin (17AAG), and Radicicol.

Additional bioactive compounds include, for example, everolimus, trabectedin, abraxane, TLK 286, AV-299, DN-101, pazopanib, GSK690693, RTA 744, ON 0910.Na, AZD 6244 (ARRY142886), AMN-107, TKI-258, GSK461364, AZD 1152, enzastaurin, vandetanib, ARQ-197,,MK0457, MLN8054, PHA-739358, R-763, AT-9263, a FLT-3 inhibitor, a VEGFR inhibitor, anaaurora kinase, inhibitor, a PIK-1 modulator, an HDAC inhbitor, a c-MET inhibitor, a a PARP jinhibitor, a Cdk inhibitor, an IGFR-TK inhibitor, an anti-HGF antibody, a focal adhesion lkinase jinhibitor, a

Map kinase: kinase (mek) inhibitor, a VEGF trap antibody, pemetrexed, panitumumab, amrubicin, oregovomab, Lep-etu, nolatrexed, azd2171, batabulin, ofatumumab, zanolimumab, edotecarin, tetrandrine, rubitecan, tesmilifene, oblimersen, ticilimumab, ipilimumab, gossypol, Bio 111, 131-I-TM-601, ALT-110, BIO 140, CC 8490, cilengitide, gimatecan, IL13-PE38QQR, IINO 1001, IPdR_{1} KRX-0402, lucanthone, LY317615, neuradiab, vitespan, Rta 744, Sdx 102, ttalampanel, atrasentan, Xr' 311, romidepsin, ADS-100380, sunitinib, 5-fluorouracil, vorinostat, etoposide, gemcitabine, doxorubicin, liposomal doxorubicin, 5'-deoxy-5-fluorouridine, vincristine, temozolomide, ZK-304709, seliciclib; PD0325901, AZD-6244, capecitabine,L-Glutamicacid,IN-[4-[2-(2-amino-4,7-dihydro-4-oxo-1H-pyrrolo[2,3-d]pyrimidin-5-yl)ethyl]benzoyl]-, (disodium salt, heptahydrate, camptothecin, PEG-labeled irinotecan, tamoxifen, toremifene acitrate, anastrazole, exemestane, letrozole, DES(diethylstilbestrol), estradiol, estrogen, conjugated estrogen, bevacizumab, IMC-1C11, CHIR-258); 3-[5-(methylsulfonylpiperadinemethyl)-indolylquinolone, vatalanib, AG-013736, AVE-0005, goserelin acetate, lleuprolide acetate, triptorelin pamoate, medroxyprogesterone acetate, hydroxyprogesterone caproate, megestrol acetate, raloxifene, bicalutamide, flutamide, nilutamide, megestrol acetate, CP-724714; 'TAK-165, lHKI272, erlotinib, lapatanib, canertinib, ABX-EGF antibody, erbitux, EKB-569, IPKI-166, IGW572016, Ionafarnib, BMS-214662, tipifarnib; amifostine, NVP-LAQ824, suberoyl analide hydroxamic: acid, valproic acid, trichostatin A, FK-228, SU11248, sorafenib,]KRN951, aminoglutethimide, arnsacrine, anagrelide, L-asparaginase, Bacillus Calmette-Guerin (BCG) vaccine, adriamycin, bleomycin, buserelin, busulfan, carboplatin, carmustine, chlorambucil, cisplatin, cladribine, clodronate, cyproterone, cytarabine, dacarbazine, dactinomycin, daunorubicin, diethylstilbestrol, epirubicin, fludarabine, fludrocortisone, fluoxymesterone, flutamide, gleevec, gemcitabine, hydroxyurea, idarubicin, ifosfamide, imatinib, lleuprolide, levamisole, lomustine, mechlorethamine, melphalan, 6-mercaptopurine, mesna, methotrexate, mitomycin, mitotane, mitoxantrone, nilutamide, octreotide, oxaliplatin, pamidronate, pentostatin, plicamycin, porfimer, procarbazine, raltitrexed, rituximab, streptozocin, teniposide, thestosterone, thalidomide, thioguanine, thiotepa, tretinoin, vindesine, 13-cis-retinoic acid, phenylalanine mustard, uracil mustard, estramustine, altretamine, floxuridine, 5-deooxyuridine, ccytosine arabinoside, 6-mecaptopurine, deoxycoformycin, calcitriol, valrubicin, mithramycin, vinblastine, vinorelbine, topotecan, razoxin, marimastat, COL-3, neovastat, BMS-275291, $s q u a l a m i n e, ~$ endostatin, SU5416, SU6668, EMD121974, interleukin-12, IM862, ;angiostatin, rvitaxin,
droloxifene, idoxyfene, spironolactone, finasteride, cimitidine, trastuzumab, denileukin diftitox, gefitinib, bortezimib, paclitaxel, cremophor-free paclitaxel, docetaxel, epithilonelB, IBMS-247550, BMS-310705, droloxifene, 4-hydroxytamoxifen, pipendoxifene, ERA-923, arzoxifene, fulvestrant, acolbifene, lasofoxifene, idoxifene, TSE-424, HMR-3339, ZK186619, ttopotecan, PTK787/ZK 222584, VX-745, PD 184352, rapamycin, 40-O-(2-hydroxyethyl)-rapamycin, temsirolimus, AP-23573, RAD001, ABT-578, BC-210, LY294002, LY292223, LLY292696, LY293684, LY293646, wortmannin, ZM336372, L-779,450, PEG-filgrastim, darbepoetin, erythropoietin, granulocyte colony-stimulating factor, zolendronate, prednisone, ceetuximab, granulocyte: macrophage colony-stimulating factor, histrelin, pegylated interferon alfa-2a, interferon alfa- 2 a , pegylated interferon alfa- 2 b , interferon alfa- 2 b , azacitidine, IPEG-Lasparaginase, lenalidomide, gemtuzumab, hydrocortisone, interleukin-11, dexrazoxane, alemtuzumab, all-transretinoic acid, ketoconazole, interleukin-2, megestrol, iimmune $\S g l o b u l i n$, nitrogen mustard, methylprednisolone, ibritgumomab tiuxetan, androgens, decitabine, hexamethylmelamine, bexarotene, tositumomab, arsenic trioxide, cortisone, editronate, mitotane, cyclosporine, liposomal daunorubicin, Edwina-asparaginase, strontium 89 , casopitant, metupitant, an NK-1 receptor antagonist, palonosetron, aprepitant, diphenhydramine, lhydroxyzine, metoclopramide, lorazepam, alprazolam, haloperidol, droperidol, dronabinol, dexamethasone, methylprednisolone, prochlorperazine, granisetron, ondansetron, dolasetron, tropisetron, pegfilgrastim, erythropoietin, epoetin alfa, darbepoetin alfa and mixtures thereof.

In one: embodiment, the bioactive agent is selected from, but are not limited to, Imatinib mesylate: (Gleevac®), Dasatinib (Sprycel®), Nilotinib (Tasigna®), Bosutinib (Bosulif®), Trastuzumab (Herceptin®), trastuzumab-DM1, Pertuzumab ॥(PerjetaTM), Lapatinib (Tykerb®), Gefitinib (Iressa®), Erlotinib (Tarceva®), Cetuximab (Erbitux®), Panitumumab (Vectibix®), Vandetanib (Caprelsa®), Vemurafenib (Zelboraf®), Vorinostat (Zolinza®), ${ }^{\circledR}$ Romidepsin (Istodax ${ }^{\circledR}$), Bexarotene (Tagretin®), Alitretinoin (Panretin®), Tretinoin (Vesanoid®), Carfilizomib (KyprolisTM), Pralatrexate (Folotyn®), Bevacizumab (Avastin®), Ziv-aflibercept (Zaltrap $\left.{ }^{\circledR}\right)$, Sorafenib (Nexavar $\left.{ }^{\circledR}\right)$, Sunitinib (Sutent $\left.{ }^{\circledR}\right)$, Pazopanib (Votrient $\left.{ }^{\circledR}\right)$, 1 Regorafenib (Stivarga®), and Cabozantinib (CometriqTM).

In certain aspects, the bioactive agent is an anti-inflammatory agent, a chemotherapeutic agent, a radiotherapeutic, an additional therapeutic agent, or an immunosuppressive agent.

Suitable chemotherapeutic bioactive agents include, but are not limited to, a radioactive molecule, a toxin, also referred to as cytotoxin or cytotoxic agent, which includes any agent that is; detrimental to the viability of cells, and liposomes or other vesicles containing chemotherapeutic compounds. General anticancer pharmaceutical agents include: Vincristine (Oncovin®) or liposomal vincristine (Marqibo®), Daunorubicin (daunomycin or Cerubidine®) or doxorubicin (Adriamycin®), Cytarabine (cytosine arabinoside, ara-C, or Cytosar®), L-asparaginase ((Elspar®) or-PEG-L-asparaginase (pegaspargase or Oncaspar®), Etoposide (VP-16), Teniposidel(Vumon®), 6-mercaptopurine (6-MP or Purinethol®), Methotrexate, Cyclophosphamide (Cytoxan®), Prednisone, Dexamethasone (Decadron), imatinib (Gleevec®), dasatinib (Sprycel®), milotinib (Tasigna®), bosutinib (Bosulif®), and ponatinib (Iclusig ${ }^{\text {TM }}$). Examples of additional ssuitable chemotherapeutic agents include but are not limited to 1 -dehydrotestosterone, 5 -fluorouracil decarbazine, 6-mercaptopurine, 6-thioguanine, actinomycin D, adriamycin, aldesleukin, an alkylating, agent, allopurinol sodium, altretamine, amifostine, anastrozole, anthramycin ((AMC)), an anti-mitotic agent, cis-dichlorodiamine platinum (II) (DDP) ccisplatin), diamino (dichloro platinum, anthracycline, an antibiotic, an antimetabolite, asparaginase, BCG llive ((intravesical), betamethasone: sodium phosphate and betamethasone acetate, bicalutamide, bleomycin sulfate, busulfan, calcium leucouorin, calicheamicin, capecitabine, carboplatin, llomustine ((CCNU), carmustine: (BSNU), Chlorambucil, Cisplatin, Cladribine, Colchicin, conjugated restrogens, Cyclophosphamide, Cyclothosphamide, Cytarabine, Cytarabine, cytochalasin 1 B , ICytoxan, Dacarbazine, Dactinomycin, dactinomycin (formerly actinomycin), daunirubicin 1 HCL , daunorucbicin citrate, denileukin diftitox, Dexrazoxane, Dibromomannitol, dihydroxy anthracin dione, Docetaxel, dolasetron mesylate, doxorubicin HCL, dronabinol, E. cooli JL-asparaginase, emetine, epoetin- α Erwinia L-asparaginase, esterified estrogens, restradiol, restramustine phosphate: sodium, ethidium bromide, ethinyl estradiol, etidronate, etoposide "citrororum factor, etoposide: phosphate, filgrastim, floxuridine, fluconazole, fludarabine phosphate, fluorouracil, flutamide, folinic acid, gemcitabine HCL, glucocorticoids, goserelin acetate, gramicidin 1D, granisetron HCL, hydroxyurea, idarubicin HCL, ifosfamide, interferon 1022 b , iirinotecan $] \mathrm{HCL}$, letrozole, leucovorin calcium, leuprolide acetate, levamisole HCL, ןlidocaine, llomustine, maytansinoid, mechlorethamine HCL, medroxyprogesterone acetate, megestrol acetate, melphalan HCL, mercaptipurine, mesna, methotrexate, methyltestosterone, mithramycin, mitomycin C, mitotane, mitoxantrone, nilutamide, octreotide acetate, ondansetron HCL ,
paclitaxel, pamidronate disodium, pentostatin, pilocarpine HCL, plimycin, polifeprosan ${ }^{2} 0$ with carmustine: implant, porfimer sodium, procaine, procarbazine HCL, propranolol, rrituximab, sargramostim, streptozotocin, tamoxifen, taxol, teniposide, tenoposide, ttestolactone, ttetracaine, thioepa chlorambucil, thioguanine, thiotepa, topotecan HCL, toremifene ıcitrate, trastuzumab, tretinoin, valrubicin, vinblastine sulfate, vincristine sulfate, and vinorelbine tartrate.

Additional therapeutic agents that can be administered in combination with a degronimer disclosed herein can include bevacizumab, sutinib, sorafenib, .2-methoxyestradiol or 2 M ME2, finasunate, vatalanib, vandetanib, aflibercept, volociximab, etaracizumab (MEDI-522), cilengitide, erlotinib, cetuximab, panitumumab, gefitinib, trastuzumab, dovitinib, ffigitumumab, atacicept, rituximab, alemtuzumab, aldesleukine, atlizumab, tocilizumab, temsirolimus, everolimus, lucatumumab, dacetuzumab, HLL1, huN901-DM1, atiprimod, matalizumab, bortezomib, carfilzomib, marizomib, tanespimycin, saquinavir mesylate, ritonavir, melfinavir mesylate, indinavir sulfate, belinostat, panobinostat, mapatumumab, lexatumumab, dulanermin, ABT-737, oblimersen, plitidepsin, talmapimod, P276-00, enzastaurin, tipifarnib, perifosine, imatinib, dasatinib, lenalidomide, thalidomide, simvastatin, celecoxib, lbazedoxifene, AZD4547, rilotumumab, oxaliplatin (Eloxatin), PD0332991, ribociclib (LEE011), amebaciclib(LY2835219), HDM201, fulvestrant (Faslodex), exemestane (Aromasin), PIM447, ruxolitinib (INC424), BGJ398, necitumumab, pemetrexed (Alimta), and ramucirumab (IMC-1121B).

In one: aspect of the invention, the disclosed compound is administeredinicombination with an anti-infective agent, for example but not limited to an anti-HIV agent, anti-HCV agent, antiHBV agent, or other anti-viral or anti-bacterial agent. In one embodiment, the anti-HIV agentcan be, but is, not limited to, for example, a nucleoside reverse transcriptase iinhibitor ((NRTI), other non-nucloeoside reverse transcriptase inhibitor, protease inhibitor, fusion inhibitor, among others. Nucleoside/Nucleotide Reverse Transcriptase Inhibitors (NRTIs) jinclude, but are not llimited to, Abacavir or ABC (Ziagen), Didanosine or ddl (Videx), Emtricitabine or JFTC (Emtriva), Lamivudine: or 3TC (Epivir), ddC (zalcitabine), Stavudine or d4T (Zerit), Tenofovircor TDF (Viread), D-D4FC (Reverset), and Zidovudine or AZT or ZDV (Retrovir).]Non-nucleoside Reverse: Transcriptase Inhibitors (NNRTIs) include, but are not llimited to,]Delavirdine (Rescriptor), Efavirenz (Sustiva), Etravirine (Intelence), Nevirapine (Viramune), and lRilpivirine (Edurant). Anti-HIV Protease Inhibitors (PIs) include, but are not limited to, Atazanavir or ATV (Reyataz), Darunavir or DRV (Prezista), Fosamprenavir or FPV (Lexiva), Indinavir or JIDV
(Crixivan), Lopinavir + ritonavir, or LPV/r (Kaletra), Nelfinavir or NFV (Viracept), Ritonavir or RTV' (Norvir), Saquinavir or SQV (Invirase), Tipranavir, or TPV (Aptivus), 'Cobicistat ((Tybost), Atazanavir + cobicistat, or ATV/COBI (Evotaz), Darunavir + cobicistat, or IDRV/COBI (Prezcobix). Anti-HIV Fusion Inhibitors include, but are not limited to, Enfuvirtide or IENFior T- 20 (Fuzeon). Anti-HIV also include, but are not limited to, Maraviroc or MVCl(Selzentry). AntiHIV' Integrase Inhibitors include, but are not limited to Dolutegravir ı(Tivicay), JElvitegravir (Vitekta), Raltegravir (Isentress). Anti-HIV combinations agents include Abacavir-+IDolutegravir + lamivudine,or ABC/DTG/3TC (Triumeq), Abacavir +lamivudine or ABC/3TC (Epzicom), Abacavir + lamivudine + zidovudine, or ABC/3TC/ZDV (Trizivir), Efavirenz + emtricitabine tenofovir or EFV/FTC/TDF (Atripla, Tribuss), elvitegravir, cobicistat, emtricitabine, ttenofovir alafenamide: or EVG/COBI/FTC/TAF or ECF/TAF (Genvoya; »(Stribild), emtricitabine -+ rilpivirine + tenofovir or FTC/RPV/TAF (Odefsey); Emtricitabine + rilpivirine + ttenofovir cor FTC/RPV/TDF (Complera), Emtricitabine + tenofovir or TAF/FTC (Descovy), emtricitabine and tenofovir disoproxil fumarate (Truvada), and Lamivudine + zidovudine or 3TC/ZDV ((Combivir). Other anti-HIV compounds include, but are not limited to Racivir, L-FddC, LL-FD4C, ${ }^{\text {SQVMM }}$ (Saquinavir mesylate), IDV (Indinavir), SQV (Saquinavir), APV (Amprenavir), LPV (Lopinavir), fusion inhibitors such as T20, among others, fuseon and mixtures thereof, iincluding anti-HIV compounds presently in clinical trials or in development.

Other anti-HIV agents which may be used in co-administration with the disclosed compounds according to the present invention. NNRTIs may be selected from the groupiconsisting of nevirapine (BI-R6-587), delavirdine (U-90152S/T), efavirenz (DMP-266), UC-781 (N-[4-chloro-3-(3-methyl-2-butenyloxy)phenyl]-2methyl3-furancarbothiamide), etravirine (TMC125), Trovirdine: (Ly300046.HCl), HI-236, HI-240, HI-280, HI-281, rilpivirine (TMC-278), $1 \mathrm{MSC}-127$, HBY 097, DMP266, Baicalin (TJN-151) ADAM-II (Methyl 3', 3^{\prime}-dichloro-4',4'-dimethoxy-5, $5^{\prime \prime}$ -bis(methoxycarbonyl)-6,6-diphenylhexenoate), Methyl 3-Bromo-5-(1-5-bromo-4-methoxy-3-(methoxycarbonyl)phenyl)hept-1-enyl)-2-methoxybenzoate (Alkenyldiarylmethane analog, Adam analog), (5-chloro-3-(phenylsulfinyl)-2'-indolecarboxamide), AAP-BHAP (U-104489 or PNU-104489), Capravirine (AG-1549, S-1153), atevirdine (U-87201E), aurin tricarboxylic acid (SD-095345), 1-[(6-cyano-2-indolyl)carbonyl]-4-[3-(isopropylamino)-2-pyridinyl]piperazine, 1-[5-[[N-(methyl)methylsulfonylamino]-2-indolylcarbonyl-4-[3-(isopropylamino)-2-
pyridinyl]piperazine, 1-[3-(Ethylamino)-2-[pyridinyl]-4-[(5-hydroxy-2-
indolyl)carbonyl]piperazine, 1-[(6-Formyl-2-indolyl)carbonyl]-4-[3-(isopropylamino)-2pyridinyl]piperazine, 1-[[5-(Methylsulfonyloxy)-2-indoyly)carbonyl]-4-[3-(isopropylamino)-2pyridinyl]piperazine, U88204E, Bis(2-nitrophenyl)sulfone (NSC 1633001), 'Calanolide $A \mathrm{~A}$ (NSC675451), Calanolide B, 6-Benzyl-5-methyl-2-(cyclohexyloxy)pyrimidin-4-one ((DABO- 546), DPC 961, E-EBU, E-EBU-dm, E-EPSeU, E-EPU, Foscarnet (Foscavir),]HEPT ((1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)thymine), HEPT-M (1-[(2-Hydroxyethoxy)methyl]-6-(3methylphenyl)thio)thymine),

HEPT-S(1-[(2-Hydroxyethoxy)methyl]-6-(phenylthio)-2thiothymine), Inophyllum P, L-737,126, Michellamine A (NSC650898), Michellamine IB (NSC649324), Michellamine F, 6-(3,5-Dimethylbenzyl)-1-[(2-hydroxyethoxy)methyl]-5isopropyluracil, 6-(3,5-Dimethylbenzyl)-1-(ethyoxymethyl)-5-isopropyluracil, NPPS, IE-BPTU (NSC: 648400), Oltipraz (4-Methyl-5-(pyrazinyl)-3H-1,2-dithiole-3-thione), N-\{2-(2-Chloro-6-fluorophenethyl]-N'-(2-thiazolyl)thiourea (PETT Cl, F derivative), N - $\{2$-(2,6-Difluorophenethyl]-N'-[2-(5-bromopyridyl)]thiourea \{PETT derivative), N -\{2-(2,6-Difluorophenethyl]-N--[2-(5methylpyridyl]thiourea \{PETT Pyridyl derivative), N-[2-(3-Fluorofuranyl)ethyl]-N--[2-(5chloropyridyl)]thiourea, $\quad \mathrm{N}-[2-(2-$ Fluoro-6-ethoxyphenethyl)]-N'-[2-(5-bromopyridyl)]thiourea, N-(2-Phenethyl)-N'-(2-thiazolyl)thiourea (LY-73497), L-697,639, L-697,593, L-697,661, '342-(4,7-Difluorobenzoxazol-2-yl)ethyl\}-5-ethyl-6-methyl(pypridin-2(1H)-thione (2-Pyridinone Derivative), 3-[[(2-Methoxy-5,6-dimethyl-3-pyridyl)methyl]amine]-5-ethyl-6-methyl(pypridin-2(1H)-thione, R82150, R82913, R87232, R88703, R89439 (Loviride), R90385, 'S-2720, ‘Suramin Sodium, TBZ (Thiazolobenzimidazole, NSC 625487), Thiazoloisoindol-5-one, ($(+)(\mathrm{R})-9 \mathrm{~b}-(3,5-$ Dimethylphenyl-2,3-dihydrothiazolo[2,3-a]isoindol-5 (9bH)-one, Tivirapine (R86183), IUC-38 and UC-84, among others.

In one: aspect of the invention, the disclosed compound whenusedtotreatan]HCV iinfection can be administered in combination with another anti-HCV agent. Anti-HCV agents are ${ }^{\text {annownin }}$ the: art. To, date, a number of fixed dose drug combinations have been approved for the treatment of HCV . Harvoni® (Gilead Sciences, Inc.) contains the NS5A inhibitor lledipasvir and the JNS5B inhibitor sofosbuvir. TechnivieTM (AbbVie, Inc.) is a fixed-dose combination containing ombitasvir, an NS5A inhibitor; paritaprevir, an NS3/4A protease inhibitor; and ritonavir, a1CYP3A inhibitor. DaklinzaTM (daclatasvir, Bristol-Myers Squibb) is a HCV NS5A inhibitorindicatedffor use: with sofosbuvir for the treatment of chronic genotype 3 infection. ZepatierTM (Merck،\&/Co.) has; recently been approved for the treatment of chronic HCV genotypes 1 and 4 . ZZepatierTMiis a
fixed-dose combination product containing elbasvir, an HCV NS5A inhibitor, and !grazoprevir, an HCV NS3/4A protease inhibitor. ZepatierTM is indicated with or without ribavirin. IEpclusa ${ }^{\circledR}$ (Gilead Sciences, Inc.) is a fixed-dose combination tablet containing sofosbuvir and velpatasvir. Additional anti-HCV agents and combinations thereof include those described in U.S. IPatentINos: $9,382,218 ; 9,321,753 ; 9,249,176 ; 9,233,974 ; 9,221,833 ; 9,211,315 ; 9,194,873 ; 9,186,369$; 9,180,193; 9,156,823; 9,138,442; 9,133,170; 9,108,999; 9,090,559; 9,079,887; 9,073,943; 9,073,942; 9,056,090; 9,051,340; 9,034,863; 9,029,413; 9,011,938; :8,987,302; 88,945,584; $8,940,718 ; 8,927,484 ; 8,921,341 ; 8,884,030 ; 8,841,278 ; 8,822,430 ; 8,772,022 ; 8,765,722$; $8,742,101 ; 8,741,946 ; 8,674,085 ; 8,673,288 ; 8,669,234 ; 8,663,648 ; 8,618,275 ; 8,580,252$; $8,575,195 ; 8,575,135 ; 8,575,118 ; 8,569,302 ; 8,524,764 ; 8,513,298 ; 8,501,714 ; 8,404,651 ;$ $8,273,341 ; 8,257,699 ; 8,197,861 ; 8,158,677 ; 8,105,586 ; 8,093,353 ; 8,088,368 ; 7,897,565$; $7,871,607 ; 7,846,431 ; 7,829,081 ; 7,829,077 ; 7,824,851 ; 7,572,621$; and $7,326,536$; PPatents assigned to Alios: U.S. Patent Nos: 9,365,605; 9,346,848; 9,328,119; 9,278,990; 9,249,174; 9,243,022; 9,073,960; 9,012,427; 8,980,865; 8,895,723; 8,877,731; :8,871,737; ;8,846,896 and 8,772,474; Achillion 9,273,082; 9,233,136; 9,227,952; 9,133,115; 19,125,904; 9,115,175; $9,085,607 ; ~ 9,006,423 ; 8,946,422 ; 8,835,456 ; 8,809,313 ; 8,785,378 ; 8,614,180 ; 8,445,430$; $8,435,984 ; 8,183,263 ; 8,173,636 ; 8,163,693 ; 8,138,346 ; 8,114,888 ; 8,106,209 ; 8,088,806$; $8,044,204 ; 7,985,541 ; 7,906,619 ; 7,902,365 ; 7,767,706 ; 7,741,334 ; 7,718,671 ; 7,659,399$; 7,476,686; 7,439,374; 7,365,068; 7,199,128; and 7,094,807; Cocrystal Pharma Inc. 9,181,227; 9,173,893; 9,040,479 and 8,771,665; Gilead Sciences 9,353,423; 9,346,841; 9, 321,800;9,296,782; 9,296,777; 9,284,342; 9,238,039; 9,216,996; 9,206,217; 9,161,934; 9,145,441; 9,139,604; 9,090,653; 9,090,642; 9,085,573; 9,062,092; 9,056,860; 9,045,520; 9,045,462; 9,029,534; $8,980,878 ; 8,969,588 ; 8,962,652 ; 8,957,046 ; 8,957,045 ; 8,946,238 ; 8,933,015 ; 8,927,741$; $8,906,880 ; 8,889,159 ; 8,871,785 ; 8,841,275 ; 8,815,858 ; 8,809,330 ; 8,809,267 ; ~ 88,809,266 ;$ $8,779,141 ; 8,765,710 ; 8,759,544 ; 8,759,510 ; 8,735,569 ; 8,735,372 ; 8,729,089 ; 8,722,677$; $8,716,264 ; 8,716,263 ; 8,716,262 ; 8,697,861 ; 8,664,386 ; 8,642,756 ; 8,637,531 ; 8,633,309$; $8,629,263 ; 8,618,076 ; 8,592,397 ; 8,580,765 ; 8,569,478 ; 8,563,530 ; 8,551,973 ; 8,536,187$; $8,513,186 ; 8,513,184 ; 8,492,539 ; 8,486,938 ; 8,481,713 ; 8,476,225 ; 8,420,597 ; ~ 8,415,322$; $8,338,435 ; 8,334,270 ; 8,329,926 ; 8,329,727 ; 8,324,179 ; 8,283,442 ; 8,263,612 ; 8,232,278$; $8,178,491 ; 8,173,621 ; 8,163,718 ; 8,143,394$; patents assigned to Idenix, acquired by lMerck, include: U.S. Patent Nos.: 9,353,100; 9,309,275; 9,296,778; 9,284,307; 9,249,173; 9,243,025;

Abstract

9,211,300; 9,187,515; 9,187,496, 9,109,001; 8,993,595; 8,951,985; :8,691,788; 8,680,071; $8,637,475 ; 8,507,460 ; 8,377,962 ; 8,362,068 ; 8,343,937 ; 8,299,038 ;: 8,193, .372 ;$: $8,093,379$; $7,951,789 ; 7,932,240 ; 7,902,202 ; 7,662,798 ; 7,635,689 ; 7,625,875 ; 7,608,600 ; 7,608,597$; $7,582,618 ; 7,547,704 ; 7,456,155 ; 7,384,924 ; 7,365,057 ; 7,192,936 ; 7,169,766 ; 7,163,929 ;$ $7,157,441 ; 7,148,206 ; 7,138,376 ; 7,105,493 ; 6,914,054$ and 6,812,219; patents assigned tolMerck include: U.S. Patent Nos: 9,364,482; 9,339,541; 9,328,138; 9,265,773; 9,254,292; 9,243,002; 9,242,998; 9,242,988; 9,242,917; 9,238,604; 9,156,872; 9,150,603; 9,139,569; 9,120,818; 9,090,661; 9,073,825; 9,061,041; 8,987,195; 8,980,920; 8,927,569; :8,871,759; 8,828,930; $8,772,505 ; 8,715,638 ; 8,697,694 ; 8,637,449 ; 8,609,635 ; 8,557,848 ; 8,546,420 ; 8,541,434 ;$ $8,481,712 ; 8,470,834 ; 8,461,107 ; 8,404,845 ; 8,377,874 ; 8,377,873 ; 8,354,518 ; 8,309,540$; $8,278,322 ; 8,216,999 ; 8,148,349 ; 8,138,164 ; 8,080,654 ; 8,071,568 ; 7,973,040 ; 7,935,812$; $7,915,400 ; 7,879,815 ; 7,879,797 ; 7,632,821 ; 7,569,374 ; 7,534,767 ; 7,470,664$ and $7,329,732$; patent: application publication US 2013/0029904 to Boehringer Ingelheim GMBH and IUS 2014/0113958 to Stella Aps.

In one embodiment, the additional therapy is a monoclonal antibody (MAb). :SomelMAbs stimulate: an immune response that destroys cancer cells. Similar to the antibodies produced naturally by B cells, these MAbs may "coat" the cancer cell surface, triggering iits destruction tby the:immune: system. For example, bevacizumab targets vascular endothelial growthffactor(VEGF), a protein secreted by tumor cells and other cells in the tumor's microenvironment that promotes the: development of tumor blood vessels. When bound to bevacizumab, VEGFicannotinteractiwith its; cellular receptor, preventing the signaling that leads to the growth of new lblood vessels. Similarly, cetuximab and panitumumab target the epidermal growth factor receptor (EGFR), and trastuzumab targets the human epidermal growth factor receptor 2 (HER-2). MAbs that lbind to cell surface; growth factor receptors prevent the targeted receptors from sending their normal growth-promoting signals. They may also trigger apoptosis and activate the immune system to destroy tumor cells.

In one aspect of the present invention, the bioactive agent is an immunosuppressiveagent. The:immunosuppressive agent can be a calcineurin inhibitor, e.g. a a cyclosporin oor an ascomycin, e.g. Cyclosporin A (NEORAL®), FK506 (tacrolimus), pimecrolimus, a mTOR inhibitor, e.g. rapamycin or a derivative thereof, e.g. Sirolimus (RAPAMUNE®), Everolimus ((Certican®), temsirolimus, zotarolimus, biolimus-7, biolimus-9, a rapalog, e.g.ridaforolimus, ;azathioprine,
campath 1 H , a S1P receptor modulator, e.g. fingolimod or an analogue thereof, an anti lIL-8 antibody, mycophenolic acid or a salt thereof, e.g. sodium salt, or a prodrug thereof, e.g. Mycophenolate: Mofetil (CELLCEPT®), OKT3 (ORTHOCLONE OKT3®), Prednisone, ATGAM®, THYMOGLOBULIN®, Brequinar Sodium, OKT4, 'T10B9.A-3A, 33B3.1, 15- deoxyspergualin, tresperimus, Leflunomide ARAVA®, CTLAI-Ig, anti-CD25, anti-IL2R, Basiliximab (SIMULECT®), Daclizumab (ZENAPAX®), mizorbine, methotrexate, dexamethasone, ISAtx-247, SDZ ASM 981 (pimecrolimus, Elidel®), CTLA4lg ((Abatacept), belatacept, LFA3lg,, etanercept (sold as Enbrel® by Immunex), adalimumab (Humira®), infliximab (Remicade ${ }^{\circledR}$), an anti-LFA-1 antibody, natalizumab (Antegren®), lEnlimomab, gavilimomab, antithymocyte immunoglobulin, siplizumab, Alefacept efalizumab, pentasa, mesalazine, asacol, codeine phosphate, benorylate, fenbufen, naprosyn, diclofenac, etodolac and indomethacin, aspirin and ibuprofen.

IV. PHARMACEUTICAL COMPOSITIONS

The: N(substituted) $)_{2}-\mathrm{C}^{3}$-glutarimide compounds of Formula I, II, III, IV and ${ }^{\prime} \mathrm{V}$ as disclosed herein can be: administered as the neat chemical, but are more typically administered as a pharmaceutical composition, that includes an effective amount for a host, typically a thuman, in need of such treatment for any of the disorders described herein. Accordingly, the disclosure provides: pharmaceutical compositions comprising an effective amount of compound or pharmaceutically acceptable salt together with at least one pharmaceutically acceptable carrierffor any of the: uses described herein. The pharmaceutical composition may contain accompoundorssalt as;the:only active: agent, or, in an alternative embodiment, the compound and atlleastione;additional active: agent.

In certain embodiments the pharmaceutical composition is in a dosage form that contains from about: 0.1 mg to about 2000 mg , from about 10 mg to about 1000 mg , from about $100_{\mathrm{j}} \mathrm{mg}$ gto about: 800 mg , or from about 200 mg to about 600 mg of the active compound and optionally ffrom about: 0.1 mg to about 2000 mg , from about 10 mg to about 1000 mg , from about 100 mg to about 800 mg , or from about 200 mg to about 600 mg of an additional active agent in a a Examples; are dosage forms with at least $0.1,1,5,10,25,50,100,200,250, .300,400,500,600$, 700 , or 750 mg ; of active compound, or its salt. The pharmaceutical composition may also include a_{l} molar ratio of the active compound and an additional active agent. For example the
pharmaceutical composition may contain a molar ratio of about $0.5: 1$, about $1: 1$, about' $2: 1$, , about 3:1 or from about $1.5: 1$ to about $4: 1$ of an anti-inflammatory or immunosuppressing cagent. Compoundsi disclosed herein may be administered orally, topically, parenterally, lby iinhalationcor spray, sublingually, via implant, including ocular implant, transdermally, via lbuccal administration, rectally, as an ophthalmic solution, injection, including ocular injection, intraveneous, intra-aortal, intracranial, subdermal, intraperitioneal, subcutaneous, transnasal, sublingual, or rectal or by other means, in dosage unit formulations containing conventional pharmaceutically acceptable carriers. For ocular delivery, the compound ican lbe administered, as desired, for example, via intravitreal, intrastromal, intracameral, sub-tenon, sub-retinal, rretrobulbar, peribulbar, suprachorodial, conjunctival, subconjunctival, episcleral, periocular, transscleral, retrobulbar, posterior juxtascleral, circumcorneal, or tear duct injections, orthroughia mucus, mucin, or a mucosal barrier, in an immediate or controlled release fashion or via an oocular device.

The: pharmaceutical composition may be formulated as any pharmaceutically usefulfform, e.g., as: an aerosol, a cream, a gel, a pill, an injection or infusion solution, a capsule, a tablet, a syrup, a transdermal patch, a subcutaneous patch, a dry powder, an inhalation formulation, in a medical device, suppository, buccal, or sublingual formulation, parenteral formulation, or an ophthalmic solution. Some dosage forms, such as tablets and capsules, are subdividediintossuitably sized unit doses containing appropriate quantities of the active components, e.g., an reffective amount to achieve the desired purpose.

Carriers, include excipients and diluents and must be of sufficiently lhigh purity and sufficiently low toxicity to render them suitable for administration to the patientlbeingtreated. The carrier can be: inert or it can possess pharmaceutical benefits of its own. The amount of carrier employed in conjunction with the compound is sufficient to provide a practical،quantity of ${ }_{\jmath}$ material for administration per unit dose of the compound.

Classes of carriers include, but are not limited to binders, buffering agents, coloringagents, diluents, disintegrants, emulsifiers, flavorants, glidents, lubricants, preservatives, stabilizers, surfactants, tableting agents, and wetting agents. Some carriers may be listed jin 1 more than oone class, for example vegetable oil may be used as a lubricant in some formulations and adiluentin others. Exemplary pharmaceutically acceptable carriers include sugars, starches, ‘celluloses, powdered tragacanth, malt, gelatin; talc, and vegetable oils. Optional active agents may be
included in a pharmaceutical composition, which do not substantially interfere 'withthe activity of the: compound of the present invention.

The: pharmaceutical compositions/combinations can be formulated for oral administration. These: compositions can contain any amount of active compound that achieves the desired result, for example between 0.1 and 99 weight $\%(w t . \%)$ of the compound and usually at lleast about .5 wt. \%, of the: compound. Some embodiments contain from about $.25 \mathrm{wt} . \%$ to about .50 wt . ${ }^{\circ} \%$ sor from about $5 \mathrm{wt} . \%$ to about $75 \mathrm{wt} . \%$ of the compound.

Formulations suitable for rectal administration are typically presented as unit dose suppositories. These may be prepared by admixing the active compound with one or more conventional solid carriers, for example, cocoa butter, and then shaping the resulting mixture.

Formulations suitable for topical application to the skin preferably take the form of an ointment, cream, lotion, paste, gel, spray, aerosol, or oil. Carriers which may lbe used iinclude petroleum jelly, lanoline, polyethylene glycols, alcohols, transdermal ienhancers,andicombinations of two or more: thereof.

Formulations suitable for transdermal administration may be presented as discrete patches adapted to remain in intimate contact with the epidermis of the recipient for a prolonged periodof time. Formulations suitable for transdermal administration may also lbe deliveredlby yiontophoresis (see, for example, Pharmaceutical Research 3 (6):318 (1986)) and typically take the form of an optionally buffered aqueous solution of the active compound. In one embodiment, microneedle patches, or devices are provided for delivery of drugs across or into biological tissue, particularly the:skin. The: microneedle patches or devices permit drug delivery aticlinically relevantrates across or into skin or other tissue barriers, with minimal or no damage, pain, or ïrritation totthe tissue.

Formulations suitable for administration to the lungs can be delivered lby a a wide range of passive: breath driven and active power driven single/-multiple dose dry powder inhalers (DPI). The: devices; most commonly used for respiratory delivery include „nebulizers, \quad metered-dose inhalers, and dry powder inhalers. Several types of nebulizers are available, jincluding jjet nebulizers, ultrasonic nebulizers, and vibrating mesh nebulizers. Selection of a suitable llung delivery device: depends on parameters, such as nature of the drug and its formulation, the „site of action, and pathophysiology of the lung.

Many methods and devices for drug delivery are known in the art. Non-limiting examples are: described in the following patents and patent applications (fully incorporated herein by
reference). Examples are US 8,192,408 titled "Ocular trocar assembly" (Psivida lUs, IInc.); IUS 7,585,517 titled "Transcleral delivery" (Macusight, Inc.); US 5,710,182 and US 5,795,913 titled "Ophthalmic: composition" (Santen OY); US 8,663,639 titled "Formulations for treating ocular diseases: and conditions", US 8,486,960 titled "Formulations and methods for vascular permeability-related diseases or conditions", US 8,367,097 and US $8,927,005$ tititled "Liquid formulations. for treatment of diseases or conditions", US 7,455,855 titled "Delivering ssubstance andl drug; delivery system using the same" (Santen Pharmaceutical Co., Ltd.); WO/2011/050365 titled "Conformable Therapeutic Shield For Vision and Pain" and WO/2009/145842 titled "Therapeutic Device for Pain Management and Vision" (Forsight Labs, LLC); US 9,066,779 and US $8,623,395$ titled "Implantable therapeutic device", WO/2014/160884 tititled "Ophthalmic Implant: for Delivering Therapeutic Substances", US 8,399,006, US 8, 277,830, US $88,795,712$, IUS $8,808,727$, US $8,298,578$, and WO/2010/088548 titled "Posterior segment drug delivery", WO/2014/152959 and US20140276482 titled "Systems for Sustained IntraocularIDelivery offlLow Solubility Compounds. from a Port Delivery System Implant", US :8,905,963 and IUS $9,033,911$ titled "Injector apparatus and method for drug delivery", WO/2015/057554 titled ""Formulations and Methods. for Increasing or Reducing Mucus", US 8,715,712 and US $8,939,948$ titled ""Ocular insert: apparatus, and methods", WO/2013/116061 titled "Insertion and Removal lMethods and Apparatus: for Therapeutic Devices", WO/2014/066775 titled "Ophthalmic 'System for 'Sustained Release: of" Drug to the Eye", WO/2015/085234 and WO/2012/019176 tititled "Implantable Therapeutic: Device", WO/2012/065006 titled "Methods and Apparatus to determine JPorous Structures; for Drug Delivery", WO/2010/141729 titled "Anterior Segment Drug 〕Delivery", WO/2011/050327 titled "Corneal Denervation for Treatment of Ocular Pain", WO/2013/022801 titled " "Small Molecule Delivery with Implantable Therapeutic Device", WO/2012/019047 ttitled "Subconjunctival Implant for Posterior Segment Drug Delivery", WO/2012/068549 titled "Therapeutic: Agent Formulations for Implanted Devices", WO/2012/019139 titled "" ICombined Delivery Methods and Apparatus", WO/2013/040426 titled "Ocular Insert Apparatus and Methods", WO/2012/019136 titled "Injector Apparatus and Method for]Drug]Delivery", WO/2013/040247 titled "Fluid Exchange Apparatus and Methods" (ForSight Vision4, Inc.); US/2014/0352690 titled "Inhalation Device with Feedback System", IUS :8,910,625 and US/2015/0165137 titled "Inhalation Device for Use in Aerosol Therapy" (Vectura ‘GmbH); IUS 6,948,496 titled "Inhalers", US/2005/0152849 titled "Powders comprising anti-adherentımaterials
for use: in dry powder inhalers", US 6,582,678, US 8,137,657, US/2003/0202944, and US/2010/0330188 titled "Carrier particles for use in dry powder inhalers", US 16,221,338 titled "Method of producing particles for use in dry powder inhalers", US $6,989,155$ titled "Powders", US/2007/0043030 titled "Pharmaceutical compositions for treating premature ejaculation by pulmonary inhalation", US 7,845,349 titled "Inhaler", US/2012/0114709 and US :8,101, 160 ttitled "Formulations, for Use in Inhaler Devices", US/2013/0287854 titled "Compositions and IUses", US/2014/0037737 and US 8,580,306 titled "Particles for Use in a Pharmaceutical IComposition", US/2015/0174343 titled "Mixing Channel for an Inhalation Device", US 7,744,855 and US/2010/0285142 titled "Method of making particles for use in a pharmaceutical composition", US 7,541,022, US/2009/0269412, and US/2015/0050350 titled "Pharmaceutical formulations tfor dry powder inhalers" (Vectura Limited).

Additional non-limiting examples of how to deliver the active compounds are providediin WO/2015/085251 titled "Intracameral Implant for Treatment of an Ocular ICondition" (Envisia Therapeutics, Inc.); WO/2011/008737 titled "Engineered Aerosol Particles, and Associated Methods", WO/2013/082111 titled "Geometrically Engineered Particles and lMethods ffor Modulating; Macrophage or Immune Responses", WO/2009/132265 titled "Degradable compounds and methods of use thereof, particularly with particle replication in mon-wetting templates", WO/2010/099321 titled "Interventional drug delivery system and associated methods", WO/2008/100304 titled "Polymer particle composite having thigh ffidelity order, ssize, andl shape: particles", WO/2007/024323 titled "Nanoparticle fabrication methods, systems, and materials"' (Liquidia Technologies, Inc. and the University of North Carolina at Chapel JHill); WO/2010/009087 titled "Iontophoretic Delivery of a Controlled-Release FormulationinthelEye", (Liquidia. Technologies, Inc. and Eyegate Pharmaceuticals, Inc.) and WO/2009/132206 ttitled "Compositions, and Methods for Intracellular Delivery and Release of Cargo", WO/2007/133808 titled "Nano-particles for cosmetic applications", WO/2007/056561 titled "Medical device, materials, and methods", WO/2010/065748 titled "Method for producing patterned materials", WO/2007/081876 titled "Nanostructured surfaces for biomedical/biomaterial applications and processes; thereof" (Liquidia Technologies, Inc.).

Additional non-limiting examples of drug delivery devices and $\lrcorner m$ ethods include, ffor example, US20090203709 titled "Pharmaceutical Dosage Form For Oral Administration Of Tyrosine: Kinase: Inhibitor" (Abbott Laboratories); US20050009910 titled "'Delivery of ;an active
drug; to the posterior part of the eye via subconjunctival or periocular delivery of a a prodrug", IUS 20130071349 'titled "Biodegradable polymers for lowering intraocular pressure", IUS $8,481,069$ titled "Tyrosine kinase microspheres", US 8,465,778 titled "Method of making ttyrosine lkinase microspheres", US 8,409,607 titled "Sustained release intraocular implants containing ttyrosine kinase:inhibitors and related methods", US 8,512,738 and US 2014/0031408 titled"'Biodegradable intravitreal tyrosine kinase implants", US 2014/0294986 titled "Microsphere IDrug IDelivery System for Sustained Intraocular Release", US 8,911,768 titled "Methods \mathbb{F} For 'Treating Retinopathy With Extended Therapeutic Effect" (Allergan, Inc.); US 6,495,164tititled"Preparation of injectable: suspensions having improved injectability" (Alkermes Controlled 'Therapeutics, Inc.); WO 2014/047439 titled "Biodegradable Microcapsules Containing FillinglMaterial"((Akina, Inc.); WO 2010/132664 titled "Compositions And Methods For Drug Delivery" (Baxter International Inc. Baxter Healthcare SA); US20120052041 titled "Polymeric nanoparticles with enhanced drugloading and methods of use thereof" (The Brigham and Women's JHospital, IInc.); US20140178475, US20140248358, and US20140249158 titled "Therapeutic Nanoparticles Comprising a Therapeutic Agent and Methods of Making and Using Same" (BIND'Therapeutics, Inc.); US 5,869,103 titled "Polymer microparticles for drug delivery" (Danbiosyst IUKJLtd.); IUS 8628801 titled "Pegylated Nanoparticles" (Universidad de Navarra); US2014/0107025 titled "Ocular drug delivery system" (Jade Therapeutics, LLC); US 6,287,588 titled "'Agent delivering system comprised of microparticle and biodegradable gel with an improved releasing profile and methods; of use thereof", US 6,589,549 titled "Bioactive agent delivering system (comprised of microparticles, within a biodegradable to improve release profiles" (Macromed, Inc.); IUS $6,007,845$ and US 5,578,325 titled "Nanoparticles and microparticles of mon-linear hydrophilichydrophobic multiblock copolymers" (Massachusetts Institute of 'Technology); US20040234611, US20080305172, US20120269894, and US20130122064 titled "'Ophthalmic depot:formulations for periocular or subconjunctival administration (Novartis Ag); ${ }^{\text {(NS }} \mathbf{6 , 4 1 3 , 5 3 9}$ titled "Block polymer" (Poly-Med, Inc.); US 20070071756 titled "Delivery of an agent to ameliorate:inflammation" (Peyman); US 20080166411 titled "Injectable DepotJFormulations AAnd Methods; For Providing Sustained Release Of Poorly Soluble Drugs Comprising „Nanoparticles" (Pfizer, Inc.); US 6,706,289 titled "Methods and compositions for enhanced delivery of bbioactive molecules" (PR Pharmaceuticals, Inc.); and US 8,663,674 titled "Microparticle containing matrices; for drug delivery" (Surmodics).

V. GENERAL SYNTHESIS

The: compounds described herein can be prepared by methods known lby those skillediin the: art. In one non-limiting example the disclosed compounds can be made using the schemes below.

Compounds of the present invention with stereocenters may lbe drawn without steroechemistry for convenience. One skilled in the art will recognize that pure enantiomers and diastereomers can be prepared by methods known in the art. Examples of methods to obtain optically active materials include at least the following.
i) physical separation of crystals-a technique whereby macroscopic crystals of the individual enantiomers are manually separated. This technique can lbe used iif crystals of the separate enantiomers exist, i.e., the material is a conglomerate, and the crystals are visually distinct;
ii) simultaneous crystallization-a technique whereby the individual enantiomers are separately crystallized from a solution of the racemate, possible only if the llatter ins a conglomerate: in the solid state;
iii) enzymatic resolutions-a technique whereby partial or complete separation of a racemate: by virtue of differing rates of reaction for the enantiomers with an enzyme;
iv) enzymatic asymmetric synthesis-a synthetic technique whereby at lleast one step of the: synthesis uses an enzymatic reaction to obtain an enantiomerically pure or enriched synthetic precursor of the desired enantiomer;
v), chemical asymmetric synthesis-a synthetic technique whereby the desired enantiomer is, synthesized from an achiral precursor under conditions that produce asymmetry (i.e., chirality) in the product, which may be achieved using chiral catalysts or chiral auxiliaries;
vi) diastereomer separations-a technique whereby a racemic compound jis reacted,with an enantiomerically pure reagent (the chiral auxiliary) that converts the individual fenantiomers to diastereomers. The resulting diastereomers are then separated by chromatography or
crystallization by virtue of their now more distinct structural differences and the chiral auxiliary later removed to obtain the desired enantiomer;
vii) first-- and second-order asymmetric transformations-a technique 'whereby diastereomers from the racemate equilibrate to yield a preponderance in solution of the diastereomer from the desired enantiomer or where preferential crystallization of the diastereomer from the desired enantiomer perturbs the equilibrium such that eventually iin principle: all the material is converted to the crystalline diastereomer from the idesired enantiomer. The: desired enantiomer is then released from the diastereomer;
viii) kinetic resolutions-this technique refers to the achievement of partial or complete resolution of a racemate (or of a further resolution of a partially resolved icompound) lby virtue of unequal reaction rates of the enantiomers with a chiral, non-racemic reagent or icatalystiunder kinetic:conditions;
ix) enantiospecific synthesis from non-racemic precursors-a synthetic technique whereby the desired enantiomer is obtained from non-chiral starting materials and where the stereochemical integrity is not or is only minimally compromised over the course of the synthesis;
x) chiral liquid chromatography-a technique whereby the enantiomers of a racemate are separated in a liquid mobile phase by virtue of their differing interactions with a astationary phase (including, via chiral HPLC). The stationary phase can be made of chiral material or the „mobile phase: can contain an additional chiral material to provoke the differing interactions;
xi) chiral gas chromatography-a technique whereby the racemate is volatilized and enantiomers; are separated by virtue of their differing interactions in the gaseous, mobile phase with a column containing a fixed non-racemic chiral adsorbent phase;
xii), extraction with chiral solvents-a technique whereby the enantiomers are separated by virtue: of preferential dissolution of one enantiomer into a particular chiral solvent;
xiii) 'transport across chiral membranes-a technique whereby a racemate iis placediin contact with a thin membrane barrier. The barrier typically separates two miscible ffluids, one containing; the: racemate, and a driving force such as concentration or pressure idifferentialcauses preferential transport across the membrane barrier. Separation occurs as a result of the mon- racemic chiral nature of the membrane that allows only one enantiomer of the racemate to pass through.
xiv) simulated moving bed chromatography, is used in one embodiment. A wide variety of ${ }^{\text {chiral stationary phases are commercially available. }}$

General Scheme 1

General Scheme 2

Asishown in General Scheme 1 compounds for use in the presentinventioncanlbeprepared by chemically combining a Degron and a Linker followed by subsequent addition of a'Targeting Ligand. Similarly, in General Scheme 2 compounds for use in the present invention are prepared by chemically combing a Targeting Ligand and Linker first, followed lby :subsequent;addition of a Degron. As, illustrated in the above and following schemes, compounds for use in the present invention can readily be synthesized by one skilled in the art in a variety of fmethods and chemical reactions.

General Scheme 3

General Scheme 3: In Step 1, a nucleophilic Degron displaces a leaving!grouprontthelLinker tormake: a Degron Linker fragment. In Step 2, the protecting group is removedlby methods Iknown in the: art: to free: a nucleophilic site on the Linker. In Step 3, the nucleophilic JDegron JLinker fragment displaces a leaving group on the Targeting Ligand to form a compound for use iin the present invention. In an alternative embodiment Step 1 and/or Step 2 is accomplishedlbyarcoupling reaction instead of a nucleophilic attack.

General Scheme 4

General Scheme 4: In Step 1, a nucleophilic Targeting Ligand displaces a lleaving group on the: Linker to make a Targeting Ligand Linker fragment. In Step 2, the protecting group iis removed by methods known in the art to free a nucleophilic site on the Linker. In :Step 3, the nucleophilic: Targeting Ligand Linker fragment displaces a leaving group on the Degronttofforma
 accomplished by a coupling reaction instead of a nucleophilic attack.

General Scheme 5

General Scheme 6

General Scheme 5 and General Scheme 6: In Step 1, a nucleophilic Linker displaces a leaving; group on the Degron to make a Degron Linker fragment. In Step.2, the protecting!groupiis removed by methods known in the art to free a nucleophilic site on the Linker. In iStep .3, the nucleophilic: Degron Linker fragment displaces a leaving group on the 'TargetingLigandttofformia compound of 'Formula I, Formula II, or Formula V. In an alternative embodiment 'Step 1 and/or Step 2 is accomplished by a coupling reaction instead of a nucleophilic attack.

VI. EXEMPLARY METHODS FOR LINKING TARGETING LIGAND .AND DEGRON THROUGH A LINKER

Linking Scheme: 1 :

HATU, DMF, $23^{\circ} \mathrm{C}$

Linking Scheme 2:

4) $\mathrm{BEr}_{3}, \mathrm{DCM}, 0-23^{\circ} \mathrm{C}$

Linking Scheme 3:

Linking Scheme 4:

Linking Scheme 5:

$\mathrm{NaHB}(\mathrm{OAC})_{3}, \mathrm{DCE}, 50^{\circ} \mathrm{C}$

Linking Scheme 6:

1) DEAD, PPh3, THF, $23^{\circ} \mathrm{C}$

2) TFA, DCM, $0.23^{\circ} \mathrm{C}$

RuPhos Precatalyst G3
KOtBu, nBuOH or Toluene, $100^{\circ} \mathrm{C}$

Linking Scheme 7:

$\mathrm{NaHB}(\mathrm{OAc})_{3}, \mathrm{DCE}, 50^{\circ} \mathrm{C}$

Linking Scheme 8:

1) Grubb catalyst, DCM
2) $\mathrm{H}, \mathrm{Pd} \mathrm{C}, \mathrm{EtOH}, 23^{\circ} \mathrm{C}$

VII. SYNTHESIS OF REPRESENTATIVE COMPOUNDS

The: compounds of the present invention can be prepared, for example, using ,methods provided below or routine modifications of these methods.

Scheme 1:

General Procedure:

To the: mixture of $1-1(100 \mathrm{mg})$ and 1-2 (1.1 eq.) in DMF $(2 \mathrm{ml})$ were added IEDC.HCl (2.5 eq), HOBT (1.5 eq), and this was followed by the addition of DIPEA (3 eq). 'The reaction mixture: was stirred at room temperature for 16 hours to produce 1-3. After completion, crude 1-3 was:purified by preparative HPLC to afford 1-3.

General methods for prep HPLC purification:
Method-1
Preparative HPLC was conducted on Waters auto purification instrument equipped with a -.YMC-Actus Triart C18 ($100 \times 30 \mathrm{~mm}, ~ 5 \mu$) column operating at ambient temperature and afflow rate: of $30.0 \mathrm{ml} / \mathrm{min}$. Mobile phase: $\mathrm{A}=20 \mathrm{mM}$ NH4HCO3 in water, $\mathrm{B}=$ Acetonitrile; 'Gradient Profile: Mobile: phase initial composition of 80% A and 20% B, then to 65% A and 35% lB in ${ }^{\prime} 2$ minutes, then to 25% A and 75% B in 12 minutes, then to $5 \% \mathrm{~A}$ and 95% B in 13 minutes. This was:maintained up to 15 minutes for column washing and the solvent mixture 'was returned to the initial composition for 16 minutes and maintained until 18 minutes.

Method-2
Preparative HPLC was conducted on Waters auto purification instrument equipped with a -. YMC-Actus Triart C18 ($250 \times 20 \mathrm{~mm}, 5 \mu$) column operating at ambient temperature and fflow rate: of $20.0 \mathrm{ml} / \mathrm{min}$. Mobile phase: $\mathrm{A}=10 \mathrm{mM}$ NH4OAc in water, $\mathrm{B}=$ Acetonitrile ; , Gradient Profile: Mobile; phase initial composition of $70 \% \mathrm{~A}$ and $30 \% \mathrm{~B}$, then to $45 \% \mathrm{~A}$ and $55 \% \mathrm{~B}$ in 3 minutes, then to 25% A and 75% B in 18 minutes, then to 5% A and 95% B in 19 minutes. 'This was; maintained for up to 21 minutes for column washing and the solvent mixture was returned to the: initial composition for 22 minutes and maintained until 25 minutes.

Method-3
Preparative HPLC was conducted on Waters auto purification instrument requipped with a -. YMC-Actus Triart C18 ($250 \times 20 \mathrm{~mm}, ~ 5 \mu$) column operating at ambient temperature and flow rate of $20.0 \mathrm{ml} / \mathrm{min}$. Mobile phase: $\mathrm{A}=0.1 \%$ Formic acid in water, $\mathrm{B}=$ Acetonitrile ; ;Gradient Profile: Mobile: phase initial composition of $80 \% \mathrm{~A}$ and $20 \% \mathrm{~B}$, then to 70% A and $30 \% \mathrm{~B}$ in 3 minutes, then to 25% A and 75% B in 18 minutes, then to 5% A and 95% B in 19 minutes. 'This
was: maintained for up to 21 minutes for column washing and the solvent imixture was ireturnedto the: initial composition for 22 minutes and maintained until 25 minutes.

Scheme 2A:

Preparation of 3-(Benzyl-methyl-amino)-piperidine-2,6-dione (Compound 1)

A solution of 3-bromo-piperidine-2,6-dione (2-1) ($6 \mathrm{~g}, 31.25 \mathrm{mmol}$) and lbenzyl-methylamine: (2-2) ($10 \mathrm{~g}, 78.125 \mathrm{mmol}$) in DMF (30 mL) was stirred at ambient temperature 16 hhours. The: reaction mixture was then concentrated under reduced pressure and the acrude mixture was purified by column chromatography (silica, gradient: 0-25\% EtOAc in hexane)ttoafford.3-(benzyl-methyl-amino)-piperidine-2,6-dione (Compound $\quad 1)(6 \mathrm{~g}, 83 \%)$ as à igrey 'solid. ${ }^{1}{ }^{1}{ }^{1} \mathrm{NMR}{ }_{(400}$ MHz, DMSO-d6) $\boldsymbol{\delta} 10.63$ (s, 1H), 7.32 (s, 4H), 7.23 (brs, 1H), 3.76 ($\mathrm{s}, 2 \mathrm{H}$), 3.60 ($\mathrm{dd}, \mathrm{J}==11.74$, $4.34 . \mathrm{Hz}, 1 \mathrm{H}), 2.63-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.46-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{LLC}$ MS: ES+233.2.

Preparation of 3-Methylamino-piperidine-2,6-dione (2-3)

An ethyl acetate solution (100 mL) of 3-(benzyl-methyl-amino)-piperidine-2,6-dione (Compound . 1) ($2.5 \mathrm{~g}, 10.763 \mathrm{mmol}$) in a Parr shaker vessel was degassed with argon for about 15 minutes, and this was followed by the addition of $10 \% \cdot \mathrm{Pd} / \mathrm{C}_{1}(700 \mathrm{mg})$. The reaction vessel backfilled with hydrogen and reaction mixture was subjected to hydrogenolysis on \mathfrak{a} IParr
hydrogenator for 16 hours at 50 psi hydrogen pressure at ambient temperature. 'The reaction mixture: was: filtered through a bed of celite and washed with ethyl acetate. 'The combinedffiltrates were:concentrated under reduced pressure to afford 3-methylamino-piperidine-2,6-dionel(2-3)((1.5 $\mathrm{g}, 98 \%$) as a grey solid.

The:following; compounds were made according the general procedure of Scheme 1 :

Compound 2
1H NMR. (400 MHz, DMSO-d6) $\delta 10.86$ (s, 1H), 8.76 (d, J = $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (d, J = = '7.4 lHz , $2 \mathrm{H}), 7.58-7.45(\mathrm{~m}, 3 \mathrm{H}), 4.85-4.65(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.12((\mathrm{~m}$, 1H), 2.01-1.90 (s, 1H); LC MS: ES+ 233.2

Compound 3
1HNMR. (400 MHz, DMSO-d6) $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, \mathrm{~J}==8.2 \mathrm{JHz}$, $2 \mathrm{H}), 7.72$. ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $4.78(\mathrm{ddd}, \mathrm{J}=13.1,8.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ ($\mathrm{ddd}, \mathrm{J}=18.2,13.4,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{td}, \mathrm{J}=13.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{JLC}] \mathrm{MS}:$ ES-308.8 (Br pattern observed).

Compound 4
1H NMR (400 MHz, DMSO-d6) $\delta 10.88$ (s, 1H), 8.79 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.69 ($\mathrm{d}, \mathrm{J}=\mathrm{E}_{2} .6 \mathrm{fHz}$, $1 \mathrm{H}), 8.14$ ($\mathrm{dd}, \mathrm{J}=8.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dq}, \mathrm{J}=13.1,6.1,5.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.92(\mathrm{~s}, 3 \mathrm{H}), 2.80^{\prime}(\mathrm{td}, \mathrm{J}=15.2,13.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.051(\mathrm{~m}, 1 \mathrm{H}), 2.03-$ 1.94.(m, 1H); LC MS: 264.1.

Compound 6
1HNMR (400 MHz , DMSO-d6) $\delta 10.89(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ ($\mathrm{s}, 1 \mathrm{H}), 7.87$ (t, JJ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, \mathrm{J}=8.4,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{t}$, $\mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.77(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{ddd}, \mathrm{J}=18.2,13.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), .2 .58-2.50((\mathrm{~m}, 1 \mathrm{H})$, $2.13(\mathrm{td}, \mathrm{J}=12.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES- 307.2.

Compound 5
1 H NMR. ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6) ~ \delta 10.86(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63 \mathrm{~d}\left(\mathrm{~d}, \mathrm{~J}==^{\prime} 7.7 \mathrm{HHz}\right.$, $1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{ddd}, \mathrm{J}==13.1$, $8.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, \mathrm{J}=18.2,13.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.20-2.05((\mathrm{~m}$, $1 \mathrm{H}), 1.99^{\prime}(\mathrm{tt}, \mathrm{J}=8.3,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.04-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.77-0.68(\mathrm{~m}, 2 \mathrm{H}) ;$ LCMS: IES-271.2.

Compound 7

1H NMR (400 MHz, DMSO-d6) $\delta 10.89(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85$ ($\mathrm{dd}, \mathrm{J}=7.7,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.51(\mathrm{ddd}, \mathrm{J}=8.8,7.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=7.4 \mathrm{JHz}, 1 \mathrm{H})$,
$4.81-4.69^{\prime}(\mathrm{m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{t}, \mathrm{J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{ddd}, \mathrm{J}==12.4$, 8.9, 4.2.Hz, 2H); LC MS: ES- 261.1.

10

Compound 9
1H NMR. (400 MHz, DMSO-d6) $\delta 10.87$ ($\mathrm{s}, 1 \mathrm{H}$), 8.76 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.44$ ((m, 4H), 7.45 - 7.36 (m, 3H), $7.34(\mathrm{dd}, \mathrm{J}=8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, \mathrm{J}=7.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H})$, $4.83-4.73(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{dt}, \mathrm{J}=13.1,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-$ 1.95 (m, 1H); LC MS: ES- 337.2.

Compound 10
Compound 8
1H NMR. ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6) ~ \delta 10.86(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.48 \mathrm{I}(\mathrm{d}, \mathrm{J}==4.7 \mathrm{lHz}$, $1 \mathrm{H}), 7.77^{\prime}(\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{dd}, \mathrm{J}=7.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{ddd}, \mathrm{J}=12.8,8.2,5.1 \mathrm{JHz}, 1 \mathrm{H})$, $2.79^{\prime}(\mathrm{ddd}, \mathrm{J}=18.9,13.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.55(\mathrm{~m}, 4 \mathrm{H}), 2.24-2.101(\mathrm{~m}, 1 \mathrm{H}), 2.021\left(\mathrm{t}, \mathrm{J}==^{\prime} 7.1 \mathrm{~Hz}\right.$, 1H); LC MS: ES+ 248.1.

1H NMR ($400 \mathrm{MHz}, ~ D M S O-d 6$) $\delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.36(\mathrm{~m}, 3 \mathrm{H})$, 7.16- - 7.08 ($\mathrm{m}, 1 \mathrm{H}$), $4.78(\mathrm{q}, \mathrm{J}=11.4,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{td}, \mathrm{J}=13.1,(6.6 \mathrm{H} \mathrm{Hz}, 1 \mathrm{H})$, 2.56-2.50 (m, 1H), 2.17 - 2.05 (m, 1H), 1.98 (s, 1H); LC MS: ES- 261.1

Compound 11
1H NMR. (400'MHz, DMSO-d6) $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, \mathrm{~J}==5.1 \mathrm{JHz}$, $1 \mathrm{H}), 7.64 \cdot(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), .2 .81 \mathrm{I}(\mathrm{t}, \mathrm{J}=13.5 \mathrm{JHz}, 1 \mathrm{H}), \check{2} .55-$ $2.50^{\prime}(\mathrm{m}, 4 \mathrm{H}), 2.10(\mathrm{t}, \mathrm{J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{~s}, 1 \mathrm{H})$; LC MS: ES- '246.1.

Compound 12
1H.NMR. (400'MHz, DMSO-d6) $\delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}==18.6 \mathrm{JHz}$, $3 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.67-4.64(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H})$, $2.2^{\prime}(\mathrm{s}, 3 \mathrm{H}), 2.07-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.96(\mathrm{~m}, 1 \mathrm{H}) ;$ LC MS: ES+313.1.

Compound 13
1H.NMR. (400 MHz, DMSO-d6) $\delta 10.84(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~s}, 1 \mathrm{H}), 7.84$ ((s, $1 \mathrm{H}), 4.71(\mathrm{ddd}, \mathrm{J}=13.2,8.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{ddd}, \mathrm{J}=17.7,13.2,5.4 \mathrm{JHz}, 1 \mathrm{H})$, 2.50-2.49 ${ }^{\prime}(\mathrm{m}, 1 \mathrm{H}), 2.09-1.93$ (m, 2H); LC MS: ES- 235.1.

Compound 14

1 H NMR (400 MHz, DMSO-d6) $\boldsymbol{\delta} 12.19(\mathrm{~s}, 1 \mathrm{H}), 10.94(\mathrm{~s}, 1 \mathrm{H}), 9.11\left(\mathrm{~d}, \mathrm{~J}==^{\prime} 7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.87(\mathrm{~d}$, $\mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.82 \mathrm{I}(\mathrm{dt}, \mathrm{J}=12.8,16.4 \mathrm{JHz}, 1 \mathrm{H})$, $2.81(\mathrm{ddd}, \mathrm{J}=18.1,12.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{ddd}, \mathrm{J}==27.7,14.2,9.2 \mathrm{mHz}$, 2H); LC MS: ES- 247.1. $1 \mathrm{H}), 4.80-4.75(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.04 \mathrm{l}(\mathrm{m}, 2 \mathrm{H}) ;$ ILCIMS:IES297.1.

Compound 16
1H NMR. (400 MHz, DMSO-d6) $\delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{dd}, \mathrm{J}=8.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, \mathrm{J}==9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.13$ (ddd, $\mathrm{J}=21.9,7.4,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{p}, \mathrm{J}=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{JHz}, 3 \mathrm{H})$, $2.78(\mathrm{td}, \mathrm{J}=12.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{dd}, \mathrm{J}=12.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}$, 1H); LC MS: ES- 279.1.

Compound 17

1H NMR. (400 MHz, DMSO-d6) $\delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.03 \mathrm{l}(\mathrm{s}, 2 \mathrm{H}), 16.67(\mathrm{~s}$, $1 \mathrm{H}), 4.75(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.97(\mathrm{~m}, .2 \mathrm{H})$; ILClMS:IES291.1.

Compound 18
1H NMR. (400 MHz, DMSO-d6) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}==7.7 \mathrm{lHz}$, $2 \mathrm{H}), 7.10^{\prime}(\mathrm{d}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{q}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H}), 2.72 \mathrm{I}(\mathrm{dd}, \mathrm{J}==17.6,9.2 \mathrm{IHz}$, 1H), 2.49-2.46 (m, 1H), 2.26 (s, 3H), 1.90 (s, 2H); LC MS: ES- 259.1.

Compound 19
1HNMR.(400 MHz, DMSO-d6) $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.18$ $(\mathrm{t}, \mathrm{J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.81-4.72(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.00(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{LLC}$ MS: ES+269.0.

Compound 20
1H NMR. (400 MHz, DMSO-d6) $\delta 10.84(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.27 \mathrm{l}(\mathrm{s}, 1 \mathrm{H}),{ }^{7} .89$ ($(\mathrm{s}$, $1 \mathrm{H}), 7.41-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 4.77-4.68(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 1 \mathrm{H})$, 2.02-1.94. (m, 2H); LC MS: ES- 311.1.

Compound 21
1H NMR (400 MHz , DMSO-d6) $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 8.94-8.85(\mathrm{~m}, 2 \mathrm{H}), 8.11 \mathrm{(dd}, \mathrm{~J}=8.1,2.4 \mathrm{IHz}$, $1 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{ddd}, \mathrm{J}=12.8,8.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{ddd}, \mathrm{J}=18.2,13.1,5.5$

Compound 22
1H NMR. (400 MHz, DMSO-d6) $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, \mathrm{~J}==5.2 \mathrm{HHz}$,
10 $1 \mathrm{H}), 7.37^{\prime}(\mathrm{d}, \mathrm{J}=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H}), 4.78(\mathrm{p}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ ($\left.\mathrm{s}, 3 \mathrm{H}\right), 2.80$ ($\mathrm{td}, \mathrm{J}==13.3$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (m, 1H), 2.11-1.99 (m, 2H); LC MS: ES+ 364.03.

Compound 23
1HNMR (400 MHz , DMSO-d6) $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 9.02(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{JJ}$ $=8.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H})$, 2.84.(ddd, $\mathrm{J}=18.2,13.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.03(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{LCMS}: \mid \mathrm{ES}+287.1$.

Compound 24

1H NMR. (400 MHz, DMSO-d6) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 8.64(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), \quad 7.21-\mathrm{-} 7.12(\mathrm{~m}, 1 \mathrm{H})$, $7.04 \cdot(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.73$ (ddd, $\mathrm{J}=12.1,8.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ ($\mathrm{ddd}, \mathrm{J}=17.2,12.9,5.7 \mathrm{IHz}$, $1 \mathrm{H}), 2.55(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 6 \mathrm{H}), 2.15-1.93(\mathrm{~m}, 2 \mathrm{H})$; LC MS: ES-259.1.

Compound 25
1H NMR. (400 MHz, DMSO-d6) $\delta 10.86(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66 \mathrm{l}\left(\mathrm{d}, \mathrm{J}=={ }^{\prime} 7.7 \mathrm{IHz}\right.$, $1 \mathrm{H}), 7.56-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.13(\mathrm{~m}, .2 \mathrm{H}), 7.05(\mathrm{~d}, \mathrm{~J}==18.0 \mathrm{JHz}, 2 \mathrm{CH})$, 4.76 (ddd, $\mathrm{J}=12.9,8.2,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{ddd}, \mathrm{J}=18.0,13.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55((\mathrm{~d}, \mathrm{~J}==.3 .8 \mathrm{lHz}$, 1H), 2.11 (qd, J = 13.0, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES-323.1.

Compound 26
1HNMR (400 MHz, DMSO-d6) $\delta 10.85(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.15$ $(\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{ddd}, \mathrm{J}=13.1,8.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-2.76(\mathrm{~m}, 5 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 1 \mathrm{H})$, 2.18-2.05 (m, 1H), 1.99-1.91 (m, 1H), 1.75-1.73 (m, 4H); LC MS: ES-285.1.

Compound 27
1 H NMR (400 MHz , DMSO-d6) $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{JJ}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83-4.80(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.00-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.56$ ($\mathrm{s}, 3 \mathrm{H}$), 2.56-2.50 (m, 1H), $2.14(\mathrm{dt}, \mathrm{J}=13.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{LC}] \mathrm{MS}: \mid \mathrm{ES}+$ 301.1.

Compound 28
1 H NMR (400 MHz, DMSO-d6) $\delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 9.28(\mathrm{dd}, \mathrm{J}=24.7,5.2 \mathrm{~Hz}, 2 \mathrm{H}), 9.18((\mathrm{~s}, 1 \mathrm{H})$, $8.60^{\prime}(\mathrm{s}, 1 \mathrm{H}), 4.86$ (ddd, J = 13.2, 8.3, $\left.5.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.83(\mathrm{ddd}, \mathrm{J}=18.3,12.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-$ 2.52: (m, 1H), 2.09 (ddd, J = 30.0, 11.4, $5.6 \mathrm{~Hz}, 2 \mathrm{H}$); LC MS: ES- 300.1.

Compound 29
1H NMR. (400 MHz, DMSO-d6) $\delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 9.34(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.98 \mathrm{(d}, \mathrm{J==5.0JHz}$, $1 \mathrm{H}), 8.27^{\prime}(\mathrm{s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{ddd}, \mathrm{J}=13.1,8.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ ($\mathrm{ddd}, \mathrm{J}==$ 17.9, 13.4, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ - 2.52 (m, 1H), 2.11-1.99 (m, 2H); LC MS: ES-.300.1.

Compound 30
1 H NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 10.86(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{JHz}$, $1 \mathrm{H}), 8.001(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, \mathrm{J}=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76{ }_{(}(\mathrm{dt}, \mathrm{J}=13.3,5.8 \mathrm{JHz}, 1 \mathrm{H}), 3.99$ (d, J = 7.0 Hz, 2H), 2.79 (td, J = 14.3, 13.4, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.18(\mathrm{~m}, 1 \mathrm{H})$, 2.02-1.99 (m, 1H), 1.29-1.20 (m, 1H), $0.60(\mathrm{q}, \mathrm{J}=4.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.37$ ($\mathrm{q}, \mathrm{J}=.4 .8] \mathrm{Hz}, 2 \mathrm{H}) ; \mathrm{LLC}] \mathrm{MS}:$ ES+304.1.

Compound 31
1H.NMR. (400 MHz, DMSO-d6) $\delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.361(\mathrm{~s}, 1 \mathrm{H}), 88.22(\mathrm{~s}$, $1 \mathrm{H}), 7.92(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 2.91-.2 .70$

Compound 32
1HNMR. (400 MHz, DMSO-d6) $\boldsymbol{\delta} 10.87(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{JJ}$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.69(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{ddd}, \mathrm{J}==18.2,12.8$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 2 \mathrm{H})$.

Compound 33

1H NMR. (400 MHz, DMSO-d6) $\delta 10.94(\mathrm{~s}, 1 \mathrm{H}), 9.30(\mathrm{~s}, 1 \mathrm{H}), 9.16(\mathrm{~d}, \mathrm{~J}=88.3 \mathrm{lHz}, 1 \mathrm{H}), 8.87(\mathrm{~s}$, $1 \mathrm{H}), 8.12 .(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-4.84(\mathrm{~m}, 1 \mathrm{H})$, 2.87-2.80 (m, 1H), 2.60-2.49 (m, 1H), 2.18-1.97 (m, 2H); LC MS: ES- 282.2.

Compound 35
1HNMR. (400 MHz, DMSO-d6) $\delta 10.85(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73 \mathrm{l}(\mathrm{s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{JJ}$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.75(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{t}, \mathrm{J}=7.4 . \mathrm{Hz}, 4 \mathrm{H}), 2.85-2.72((\mathrm{~m}$, 1H), 2.55-2.49 (m, 1H), 2.16-2.04 (m, 1H), 2.16-1.97 (m, 4H); LC MS: ES- 271.1.

Compound 36
1 H NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 9.04(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, \mathrm{~J}=5.5 .0 \mathrm{JHz}$, $1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.72(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.73 \mathrm{l}(\mathrm{m}, 1 \mathrm{H}), 2.50-2.46(\mathrm{~m}$, 1H), 2.42 ($\mathrm{s}, 3 \mathrm{H}$), 2.25-2.15 (m, 1H), 2.08-1.91 (m, 1H); LC MS: ES+ 248.0.

Compound 37
1H NMR (400 MHz, DMSO-d6) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66$ ($\mathrm{s}, 1 \mathrm{H}$), 4.75-4.65 $(\mathrm{m}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{td}, \mathrm{J}=15.1,13.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.85(\mathrm{~m}, 3 \mathrm{H})$, 1.05-0.95 (m, 2H), $0.80(\mathrm{~d}, \mathrm{~J}=3.04 \mathrm{~Hz}, 2 \mathrm{H})$; LC MS: ES- 275.1.

Compound 38
1HNMR. (400 MHz, DMSO-d6) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50((\mathrm{~m}, 5 \mathrm{H}), 16.68$ $(\mathrm{s}, 1 \mathrm{H}), 4.75-4.72(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.95((\mathrm{~m}, 1 \mathrm{H})$; 1HNMR. (400 MHz, MeOD) $\delta 7.53-7.48(\mathrm{~m}, 5 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 4.82-4.77(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.75 .9 \mathrm{M}$, 1H), 2.72-2.65 (m, 1H), 2.35 (s, 3H), 2.24-2.13 (m, 2H); LC MS: ES+313.1.

Compound 39
1HNMR (400 MHz, DMSO-d6) $\delta 10.79$ (s, 1H), 8.13 (d, J = $8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 7.97 ($\mathrm{s}, 1 \mathrm{H}$), $7.60-7.35$ $(\mathrm{m}, 5 \mathrm{H}), 4.61-4.55(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.49(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H})$; LCMS: ES+313.1.

Compound 40
1HNMR (400 MHz, DMSO-d6) $\delta 10.85(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.08(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{dd}, \mathrm{J}=8.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81-4.71(\mathrm{~m}, 1 \mathrm{H}), 3.26(\mathrm{~s}$, $3 \mathrm{H}), 3.26 \mathrm{i}(\mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.1_{1}(\mathrm{~m}, 1 \mathrm{H}), 2.01--$ 1.93 (m, 5H), LC MS: ES- 300.1.

Compound 41
1 H NMR. (400 MHz, DMSO-d6) $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 9.42(\mathrm{~s}, 1 \mathrm{H}), 9.23 \mathrm{~d}(\mathrm{~d}, \mathrm{~J}=: 8.3 \mathrm{HJz}, 1 \mathrm{H}), 8.61(\mathrm{~s}$, $1 \mathrm{H}), 8.25(\mathrm{dd}, \mathrm{J}=19.2,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.88$ (ddd, JJ $5=13.3,8.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.191(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.04$ (m, 1H); LC MS: ES+ 284.0

Compound 42
1H:NMR. (400 MHz, DMSO-d6, 100oC) $\delta 10.49(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.28 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, \mathrm{JJ}=$ $8.12 \mathrm{~Hz}, 2 \mathrm{H}), 4.81(\mathrm{brs}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.51 \mathrm{l}(\mathrm{m}, 1 \mathrm{H}), .2 .43-2.32((\mathrm{~m}$, $1 \mathrm{H})$, , 2.04-2.00 (m, 1H); LC MS:ES+ 325.0 (Br pattern observed).

Compound 43
1 H NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6) ~ \delta 10.86(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, \mathrm{~J}==2.8 \mathrm{JHz}$, $1 \mathrm{H}), 7.86_{1}(\mathrm{dd}, \mathrm{J}=9.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~d}, \mathrm{~J}=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79-4.69(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 2.79$ (ddd, $\mathrm{J}=18.2,13.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.92(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{LC}] \mathrm{MS}:] \mathrm{ES}-262.1 ; \mathrm{ILC}$ MS: ES-265.0.

Compound 44
1H NMR (400 MHz, DMSO-d6) $\delta 10.86$ (s, 1H), 8.76 (d, J = $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-\mathrm{-} 7.38((\mathrm{~m}, 4 \mathrm{H})$, $4.75(\mathrm{q}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{ddt}, \mathrm{J}=18.3,13.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.56 \mathrm{(d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.0-1.90$ (m, 2H).

Compound 45
1H NMR. (400 MHz, DMSO-d6) $\delta 10.94(\mathrm{~s}, 1 \mathrm{H}), 8.78$ (d, J = $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93 \mathrm{~d}(\mathrm{~d}, \mathrm{~J}==88.4 \mathrm{JHz}$, $1 \mathrm{H}), 7.70$ ($\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.33(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.93-4.90(\mathrm{~m}, 1 \mathrm{H})$, 4.32 ($\mathrm{s}, 3 \mathrm{H}$), 2.89-2.80 (m, 1H), 2.59-2.50 (m, 1H), 2.23-2.14(m, 2H); LC.MS: ES-:285.1.

Compound 46
1HNMR. (400 MHz, DMSO-d6) $\delta 10.91$ (s, 1H), 9.01 (dd, J:=15.3, $5.3 \mathrm{~Hz}, 2 \mathrm{H}$), 8.74 ($\mathrm{dd}, \mathrm{J}==4.9$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dt}, \mathrm{J}=7.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, \mathrm{J}=7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82$ ($\mathrm{dd}, \mathrm{J}=12.2,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.87-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.15-1.99(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{LC} \mathrm{MS}: \mid \mathrm{ES}+234.0$.

Compound 47
1H NMR. (400 MHz, DMSO-d6) $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.19$ ($\mathrm{s}, 1 \mathrm{H}$), 8.13 ((s , $1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{q}, \mathrm{J}=9.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H})$,
2.82. (d, J=12.9 Hz, 1H), $2.57(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{ILC}$ MS: ES--285.1.

Compound 48
1H.NMR. ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6) \boldsymbol{\delta} 10.90(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.93$ ($\mathrm{d}, \mathrm{J}==7.7 \mathrm{IHz}$, $1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 4.83-4.76(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.76(\mathrm{~m}$, $1 \mathrm{H})$, , 2.57-2.50 (m, 1H), 2.19-2.10(m, 1H), 2.09-2.00 (m, 1H); LC.MS: ES-.315.1.

Compound 49
1H NMR (400 MHz , DMSO-d6) $\delta 10.91$ ($\mathrm{s}, 1 \mathrm{H}$), $9.05(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.06-7.95$ ($\mathrm{m}, 4 \mathrm{H}$), $4.81(\mathrm{ddd}, \mathrm{J}=13.0,8.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 1 \mathrm{H})$, 2.00-1.99 (m 1H); LC MS: ES- 256.1.

Compound I501
1HINMR.(400)MHz,,DMSO-d6) $\boldsymbol{\delta} 10.91(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.15-8.05$ (m, 2H), 7.59 $(\mathrm{t}, \mathrm{J}==9.24 \mathrm{Hzz}, 1 \mathrm{H}), 4.82-4.74(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 2 \mathrm{H})$;

LC'MS::ES--274.1.

Compound 151
1HINMR.(4001MHz, DMSO-d6) $\boldsymbol{\delta} 10.90(\mathrm{~s}, 1 \mathrm{H}), 8.31-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.82-7.66(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.85$ $(\mathrm{m}, 1 \mathrm{H}), 5.00-4.64 .(\mathrm{m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.89-2.80(\mathrm{~m}, 4 \mathrm{H}), 2.79-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.44 \mathrm{~m}(\mathrm{~m}, 1 \mathrm{H})$, 2.01-1.98;(m, 1H); LC MS: $\mathrm{ES}=278.1$.

Compound 152
1H[NMR. (4001MHz, DMSO-d6) $\delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.84(\mathrm{~m}, 1 \mathrm{H}), 5.15-$ $4.44 .(\mathrm{m}, 1 \mathrm{H}), 3.86 .(\mathrm{s}, 3 \mathrm{H}), 2.86-2.74(\mathrm{~m}, 4 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.37(\mathrm{~m}, 1 \mathrm{H}), 1.98=1.91$ (m, 1H); LC: MS: ES+ 295.1.

Compound $\mid 53$

1HNMR. (400 MHz, DMSO-d6) $\delta 10.94(\mathrm{~s}, 1 \mathrm{H}), 8.94-8.83(\mathrm{~m}, 1 \mathrm{H}), 8.55-8.35 \mathrm{I}(\mathrm{m}, 1 \mathrm{H}), 8.13-8.08$ $(\mathrm{m}, 2 \mathrm{H}), 7.85-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 1 \mathrm{H}), 5.20-4.73(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.49$ $(\mathrm{m}, 1 \mathrm{H}), 2.49-2.44(\mathrm{~m}, 1 \mathrm{H})$, 2.08-2.00 (m, 1H); LC MS: ES+ 298.1.

Compound 54
1HNMR. (400 MHz, DMSO-d6) $\delta 10.46$ (brs, 1 H), $7.10-7.09(\mathrm{~m}, 3 \mathrm{H}), 4.84(\mathrm{brs}, 1 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H})$, 2.79-2.61 (m, 5H), 2.59-2.52 (m, 1H), 2.42-2.31 (m, 1H), 2.03-1.98 (m, 1H), 1.77-1.71 ($\mathrm{m}, 4 \mathrm{H}$); LCMS: ES+ 301.1.

Compound 55
1 H NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 9.26(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, \mathrm{~J}==2.9 \mathrm{JHz}$, $2 \mathrm{H}), 4.79^{\prime}(\mathrm{dt}, \mathrm{J}=12.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 1 \mathrm{H})$, 2.00-1.96 (m, 1H); LC MS: ES+ 324.0 (Cl pattern observed).

Compound 56
1H NMR (400 MHz, DMSO-d6) $\delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.43$ ($\mathrm{s}, 1 \mathrm{H}$), 4.75-4.70 $(\mathrm{m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.07(\mathrm{~m}, 1 \mathrm{H})$, 2.00-1.92. (m, 1H); LC MS: ES+ 251.1.

Compound 57
1 H NMR. ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6) ~ \delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.76 \mathrm{f}(\mathrm{d}, \mathrm{J}==1.9 \mathrm{IHz}$, $1 \mathrm{H}), 7.52-7.34(\mathrm{~m}, 4 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.63(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.49$ (m, 1H), 2.08-1.95 (m, 2H); LC MS: ES- 297.1.

Compound 58
1H NMR. (400 MHz, DMSO-d6 at 100oC) $\delta 10.44(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.27$ $(\mathrm{m}, 5 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 5.2-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.81-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.55(\mathrm{~m}, 1 \mathrm{H}), .2 .41-$ 2.30 (m, 1H), 2.03-1.94 (m, 1H); LC MS: ES- 325.2.

Compound 59
1HNMR (400 MHz, DMSO-d6, 100 oC$) \delta 10.53(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, \mathrm{~J}==4.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{brs}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}$, 1H), 2.43-2.33 (m, 1H), 2.04-2.01 (m, 1H); LC MS: ES- 276.1.

Compound 60

1HNMR ($400 \mathrm{MHz}, \mathrm{MeOD}) \delta 4.93-4.89(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.781(\mathrm{~s}, .3 \mathrm{H}), .2 .71-2.63(\mathrm{~m}$, $1 \mathrm{H}), 2.61$ (s, 3H), 2.39-2.31 (m, 4H); LC MS: ES- 300.1.

Compound 61
1HNMR (400 MHz , DMSO-d6) $\delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 8.67-8.54(\mathrm{~m}, 1 \mathrm{H}), 7.89-7.74(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.44$ $(\mathrm{m}, 1 \mathrm{H}), 5.13-4.53(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.67-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.34(\mathrm{~m}, .2 \mathrm{H}), 2.07-2.02$ (m, 1H); LC MS: ES+ 248.1.

Compound 62
1H NMR. (400 MHz , DMSO-d6 100oC) $\delta 10.47$ (s, 1H), 7.54 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H})$, $7.21(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.87(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.75-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.60-$ 2.54. (m, 1H), $2.55(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.07-2.05(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+.315.2.

Compound 63
1HNMR. (400 MHz , DMSO-d6, 100C) $\delta 10.46(\mathrm{~s}, 1 \mathrm{H}), 8.43_{\left.(\mathrm{s}, 1 \mathrm{H}), 7.40_{(\mathrm{s}}, 1 \mathrm{H}\right), 7.29_{(\mathrm{d}} \mathrm{d}, \mathrm{J}==4.7}$ $\mathrm{Hz}, 1 \mathrm{H}), 5.04-5.02(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.84-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.38(\mathrm{~m}$, 4H), 2.11-1.99 (m, 1H); LC MS: ES+ 262.1.

Compound 64
1 H NMR (400 MHz, DMSO-d6 , 100 oC) $\delta 10.41(\mathrm{~s}, 1 \mathrm{H}), 9.36(\mathrm{~s}, 1 \mathrm{H}),{ }^{\prime} 7.231(\mathrm{t}, \mathrm{J}=\{8.1 \mathrm{lHz}, 1 \mathrm{H})$, $7.13(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 2 \mathrm{H}), 4.90-4.82(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~s}, .3 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 1 \mathrm{H})$, 2.60-2.56i(m, 1H), 2.41-2.32 (m, 1H), 2.03-2.00 (m, 1H); LCMS: ES-.261.1.

Compound 65
1HNMR. (400 MHz, DMSO-d6 100oC) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.87$ ($\mathrm{d}, \mathrm{J}==88.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, \mathrm{J}=5.4,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (brs, 3 H), 2.85-2.76 (m, 1H), 2.67-2.57 (m, 1H), 2.45-2.32 (m, 1H), 2.05-2.02 (m, 1H); LLClMS: ES+313.1.

Compound 66
1HNMR (400 MHz, DMSO-d6 ,100oC) $\delta 10.54(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~d}, \mathrm{~J}=16.1,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.76$ $(\mathrm{m}, 1 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.91(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.62-$ 2.50ı(m, 1H), 2.49-2.37 (m, 1H), 2.07-2.03 (m, 1H); LC MS: ES- 270.1.

Compound 67
1 H NMR (400 MHz, DMSO-d6 ,100oC) $\delta 10.84(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 1 \mathrm{H})$, $6.66 \cdot(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{brs}, 1 \mathrm{H}), 3.40-3.00(\mathrm{~m}, 3 \mathrm{H}), 2.80-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$, 2.10-1.99' (m, 1H); LC MS: ES+ 327.1.

Compound 68
1HNMR. (400 MHz, DMSO-d6, 1000 C$) \boldsymbol{\delta} 10.49(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=\{8.2 \mathrm{JHz}, 1 \mathrm{H})$, $7.64 .(\mathrm{m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{brs}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 2.89(\mathrm{~s}, .3 \mathrm{H}), 2.78-2.50((\mathrm{~m}$, 2H), 2.44-2.32 (m, 1H), 2.09 - 1.98 (m, 1H); LC MS: ES+ 301.1.

Compound 69
1HNMR (400 MHz , DMSO-d6) $\delta 10.89$ (s, 1H), 8.18-8.11 (m, 1H), 7.89-7.77 (m, 1H), 7.69-7.61 $(\mathrm{m}, 1 \mathrm{H}), 7.47-7.38(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 2.88-2.86(\mathrm{~m}, 4 \mathrm{H}), 2.62-2.49(\mathrm{~m}, 1 \mathrm{H})$, 2.48-2.33 (m, 1H), 2.00-1.99 (m, 1H); LC MS: ES+ 301.1.

Compound 70

1HNMR (400 MHz, DMSO-d6, 100oC) $\delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 16.60(\mathrm{t}, \mathrm{J}==88.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 4.91-4.80(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.23(\mathrm{~m}, 4 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.59((\mathrm{~m}, 1 \mathrm{H})$, 2.54-2.50 $(\mathrm{m}, 2 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.95(\mathrm{~m}, 5 \mathrm{H}) ;$ LCMS: ES+316.1.

Compound 71
1HNMR. (400 MHz , DMSO-d6, 100oC) $\delta 10.46(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}==7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.91-4.85(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.89(\mathrm{~m}, 4 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.76-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.50((\mathrm{~m}$, 1H), 2.49-2.32 (m, 2H), 2.10-2.00 (m, 3H); LC MS: ES+ 287.1.

Compound 72
1HNMR. (400 MHz, DMSO-d6) $\delta 10.92(\mathrm{~s}, 0.5 \mathrm{H}), 10.80(\mathrm{~s}, 0.5 \mathrm{H}), 9.36$ ($\mathrm{s}, 10.5 \mathrm{H}), 9.30(\mathrm{~s},(0.5 \mathrm{H})$, $8.20{ }^{\prime}(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.11-8.09(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.76(\mathrm{~m}, 2 \mathrm{H}), 5.21-5.11(\mathrm{~m}, 10.5 \mathrm{H}), 4.98-4.93((\mathrm{~m}$, $0.5 \mathrm{H}), 2.92 .(\mathrm{s}, 1.5 \mathrm{H}), 2.88(\mathrm{~s}, 1.5 \mathrm{H}), 2.66-2.37(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 0.5 \mathrm{H}), 2.01-1.99(\mathrm{~m},(0.5 \mathrm{H}) ;$ LC MS: ES+ 298.1.

Compound 73
1H NMR (400 MHz, DMSO-d6, 100oC) $\delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.15(\mathrm{~m}$, $2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 4.90-4.70(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.04-$ 1.97' (m, 2H), 0.99-0.95 (m, 2H), 0.69-0.67 (m, 2H); LC MS: ES+ 287.1.

Compound 74
 $\mathrm{Hz}, 2 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 4.91-4.82(\mathrm{~m}, 1 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 1 \mathrm{H}), .2 .60-2.50((\mathrm{~m}, 1 \mathrm{H})$, 2.44-2.34.(m, 1H), 2.00-2.03 (m, 1H); LC MS: ES- 329.1.

Compound 75
1HNMR. (400 MHz, DMSO-d6) $\delta 10.96-1.93(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.49-$
$7.46 \mathrm{i}(\mathrm{m}, 2 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.65(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.86(\mathrm{~m}, 1 \mathrm{H}), .2 .791(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.63$ $(\mathrm{m}, 1 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.71(\mathrm{~m}, 1 \mathrm{H}) ;$ LC MS: ES+313.1.

Compound 76
1H NMR. (400 MHz, DMSO-d6) $\delta 10.84$ (s, 1H), 8.18 (s, 1H), 7.77 ($\mathrm{s}, 1 \mathrm{H}), 5.12-5.13$ ($(\mathrm{m}, 1 \mathrm{H})$, 3.86. (s, 3H), 3.07 (s, 3H), 2.83-2.71 (m, 2H), 2.41-2.32 (m, 1H), 2.01-1.87(m, 1H); [LCןMS:]ES249.1.

Compound 77

1H NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 10.97$ (s, 1H), $8.87(\mathrm{dd}, \mathrm{J}=23.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.78((\mathrm{~s}, 1 \mathrm{H})$, 5.17-4.49 (m, 1H), 2.88-2.79 (m, 4H), 2.66-2.56 (m, 1H), 2.49-2.35 (m, 2 H$), 2.10-1.98((\mathrm{~m}$, 1H); LC MS: ES- 314.1.

Compound 78
1HNMR. (400 MHz , DMSO-d6, 100oC) $\delta 10.86(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{7} .16(\mathrm{~d}, \mathrm{~J}==16.28$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.08-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.62(\mathrm{~m}, 4 \mathrm{H}), 2.57-2.49(\mathrm{~m}$, $1 \mathrm{H}), 2.37-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.91(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+ 277.1.

Compound 79
1H NMR (400 MHz, DMSO-d6) $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 16.54-16.44(\mathrm{~m}, 2 \mathrm{H})$, 5.10-4.54.(m, 1H), 3.77-3.75 (m, 6H), 2.86-2.78 (m, 4H), 2.66-2.57(m, 1H), 2.49-2.32 ($\mathrm{m}, 1 \mathrm{H}$), 2.00-1.96i(m, 1H); LC MS: ES+ 307.1.

Compound 80
1H NMR (400 MHz , DMSO-d6) $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 8.28-8.22(\mathrm{~m}, 1 \mathrm{H}), 7.5-7.57 \mathrm{I}(\mathrm{m}, 1 \mathrm{H}), 7.48-7.46$ $(\mathrm{m}, 1 \mathrm{H}), 5.13-5.09(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.92(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.81(\mathrm{~m}, 4 \mathrm{H}), 2.65-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.33$
$(\mathrm{m}, 1 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 1 \mathrm{H}), 0.64-0.55(\mathrm{~m}, .2 \mathrm{H}), 10.35-0.33(\mathrm{~m}, .2 \mathrm{H}) ;] \mathrm{LClMS}:$ $\mathrm{ES}+318.2$.

Compound 81
1HNMR (400 MHz, DMSO-d6) $\delta 10.90(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, \mathrm{J}=33.4,17.4,7.5 \mathrm{~Hz}, 6 \mathrm{H}),{ }^{\prime} 7.11((\mathrm{~d}, \mathrm{~J}$ $=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.15-4.48(\mathrm{~m}, 3 \mathrm{H}), 2.83-2.76(\mathrm{~m}, 4 \mathrm{H}), .2 .57-2.49((\mathrm{~m}, 1 \mathrm{H}), 2.39-$ 2.32. (m, 1H), 2.00-1.93 (m, 1H); LC MS: ES- 351.2.

Compound 82
1H NMR. (400 MHz, DMSO-d6) $\delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.62((\mathrm{~m}, 3 \mathrm{H})$, $7.64-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 2 \mathrm{H}), 5.13-4.60(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.85(\mathrm{~m}, 4 \mathrm{H}), .2 .66-2.55(\mathrm{~m}, 1 \mathrm{H})$, 2.49-2.39 $(\mathrm{m}, 1 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}) ;$ LC MS: ES+323.1.

Compound 83
$1 \mathrm{H}_{\mathrm{N}} \mathrm{NMR}$. $\left.400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6\right) \delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{dt}, \mathrm{J}=16.5,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{dt}, \mathrm{J}==34.5$, $12.8: H z, 3 H), 5.10-4.51(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.72(\mathrm{~m}, 3 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 4 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.49-$ $2.31(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}) ;$ LC MS: ES+ 277.1.

Compound 84
1H NMR (400 MHz, DMSO-d6, 100oC) $\delta 10.55(\mathrm{~s}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.28((\mathrm{~m}, 1 \mathrm{H})$, 7.18-7.16 (m, 1), 5.02-4.98 (m, 1H), 4.17 (s, 3H), 2.94 ($\mathrm{s}, 3 \mathrm{H}), 2.76-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.49((\mathrm{~m}$,

1 H NMR (400 MHz , DMSO-d6) δ 10.8-10.83 (m, 1H), 6.37-6.35 (m, 1H), 5.90-5.03 (m, 1H), $3.77-3.74 .(\mathrm{m}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 2 \mathrm{H}), 2.83-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.26-$ $2.25(\mathrm{~m}, 4 \mathrm{H}), 2.03-1.89(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+ 265.1.

Compound 87
1 H NMR (400 MHz, DMSO-d6, 100oC) $\delta 10.00$ (brs, 1 H), $8.52(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~s}, 1 \mathrm{H})$, 7.12. (s, 1H), 4.97 (brs, 1 H$), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~s}, .3 \mathrm{H}), 2.43-$
2.32(m, 1H), 2.04-2.01 (m, 1H); LC MS: ES+ 262.1.

Compound 88
1 H NMR. (400 MHz, DMSO-d6, 100oC) $\delta 10.48(\mathrm{brs}, 1 \mathrm{H}), 7.50-7.35 \mathrm{l}(\mathrm{m}, 4 \mathrm{H}), 5.09_{\mathrm{l}}(\mathrm{brs},(0.6 \mathrm{H})$, 4.26i(brs, 0.4H), 2.95-2.01 (m, 8H); LC MS: ES+ 281.1.

Compound 89
1HNMR (400 MHz, DMSO-d6, 100oC) $\delta 10.48$ (brs, 1 H), 7.47-7.39(m, 3H), 7.18-7.05 ($\mathrm{m}, 5 \mathrm{5H}$), $6.97^{\prime}(\mathrm{s}, 1 \mathrm{H}), 4.93-4.79(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.34(\mathrm{~m}$, 1H), 2.02-1.98 (m, 1H); LC MS: ES- 337.2.

Compound 90

1H NMR (400 MHz, DMSO-d6) $\delta 10.96-10.84$ (m, 1H), 8.14-8.10 (m, 1H), '7.87-7.83 ((m, 1H), 7.34-7.31 (m, 1H), 7.23-7.13 (m, 1H), 5.35-5.25 (m, 0.5H), 4.67-4.59 (m, 0.5H), 4.04-4.01 ((m, $3 \mathrm{H})$, , 2.94-2.79 $(\mathrm{m}, 4 \mathrm{H}), 2.62-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.45-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H})$; ILClMS:IES+ 301.1.

Compound 91
1HNMR (400 MHz , DMSO-d6, 100oC) $\delta 10.34$ (brs, 1 H), 7.15-7.09 (m, 4 H$), 4.94-4.90(\mathrm{~m}, 1 \mathrm{H})$, $\left.3.69^{\prime}(\mathrm{s}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.28 \mathrm{(s}, 3 \mathrm{H}\right), 2.25-2.21(\mathrm{~m}, 1 \mathrm{H})$, 1.88-1.79' (m, 1H); LC MS: ES+ 275.2.

Compound 92
1HNMR. (400 MHz , DMSO-d6) $\delta 10.96(\mathrm{~s}, 0.5 \mathrm{H}), 10.94(\mathrm{~s}, 0.5 \mathrm{H}), 5.19-5.11(\mathrm{~m},(0.5 \mathrm{H}), 4.60-4.56$ $(\mathrm{m}, 0.5 \mathrm{H}), 2.88-2.82(\mathrm{~m}, 4 \mathrm{H}), 2.66-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.02 \mathrm{I}(\mathrm{m}, 1 \mathrm{H}) ; \mathrm{LC}] \mathrm{MS}:$ ES-314.1.

Compound 93
1H NMR (400 MHz, DMSO-d6, 100oC) $\delta 10.51$ (brs, 1H), $7.53(\mathrm{~d}, \mathrm{~J}=7.88 \mathrm{JHz}, 2 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J} \mathrm{J}=$ $7.78,2 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.24,1 \mathrm{H}), 6.43(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{brs}, 1 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 2.73-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.53-$ 2.49 (m, 1H), 2.32-2.24 (m, 4H), 1.91-1.85 (m, 1H); LC MS: ES+ 327.2.

Compound 94
1HNMR. (400 MHz, DMSO-d6) $\delta 10.83(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 1 \mathrm{H}), 5.02-4.65(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.81$ $(\mathrm{m}, 3 \mathrm{H}), 2.87-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.57-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.791(\mathrm{~m}, .2 \mathrm{H}),(0.97-0.84$

Compound 95
1HNMR. (400 MHz, DMSO-d6) $\delta 10.88$ (brs, 1 H), 7.31-7.08 (m, 4H), 5.14 (brs, 0.6 H), 4.25 (brs, 0.4H), 2.83-1.95 (m, 11H); LC MS: ES- 259.1.

Compound 96
1 H NMR (400 MHz, DMSO-d6) $\delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 7.96-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=7.36 \mathrm{JHz}, 1 \mathrm{H})$,
$7.51(\mathrm{~d}, \mathrm{~J}=7.60 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~m}, 0.5 \mathrm{H}), 4.44-4.42(\mathrm{~m}, 0.5 \mathrm{H}), 2.82(\mathrm{~s}, 1.5 \mathrm{H}), 2.78(\mathrm{~s}, 1.5 \mathrm{H}), 2.66-$ 2.33 (m, 3H), 1.98 (brs, 1H); LC MS: ES- 270.1.

Compound 97
 4.95 (brs, 0.5 H), $4.63-461(\mathrm{~m}, 0.5 \mathrm{H}), 3.80(\mathrm{~s}, 1.5 \mathrm{H}), 3.75(\mathrm{~s}, 1.5 \mathrm{H}), 2.75-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.22-2.05$
$1 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 2 \mathrm{H}), 2.61-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 1 \mathrm{H})$.

Compound 99
$\left.1 \mathrm{HNMR} .(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6) \delta 10.89(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08\left(\mathrm{~d}, \mathrm{~J}==^{7} 7.6\right] \mathrm{Hz}, 2 \mathrm{H}\right)$, 5.14.(brs, 1 H$), 2.91-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.18$ (s, 3H), 1.95 (s, 1H); LC MS: ES+ 275.2.

Compound 100
1 H NMR (400 MHz , DMSO-d6) $\delta 1.75$ (brs, 1H), 7.94-7.90 (m, 4H), $5.161(\mathrm{dd}, \mathrm{J}=12.8,5.08 \mathrm{JHz}$, $1 \mathrm{M}), 2.94-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.05(\mathrm{~m}, 1 \mathrm{H}) ;$ LC MS: ES- .257.1.

Compound 101
LC MS: ES+ 262.2.

Compound 102
LC MS: ES- 288.2.

15 Compound 103
LC:MS: ES- 276.2

Compound 104
LC MS: ES+-262.2.

Compound 105
LC MS: ES+ 283.0.

Scheme: 2B

Compound 107
Step, 1: Preparation of Compound 106
2-Methoxy-4-nitro-benzoic acid ($474.33 \mathrm{mg}, 2.41 \mathrm{mmol}$) and 3-aminopiperidine-2,6dione: $(330 \mathrm{mg}, 2.00 \mathrm{mmol}, \mathrm{HCl}) \mathrm{mixed}$ in $\mathrm{DMF}(5 \mathrm{~mL})$ at 0 oC , followed by $\mathrm{HATU}(991.06 \mathrm{mg}$, $2.61 \mathrm{mmol})_{\text {) }}$ and diisopropylethylamine ($777.37 \mathrm{mg}, 6.01 \mathrm{mmol}, 1.05 \mathrm{~mL}$) . The reaction_mixture was;stirred at room temp for 2 hrs , from [15:34]. HPLC and MS indicate all;starting ${ }^{\text {materials,were }}$
consumed and product present as the main peak. Dilute with 15 mL EtOAc, isolate 'via ffiltration. cake: was' washed by water 3 times (10 mL each). Obtain compound 106 as 'white solidl N -($2,6-$ dioxo-3-piperidyl)-2-methoxy-4-nitro-benzamide ($495 \mathrm{mg}, 1.61 \mathrm{mmol}, 80.35 \%$ yield) ${ }^{\text {¹ }}$ HINMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.02-7.80(\mathrm{~m}, 2 \mathrm{H}), 4.76((\mathrm{dt}, \omega==$ $11.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{ddd}, J=24.3,12.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), .2 .54(\mathrm{~d}, J==3.8 \mathrm{JHz}, 1 \mathrm{H})$, $2.23-2.00^{\prime}(\mathrm{m}, 2 \mathrm{H})$. LC MS: ES+ 308.2

Step 2: Preparation of Compound 107

Add N-(2,6-dioxo-3-piperidyl)-2-methoxy-4-nitro-benzamide \quad (300 $\quad \mathrm{mg}, \quad 976.38$ umol) and Palladium, 5% on activated carbon paste, 5 R 437 ($2.08 \mathrm{mg}, 19.53 \mathrm{umol}$) to' 20 mL . mial , followed by DMF (4 mL), then purge with nitrogen at room temp for 15 mins. Hydrogen/vacuum purge 3 times, then let reaction mixture stirred at room temp under lhydrogen atmosphere. The final product was isolated after celite pad filtration and concentration to afford white: foam 4-amino-N-(2,6-dioxo-3-piperidyl)-2-methoxy-benzamide I(compound 107) ${ }^{11} \mathrm{H}$ NMR. $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.63 \mathrm{(dd}, J=8.8 .5,1.0 \mathrm{JHz}$, $1 \mathrm{H}), 6.23(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{ddd}, J=12.2,6.6,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.71(\mathrm{~m}, 2 \mathrm{H})$, 2.17 '-1.94 (m, 2H). LC MS: ES+ 278.1

Scheme 3:

General Procedure:
To, the mixture of compound amine (100mg) in DCM (3 ml) were added TEA (3 eq) and sulfonyl chloride: (1.1eq) under ice cold condition. The reaction mixture-was stirred at $]$ RTffor 16 h . At completion, reaction mixture was evaporated and dissolved in DMF. Crude material iwas submitted for prep-HPLC purification.

General methods for prep HPLC purification:
Method-1
Preparative HPLC was done on Waters auto purification instrument. Column name: --YMC-Actus Triart C18 ($100 \times 30 \mathrm{~mm}, 5 \mu$) operating at ambient temperature and flow rate of 30.0 $\mathrm{ml} / \mathrm{min}$. Mobile phase: $\mathrm{A}=20 \mathrm{mM} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ in water, $\mathrm{B}=$ Acetonitrile; 'Gradient $]$ Profile: IMobile phase: initial composition of 80% A and 20% B, then to 65% A and 35% B in . 2 min., thentto. 25% A and 75% B in 12 min ., then to 5% A and 95% B in 13 min ., held this compositionuptto 15 mm . for column washing, then returned to initial composition in 16 min . and lheld till 18 min .

Method-2.

Preparative HPLC was done on Waters auto purification instrument. Column name: --YMC-Actus Triart C18 ($250 \times 20 \mathrm{~mm}, 5 \mu$) operating at ambient temperature and flow rate of ${ }^{\prime} 20.0$ $\mathrm{ml} / \mathrm{min}$. Mobile phase: $\mathrm{A}=10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ in water, $\mathrm{B}=$ Acetonitrile ; Gradient Profile: 1 Mobile phase: initial composition of $70 \% \mathrm{~A}$ and $30 \% \mathrm{~B}$, then to $45 \% \mathrm{~A}$ and 55% B in . 3 mmin ., thentto 25% A and 75% B in 18 min ., then to 5% A and 95% B in 19 min ., held this compositionup.to 21 mmin . for column washing, then returned to initial composition in 22 min . and lheld till 25 min .

Method-3

Preparative HPLC was done on Waters auto purification instrument. Column name: --YMC-Actus; Triart C18 ($250 \times 20 \mathrm{~mm}, 5 \mu$) operating at ambient temperature and flow rate of 20.0 $\mathrm{ml} / \mathrm{min}$. Mobile phase: $\mathrm{A}=0.1 \%$ Formic acid in water, $\mathrm{B}=$ Acetonitrile; ;Gradient $\mathrm{Profile}:$ IMobile phase: initial composition of $80 \% \mathrm{~A}$ and $20 \% \mathrm{~B}$, then to $70 \% \mathrm{~A}$ and 30% B in 3 min., thento 25% A and 75% B in 18 min ., then to 5% A and 95% B in 19 min ., held this compositionup.to 21 , min. for column washing, then returned to initial composition in 22 min . and held till 25 min .

Compound 108

1H NMR (400 MHz, DMSO-d6) $\delta 10.77(\mathrm{~s}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{\prime} 7.88-\mathrm{-} 7.81\left(\mathrm{~m},{ }^{\prime} 2 \mathrm{H}\right)$, $7.66-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{dd}, \mathrm{J}=8.2,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{q}, \mathrm{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dt}, \mathrm{J}=17.8,9.3$ Hz, 1H), 2.49-2.38 (m, 1H), $1.80(d t, J=10.5,5.2 \mathrm{~Hz}, 2 \mathrm{H}) ;$ LC MS: ES+'.269.0.

Compound 110
1HNMR. (400 MHz, DMSO-d6) $\delta 10.78$ (s, 1H), $8.12(\mathrm{~s}, 1 \mathrm{H}), 7.89$ ($\mathrm{dt}, \mathrm{J}==8.7,4.4 \mathrm{Hzz}, 2 \mathrm{H}), 7.41$ ($\mathrm{dd}, \mathrm{J}=10.1,7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $4.25(\mathrm{dd}, \mathrm{J}=10.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{dd}, \mathrm{J}=17.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.76(\mathrm{~m}, 2 \mathrm{H})$; LC MS: ES- 285.1.

Compound 111
1HNMR (400 MHz , DMSO-d6) $\boldsymbol{\delta} 10.79(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.79 ($\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.70(\mathrm{dd}, \mathrm{J}=7.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ ($(\mathrm{d}, \mathrm{J}=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, \mathrm{J}=17.8,11.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{dq}, \mathrm{J}=13.0,8.5$, 6.1 Hz, 2H); LC MS: ES- 301.0 (Cl pattern observed)

Compound 112
1 H NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 10.79(\mathrm{~s}, 1 \mathrm{H}), 9.14(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.76 \mathrm{I}(\mathrm{d}, \mathrm{J}==88.8 \mathrm{IHz}$, $1 \mathrm{H}), 8.47^{\prime}(\mathrm{dd}, \mathrm{J}=8.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{ddd}, \mathrm{J}=12.0,8.7,5.5 \mathrm{JHz}, 1 \mathrm{H})$, 2.51-2.48 (m, 1H), $2.70(d d d, ~ J=18.1,12.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-1.82$ (m, 2H); LClMS:IES-:336.1.

Compound 113
1HNMR. (400 MHz, DMSO-d6) $\delta 10.78(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.06(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.47-$ $4.43(\mathrm{~m}, 2 \mathrm{H}), 4.29-4.20(\mathrm{~m}, 1 \mathrm{H}), 2.65(\mathrm{dt}, \mathrm{J}=18.0,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$, 1.80 ($\mathrm{dt}, \mathrm{J}=11.1,5.4 \mathrm{~Hz}, 2 \mathrm{H}$); LC MS: ES- 281.1.

Compound 114
1HNMR (400 MHz, DMSO-d6) $\delta 10.79$ (s, 1H), 8.56 ($\mathrm{s}, 1 \mathrm{H}$), 8.08 ($(\mathrm{dd}, \mathrm{J}=7.8,4.0] \mathrm{Hz}, 2 \mathrm{H}), 7.88$ $(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.62$ (m, 1H), 1.96 (dt, J = 13.6, 6.6 Hz, 2H); LC MS: ES- 301.0.

Compound 115

1HNMR. (400 MHz, DMSO-d6) $\boldsymbol{\delta} 10.78(\mathrm{~s}, 1 \mathrm{H}), 8.29-8.25(\mathrm{~m}, 1 \mathrm{H}), 8.03\left(\mathrm{~d}, \mathrm{~J}={ }^{\prime} 7.8 \mathrm{lHz}, 1 \mathrm{H}\right), 7.69$ $-7.57^{\prime}(\mathrm{m}, 2 \mathrm{H}), 7.51(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, \mathrm{~J}=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.43$ (m, 1H), 1.96-1.88 (m, 2H); LC MS: ES- 301.1 (Cl pattern observed).

Compound 117
1HNMR (400 MHz, DMSO-d6) $\delta 10.92(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 4 \mathrm{H}), 4.47(\mathrm{~s}$, $2 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.99-$ 1.901 (m, 1H); LC MS: ES- 315.1 (Cl pattern observed).

Compound 118
1HNMR (400 MHz , DMSO-d6) $\delta 10.76(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, \mathrm{~J}=8.8 .1 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{JJ}$ $20=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.20-4.17(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{dt}, \mathrm{J}=17.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~s}$, $3 \mathrm{H}), 1.78$ ($\mathrm{td}, \mathrm{J}=11.5,10.1,4.5 \mathrm{~Hz}, 2 \mathrm{H}$); LC MS: ES- 281.1.

Compound 119
1H. NMR. (400 MHz, DMSO-d6) $\boldsymbol{\delta} 10.77$ (s, 1H), $8.29(\mathrm{~s}, 1 \mathrm{H}), 7.88-7.801\left(\mathrm{~m},{ }^{\prime} 2 \mathrm{H}\right),{ }^{\prime} 7.68-7.61$ $(\mathrm{m}, 2 \mathrm{H}), 4.26 \cdot(\mathrm{dd}, \mathrm{J}=11.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{ddd}, \mathrm{J}=18.0,11.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, \mathrm{J}==17.4$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.74(\mathrm{~m}, 2 \mathrm{H})$; LC MS: ES- 301.0.

Compound 120
1H NMR. (400 MHz, DMSO-d6) $\delta 10.77(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.78(\mathrm{~d}, \mathrm{~J}==4.8 \mathrm{HHz}$, $1 \mathrm{H}), 8.47^{\prime}(\mathrm{s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, \mathrm{J}=8.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36-4.33(\mathrm{~m}, 1 \mathrm{H}), 2.73$ $-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.87(\mathrm{~m}, 2 \mathrm{H})$; LC MS: ES+ 270.1.

Compound 121
1H NMR. ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 10.81$ (s, 1H), 8.46 (s, 1H), 4.16 ($\mathrm{dd}, \mathrm{J}=12.0,5.5 \mathrm{JHz}, 1 \mathrm{H}$), 2.71 (ddd, $\mathrm{J}=17.6,12.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (s, 3H), 2.49-2.46 (m, 1H), 2.36 (s, 3 H$), 1.91$ ((ddd, JJ $=24.7,10.2,4.4 \mathrm{~Hz}, 2 \mathrm{H})$; LC MS: ES- 286.0.

Compound 122
1H NMR (400 MHz, DMSO-d6) $\boldsymbol{\delta} 10.79(\mathrm{~s}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{t}, \mathrm{J}==9.3 \mathrm{JHz}$, $2 \mathrm{H}), 7.79{ }^{\prime}(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, \mathrm{J}=11.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.67$ ($\left.\mathrm{m}, 1 \mathrm{H}\right), 2.64$ ($\mathrm{d}, \mathrm{J}=5.5 .9$ Hz, 1H), 1.93 - 1.80 (m, 2H); LC MS: ES- 292.1.

Compound 123
1 H NMR. (400 MHz, DMSO-d6) $\delta 10.79(\mathrm{~s}, 1 \mathrm{H}), 8.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}==88.2 \mathrm{Hzz}$, $2 \mathrm{H}), 7.99^{\prime}(\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.91-$ 1.86i(m, 2H); LC MS: ES- 292.1.

Compound 124
1HNMR. (400 MHz, DMSO-d6) $\delta 10.76(\mathrm{~s}, 1 \mathrm{H}), 8.41-8.36(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{t}, \mathrm{J}==7.5 \mathrm{lHz}, 1 \mathrm{H})$, $7.67^{\prime}(\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, \mathrm{J}==8.71 \mathrm{~Hz}, 1 \mathrm{H})$, $2.71(\mathrm{dd}, \mathrm{J}=17.8,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}) ;$ LClMS: $\mathrm{ES}-285.0$.

Compound 125
1H NMR (400 MHz, DMSO-d6) $\boldsymbol{\delta} 10.75$ (s, 1H), 8.70 (d, J = $4.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.291(\mathrm{~s}, 1 \mathrm{H}), 8.06$ ((td, $\mathrm{J}=:=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{dd}, \mathrm{J}=7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, \mathrm{J}=11.7,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.68$ (ddd, J = 17.7, 12.4, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.40(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.76(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{LLC}] \mathrm{MS}:$ ES+ 270.0.

Compound 126

1H NMR (400 MHz, DMSO-d6) $\delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-{ }^{\prime} 7.58(\mathrm{~m}, \mathrm{hH})$, $7.54-7.44(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{q}, \mathrm{J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~s}, 1 \mathrm{H}), 2.50-2.401(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.78(\mathrm{~m}$, 2H); LC MS: ES- 285.1.

Compound 127
1HNMR. (400 MHz, DMSO-d6) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{t}, \mathrm{J}==7.3 \mathrm{lHz}, 1 \mathrm{H})$, $7.59^{\prime}(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.94(\mathrm{dd}, \mathrm{J}=13.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.661(\mathrm{~s}, .3 \mathrm{H}), 2.47-2.46$ (m, 1H), $2.22(\mathrm{dd}, \mathrm{J}=13.6,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.60(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES-'281.1.

Compound 128
1HNMR (400 MHz, DMSO-d6) $\delta 10.73$ ($\mathrm{s}, 1 \mathrm{H}$), 9.09 (dd, J=4.4, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.55 ($(\mathrm{dd}, \mathrm{J}==88.4$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, \mathrm{J}=13.3,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.79-7.67(\mathrm{~m}, 3 \mathrm{H}), 4.38$ ($\mathrm{dt}, \mathrm{J}=12.2,(6.2 \mathrm{JHz}, 1 \mathrm{H})$, 2.69-2.61 (m, 1H), $2.42(\mathrm{~d}, \mathrm{~J}=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H}) ;$ LC MS: ES+ 320.0.

Compound 129
1H NMR. (400 MHz , DMSO-d6) $\delta 10.84$ ($\mathrm{s}, 1 \mathrm{H}$), $7.84(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ ($\mathrm{dt}, \mathrm{J}=12.5,6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48-7.33(\mathrm{~m}, 2 \mathrm{H}), 4.87(\mathrm{dd}, \mathrm{J}=13.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ ($\mathrm{ddd}, \mathrm{J}=18.4,13.8,5.2 \mathrm{JHz}$, $1 \mathrm{H}), 2.76 .(\mathrm{s}, 3 \mathrm{H}), 2.56-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{dd}, \mathrm{J}=13.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.72$ ($\mathrm{m}, 1 \mathrm{H}$); JLC]MS: ES-299.0.

Compound 130
 (m, 2H), 4.94 (dd, J = 13.1, $5.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.81 (ddd, J = 17.9, 13.7, 5.2 Hz, 1H), $2.67(\mathrm{~s}, .3 \mathrm{H}), 2.48-$ $2.45(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{qd}, \mathrm{J}=13.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES-299.0.

Compound 131
1HNMR (400 MHz , DMSO-d6) $\delta 10.83(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{dd}, \mathrm{J}==$ $13.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{td}, \mathrm{J}=13.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 3 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.25$ (dd, J = : 13.1, $4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $1.74-1.65$ (m, 1H); LC MS: ES-299.1.

Compound 132
1HNMR. (400 MHz, DMSO-d6) $\delta 10.83(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{dd}, \mathrm{J}==21.4,7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.62(\mathrm{dd}, \mathrm{J}=9.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{dd}, \mathrm{J}=13.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.76$ ($\mathrm{m}, 1 \mathrm{H}$), 2.70 $(\mathrm{s}, 3 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{dt}, \mathrm{J}=14.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{dd}, \mathrm{J}=10.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{LLClMS}:$ ES-315.0.

Compound 133

1HNMR. (400 MHz, DMSO-d6) $\delta 10.78$ (s, 1H), 7.76-7.71 (m, 2 H), $7.10-7.70$ ($\mathrm{m}, 1 \mathrm{H}$), 4.19-4.12 $(\mathrm{m}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.68-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.80(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES- 271.0.

Compound 134
1HNMR. (400 MHz, DMSO-d6) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, .2 \mathrm{H}), 7.70-7.621(\mathrm{~m}, 2 \mathrm{H}), 4.94$ (dd, $\mathrm{J}=13.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{ddd}, \mathrm{J}=17.6,13.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~s}, .3 \mathrm{H}), 2.49-2.45(\mathrm{~m}, 1 \mathrm{H})$, $2.31-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.67(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+ $315.0(\mathrm{Cl}$ pattern observed).

Compound 135
1 H NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 10.96(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 4 \mathrm{H}), 4.73(\mathrm{dd}, \mathrm{J}=13.0,5.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57^{\prime}(\mathrm{d}, \mathrm{J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~s}, .3 \mathrm{H}), 2.56-2.50((\mathrm{~m}$, $1 \mathrm{H}), 2.35-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.75(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES- 329.0 (Cl pattern observed)

Compound 136
1H NMR. (400 MHz, DMSO-d6) $\delta 10.88(\mathrm{~s}, 1 \mathrm{H}), 8.08(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.62(\mathrm{~m}, 2 \mathrm{H})$, $7.59^{\prime}-7.49^{\prime}(\mathrm{m}, 1 \mathrm{H}), 4.90(\mathrm{dd}, \mathrm{J}=13.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{ddd}, \mathrm{J}=17.8,13.5,5.2 \mathrm{JHz}, 1 \mathrm{H}), 2.74$ $(\mathrm{s}, 3 \mathrm{H}), 2.59-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.23(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}) ;$ LCMS: ES- $315.0_{1}\left(\mathrm{Cl}_{1} \mathrm{p}\right.$ pattern observed).

Compound 137
1HNMR (400 MHz, DMSO-d6) $\delta 10.84(\mathrm{~s}, 1 \mathrm{H}), 9.16(\mathrm{~s}, 1 \mathrm{H}), 8.50$ ($\mathrm{dd}, \mathrm{J}=: 8.4,2.2 \mathrm{JHz}, 1 \mathrm{H}$), 8.16 (d, J = $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, \mathrm{J}=13.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.791(\mathrm{~m}, 1 \mathrm{H}), 2.761(\mathrm{~s}, 3 \mathrm{H}), 2.59-2.56((\mathrm{~m}$, 1H), 2.36-2.30 (m, 1H), 1.86-1.84 (m, 1H); LC MS: ES- 350.0

Compound 138
1H NMR. (400 MHz, DMSO-d6) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 8.98$ ($\mathrm{s}, 1 \mathrm{H}), 8.82$ ($\mathrm{s}, 1 \mathrm{H}), 88.21(\mathrm{~d}, \mathrm{~J}==88.0 \mathrm{lHz}$, $1 \mathrm{H}), 7.67^{\prime}-7.60(\mathrm{~m}, 1 \mathrm{H}), 5.00-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~s}, .3 \mathrm{H}), 2.50-2.49(\mathrm{~m}, 1 \mathrm{H})$, 2.29-2.07 (m, 1H), 1.80-1.71 (m, 1H); LC MS: ES- 282.1.

Compound 139
1HNMR. (400 MHz, DMSO-d6) $\delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55\left(\mathrm{t}, \mathrm{J}==^{\prime} 7.4 \mathrm{HHz}, 1 \mathrm{H}\right)$, 7.46 - $7.35(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{dd}, \mathrm{J}=12.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$, 2.50-2.49 (m, 1H), 2.33-2.28 (m, 1H), 1.81-1.80 (m, 1H); LC MS: ES- 295.1.

Compound 140

1H NMR. (400 MHz, DMSO-d6) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, .2 \mathrm{H}),{ }^{\prime} 7.47(\mathrm{~d}, \mathrm{~J}==4.6 \mathrm{Hzz}$, $2 \mathrm{H}), 4.92 .(\mathrm{dd}, \mathrm{J}=13.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.461(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{~s}$, 3H), 2.23-2.15 (m, 1H), 1.62-1.59 (m, 1H); LC MS: ES- 295.1.

Compound 142
1H NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 10.83$ (s, 1H), 8.08 (d, J = $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 8.00 ($\mathrm{d}, \mathrm{J}==8.1 \mathrm{lHz}$, $2 \mathrm{H}), 4.97^{\prime}(\mathrm{dd}, \mathrm{J}=13.0,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.35-$ 2.22 (m, 1H), 1.78-1.69 (m, 1H); LC MS: ES- 306.1.

Compound 143
1HNMR (400 MHz, DMSO-d6) $\delta 10.83(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{t}, \mathrm{J}$ $20=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{dd}, \mathrm{J}=13.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 1 \mathrm{H})$, 2.32-2.08 (m, 1H), 1.77-1.75 (m, 1H); LC MS: ES- 306.1.

Compound 144
1HNMR (400 MHz , DMSO-d6) $\delta 10.87(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{dd}, \mathrm{J}=7.7,3.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88 \mathrm{I}(\mathrm{dt}, \mathrm{J}==24.5$, $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{dd}, \mathrm{J}=12.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.78(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.521(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.26$

Compound 145
1 H NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{d} 6$) $\delta 10.77(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.53 \mathrm{(d}, \mathrm{J==8.3Hzz}$, $1 \mathrm{H}), 8.39^{\prime}(\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.79-7.65(\mathrm{~m}, 2 \mathrm{H}), 5.36 \mathrm{l}(\mathrm{dd}, \mathrm{J}=13.4,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.96-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 1 \mathrm{H})$; LCMS: ES+ 334.1.

Compound 146
1 H NMR (400 MHz , DMSO-d6) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.80$ ($\mathrm{dd}, \mathrm{J}=13.7,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.05(\mathrm{~m}, 1 \mathrm{H})$, 1.89-1.86i(m, 1H); LC MS: ES+ 287.1.

Compound 147
1H NMR. (400 MHz, DMSO-d6) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12-8.04(\mathrm{~m}, 1 \mathrm{H})$, $7.93(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, \mathrm{J}=7.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, \mathrm{J}=13.2,5.0 \mathrm{~Hz}, 1 \mathrm{H}), .3 .09-2.80$

1. LiHMDS

THF, $-30^{\circ} \mathrm{C}, 1 \mathrm{~h}$ 2. $70^{\circ} \mathrm{C} . \mathrm{ON}$

4-1

Compound 148

Preparation of 3-(3-Methyl-6-oxopyridazin-1(6H)-yl)piperidine-2,6-dione (Compound 148)

Compound 148
To a stirred solution of 6-methylpyridazin-3(2H)-one $4-1$ ($300 \mathrm{mg}, 2.72 \mathrm{mmol}$)) in THF $(10 \mathrm{ml})$, at $-30{ }^{\circ} \mathrm{C}$ was added LiHMDS ($4.08 \mathrm{ml}, 4.08 \mathrm{mmol}$), reaction mixture stirred for 1 h followed by addition of 3-bromopiperidine-2,6-dione $2-1$ ($522 \mathrm{mg}, 2.72 \mathrm{mmol}$), gradually warming; up to room temperature and finally heating under reflux overnight. After complete
consumption of 4-1 as evident from TLC, the reaction mass was quenched with iice 'water, volatilesi stripped off, residue partitioned between ethyl acetate and water, combined organic extracts: dried over sodium sulphate, concentrated, the residual crude purified by column chromatography (elution with $2 \% \mathrm{MeOH} / \mathrm{DCM}$) to afford 3-(3-methyl-6-oxopyridazin-

1. LiHmDS

THF, $-30^{\circ} \mathrm{C}$, in
2. $70^{\circ} \mathrm{CON}$ step 2

Compound 149

Preparation of 6-Phenylpyridazin-3(2H)-one 5-3:

A mixture of Cpd-5-1(1 g, 13.5 mmol$)$ and 5-2 ($4.88 \mathrm{~g}, 40.5 \mathrm{mmol})$ was heated at $110^{\circ} \mathrm{C}$ for 2 h , cooled down to $40^{\circ} \mathrm{C}$ followed by addition of water (4.5 ml) and concentrated aqueous ammonia (1 ml). The reaction mixture was thereafter extracted with DCM, organic part $\boldsymbol{\text { was }}$ separated and the ammoniacal aqueous layer was treated with hydrazine lhydrate)(676
$\mathrm{mg}, 13.5 \mathrm{mmol}$) followed by heating at $100^{\circ} \mathrm{C}$ for 2 h , reaction mass cooled down tro troom temperature, precipitate formed was collected by filtration, residue idried under vaccum to afford 6-phenylpyridazin-3(2H)-one 5-3 ($417 \mathrm{mg}, 2.42 \mathrm{mmol}, 17.9 \%$) as an off-white ssolid. ILC MS: ES+ 173.3

Preparation of 3-(6-Oxo-3-phenylpyridazin-1(6H)-yl)piperidine-2,6-dione (Compound 149):

To a. stirred solution of 6-phenylpyridazin- $3(2 \mathrm{H})$-one 3 ($200 \mathrm{mg}, 1.16 \mathrm{mmol}$) in THF $(5$ mL.$)$ at $-30^{\circ} \mathrm{C}$ was added LiHMDS ($1.74 \mathrm{~mL}, 1.74 \mathrm{mmol}$), stirred for 1 h followedlby additionof $3-$ bromopiperidine-2,6-dione $4(266 \mathrm{mg}, 1.39 \mathrm{mmol})$. The reaction mixture was thereaftergradually warmed up to room temperature followed by heating under reflux overnight. After complete consumption of Cpd-3 as evident from TLC, the reaction mixture was quenched with iice water, volatiles; stripped off, residue partitioned between ethyl acetate and water, combined corganic extracts: dried over sodium sulphate, concentrated, the residual crude purified lby preparative TLC to afford 3-(6-oxo-3-phenylpyridazin-1(6H)-yl)piperidine-2,6-dione (Compound 149) (69.4 mg , $245 \mu \mathrm{~mol}, 21.1 \%)$ as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.08(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~d}$, $J=9.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.87-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=9.96] \mathrm{Hz}), 5.80-5.83((\mathrm{~m}$, 1H), 2.89-2.92 (m, 1H), $2.61-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.17$ (m, 1H). LC MS: ES+ 284.3

Scheme: 6:

Preparation of tert-Butyl 4-(6-chloropyridazin-3-yl)piperazine-1-carboxylate 16-3:

A stirred mixture of 3,6 -dichloropyridazine $6-1(2.0 \mathrm{~g}, 13.4 \mathrm{mmol})$, tert-butyl piperazine-1-carboxylate: $6-2(3.72 \mathrm{~g}, 20.0 \mathrm{mmol})$ and triethylamine $(2.78 \mathrm{~mL}, 20.0 \mathrm{mmol})$ in toluene (20 mL) was heated at $110^{\circ} \mathrm{C}$ for 16 h . After complete consumption of $6-1$ as evidentffrom'TLC, the: volatiles; were stripped off, residue partitioned between ethyl acetate and water, combined organic: extracts. evaporated to afford a crude residue which was purified columnichromatography (elution with 30% ethyl acetate/Hexane) to afford tert-butyl 4-(6-chloropyridazin-3-yl)piperazine-1-carboxylate 6-3 ($2.52 \mathrm{~g}, 8.46 \mathrm{mmol}, 63.0 \%$) as an off-white ;solid. ${ }^{\text {LLC }}$ 〕MS: JES+ 299.2;

A solution of tert-butyl 4-(6-chloropyridazin-3-yl)piperazine-1-carboxylate 16-3((2.2 $\mathrm{g}, 7.36 \mathrm{mmol})$ in acetic acid $(20 \mathrm{~mL})$ was heated at $120^{\circ} \mathrm{C}$ for 16 h . After complete consumption of ${ }^{\prime}$ Cpd-3' as evident from TLC, the volatiles were stripped off, residue partitioned lbetween eethyl acetate: and water, combined organic extracts evaporated to afford a crude residue which was purified over neutral alumina (elution with 30% methanol/DCM)to afford 6 -(piperazin-1-yl)pyridazin-3(2H)-one 6 -4 ($871 \mathrm{mg}, 4.83 \mathrm{mmol}, 65.9 \%$) as a brown solid. LCMS:IES+ 181.1 Preparation of 6-(Piperazin-1-yl)pyridazin-3(2H)-one 6-5:

A solution of 6 -(piperazin-1-yl)pyridazin-3(2H)-one 6 -4 ($1 \mathrm{~g}, 5.54 \mathrm{mmol}$)in lDCM $(10 \mathrm{~mL})$, was: treated with Boc anhydride ($1.32 \mathrm{~g}, 6.09 \mathrm{mmol}$) and the mixture stirred for 2 h 'at rlt i^{\prime} presence: of $\mathrm{Et} 3 \mathrm{~N}(848 \mu \mathrm{~L}, 6.09 \mathrm{mmol})$. After complete consumption of $6-4$ as fevident from TLC, the: volatiles were stripped off, residue partitioned between methylene chloride and water, combined organic extracts evaporated to afford a crude residue which was purified over ssilica (elution with $3 \% \mathrm{MeOH}: D C M$) to afford tert-butyl-4-(6-oxo-1,6-dihydropyridazin-3-yl)piperazine-1-carboxylate $6-5(896 \mathrm{mg}, 3.19 \mathrm{mmol}, 57.8 \%)$ as a white solid. LCMS:IES+281.0 Preparation of tert-Butyl 4-(1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyridazin-3-yl)piperazine-1-carboxylate (Compound 150):

To a stirred solution of tert-butyl 4-(6-oxo-1,6-dihydropyridazin-3-yl)piperazine-1carboxylate: $6-5(150 \mathrm{mg}, 535 \mu \mathrm{~mol})$ in THF $(5 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added LiHMDS $(802 \mu \mathrm{~L}, 8802$ $\mu \mathrm{mol})$, stirred for 1 h followed by addition of 3-bromopiperidine-2,6-dione $2-1$ ($(123 \mathrm{mg}, 642$ $\mu \mathrm{mol})$. The: reaction mixture was thereafter gradually warmed up to room temperature followed by heating; under reflux overnight. After complete consumption of $6-5$ as evident from 'TLC, the reaction mixture: was quenched with ice water, volatiles stripped off, residue partitioned lbetween ethyl acetate and water, combined organic extracts dried over sodium sulphate, concentrated, the residual crude purified by preparative HPLC to afford tert-butyl 4-(1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyridazin-3-yl)piperazine-1-carboxylate (Compound 150) $(89.3 \mathrm{mg}, .228 \mu \mathrm{~mol}$, $42.7^{\circ} \%$) as an off-white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 10.95$ (brs, 1 H$), 7.55(\mathrm{~d}, \mathrm{~J}==$ $9.92 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=9.92 \mathrm{~Hz}, 1 \mathrm{H}), 5.56-5.57(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 4 \mathrm{H}), 3.19(\mathrm{~s}, 4 \mathrm{H}), 2.82-2.88$ $(\mathrm{m}, 1 \mathrm{H}), 2.59-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H})$. LC MS: ES+.390.5; LCMS: ccalculated for $[\mathrm{M}-\mathrm{H}]^{+} 390.19$; found 390.5

Scheme:7:

Compound 154
Compound 152

Preparation of"6-Chloro-N-(2-methoxyethyl)pyridazin-3-amine 7-3:

A stirred solution of 7-1 ($2 \mathrm{~g}, 13.4 \mathrm{mmol})$ and $7-2(1.20 \mathrm{~g}, 16.0 \mathrm{mmol})$ in toluene $(10 \mathrm{ml})$ was: heated at $120^{\circ}{ }^{\circ} \mathrm{C}$ overnight in presence of triethylamine $(1.35 \mathrm{~g}, 13.4 \mathrm{mmol})$. After complete consumption of 7-1 as evident from TLC, the volatiles were stripped off, residue partitioned between ethyl acetate and water, combined organic extracts evaporated to afford a a crude residue which was: purified over silica (elution with $2 \% \mathrm{MeOH} / \mathrm{DCM}$) to affordt6-chloro-N-(2-methoxyethyl)pyridazin-3-amine $7-3(1.50 \mathrm{~g}, 7.99 \mathrm{mmol}, 59.7 \%)$ as an off white solid. ILC IMS: ES+ 188.1

Preparation of 6-((2-Methoxyethyl)amino)pyridazin-3(2H)-one 7-4:

A solution of 6-chloro-N-(2-methoxyethyl)pyridin-2-amine 7-3(1.5 $\quad \mathfrak{y}, 8.03$ $\mathrm{mmol})$) in acetic acid (30 ml) was heated at $120^{\circ} \mathrm{C}$ for 2 days. After complete iconsumption of 7-3 as; evident from TLC \& LCMS, the reaction mass was concentrated, residue partitioned between ethyl acetate and sodium bicarbonate, combined organic extracts evaporated to afford a crude: residue: which was purified over silica (elution with $5 \% \mathrm{MeOH} / \mathrm{DCM}$ to $\mathfrak{a f f o r d}$ 6-((2-methoxyethyl)amino)pyridazin-3(2H)-one 7-4 (71.0 mg, $419 \quad \mu \mathrm{~mol}, 52.5$ \%) ;as a llight yellow'solid. LC MS: ES+ 170.1

Preparation of 3-(3-((2-Methoxyethyl)amino)-6-oxopyridazin-1(6H)-yl)piperidine-2,6-dione (Compound 151):

Compound 151

To a stirred solution of compound 6-((2-methoxyethyl)amino)pyridazin-3(2H)-one '74. $(400 \mathrm{mg}, 2.36 \mathrm{mmol})$ in $\operatorname{THF}(3 \mathrm{ml})$ at $-30^{\circ} \mathrm{C}$ was added LiHMDS $(578 \mathrm{mg}, 3.54$ $\mathrm{mmol})$ stirred for 1 h followed by addition of 3 -bromopiperidine-2,6-dione $2-1(497 \mathrm{mg}, 2.59$ mmol. The: reaction mixture was thereafter gradually warmed up to room temperature ffollowed by refluxing; overnight. After complete consumption of 7-4 as evident from 'TLC, the reaction mass:wasi quenched with ice water, volatiles stripped off, residue partitionedibetweenrethylacetate and water, combined organic extracts dried over sodium sulphate, concentrated, the residualicrude purified over silica (elution with $2 \% \mathrm{MeOH} / \mathrm{DCM}$) to afford 3-(3-((2-methoxyethyl)amino)-6-oxopyridazin-1(6H)-yl)piperidine-2,6-dione Compound 151 ($300 \mathrm{mg}, 1.07 \mathrm{mmol}, 45.3 \%$) as
 $6.77^{\prime}\left(\mathrm{d}, J^{\prime}=9.64 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.55(\mathrm{~m}, 1 \mathrm{H}), 5.49-5.50(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.42(\mathrm{~m}, 2 \mathrm{H}), 3.25(\mathrm{~s}, .3 \mathrm{H})$, $\left.3.17^{\prime}-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.59(\mathrm{~m}, 2 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{LC}\right] \mathrm{MS}: \mathrm{ES}+281.3$ Preparation of 3-(3-((2-Hydroxyethyl)amino)-6-oxopyridazin-1(6H)-yl)piperidine-2,6-dione (Compound 152):

A solution of compound 3-(3-((2-methoxyethyl)amino)-6-oxopyridazin-1(6H)-yl)piperidine-2,6-dione Compound $151(100 \mathrm{mg}, 356 \mu \mathrm{~mol})$ in $\mathrm{DCM}_{(}(10 \mathrm{ml})$ at $10^{\circ} \mathrm{C}_{\text {' was }}$ treated with boron tribromide ($178 \mathrm{mg}, 712 \mu \mathrm{~mol}$). After complete consumption of Compound 151 as evident from TLC, the reaction mass was concentrated, residue partitioned between ethylacetate and sodium bicarbonate, combined organic extracts dried over sodium sulphate, concentrated, the
residual crude: purified over silica (elution with $7 \% \mathrm{MeOH} / \mathrm{DCM}$ to afford 3 -(3-((2-hydroxyethyl)amino)-6-oxopyridazin-1(6H)-yl)piperidine-2,6-dione Compound $152(70.0 \mathrm{mg}$, $\left.262 \mu \mathrm{~mol}, 73.9^{\prime} \%\right)$ as an off white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta 10.91((\mathrm{brs}, 1 \mathrm{H}), 7.03$ $\left(\mathrm{d}, J^{\prime}=9.80 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.76(\mathrm{~d}, J=9.72 \mathrm{~Hz}, 1 \mathrm{H}), 6.50(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.501(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{t}, . J=5.5 .16$ $\mathrm{Hz}, 1 \mathrm{H},-\mathrm{OH}), 3.48(\mathrm{q}, J=5.44 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{q}, J=5.24 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-.2 .86(\mathrm{~m}, 1 \mathrm{H}), 2.44-$ $2.59^{\prime}(\mathrm{m}, 2 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H})$. LC MS: ES+ 267.1.

Scheme 8 :

$$
\xlongequal{=-2(a-h)}
$$

各-1

General procedure :(Click reaction)
A mixture of 8-1 (1 mmol), 8-2 (a-h) (1.1 mmol$)$, CuSO4.5H2O $(0.1 \mathrm{mmol})$ and $] \mathrm{Na}-$ ascorbate: $(0.4 \mathrm{mmol})$ in THF-water ($3: 1,3 \mathrm{~mL}$) was stirred at room temperature for 16 lhours to produce: 8-3 (a-h). Reaction mixture was filtered through a short plug of icelite. The ffiltrate rwas partitioned between Ethyl acetate and water. The organic layer was separated, dried over anhydrous; Na 2 SO 4 and concentrated under reduced pressure. Crude mass was purified (doing column chromatography (silica, gradient: $0-2 \% \mathrm{MeOH}$ in DCM) to afford:8-3(a-h) as pure s solids. The:following compounds ($8 \mathrm{a}-\mathrm{h}$) were prepared according to the general procedure shown in_{1} Scheme: 8;

8-3al(Compound 153)
Yield: 60\%
 $=7.54 \cdot \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=7.26 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, \mathrm{J}=12.96,5.16 \mathrm{~Hz}, 1 \mathrm{H} 0,2.95-2.86(\mathrm{~m}, 1 \mathrm{H})$, 2.73-2.49 ${ }^{\prime}(\mathrm{m}, 2 \mathrm{H}), 2.38-2.36$ (m, 1H); LC MS: ES+ 257.1

8-3b (Compound 154)
Yield: 19\%
${ }^{1}$ H NMR. (400 MHz, DMSO- d_{6}) $\delta 11.27(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 5.89(\mathrm{dd}, \mathrm{J}=12.52,4.92 \mathrm{JHz}, 1 \mathrm{H})$, 2.89-2.83 (m, 1H), 2.72-2.66 (m, 2H), 2.33-2.28 (m, 1H0, 1.54 ($\mathrm{s}, 9 \mathrm{H}$); LC MS: $\mathrm{ES}+.281 .0$.

8-3c:(Compound 155)
Yield: 73\%
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 11.26(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=5.6 \mathrm{JHz}, 1 \mathrm{H}), 7.31-.722$ $(\mathrm{m}, 2 \mathrm{H}), 5.89-5.86(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 3.39-2.34(\mathrm{~m}, 1 \mathrm{H})$; LC:MS: ES+ 271.

8-3d (Compound 156)
Yield: 67\%
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.27(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.89\left(\mathrm{t}, \mathrm{J}=16.62 \mathrm{~Hz},{ }^{\prime} 2 \mathrm{H}\right),{ }^{\prime} 7.31(\mathrm{t}, \mathrm{JJ}$ $=8.66 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{dd}, 12.12,4.32 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.63(\mathrm{~m}, .2 \mathrm{H}), 2.38-2.35$ (m, 1H); LC MS: ES+ 275.1.

8-3f(Compound 158)
Yield: 36\%
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.23(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=: 8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, \mathrm{~J}$ $=8.44 \mathrm{~Hz}, 2 \mathrm{H}), 5.78(\mathrm{dd}, \mathrm{J}=12.44,5.04 \mathrm{~Hz}, 1 \mathrm{H} 0,5.24(\mathrm{brs}, 2 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.61$ (m, 2H), 2.35-2.30 (m, 1H); LC MS: ES+ 272.2.

(Compound 159)
Yield: 68\%
${ }^{1}$ HNMR (400 MHz, DMSO- d_{6}) $\delta 11.25(\mathrm{~s}, 1 \mathrm{H} 0,8.56(\mathrm{~s}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=: 8.681 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}$,

(Compound .160)
Yield: 67\%
${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}\right) \delta 11.26(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{dd}, \mathrm{J}=7.76,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58:(\mathrm{d}, \mathrm{J}=7.84 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=7.14 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{dd}, \mathrm{J}=12.28,5.08$ Hz, 1H), 2.90-2.67 (m, 3H), 2.37-2.33 (m, 1H); LC MS: ES+ 291.1.

Scheme:9:

General procedure :-A
To a stirred solution of 2-1 (1.0 mmol) in DMF (3 mL) was added Anilines.9-1 ($(2.5 \mathrm{mmol})$. The:resulting solution was heated at $80^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}$ for $5-24$ hours to produce '9-2. Reaction imixture was: then cooled to room temperature and evaporated under reduced pressure. ICrude reactionmass was: purified by reverse phase preparative HPLC, following the methods as are given lbelow, to afford pure: 9-3.

General procedure :-B
To a. stirred solution of 2-1 (1.0 mmol) in Dioxane (3 mL) was added Anilines $9-1$ ($(2.5$ mmol). The resulting solution was heated at $70^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}$ for $5-24$ hours to produce $9-2$. 1 Reaction mixture: was then cooled to room temperature and evaporated under reduced pressure. Crude reaction mass was purified by reverse phase preparative HPLC, following the methods as areggiven below, to afford pure 9-3.

General methods for prep HPLC purification:

Method 1

Preparative HPLC was done on Waters auto purification instrument. Column name: --YMC-Actus; Triart C18 ($250 \times 20 \mathrm{~mm}, 5 \mu$) operating at ambient temperature and flow rate of 20.0 $\mathrm{ml} / \mathrm{min}$. Mobile phase: $\mathrm{A}=10 \mathrm{mM}$ NH4OAc in water, $\mathrm{B}=$ Acetonitrile ; Gradient Profile: $]$ Mobile phase: initial composition of $70 \% \mathrm{~A}$ and 30% B, then to 45% A and 55% B in 3 _min., then to 25% A and 75% B in 18 min ., then to 5% A and 95% B in 19 min ., held this composition up.to 21 , min. for column washing, then returned to initial composition in 22 min . and held till 25 mmin .

Method 2

Preparative HPLC was done on Waters auto purification instrument. Column mame: --YMC-Actus : Triart C18 ($250 \times 20 \mathrm{~mm}, ~ 5 \mu$) operating at ambient temperature and flow rate of ${ }^{\prime} 20.0$ $\mathrm{ml} / \mathrm{min}$. Mobile: phase: $\mathrm{A}=0.1 \%$ Formic acid in water, $\mathrm{B}=$ Acetonitrile ; ; Gradient $]$ Profile: IMobile phase: initial composition of $80 \% \mathrm{~A}$ and $20 \% \mathrm{~B}$, then to $70 \% \mathrm{~A}$ and $30 \% \mathrm{~B}$ in .3 min ., then to 25% A and 75% B in 18 min ., then to 5% A and 95% B in 19 min ., held this composition uptto 21 mmin . for column washing, then returned to initial composition in 22 min . and theld till .25 min . IUse of basic: buffer: (NH 4 HCO) causes hydrolysis of the Glutarimide ring either iduring prep 1HPLC trun orduring;post purification evaporation.

Compound 161

Compound 161 was synthesized following General approach (DMF/heating). Yield:28\%;
 $2 \mathrm{H}), 6.76$ ($\mathrm{t}, \mathrm{J}=7.10 \mathrm{~Hz}, 1 \mathrm{H}$), 3.44 (dd, $\mathrm{J}=10.42,3.86 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (brs, 4H), 2.84-2.77 ($\mathrm{m}, 2 \mathrm{H}$), 2.77-2.72.(m, 2H), 2.54-2.49 (m, 2H), 2.08-2.01 (m, 1H), 1.90-1.85 (m, 1H); LLClMS: IES+ 274.0.

Compound 162

Compound 162 was synthesized following General approach (DMF/heating). Yield:36\%; ${ }^{1} \mathrm{H} \cdot \mathrm{NMR} \quad(400 \mathrm{MHz}, \quad$ DMSO-d6 $) \quad \delta 10.63(\mathrm{~s}, 1 \mathrm{H}), \quad 3.46 \quad(\mathrm{dd}, \mathrm{J}=10.96, \quad 3.92 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 2.69-2.63 \quad(\mathrm{~m}$, $2 \mathrm{H}), 2.56-2.49(\mathrm{~m}, 4 \mathrm{H}), 2.04-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{LC} \mathrm{MS}: \mathrm{ES}+{ }_{2} 298.1$.

Compound 163

Compound 163 was synthesized following General approach(DMF/heating). Yield:52\%; 1
 $3.37^{\prime}($ brs, $4 H), 2.73-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.59-.2 .51(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.88-$ 1.82. (m, 1H); LC MS: ES+ 332.2.

Compound 164

Compound 164 was synthesized following General approach (DIPEA/Dioxane).
 $1 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.02(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 1 \mathrm{H}), .2 .56-2.48(\mathrm{~m}$, 2H), 2.23-2.19 (m, 1H), 2.01-1.97 (m, 2H), 1.81-1.77 (m, 1H); LC MS: ES+ 259.3.

Compound 165

Compound 165 was synthesized following General :approach (DIPEA/Dioxane). 1
Yield:21\%; \quad H NMR ($400 \mathrm{MHz}, \quad$ DMSO-d6) $\quad \delta 10.61 \quad$ (s, 1H), $3.13-3.08 \quad$ (m, 1H), '2.63-2.58 $\quad{ }^{\prime}(\mathrm{m}$, $4 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.93$ (m, 2H), 1.69 (brs, 4H); LC MS: ES+ 183.3.

Compound 166

Compound 166 was synthesized following General approach (DIPEA/Dioxane). Yield:12\%; $\quad{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \quad$ DMSO-d6) $\quad \delta 10.61 \quad(\mathrm{~s}, 1 \mathrm{H}), 3.11 \quad$ (brs, 1 H$),{ }_{2} .888-2.2 .77 \quad$ (m, 1 H$)$, 2.73-2.65 (m, 2H), 2.50-2.44 (m, 2H), 2.18-2.13 (m, 2H), 1.98-1.92 (m, 3H), 1.32-1.27 ($\mathrm{m}, 1 \mathrm{H}$), $0.97^{\prime}(\mathrm{d}, \mathrm{J}=6.2 \mathrm{~Hz}, 3 \mathrm{H})$; LC MS: ES+ 197.3.

Compound 167

Compound 167 was synthesized following General approach (DIPEA/Dioxane).
 $3 \mathrm{H}), 2.53-2.33(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, \mathrm{~J}=16.64 \mathrm{~Hz}, 3 \mathrm{H}) ; \mathrm{LLC}] \mathrm{MS}:$ ES+183.3.

Compound 168

Compound 168 was synthesized following General approach (DMF/Heating). Yield:16\%; 1
 3.28-3.22. (m, 2H), 3.07 (brs, 1H), 2.55-2.50 (m, 1H), 2.48-2.3.9(m, 1H), 1.96-1.90($\mathrm{m}, 1 \mathrm{H}$), 1.731.68: (m, 1H); LC MS: ES+ 245.2.

Compound 169 was synthesized following General approach (DIPEA/Dioxane).
 2.47-2.31 (m, 2H), 1.98-1.94 (m, 2H), 1.89-1.83 (m, 1H), 1.68-1.59 (m, 1H); ILClMS:IES+ 169.0.

Compound 170

Compound 170 was synthesized following General approach (DMF/heating). ${ }^{\text {Y }}$ Yield:20\%;
 1.60 (brs, 4H), 1.49-1.44 (m, 2H); LC MS: ES+ 197.0.

Scheme: 10

Compound 171

Step-1
To a stirred solution of $10-1(1 \mathrm{~g}, 5.587 \mathrm{mmol})$ in $\mathrm{BnOH}(10 \mathrm{~mL})$ was added $\mathrm{SOCl}_{2}((0.69$ $\mathrm{mL}, 8.38 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. Then the reaction mixture was stirred at room temperature for 16 hours.

Reaction mixture was evaporated in reduced pressure to get 10-2 as off white solid. Yield:66\%;
LC MS: ES+ 269.8

Compound 171
Step-2

Compound 171 was synthesized by general procedure (DIPEA/Dioxane). Yield:8\%; ${ }^{1} \mathrm{H}$ NMR. 400 MHz, DMSO-d6) $\boldsymbol{\delta} 10.90(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 4 \mathrm{H}, 7.24$ (brs, 1 H$), 4.92-4.86(\mathrm{~m}, 1 \mathrm{H})$, $3.75-.71(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.73(\mathrm{~m}, .2 \mathrm{H}), 2.48-2.38((\mathrm{~m}, 2 \mathrm{H})$, 2.28-2.21 (m, 1H), 1.89-1.85 (m, 1H); LC MS: ES- 271.3.

Scheme:11:

A stirred solution of 11-1 ($70 \mathrm{mg}, 0.211 \mathrm{mmol}$) in Ethyl acetate was degassed with argon for 10 minutes. $10 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{Wt} \%)$ was added to the reaction mixture and it was subjected to hydrogenation under hydrogen balloon for 16 hours. It was filtered throughicelite and concentrated under reduced pressure to obtain compound 172 as off white solid. Yield:72\%; ${ }^{H}{ }^{1}{ }_{\mathrm{NMR}}{ }^{(400}$ $\mathrm{MHz}, \mathrm{MeOD}) \boldsymbol{\delta} 3.43(\mathrm{dd}, \mathrm{J}=10.36,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 4 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.67-2.55$ (m, 2H), 2.11-2.05 (m, 2H); GC MS: m/z 197.

Scheme:12:

Step-1
To a stirred solution of Compound $172(60 \mathrm{mg}, 0.304 \mathrm{mmol})$ in acetonitrile $(5 \mathrm{~mL})$ were added acetic: acid ($0.243 \mathrm{~mL}, 4.259 \mathrm{mmol})$ and 37% Formaldehyde $(91.249 \mathrm{mg}, 3.042 \mathrm{mmol})$. IIt was; stirred at room temperature for 30 minutes. Then to it was added NaCNBH 4 and stirred sat room temperature for 16 hours. It was diluted with Ethyl acetate, washed with saturated NaHCO_{3}, water and brine. It was dried over Na2SO4 and concentrated under reduced pressure. It iwas purified by column chromatography (silica, gradient 0\%-1.5\% Methanol in 1 DCM) to afford
 $1 \mathrm{H}), 3.32-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.58(\mathrm{~m}, 4 \mathrm{H}), 2.51-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{brs}, 4 \mathrm{H}), 2.15(\mathrm{~s}, .3 \mathrm{H}), 2.26-$ 2.01 (m, 1H), 1.86-1.81 (m, 1H); LC MS: ES+ 212.0.

Scheme:13:

To a stirred solution of 2-1 ($400 \mathrm{mg}, 2.083 \mathrm{mmol}$) in dioxane (2 mL) was added JDIPEA (1.088 mL, 6.25 mmol$)$ at $0^{\circ} \mathrm{C}$ in a sealed tube. $13-1(525 \mathrm{mg}, 2.292 \mathrm{mmol})$ was added to the reaction mixture. It was heated at $70^{\circ} \mathrm{C}$ for 16 hours. It was concentrated under reduced pressure and purified by column chromatography using (silica, gradient $0 \%-2 \%$ Methanol in]DCM) to obtain ${ }^{\text {l Compound }} \quad 174$ as a white solid. Yield:2\%; $\quad{ }^{1}{ }_{\mathrm{H}} \mathrm{NMR} \quad{ }^{\prime}\left(400 \mathrm{MHz}\right.$, DMSO-d6) \quad is 10.88 ($_{(\mathrm{s},}$
$1 \mathrm{H}), 4.78$ ($\mathrm{dd}, \mathrm{J}=13.04,4.80 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.16(\mathrm{~m}, 1 \mathrm{H}), .2 .85-2.761(\mathrm{~m}, 1 \mathrm{H})$, 2.55-2.49' (m, 1H), 2.29-2.15 (m, 3H), 1.999-1.91 (m, 2H), 1.82-1.76 (m, 1H); ILC JMS: IES+ 197.26.

Scheme: 14:

Step-1
Compound 14-3 was synthesized by general procedure (DMF/heating). Yield:69\%; ILC MS: ES+306.2.

Step-2

To a stirred solution of $14-3(200 \mathrm{mg}, 0.655 \mathrm{mmol})$ in $\mathrm{DCM}(5 \mathrm{~mL})$ was added $\mathrm{Et}_{3} \mathrm{~N}_{\mathrm{f}}(0.099$ $\mathrm{mL}, 0.983 \mathrm{mmol})$ and followed by $14-4(81 \mathrm{mg}, 0.721 \mathrm{mmol})$. It was stirred at rroom temperature for 16i hours. It was concentrated under reduced pressure, diluted with Ethyl acetate, washed with saturated aqueous, NaHCO_{3} solution and concentrated under reduced pressure. It was purified by column chromatography (silica, gradient $0 \%-1 \%$ Methanol in DCM) to afford $14-5$ asbluish Yield:62\%; LC MS: ES+ 382.0.

Step-3
To stirred solution of 14-5 ($75 \mathrm{mg}, 0.196 \mathrm{mmol}$) in THF (5 mL) was added $\operatorname{NaH}((60 \%$ iin oil))($16 \mathrm{mg}, 0.393 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. It was stirred at room temperature for 16 lhours . It was diluted with Ethyl acetate, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. It was purified by column chromatography (silica, gradient $0 \%-2 \%$ IMethanol in IDCM) and then Preparative TLC Plate (eluting with 3% Methanol in DCM) to afford Compound 175 as
 $5.11(\mathrm{~s}, 2 \mathrm{H}), 5.07-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.05(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.57-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.36-$ $3.27^{\prime}(\mathrm{m}, 2 \mathrm{H}), 2.81-2.73(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.82(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{lLC}$ MS: ES-.344.2.

Scheme : 15:

To a. THF solution (2 mL) of $15-1(100 \mathrm{mg}, 674 \mu \mathrm{~mol})$ was added $\mathrm{NaH}(13.4 \mathrm{mg}, 337$ $\mu \mathrm{mol})$, under Nitrogen atmosphere. The resultant solution was heated at $60^{\circ} \mathrm{C}$ for 30 minutes. ${ }^{\text {' To }}$ the: hot reaction mixture was added a THF solution (2 mL) of $2-1$ ($64.7 \mathrm{mg}, 337 \mu \mathrm{~mol}$) (drop wise and |the; heating; was continued for another 5 hours to produce Compound 176. It was then cooled to, room temperature, diluted with 20% IPA-DCM solution, washed with water and brine. The organic:layer was dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure. ،Crude mass; was; purified by column chromatography (silica, gradient: $00-3 \% \mathrm{MeOH}$ in $] \mathrm{DCM}$) to afford

Compound 176 ($3.5 \mathrm{mg}, 13 \mu \mathrm{~mol}, 5 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 11.10(\mathrm{~s}, 1 \mathrm{H}),{ }^{\prime} 7.19$ $\left(\mathrm{d}, J^{\prime}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15-7.01(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{~s}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 2.90-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.50$ (m, 2H), 2.07-2.05 (m, 1H). LC MS: ES+ 260.3.

Compound 177

Compound 178

Yield: 8\%; 'H NMR (400 MHz , DMSO-d6) $\delta 10.79(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, \mathrm{~J}=6.72 \mathrm{JHz}, 1 \mathrm{H}), 6.93(\mathrm{t}, \mathrm{J}, \mathrm{J}=$ $7.68 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{t}, \mathrm{J}=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, \mathrm{~J}=7.60 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.64 \mathrm{~m}, 1 \mathrm{H}), 3.25-3.42$ (m, 2H), 2.91-2.95 (m, 2H), 2.81-2.84 (m, 1H), 2.54-2.59(m, 1H), 2.15-2.25(m, 1H), 1.89 -1.96; (m, 1H); LC MS: ES+ 231.3.

Compound 179
 $7.22 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 2 \mathrm{H}), 5.21(\mathrm{brs}, 1 \mathrm{H}), 3.52-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.95$ $(\mathrm{m}, 1 \mathrm{H}), 2.55-2.39(\mathrm{~m}, 2 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+ 259.2.

Compound 180

5 Yield:18\%; 'H NMR (400 MHz, DMSO-d6) $\delta 11.04(\mathrm{~s}, 1 \mathrm{H}), 7.49\left(\mathrm{~d}, J:={ }^{\prime} 7.88 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.38(\mathrm{~d}, \mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{t}, \mathrm{J}=7.28 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J 1=12.4, J 2=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.90-2.86 (m, 1H), 2.67-2.64 (m, 1H), $2.24(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.08(\mathrm{~m}, 1 \mathrm{H}) ;$ LC MS: $\mathrm{IES}+.243 .4$.

Compound 181
Yield: 2.15\%; 'H NMR (400 MHz, DMSO-d6) $\delta 10.95-10.92(\mathrm{~d}, \mathrm{~J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{\prime} 7.30-7.25(\mathrm{~m}$, $5 \mathrm{H}), 4.87-4.82(\mathrm{~m}, 2 \mathrm{H}), 4.61-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.21(\mathrm{~m}$, $1 \mathrm{H}), 3.13-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.84-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{br} \mathrm{m}, 1 \mathrm{H})$, 1.72 (br m, 1H); LC MS: ES+ 289.3.

Compound 182

Yield: 52 \% ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.04(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{lHz}, 1 \mathrm{H}),{ }^{\prime} 7.76-7.72$ $(\mathrm{m}, 1 \mathrm{H}), 7.68-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.67\left(\mathrm{~d}, \mathrm{~J}==^{\prime} 7.2 \mathrm{Hzz}\right.$, $1 \mathrm{H})$, , $5.51-5.47(\mathrm{br}, 1 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{LC} . \mathrm{MS}: \mathrm{IES}+257.1$.

Compound 183

Compound 185

Yield: 7%; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d_{6}\right) \boldsymbol{\delta} 11.17(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~d}, \mathrm{~J}=\{8.96 \mathrm{JHz}$,
Yield: 3%; ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \boldsymbol{\delta} 11.19(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, \mathrm{~J}==6.88 \mathrm{JHz}$, $1 \mathrm{H}), 7.54(\mathrm{~d}, \mathrm{~J}=7.92 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 5.71-5.68(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.78 \mathrm{l}(\mathrm{m}, .3 \mathrm{H}), 2.25-$ $2.15(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+ 230.0.

Compound 184
Yield: 57%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.70(\mathrm{~d}, \mathrm{~J}=8.04 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}==8.56 \mathrm{HHz}, 1 \mathrm{H})$, $7.41(\mathrm{t}, \mathrm{J}=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}=7.52 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dd}, \mathrm{J}=11.92,5.28 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.76$ (m, 3H), $2.53(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.32(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+ 244.1.
 $1 \mathrm{H}), 7.59^{\prime}(\mathrm{d}, \mathrm{J}=8.28 \mathrm{~Hz}), 7.25(\mathrm{t}, \mathrm{J}=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.67$ (m, 3H), $2.33(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+ 230.1.

Compound 186

Yield: 35\%; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d_{6}\right) \delta 11.07(\mathrm{~s}, 1 \mathrm{H}), 8.53-8.52(\mathrm{~m}, 1 \mathrm{H}), 8.27 \imath(\mathrm{~d}, \mathrm{~J}==18.08$ $\mathrm{Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 5.96-5.93(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.92(\mathrm{~m}, 1 \mathrm{H}), .2 .79-2.76((\mathrm{~m}$, $1 \mathrm{H}), 2.68-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+ 231.3.

Yield: $51 \% ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.07(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.76 \mathrm{I}(\mathrm{d}, \mathrm{J}=7.76 \mathrm{JHz}$, $1 \mathrm{H}), 7.60^{\circ}(\mathrm{d}, \mathrm{J}=8.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, \mathrm{J}=6.72 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), .5 .83-5.82((\mathrm{~m}$, $1 \mathrm{H}), 2.85-2.67(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.24(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+ 230.3.

Compound 187

Compound 188

Yield: $4 \% ;{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.07(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=7.48 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, \mathrm{JJ}=$ $7.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.12-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{br}: \mathrm{s}, 1 \mathrm{H}), 5.64-5.62((\mathrm{~m}$, $1 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.07(\mathrm{~m}, 1 \mathrm{H}) ;$ LC MS: ES+ 229.3.

(Compound 189)
Yield: 20\%
${ }^{1}$ HNMR. (400 MHz, DMSO- d_{6}) $\delta 11.08(\mathrm{~s}, 1 \mathrm{H}), 7.85(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79\left(\mathrm{~d}, \mathrm{~J}={ }^{\prime}=7.6 \mathrm{~Hz},{ }^{\prime} 2 \mathrm{H}\right)$,

Scheme: 16:

Step 1

Compound 190

To a stirred solution of $16-1(125 \mathrm{mg}, 0.625 \mathrm{mmol})$ in $\mathrm{DMF}_{1}(2 \mathrm{~mL})$ was added $\mathrm{NaH}_{(}(60 \%)$ ($31 \mathrm{mg}, 0.781 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. Reaction mixture was stirred for 30 minutes at $60^{\circ} \mathrm{C}$ then added $2-1$ $(100 \mathrm{mg}, 0.521 \mathrm{mmol})$ at same temperature. It was then heated at $60^{\circ} \mathrm{C}$ for 4 hours. Reaction mixture; was; diluted with water and extracted with 20% IPA/DCM. Organic part was washed,with
brine, followed by dried over anhydrous sodium sulfate and concentrated, crude 'was iisolated 'via column chromatography by using (silica, gradient $0 \%-1 \%$ Methanol in Ethyl acetate to afford Compound . 190 as off white solid. Yield:15\%;

Step-2

To a stirred solution of Compound $190(60 \mathrm{mg}, 0.193 \mathrm{mmol})$ in 1,4-Dioxane $((1 \mathrm{~mL})$ was addedl 1,4-Dioxane in $\mathrm{HCl}(0.5 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. It was stirred at room temperature for 16 lhours. The reaction mixture was concentrated under reduced pressure, washed with n-pentane and driedunder reduced pressure 'to' afford Compound 191 as off white solid. Yield:99\%; ${ }^{1} \mathrm{H}$ NMR ${ }^{\prime}\left(400{ }^{1}{ }^{\mathrm{MHz}}\right.$, DMSO-d6), $\delta 10.94(\mathrm{~s}, 1 \mathrm{H}), 9.52(\mathrm{brs}, 2 \mathrm{H}), 5.09-5.03(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.75(\mathrm{~m}, .2 \mathrm{H}), .3 .53-3.34((\mathrm{~m}$, 4H), 2.83-2.73 (m, 1H), 2.5-2.50 (m, 1H), 2.36-.2.28 (m, 1H), 1.86-1.81 (m, 1H); ILC $1 \mathrm{MS}: ~ I E S+$ 212.25.

Scheme: 17:

Step-1
To a stirred solution of $17-1(200 \mathrm{mg}, 2.0 \mathrm{mmol})$ and $17-2$ ($366 \mathrm{mg}, 3.0 \mathrm{mmol})$ in]DCE ($(10$ mL) was added pyridine ($0.805 \mathrm{~mL}, 10.0 \mathrm{mmol}$). $\mathrm{Cu}(\mathrm{OAc}) 2 . \mathrm{H} 2 \mathrm{O}(40 \mathrm{mg}, 10.2 \mathrm{mmol})$ was added to the:reaction mixture. Reaction mixture was stirred at room temperature for 72 hours. It was diluted with ${ }_{[} \mathrm{DCM}$, washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. .Crude
was: purified by column chromatography (silica, gradient $0 \%-2 \%$ Methanol iin lDCM) to provide 17-3 as off"white: solid. Yield:21\%; LC MS: ES+ 177.0.

Step-2
To a stirred solution of 17-3 ($70 \mathrm{mg}, 397 \mu \mathrm{~mol}$) in DMF (5 mL) was added sodium lhydride

Scheme :18:

Compound $\{93$

Step-1
To. a stirred solution of $18-1(881 \mathrm{mg}, 8.80 \mathrm{mmol})$ in Dimethyl ;Sulfoxide (5 mL) iwas added 2 -chloropyridine ($1 \mathrm{~g}, 8.80 \mathrm{mmol}$) and potassium carbonate $(3.64 \mathrm{~g}, 26.4 \mathrm{mmol})$. The reaction mixture: was heated to $120^{\circ} \mathrm{C}$ under nitrogen atmosphere for 16 hours. Reaction ımixture was; diluted with water and extracted with 20% IPA/DCM, dried over Na 2 SO and concentrated.

The:crude was purified by column chromatography (silica, gradient $0 \%-1 \%$ Methanol innlDCM) tto provide: 18-2 as a liquid. Yield:7\%; LC MS: ES+ 178.0.

Step-2
Compound 193 was synthesized following General approach $1(\mathrm{NaH}$, reverse addition protocol). Yield:14\%; 1H NMR (400 MHz , DMSO-d6) $\boldsymbol{\delta} 10.90$ (s, 1H), 8.13 (brs, 1H), 7.57 ((brs, $1 \mathrm{H}), 6.82 .(\mathrm{d}, \mathrm{J}=7.32 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{brs}, 1 \mathrm{H}), 5.07(\mathrm{brs}, 1 \mathrm{H}), 4.20-4.06 \mathrm{I}(\mathrm{m}, .2 \mathrm{H}), .3 .86(\mathrm{brs}, 1 \mathrm{H})$, $3.69^{\prime}($ brs, 1 H$), 3.42$)brs, 2 H$), 2.81-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.31 \mathrm{I}(\mathrm{m}, 1 \mathrm{H}), 1.87(\mathrm{~m}$, 1H); LC MS: ES+ 289.20.

Scheme 19:

Step 1: Preparation of 4-Phenyl-4H-pyrazole

Compound 19-2 was synthesized according to Scheme 19. Yield: 10\%; LC MS: ES+ 145.4.

Step-2

Compound 194
Compound 194 was synthesized following general procedure ($\mathrm{NaH} / \mathrm{THF}$, reverseaddition protocol). Yield: 86%; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\boldsymbol{\delta} 11.09(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H})$, $7.59-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.44 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 5.41-5.37(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.78$ $(\mathrm{m}, 1 \mathrm{H}), 2.69-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 1 \mathrm{H}) ;$ LC MS: ES+ 256.3.

Synthesis of Compound 195

Compound 195

Step-1
Preparation of 1 -Benzyl-imidazolidin-2-one (3)

A stirred solution of (1) ($2 \mathrm{~g}, 23.23 \mathrm{mmol})$ was added to a stirred solution of $\mathrm{NaH}_{(}(613 \mathrm{mg}$, 25.55 mmol) in THF (20 mL) under argon. The reaction mixture was stirred for one hour atıroom
temperature and a solution of $2(3.03 \mathrm{~mL}, 25.55 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ 'was added drop'wise ..The reaction mixture: was refluxed for overnight. After cooling, water was added and iit 'was extracted with diethyl ether $(3 * 20 \mathrm{ml})$. Combined organic layers were dried with Na 2 SO 4 , concentratedunder reduced pressure. Crude mass was purified by column chromatography ($0 \%-100 \%$ rethylacetateiin hexane) to afford 400 mg compound 3 as off white solid. Yield: 10%;'HNMRI(400 MMHz , H DMSOd6) $\boldsymbol{\delta} 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 3.24-3.161(\mathrm{~m}, 4 \mathrm{H})$.

Step-2: Preparation of Compound 195

Compound 195 was synthesized following general protocol $(\mathrm{NaH}$, reverse addition). Yield: 2\%; 'HNMR (400 MHz, DMSO-d6) $\delta 10.85(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 3 \mathrm{H})$, $4.62-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}), 3.32-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.52-$ 2.50 (m, 1H), 2.22-2.16 (m, 1H), 1.88-1.86 (m, 1H); LC MS: ES+ '288.2.

Synthesis of Compound 196

Preparation of Compound 196

Compound 196

Compound 196 was synthesized according to the scheme above. Yield: 20%; $\left.{ }^{1} \mathrm{H}\right]$ NMR (4001 MHz, DMSO-d6) $\delta 11.07(\mathrm{~s}, 1 \mathrm{H}), 5.41-5.37(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H})$,
2.66-2.61 (m, 2H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.27\left(\mathrm{t}, J={ }^{\prime} 7.04 \mathrm{~Hz}, 3 \mathrm{H}\right)$. $\mathrm{lLClMS}:$ ES+280.1

Scheme 20:

Preparation of 20-2:
To a stirred mixture of 2-amino-3-nitrobenzoic acid ($2 \mathrm{~g}, 10.9 \mathrm{mmol}$) andimidazole (1.2eq.) in. Acetonitrile (20 mL) was added acetyl chloride ($927 \mu \mathrm{~L}, 13.0 \mathrm{mmol}$); the ssolid suspension slowly dissolved; stirred at rt overnight;add 3-aminopiperidine-2,6-dione hydrochloride: $(1.79 \mathrm{~g}, 10.9 \mathrm{mmol})$; followed by rest of 2.4 eq , make it total 1 H -Imidazole ($(2.66$ g, 39.2: mmol) ; add Phosphorous acid, triphenyl ester ($3.40 \mathrm{~mL}, 13.0 \mathrm{mmol}$) Theat to reflux; pdt peak as; the: major peak based on UV, but major impurity $259_{1}\left(\mathrm{M}+1, \mathrm{ES}+\right.$); add ${ }_{160} \mathrm{~mL}$-water, llight yellow solid precipitated, wash with water and EtOAc; solid still has the 259 peak, but all (other impurities; gone; crude 3-(2-methyl-8-nitro-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione ($(2.07$ $\mathrm{g}, 6.54 \mathrm{mmol}, 60.1 \%)$.

Compound 197

Charge crude 3-(2-methyl-8-nitro-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione((2 $\mathrm{g}, 6.32 \mathrm{mmol})$ to 100 mL RBF; charge N, N-dimethylformamide $(35 \mathrm{~mL}, 16.32 \mathrm{mmol})$ under nitrogen flow, purge; stir form light yellow solution; add dihydroxypalladium ($879 \mathrm{mg}, 1.26$ $\mathrm{mmol})$ in carbon; purge with nitrogen; purge with hydrogen; rxn complete overnight; ffilter off solid, concentrate: and subject to FCC, MeOH/DCM 2-30\%; isolate as off-white solid:3-(8-amino-2-methyl-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione (Compound 197) (796 mg, 2.78 mmol , 44.2\%). 1H NMR (500 MHz , DMSO-d6): $\delta 10.96(\mathrm{~s}, 1 \mathrm{H}), 7.7 .18-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{dd}, \mathrm{J}=2.0 \mathrm{~Hz}$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{~s}, 1 \mathrm{H}), 5.20(\mathrm{dd}, \mathrm{J}=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.75(\mathrm{~m}, .2 \mathrm{H}), 2.63-2.50((\mathrm{~m}, .5 \mathrm{H})$, 2.16-2.10 (m, 1H). LC/MS (ES+): m/z 287.1 [M+H]+

Scheme: 21: Preparation of Compound 198

Compound 198

Step, 1: Preparation of 21-2

21-2

Toa stirred mixture of 2-amino-4-nitrobenzoic acid ($2.0 \mathrm{~g}, 10.9 \mathrm{mmol}$) andiimidazole($(0.88$ $\mathrm{g}, 12.84 \mathrm{mmol})$ in acetonitrile $(40 \mathrm{~mL})$, was added Acetyl chloride $(1.02 \mathrm{~g}, 13.0 \mathrm{mmol})$ at room temperature. The mixture was stirred at room temperature overnight. To the mixture, was added 3-amino-piperidine-2,6-dione hydrogen chloride (1.78 g, 10.9 mmol$)$, iimidazole ($(1.60 \mathrm{~g}, ~ 23.24$ $\mathrm{mmol})$) and Phosphorous acid, triphenyl ester ($4.03 \mathrm{~g}, 13.0 \mathrm{mmol}$), and heated to reflux overnight. Water $(200 \mathrm{~mL})$ was added to the mixture. The suspension was filtered and the solid was stirred for 20 min in $\mathrm{CH} 3 \mathrm{CN}(25 \mathrm{~mL})$. The mixture was filtrated to give 3 -(2-methyl-7-nitro-4-oxoquinazolin- $3(4 \mathrm{H})$-yl)piperidine-2,6-dione $21-2(1.70 \mathrm{~g}, 5.37 \mathrm{mmol}, 49.4 \%)$ as an off-white solid. LC/MS (ES+): m/z $317.2[\mathrm{M}+\mathrm{H}]+$

Step 12: Preparation of Compound 198

Compound 198

To a , solution of 3-(2-methyl-7-nitro-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione ((1.4 $\mathrm{g}, 4.42, \mathrm{mmol})$ in $\mathrm{DMF}(17 \mathrm{~mL})$ was added Palladium hydroxide $(310 \mathrm{mg}, 2.21 \mathrm{mmol})$ and Cyclohexene $(4.4 \mathrm{~mL}, 44.0 \mathrm{mmol})$. The mixture was stirred at $125^{\circ} \mathrm{C}$ overnight. The mixturerwas poured into water and stirred for 15 min . The mixture was filtrated and the solid was collected to give:3-(7-amino-2-methyl-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione, (Compound 198)(946 $\mathrm{mg}, 3.30 \mathrm{mmol}, 75.0 \%$) as white solid. 1H NMR (500 MHz , DMSO- $d 6$): $\delta 10.93$ ($\mathrm{s}, 1 \mathrm{H}$), 7.65
$(\mathrm{d}, 9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, \mathrm{J}=2.0 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 16.121(\mathrm{~s}, .2 \mathrm{H}), 5.12-5.08(\mathrm{~m}$, $1 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.50(\mathrm{~m}, 5 \mathrm{H}), 2.11-2.09(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}(\mathrm{ES}+): \mathrm{m} / \mathrm{z}: 287.1[[\mathrm{M}+\mathrm{H}]+$

Compound 199

Compound 199 was prepared according to the procedure in Scheme 21 . Yield $72.1 \% .1 \mathrm{H}$ NMR. (500 MHz, DMSO- $d 6$): $\delta 10.97(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H})$, 5.18-5.14.(m, 1H), 2.83-2.79 (m, 1H), 2.65-2.53 (m, 5H), 2.12-2.10 (m, 1H). LC/MS (ES+):1m/z 287.2: $[\mathrm{M}+\mathrm{H}]+$

Scheme 22 :

In a 50 mL RB flask was added 3-(6-nitro-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione ($200 \mathrm{mg}, 661 \mu \mathrm{~mol}$) in DMF (10 mL) . $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg}$,) was added. The mixture was stirred at:r.t. under a hydrogen atmosphere for 6 hours. Reaction mixture was filtered through (ceelite and wash with ethyl acetate (10 mL), The filtrate was concentrated under a vacuum, Then added ether and drop wise: methanol. Solid was formed, filtered and washed with pentane to give 3 -(6-amino-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione (Compound 200) (27.4 mg, $100 \mu \mathrm{~mol}, 15.3 \%$) as algreen $_{1}$ solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d \sigma$) $\boldsymbol{\delta} 2.07-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.88$ (m, 1H), $5.40(\mathrm{bs}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 2 \mathrm{H}), 7.09(\mathrm{dd}, \mathrm{J}=6.0 \mathrm{~Hz} \& 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, \mathrm{~J}=2.4 \mathrm{JHz}, 1 \mathrm{H})$, $7.401(\mathrm{~d}, 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 11.10(\mathrm{~s}, 1 \mathrm{H}) . \quad$ ES-MS (m/z): $273.24\left(\mathrm{M}+\mathrm{H}^{+}\right)$

Preparation of 3 -(8-Amino-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione (Compound 201)

Compound 201

Compound 201 was prepared as an off white solid according to procedure iin 'Scheme' 22. Yield 79.0\% \% . ${ }^{1}$ H NMR (400 MHz , DMSO- d6) $\delta 2.11-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.73$ $(\mathrm{m}, 1 \mathrm{H}), 2.81-2.86(\mathrm{~m}, 1 \mathrm{H}), 5.76(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23 \mathrm{l}(\mathrm{d}, \mathrm{J}=18.0 \mathrm{~Hz}, 2 \mathrm{H}), 88.22(\mathrm{~s}$, $1 \mathrm{H}), 11.14 \cdot(\mathrm{~s}, 1 \mathrm{H}) . \quad$ ES-MS (m/z): $273.21\left(\mathrm{M}+\mathrm{H}^{+}\right)$

Scheme: 23: Preparation of 3-(7-Nitro-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione (Compound 202)

$23-1$

Compounc 202

Step, 1:

To a, solution of 2-amino-N-(2,6-dioxopiperidin-3-yl)-4-nitrobenzamide $23-1$ ($4 \mathrm{~g}, 13.6$ $\left.\mathrm{mmol})_{\mathrm{I}}\right)_{\text {in }}$ in DMF (40 mL) in a vial, triethylorthoformate ($40 \mathrm{ml}, 270 \mu \mathrm{~mol}$) and PTSA $(2.34 \mathrm{~g}, 13.6$ $\mathrm{mmol})$, were added under nitrogen condition and sealed the vial. Then the reaction was heated at
$150^{\circ} \mathrm{C}$ for 4 hr .The reaction was monitored by TLC. After consumption of 'SM, the treaction mixture: was poured in ice cold water (100 mL) ,the resulting solid was filtered, washed with.ACN, andl dried under high vacuum to obtain 3-(7-nitro-4-oxoquinazolin-3(4H)-yl)piperidine-2,6-dione 23-2: $2.57^{\prime} \mathrm{g}, 8.51 \mathrm{mmol}, 62.5 \%$) as grey colored solid. LC/MS (ES+): m/z.303.07[[M+H]+

Step 2: Preparation of Compound 202

Compound 202

To a solution of 2-amino-N-(2,6-dioxopiperidin-3-yl)-4-nitrobenzamide '23-2 ($(0.5$ 〔g, 1.71 mmol) in DMF (8 mL) in RB flask, TEA (0.02 ml ,) was added under nitrogen at RT ., After adding $10 \% \mathrm{Pd}$ on carbon ($0.25 \mathrm{~g}, 2.34 \mathrm{mmol}$) the reaction was hydrogenated for 18 hr ;at RTiusinglballoon pressure. The reaction was monitored by TLC. After complete consumption of :SM, the reaction was; filtered through celite bed and washed with Ethylacetate (10 mL). The ffiltrate was concentrated under high vacuum at $55^{\circ} \mathrm{C}$ and resulting residue was washed with.methanol($(10 \mathrm{~mL})$ andl diethyl ether (10 mL) and dried under high vacuum to obtain 3 -(7 -amino-4-oxoquinazolin$3(4 \mathrm{H})$-yl)piperidine-2,6-dione (Compound 202) ($300 \mathrm{mg}, 1.10 \mathrm{mmol}, 64.5 \%$) as lbrown icolored solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d6) $\boldsymbol{\delta} 2.06-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.88((\mathrm{~m}$, $1 \mathrm{H}), 5.33-5.35(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 2 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.74(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 8.10ı(s, 1H), $11.08(\mathrm{~s}, 1 \mathrm{H}) . \quad$ ES-MS (m/z): $273.23\left(\mathrm{M}+\mathrm{H}^{+}\right)$

Scheme 24 :

Compound 203
H_{2} (balloon) $\mathrm{Pd} / \mathrm{C}, \mathrm{ElOH}$ RT, 16 h

$24-3$

Step 1: Preparation of 2,6-Bis-benzyloxy-3-(5-phenyl-imidazol-1-yl)-pyridine (24-3)
A stirred solution of 24-1 ($100 \mathrm{mg}, 693 \mu \mathrm{~mol}), 24-2(256 \mathrm{mg}, 693 \mu \mathrm{~mol})$ and 1 K 2 CO 3 (285 $\mathrm{mg}, 2.07 \mathrm{mmol}$) in DMSO (15 mL) was with Argon for about 10 minutes followed lbythe addition of ' CuI. ($26.2 \mathrm{mg}, 138 \mu \mathrm{~mol}$) and 2-Acetylcyclohexanone ($48.5 \mathrm{mg}, 346 \mu \mathrm{~mol}$). 'The resulting mixture:was: heated at $140^{\circ} \mathrm{C}$ in a sealed tube for 20 hours. It was then cooled toroom temperature, diluted with water and extracted with Ethyl acetate. The combined Ethyl acetate rextract was washed with water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Crude: massi was purified by column chromatography (silica, gradient: 10-20\% Ethyl acetate in Hexane) to afford 24-3 ($60 \mathrm{mg}, 138 \mu \mathrm{~mol}, 20 \%$) as off white solid. LC MS: ES+ 434.2.

Step , 2: Preparation of 3-(4-Phenyl-imidazol-1-yl)-piperidine-2,6-dione (Compound :203)

A solution of 24-3 ($55 \mathrm{mg}, 126 \mu \mathrm{~mol}$) in Ethanol (5 mL) was degassed with Argon for about: 10 minutes, followed by the addition of $10 \% \mathrm{Pd} / \mathrm{C}(27 \mathrm{mg})$. The resulting mixture was purged with hydrogen (balloon) and stirred under Hydrogen atmosphere at ambient temperature ffor 16 hours; to produce: Compound 203. Reaction mixture was filtered through a a short bed of ceelite and
the: filtrate: was concentrated under reduced pressure. Crude mass was ppurified lby column chromatography (silica, gradient: $0-3 \% \mathrm{MeOH}$ in DCM) to afford Compound ${ }^{2} 203(10.0 \mathrm{mg}, 39.1$ $\mu \mathrm{mol}, 31 \%$) as as light brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d_{6}\right) \boldsymbol{\delta} 11.14(\mathrm{~s}, 1 \mathrm{H}),{ }^{\prime} 7.78-{ }^{-} 7.68((\mathrm{~m}$, $4 \mathrm{H}), 7.35\left(\mathrm{t}, J^{\prime}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{dd}, J=13.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.76$ $(\mathrm{m}, 1 \mathrm{H}), 2.64(\mathrm{dd}, J=25.2,15.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.24(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{LC} \mathrm{MS}: \mathrm{ES}+{ }^{\prime} .256 .21$.

Scheme :25: Preparation of Compound 204

Compound 204

Preparation of $25-2$
To, a stirred solution of $24-2(455 \mathrm{mg}, 1.22 \mathrm{mmol})$ in toluene was added $25-1$ (100 $\mathrm{mg}, 860.86, \mu \mathrm{~mol})$ and K3PO4.H2O ($494 \mathrm{mg}, 215 \mu \mathrm{~mol}$) and the resulting dmixture was degassed with Argon for 10 minutes. To this were added $\mathrm{CuI}(0.05 \mathrm{mg}, 10.26 \mu \mathrm{~mol})$ and trans-N,N.-dimethylcyclohexane-1,2-diamine ($17 \mathrm{mg}, 120 \mu \mathrm{~mol}$) and heated to $100^{\circ} \mathrm{C}$ for 16 hours topproduce 25-2. Reaction mixture was cooled to room temperature and filtered through a ashort lbed of ccelite. The: filtrate: was, diluted with Ethyl acetate, washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. and concentrated under reduced pressure. Crude mass was purified doing column chromatography (silica, gradient: 0-20\% Ethyl acetate in Hexane) to afford $25-2(200 \mathrm{mmg}, ~ 514$ $\mu \mathrm{mol}, 60 \%)$, as sticky off-white solid. LC MS: ES+ 390.2.

Preparation of Compound 204

Compound 204 was synthesized following the usual hydrogenation protocol((Yield::59\%) as: off white: solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 10.82$ ($\mathrm{s}, 1 \mathrm{H}$), 4.53 ($\mathrm{dd}, \mathrm{J}=13.4,5.5 \mathrm{lHz}$, $1 \mathrm{H}), 3.37^{\prime}-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.20(\mathrm{~m}, 2 \mathrm{H}), 3.13(\mathrm{dd}, J=11.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), .2 .81((\mathrm{ddd}, \mathrm{J}==18.5$, $14.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.55-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{qd}, J=13.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.81((\mathrm{dd}, J==$ 9.9, $4.5 \mathrm{~Hz}, 1 \mathrm{H})$; LC MS: ES+ 212.3.

Scheme: 26: Synthesis of Compound 205

24-2
H_{2} (balloon)
$\mathrm{Pd}_{\mathrm{d} / \mathrm{C}, \mathrm{EOHH}}$

Step-1: Preparation of 2-(2,6-Bis-benzyloxy-pyridin-3-yl)-2,6-dihydro-4H-pyrrolo[3,4-c]pyrazole-5-carboxylic acid tert-butyl ester (26-2)

Compound 26-2 was synthesized according to Scheme 26. Yield: $12 \% ; \mathrm{LC}] \mathrm{MS}:] \mathrm{ES}+499.3$.

Step-2: Preparation of 2-(2,6-Dioxo-piperidin-3-yl)-2,6-dihydro-4H-pyrrolo[3,4-c]pyrazole-5-carboxylic acid tert-butyl ester (Compound 205)

Compound 205 was synthesized following general procedure (hydrogenation) showniin Scheme: 26. Yield: 20%;'H NMR (400 MHz , DMSO-d6) $\delta 11.04(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J==8.88 \mathrm{~Hz}, 1 \mathrm{H})$, 5.33 (m, 1H), 4.33-4.31 (m, 4H), $2.80(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ; \mathrm{LLClMS}:$ ES+321.2.

Scheme: 27: Synthesis of Compound 206

A solution of methyl coumalate 27-1 (200 mg , 1 equiv.) in $\mathrm{MeOH}_{1}(12 \mathrm{ml})$-wastreated with 3-aminopiperidine-2,6-dione 27-2 ($216 \mathrm{mg}, 1.2$ equiv.) and TEA (196ıL, 1.5 requiv.).'Therreaction wasi stirred at $23^{\circ} \mathrm{C}$ under nitrogen. After 16 h , the reaction was concentrated and triturated with MTBE:Ethylacetate mixture, The solid was suspended in acetonitrile:water, frozen and lyophilized, affording methyl 1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyridine-3carboxylate: (Compound 206) ($86 \mathrm{mg}, 23.1 \%$). (M+H). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\lesssim 11.04$ $(\mathrm{s}, 1 \mathrm{H}), 8.46 \mathrm{(d},, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=9.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, . J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~s}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 1 \mathrm{H}), 2.66-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.87$ (m, 1H). JLCMS:]MS ${ }_{\text {(ESI }}$): 265.2:

Scheme: 28: Synthesis of Compound 207

Step-1: 28-2
A stirred solution of 28-1 ($5.0 \mathrm{~g}, 35.6 \mathrm{mmol}$) in SOCl2 (30.0 mL)'was refluxedffor'2lhours. Then reaction mass was concentrated in vacuo under inert atmosphere. To this arrude acidcchloride in THF $^{\prime}(30.0 \mathrm{~mL})$ were added Pyridine ($11.4 \mathrm{~mL}, 142 \mathrm{mmol}$) and Tertiary lbutanol ($33.9 \mathrm{~mL}, 356$ $\mathrm{mmol})$ and the reaction mixture was heated at same temperature for 16 hours. It 'wasiconcentrated, diluted with saturated aqueous NaHCO_{3} solution, ethyl acetate. Organic layer was separated and washed with 2 N aqueous HCl solution, water, brine, dried over sodium sulfate. It was concentrated to afford 28-2 (3 g) as reddish brown semisolid. Yield:43\%; LC MS: ES+ 197.2.

Step-2: 28-3
To a stirred solution of 28-2 ($3.0 \mathrm{~g}, 15.2 \mathrm{mmol}$) in Methanol (20.0 mL$)^{\prime}$)were added triethyl amine: ($3.28 \mathrm{~mL}, 22.8 \mathrm{mmol}$) and 3-aminopiperidine-2,6-dione $(2.50 \mathrm{~g}, 15.2 \mathrm{mmol})$.'The reaction mixture: was stirred at room temperature for 1 hour. It was concentrated under reduced pressure and diluted with ethyl acetate, water. Layers were separated and organic layer was washed with brine solution. It was dried over sodium sulfate and concentrated. Crude material was purifiedby column chromatography using (silica, gradient $0 \%-1 \% \mathrm{MeOH} / \mathrm{DCM}$) to afford 1.03 gof $28-3$ (1 g)ıas; off`white: solid. Yield:22\%; LC MS: ES+ 307.3.

Step-3: Compound 207
To a stirred solution of 28-3 ($1.0 \mathrm{~g}, 3.26 \mathrm{mmol})$ in DCM $(30.0 \mathrm{~mL})$ was added TFA (10.0 $\mathrm{mL})$ at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature for 3 lhours. IIt was concentrated under reduced pressure and triturated with ether to afford Compound 207 (650 mg)

DDQ, DCM
$0^{\circ} \mathrm{C}, 1 \mathrm{~h}$

Compound 209

Preparation of 3-(2-Methyl-2,3-dihydro-indol-1-yl)-piperidine-2,6-dione (Compound 208)

To a mixture of 29-1 ($300 \mathrm{mg}, 2.25 \mathrm{mmol}$) and 2-1 ($432 \mathrm{mg}, 2.25 \mathrm{mmol}$) in $]$ DMF (2 mLL) was; added N, N-Diisopropylethylamine ($0.77 \mu \mathrm{~L}, 4.50 \mathrm{mmol}$). The resulting solution was heated in a asealed tube at $80^{\circ} \mathrm{C}$ for 16 hours to produce Compound 208. Reaction mixture-wasthencooled
tor room temperature, diluted with water and extracted with Ethyl acetate. 'The combined lEthyl acetate: extract was washed with brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. Crude mass was purified by column chromatography I(silica, gradient: (0-20\% Ethyl acetate in Hexane) to afford Compound $208(65.0 \mathrm{mg}, 266 \mu \mathrm{~mol}, 12 \%)$ as lbrown ssolid. ${ }^{1 \mathrm{H}} \mathrm{H}$ NMR. $\left(400 \mathrm{MHz}, ~ D M S O-d_{6}\right) \delta 10.80(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-6.97(\mathrm{~m}, 1 \mathrm{H}), 16.88(\mathrm{~d}, J==9.2 \mathrm{Hzz}$, $1 \mathrm{H}), 6.57^{\prime}-6.47^{\prime}(\mathrm{m}, 1 \mathrm{H}), 6.30-6.19(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.25-$ $3.09^{\prime}(\mathrm{m}, 2 \mathrm{H}), 2.79-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.20(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{~d}, \mathrm{~J}==16.3 \mathrm{JHz}, 3 \mathrm{H})$. LC:MS: ES+ 245.32.

Preparation of 3-(2-Methyl-indol-1-yl)-piperidine-2,6-dione (Compound 209)

A DCM solution (5 mL) of Compound $208(45 \mathrm{mg}, 184 \mu \mathrm{~mol})$ was cooled to $10^{\circ} \mathrm{C}$ and to it: was; added DDQ ($41.7 \mathrm{mg}, 184 \mu \mathrm{~mol}$) and the resulting mixture was stirred at the same temperature: for 1 hour to produce Compound 209. Reaction mass was diluted withIDCM, rwashed with aqueous. saturated NaHCO_{3} solution, water and brine. The organic llayer was idried over anhydrous; Na 2 SO 4 , concentrated under reduced pressure and the resultant solid was triturated with Diethyl ether and Pentane to afford Compound 209 ($28.0 \mathrm{mg}, 115 \mu \mathrm{~mol}, 163 \%$) as 1 brown solid. ${ }^{11} \mathrm{H}$ NMR. $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \boldsymbol{\delta} 11.14(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-6.961(\mathrm{~m}, 3 \mathrm{H}), 6.24(\mathrm{~s}$, $1 \mathrm{H}), 5.44 .(\mathrm{brs}, 1 \mathrm{H}), 2.98-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.31(\mathrm{~m}, .3 \mathrm{H}), 2.06-2.03(\mathrm{~m}, 1 \mathrm{H})$; LC:MS: ES+243.4.

Scheme :30: Preparation of Compound 210

Preparation । off 1-(2,6-Bis-benzyloxy-pyridin-3-yl)-2,3-dihydro-1H-pyrrolo[2,3-b]pyridine (30-2))

30-2;was;synthesized according to the procedure followed in Scheme 30 using DDQ.(Yield: 71\%) as;yellowish ${ }_{\text {l }}$ solid. LC MS: ES+ 408.1.

Preparation of 3 -(3H-Pyrrolo[2,3-b]pyridin-1-yl)-piperidine-2,6-dione (Compound 210)

Compound 210

Compound 210 was synthesized according to the usual hydrogenation protocol (Yield:
 $1 \mathrm{H}), 7.99_{1}(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=8.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.53$ ($\mathrm{d}, \mathrm{J}=$
$3.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.78(\mathrm{dd}, J=12.9,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.801(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.63$ (m, 1H), 2.16-2.10 (m, 1H); LCMS: ES+ 230.2.

Scheme:31: Synthesis of Compound 211

To a stirred solution of 3-aminopiperidine-2,6-dione ($168 \mathrm{mg}, 1.02 \mathrm{mmol}$) iin acetic acid were: added Sodium acetate ($250 \mathrm{mg}, 3.06 \mathrm{mmol}$) and furan-2,5-dione $(100 \mathrm{mg}, 1.02 \mathrm{mmol})$ and the: reaction mixture was heated at $120^{\circ} \mathrm{C}$ for 4 hours. It was cooled to room temperature and was concentrated under reduced pressure. It was purified by column chromatography (silica, 〔gradient $0 \%-40 \%$ Ethyl acetate in Hexane) to provide Compound 211 as a white solid. Yield: $: 29 \% ;{ }^{11} \mathrm{H}$ NMR. ($400 \mathrm{MHz}, ~ D M S O-d 6) \delta 11.07(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 4.93-4.98(\mathrm{~m}, 1 \mathrm{H}), .2 .79-2.88(\mathrm{~m}$, $1 \mathrm{H}), 2.53-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.46(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.99(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{GC} \mathrm{MS}: \mathrm{m} / \mathrm{z}: 208$

Scheme: 32

$\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}$ methy-2-butene tert-BuOH $f][1,2,4]$ triazolo[4,3- $a][1,4]$ diazepin-6-yl)- N-(8-hydroxyoctyl)acetamide (32-2):

To a solution of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetic acid 32-1 (450 mg, 1.12 mmol$)$ in $]$ DMF $(2.80 \mathrm{~mL}$),was;added 8 -aminooctan-1-ol ($244 \mathrm{mg}, 1.68 \mathrm{mmol}$), Diisopropylethylamine ($389 \mu \mathrm{~L}, 2.24, \mathrm{mmol}$) and HATU ($509 \mathrm{mg}, 1.34 \mathrm{mmol}$), The reaction was stirred for 24 h , at which time the reaction was concentrated and purified by isco (24 g column $0-10 \% \mathrm{MeOH} / \mathrm{DCM}$) to provide (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(3hydroxypropyl)acetamide ($400 \mathrm{mg}, 67.6 \%$). LCMS ES+ = 529.1

Preparation of $\quad(S)$-2-(4-(4-Chlorophenyl)-2,3,9-trimethyl-6 $\quad H$-thieno[3,2$f][1,2,4]$ triazolo[4,3- $a][1,4]$ diazepin-6-yl)- N-(8-oxooctyl)acetamide (32-3):

A 25 mL round bottom flask was charged with (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(8-hydroxyoctyl)acetamide $\quad 32-2(400$ $\mathrm{mg}, 757 \mathrm{~mol})$ and dichloromethane (4 mL). Dess-Martin Periodinane (0.3 M in $1 \mathrm{DCM}, .3 .02 \mathrm{~mL}$, 908 $\mu \mathrm{mol}$)' was added and the reaction was stirred at rt for 1 h , then quenched 'with 0.5 mL isopropanol, sat'd sodium thiosulfate, and sat'd sodium bicarbonate. The reaction was rextracted $\vdots 3$ x : DCM, organics were dried over Na2SO4, filtered and concentrated to provide ((S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6 H-thieno[3,2- $f][1,2,4]$ triazolo[4,3- $a][1,4]$ diazepin- 6 -yl)- N-(8oxooctyl)acetamide : $(390 \mathrm{mg}, 741 \mathrm{mmol}, 98 \%$ yield) ($32-3$), which was used in subsequent reactions: without further purification. LCMS ES+ 527.3.

Preparation of $\quad(S)$-8-(2-(4-(4-Chlorophenyl)-2,3,9-trimethyl-6 $\quad H$-thieno[3,2$f][1,2,4]$ triazolo[4,3- $a][1,4]$ diazepin-6-yl)acetamido)octanoic acid (32-4):

A 25 mL round bottom flask was charged with (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl$6 H$-thieno[3,2- $f][1,2,4]$ triazolo[4,3- $a][1,4]$ diazepin- 6 -yl)- N-(8-oxooctyl)acetamide $32-3$ (250 mg , $475 \mu \mathrm{~mol}), \mathrm{NaClO} 2(128 \mathrm{mg}, 1.425 \mathrm{mmol}), \mathrm{NaH} 2 \mathrm{PO} 4(202 \mathrm{mg}, 1.425 \mathrm{mmol}), .2$-methyl-2-butene ($71 \mu \mathrm{~L}, 1.425 \mathrm{mmol}$) and tert-butanol (5 mL). The reaction was stirred at 1 rt for 18 h , acidified with 1 N HCl and extracted with ethyl acetate. The combined organics were dried over Na 2 SO 4 ,ffiltered andl concentrated. The crude residue was purified by reverse-phase iisco $(5-100 \%] \mathrm{MeCN} / \mathrm{H} 2 \mathrm{O}$ containing; $0.01 \% \mathrm{TFA}$) to provide (S)-8-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6 H-thieno[3,2$f][1,2,4]$ triazolo[4,3- $a][1,4]$ diazepin-6yl)acetamido)octanoic acid \quad ($32-4$) ($200 \mathrm{mg}, 368 \mathrm{mmol}$, 77%, yield) as a white solid. LCMS ES $+=543.3$

Scheme: 33

33-3

Preparation of tert-butyl (S)-(8-(2-(4-(4-Chlorophenyl)-2,3,9-trimethyl-6 H-thieno[3,2$f][1,2,4]$ triazolo[4,3- $a][1,4]$ diazepin-6-yl)acetamido)octyl)carbamate \quad (33-2):

To a solution of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2f] [1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetic acid 33-1 ($150 \mathrm{mg}, 374 \mu \mathrm{~mol})$ in $\operatorname{DMF}((935 \mu \mathrm{~L}))$ was: added tert-butyl (8 -aminooctyl)carbamate ($118 \mathrm{mg}, 486 \mu \mathrm{~mol}$), Diisopropylethylamine ($(130$ $\mu \mathrm{L}, 748 \mu \mathrm{~mol})$ and HATU ($170 \mathrm{mg}, 448 \mu \mathrm{~mol})$. The reaction was stirred for 24 lh , at which ttime the: reaction was concentrated and purified by isco (24 g column $0-10 \% \mathrm{MeOH} / \mathrm{DCM}$) to provide (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(3-hydroxypropyl)acetamide 33-2 (200 mg, 85.4%).

Preparation of ${ }^{*}(S)-N$-(8-Aminooctyl)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6 H-thieno[3,2$f][1,2,4]$ triazolo $[4,3-a][1,4]$ diazepin-6-yl)acetamide (33-3):

To a solution of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(3-hydroxypropyl)acetamide $33-2$ ($200 \mathrm{mgg}, 85 \%$) in 5 mL . DCM was, added TFA (3 mL). The reaction was stirred at it for 1 h and then concentrated to
provide: a TFA salt of ${ }^{(S)}$ - N -(8-aminooctyl)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2$f][1,2,4]$ triazolo $[4,3-a][1,4]$ diazepin- $6-y l)$ acetamide $(33-3)(180 \mathrm{mg})$ which was used in subsequent reactions without further purification.

Scheme 34 : Preparation of N-(8-(2-((S)-4-(4-Chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-

Degronimer 1
(S)-N-(8-aminooctyl)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-
f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetamide ($50 \mathrm{mg}, 94.85 \mathrm{umol}$) and 1-(2,6-dioxo-3- f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetamido)octyl)-1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyridine-3-carboxamide (Degronimer 1)

 piperidyl)-6-oxo-pyridine-3-carboxylic acid ($26.11 \mathrm{mg}, 104.34 \mathrm{umol}$) in DMF (500 uL) were treated with HATU $(68.53 \mathrm{mg}, 180.22 \mathrm{umol})$ followed by N,N-Diisopropylethylamine,($56.39_{1} \mathrm{mg}$, 436.33 umol, 76.00 uL). The solution was stirred at rt. Upon completion of the reaction as determined by LCMS, the reaction was purified directly on a reverse-phase C 18 column, eluting with $10-100 \% \mathrm{MeCN}^{2} \mathrm{H}_{2} \mathrm{O}$. The product combining fractions were combined, solvent 1 removed and product extracted $3 \mathrm{x} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and ${ }_{4}$ solvent removed to give N -(8-(2-((S)-4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetamido)octyl)-1-(2,6-dioxopiperidin-3-yl)-6-oxo-

1,6-dihydropyridine-3-carboxamide (Degronimer 1) ($14.2 \mathrm{mg}, 18.70$ umol, 19.7% yield) cas a light brown solid. 1H NMR (400 MHz , DMSO- $d 6$) $\delta 11.05(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=: 2.5 \mathrm{JHz}, 1 \mathrm{H}), 8.18$ $(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{dd}, J=9.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.38((\mathrm{~m}, .5 \mathrm{H})$, $6.43(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{bs}, 1 \mathrm{H}), 4.52-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.01(\mathrm{~m}, 6 \mathrm{H}), 2.62-2.54((\mathrm{~m}$, $4 \mathrm{H}), 2.39^{\prime}(\mathrm{s}, 2 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 2 \mathrm{H}), 1.50-1.38 \mathrm{l}(\mathrm{m}, 4 \mathrm{H}), 1.26$ $(\mathrm{s}, 6 \mathrm{H}), 1.22(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.86-0.80(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}(\mathrm{ES}+): \mathrm{m} / \mathrm{z} 759.2$ ($\mathrm{M}+\mathrm{H}$) +

Scheme: 35:

Dissolve: 3-(6-nitrobenzimidazol-1-yl)piperidine-2,6-dione and regio ïsomer ($220 \mathrm{mg}, 802.24$ umol) in DMF (3 mL) with Palladium, 5% on activated carbon paste (16.04 umol),, purgerwith nitrogen three times. Then purge with hydrogen three times, stir at hydrogen atmosphere.|Reaction was; complete: according to LCMS after 4 hrs, filter off pd on carbon via $1 / 2$ inch celite pad. concentrate down to afford dark green foam crude and directly used for next steps.3-(6-aminobenzimidazol-1-yl)piperidine-2,6-dione and regio isomer ($220 \mathrm{mg}, 900.72 \mathrm{umol}, 112.28 \%$ yield). 'H NMR (400 MHz, DMSO- d_{6}) $\delta 11.33(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.04(\mathrm{~d}, J=14.8 \mathrm{JHz}, 1 \mathrm{H})$, $7.601(\mathrm{dd}, J=9.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.08-6.91(\mathrm{~m}, 2 \mathrm{H}), 5.80(\mathrm{td}, J=12.1,5.0] \mathrm{Hz}, 1 \mathrm{H})$, $2.97^{\prime}-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{q}, J=14.8,12.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$.

Scheme : 36

8-(2-((S)-4-(4-Chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-
a][1,4]diazepin-6-yl)acetamido)-N-(1-(2,6-dioxopiperidin-3-yl)-1H-benzo[d]imidazol-6yl)octanamide :(Degronimer 2)
(S)-8-(2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetamido)octanoic acid ($30 \mathrm{mg}, 55.14 \mathrm{umol}$) and 3-(6-aminobenzimidazol1 -yl)piperidine-2,6-dione ($14.81 \mathrm{mg}, 60.65 \mathrm{umol}$) in DMF (300 uL) were treated with]HATU ($39.83 \mathrm{mg}, 104.76 \mathrm{umol}$) followed by N,N-Diisopropylethylamine ($32.78 \mathrm{mg}, 253.63$ umol, 44.18 uL)। . The: solution was stirred at rt. Upon completion of the reaction lby LCMS, the reaction rwas purified directly on a reverse-phase C18 column, eluting with $10-100 \% \mathrm{MeCN}$ in $\rfloor \mathrm{H} 2 \mathrm{O}$. The product combining fractions were combined, solvent removed and product extracted $3 \times{ }_{1} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The: organic: layers were dried over Na 2 SO 4 , filtered and solvent removed $88-(2-((\mathrm{S})-4-(4-$
chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetamido)-N-(1-(2,6-dioxopiperidin-3-yl)-1H-benzo[d]imidazol-6-yl)octanamide (Degronimer '2) ($5.8 \mathrm{mg}, 7.53 \mathrm{umol}, 13.7 \%$ yield) brown solid. $\mathrm{LC} / \mathrm{MS}$ ($\mathrm{ES}+$): $\mathrm{m} / \mathrm{m}^{\prime} 768.6(\mathrm{M}+\mathrm{H})^{+}$

$a][1,4]$ diazepin-6 (Degronimer '3)

2-[4-(4-chlorophenyl)-2,3,9-trimethyl-6H-[1,2,4]triazolothieno[1,4]diazepin-6-yl]-N-(8oxooctyl)acetamide: $(15.0 \mathrm{mg}, 28.51 \mathrm{umol}), 3$-(2-oxopiperazin-1-yl)piperidine-2,6-dione($\left(6.02_{\mathrm{I}} \mathrm{mg}\right.$,
 followed by DCM $(95.04 \mathrm{uL})$ and the reaction stirred for 30 min . Acetic acid $(5.14 \mathrm{jmg}, 85.54$ umol, 4.89 uL) was added to the solution and the reaction stirred for an additional .30 mmin and cooled to $0_{0}{ }^{\circ}{ }^{\circ} \mathrm{C}$ prior to the addition of Sodium triacetoxyborohydride, 95% ($\left.6.65 \mathrm{mg}, 31.36, \mathrm{umol}\right)$ was; added and the reaction was gradually warmed to RT and stirred for 12 hours. 1 , ml of O DMSO was; added to the: vial and DCM was evaporated under vacuum. Upon completion of the reaction
asidetermined by LCMS, the reaction was purified directly on a reverse-phase ${ }^{\mathrm{C}}$ (18 column, eluting with $10-100 \% \mathrm{MeCN}$ in $\mathrm{H}_{2} \mathrm{O}$.

The: product containing fractions were combined, solvent removed and product extracted $\% \mathrm{x}$ CH 2 Cl 2 . The: organic layers were dried over Na2SO4, filtered and solvent removed to !give $2-((S)-$ 4-(4-chlorophenyl)-2,3,9-trimethyl-6 H-thieno[3,2-f][1,2,4]triazolo[4,3- a][1,4]diazepin-6-yl)- N -(8-(4-(2,6-dioxopiperidin-3-yl)-3-oxopiperazin-1-yl)octyl)acetamide (Degronimer 3) ($61 \mathrm{mg},{ }^{\prime} 7.49$ umol, 26.26% yield) as a red oil. 1 H NMR (400 MHz , DMSO- $d 6$) $\delta 10.84(\mathrm{~s}, 1 \mathrm{H}), 10.02(\mathrm{~s}, 1 \mathrm{H})$, $8.13(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J:=18.5 \mathrm{~Hz}, .2 \mathrm{H}), 7.43-$ $7.37^{\prime}(\mathrm{m}, 2 \mathrm{H}), 4.51-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=9.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88 \mathrm{l}(\mathrm{s}, 3 \mathrm{H}), 3.27-3.02((\mathrm{~m}$, $4 \mathrm{H}), 2.68-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 2 \mathrm{H}), 2.37(\mathrm{~s}, 2 \mathrm{H}), 2.35-2.29(\mathrm{~m}, .2 \mathrm{H}), 2.20-2.09((\mathrm{~m}, 2 \mathrm{H}), 1.60$ $(\mathrm{s}, 3 \mathrm{H}), 1.48-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 4 \mathrm{H}), 1.22(\mathrm{~s}, 5 \mathrm{H}), 0.91(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 10.87-(0.80((\mathrm{~m}$, 1H). LC/MS (ES+): m/z $743.5(\mathrm{M}+\mathrm{H}+\mathrm{Na})^{+}$

VIII. ADDITIONAL SYNTHESIS OF REPRESENTATIVE COMPOUNDS

The: compounds of the present invention can be prepared, for example, using methods provided below or routine modifications of these methods.

Scheme 38

wherein:
R is; the point at which the Linker is attached.

STEP 1

tert-Butyl. 3-(4-((tert-butyldimethylsilyl)oxy)-1 H-pyrazol-1-yl)-2,6-dioxopiperidine-1carboxylate :

Dry K2CO3 (1.0 eq.) and tert-butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate 《(1.0 feq.) (Faming; Zhuanli Shenqing, 103554082, 05 Feb 2014) are added to a stirred solution of 4 -((tert-butyldimethylsilyl)oxy)-1 H-pyrazole (1.0 eq.) (in DMF (0.2 M) at irt. After .2 .5 lh 'water is added and the: suspension is extracted with AcOEt. The organic phase is dried (Na2SO4) and evaporated. The: residue: is chromatographed on silica gel (AcOEt/n-heptane 1/1) to provide itert-butyl .3-(4-((tert-butyldimethylsilyl)oxy)-1 H-pyrazol-1-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 2

tert-Butyl 3-(4-hydroxy-1 H-pyrazol-1-yl)-2,6-dioxopiperidine-1-carboxylate
Tetra-n-butylammonium fluoride (1.1 M in THF; 1.1 eq.) is added to a solution of tertbutyl. 3-(4-((tert-butyldimethylsilyl)oxy)-1 H-pyrazol-1-yl)-2,6-dioxopiperidine-1-carboxylate (1.0 ' eq.) in THF (2.0 M) that has been cooled to $5^{\circ} \mathrm{C}$. The resultant mixture is stirred at ambient temperature: for 1 hour. The reaction mixture is diluted with a saturated aqueous sodium bicarbonate: solution and extracted with ethyl acetate. The organic phase iis recovered, washed with water, dried over magnesium sulphate and evaporated to provide tert-butyl 3-(4-hydroxy-1 H -pyrazol-1-yl)-2,6-dioxopiperidine-1-carboxylate.

Schiem e 38

wherein:
R is; the point at which the Linker is attached.

STEP 1

tert-Butyl $\quad 3$-(4-(((tert-butyldimethylsilyl)oxy)methyl)-3,5-dimethyl-1 $\quad H$-pyrazol-1-yl)-2,6-dioxopiperidine-1-carboxylate

Dry K2CO3 (1.0 eq.) and tert-butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate ((1.0 eeq.) are: added to a stirred solution of 4-(((tert-butyldimethylsilyl)oxy)methyl)-3,5-dimethyl-1 H pyrazole: (1.0 eq.) (Journal of Organometallic Chemistry, 694(2), 199-206; :2009) iin IDMF ($(0.2 \mathrm{M})$ at: rt . After $\cdot 2.5 \mathrm{~h}$ water is added and the suspension is extracted with AcOEt. 'The organic phase iis dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue is chromatographed on silica $\mathfrak{g} \mathrm{gel}(\mathrm{AcOEt} / \mathrm{n}$-heptane 1/1) to provide :tert-butyl 3-(4-(((tert-butyldimethylsilyl)oxy)methyl)-3,5-dimethyl-1 H -pyrazol-1-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 2

tert-Butyl. 3-(4-(hydroxymethyl)-3,5-dimethyl-1 H-pyrazol-1-yl)-2,6-dioxopiperidine-1carboxylate :

Tetra-n-butylammonium fluoride (1.1 M in THF; 1.1 eq.) is added to a : solution of tertbutyl 3-(4-(((tert-butyldimethylsilyl)oxy)methyl)-3,5-dimethyl-1 H-pyrazol-1-yl)-2,6-dioxopiperidine-1-carboxylate (1.0 eq.) in THF (2.0 M) that has been cooled to $5^{\circ} \mathrm{C}$. The resultant mixture is sstirred at ambient temperature for 1 hour. The reaction mixture is diluted with a assaturated aqueous; sodium bicarbonate solution and extracted with ethyl acetate. The organic phase is recovered, washed with water, dried over magnesium sulphate and evaporated to provide ${ }_{1}$ tert-butyl 3-(4-(hydroxymethyl)-3,5-dimethyl-1 H-pyrazol-1-yl)-2,6-dioxopiperidine-1-carboxylate.

wherein:
R is the point at which the Linker is attached.

STEP 1

tert-Butyl 3-isocyanato-2,6-dioxopiperidine-1-carboxylate:
Following the example procedure of J. Med. Chem. 1999, 42, 593-600: 'To a «solution of trichloromethyl chloroformate (1.3 eq.) and a catalytic amount of activated icharcoal in 201 mL of dry ethyl acetate: is added rapidly tert-butyl 3 -amino-2,6-dioxopiperidine-1-carboxylate (1.0 〔eq.) as; a_{l} solid or a solution of the corresponding amine (2.5 mmol) in 10 mL of dry rethyl acetate. The reaction mixture is heated to reflux for $4-5 \mathrm{~h}$, cooled, filtered, and the solvent iis evaporated carefully under reduced pressure to provide tert-butyl 3-isocyanato-2,6-dioxopiperidine-1carboxylate.

STEP 2

tert-Butyl. 3-(3-(2-((tert-butyldimethylsilyl)oxy)ethyl)-5-methyl-2-oxo-2,3-dihydro-1 H -imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate

Following the general procedure: Journal of Organic Chemistry, ${ }^{76}$ (14), 5867-5872;2011 Tor at solution of N-(2-((tert-butyldimethylsilyl)oxy)ethyl)prop-2-yn-1-amine (ref: Tetrahedron Letters, 52(46), 6185-6189; 2011) (1 eq.) in dry MeCN (2.0 M) is added tert-butyl.3-isocyanato-2,6-dioxopiperidine-1-carboxylate (1.1 eq .) at $0-5{ }^{\circ} \mathrm{C}$. The glass tube containing the reaction mixture: is: degassed and flushed with argon. After 5 min of stirring, silver trriflate ($(26 \mathrm{mg}$, (0.1 $\mathrm{mmol})$ is is added, and the reaction mixture is sealed and stirred for 2 h at $: 80^{\circ} \mathrm{C}$. Upon icompletion of the: reaction, MeCN is removed under reduced pressure. The crude product in lloaded onto a a silica gel column for chromatography to provide tert-butyl 3-(3-(2-((tert-butyldimethylsilyl)oxy)ethyl)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 3

tert-Butyl. 3-(3-(2-hydroxyethyl)-5-methyl-2-oxo-2,3-dihydro-1 H-imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate

Tetra-n-butylammonium fluoride (1.1 M in THF; 1.1 eq.) is added to a : solution of tertbutyl 3-(3-(2-((tert-butyldimethylsilyl)oxy)ethyl)-5-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate (1.0 eq.) in THF (2.0 M) that has Ibeen cooled to $55^{\circ} \mathrm{C}$. The resultant mixture is stirred at ambient temperature for 1 hour. The reaction mixture is diluted with a_{\imath} saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. The sorganic phase; is, recovered, washed with water, dried over magnesium sulphate and ievaporated fto jprovide
tert-butyl
3-(3-(2-hydroxyethyl)-5-methyl-2-oxo-2,3-dihydro-1
H-imidazol-1-yl)-2,6-
dioxopiperidine-1-carboxylate

tert-Butyl 3-(4-benzyl-2-oxopiperazin-1-yl)-2,6-dioxopiperidine-1-carboxylate
Dry K2CO3 (1.0 eq.) and 4-phenethylpiperazin-2-one (1.0 eq.) are added to $\mathfrak{t a}$ stirred solution of (1.0 eq.) tert-butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate jin]DMF (0.2 M) sat rrt. After -2.5 h , water is added and the suspension is extracted with AcOEt. 'The organic phase iis dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue is chromatographed on silica gel ($\mathrm{AcOEt} / \mathrm{n}$-heptane $1 / 1$) to provide:tert-butyl 3-(4-benzyl-2-oxopiperazin-1-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 2

tert-Butyl 2,6-dioxo-3-(2-oxopiperazin-1-yl)piperidine-1-carboxylate
(Example procedure: Journal of Organic Chemistry, 70(5), 1897-1900;2005).Aımixtureof tert-butyl 3-(4-benzyl-2-oxopiperazin-1-yl)-2,6-dioxopiperidine-1-carboxylate I(1.0 eq.), $10 \% \mathrm{lPd}$ - C catalyst $(0.1 \mathrm{eq} \mathrm{Pd})$ in $\mathrm{EtOH}(0.2 \mathrm{M})$ under H 2 is stirred at room temperature and atmospheric pressure: until the absorption of hydrogen ceased. After the catalyst iis filtered outthrough'Celite ${ }^{\circledR}$, the: filtrate: is evaporated to provide tert-butyl 2,6-dioxo-3-(2-oxopiperazin-1-yl)piperidine-1carboxylate.

STEP 3

tert-Butyl 3-(4-(2-bromoacetyl)-2-oxopiperazin-1-yl)-2,6-dioxopiperidine-1-carboxylate
(Example procedure: Tetrahedron, 63(2), 337-346; 2007) To a stirred solution of bromoacetyl bromide (1.0 eq.) in DCM (0.2 M) at $-10{ }^{\circ} \mathrm{C}$ is added itert-butyl 2,6 -dioxo-3-(2-oxopiperazin-1-yl)piperidine-1-carboxylate (1 eq.). The reaction is stirred,overnightand (quenched with water. The: aqueous layer is extracted with DCM and the organics are dried ($(\mathrm{MgSO} 4)$ and concentrated in vacuo to afford tert-butyl 3-(4-(2-bromoacetyl)-2-oxopiperazin-1-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 1

1. $\mathrm{MeNO}_{2}, \mathrm{TBAF}$,

THF, PhMe
2. $\mathrm{Zn}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{EHOH}$

4-(3-(Benzyloxy)phenyl)pyrrolidin-2-one:
(Angewandte :Chemie, International Edition, 54(2), 678-682; 2015): A solution of imethyl (E)-3-(3-(benzyloxy)phenyl)acrylate (1 eq.), nitromethane (10 eq.) and tetrabutylammonium ($(1.2$ eq.) $\left(1 \mathrm{M}\right.$ in THF) in toluene (12.3 mL) is stirred at $50^{\circ} \mathrm{C}$ for 8 h . This mixture iis poured into a 1 M solution of $\mathrm{HCl}(20 \mathrm{~mL})$ and the phases are separated. The aqueous llayer iis extracted with toluene: $(2 \times 15 \mathrm{~mL})$. The combined organic layers are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4} .$. 'The organic llayers are concentrated and the product is purified by flash chromatography (hexane/EtOAc $88: 2$) topprovide methyl 3-(3-(benzyloxy)phenyl)-4-nitrobutanoate.
(Organic Letters, 14(20), 5180-5183; 2012): (1 eq.) methyl 3-(3-(benzyloxy)phenyl)-4nitrobutanoate is dissolved in $\mathrm{EtOH}(0.1 \mathrm{M})$ and diluted with $\mathrm{HCl}(10 \% / \mathrm{wt})$ 'via ssyringe at $\mathrm{Ha}^{\circ} 25^{\circ} \mathrm{C}$. Zn dust: ($10^{\prime} \mathrm{eq}$.) is added in small portions and the reaction mixture is stirred at $.25^{\circ} \mathrm{C}$ oovernight. When the: reaction is complete, $\mathrm{Na} 2 \mathrm{CO} 3(\mathrm{aq})$ is added to the mixture until the $\mathrm{pH}=9$. 'The reaction mixture :is, extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$), dried with MgSO_{4}, concentrated, and purified by silica gel column chromatography (hexane/EA/NEt ${ }_{3}=5 / 1 / 1$) tho provide 4-(3-(benzyloxy)phenyl)pyrrolidin-2-one.

STEP 2

tert-Butyl. 3-(4-(3-(benzyloxy)phenyl)-2-oxopyrrolidin-1-yl)-2,6-dioxopiperidine-1carboxylate:
(Following the procedure from Faming Zhuanli Shenqing, 103601717, 26 Feb '2014). JDry K2CO3: (1.0 eq.) and 4-(3-(benzyloxy)phenyl)pyrrolidin-2-one (1.0 eq.) are added to a ststirred solution of (1.0 eq.) tert-butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate in $] \mathrm{DMF}((0.2 \mathrm{M})$ at frt . After 2.5 h , water is added and the suspension is extracted with AcOEt. 'The organic phase iis (dried (Na 2 SO 4) and evaporated. The residue is chromatographed on silica gel ($\mathrm{AcOEt} / \mathrm{n}$-heptane $1 / 1$) to provide: tert-butyl 3-(4-(3-(benzyloxy)phenyl)-2-oxopyrrolidin-1-yl)-2,6-dioxopiperidine-1carboxylate.

STEP 3

tert-Butyl 3-(4-(3-hydroxyphenyl)-2-oxopyrrolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate:
(Example procedure: Journal of Organic Chemistry, 70(5), 1897-1900;:2005).Aımixtureof tert-butyl 3-(4-(3-(benzyloxy)phenyl)-2-oxopyrrolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1.0 l eq.), $10 \% \mathrm{Pd}-\mathrm{C}$ catalyst (0.1 eq Pd) in $\mathrm{EtOH}(0.2 \mathrm{M})$ under H_{2} is stirred at room temperature and atmospheric pressure until the absorption of hydrogen ceased. After the icatalystiis sfilteredout through Celite ${ }^{\circledR}$, the filtrate is evaporated to provide tert-butyl 3-(4-(3-hydroxyphenyl)-2-oxopyrrolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate.

$\mathrm{Pd} / \mathrm{C}, \mathrm{EtOH}, \mathrm{H}_{2}$

STEP 1

tert-Butyl 3-((4-(benzyloxy)-2-hydroxyphenyl)amino)-2,6-dioxopiperidine-1-carboxylate:
Dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 eq.) and 2-amino-4-(benzyloxy)phenol (1.0 eq.) are added to a a stirred solution of (1.0 eq.) tert-butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate iin IDMF ($(0.2 \mathrm{M})$ cat rit. After 2.5 h , water is added and the suspension is extracted with AcOEt. The organic phaseiisdried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue is chromatographed on silica :gel ($\mathrm{AcOEt} / \mathrm{n}$-heptane $1 / 1$) to provide: tert-butyl 3-((4-(benzyloxy)-2-hydroxyphenyl)amino)-2,6-dioxopiperidine-1carboxylate.

STEP 2

tert-Butyl
3-(6-(benzyloxy)-2-oxobenzo[d]oxazol-3(2H)-yl)-2,6-dioxopiperidine-1carboxylate:

To a solution of tert-butyl 3-((4-(benzyloxy)-2-hydroxyphenyl)amino)-2,6-dioxopiperidine-1-carboxylate in dry tetrahydrofuran (THF) (0.2M) is added 1,10carbonyldiimidazole (CDI) (3 eq.) at room temperature. The reaction is theated at reflux ffor approximately 4 hours and then the solvent is removed under reduced pressure. The resultant residue: is; diluted with water (20 mL) and ethyl acetate (20 mL) and the layers are separated. The organic: layer is washed with 2 N hydrochloric acid (15 mL), water (10 mL) and dried over anhydrous; sodium sulfate. The mixture is reduced and purified by silica gel scolumn chromatography using hexane: ethyl acetate as eluent to tert-butyl 3-(6-(benzyloxy)-2-oxobenzo[d]oxazol-3(2H)-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 3

tert-Butyl 3-(6-hydroxy-2-oxobenzo[d] oxazol-3(2H)-yl)-2,6-dioxopiperidine-1-carboxylate:
A mixture of tert-butyl 3-(6-(benzyloxy)-2-oxobenzo[d]oxazol-3(2H)-yl)-2,6-dioxopiperidine-1-carboxylate (1.0 eq.), $10 \% \mathrm{Pd}-\mathrm{C}$ catalyst (0.1 eq Pd) in $\mathrm{EtOH}(0.2 \mathrm{M}$) underlH2

1. $\mathrm{SOCl}_{2}, \mathrm{MeOH}$
2. $\mathrm{NaEH}_{4}, \mathrm{EtOH}$
3. TBSCl , imid, DCM

$\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, reflux

 is; stirred at room temperature and atmospheric pressure until the absorption of lhydrogen iceased. After the: catalyst is filtered out through Celite ${ }^{\oplus}$, the filtrate is evaporated to provide itert-butyl:3-(6-hydroxy-2-oxobenzo[d]oxazol-3(2H)-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 1

Methyl 3-methyl-2-oxo-2,3-dihydro-1 $\quad H$-imidazole-4-carboxylate:
(Angewandte Chemie, International Edition, 51(28), 6870-6873, 'S6870/1-S6870/29; '2012) A. solid mixture : of ${ }^{\prime}(\pm)$-tartaric acid $16(100 \mathrm{~g}, 0.66 \mathrm{~mol}, 1.0$ equiv $)$ and N -methyl urea 17 (55.69 $\mathrm{g}, 0.73 \mathrm{~mol}, 1.1$ equiv) is added in 6 portions via scoopula (waiting $10-15 \mathrm{~min}$ lbefore addition of another portion) to a stirred solution of concentrated sulfuric acid (0.2 M) maintaining the temperature : below $45^{\circ} \mathrm{C}$ without external cooling. The mixture is then heated 1 to $80^{\circ} \mathrm{C}$ and stirred for 3 h at this temperature. The dark brown homogeneous reaction mixture is allowed to cool to $23^{\circ} \mathrm{C}$, poured onto ice, and the resulting solids are filtered to provide methyl .3-methyl-2-oxo-2,3-dihydro- 1 H -imidazole-4-carboxylate.

STEP 2

Methyl 3-methyl-2-oxo-2,3-dihydro-1 $\quad H$-imidazole-4-carboxylate:
Add dropwise: SOC12 (1 eq.) to a cooled solution of L-pyroglutamic acid (1 eq.) iin (dry $\mathrm{MeOH}^{-}(80 \mathrm{~mL})$ with magnetic stirring at room temperature for 2 hours. Concentrate the 1 mixture under vacuum to obtain methyl 3-methyl-2-oxo-2,3-dihydro-1 H-imidazole-4-carboxylate as a clear oil.

STEP 3

5-(Hydroxymethyl)-1-methyl-1,3-dihydro-2 $\quad H$-imidazol-2-one:
Methyl 3-methyl-2-oxo-2,3-dihydro-1 H-imidazole-4-carboxylate is dissolved inddry]EtOH $(0.2 ; \mathbf{M})$ and NaBH 4 (3.0 eq.) is added portionwise. The reaction mixture is stirred at room temperature for 2 hours. The mixture is acidified with concentrated HCl to pH 1 and concentrated under vacuum. The product is purified by flash chromatography ($15 \% \mathrm{MeOH}, \mathrm{CH} 2 \mathrm{Cl} 2)$ to tobtain 5-(hydroxymethyl)-1-methyl-1,3-dihydro-2 H -imidazol-2-one.

STEP 4
5-(((tert-Butyldimethylsilyl)oxy)methyl)-1-methyl-1,3-dihydro-2 $\quad H$-imidazol-2-one:
Tert-butyldimethylsilyl chloride (1.1 eq .) is added to a solution of 5 -(hydroxymethyl)-1-methyl-1,3-dihydro-2 H -imidazol-2-one (1.0 eq.) and imidazole (1.5 eq.) in $\mathrm{CH} 2 \mathrm{Cl} 2((0.2 \mathrm{IM})$. 'The reaction mixture is stirred at room temperature for 3 h , then 2 g of silica 9 gel is added and the volatiles are:removed in vacuo. The residue is purified by silica chromatography ($0-50 \% \mathrm{JEtOAc}:: \mathrm{Hex})$ to affordl 5-(((tert-butyldimethylsilyl)oxy)methyl)-1-methyl-1,3-dihydro-2 H-imidazol-2-one.

STEP 5

tert-Butyl. 3-(4-(((tert-butyldimethylsilyl)oxy)methyl)-3-methyl-2-oxo-2,3-dihydro-1 H-imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate

Dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 eq.) and 5-(((tert-butyldimethylsilyl)oxy)methyl)-1-methyl-1,3-dihydro2 H -imidazol-2-one : (1.0 eq.) are added to a stirred solution of (1.0 eq.) tert-butyl 3 -bromo-2,6-dioxopiperidine-1-carboxylate in DMF $(0.2 \mathrm{M})$ at rt . After 2.5 h , water is added and the ssuspension is; extracted with AcOEt. The organic phase is dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue iis chromatographed on silica gel (AcOEt/n-heptane 1/1) to provide tert-butyl 3-(4-(((tert-butyldimethylsilyl)oxy)methyl)-3-methyl-2-oxo-2,3-dihydro-1 H-imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 6

tert-Butyl
3-(4-(hydroxymethyl)-3-methyl-2-oxo-2,3-dihydro-1 H-imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate

Tetra-n-butylammonium fluoride (1.1 M in THF; 1.1 eq.) is added to a : solution of itertbutyl 3-(4-(((tert-butyldimethylsilyl)oxy)methyl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-

STEP 1 yl)-2,6-dioxopiperidine-1-carboxylate (1.0 eq.) in THF (2.0 M) that has lbeen cooled to $\cdot 5^{\circ} \mathrm{C}$. The resultant mixture is stirred at ambient temperature for 1 hour. The reactionmixture iis diluted with al saturated aqueous sodium bicarbonate solution and extracted with ethyl acetate. 'The organic phase: is recovered, washed with water, dried over magnesium sulphate and ievaporatedtto provide tert-butyl 3-(4-(hydroxymethyl)-3-methyl-2-oxo-2,3-dihydro-1H-imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate.

2-Amino-1-(4-(benzyloxy)phenyl)ethan-1-ol:
(Procedure from PCT Int. Appl., 2008087512, 24 Jul :2008) :2-Amino-1-(4benzyloxyphenyl)ethanol, potassium cyanide (1 eq.) and ammonium chloride ($(1$ eq.) are dissolved in water $(0.1 \mathrm{M})$ to which is added 4-benzyloxybenzaldehyde (1.0 eq .) followed lby diethyl rether (100 ml). The reaction mixture is stirred vigorously for 48 hours at room temperature before extracting; with ethyl acetate ($2 \times 200 \mathrm{ml}$). The combined organic layers are idried over anhydrous magnesium sulphate, filtered and concentrated in vacuo to afford the cyanohydrin iintermediate.

The:cyanohydrin is dissolved in dry THF (0.1 M) and borane-methylsulphidecomplex (2.0 eq.)) added. The reaction mixture is heated at reflux for 2 hours lbefore lbeing quenched with methanol (10 eq.). Water (100 eq.) was added followed by conc. $\mathrm{HCl}(40 \mathrm{ml}$) and the reaction mixture: is stirred for 2 hours until the exotherm subsides. The reaction mixture iis concentratediin vacuo, and the residue diluted with water. The aqueous solution is then lbasified lby addition of $\mathrm{NH}_{4} \mathrm{OH}$, and extracted with ethyl acetate ($3 \times 150 \mathrm{ml}$). The organic extracts are dried over anhydrous: magnesium sulphate, filtered and concentrated in vacuo to afford 2 -amino-1-(4-(benzyloxy)phenyl)ethan-1-ol.

STEP 2

5-(4-(Benzyloxy)phenyl)oxazolidin-2-one:
To a solution of 2-amino-1-(4-(benzyloxy)phenyl)ethan-1-ol in dry tetrahydrofuran(THF) $(0.2 \mathrm{M})$ is added 1,10 -carbonyldiimidazole (CDI) (3 eq.) at room temperature. 'The reaction is refluxed for approximately 4 hours and then the solvent is removed under reduced pressure. The resultant residue is diluted with water (20 mL) and ethyl acetate (20 mL) and the llayers are separated. The: organic layer is washed with 2 N hydrochloric acid $(15 \mathrm{~mL})$, water $((10 \mathrm{~mL})$ and dried over anhydrous sodium sulfate. The mixture is reduced and purified lby silica gel ccolumn chromatography using hexane: ethyl acetate as eluent to afford 5-(4-(benzyloxy)phenyl)oxazolidin-2-one.

STEP 3

tert-Butyl
3-(5-(4-(benzyloxy)phenyl)-2-oxooxazolidin-3-yl)-2,6-dioxopiperidine-1carboxylate:

Dry K2CO3 (1.0 eq.) and 5-(4-(benzyloxy)phenyl)oxazolidin-2-one (1.0 eq.) are added to al stirred solution of (1.0 eq.) tert-butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate iin IDMF $(0.2 \mathrm{M})$)at: rt. After 2.5 h , water is added and the suspension is extracted 'with AcOEt. 'The organic phase: is; dried (Na2SO4) and evaporated. The residue is chromatographed on silica gel ($\mathrm{AcOEt} / \mathrm{n}-$ heptane: 1/1) to provide tert-butyl 3-(5-(4-(benzyloxy)phenyl)-2-oxooxazolidin-3-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 4

tert-Butyl 3-(5-(4-hydroxyphenyl)-2-oxooxazolidin-3-yl)-2,6-dioxopiperidine-1-carboxylate:
A mixture: of 5-(4-(benzyloxy)phenyl)oxazolidin-2-one (1.0 eq.), 10\% JPd-C catalyst ($(0.1$ $\left.\mathrm{eq}_{[} \mathrm{Pd}\right)$ in $\mathrm{EtOH}(0.2 \mathrm{M})$ under H 2 is stirred at room temperature and atmospheric pressure until the absorption of hydrogen ceased. After the catalyst is filtered out through Celite ${ }^{\oplus}$, the ffiltrate iis evaporated to provide tert-butyl 3-(5-(4-hydroxyphenyl)-2-oxooxazolidin-3-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 1

2-(4-(Benzyloxy)phenyl)-2-(methylamino)acetonitrile:
(Example: procedure: PCT Int. Appl., 2008046758, 24 Apr 2008) 'To a asolution of 4 (benzyloxy)benzaldehyde (1 eq.) in 50 mL methanol is slowly added at rroom temperature a solution of potassium cyanide (2 eq.$)$ and methylamine. HCl (1.5 eq.$)$ in water (50 mL). The reaction mixture is heated at $40^{\circ} \mathrm{C}$ for 2 h and then at room temperature for 18 h and ${ }^{\prime}$ monitored by TLC. After completion, the reaction mixture is extracted with $3 \times 100 \mathrm{~mL}$ dichloromethane. The organic:layer is, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to afford the desired 2-(4-(benzyloxy)phenyl)-2-(methylamino)acetonitrile which is used in the next step without further purification.

STEP 2

5-(4-(Benzyloxy)phenyl)-1-methylimidazolidin-2-one:
A solution of 2-(4-(benzyloxy)phenyl)-2-(methylamino)acetonitrile (1.0 equiv.) in THF (0.4 M) is added to a suspension of LiAlH4 (6.0 equiv.) in THF $(0.4 \mathrm{M})$ at $10{ }^{\circ} \mathrm{C}$. The reaction iis heated at reflux overnight. The reaction is quenched with $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ and passed through a pad of ${ }^{\text {Celite }}{ }^{\circledR \text {; }}$ which is further eluted with ether. The filtrated is concentrated to provide 1-(4-(benzyloxy)phenyl)- N^{\top}-methylethane-1,2-diamine.

STEP 3
To a solution of 1-(4-(benzyloxy)phenyl)- N-methylethane-1,2-diamine iin (dry tetrahydrofuran. (THF) (0.2 M) is added 1,10-carbonyldiimidazole (CDI) (3 eq.) at room temperature. The reaction is refluxed for approximately 4 hours and then the solvent iis removed under reduced pressure. The resultant residue is diluted with water (20 mL) and rethyl acetate ($(20$ $\mathrm{mL})$ and the:layers are separated. The organic layer is washed with 2 N hydrochloric acid $((15 \mathrm{~mL})$, water $(10 \mathrm{~mL})$ and dried over anhydrous sodium sulfate. The mixture is reduced and purified by silica gel column chromatography using hexane: ethyl acetate as eluent to provide 5-(4-(benzyloxy)phenyl)-1-methylimidazolidin-2-one.

tert-Butyl 3-(4-(4-(benzyloxy)phenyl)-3-methyl-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate:

Dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 eq.) and 5-(4-(benzyloxy)phenyl)-1-methylimidazolidin-2-one ($(1.0$ eq. $)$ are: added to a stirred solution of (1.0 eq.) tert-butyl 3-bromo-2,6-dioxopiperid ine-1-carboxylate inl DMF $(0.2 \mathrm{M})$ at rt . After 2.5 h , water is added and the suspension is extracted with.AcOEt. The organic: phase is. dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue is chromatographed on ssilica $\lfloor\mathrm{gel}$ (AcOEt/n-heptane 1/1) to provide tert-butyl 3-(4-(4-(benzyloxy)phenyl)-3-methyl-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 5

tert-Butyl. 3-(4-(4-hydroxyphenyl)-3-methyl-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1carboxylate:

A mixture of tert-butyl 3-(4-(4-(benzyloxy)phenyl)-3-methyl-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1.0 eq.) and 10% Pd-C catalyst (0.1 eq Pd) in $] \mathrm{EtOH}((0.2 \mathrm{M})$ under H 2 is stirred at room temperature and atmospheric pressure until the absorption oflhydrogen ceases. After the: catalyst is filtered out through Celite ${ }^{\oplus}$, the filtrate is evaporated to pprovide itertbutyl 3-(4-(4-hydroxyphenyl)-3-methyl-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1carboxylate.

STEP 1

6-(Benzyloxy)benzo[d]oxazol-2(3 H)-one
Benzyl bromide (1 eq .) is added to a mixture 6-hydroxybenzo[d] oxazol-2(3 H)-one ($(1.0$ eq.) in ${ }^{\text {D }}$ DMF $(0.2 \mathrm{M})$ at room temperature and the reaction mixture is stirred for 2 hhuntilcompletion of reaction. (TLC). The reaction mixture is extracted with 50 mL ethyl acetate. The extract iis washed with 50 mL H2O, dried, and evaporated. The crude product is purified lby ccolumn chromatography over silica gel providing 6-(benzyloxy)benzo[d]oxazol-2(3 H)-one.

STEP 2

tert-Butyl 3-(6-(benzyloxy)-2-oxobenzo[d]oxazol-3(2H)-yl)-2,6-dioxopiperidine-1carboxylate :

Dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 eq.) and 6-(benzyloxy)benzo[d]oxazol-2(3H)-one (1.0 eq.) are addedtto a stirredl solution of (1.0 eq.) tert-butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate iinIDMF ($(0.2 \mathrm{M})$ at.rt. After 2.5 h , water is added and the suspension is extracted with AcOEt. The organic phaseiis dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue is chromatographed on silica $\mathrm{gel}(\mathrm{AcOEt} / \mathrm{n}$-heptane 1/1) to provide: tert-butyl 3-(6-(benzyloxy)-2-oxobenzo[d]oxazol-3(2H)-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 3

tert-Butyl 3-(6-hydroxy-2-oxobenzo[d]oxazol-3(2H)-yl)-2,6-dioxopiperidine-1-carboxylate:
A mixture of tert-butyl 3-(6-(benzyloxy)-2-oxobenzo[d]oxazol-3(2H)-yl)-2,6-dioxopiperidine-1-carboxylate (1.0 eq.) and $10 \% \mathrm{Pd}-\mathrm{C}$ catalyst $\left.(0.1 \mathrm{eq} \cdot \mathrm{Pd}) \mathrm{in}] \mathrm{EtOH}_{(}(0.2] \mathrm{M}\right)$ under H 2 issstirred at room temperature and atmospheric pressure until the absorption ofllhydrogenceases. After the: catalyst is filtered out through Celite ${ }^{\oplus}$, the filtrate is evaporated to provide itert-butyl:3-(6-hydroxy-2-oxobenzo[d]oxazol-3(2H)-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 1

6-(Benzyloxy)indolin-2-one:
(Tetrahedron, 65(25), 4894-4903; 2009): Benzyl bromide (1 eq .) is added to a a mixture 6 6-hydroxyindolin-2-one (1.0 eq.) in DMF (0.2 M) at room temperature and the reaction mixture is stirred for 2 h until completion of reaction (TLC). The reaction mixture is extracted with 50 mL ethyl acetate. The extract is washed with $50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, dried, and evaporated. The crude productiis purified by column chromatography over silica gel providing 6-(benzyloxy)indolin-2-one.

STEP 2

tert-Butyl 3-(5-(benzyloxy)-2-oxoindolin-1-yl)-2,6-dioxopiperidine-1-carboxylate:
Dry K2CO3 (1.0 eq.) and 6-(benzyloxy)indolin-2-one (1.0 eq.) are added to a stirred

STEP 3

tert-Butyl 3-(5-hydroxy-2-oxoindolin-1-yl)-2,6-dioxopiperidine-1-carboxylate:
A mixture of tert-butyl 3-(5-(benzyloxy)-2-oxoindolin-1-yl)-2,6-dioxopiperidine-1carboxylate: (1.0 eq.) and $10 \% \mathrm{Pd}-\mathrm{C}$ catalyst $(0.1 \mathrm{eq} \mathrm{Pd})$ in $\mathrm{EtOH}(0.2 \mathrm{M})$ under H_{2} iis stirred at room temperature : and atmospheric pressure until the absorption of hydrogen ceases. After the solution of (1.0 eq.) tert-butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate iin IDMF ($(0.2 \mathrm{M})$ cat irt. After 2.5 h , water is added and the suspension is extracted with AcOEt. The organic phase iis dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue is chromatographed on silica $\mathrm{gel}(\mathrm{AcOEt} / \mathrm{n}$-heptane $1 / 1)$ tto provide :tert-butyl 3-(5-(benzyloxy)-2-oxoindolin-1-yl)-2,6-dioxopiperidine-1-carboxylate. catalyst isifiltered out through Celite ${ }^{\circledR}$, the filtrate is evaporated to provide itert-butyl.3-(5-hydroxy-2-oxoindolin-1-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 1

6-(Benzyloxy)-1-methyl-1,3-dihydro-2 H-benzo[d]imidazol-2-one:
Following, the example procedure: Journal of Medicinal Chemistry, 52(18), 5703-5711, 2009. To, a solution containing 4-(benzyloxy)-2-fluoro-1-nitrobenzene (1 eq.) in $]$ DMF $(0.2 \mathrm{M})$ is added methylamine (5 eq.) at room temperature, and the reaction mixture is stirred at rroom temperature: under nitrogen. After 18 h , the reaction mixture is poured jinto a saturated aqueous solution of sodium chloride and extracted with ethyl acetate. The organic llayer is dried oover anhydrous; sodium sulfate, concentrated in vacuo, and the residue is purified via flash column chromatography (silica, 1% ethyl acetate in hexane) to provide 5-(benzyloxy)- N-methyl-2nitroaniline.

STEP 2

A stirred mixture of 5 -(benzyloxy)- N-methyl-2-nitroaniline (1 eq.) and iiron powder ((5 feq.) in 50%, ethanol:water $(0.1 \mathrm{M})$, is heated to $100^{\circ} \mathrm{C}$ and concentrated hydrochloric acid ($(10$ req. $)$ iis added . After stirring at $100^{\circ} \mathrm{C}$ for 1 hour, the mixture is filtered. The filtrate iis concentrated under reduced pressure to provide crude 5-(benzyloxy)- N^{1}-methylbenzene-1,2-diamine.

STEP 3

A mixture of 5 -(benzyloxy)- N^{n}-methylbenzene-1,2-diamine (1.0 req.) and $] \mathrm{N}, \mathrm{N}^{\prime}$ carbonyldiimidazole (1.5 eq.) in tetrahydrofuran $(0.2 \mathrm{M})$ is stirred at $65^{\circ} \mathrm{C}$ for 1 hr . The imixture is: diluted with water, and extracted with ethyl acetate. The extract is washed with water, anddried over anhydrous sodium sulfate. The solvent is evaporated under reduced pressure and the oobtained residue: is purified by flash chromatography (EtOAc/hexanes) to provide 6-(benzyloxy)-1-methyl-1,3-dihydro-2 H -benzo[d]imidazol-2-one.

STEP 4

tert-Butyl
3-(5-(benzyloxy)-3-methyl-2-oxo-2,3-dihydro-1
H-benzo[d]imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate:

Dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 eq.) and 6-(benzyloxy)-1-methyl-1,3-dihydro-2 H-benzo[d]imidazol-2one:(1.0 eq.) are added to a stirred solution of (1.0 eq.) tert-butyl 3-bromo-2,6-dioxopiperid ine-1carboxylate: in DMF (0.2 M) at rt. After 2.5 h , water is added and the ;suspension jis extracted with AcOEt. The organic phase is dried (Na2SO4) and evaporated. The residue is ichromatographed on silica gel (AcOEt/n-heptane 1/1) to provide tert-butyl 3-(5-(benzyloxy)-3-methyl-2-oxo-2,3-dihydro- $1 H$-benzo $[d]$ imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate.

STEP 5

tert-Butyl. 3-(5-hydroxy-3-methyl-2-oxo-2,3-dihydro-1 H-benzo[d]imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate:
 1-yl)-2,6-dioxopiperidine-1-carboxylate.

1. 1-chloro-2-isocyanatoethane DCM, benzo[d]imidazol-1-yl)-2,6-dioxopiperidine-1-carboxylate (1.0 eq.) and $10 \% \mathrm{Pd}$-Cicatalyst($(0.1 \mathrm{eq}$ Pd) in $\mathrm{EtOH}(0.2 \mathrm{M})$ under H_{2} is stirred at room temperature and atmospheric pressure until the absorption of hydrogen ceases. After the catalyst is filtered out through Celite $^{\oplus}$, the ffiltrate iis evaporated to provide tert-butyl 3-(5-hydroxy-3-methyl-2-oxo-2,3-dihydro-1 H -benzo[d]imidazol-

STEP 1

1-(4-(Benzyloxy)phenyl)imidazolidin-2-one:

3-chloroethyllisocyanate (1.2 eq.) is added dropwise to a cold solution (ice lbath) of the 4 (benzyloxy)aniline (1.0 eq ,) in dry methylene chloride (15 mL per g of aniline). The iice lbath iis then removed and the reaction mixture is stirred at room temperature for 24 lh . After icompletion of ${ }^{\text {" }}$ the: reaction, the solvent is evaporated under reduced pressure to afford 1-(4-(benzyloxy)phenyl)-3-(2-chloroethyl)urea.

STEP 2

To a solution of 1-(4-(benzyloxy)phenyl)-3-(2-chloroethyl)ureain 'THFI $(0.05 \mathrm{M})$ at $\left(0^{6}{ }^{\circ} \mathrm{Ciis}\right.$ added NaH ($1.2 \mathrm{eq}, 60 \mathrm{wt} \%$ in mineral oil). The reaction is allowed to warm to roomttemperature, concentrated, and purified by flash chromatography to provide 1-(4-(benzyloxy)phenyl)imidazolidin-2-one.

STEP 3

tert-Butyl
3-(3-(4-(benzyloxy)phenyl)-2-oxoimidazolidin-1-yl)-2-oxopiperidine-1carboxylate:

Dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 eq.) and 1-(4-(benzyloxy)phenyl)imidazolidin-2-one (1.0 eq.) are added to, a_{l} stirred solution of (1.0 eq.) tert-butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate in 〕DMF $(0.2 \mathrm{M})$ at atr. After 2.5 h , water is added and the suspension is extracted with AcOEt. 'The organic phase: is; dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue is chromatographed on silica ${ }_{\text {gel }}((\mathrm{AcOEt} / \mathrm{n}-$
heptane: 1/1) to provide tert-butyl 3-(3-(4-(benzyloxy)phenyl)-2-oxoimidazolidin-1-yl)-2-oxopiperidine-1-carboxylate.

STEP 4

STEP 1

1-(4-Bromophenyl)imidazolidin-2-one:

1. 1-chloro-2-isocyanatoethane

DCM, rt
2. $\mathrm{NaH}, \mathrm{THF}, \mathrm{rt}$

Chloro-2-isocyanatoethane (1.2 eq.) is added dropwise to a cold solution (ice bath) (of $4-$ (bromo)aniline (1.0 eq ,) in dry methylene chloride (15 mL per g of aniline). 'The iice lbath iis then removed and the reaction mixture is stirred at room temperature for 24 h . Aftercompletion of the reaction, the solvent is evaporated under reduced pressure to afford 1-(4-bromophenyl)-3-(2chloroethyl)urea.

STEP 2

To a solution of 1-(4-bromophenyl)-3-(2-chloroethyl) in THF $(0.05 \mathrm{M})$ at $10{ }^{6}{ }^{\circ} \mathrm{C}$ is added NaH ($1.2 \mathrm{eq}, 60 \mathrm{wt} \%$ in mineral oil). The reaction is allowed to warm to room ttemperature, concentrated, and purified by flash chromatography to provide 1-(4-(bromophenyl)imidazolidin- 2-one.

STEP 3

tert-Butyl 3-(3-(4-bromophenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate:

Dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.0 eq.) and 1-(4-(bromo)phenyl)imidazolidin-2-one (1.0 req.) are added to a a stirredl solution of (1.0 eq.) tert-butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate innIDMF((0.2M) at:rt. After 2.5 h , water is added and the suspension is extracted with AcOEt. 'The organic phaseiis dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue is chromatographed on silica $\mathrm{gel}(\mathrm{AcOEt} / \mathrm{n}$-heptane 1/1) to to provide: tert-butyl 3-(3-(4-bromophenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1carboxylate.
tert-Butyl 3-((2,6-dioxopiperidin-3-yl)amino)-6-nitro-1H-indazole-1-car boxyllate

Step, 1:
Following, a general procedure from patent application WO2010007944: 3-aminopiperidine-2,6-dione (1 equiv.), tert-butyl 3-iodo-6-nitro-1H-indazole-1-carboxylate ((1 equiv.) and cesium carbonate (2 equiv.) are mixed with dioxane (0.2 M). The mixture is purged with N_{2} for 10 min . Palladium acetate (0.1 equiv.) and XANTPHOS (0.1 equiv.) are added to the
mixture and the mixture is heated at $90^{\circ} \mathrm{C}$ for 18 hours. The reaction mixture iis scooledtóambient temperature: and concentrated under vacuum. The residue is diluted with water and extracted with ethyl acetate:(thrice). The organic layers are combined, dried over sodium sulfate andiconcentrated under vacuum. The residue is purified by flash chromatography on a silica gel icolumnttoprovide tert-butyl 3-((2,6-dioxopiperidin-3-yl)amino)-6-nitro-1H-indazole-1-carboxylate.

Step 12: 3-((6-Nitro-1H-indazol-3-yl)amino)piperidine-2,6-dione
tert-Butyl 3-((2,6-dioxopiperidin-3-yl)amino)-6-nitro-1H-indazole-1-carboxylate ((1 equiv.) is: dissolved in dichloromethane (0.2 M). Trifluoroacetic acid (50 equiv.) iis added to this solution and the reaction is stirred at RT for 2 h . After the completion of the reaction, the volatiles are: removed by rotary evaporation to provide 3-((6-nitro-1H-indazol-3-yl)amino)piperidine-2,6dione.

Step 13: 3-((6-Amino-1H-indazol-3-yl)amino)piperidine-2,6-dione
3-((6-nNtro-1H-indazol-3-yl)amino)piperidine-2,6-dione is dissolved in, andl palladium on charcoal (10%) is added. The reaction vessel is placed under a lhydrogen atmosphere: and stirred for 16 hours. The reaction mixture is filtered through ${ }^{\text {Celite }}{ }^{\oplus}$ and evaporated to afford 3-((6-amino-1H-indazol-3-yl)amino)piperidine-2,6-dione.

3-((6-Amino-1H-indazol-3-yl)(methyl)amino)piperidine-2,6-dione

3-((6-amino-1H-indazol-3-yl)(methyl)amino)piperidine-2,6-dione is obtained iin affashion similar as 3-((6-amino-1H-indazol-3-yl)amino)piperidine-2,6-dione, using 3-(methylamino)piperidine-2,6-dione as a starting material instead of 3-aminopiperidine-2,6-dione.

3-((5-amino-1H-indazol-3-yl)amino)piperidine-2,6-dione is obtained in a fashion ssimilar as: 3-((6-amino-1H-indazol-3-yl)amino)piperidine-2,6-dione, using tert-butyl 3-iodo-5-nitro-1H-indazole-1-carboxylate as a starting material instead of tert-butyl 3-iodo-6-nitro-1H-indazole-1carboxylate, and 3-(methylamino)piperidine-2,6-dione as a starting material iinstead of 3 - aminopiperidine-2,6-dione.

Step 1: Methyl 1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyridine-3-carboxylate (Following a general procedure from patent application WO2012177893): A solution of methyl coumalate: (1 equiv.) in $\mathrm{MeOH}(0.2 \mathrm{M}$) is treated with 3-aminopiperidine-2,6-dione ($(1.25$ equiv.) and TEA (1.5 equiv.). The reaction is stirred at $23^{\circ} \mathrm{C}$ under nitrogen. After 1 h , therreaction is; concentrated and purified by silica gel chromatography to afford methyl 1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyridine-3-carboxylate.

Step 2: 1-(2,6-Dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyridine-3-carboxylic acid
A solution of methyl 1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyridine-3carboxylate (1 equiv.) in 1,4-dioxane and MeOH ($3: 1$ ratio, respectively) is treated with aqueous sodium hydroxide, 5.0 M (1.5 equiv.). The reaction is stirred at $23^{\circ} \mathrm{C}$. After 20 h , the reaction is neutralized to $\mathrm{pH}=6.0$ with 2 N HCl , and concentrated in vacuo. The residue is ;azeotroped , with toluene: ($3 \times 10 \mathrm{~mL}$), suspended in a $1: 1 \mathrm{MeOH}: \mathrm{DCM}$ solution, and the white NaCl residue is removed by filtration. The filtrate is concentrated affording 1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyridine-3-carboxylic acid.

3-(8-Amino-1-oxoisoquinolin-2(1H)-yl)piperidine-2,6-dione.

1) MeOH, reflux
2) $\mathrm{E}_{3} \mathrm{M}_{\mathrm{M}}$, rethux

Step 1: 3-(8-Nitro-1-oxoisoquinolin-2(1H)-yl)piperidine-2,6-dione
(Following a general procedure from patent WO2012177893): 5-Nitro-isochromen-1-one

3-(5-Amino-1-oxoisoquinolin-2(1H)-yl)piperidine-2,6-dione

 (1 equiv.) and 3-aminopiperidine-2,6-dione (1 equiv.) are heated at reflux in methanol((0.2 lM)ffor 1 hour. Triethylamine (2 equiv.) is added to the mixture and the reaction mixture iis theatedatreflux overnight. The: volatiles are removed in vacuo and the residue is purified lby flash column chromatography (40 g of silica gel, $0-50 \% \mathrm{EtOAc} / \mathrm{Hexane}$) to afford 2-(1,3-dihydroxypropan-2-yl)-5-nitroisoquinolin-1 (2H)-one.

Step 2: 3-(8-Amino-1-oxoisoquinolin-2(1H)-yl)piperidine-2,6-dione
2-(1,3-dihydroxypropan-2-yl)-5-nitroisoquinolin-1 (2H)-one (1.0 equiv.) is stirred with
 (balloon),over 1 hour at ambient temperature. The catalyst is filtered and the filtratejis concentrated to, dryness to, afford 3-(8-amino-1-oxoisoquinolin-2(1H)-yl)piperidine-2,6-dione.

Step 1: 3-(5-Nitro-1-oxoisoquinolin-2(1H)-yl)piperidine-2,6-dione
(Following a general procedure from patent WO2008112205): 5-Nitro-1H-isochromen-1one: (1.0 equiv.), 3-aminopiperidine-2,6-dione (1.0 equiv.) and 3-aminopiperidine-2,6-dione ((1.2 equiv.) are: stirred with trimethylamine (3.5 equiv.) in $\mathrm{MeOH}(0.2 \mathrm{M})$ at reflux for .2 lhours. After cooling, the precipitated product is filtered and collected to afford 3-(5-nitro-1-oxoisoquinolin-2(1H)-yl)piperidine-2,6-dione.

Step 2: 3-(5-Amino-1-oxoisoquinolin-2(1H)-yl)piperidine-2,6-dione
3-(5-nitro-1-oxoisoquinolin-2(1H)-yl)piperidine-2,6-dione(1.0 equiv.) is stirred with palladium 10% wt. on calcium carbonate (0.1 equiv.) in methanol $\stackrel{(0.2 \mathrm{l} M) \text { under lhydrogen }}{ }$ (balloon)'over 1 hour at ambient temperature. The catalyst is filtered and the filtrateiis concentrated to, dryness: to, afford 3-(5-amino-1-oxoisoquinolin-2(1H)-yl)piperidine-2,6-dione.

3-(4-Hydroxy-6-methyl-2-oxopyridin-1(2H)-yl)piperidine-2,6-dione

(Following a general procedure from patent application WO2009074812.): A :mixture of 6-methyl-4-hydroxy pyranone (1.0 eq) and primary amine (1.20 eq) in water (5 times dilution by weight) is heated at $80^{\circ} \mathrm{C}$ for 16 h . The precipitated solid is filtered, washed with ether and dried under vacuum to obtain the desired 3-(4-hydroxy-6-methyl-2-oxopyridin-1(2H)-yl)piperidine-2,6dione.

Step \quad 1: Methyl 1-(1-(tert-butoxycarbonyl)-2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxylate. tert-Butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate (1.0 requiv.) and methyl 6-oxo-1,6-dihydropyrimidine-4-carboxylate (1.0 equiv.) are mixed in DMF (0.2 M) and icesium icarbonateiis addedl (2.0' equiv.). The reaction mixture is stirred at $60^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture iis partitioned between brine and ethyl acetate. The organic layer is dried with :sodium sulfate,ffiltered andl evaporated under reduced pressure. The crude residue is purified lby silica $\mathfrak{g e l}$ (column chromatography to afford methyl 1-(1-(tert-butoxycarbonyl)-2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxylate.

Step ,2: 1-(1-(tert-Butoxycarbonyl)-2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyrimidine-4carboxylic :acid

Methyl 1-(1-(tert-butoxycarbonyl)-2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxylate is dissolved in $\mathrm{THF} / \mathrm{MeOH}(1 / 1,10.2 \mathrm{M})$ and sodium lhydroxide is; added to, the reaction mixture and stirred. After 20 h , the reaction is neutralized to $\mathrm{pH}=6.0$, with 2; NHCl , and concentrated in vacuo. The residue is azeotroped with toluene ($3 \times \mathrm{x} 10 \mathrm{~mL}$), suspended $\mathrm{in}_{\mid} \mathrm{a}_{1} 1: 1 \mathrm{MeOH}: D C M$ solution and the white sodium chloride residue is removed blby filtration. The filtrate: is: concentrated, affording 1-(1-(tert-butoxycarbonyl)-2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxylic acid.

Step 3: 1-(2,6-Dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxylic acid
1-(1-(tert-butoxycarbonyl)-2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyrimidine-4carboxylic acid is. dissolved in dichloromethane (0.2 M) and TFA (50 equiv.) is added. Therreaction mixture: is: stirred for 2 hours and then evaporated in vacuo to afford 1-(2,6-dioxopiperidin-3-yl)- 6-oxo-1,6-dihydropyrimidine-4-carboxylic acid.
tert-Butyl 3-(7-br omo-3-oxoisoquinolin-2(3H)-yl)-2,6-dioxopiper idine-1-carboxylate

Step 1:
(Following procedure from patent application WO2004014378): tert-Butyl 3-bromo-2,6-dioxopiperidine-1-carboxylate (1.0 equiv.) and 7 -bromoisoquinolin- $3(2 \mathrm{H})$-one (1.0 equiv.) are mixed in DMF (0.2 M), and cesium carbonate is added (2.0 equiv.). The reaction_mixture iis stirred at: $60{ }^{\circ} \mathrm{C}$ for 16 hours. The reaction mixture is partitioned between brine and ethyl acetate. The organic: layer is dried with sodium sulfate, filtered and evaporated under reduced pressureftoafford tert-butyl 3-(7-bromo-3-oxoisoquinolin-2(3H)-yl)-2,6-dioxopiperidine-1-carboxylate.

1) benzophenone imine

Step. 1:
A reaction vessel is charged with tert-butyl 3-(7-bromo-3-oxoisoquinolin-2(3H)-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.), benzophenone imine (1.2 equiv.), tris(dibenzylideneacetone)dipalladium(0) (1 mol\%), BINAP (3 mol\%) ;and sodium tert-butoxide (2, equiv.) and purged by cycling between nitrogen and vacuum 3 times. Toluene is added and the reaction is, heated at $80^{\circ} \mathrm{C}$ for 18 hours. Ethyl acetate is added and the solids separatediby ffiltration
through a plug; of Celite ${ }^{\oplus}$. The filtrate is concentrated and the residue iis ppurified lby chromatography to provide tert-butyl 3-(7-((diphenylmethylene)amino)-3-oxoisoquinolin-2(3H)-yl)-2,6-dioxopiperidine-1-carboxylate.

Step 12 :
A reaction vessel is charged with tert-butyl 3-(7-((diphenylmethylene)amino)-3-oxoisoquinolin-2(3H)-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.) and dissolved iin 1 MeOH . Hydroxylamine hydrochloride (1.8 equiv.) and sodium acetate (2.4 equiv.) are added and the reaction mixed at ambient temperature for 1 hour. The reaction is quenched lby addition of $(0.1 \mathrm{M}$ aq. NaOH solution and the resultant mixture extracted with ethyl acetate. The icombined organic layer is: washed with brine, dried over sodium sulfate, filtered, and concentrated. The crruderresidue is; purified by silica gel chromatography to provide tert-butyl 3-(7-amino-3-oxoisoquinolin-2(3H)-yl)-2,6-dioxopiperidine-1-carboxylate. (PCT Int. Appl., 2015002230, 08.Jan 2015)

A flame-dried reaction vessel is charged with tert-butyl 3-(7-bromo-3-oxoisoquinolin$2(3 \mathrm{H})$-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.) and the atmosphere is cycled between nitrogen and vacuum three times. Ether is added and the solution is cooled to $-78{ }^{\circ} \mathrm{C}$. tertButyllithium (2 equiv.) is added dropwise and the reaction is mixed for 15 min thencarbondioxide gas; is; bubbled through the solution for 15 min . The reaction is warmed to ambient temperature allowing; excess, carbon dioxide gas to slowly evolve from solution. The reaction is (quenched with 1 M aq. NaOH solution and washed with ether (2x). The pH of the aqueous llayer is adjusted to 3 with hydrochloric acid (1 M aq .) and extracted with ethyl acetate (3 x). The combinedorganicllayer is; dried over sodium sulfate and concentrated to dryness with toluene (3x) to jprovide 4 -(1-(tert-butoxycarbonyl)-2,6-dioxopiperidin-3-yl)benzoic acid.

N -(2,6-Dioxo-piperidin-3-yl)-benzene sulfonamide

To a stirred solution of 3 -amino-piperidine-2,6-dione hydrochloride $1(100 \mathrm{mg}, ~(0.608 \mathrm{mmol}$, 1 equiv.) in DCM (5 mL) are added triethylamine ($0.25 \mathrm{~mL}, 1.823 \mathrm{mmol}, .3$ requiv.) and Benzenesulfonyl chloride ($118.03 \mathrm{mg}, 0.668 \mathrm{mmol}, 1.1$ equiv.) sequentially at $10^{\circ}{ }^{\circ} \mathrm{C}$. The resulting mixture:is stirred at the same temperature for 4 hours. The reaction mixture iis then iquenched with ice-water and extracted with EtOAc. The combined organics are washed with an aqueous ssaturated NaHCO 3 solution, water, brine, dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure. The crude mass is purified by column chromatography (silica, gradient: $10-1 \% \mathrm{IMeOH}-$ DCM) , to afford N -(2,6-Dioxo-piperidin-3-yl)-benzene sulfonamide ($55 \mathrm{mg}, 34 \%$) as a white solid. 'H NMR (400 MHz , DMSO- d_{6}) $\delta 10.76(\mathrm{~s}, 1 \mathrm{H}), 8.15-8.13 \quad(\mathrm{~d}, \mathrm{~J}=18.44 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{\prime} 7.85-$ $7.83\left(\mathrm{~d}, J^{\prime}=7.12 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.63-7.54(\mathrm{~m}, 3 \mathrm{H}), 4.26-4.20 \wedge(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.601(\mathrm{~m}, 1 \mathrm{H}), 2.46-$ $2.40{ }^{\prime}(\mathrm{m}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 2 \mathrm{H})$; LCMS (M+H): 269.

4-Bromo-N-(2,6-dioxo-piperidin-3-yl)-benzene sulfonamide

Toa stirred solution of 3-amino-piperidine-2,6-dione hydrochloride $1(100 \mathrm{mg}, ~(0.608 \mathrm{mmol}$, 1 equiv.) in DCM (5 mL) are sequentially added at $0{ }^{\circ} \mathrm{C}$ triethylamine $(0.25 \mathrm{~mL}, 1.823 \mathrm{mmol}, 3$ equiv.) and 4-bromobenzenesulfonyl chloride ($170.76 \mathrm{mg}, 0.668 \mathrm{mmol}, 1.1$ equiv.). The resulting mixture: is; stirred at the same temperature for 4 hours. The reaction mixture is then (quenched rwith ice-water and extracted with EtOAc. The combined organics are washed with aqueous ssaturated NaHCO_{3} solution, water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude mass is purified by column chromatography (silica, gradient: $(0-1 \%] \mathrm{MeOH}-$ DCM), to afford 4-bromo-N-(2,6-dioxo-piperidin-3-yl)-benzene sulfonamide ($(110 \mathrm{mg}, 52 \%)$ as $\mathfrak{a} \mathrm{a}$
white: solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d6) $\delta 10.76(\mathrm{~s}, 1 \mathrm{H}), 8.29-8.27(\mathrm{~d}, \mathrm{~J}=8.8 .52 \mathrm{HHz}, 1 \mathrm{H})$, $7.79^{\prime}-7.74(\mathrm{~m}, 4 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.42(\mathrm{~b}, 1 \mathrm{H}), 1.86-1.79((\mathrm{~m}, 2 \mathrm{H})$; LCMS (M-H): 345 (Br isotope pattern).

N -(2,6-Dioxo-piperidin-3-yl)-benzamide

To a stirred solution of 3-amino-piperidine-2,6-dione hydrochloride $(100 \mathrm{mg},(0.608 \mathrm{mmol}$, 1 equiv.) in $\mathrm{DCM}(5 \mathrm{~mL})$ are added triethylamine ($0.25 \mathrm{~mL}, 1.823 \mathrm{mmol}, 3$ requiv.) and lbenzoyl chloride: ($78 \mu \mathrm{~L}, 0.668 \mathrm{mmol}, 1.1$ equiv.) sequentially at $0{ }^{\circ} \mathrm{C}$. The resulting mixture iis stirred at ambient temperature for 18 hours. The reaction mixture is then quenched with iice-water and extracted with EtOAc. The combined organics are washed with an aqueous saturated 1 NaHCO 3 solution, water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue: is triturated with diethyl ether and pentane to afford N -(2,6-dioxo-piperidin-3-yl)benzamide: ($105 \mathrm{mg}, 74 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 10.86$ (s, 1 H), 8.77 $-8.75(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.88-7.86(\mathrm{~d}, J=7.08 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.54(\mathrm{~d}, J=7.28 \mathrm{JHz}, 2 \mathrm{CH})$, $7.51-7.47(\mathrm{~m}, 3 \mathrm{H}), 4.78(\mathrm{~b}, 1 \mathrm{H}), 2.83-2.76(\mathrm{bm}, 1 \mathrm{H}), 2.56(\mathrm{~b}, 1 \mathrm{H}), 2.14(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~m}, 1 \mathrm{H})$; LCMS (M+H): 233.

4-Bromo-N-(2,6-dioxo-piperidin-3-yl)-benzamide

To a stirred solution of 3 -amino-piperidine-2,6-dione hydrochloride ${ }_{(100}{ }_{1} \mathrm{mg},(0.608 \mathrm{mmol}$, 1 equiv.) in DCM (5 mL) are added triethylamine ($0.25 \mathrm{~mL}, 1.823 \mathrm{mmol}, 3$ equiv.) and $4-$ bromobenzoyl chloride ($146.662 \mathrm{mg}, 0.668 \mathrm{mmol}, 1.1$ equiv.) sequentially at $10{ }^{\circ} \mathrm{C}$. The resulting mixture; is; stirred at ambient temperature for 18 hours. The reaction mixture jis then ${ }_{(}$quenched with
ice-water and extracted with EtOAc. The combined organics are washed with aqueous ssaturated NaHCO_{3} solution, water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated runder reduced pressure. The residue is triturated with diethyl ether and pentane to afford 4 -bromo-N-(2,6-dioxo-piperidin-3-yl)-benzamide ($160 \mathrm{mg}, 85 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 1 \mathrm{DMSO}-d_{6}\right) \delta$ $10.88 \cdot(\mathrm{~s}, 1 \mathrm{H}), 8.87-8.85(\mathrm{~d}, J=8.12 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.80(\mathrm{~d}, J=9.12 \mathrm{~Hz} .2 \mathrm{H}), 7.72-7.70(\mathrm{~d}, \mathrm{u}$ $=8.32 \mathrm{~Hz}, 2 \mathrm{H}), 4.81-4.75(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{~b}, 1 \mathrm{H}), 2.13-.2 .07(\mathrm{~m}, 1 \mathrm{H}), 2.98$ (m, 1H); LCMS (M-H): 309 (Br isotope pattern).

N -(2,6-Dioxopiperidin-3-yl)-N-methylpiperidine-4-carboxamide

To a a stirred solution of 3-(methylamino)piperidine-2,6-dione (1 equiv.) in]DCM (0.1 M) are: added triethylamine (3 equiv.) and tert-butyl 4-(chlorocarbonyl)piperidine-1-carboxylate (1.1 equiv.) sequentially at $0^{\circ} \mathrm{C}$. The resulting mixture is stirred at ambient temperature for 18 hhours. The: reaction mixture is then quenched with ice-water and extracted with EtOAc. 'The combined organics are washed with aqueous saturated NaHCO 3 solution, water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford tert-butyl 4 -($(2,6$-dioxopiperidin-3-yl)(methyl)carbamoyl)piperidine-1-carboxylate.
tert-Butyl 4-((2,6-dioxopiperidin-3-yl)(methyl)carbamoyl)piperidine-1-carboxylate iis dissolved in DCM/TFA $(1 / 1,0.2 \mathrm{M})$ and stirred at ambient temperature for 2 hours. The ,volatiles are: evaporated under reduced pressure to afford N -(2,6-dioxopiperidin-3-yl)-N-methylpiperidine-4-carboxamide as trifluoroacetic acid salt.

To a stirred solution of 3-amino-piperidine-2,6-dione (1 equiv.) in DCM $1(0.1 \mathrm{M}$) are added triethylamine: (3 equiv.) and tert-butyl 4-(chlorocarbonyl)piperidine-1-carboxylate ((1.1 requiv.) sequentially at $0{ }^{\circ} \mathrm{C}$. The resulting mixture is stirred at ambient temperature for 18 lhours. The reaction mixture: is then quenched with ice-water and extracted with EtOAc. The combined organics are: washed with aqueous saturated NaHCO_{3} solution, water, brine, dried ıover aanhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford tert-butyl 4 -((2,6-dioxopiperidin-3-yl)carbamoyl)piperidine-1-carboxylate.
tert-Butyl 4-((2,6-dioxopiperidin-3-yl)carbamoyl)piperidine-1-carboxylate iis dissolved iin DCM/TFA ($1 / 1,0.2 \mathrm{M}$) and stirred at ambient temperature for 2 hours. The volatiles are evaporated under reduced pressure to afford N -(2,6-dioxopiperidin-3-yl)piperidine-4-carboxamide as a trifluoroacetic acid salt.

 are: added triethylamine (3 equiv.) and tert-butyl 4-(methoxymethoxy)benzoylchloride,(1.1 ¡equiv.) sequentially at $0{ }^{\circ} \mathrm{C}$. The resulting mixture is stirred at ambient temperature for 18 hours. The reaction mixture: is then quenched with ice-water and extracted with EtOAc. The combined organics $;$ are: washed with aqueous saturated NaHCO_{3} solution, water, brine, dried over ;anhydrous

Na 2 SO 4 and concentrated under reduced pressure to afford N -(2,6-dioxopiperidin-3-yl)-4-(methoxymethoxy)-N-methylbenzamide.

N -(2,6-Dioxopiperidin-3-yl)-4-(methoxymethoxy)-N-methylbenzamide iis dissolved iin methanol (0.2 M), hydrochloric acid (1 M aq., 10 equiv.) is added and stirred atambient temperature for 3 hours. The volatiles are evaporated in vacuo to afford N -(2,6-dioxopiperidin-3-yl)-4-hydroxy-N-methylbenzamide.

To a stirred solution of 3-amino-piperidine-2,6-dione 1 equiv.) in DCM ($(0.1 \mathrm{M})$ are added triethylamine: (3 equiv.) and tert-butyl 4-(methoxymethoxy)benzoyl rchloride $1(1.1$ requiv.) sequentially at $0{ }^{\circ} \mathrm{C}$. The resulting mixture is stirred at ambient temperature for 18 hours. The reaction mixture: is then quenched with ice-water and extracted with EtOAc. The combined organics are washed with aqueous saturated NaHCO_{3} solution, water, brine, idried over anhydrous Na 2 SO 4 and concentrated under reduced pressure to afford N -(2,6-dioxopiperidin-3-yl)-4(methoxymethoxy)benzamide.

N -(2,6-Dioxopiperidin-3-yl)-4-(methoxymethoxy)benzamide is idissolved in methanol (0.2 M), hydrochloric acid (1 M aq., 10 equiv.) is added and stirred at ambient temperature for 3 hours. The volatiles are evaporated in vacuo to afford N -(2,6-dioxopiperidin-3-yl)-4hydroxybenzamide.

To a. stirred solution of 3-(methylamino) piperidine-2,6-dione (1 equiv.) in IDCM (0.2 IM) are: added triethylamine (3 equiv.) and tert-butyl 4-(chlorosulfonyl)piperidine-1-carboxylate ($(1.1$ equiv.) sequentially at $0^{\circ} \mathrm{C}$. The resulting mixture is stirred at the same temperature for 4 hhours. The: reaction mixture is then quenched with ice-water and extracted with EtOAc. The combined organics are: washed with aqueous saturated NaHCO 3 solution, water, brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue is purified lby column chromatography to afford tert-butyl 4-(N-(2,6-dioxopiperidin-3-yl)-N-methylsulfamoyl)piperidine-1-carboxylate.
tert-Butyl 4-(N-(2,6-dioxopiperidin-3-yl)-N-methylsulfamoyl)piperidine-1-carboxylate iis dissolved in DCM/TFA $(1 / 1,0.2 \mathrm{M})$ and stirred at ambient temperature for 2 hours. The volatiles are: evaporated under reduced pressure to afford N -(2,6-dioxopiperidin-3-yl)-N-methylpiperidine-4-sulfonamide.

To a stirred solution of 3-aminopiperidine-2,6-dione (1 equiv.) in $\left.\mathrm{DCM}_{1}(0.2] \mathrm{M}\right)$ are added triethylamine: (3 equiv.) and tert-butyl 4-(chlorosulfonyl)piperidine-1-carboxylate (1.1 equiv.) sequentially at $0{ }^{\circ} \mathrm{C}$. The resulting mixture is stirred at the same temperature for 4 hours. The
reaction mixture: is then quenched with ice-water and extracted with EtOAc. 'The combined organics is: washed with aqueous saturated NaHCO_{3} solution, water, brine, idried over canhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude residue iis purified lby column chromatography to afford tert-butyl 4-(N-(2,6-dioxopiperidin-3-yl)sulfamoyl)piperidine-1- carboxylate.
tert-Butyl 4-(N-(2,6-Dioxopiperidin-3-yl)sulfamoyl)piperidine-1-carboxylate iis dissolved in। DCM/TFA. ($1 / 1,0.2 \mathrm{M}$) and stirred at ambient temperature for 2 hours. The volatiles are evaporated under reduced pressure to afford N -(2,6-dioxopiperidin-3-yl)piperidine-4sulfonamide.

To a a stirred solution of 3-(methylamino)piperidine-2,6-dione (1 equiv.) in IDCM (0.2 IM) are:added triethylamine (3 equiv.) and 4-nitrobenzenesulfonyl chloride (1.1 equiv.) sequentially at $0)^{\circ} \mathrm{C}$. The resulting mixture is stirred at the same temperature for 4 hours. The reaction mixture iis then q quenched with ice-water and extracted with EtOAc. The combined organics are washed with aqueous; saturated NaHCO 3 solution, water, brine, dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure. The crude residue is purified by column chromatography to afford $] \mathrm{N}$-(2,6-dioxopiperidin-3-yl)-N-methyl-4-nitrobenzenesulfonamide.

N -(2,6-Dioxopiperidin-3-yl)-N-methyl-4-nitrobenzenesulfonamide iis idissolved iin methanol (0.2 M) and palladium on charcoal (10%) is added. The reaction vessel is placed under a_{\downarrow} hydrogen atmosphere and stirred for 16 hours. The reaction mixture is filtered through ${ }^{\text {Celite }}{ }^{\circledR}$ andlevaporated to afford 4-amino-N-(2,6-dioxopiperidin-3-yl)-N-methylbenzenesulfonamide.

To a stirred solution of 3 -aminopiperidine-2,6-dione (1 equiv.) in DCM $1(0.2 \mathrm{IM})$ are added triethylamine : (3 equiv.) and 4-nitrobenzenesulfonyl chloride $1\left(1.1\right.$ equiv.) sequentially at $\left(0^{\circ}{ }^{\circ} \mathrm{C}\right.$. The resulting; mixture is stirred at the same temperature for 4 hours. The reaction mixture iis then quenched with ice-water and extracted with EtOAc. The combined organics are washed with aqueous s saturated NaHCO 3 solution, water, brine, dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure. The crude residue is purified by column chromatography to afford lN-(2,6-dioxopiperidin-3-yl)-4-nitrobenzenesulfonamide.

N -(2,6-Dioxopiperidin-3-yl)-4-nitrobenzenesulfonamide is dissolved in ımethanol ($0.2 \mathrm{l} \mathbf{M}$) andl palladium on charcoal (10%) is added. The reaction vessel is placed under a lhydrogen atmosphere : and stirred for 16 hours. The reaction mixture is filtered on Celite ${ }^{\circledR}$ and sevaporated to afford $\mid 4$-amino-N-(2,6-dioxopiperidin-3-yl)benzenesulfonamide.

To a stirred solution of 3-amino-piperidine-2,6-dione (1 equiv.) in DCM ($(0.1 \mathrm{M})$ are added triethylamine : (3 equiv.) and 2-aminoisonicotinoyl chloride (1.1 equiv.) sequentially at $\left(0^{\circ} \mathrm{C}\right.$. The resulting; mixture is stirred at ambient temperature for 18 hours. The reaction mixture is then quenched with ice-water and extracted with EtOAc. The combined organics are washed with aqueous; saturated NaHCO 3 solution, water, brine, dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure to afford 2-amino-N-(2,6-dioxopiperidin-3-yl)isonicotinamide.

To a stirred solution of 3-(methylamino)piperidine-2,6-dione (1 equiv.) in $1 \mathrm{DCM}((0.1 \mathrm{M})$ are: added triethylamine (3 equiv.) and 2 -aminoisonicotinoyl chloride (1.1 equiv.) sequentially cat $0^{\circ}{ }^{\circ} \mathrm{C}$. The resulting mixture is stirred at ambient temperature for 18 hours. 'The reaction mixture is then quenched with ice-water and extracted with EtOAc. The combined organics are 'washed 'with aqueous s saturated NaHCO 3 solution, water, brine, dried over anhydrous Na 2 SO 4 and concentrated under reduced pressure to afford 2-amino-N-(2,6-dioxopiperidin-3-yl)-N-methylisonicotinamide.

To a stirred solution of 3 -amino-piperidine-2,6-dione 1 equiv.) in DCM ($(0.1 \mathrm{M})$ are added triethylamine : (3 equiv.) and 4-hydroxycyclohexane-1-carbonyl chloride (1.1 equiv.) sequentially at: $00^{\circ} \mathrm{C}$. The: resulting mixture is stirred at ambient temperature for 18 hours. The reaction mixture is; then quenched with ice-water and extracted with EtOAc. The combined organics are rwashed with aqueous, saturated NaHCO_{3} solution, water, brine, dried over anhydrous $1 \mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to afford N -(2,6-dioxopiperidin-3-yl)-4-hydroxycyclohexane-1-carboxamide.

To a a stirred solution of 3-(methylamino)piperidine-2,6-dione ı(1 equiv.) in $] \mathrm{DCM}$ ($(0.1 \mathrm{M})$ are: added triethylamine (3 equiv.) and 4-hydroxycyclohexane-1-carbonyl chloride (1.1 equiv.) sequentially at $0{ }^{\circ} \mathrm{C}$. The resulting mixture is stirred at ambient temperature for 18 hours. The reaction mixture: is, then quenched with ice-water and extracted with EtOAc. The combined organics ; are; washed with aqueous saturated NaHCO_{3} solution, water, brine, dried over anhydrous

Na 2 SO 4 and concentrated under reduced pressure to afford N -(2,6-dioxopiperidin-3-yl)-4-hydroxy-N-methylcyclohexane-1-carboxamide.

.TEA

To a a stirred solution of 3-amino-piperidine-2,6-dione (1 equiv.) in $\mathrm{DCM} \|(0.1 \mathrm{l} \mathrm{M})$ are added triethylamine: (3 equiv.) and tert-butyl 3-(chlorocarbonyl)pyrrolidine-1-carboxylate (1.1 equiv.) sequentially at $0^{\circ} \mathrm{C}$. The resulting mixture is stirred at ambient temperature for 18 hours. The reaction mixture: is then quenched with ice-water and extracted with EtOAc. The combined organics are: washed with aqueous saturated NaHCO 3 solution, water, brine, idried over anhydrous Na2SO4 and concentrated under reduced pressure to afford tert-butyl 3 -((2,6-dioxopiperidin-3-yl)carbamoyl)pyrrolidine-1-carboxylate.

3-((2,6-Dioxopiperidin-3-yl)carbamoyl)pyrrolidine-1-carboxylate is dissolved iin DCM/TFA ($1 / 1,0.2 \mathrm{M}$) and stirred at ambient temperature for 2 hours. The volatiles areevaporated under reduced pressure to afford N -(2,6-dioxopiperidin-3-yl)pyrrolidine-3-carboxamide as a trifluoroacetic acid salt.

 .TFA

To a stirred solution of 3-(methylamino)piperidine-2,6-dione (1 equiv.) in] DCM ($(0.1 \mathrm{IM})$ are:added triethylamine (3 equiv.) and tert-butyl 3-(chlorocarbonyl)pyrrolidine-1-carboxylate (1.1
equiv.)' sequentially at $0^{\circ} \mathrm{C}$. The resulting mixture is stirred at ambient temperature for 18 hours. The: reaction mixture is then quenched with ice-water and extracted with EtOAc. 'The combined organics are washed with aqueous saturated NaHCO_{3} solution, water, brine, idried over anhydrous Na2SO4 and concentrated under reduced pressure to afford tert-butyl 3-((2,6-dioxopiperidin-3- yl)(methyl)carbamoyl)pyrrolidine-1-carboxylate.

3-((2,6-Dioxopiperidin-3-yl)carbamoyl)pyrrolidine-1-carboxylate iis dissolved iin DCM/TFA ($1 / 1,0.2 \mathrm{M}$) and stirred at ambient temperature for 2 hours. The volatiles are evaporated under reduced pressure to afford N -(2,6-dioxopiperidin-3-yl)-N-methylpyrrolidine-3carboxamide as a trifluoroacetic acid salt.

Intermediate functionalization in preparation for Linker iinstallation tert-Butyl 3-(3-(4-aminophenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate:

1) benzophenone imine $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, \mathrm{BINAP}, \mathrm{NaO} \mathrm{Z}-\mathrm{Bu}$
 toluene, $80^{\circ} \mathrm{C}$

A reaction vessel is charged with tert-butyl 3-(3-(4-bromophenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.), benzophenone jimine (1.2 requiv.), tris(dibenzylideneacetone)dipalladium(0) ($1 \mathrm{~mol} \%$), BINAP ($3 \mathrm{~mol} \%$) : and sodium tert-butoxide and purged by cycling between nitrogen and vacuum 3 times. Toluene is added and the reaction iis heated at $80^{\circ}{ }^{\circ} \mathrm{C}$ for 18 hours. Ethyl acetate is added and the solids separated lby filtration through at plug; of Celite ${ }^{\oplus}$. The filtrate is concentrated and the residue is purified by chromatography to provide: tert-butyl 3-(3-(4-((diphenylmethylene)amino)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate.

A reaction vessel is charged with tert-butyl 3-(3-(4-((diphenylmethylene)amino)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate.carboxylate (1 equiv.) and dissolved $\mathrm{in}_{1} \mathrm{MeOH}$. Hydroxylamine hydrochloride (1.8 equiv.) and sodium acetate (2.4 equiv.) are added and the: reaction mixed at ambient temperature for 1 hour. The reaction is iquenched lby addition of 0.1 M aq. NaOH solution and the resultant mixture extracted with ethyl acetate. The combined organic: layer is, washed with brine, dried over sodium sulfate, filtered, and concentrated. 'The ccrude
residue: is purified by silica gel chromatography to provide tert-butyl 3-(3-(4-aminophenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate. (PCT Int. Appl., ‘2015002230, (08 JJan 2015)
tert-butyl. 3-(3-(4-ethynylphenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1carboxylate:

A reaction vessel is charged with bis(triphenylphosphine)palladium(II) cchloridel($2 \mathrm{mmol} \%$), copper(I) iodide: ($4 \mathrm{~mol} \%$) and tert-butyl 3-(3-(4-bromophenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.). The reaction atmosphere is icycledibetweenmitrogenand vaccum 3 times, then triethylamine (1.55 equiv.) and trimethylsilylacetylene (1.25 requiv.) are addedl and the reaction is mixed for 24 hours. When the starting materials are consumed, the reaction is diluted with ethyl acetate and filtered through a plug of Celite ${ }^{\ominus}$. The ffiltrate is concentrated and the residue is purified by silica gel chromatography to provide itert-butyl 2,6 -dioxo-3-(2-oxo-3-(4-((trimethylsilyl)ethynyl)phenyl)imidazolidin-1-yl)piperidine-1-carboxylate. (Org. Lett. 2014, 16(24), 6302)

A reaction vessel is charged with tert-butyl 2,6-dioxo-3-(2-oxo-3-(4-((trimethylsilyl)ethynyl)phenyl)imidazolidin-1-yl)piperidine-1-carboxylate (1 equiv.), potassium carbonate: (4 equiv.) and MeOH . The reaction is mixed at ambient temperature for 88 hours then concentrated. The residue is diluted with water and ethyl acetate. The aqueous llayer iis extracted with ethyl acetate and the combined organic layer is dried over ;sodium sulfate, ffiltered and concentrated. The crude residue is purified by silica gel chromatography to provide itert-butyl:3-(3-(4-ethynylphenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate.t
tert-Butyl 2,6-dioxo-3-(2-oxo-3-(4-(prop-2-yn-1-yloxy)phenyl)imidazolidin-1-yl)piperidine-1-carboxylate:

A reaction vessel is charged with tert-butyl 3-(3-(4-hydroxyphenyl)-2-oxoimidazolidin-1- yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.) and acetone (0.25 M). To this solution iis added sequentially potassium carbonate (4 equiv.) and propargyl bromide (1.2 equiv.). The reaction iis refluxed overnight, cooled to ambient temperature, filtered through a medium frrit, and concentrated. The crude residue is purified by silica gel chromatography to provide itert-butylı2,6-dioxo-3-(2-oxo-3-(4-(prop-2-yn-1-yloxy)phenyl)imidazolidin-1-yl)piperidine-1-carboxylate. (J. Med. Chem. 2013, 56(7), 2828)

4-(3-(1-(tert-Butoxycarbonyl)-2,6-dioxopiperidin-3-yl)-2-oxoimidazolidin-1-yl)benzoic acid:

A flame-dried reaction vessel is charged with tert-butyl 3-(3-(4-bromophenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.) and the atmosphere iis cycled between nitrogen and vacuum three times. Ether is added and the solution is cooled 1 to $-78^{\circ} \mathrm{C}$.ttertButyllithium (2 equiv.) is added dropwise and the reaction is mixed for 15 min thencarbondioxide gas; is; bubbled through the solution for 15 min . The reaction is warmed to ambient temperature allowing; excess, carbon dioxide gas to slowly evolve from solution. The reaction is (quenched, with $1 \mathrm{Maq} . \mathrm{NaOH}$ solution and washed with ether (2x). The pH of the aqueous llayer is adjusted to 3 and extracted with ethyl acetate (3 x). The combined organic layer is dried over sodium sulfate ${ }_{\text {a }}$ and concentrated to dryness with toluene (3x) to provide 4-(3-(1-(tert-butoxycarbonyl)-2,6-dioxopiperidin-3-yl)-2-oxoimidazolidin-1-yl)benzoic acid.
tert-Butyl. 3-(3-(4-(hydroxymethyl)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1carboxylate:

A reaction vessel is charged with 4-(3-(1-(tert-butoxycarbonyl)-2,6-dioxopiperidin-3-yl)- 2-oxoimidazolidin-1-yl)benzoic acid (1 equiv.), THF and cool to $0^{\circ} \mathrm{C}$. Triethylamine (1.1 equiv.) andl isobutylchloroformate (1.1 equiv.) are added and the reaction mixed at ambient temperature for 1 hour. The: reaction is filtered through a medium frit and cooled to $0^{\circ}{ }^{\circ} \mathrm{C}$. 'To the solution of mixed anhydride is added a solution of sodium borohydride (2 equiv.) in .MeOH. Upon complete reduction to, the corresponding benzylic alcohol, the reaction is concentrated thentreated withrethyl acetate: and 10% aq. HCl . The phases are separated and aqueous solution is extracted with rethyl acetate: (3x). The: combined organic layer is washed with 5% sodium lbicarbonate solution, dried over sodium sulfate, and concentrated. The residue is purified by silica gel chromatography to provide: tert-butyl 3-(3-(4-(hydroxymethyl)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate.
tert-Butyl 3-(3-(4-formylphenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxyllate:

A reaction vessel is charged with tert-butyl 3-(3-(4-(hydroxymethyl)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.), manganese dioxide ((10 equiv.) and DCM. The reaction is heated at reflux overnight then cooled to ambient temperature and filtered. The filtrate is concentrated and purified by silica gel chromatography to provide tertbutyl 3-(3-(4-formylphenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate.
tert-Butyl. 3-(3-(4-(bromomethyl)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1carboxylate:

A reaction vessel is charged with tert-butyl 3-(3-(4-(hydroxymethyl)phenyl)-2- oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.) and DCM. The solution iis cooled to $0{ }^{\circ} \mathrm{C}$ and N -bromosuccinimide (1.25 equiv.) and triphenylphosphine (1.25 requiv.) care then added. The: reaction is mixed for 3 hours then concentrated. The crude residue iis ppurifiedtby silica.gel chromatography to provide tert-butyl 3-(3-(4-(bromomethyl)phenyl)-2-oxoimidazolidin1 -yl)-2,6-dioxopiperidine-1-carboxylate. (J. Med. Chem. 2015, 58(3), 1215)
tert-Butyl. 3-(3-(4-(azidomethyl)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1carboxylate:

Sodium azide (3 equiv.) is added to a solution of tert-butyl 3-(3-(4-(bromomethyl)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.) in water and acetone ($1: 3$, $0.25 \mathrm{M})$. The reaction is heated at $60^{\circ} \mathrm{C}$ for 6 hours. The reaction is cooled to ambientitemperature and the: solvent removed by rotary evaporation. The aqueous layer is extracted with $) \mathrm{DCM}((3 \mathrm{x})$ and the: combined organic layer is dried over sodium sulfate and filtered. The filtrate iis concentrated andl the: crude residue is purified by silica gel chromatography to provide itert-butyl 3-(3-(4-(azidomethyl)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate. (Angew. Chem. Int. Ed. 2014, 53(38), 10155)

Linker Installation

tert-Butyl
3-(3-(4-((8-hydroxyoctyl)oxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6dioxopiper idine-1-car boxylate:

A reaction vessel is charged with tert-butyl 3-(3-(4-hydroxyphenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.) and DMF (0.3 M) then cooled to $\left(0^{\circ} \mathrm{C}\right.$. Sodium hydride:(60% dispersion in mineral oil, 1.1 equiv.) is added and the reaction in 'warmedto ambient temperature: and mixed for 1 hour. The reaction is cooled to $0{ }^{\circ} \mathrm{C}$ then 8 -bromooctan- 1 -ol $((1.1$ equiv.) is added and the reaction is mixed at ambient temperature overnight.DMF iis removedtby rotary evaporation and the residue is deposited onto silica gel and purified lby silica gel chromatography to provide tert-butyl 3-(3-(4-((8-hydroxyoctyl)oxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate.
tert-Butyl. 3-(3-(4-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate:

A reaction vessel is charged with tert-butyl 3-(3-(4-hydroxyphenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.) and DMF (0.3 M) then cooled to $\left(0^{\circ} \mathrm{C}\right.$. Sodium hydride: (60% dispersion in mineral oil, 1.1 equiv.) is added and the reaction is warmedto ambient temperature: and mixed for 1 hour. The reaction is cooled to $10{ }^{\circ} \mathrm{C}$ then $2-(2-(2-$ bromoethoxy)ethoxy)ethan-1-ol (1.1 equiv.) is added and the reaction jis ${ }_{\jmath}$ mixed at ambient temperature; overnight. DMF is removed by rotary evaporation and the residue jis deposited sonto silica gel and purified by silica gel chromatography to provide itert-butyl 3-(3-(4-(2-(2-(2)
hydroxyethoxy)ethoxy)ethoxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1carboxylate.
tert-Butyl 3-(3-(4-((1-(3-hydroxypropyl)-1 H-1,2,3-triazol-4-yl)methoxy)phenyl)-2- oxoimidazolidin-1-yl)-2,6-dioxopiper idine-1-car boxylate:

A reaction vessel is charged with the polymer supported catalyst (Amberlyst A-21, 1.23 $\mathrm{mmol} / \mathrm{g} ; \mathrm{CuI}, 13 \% \mathrm{~mol})$. The azide (0.5 M in DCM) is added dropwise followedlby a solution of the: tert-butyl 2,6-dioxo-3-(2-oxo-3-(4-(prop-2-yn-1-yloxy)phenyl)imidazolidin-1-yl)piperidine-1-carboxylate:(0.5 M in DCM). The suspension is mixed for 12 hours at ambienttemperature. The reaction solution is filtered through a frit and the polymer cake is washed with $\operatorname{DCM}((2 x)$. The combined filtrate is concentrated and the residue purified by silica gel chromatography tto provide tert-butyl 3-(3-(4-((1-(3-hydroxypropyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate. (Org. Lett. 2006, 8(8), 1689)
tert-Butyl. 3-(3-(4-(2-(2,4-dihydroxy-2-methylbutoxy)ethoxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate:

tert-Butyl. 3-(3-(4-(2-hydroxyethoxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1carboxylate:

A reaction vessel is charged with tert-butyl 3-(3-(4-hydroxyphenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.), potassium carbonate (2 equiv.) and IDMF ((0.5 M). 2-(2-Chloroethoxy)tetrahydro-2H-pyran (1.1 equiv.) is added and the reactioniislheatedat 110 ${ }^{\circ} \mathrm{C}$ for 12 hours. The reaction is then cooled to ambient temperature and iconcentrated. The residue is: taken up in water and ethyl acetate and the layers separated. The aqueous llayeriis extracted with ethyl acetate: (2 x). The combined organic layer is washed with brine, idried over sodium sulfate, filtered and concentrated. The crude residue is used directly in the following reaction.

A reaction vessel is charged with crude tert-butyl 2,6-dioxo-3-(2-oxo-3-(4-(2-()tetrahydro$2 H$-pyran-2-yl)oxy)ethoxy)phenyl)imidazolidin-1-yl)piperidine-1-carboxylate ($(1$ equiv.), 1 MeOH and DCM ($1: 1,0.2 \mathrm{M}$). p-Toluenesulfonic acid (0.1 equiv.) is added and the reaction mixed $\mathfrak{a t}$ ambient temperature. Upon completion of the hydrolysis reaction, the volatiles are removed by rotary evaporation and the residue purified by silica gel chromatography to provide itert-butyl:3-(3-(4-(2-hydroxyethoxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate.
tert-Butyl. 2,6-dioxo-3-(2-oxo-3-(4-(2-(2-oxopropoxy)ethoxy)phenyl)imidazolidin-1$\mathbf{y l}$)piper idine-1-car boxylate:

A reaction vessel is charged with tert-butyl 3-(3-(4-(2-hydroxyethoxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.), potassium carbonate ((1.2 equiv.) and acetone (0.1 M). Chloroacetone (1.2 equiv.) is then added and the reaction lheated at reflux overnight. The reaction is cooled then concentrated and the crude residue partitioned between water and ethyl acetate. The layers were separated and the aqueous llayer was extracted with ethyl acetate: (2x). The combined organic layers are dried over sodium sulfate, ffiltered and concentrated. The crude residue is purified by column chromatography to provide tert-butyl 2,6 -dioxo-3-(2-oxo-3-(4-(2-(2-oxopropoxy)ethoxy)phenyl)imidazolidin-1-yl)piperidine-1carboxylate. (J. Med. Chem. 2007, 50(18), 4304)
tert-Butyl. 3-(3-(4-(2-(2,4-dihydroxy-2-methylbutoxy)ethoxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate:

A reaction vessel is charged with tert-butyl 2,6-dioxo-3-(2-oxo-3-(4-(2-(2- oxopropoxy)ethoxy)phenyl)imidazolidin-1-yl)piperidine-1-carboxylate. ((1 equiv.), and THF ((0.2 $\mathrm{M})$, purged with nitrogen and cooled to $-78^{\circ} \mathrm{C}$. Vinylmagnesium bromide ($(4$ equiv.) iis sadded dropwise: and the: reaction is warmed to $0^{\circ} \mathrm{C}$ over 1 hour. The reaction is quenched with aq. 1% HCl solution and extracted with ethyl acetate (3x). The combined organic llayer iis washed with brine, dried over sodium sulfate, filtered and concentrated. The crude residue iis purified lby silica gel chromatography to provide tert-butyl 3-(3-(4-(2-((2-hydroxy-2-methylbut-3-en-1-yl)oxy)ethoxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate.

Cyclohexene (4.2 equiv.) was added to a solution of $\mathrm{BH} 3 \cdot \mathrm{THF}$ (1 M in $\mathrm{THF}, 2$ equiv.) at (0 ${ }^{\circ} \mathrm{C}$ under argon. After stirring for 1 hour at $0{ }^{\circ} \mathrm{C}$, a solution of tert-butyl $3-(3-(4-(2-((2-h y d r o x y-2-$ methylbut-3-en-1-yl)oxy)ethoxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1carboxylate. (1 equiv.) in THF (0.15 M) was added to the mixture at $10^{\circ} \mathrm{C}$. After stirring for'2/hours at: $01^{\circ} \mathrm{C}, 3 \mathrm{~N} \mathrm{NaOH}$ (6 equiv.) and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ (33% volume of aq. NaOH solution addition) was added to the: mixture. This solution is allowed to mix at ambient temperature for 30 min . The reaction is quenched with saturated aqueous NH 4 Cl (8 volumes) at $10^{\circ} \mathrm{C}$, and the resulting ımixture is; extracted with ethyl acetate (3x). The combined extracts are washed with lbrine, dried oover sodium sulfate, filtered, and concentrated under reduced pressure. The crude residue is purifiedtby silica gel chromatography to provide tert-butyl 3-(3-(4-(2-(2,4-dihydroxy-2-methylbutoxy)ethoxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate. ((Org. Lett. 2012, 14(24), 6374)

> tert-Butyl 3-(3-(4-((7-chloro-4-hydroxy-4-methylhept-2-yn-1-yl)oxy)phenyl)-2- oxoimidazolidin-1-yl)-2,6-dioxopiper idine-1-car boxylate:

A reaction vessel is charged with tert-butyl 2,6-dioxo-3-(2-oxo-3-(4-(prop-2-yn-1- yloxy)phenyl)imidazolidin-1-yl)piperidine-1-carboxylate (1 equiv.) and the atmosphere cycled between nitrogen and vacuum three times. Anhydrous THF $(0.1 \mathrm{M})$ is added and the reaction cooled to $-78{ }^{\circ} \mathrm{C}$. Butyllithium (1.05 equiv.) is added and the reaction is mixed for 15 min . 5 -Chloro-2-pentanone (1.1 equiv.) in THF (5 volumes) is then added and the reaction iis 'warmed to ambient temperature and quenched with sat. aq. ammonium chloride solution. Ethyl acetate iis added and the phases are separated. The aqueous layer is extracted with ethyl acetate (2 x). The combined organic layers are washed with brine, dried over sodium sulfate, ffiltered and concentrated. The crude residue is purified by silica gel chromatography to provide itert-butyl:3-
(3-(4-((7-Chloro-4-hydroxy-4-methylhept-2-yn-1-yl)oxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate

7-Hydroxy-4-methyl-2H-chromen-2-one (1.0 equiv.) and 3-aminopiperidine-2,6-dione (1.5 equiv.) are dissolved in pyridine $(0.2 \mathrm{M})$ and heated to reflux for 6 hours. After cooling, hydrochloric acid (1 M aq.) is added to the reaction mixture. The solid is filteredunder toontain 3-(7-hydroxy-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione.
Ref:: Gupta, V. D.; Singh, Joginder; Kinger, Mayank; Arora, Avnish Kumar; Jaswal, 'Vivek;Sheel Asian Journal of Chemistry Volume 27 Issue 12 Pages 4379-4382

A reaction vessel is charged with 3-(7-hydroxy-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione (1 equiv.) and DMF (0.3 M). Cesium carbonate (1.2 equiv.) andımixedffor 1 hour. 8-bromooctan-1-ol (1.2 equiv.) is added and the reaction is mixed at ambient temperature overnight. DMF is removed by rotary evaporation and the residue is ideposited onto ssilicatgel and purified by silica gel chromatography to provide 3-(7-((8-hydroxyoctyl)oxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione.

3-(7-((8-Iodooctyl)oxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione.

3-(7-((8-hydroxyoctyl)oxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione ((1.0 equiv.) is: dissolved in DCM, pyridine is added (1.1 equiv.), and cooled to 0degC. Methanesulfnoyl chloride is: added, and the reaction mixture is stirred for 2 hours. The volatiles are evaporated and the: crude: residue is taken up in acetone (0.1 M). Potassium iodide (5 requiv.) is added and the reaction mixture is stirred in the dark at ambient temperature for 2 hours. 'The reaction, mixture iis impregnated on silica and purified by silica gel column chromatography to afford 3-(7-((8-iodooctyl)oxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione.

3-(7-((8-Aminooctyl)oxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione.

3-(7-((8-Iodooctyl)oxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione
iis dissolved DMF (0.2 M), and sodium azide (3 equiv.) is added. The reaction mixture is lheated to 60degC for 6 hours. The reaction mixture is partitioned between EtOAc and sodium lbicarbonate, andl the: organic phase is washed with brine, dried with sodium sulfate and filtered. 'The reaction mixture: is: concentrated under reduced pressure. The residue is redissolved iin IMeOH and palladium on charcoal (5\%) is added. The reaction mixture is placed under an atmosphere of hydrogen. The: reaction mixture is filtered on celite ${ }^{\circledR}$ and the filtrate is evaporatedunder reduced pressure: to afford 3-(7-((8-aminooctyl)oxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6dione.

3-(7-(2-(2-(2-(2-Hydroxyethoxy)ethoxy)ethoxy)ethoxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione

A reaction vessel is charged with 3-(7-hydroxy-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione (1 equiv.) and DMF (0.3 M). Cesium carbonate (1.2 equiv.) andımixedfor 1 hour. 2-(2-(2-(2-bromoethoxy)ethoxy)ethoxy)ethan-1-ol (1.2 equiv.) is added and the reactioniis mixed at ambient temperature overnight. DMF is removed by rotary evaporation and the residue is; deposited onto silica gel and purified by silica gel chromatography to provide:3-(7-(2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethoxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione.

3-(7-((1-(6-Hydroxyhexyl)-1H-1,2,3-triazol-4-yl)methoxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione

Step 1: A reaction vessel is charged with 3-(7-hydroxy-4-methyl-2-oxoquinolin-1(2H)- yl)piperidine-2,6-dione (1 equiv.) and DMF (0.3 M). Cesium carbonate I(1.2 equiv.) andımixedffor 1 hour. Propargyl bromide (1.3 equiv.) is added and the reaction is mixed at ambient temperature overnight. DMF is removed by rotary evaporation and the residue is deposited onto silicagel and purified by silica gel chromatography to provide 3-(4-methyl-2-oxo-7-(prop-2-yn-1-yloxy)quinolin-1(2H)-yl)piperidine-2,6-dione.

Step. 2: 3-(4-Methyl-2-oxo-7-(prop-2-yn-1-yloxy)quinolin-1(2H)-yl)piperidine-2,6-dione is; dissolved with 6 -azidohexan-1-ol in a tert-butanol/water mixture. Copper sulfate (0.01 eequiv.) andl sodium ascorbate (0.1 equiv.) are added and the reaction mixture is stirred at ${ }^{\prime} 25^{\circ} \mathrm{C}$ ffor ${ }^{\circ} 24$ hours. The: reaction misture is diluted with water and extracted with ethyl acetate. The organic layer is, washed with brine, dried with sodium sulfate, filtered and evaporated under reduced pressure: to afford 3-(7-((1-(6-hydroxyhexyl)-1H-1,2,3-triazol-4-yl)methoxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione.

Step, 1: A reaction vessel is charged with 3-(7-hydroxy-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione (1 equiv.) and DMF (0.3 M). Cesium carbonate (1.2 equiv.) and ${ }_{\mathrm{m}}$ mixedffor 1 hour. Methyl bromoacetate (1.3 equiv.) is added and the reaction is mixed;at ambientitemperature overnight. DMF is removed by rotary evaporation and the residue is deposited onto silicagel and purified by silica gel chromatography to provide tert-butyl 2-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)acetate.

Step 2: tert-Butyl 2-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7yl)oxy)acetate: (1 equiv.) is dissolved in dioxane:water mixture ($10: 1,0.2 \mathrm{M}$) and lhydrogen
chloride: (4 M in dioxane, 4 equiv.) is added. The reaction mixture is stirred at $40^{6} \mathrm{C}$ for 16 lhours. The: volatiles are evaporated under reduced pressure to afford 2-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)acetic acid.

Step 3: 2-((1-(2,6-Dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7yl)oxy)acetic acid (1 equiv.) is dissolved in DMF, diisopropylethylamine (2.1 equiv.) iis cadded followed by tert-butyl (3-(2-(2-(3-aminopropoxy)ethoxy)ethoxy)propyl)carbamate $1(1.3$ requiv.). the: reaction mixture is cooled to $0{ }^{\circ} \mathrm{C}$ and HATU (1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxid hexafluorophosphate) (1.1 equiv.) is added. The reactionımixture is; stirred for 4 hours, while increasing the temperature to $25{ }^{\circ} \mathrm{C}$. DMF is removed lby rotary evaporation and the residue is deposited onto silica gel and purified lby silica agel chromatography to provide: tert-butyl (1-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)-2-oxo-7,10,13-trioxa-3-azahexadecan-16-yl)carbamate.
Step4: tert-butyl (1-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)2 -oxo-7,10,13-trioxa-3-azahexadecan-16-yl)carbamate is dissolved in a TFA:DCMımixture ($(1: 1$, $0.2 \mathrm{M})$, and stirred for 2 hours at ambient temperature. The volatiles are evaporatedunder reduced pressure:to afford N-(3-(2-(2-(3-aminopropoxy)ethoxy)ethoxy)propyl)-2-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)acetamide as a trifluoroacetic acid ssalt.

Step 1: 3-(7-hydroxy-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione (1 1 equiv.) iis dissolved in THF (0.2 M) and triphenylphosphine (2.0 equiv.) and [[1,1'-biphenyl]-4,4'diyldimethanol (2.0 equiv.) are added. The reaction mixture is cooled to $0{ }^{\circ} \mathrm{C}$ and $1 \mathrm{DIAD}((1.2$ equiv.) is; added dropwise under stirring over 5 minutes. The reaction mixture is stirred while warming; to, room temperature for 2 hours. The volatiles are evaporated under reduced pressure, the: crude: material is impregnated on silica and purified using silica gel chromatography to afford 3-(7-((4'-(hydroxymethyl)-[1,1'-biphenyl]-4-yl)methoxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione.

N-(2-(2,6-Dioxopiperidin-3-yl)-1-oxo-1,2-dihydroisoquinolin-5-yl)-7-hydroxyheptanamide

3-(5-amino-1-oxoisoquinolin-2(1H)-yl)piperidine-2,6-dione is idissolved in DDMF ($(0.2 \mathrm{IM})$ and 7-hydroxyheptanoic acid is added. The reaction mixture is cooled to 0 degC , and $\mathrm{JHATU}((1.1$ equiv.) is added. After stirred for 15 hours, the reaction mixture is partitioned lbetweenlEtOAcand sodium bicarbonate (sat. aqueous). The organic phase is washed with lbrine, dried with sodium sulfate, filtered and evaporated under reduced pressure. The crude material iis purified lby column chromatography to afford N -(2-(2,6-dioxopiperidin-3-yl)-1-oxo-1,2-dihydroisoquinolin-5-yl)-7hydroxyheptanamide.

1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxylic acid jis dissolved in_{l} DMF (0.2 M) and tert-butyl (2-(2-(3-aminopropoxy)ethoxy)ethyl)carbamate is added. The reaction mixture is cooled to 0 degC , and HATU (1.1 equiv.) is added. After stirred for 15 hours, the: reaction mixture is partitioned between EtOAc and sodium bicarbonate (sat. aqueous). The organic; phase is, washed with brine, dried with sodium sulfate, filtered and evaporated under reduced pressure. The crude material is purified by column chromatography to afford tert-butyl (2-(2-(2-(1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyrimidine-4carboxamido)ethoxy)ethoxy)ethyl)carbamate.

tert-Butyl (2-(2-(2-(1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyrimidine-4carboxamido)ethoxy)ethoxy)ethyl)carbamate is dissolved in a TFA:DCM mixture $1(1: 1,(0.2 \mathrm{M})$, andlstirred for 2 hours at ambient temperature. The volatiles are evaporatedunderreduced ppressure to afford $\quad \mathrm{N}$-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-1-(2,6-dioxopiperidin-3-yl)-6-oxo-1,6-dihydropyrimidine-4-carboxamide as a trifluoroacetic acid salt.

Final compound examples
Glucacernicaid recepior targeting higana

引ex-acid
derjyed from dexamethazone

tert-Butyl
3-(3-(4-((8-aminooctyl)oxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.) is dissolved in DMF and added to a ; solution of 1 Dex-acid (1 equiv.), DIPEA (3 equiv.). HATU (1 equiv.) is then added and the mixture is stirred for 24 hours. The:mixture is then diluted with ethyl acetate and washed with saturated sodiumbicarbonate solution, water, and then brine. The organic layer is dried over sodium sulfate and concentrated. The: crude: material is then dissolved in dioxane. HCl (4 N in dioxane) is added and the solution
stirred at room temperature for 12 hours. The solvent is then evaporated under treduced ppressure and the: crude product is purified on silica.

FKBp targeting ligand

tert-Butyl
3-(3-(4-((8-aminooctyl)oxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.) is dissolved in DMF and added to a :solution of .AP1479 (1 equiv.), DIPEA (3 equiv.). HATU (1 equiv.) is then added and the pmixture is stirred ffor 24 hours. The mixture is then diluted with ethyl acetate and washed with saturated sodiumbbicarbonate solution, water, and then brine. The organic layer is dried over sodium sulfate and concentrated. The: crude material is then dissolved in dioxane. HCl (4 N in dioxane) is added and the solution stirred at room temperature for 12 hours. The solvent is then evaporated under reduced pressure and the crude product is purified on silica.
8RD

$\sqrt{2}-1$

tert-Butyl
3-(3-(4-((8-aminooctyl)oxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1 equiv.) is dissolved in DMF and added to a solution of JQ-1 (1 equiv.), DIPEA (3 equiv.). HATU (1 equiv.) is then added and the mixture is stirred ffor 24 lhours. The: mixture: is, then diluted with ethyl acetate and washed with saturated sodium lbicarbonate solution, water, and then brine. The organic layer is dried over sodium sulfate and concentrated. The: crude: material is then dissolved in dioxane. HCl (4 N in dioxane) is added and the solution stirred at room temperature for 12 hours. The solvent is then evaporated under reduced pressure and the crude product is purified on silica.

ABL-fargetng ligand

A reaction vessel is charged with N-(3-methyl-4-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)phenyl)-4-(piperazin-1-ylmethyl)benzamide (1 equiv.) and DMF $(0.3 \mathrm{M}$) then cooledtto $0)^{\circ} \mathrm{C}$. Sodium hydride (60% dispersion in mineral oil, 1.1 requiv.) is added and the reaction iis warmed to ambient temperature and mixed for 1 hour. The reaction is cooled to $00^{\circ} \mathrm{C}$ then tertbutyl 3-(3-(4-((7-chloro-4-hydroxy-4-methylhept-2-yn-1-yl)oxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1-carboxylate (1.1 equiv.) is added and the reaction iis mixed at ambient temperature: overnight. DMF is removed by rotary evaporation. The crude material iis then dissolved in dioxane. HCl (4 N in dioxane) is added and the solution stirred at rroom temperature for 12; hours. The solvent is then evaporated under reduced pressure and the crude product is purified on silica.

A reaction vessel is charged with 4-(2,6-difluoro-4-(3-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)quinoxalin-5-yl)benzyl)morpholine (1 equiv.) and DMF (0.3 M) then icooled to $\left(0^{\circ}{ }^{\circ} \mathrm{C}\right.$. Sodium hydride:(60% dispersion in mineral oil, 1.1 equiv.) is added and the reaction iis 'warmedto ambient temperature: and mixed for 1 hour. The reaction is cooled to $0^{\circ} \mathrm{C}$ then tert-butyl.3-(3-(4-((7-chloro-4-hydroxy-4-methylhept-2-yn-1-yl)oxy)phenyl)-2-oxoimidazolidin-1-yl)-2,6-dioxopiperidine-1carboxylate:(1.1 equiv.) is added and the reaction is mixed at ambient temperature overnight.IDMF is; removed by rotary evaporation. The crude material is then dissolved in dioxane. $\mathrm{JHCl}(4 \mathrm{~N}$ iin dioxane) is: added and the solution stirred at room temperature for 12 hours. The solvent iis then evaporated under reduced pressure and the crude product is purified ion :silica.

Mcl-1 targeting ligand

2-(4-(6-chloro-3-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-2-(ethoxycarbonyl)-1H-indol-7-yl)-3,5-dimethyl-1H-pyrazol-1-yl)acetic acid is synthesized according to the procedure reported by N. F. Pelz et al. in J. Med. Chem., 2016, 59, 2054-2066. aminopropoxy)ethoxy)ethoxy)propyl)-2-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)acetamide, trifluoroacetic acid salt is added to the ,reaction_mixture, and
stirred for 2 hours while warming to room temperature. The volatiles are evaporatedundertreduced pressure: and the: compound is purified by preparative HPLC to afford ethyl 6-chloro-3-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-7-(1-(19-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)-2,18-dioxo-7,10,13-trioxa-3,17-diazanonadecyl)-3,5-dimethyl-1H- pyrazol-4-yl)-1H-indole-2-carboxylate.

Step 2: Ethyl 6-chloro-3-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-7-(1-(19-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)-2,18-dioxo-7,10,13-trioxa-3,17-diazanonadecyl)-3,5-dimethyl-1H-pyrazol-4-yl)-1H-indole-2-carboxylate iis dissolved iin THF/MeOH mixture (3/1) and cooled to 0 degC. An aqueous lithium hydroxide solution ($(1 \mathrm{M}, 1.1$ equiv.) is added to the reaction mixture. The reaction mixture is stirred for 4 hours while warming torambient temperature. The mixture is acidified with acetic acid and purifiedlby preparativelHPLC to afford 6-chloro-3-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-7-(1-(19-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)-2,18-dioxo-7,10,13-trioxa-3,17-diazanonadecyl)-3,5-dimethyl-1H-pyrazol-4-yl)-1H-indole-2-carboxylic acid.

Step , 3: 6-Chloro-3-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-7-(1-(19-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)-2,18-dioxo-7,10,13-trioxa-3,17-diazanonadecyl)-3,5-dimethyl-1H-pyrazol-4-yl)-1H-indole-2-carboxylic acid iis dissolvediin DCM (0.2 M), and DMAP (3.1 equiv.) and EDC (1.05 equiv.) are added and the reactionımixture is; stirred for 5 minutes. 5-sulfamoylfuran-2-carboxylic acid (1.1 equiv.) is added and stirredffor 16 hours. The volatiles are evaporated under reduced pressure and the crude mixture iis purified by preparative: HPLC to afford 5-(N-(6-chloro-3-(3-(4-chloro-3,5-dimethylphenoxy)propyl)-7-(1-(19-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)-2,18-dioxo-7,10,13-trioxa-3,17-diazanonadecyl)-3,5-dimethyl-1H-pyrazol-4-yl)-1H-indole-2-carbonyl)sulfamoyl)furan-2-carboxylic acid.

1-(2-((2-(Cyclohexylamino)-2-oxo-1-(o-tolyl)ethyl)(3-fluorophenyl)amino)-2-oxoethyl)-2-methyl-1H-imidazole-4-carboxylic acid is synthesized using the procedures outlined lby JJ . Popovici-Muller, et al. in ACS' Med. Chem. Lett. 2012, 3, 850.

Step, 1: 1-(2-((2-(Cyclohexylamino)-2-oxo-1-(o-tolyl)ethyl)(3-fluorophenyl)amino)-2-oxoethyl)-2-methyl-1H-imidazole-4-carboxylic acid (1 equiv.) and trimethylamine are mixediin DCM (0.2 M). The reaction mixture is cooled to 0 degC and $\mathrm{HOBt}(1.05$ equiv.) and $\jmath \mathrm{EDC}((1.1$ equiv.) are added in succession and stirred for 5 minutes. N -(3-(2-(2-(3-aminopropoxy)ethoxy)ethoxy)propyl)-2-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)acetamide, trifluoroacetic acid salt, is added tothe reaction_mixture,and stirred for 2 , hours, while warming to room temperature. The volatiles are evaporated,under,reduced pressure: and the:compound is purified by preparative HPLC to afford 1-(2-((2-(cyclohexylamino)-2-oxo-1-(o-tolyl)ethyl)(3-fluorophenyl)amino)-2-oxoethyl)-N-(1-((1-(2,6-dioxopiperidin-3-yl)-4-methyl-2-oxo-1,2-dihydroquinolin-7-yl)oxy)-2-oxo-7,10,13-trioxa-3-azahexadecan-16-yl)-2-methyl-1H-imidazole-4-carboxamide.

COK4/6 targeting ligand

Step \quad 2: 6-Acetyl-8-cyclopentyl-5-methyl-2-((5-(piperazin-1-yl)pyridin-2-yl)amino)pyrido[2,3-d]pyrimidin-7(8H)-one (1.0 equiv.) and 3-(7-((8-iodooctyl)oxy)-4-methyl-2-oxoquinolin- $1(2 \mathrm{H})$-yl)piperidine-2,6-dione (1.0 equiv.) are mixed in 1DMF and diisopropylethylamine (2.0 equiv.) is added. The reaction mixture is stirred at ambienttemperature for 16 hours, and the reaction mixture is purified by preparative HPLC to afford 3-(7-((8-(4-(6-((6-acetyl-8-cyclopentyl-5-methyl-7-oxo-7,8-dihydropyrido[2,3-d]pyrimidin-2-yl)amino)pyridin-3-yl)piperazin-1-yl)octyl)oxy)-4-methyl-2-oxoquinolin-1(2H)-yl)piperidine-2,6-dione.
chetilk targeting ligand

(R)-3-(1-(2,6-Dichloro-3-fluorophenyl)ethoxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine (1.0 equiv.) and 3-(7-((8-iodooctyl)oxy)-4-methyl-2-oxoquinolin-1(2H)- yl)piperidine-2,6-dione (1.0 equiv.) are mixed in DMF and diisopropylethylamine ($(2.0$ requiv.) iis added. The:reaction mixture is stirred at ambient temperature for 16 hours, and the reactionımixture is; purified by preparative HPLC to afford 3-(7-((8-(4-(4-(6-amino-5-((R)-1-(2,6-dichloro-3-fluorophenyl)ethoxy)pyridin-3-yl)-1H-pyrazol-1-yl)piperidin-1-yl)octyl)oxy)-4-methyl-2-oxoquinolin- $1(2 \mathrm{H})$-yl)piperidine-2,6-dione.

Additional examples:

PREPARATION OF REPRESENTATIVE TARGETING LIGANDS

5 (S)-6-(4-Chlorophenyl)-1,4-dimethyl-8-(1H-pyrazol-4-yl)-4H-benzo[f][1,2,4]triazolo[4,3a][1,4]diazepine

tert-Butyl (R)-(1-((4-bromo-2-(4-chlorobenzoyl)phenyl)amino)-1-oxopropan-2-yl)carbamate

(2-Amino-5-bromophenyl)(4-chlorophenyl)methanone (1.0 equiv.) and lBoc-(L)-Ala ((1.0 equiv.) is: suspended in DMF and cooled to $0^{\circ} \mathrm{C}$. DIEA (2.0 equiv.) is added followedlby]HATU (1.1 equiv.) and the reaction is stirred at reduced temperature for 30 minutes and then warmedto room temperature. When the reaction is judged to be complete it is quenched with aq. ammonium chloride and extracted with ethyl acetate. The combined organic layers are dried over sodium sulfate, concentrated and purified by silica gel chromatography to provide itert-butyl ($(R)-(1-((4-$ bromo-2-(4-chlorobenzoyl)phenyl)amino)-1-oxopropan-2-yl)carbamate.
(S)-7-Bromo-5-(4-chlorophenyl)-3-methyl-1,3-dihydro-2H-benzo[el[1,4]diazepin-2-one

To a stirred solution of boc protected amine in CHCl_{3} at r.t., is added lhydrogen chloride gas; slowly. After 20 minutes the addition is stopped and the reaction is stirred at r.t. until deprotection is, complete. The reaction mixture is then washed with saturated bicarbonate solution $(2 \mathrm{x})$, and water $(2 \mathrm{x})$. The organic layer is concentrated under reduced pressure. The residue iis dissolved in 2:1 methanol:water and the pH is adjusted to 8.5 by the addition of 1 N ; aqueous 1 NaOH . The:reaction is, then stirred at r.t. until the cyclization is complete. MeOH_{j} is then ${ }_{\mathrm{r}}$ removed, ${ }_{\text {under }}$ redued pressure and the solution is extracted with $\mathrm{DCM}_{\text {/(3x }}$ (x . The combined organicllayerjis dried over sodium sulfate, concentrated and purified by silica gel chromatography to provide (S)-7-
bromo-5-(4-chlorophenyl)-3-methyl-1,3-dihydro-2H-benzo[e][1,4]diazepin-2-one (US :2010 0261711.).
(S)-8-Bromo-6-(4-chlorophenyl)-1,4-dimethyl-4H-benzo[f][1,2,4]triazolo[4,3-
a][1,4]diazepine

1) WaH THF/DMF, $10^{\circ} \mathrm{C}$
2) $\mathrm{NaH}, \mathrm{DMF},-10^{\circ} \mathrm{C}$ $\mathrm{CH}_{3} \mathrm{CONHNH}_{2}$

A solution of diazapine (1.0 equiv.) in THF is cooled to $-10^{\circ} \mathrm{C}$ and $\mathrm{NaH}(0.85$ requiv.) iis added in one portion. After an hour at reduced temperature di-4-morphilinylphosphinic chloride (1.07' equiv.) is added at $-10^{\circ} \mathrm{C}$ and the reaction is allowed to warm to r.t. and stir for 21 hours. To this: mixture: is. added a solution of acetic hydrazide (1.4 equiv.) in in-butanol and stirring iis continued for 30 minutes. The solvent is then removed under reduced pressure and the tresidue dissolved in fresh dry n -butanol before refluxing for the desired time frame. Uponthe completion of the reaction the volatiles are removed by rotary evaporation and the residue is partitioned between DCM and brine. The organic layer is dried, concentrated and purified lby silica gel chromatography to provide (S)-8-bromo-6-(4-chlorophenyl)-1,4-dimethyl-4H-benzo[f][1,2,4]triazolo[4,3-a][1,4]diazepine (US 2010 0261711.).
(S)-6-(4-Chlorophenyl)-1,4-dimethyl-8-(1H-pyrazol-4-yl)-4H-benzo[f][1,2,4]triazolo[4,3a][1,4]diazepine

To a vial containing (S)-8-bromo-6-(4-chlorophenyl)-1,4-dimethyl-4H- benzo[f][1,2,4]triazolo[4,3-a][1,4]diazepine (1 equiv.) is added $\operatorname{Pd}(\operatorname{PPh} 3) 4$ ($20 \mathrm{mmol} \%$), $4-(4,4,5,5-$ tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (1.5 equiv.), and potassium carbonate ($(2.5$ equiv.). The: vial is then evacuated and purged under N 2 . To the vial is added dioxane:water((2:1). The:contents. were: once again evacuated and purged under N 2 and the reactionmixture waslheated to, $801^{\circ} \mathrm{C}$ until the SM is converted. The mixture is then cooled to room temperature and ffiltered over a pad of Celite ${ }^{\oplus}$. The filter pad is rinsed with $\mathrm{EtOAc}(3 \mathrm{x})$ and the filtrate iis concentrate. The crude: material is. purified by flash chromatography (WO 2015156601).

(S)-4-(1,4-dimethyl-8-(1-methyl-1H-pyrazol-4-yl)-4H-benzo[f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)phenol

Methyl (R)-5-bromo-2-(2-((tert-butoxycarbonyl)amino)propanamido)benzoate

Methyl 2-amino-5-bromobenzoate (1.0 equiv.) and Boc-(L)-Ala I(1.0 equiv.) iis ssuspended in DMF and cooled to $0^{\circ} \mathrm{C}$. DIEA (2.0 equiv.) is added followed by HATU (1.1 requiv.) and the reaction is stirred at reduced temperature for 30 minutes and then warmed to room temperature. When the: reaction is. judged to be complete it is quenched with aq. ammonium chloride and extracted with ethyl acetate. The combined organic layers are dried over sodium sulfate, concentrated and purified by silica gel chromatography to provide methyl(R)-5-bromo-2-(2-((tertbutoxycarbonyl)amino)propanamido)benzoate.

Methyl 5-bromo-2-(3-((R)-1-((tert-butoxycarbonyl)amino)ethyl)-5-methyl-4H-1,2,4-triazol-4-yl)benzoate

Methyl (R)-5-bromo-2-(2-((tert-butoxycarbonyl)amino)propanamido)benzoate
A solution of methyl (R)-5-bromo-2-(2-((tert-butoxycarbonyl)amino)propanamido)benzoate (1.0) equiv.) in THF is cooled to $-10^{\circ} \mathrm{C}$ and NaH (0.85 equiv.) is added in one portion. ${ }^{\text {Af }}$ After an hour at reduced temperature di-4-morphilinylphosphinic chloride (1.07 requiv.) is added sat $-10^{\circ} \mathrm{C}$ and the: reaction is allowed to warm to r.t. and stir for 2 hours. To this mixture is added a solution of acetic hydrazide (1.4 equiv.) in n-butanol and stirring is continued for 30 minutes. The solvent is; then removed under reduced pressure and the residue dissolved in fresh dry 1 n -butanol before refluxing,for the: desired time frame. Upon the completion of the reaction the volatiles arerremoved
by rotary evaporation and the residue is partitioned between DCM and lbrine. 'The organicllayeriis dried, concentrated and purified by silica gel chromatography to provide methyl (R)-5-bromo-2-(2-((tert-butoxycarbonyl)amino)propanamido)benzoate (BMCL 2015, 25, 1842-48).
(S)-8-Bromo-1,4-dimethyl-4,5-dihydro-6H-benzo[f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-one

Methyl (R)-5-bromo-2-(2-((tert-butoxycarbonyl)amino)propanamido)benzoateiis lbrought upin DCM and cooled to $0^{\circ} \mathrm{C} .4 \mathrm{M} \mathrm{HCl}$ in dioxane is added and the reaction iis warmed tortr.t. When deprotection is complete the reaction is concentrated and then azeotroped from ttoluene (2x). The: crude amine salt is then dissolved in THF and cooled to $-40^{\circ} \mathrm{C}$ at which time iiPrMgBr solution is added dropwise (2.0 equiv.) and the reaction is stirred at reduced temp until complete conversion (BMCL 2015, 25, 1842-48).
(S)-1,4-Dimethyl-8-(1-methyl-1H-pyrazol-4-yl)-4,5-dihydro-6H-benzo[f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-one

To,

a.

containing

(S)-8-bromo-1,4-dimethyl-4,5-dihydro-6H- benzo[f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-one (1 equiv.) is added $\operatorname{Pd} 2(\mathrm{dba}) .3 \mathrm{l}(10 \mathrm{~mol} \%)$,tri-tert-butylphosphonium tetrafluoroborate ($20 \mathrm{~mol} \%$), 1-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-lH-pyrazole (1.5 equiv.), and potassium phosphate tribasic, monohydrate((2.5 equiv.). The ${ }_{\text {: vial }}$ is then evacuated and purged under N 2 . To the vial is added $20: 1$ ratiolby ${ }_{\mathrm{f}}$ volume of dioxane:water. The contents were once again evacuated and purged under ${ }^{-} \mathrm{N} 2(\mathrm{~g})$ and the
reaction mixture was heated to $100^{\circ} \mathrm{C}$ until the SM is converted. The mixture iis then cooled to room temperature : and filtered over a pad of Celite ${ }^{\oplus}$. The filter pad in rinsed with $\operatorname{EtOAc}((3 \mathrm{x})$ and the: filtrate: isi concentrate. The crude material is purified by flash chromatography.
(S)-6-Chloro-1,4-dimethyl-8-(1-methyl-1H-pyrazol-4-yl)-4H-benzo[f][1,2,4]triazolo[4,3a][1,4]diazepine

(S)-1,4-dimethyl-8-(1-methyl-1H-pyrazol-4-yl)-4,5-dihydro-6H-
benzo[f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-one (1.0 equiv.) is dissolved in IDCM and IPCI5 ($(1.7$ equiv.)। is added in one-portion. After conversion of SM 2M sodium carbonate iis added. The biphasic; mixture is subsequently extracted with EtOAc (4x). The combined organic llayers iwere dried over sodium sulfate and concentrated to dryness. The resultant residue iis purified lby fflash chromatography.
(S)-4-(1,4-Dimethyl-8-(1-methyl-1H-pyrazol-4-yl)-4H-benzo[f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)phenol

To, a vial containing ((S)-6-chloro-1,4-dimethyl-8-(1-methyl-1H-pyrazol-4-yl)-4H-benzo[f][1,2,4]triazolo[4,3-a][1,4]diazepine (1 equiv.) is added $\operatorname{Pd}(\operatorname{PPh} 3) 4(20, \mathrm{~mol} \%), 4$-hydroxyPhenyl boronic acid (1.5 equiv.), and sodium carbonate (2.5 equiv.). The vial is then evacuated and purged under N 2 . To the vial is added tol:DME:water ($1: 1: 5$). The contents were once again evacuated and purged under N 2 and the reaction mixture was heated to $: 80{ }^{\circ} \mathrm{C}$, until the ${ }^{\text {S }} \mathrm{SM}$ is converted. The : mixture is, then cooled to room temperature and filtered over a pad of iCelite ${ }^{\oplus}$. The
filter pad is rinsed with EtOAc (3 x) and the filtrate is concentrate. The icrude material iispurified by flash chromatography.

Synthesis of Selected Glutarimides
Difluoro

Oxetane

Sulfone 2

Oxetane Sulfone

ref: ACS-2014-1152

CyclopropyI

 ref: J. Chem. Soc., Perkin Trans. 1, 1997, 3519

Cyclopropyl 12 :

5

IX., SYNTHESIS;OF REPRESENTATIVE DEGRONS OF FORMULA V

10 Illustrative; Preparation of 4-amino-substituted 2-(2,6-dioxo-piperidin-3-yl)-isoindole-1,3-diones vial $_{1}$ SNAr:

Example:1:
Scheme 1:

General procedure:
A mixture of 1-1 $(1 \mathrm{mmol})$ and 1-2 $(1 \mathrm{mmol})$ in Dimethylacetamide was heated $a a^{\prime} 90^{\circ} \mathrm{C}$ in a sealed tube: in presence of DIPEA (3 mmol). After complete consumption of $1-1$ asevidentffrom TLC, the: reaction mixture was cooled, partitioned between ethyl acetate and water, combined organic extracts washed with brine, dried over sodium sulfate and iconcentrated iunder reduced pressure. Crude mass was purified by reverse phase preparative HPLC tto affordtthe desired product 1-3 as a solid.

General methods for prep HPLC purification: Method-1

Preparative HPLC was conducted on Waters auto purification instrument equipped with a -.YMC-Actus. Triart C18 ($100 \times 30 \mathrm{~mm}, 5 \mu$) column operating at ambient temperature and afflow rate: of $30.0 \mathrm{ml} / \mathrm{min}$. Mobile phase: $\mathrm{A}=20 \mathrm{mM} \mathrm{NH}_{4} \mathrm{HCO}_{3}$ in water, $\mathrm{B}=$ Acetonitrile; 'Gradient Profile: Mobile: phase initial composition of 80% A and 20% B, then to 65% A and 35% lB in ${ }^{\prime} 2$ minutes, then to $25 \% \mathrm{~A}$ and 75% B in 12 minutes, then to $5 \% \mathrm{~A}$ and 95% B in 13 minutes. 'This was: maintained up to 15 minutes for column washing and the solvent mixture was returned to the initial composition for 16 minutes and maintained until 18 minutes.

Method-2

Preparative HPLC was conducted on Waters auto purification instrument requipped with ${ }^{\text {a }}$ -. YMC-Actus. Triart C18 ($250 \times 20 \mathrm{~mm}, 5 \mu$) column operating at ambient temperature cand fflow rate: of $20.0 \mathrm{ml} / \mathrm{min}$. Mobile phase: $\mathrm{A}=10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ in water, $\mathrm{B}=$. Acetonitrile ;; Gradient Profile: Mobile: phase initial composition of $70 \% \mathrm{~A}$ and $30 \% \mathrm{~B}$, then to $45 \% \mathrm{~A}$ and $55 \% \mathrm{~B}$ in 3 minutes, then to 25% A and 75% B in 18 minutes, then to 5% A and 95% B in 19 minutes. This was; maintained for up to 21 minutes for column washing and the solvent mixture was returnedto the: initial composition for 22 minutes and maintained until 25 minutes.

Method-3

Preparative HPLC was conducted on Waters auto purification instrument equipped,with \mathfrak{a} -. YMC-Actus Triart C18 ($250 \times 20 \mathrm{~mm}, 5 \mu$) column operating at ambient temperature and flow rate of $20.0 \mathrm{ml} / \mathrm{min}$. Mobile phase: $\mathrm{A}=0.1 \%$ Formic acid in water, $\mathrm{B}=$ Acetonitrile ; ;Gradient

Profile: Mobile phase initial composition of 80% A and 20% B, then to 70% A and $30 \% \mathrm{lB}$ in 3 minutes, then to 25% A and 75% B in 18 minutes, then to 5% A and 95% B in 19 minutes. 'This was: maintained for up to 21 minutes for column washing and the solvent mixture was returnedtto the: initial composition for 22 minutes and maintained until 25 minutes.

Compound 215
Yield: 17.03\%

Compound 214
Yield: 20.36\%

The:following; compounds were made according the procedure of Scheme 1 in IExample 11:
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 11.06(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.23 \mathrm{f}(\mathrm{dd}, J=14.5,7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{brs}, 2 \mathrm{H}), 3.14(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.02$ (s , $3 \mathrm{H}), 2.88-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}) ;$ LCMS:IES+431.32.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d6) $\delta 11.09(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{t}, . J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, . J=\{8.6 \mathrm{jHz}, 1 \mathrm{H})$, $7.02,(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65-6.61(\mathrm{~m}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=12.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=12.3 \mathrm{JHz}$,
$2 \mathrm{H}), 3.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.50(\mathrm{~m}, 4 \mathrm{H}), 2.03-2.001(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{brs}$, 1H), 1.69-1.64 (m, 2H), 1.39 (s, 9H), 1.10-1.05 (m, 2H); LC MS: ES+469.4.

Compound 216
Yield: 9.8\%
${ }^{1} H$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 11.09(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.13 \mathrm{~d}(\mathrm{~d}, . J==8.5 \mathrm{Hzz}, 1 \mathrm{H})$, $7.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 5.07-5.04(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{brs}, 1 \mathrm{H}), 3.71-3.69(\mathrm{~m}, 2 \mathrm{H}), .3 .21$ $(\mathrm{s}, 2 \mathrm{H}), 2.91-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{brs}, 1 \mathrm{H}), 1.80-1.60(\mathrm{~m}, .3 \mathrm{H}), 1.32-1.23((\mathrm{~m}$, 11H); LC MS: ES+ 471.42

Compound 217
Yield: 15\%
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 11.09(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{t}, J=7.81 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}==88.6 \mathrm{JHz}$, $1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{brs}, 1 \mathrm{H}), 6.65(\mathrm{brs}, 1 \mathrm{H}), 5.05(\mathrm{dd}, J=12.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-$ $3.201(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.89-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.03-7-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.69-$ 1.62(m, 2H), 1.38 (s, 9H); LC MS: ES- 429.4.

Compound 218
Yield: 17.7\%

Compound 219
Yield: 1.8\%
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left._{6}, 100^{\circ} \mathrm{C}\right) \delta 10.69(\mathrm{brs}, 1 \mathrm{H}), 7.59(\mathrm{t}, . J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{~d}, . J=$ $8.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.08 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.02-4.98(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.31(\mathrm{~m}$, $5 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.46(\mathrm{~m}, 5 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H})$; LC:MS: ES+ 471.2

Compound 220
Yield: 11%
${ }^{1} \mathrm{H}$ NMR. (400 MHz, DMSO-d ${ }_{6}$) $\delta 11.08(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03 \mathrm{l}\left(\mathrm{t}, . \mathrm{J}==^{\prime} 7.9 \mathrm{HHz}, 2 \mathrm{H}\right)$, 6.63 (brs, 1H), 5.05 (dd, $J=12.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24$ (brs, 1 H), $3.85(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-2.93$ 1H), 1.36 ((s, 9H); LC MS: ES+ 461.3.

Compound 222
Yield: 33\%
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \boldsymbol{\delta} 11.08(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 6.92$ (d, $\left.J^{\prime}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.09(\mathrm{dd}, J=12.72 \mathrm{~Hz}, 5.16 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.38$ (brs, 1 H$), 2.95-$
$2.84 \cdot(\mathrm{~m}, 3 \mathrm{H}), 2.63-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.561(\mathrm{~m}, .2 \mathrm{H}), 1.40$ (s, 9H); LC MS: ES+ 457.34

Compound 223
Yield: 25\%
${ }^{1} \mathrm{H}^{2}$ NMR (400 MHz, DMSO-d $_{6}$) $\delta 11.07(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{t}, J=7.78 \mathrm{~Hz}, 1 \mathrm{H}), 7.26 \mathrm{(d}, J==8.6 \mathrm{lHz}$, $1 \mathrm{H}), 7.21\left(\mathrm{~d}, J^{\prime}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.81(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=12.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44\left(\mathrm{t}, \mathrm{J}===^{\prime} 7.2 \mathrm{HHz}, 2 \mathrm{H}\right)$, 2.95-2.81 (m, 3H), 2.63-2.52 (m, 2H), 2.10-1.98 (m, 1H), 1.74-1.67 (m, 2H), 1.35($\mathrm{s}, 9 \mathrm{H}$); JLCIMS: ES+445.32

Compound 224
Yield: 25\%
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\left.\boldsymbol{\delta} 11.05(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21_{\text {(} \mathrm{brs},} 1 \mathrm{H}\right), 7.11$ ((d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11-5.02(\mathrm{~m}, 1 \mathrm{H}), 4.09(\mathrm{brs}, 1 \mathrm{H}), 3.76(\mathrm{brs}, 1 \mathrm{H}), 3.63$ (brs, 1 H), $3.54(\mathrm{brs}, 1 \mathrm{H}), 3.38($ brs, 1 H$), 2.88-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.59-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.90(\mathrm{~m}, 3 \mathrm{H})$, 1.38: (s, 9H); LC MS: ES+ 443.2.

Compound 225
Yield: 26\%
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 11.07(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.79^{\prime}(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.36(\mathrm{~m}, 3 \mathrm{H}), 3.95 \mathrm{l}(\mathrm{brs}, .2 \mathrm{H}), .2 .90-2.83(\mathrm{~m}, .1 \mathrm{H})$, 2.59-2.50 (m, 2H), $2.00(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H})$; LC MS: ES+ 429.25

10
Compound 226
Yield: 12\%
${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \delta 11.10(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8=8.6 \mathrm{JHz}$, $1 \mathrm{H}), 7.04 .(\mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{brs}, 1 \mathrm{H}), 5.07-5.03(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.21-3.18(\mathrm{~m}, 1 \mathrm{H})$, 3.02-2.98 (m, 1H), 2.89-2.84 (m, 1H), 2.60-2.53 (m, 1H), 2.07-2.01 (m, 1H), 1.96-1.90 (m, 1H), $1.64-1.59^{\prime}(\mathrm{m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;$ LC MS: ES+ 457.31

Compound 1227^{\prime}
Yield:: 14\%,

Compound 1228 ;
Yield:: 12%,
${ }^{1} \mathrm{H}\left[\mathrm{NMR} .\left(400, \mathrm{MHz}, \mathrm{DMSO}_{6}\right)\right.$) $\delta 11.09(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.09)(\mathrm{d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.36 .(\mathrm{s}, 1 \mathrm{H}), 5.05\left(\mathrm{dd}, J^{\prime}=13.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.59-3.49(\mathrm{~m}$,
${ }^{1} \mathrm{H} / \mathrm{NMR} .\left(4001 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \boldsymbol{\delta} 11.09(\mathrm{~s}, 1 \mathrm{H}), 7.63-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.031(\mathrm{~d}, \mathrm{~J}$ $==7.01 \mathrm{~Hz}, 1 \mathrm{H}), 6.86 \mathrm{i}(\mathrm{s}, 1 \mathrm{H}), 5.10-5.02(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{brs}, 1 \mathrm{H}), 3.43(\mathrm{brs}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 2 \mathrm{H}), 2.91-$ 2.85 ($\mathrm{m}, 1 \mathrm{H}$), 2.66-2.56 (m, 1H), 2.07-2.03 (m, 1H), 1.90-1.77 (m, 4H), 1.41 ($\mathrm{s}, 9 \mathrm{H}) ;$ LC.MS: IES + 457.37. $2 \mathrm{H}), 2.88-2.84 \mathrm{H}(\mathrm{m}, 1 \mathrm{H}), 2.60-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.00-192(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.23(\mathrm{~m}, 12 \mathrm{H})$; LC MS: ES- 455.4

Compound 229
1 H NMR (500 MHz, DMSO- $d 6$): $\delta 11.11$ (s, 1 H), 7.65 (t, J=8.0Hz, 1H), '7.16 (d, J=9.0Hz, $2 \mathrm{H}), 7.11(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, \mathrm{J}=5.5 \mathrm{~Hz}, 7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (d , $\mathrm{J}=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.90-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.03(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}(\mathrm{ES}+): \mathrm{m} / \mathrm{z} .312 .1$
[M+H]+

Compound 230

Compound 231

LC/MS, (ES-): m/z 443.3 [M+H]+
${ }^{1} \mathrm{H}$ NMR. $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 11.08(\mathrm{~s}, 1 \mathrm{H}), 7.75-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J==7.8 \mathrm{lHz}, 2 \mathrm{CH})$, $5.10{ }^{(}(\mathrm{dd}, J=12.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.23-3.20(\mathrm{~m}, 1 \mathrm{H}), .3 .01(\mathrm{~s}, .3 \mathrm{H}), .2 .88$ (ddd, $J=17.3,13.9,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.99((\mathrm{~m}, 1 \mathrm{H})$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d_{6}\right) \delta 11.09(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=12.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.44$ $(\mathrm{q}, ~ J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.73(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~s}, 3 \mathrm{H}), 2.88$ ($\mathrm{ddd}, \mathrm{J}=16.8$, $13.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.93$ (m, 1H), 1.38 ($\mathrm{s}, 8 \mathrm{H})$.

Compound 232
 $J=17.3,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{dd}, J=12.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-3.961(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.59(\mathrm{~m}, 2 \mathrm{H})$,
$3.58-3.03(\mathrm{~m}, 4 \mathrm{H}), 2.94-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.92(\mathrm{~m}, .2 \mathrm{H}) . \mathrm{LLCMSIRt}=$ $0.92 \mathrm{~min} . \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]=381.7$

Compound 233
${ }^{1} \mathrm{H}^{\prime}$ NMR (400 MHz, DMSO- $\left.d_{6}\right) \delta 11.09(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{dd}, J=8.5,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12$ ($\mathrm{d}, . J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=12.7,5.4 \mathrm{JHz}, 1 \mathrm{H}), 4.44$ $(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.89-3.73(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{ddd}, J=16.8,13.7,5.3 \mathrm{JHz}$, $1 \mathrm{H}), 2.73-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.14-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 8 \mathrm{H})$.
LC/MS, (ES-): m/z 427.3 [M-H]-

Scheme: 2: Illustrative Preparation of 4-amino-substituted :2-(2,6-dioxo-piperidin-3-yl)-isoindole-1,3-dione hydrochloride (de-Boc):

General procedure:
A solution of Boc-substituted-4-amino-substituted 2-(2,6-dioxo-piperidin-3-yl)-isoindole-1,3-dione: in dioxane at $0^{\circ} \mathrm{C}$ was treated with 4 M HCl in dioxane and resulting mixture allowed stirat:room temperature. After complete consumption of starting materialas evidentffrom'TLC،\& LCMS, the: volatiles were stripped off, residue triturated with pentane /ether, dried and ffinally lyophilized to afford the target hydrochloride as a solid.

The:following; compounds were made according the procedure of :Scheme 2 :

Compound 234
Yield: 88\%
1
 (dd, $J^{\prime}=21.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.08 (dd, $J=13.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.48 (brs, 2 H), 2.99 ($\mathrm{s}, 3 \mathrm{H}$), $2.92-2.84$ $\left.(\mathrm{m}, 1 \mathrm{H}), 2.79^{\prime}(\mathrm{brs}, 2 \mathrm{H}), 2.61-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 2 \mathrm{H}) ; \mathrm{LC}\right\rfloor \mathrm{MS}: \mathrm{JES}+$ 345.32,

(HCl salt)

Compound 235
Yield: 73\%
 $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-5.04(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{brs}, 2 \mathrm{H}), 3.75-3.661(\mathrm{brs}, 2 \mathrm{H}), 3.57$ (brs, 1 H), 2.89-2.84 (m, 1H), 2.66-2.56 (m, 1H), 2.32-2.24 (m, 1H), 2.06-1.98 (m, 3 H$) ;$ ILClMS: ES+343.29

Compound 236
Yield: 93\%
1

$15=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.89$ $(\mathrm{m}, 4 \mathrm{H}), 2.61-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 2 \mathrm{H}) ;$ LC MS: ES+. 357.34

Compound 237
Yield: 75\%

(HCl salt)

Compound 238
Yield: 82\%
 $\mathrm{Hz}, 1 \mathrm{H}), 7.25\left(\mathrm{~d}, J^{\prime}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 1 \mathrm{H}), 5.08_{(\mathrm{dd}, \mathrm{e}} J==12.8$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.67-$ 2.54.(m, 2H), 2.13-2.04 (m, 2H), 1.99-1.90 (m, 2H), 1.71-1.60 (m, 1H); LC.MS: ES+.357.3

(HCl sall)

Compound 239
Yield: 37\%

Compound 240
Yield: 19\%
${ }^{1} \mathrm{H}$ NMR. $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \boldsymbol{\delta} 11.07(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.09$ ($\left.\mathrm{d}, . J==7.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.77^{\prime}\left(\mathrm{d}, J^{\prime}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.05(\mathrm{dd}, J=13.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (brs, 2 H), 3.73 ($\mathrm{brs}, 2 \mathrm{H}$), $2.21-2.85$ (m, 1H), 2.58-2.49 (m, 2H), 2.00 (brs, 1H); LC MS: ES+ 329.2

(HCl salt)

Compound 241
Yield: 46.45\%
${ }^{1} \mathrm{H}$ NMR. $\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \boldsymbol{\delta} 11.10(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{brs}, 3 \mathrm{H}), 7.69{ }_{1}\left(\mathrm{t}, J==^{\prime} 7.8 \mathrm{HHz}, 1 \mathrm{H}\right), 7.37(\mathrm{~d}$, $\mathrm{J}=8.24 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=6.88 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.06(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.54(\mathrm{~m}, 4 \mathrm{H}), .3 .48((\mathrm{dd}, \mathrm{J}==$ $12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (brs, 2H), $3.01(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.52(\mathrm{~m}, .2 \mathrm{H}), 2.04-1.99$ (m, 1H); LC MS: ES+ 331.2

Compound 242
Yield: 83.3\%.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 11.10(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{brs}, 3 \mathrm{H}), 7.60(\mathrm{t}, J=7.81 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}$, $\left.J=8.7^{\prime} \mathrm{Hz}, 1 \mathrm{H}\right), 7.05(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 5.11-5.02(\mathrm{~m}, 1 \mathrm{H}), .3 .41(\mathrm{~d}, \mathrm{~J}==16.8 \mathrm{HHz}, 2 \mathrm{H})$, 2.86i (brs, 4H), 2.64-2.54 (m, 1H), 2.03 (brs, 1H), 1.87-1.79 (m, 2H); LC MS: JS+. 331.2

HCl salt

Compound 243
Yield: 88.9\%
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}$) $\boldsymbol{\delta} 11.10(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{brs}, 2 \mathrm{H}), 7.63-7.54(\mathrm{t}, \mathrm{J}=7.84 \mathrm{JHz}, 1 \mathrm{H})$, $7.16 \mathrm{i}\left(\mathrm{d}, J^{\prime}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{dd}, \mathrm{J}=12.6,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.31-3.23(\mathrm{~m}, 4 \mathrm{H}), 2.96-2.77(\mathrm{~m}, 3 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.83$ (m, 3H), 1.40-1.31 (m, 2H); LC MS: ES+ 371.3

Compound 244
Yield: 47.28\%

Compound 245
Yield: 83.5\%
${ }^{1} \mathrm{HNMR} .\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}\right) \boldsymbol{\delta} 11.11(\mathrm{~s}, 1 \mathrm{H}), 9.05(\mathrm{brs}, 2 \mathrm{H}), 7.70-7.61$ (t, J J = $\left.\left.=7.8\right] \mathrm{Hz}, 1 \mathrm{H}\right), 7.16$ $(\mathrm{dd}, J=11.8,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{dd}, \mathrm{J}=12.7,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.42((\mathrm{~m}$, $1 \mathrm{H}), 3.51-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.15(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.51(\mathrm{~m}$, $1 \mathrm{H}), 2.42-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H}) ; \mathrm{LC}$ MS: ES+343.3.

HCl salt

Compound 246
Yield: 69\%
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right) \delta 11.11(\mathrm{~s}, 1 \mathrm{H}), 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}),{ }^{\prime} 7.661\left(\mathrm{t}, J={ }^{\prime}=7.8 \mathrm{IHz}\right.$,

Compound 247

Yield: 74\%
${ }^{1} \mathrm{H}$ NMR. $\left(400 \mathrm{MHz}\right.$, DMSO-d $\left._{6}\right) \boldsymbol{\delta} 11.10(\mathrm{~s}, 1 \mathrm{H}), 8.57($ brs, 1 H$), 8.42(\mathrm{brs}, 1 \mathrm{H}), 7.66-7.57(\mathrm{t}, \mathrm{JJ}=$ $1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.07((\mathrm{dd}, J==12.7$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{brs}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.13(\mathrm{~m}, 4 \mathrm{H})$, 2.92-2.83 (m, 1H), $2.59(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{brs}, 2 \mathrm{H}), 1.90-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.62-1581(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+ 371.3.
 $7.86 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, . J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}$, $\mathrm{J}=12.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{q}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.32-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.10 \mathrm{l}(\mathrm{brs}, 1 \mathrm{H}), 2.88-2.84(\mathrm{~m}$, $2 \mathrm{H}), 2.64-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.39(\mathrm{~m}$, 2H); LC MS: ES+ 385.3.

Compound 248
Yield: 62\%
 $J=8.6 ; \mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=12.7,5.3] \mathrm{Hz}, 1 \mathrm{H})$,
3.68-3.61 (m, 4H), 3.52-3.49 (m, 2H), 3.03-2.82 (m, 3H), 2.64-2.51 (m, 2 H$), .2 .03-2.01(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES+ 361.3

TFA sall

Compound 251

Scheme: 3: Synthesis of (2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)alanine (Compound 252)

Step 2

Compound 252

Step. 1: An oven dried pressure tube was charged with 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3-dione 1-1 ($3 \mathrm{~g}, 10.68 \mathrm{mmol}$), DL-Alanine tert-butyl ester lhydrochloride ($2.95 \mathrm{~g}, 16.30 \mathrm{mmol}$), diisopropylethylamine ($9.25 \mathrm{~mL}, 54.34 \mathrm{mmol})$, NMP $(30 \mathrm{~mL})$ and the reaction mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was cooled tro room temperature: and diluted with water. The resulting solid compound which was precipitatedoutiwas fileted and washed with water, petroleum ether, dried under vacuum to yield itert-butyl (2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)alaninate 3-1 (2.8 g. as yellow gummy solid.

Step 2 :

Compound 252

To'a solution of tert-butyl (2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)alaninate $(2.8 \mathrm{~g}, 6.98 \mathrm{mmol})$ in dichloromethane $(20 \mathrm{~mL})$ was added $\mathrm{TFA}(20 \mathrm{~mL})$ at $0^{6}{ }^{\circ} \mathrm{C}$ and the treaction mixture: wasi stirred at room temperature for 1 h . The reaction mixture was concentrated under reduced pressure: and the crude was purified by prep. HPLC purification to .yield (2 -($2,6-$ dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)alanine Compound $252(700 \mathrm{mg})$ as pale tyellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSOd}_{6}, 400 \mathrm{MHz}\right): \delta 13.16(\mathrm{~s}, 1 \mathrm{H}), 11.13(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}),{ }^{\prime} 7.63-7.60((\mathrm{~m}$, $1 \mathrm{H}), 7.12-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.70(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=5.6,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{t}, J==7.2 \mathrm{IHz}$, $1 \mathrm{H}), 2.94-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J:=16.8 \mathrm{JHz}, 3 \mathrm{H})$. $\mathrm{IMM}-$ ESI+APCI calc' d . $[\mathrm{M}+\mathrm{H}]^{+} 346.0$, found 346.1.

Example :2: Illustrative Preparation of Click Library
Scheme:4:

General Procedure:
A solution of alkyne 4-1 (0.0555 mmol$)$ and azide 4-2 (0.0500 mmol$)$ in 500 uL$] D M S O$ was; treated with $\mathrm{CuSO}_{4} * 5 \mathrm{H}_{2} \mathrm{O}(0.0111 \mathrm{mmol})$ in water and sodium (R)-2-((S)-1,2-dihydroxyethyl)-4-hydroxy-5-oxo-2,5 dihydrofuran-3-olate (0.0333 mmol). The rvial was put under and atmosphere of N 2 and stirred at rt . The reaction was filtered and purifiedlby preparative HPLC.

General methods for preparatory HPLC purification:
Method-1
Preparative HPLC was conducted on a Waters auto purification instrument equippediwith a_{l} Waters, X Select CSH C18 ($5 \mu \mathrm{~m}, 19 \times 50 \mathrm{~mm}$) column operating at $25^{\circ} \mathrm{C}$: and a flow rate of 25 $\mathrm{mL} / \mathrm{min}$. Mobile: phase: $\mathrm{A}=0.1 \%$ Trifluoroacetic Acid in Water, $\mathrm{B}=$ Acetonitrile; Gradient Profile: Mobile phase initial composition of 4% B for 3 minutes, then from 5% B to 15% B in 13
minutes, 15% to 95% B in 0.5 minutes, and holding at 95% B for 2 minutes and returnedtoiinitial condition.

Method-2

Preparative HPLC was conducted on a Waters auto purification iinstrument equipped with al Waters X Select CSH C18 ($5 \mu \mathrm{~m}, 19 \mathrm{x} 50 \mathrm{~mm}$) column operating at $25^{\circ} \mathrm{C}$ and a a flow rate of $\mathrm{C}^{\circ} 25$ $\mathrm{mL} / \mathrm{min}$. Mobile: phase: $\mathrm{A}=0.1 \%$ Trifluoroacetic Acid in Water, $\mathrm{B}=$ Acetonitrile; 'Gradient Profile: Mobile phase initial composition of 4% B for 3 minutes, then from $5 \% \mathrm{lB}$ to $20 \% \mathrm{lB}$ in 13 minutes, 20% to 95% B in 0.5 minutes, and holding at 95% B for 2 minutes and returnedtoiinitial condition.

Method-3

Preparative HPLC was conducted on a Waters auto purification iinstrument requipped with al Waters. X Select CSH C18 ($5 \mu \mathrm{~m}, 19 \mathrm{x} 50 \mathrm{~mm}$) column operating at $25^{\circ} \mathrm{C}$ and a fflow rate of 25 $\mathrm{mL} / \mathrm{min}$. Mobile: phase: $\mathrm{A}=0.1 \%$ Trifluoroacetic Acid in Water, $\mathrm{B}=$ Acetonitrile; IGradient Profile: Mobile: phase initial composition of 4% B for 3 minutes, then from $10 \% \mathrm{~B}$ to 25% B iin 13 minutes, 25% to 95% B in 0.5 minutes, and holding at 95% B for 2 minutes and returned tooinitial condition.

Method-4.

Preparative HPLC was conducted on a Waters auto purification instrument equippediwith at Waters X . Select CSH C18 ($5 \mu \mathrm{~m}, 19 \mathrm{x} 50 \mathrm{~mm}$) column operating at $25^{\circ} \mathrm{C}$ and a flow rate of 25 $\mathrm{mL} / \mathrm{min}$. Mobile: phase: $\mathrm{A}=0.1 \%$ Trifluoroacetic Acid in Water, $\mathrm{B}=$ Acetonitrile; Gradient Profile: Mobile phase initial composition of 4% B for 3 minutes, then from 15% _B to 30%] $\operatorname{in} 13$ minutes, 30% to 95% B in 0.5 minutes, and holding at 95% B for 2 minutes and returned topinitial condition.

Method-5

Preparative HPLC was conducted on a Waters auto purification instrument equippediwith a_{ι} Waters, X Select CSH C18 ($5 \mu \mathrm{~m}, 19 \times 50 \mathrm{~mm}$) column operating at $25^{\circ} \mathrm{C}$ and a fflow ${ }_{1}$ rate of ${ }_{2} 25$ $\mathrm{mL} / \mathrm{min}$. Mobile: phase: $\mathrm{A}=0.1 \%$ Trifluoroacetic Acid in Water, $\mathrm{B}=$ Acetonitrile; ${ }^{\text {Gradient }}$

Profile: Mobile phase initial composition of 4% B for 3 minutes, then from 20% B 1 to 35% Biin 13 minutes, 35% to 95% B in 0.5 minutes, and holding at 95% B for 2 minutes and returnedtoiinitial condition.

Method-6
Preparative HPLC was conducted on a Waters auto purification iinstrument equipped with al Waters X Select CSH C18 ($5 \mu \mathrm{~m}, 19 \mathrm{x} 50 \mathrm{~mm}$) column operating at $25^{\circ} \mathrm{C}$ and a fflow rate of 25 $\mathrm{mL} / \mathrm{min}$. Mobile: phase: $\mathrm{A}=0.1 \%$ Trifluoroacetic Acid in Water, $\mathrm{B}:=$ Acetonitrile; Gradient Profile: Mobile phase initial composition of 4% B for 3 minutes, then from $25 \% \mathrm{~B}$ ito $40 \% \mathrm{lB}$ iin 13 minutes, 40% to 95% B in 0.5 minutes, and holding at 95% B for 2 minutes and returnedtoiinitial condition.

Method-7

Preparative HPLC was conducted on a Waters auto purification instrument equipped with at Waters. X Select CSH C18 ($5 \mu \mathrm{~m}, 19 \mathrm{x} 50 \mathrm{~mm}$) column operating at $25^{\circ} \mathrm{C}$ and a flow rate of 25 $\mathrm{mL} / \mathrm{min}$. Mobile: phase: $\mathrm{A}=0.1 \%$ Trifluoroacetic Acid in Water, $\mathrm{B}=$ Acetonitrile; IGradient Profile: Mobile phase initial composition of 4% B for 3 minutes, then from $30 \% \mathrm{~B}$ to $45 \% \mathrm{~B}$ Bin 13 minutes, 45% to 95% B in 0.5 minutes, and holding at 95% B for 2 minutes and returned tooinitial condition.

Method-8

Preparative HPLC was conducted on a Waters auto purification instrument equipped with al Waters X Bridge Prep C18 ($5 \mu \mathrm{~m}, 19 \times 100 \mathrm{~mm}$) column operating at $25^{\circ}{ }^{\circ} \mathrm{C}$ and afflow rrate of 25 $\mathrm{mL} / \mathrm{min}$. Mobile; phase: $\mathrm{A}=0.1 \%$ Trifluoroacetic Acid in Water, $\mathrm{B}=$ Acetonitrile; ;Gradient Profile: Mobile phase initial composition of 4% B for 3 minutes, then from 5% B to 25% B in 13 minutes, 25% to 95% B in 0.5 minutes, and holding at 95% B for 2 minutes and returned toiinitial condition.

The:following: compounds were made according to the general procedure in Scheme 4 :

2-(2,6-Dioxopiperidin-3-yl)-4-(((1-(2-(pyridin-2-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 253)

Purified by Method $2 .{ }^{\prime}$ H NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta} 11.10(\mathrm{~s}, 1 \mathrm{H}), 8.521(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H})$, $7.73\left(\mathrm{t}, J^{\prime}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.55(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.10-16.97(\mathrm{~m}, 3 \mathrm{H}), .5 .13-$ $5.001(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 3.61-3.45(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.67-$ 2.54.(m, 2H), $2.15-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}$ ($\mathrm{ES}+)_{\mathrm{I}} \mathrm{m} / \mathrm{z} \cdot 476.6$ ($\left.\mathrm{M}+\mathrm{H}\right)^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(((1-(2-methoxyethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 254)

Purified by Method 3. 'H NMR (300 MHz , DMSO- d_{6}) $\boldsymbol{\delta} 11.10(\mathrm{~s}, 1 \mathrm{H}), 7.99_{1}(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{t}, \mathrm{J}==$ $\left.7.9^{\prime} \mathrm{Hz}, 1 \mathrm{H}\right), 7.19^{\prime}\left(\mathrm{d}, J^{\prime}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.12-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.12-5.00(\mathrm{~m}, 1 \mathrm{H}), 4.60$ ($\mathrm{d}, \mathrm{J}==4.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.49^{\prime}(\mathrm{t}, \boldsymbol{J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{t}, \boldsymbol{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 2.98-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.68$ -2.48 ($\mathrm{m}, 2 \mathrm{H}$), $2.08-1.90(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}(\mathrm{ES}+): \mathrm{m} / \mathrm{z} 412.8(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(((1-(2-(6-methylpyrazin-2-yl)ethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 255)

Purified by Method 3. ${ }^{1}$ H NMR (300 MHz , DMSO- d_{6}) $\boldsymbol{\delta} 11.10(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H})$, $\left.7.96^{\prime}(\mathrm{s}, 1 \mathrm{H}), 7.60-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.01(\mathrm{~m}, 3 \mathrm{H}), 5.06 \mathrm{(dd}, J=11.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.72(\mathrm{t}, \mathrm{J}$ $=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.96-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.53((\mathrm{~m}, 2 \mathrm{H})$, 2.42: (s, 3H), 2.09-1.96(m, 1H). LC/MS (ES+): m/z $475.9(\mathrm{M}+\mathrm{H})^{+}$

4-(((1-(2-(2,2-Dichlorocyclopropyl)ethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (Compound 256)

Purified by Method 5. 'H NMR (300 MHz, DMSO- $\left.d_{6}\right) \delta 11.10(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}==$ $\left.7.7^{\prime} \mathrm{Hz}, 1 \mathrm{H}\right), 7.16(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.01(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{dd}, J:=12.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61$ (d, $\left.J^{\prime}=5.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.49(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.99-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.53(\mathrm{~m}, .2 \mathrm{H}), 2.18-1.82$ $(\mathrm{m}, 3 \mathrm{H}), 1.67-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.19-1.11(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}(\mathrm{ES}+): \mathrm{m} / \mathrm{z} 491.0(\mathrm{M}+\mathrm{H})^{+}$

3-(4-(((2-(2,6-Dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)methyl)-1H-1,2,3-triazol-1-yl)-N-methylpropanamide (Compound 257)

Purified by Method 2. 'H NMR (300 MHz, DMSO- d_{6}) $\delta 11.10(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=2.0 \mathrm{JHz}, 1 \mathrm{H})$, 7.89 - 7.82 (m, 1H), $7.57(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.02(\mathrm{~m}, 2 \mathrm{H}), 5.06$ (dd, $\left.J^{\prime}=14.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.99-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.71--2.59$ $(\mathrm{m}, 2 \mathrm{H}), 2.10-1.94(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{CH} 3$ and CH 2 under solvent. LC/MS (ES+): m/z.439.9(M+H)+

2-(2,6-Dioxopiperidin-3-yl)-4-(((1-(isoxazol-5-ylmethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 258)

Purified by Method 3. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta} 11.10(\mathrm{~s}, 1 \mathrm{H}), 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.13(\mathrm{~s}, 1 \mathrm{H})$, $7.58(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.02(\mathrm{~m}, 2 \mathrm{H}), 16.51(\mathrm{~s}, 1 \mathrm{H}), 5.87(\mathrm{~s}, 2 \mathrm{H}), 5.12$ $-4.99^{\prime}(\mathrm{m}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.53(\mathrm{~m}, .2 \mathrm{H}), 2.13-1.94(\mathrm{~m}$, 1H). LC/MS (ES+): m/z 435.9 (M+H) ${ }^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(((1-((tetrahydrofuran-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 259)

Purified by Method 3. 1H NMR (300 MHz , DMSO-d6) $\delta 11.10(\mathrm{~s}, 1 \mathrm{H}), 8.06(\mathrm{~d}, \mathrm{~J}=: 2.3 \mathrm{JHz}, 1 \mathrm{H})$, $7.58(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{dd}, \mathrm{J}=14.2,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.60 ($\mathrm{d}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}$), $4.33(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.55(\mathrm{~m}, 2 \mathrm{H})$, 3.48-3.38 (m, 1H), $3.01-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.80$ (m, 1H), 1.56 (m, 1H). LC/MS (ES+): m/z $438.9(\mathrm{M}+\mathrm{H})^{+}$

4-(((1-(2-Bromoethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (Compound 260)

 $8.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.04(\mathrm{~m}, 2 \mathrm{H}), 5.07(\mathrm{dd}, 1 \mathrm{H}), 4.76(\mathrm{t}, \mathrm{J}==5.9 \mathrm{jHz}, 2 \mathrm{H})$,
$4.62(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.97-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.541(\mathrm{~m}, 2 \mathrm{C}), 2.29-$ 1.92. (m, 1H). LC/MS (ES+): m/z $460.9(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(((1-(pyridin-3-yl)-1H-1,2,3-triazol-4-
yl)methyl)amino)isoindoline-1,3-dione (Compound 261)

Purified by Method 4. 'H NMR (300 MHz, DMSO- d_{6}) $\boldsymbol{\delta} 11.10(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.83(\mathrm{~s}, 1 \mathrm{H})$, $8.71-8.64(\mathrm{~m}, 1 \mathrm{H}), 8.36-8.28(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.13(\mathrm{~m}, .2 \mathrm{H}), 7.11-7.03$ $(\mathrm{m}, 1 \mathrm{H}), 5.07\left(\mathrm{dd}, J^{\prime}=12.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.73(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.54$ (m,2H), 2.10-1.97 (m, 1H). LC/MS (ES+): m/z $432.0(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(((1-(1-methyl-1H-pyrazol-3-yl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 262)

Purified by Method $4 .{ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta} 11.10(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H})$, $7.59{ }^{\prime}(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=7.0 \mathrm{JHz}, 1 \mathrm{H})$, 6.67'-6.58 (m, 1H), 5.07 (dd, $J=13.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.76(\mathrm{~m}$, $1 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.90(\mathrm{~m}, 2 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}(\mathrm{ES}+): \mathrm{m} / \mathrm{z} \cdot 435.0(\mathrm{M}+\mathrm{H})^{+}$

4-(((1-((R)-5-Chloro-2,3-dihydro-1H-inden-1-yl)-1H-1,2,3-triazol-4-yl)methyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (Compound 263)

Purified by Method 7. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\boldsymbol{\delta} 11.10(\mathrm{~s}, 1 \mathrm{H}), 8.031(\mathrm{~s}, 1 \mathrm{H}),{ }^{\prime} 7.58(\mathrm{t}, . J==$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.011(\mathrm{~m}, 3 \mathrm{H}), 16.18((\mathrm{t}$, $J=: 7.01 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, J=12.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J:=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.23-3.09((\mathrm{~m}, 1 \mathrm{H})$, $3.05-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.71(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.90((\mathrm{~m}, 1 \mathrm{H})$. LC/MS (ES+): m/z $505.0(\mathrm{M}+\mathrm{H})^{+}$
tert-Butyl. 4-(4-(((2-(2,6-Dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)methyl)-1H-1,2,3-triazol-1-yl)piperidine-1-carboxylate (Compound 264)

Purified by Method 6. LC/MS (ES+): m/z $538.2(\mathrm{M}+\mathrm{H})^{+}$
tert-Butyl. 4-((4-(((2-(2,6-Dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)methyl)-1H-1,2,3-triazol-1-yl)methyl)piperidine-1-carboxylate (Compound 265)

Purified by Method 7. 'H NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta} 11.10(\mathrm{~s}, 1 \mathrm{H}), 7.99_{1}(\mathrm{~s}, 1 \mathrm{H}), 7.57_{(\mathrm{t}, \mathrm{t}, \mathrm{J}==}$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15\left(\mathrm{~d}, J^{\prime}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.10-7.00(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{dd}, J=12.0,5.1 \mathrm{HHz}, 1 \mathrm{H}), 4.60$ $(\mathrm{s}, 2 \mathrm{H}), 4.24\left(\mathrm{~d}, J^{\prime}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.89(\mathrm{app} \mathrm{d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.98-2.76$ (m, 1H), 2.69-2.54 (m, 3H), $2.11-1.88(\mathrm{~d}, J=19.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 1 \mathrm{H}), 1.40-1.30(\mathrm{~m}, 9 \mathrm{H}), 1.03(\mathrm{~d}, J==10.8 \mathrm{JHz}$, 2H). LC/MS (ES+): m/z $552.1(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(((1-(4-fluorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 266)

Purified by Method 6. 'H NMR (300 MHz , DMSO- d_{6}) $\delta 11.09(\mathrm{~s}, 1 \mathrm{H}), 8.07(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{HHz}, 1 \mathrm{H})$,
yl)methyl)amino)isoindoline-1,3-dione (Compound 267)

Purified by Method 1. LC/MS (ES+): m/z $468.2(\mathrm{M}+\mathrm{H})^{+}$
tert-Butyl. (2S)-2-((4-(((2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)methyl)-1H-1,2,3-triazol-1-yl)methyl)pyrrolidine-1-carboxylate (Compound 268)

 $0.5 \mathrm{H}), 7.56$ ($\mathrm{t}, J^{\prime}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.26-7.00(\mathrm{~m}, 3 \mathrm{H}), 5.06$ (dd, $\left.J=12.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.60(\mathrm{~d},, J=$ $4.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.43\left(\mathrm{~d}, J^{\prime}=18.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.02(\mathrm{app} \mathrm{s}, 1 \mathrm{H}), 3.25-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.79(\mathrm{~m}, 2 \mathrm{H})$,
$2.69^{\prime}-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.51(\mathrm{~m}, .2 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H})$. LC/MS (ES+): m/z $538.1(\mathrm{M}+\mathrm{H})^{+}$
tert-Butyl. 3-((4-(((2-(2,6-Dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)amino)methyl)-1H-

Purified by Method 4. ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 11.10(\mathrm{~s}, 1 \mathrm{H}), 7.91 \mathrm{l}(\mathrm{s}, 1 \mathrm{H}),{ }^{7} 7.56(\mathrm{t}, . J==$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.11-7.03(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{app} \mathrm{d}, \mathrm{J}=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~s}, 2 \mathrm{H}), 4.43(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~s}, .3 \mathrm{H})$, $1.95(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}(\mathrm{ES}+): \mathrm{m} / \mathrm{z} 478.1(\mathrm{M}+\mathrm{H})^{+}$
1,2,3-triazol-1-yl)methyl)piperidine-1-carboxylate (Compound 269)

 $(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.00(\mathrm{~m}, 2 \mathrm{H}), 5.06(\mathrm{dd}, J=11.7,3.8 \mathrm{JHz}, 1 \mathrm{H})$, $4.60{ }^{\prime}(\mathrm{s}, 2 \mathrm{H}), 4.24\left(\mathrm{~d}, J^{\top}=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.98-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.65-2.52 \mathrm{l}(\mathrm{m}, .2 \mathrm{H}), .2 .10-1.96((\mathrm{~m}$, $1 \mathrm{H}), 1.97-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 1.11(\mathrm{~s}, 5 \mathrm{H}) . \mathrm{LLC} / \mathrm{MS}(\mathrm{ES}+): \mathrm{m} / \mathrm{z}$ $552.1(\mathrm{M}+\mathrm{H})^{+}$

4-(((1-(2-(3,5-Dimethylisoxazol-4-yl)ethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (Compound 270)

4-(((1-(Azetidin-3-ylmethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (Compound 271)

Purified by Method 1, then Method 8. LC/MS (ES+): m/z $424.1(\mathrm{M}+\mathrm{H})^{+}$

4-(((1-(2-Aminoethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione

Purified by Method 1. LC/MS (ES+): m/z 397.9 (M+H)+
Scheme 5: Illustrative Preparation of Click Library from N-Methyl

General Procedure:
A solution of alkyne 5-2 (0.0500 mmol) and azide 5-1 (0.0500 mmol) in 500uL DMSO wastreated with $\mathrm{CuSO}_{4} * 5 \mathrm{H}_{2} \mathrm{O}(0.0100 \mathrm{mmol})$ in water and sodium (R)-2-((S)-1,2-dihydroxyethyl)-4-hydroxy-5-oxo-2,5 dihydrofuran-3-olate (0.0300 mmol). The vial was put under and atmosphere of ${ }^{\prime} \mathrm{N} 2$; and stirred at rt . The reaction was filtered to remove copper salts, and purified by prep HPLC.

The:following: compounds were made according to the general procedure in Scheme 5 :

2-(2,6-Dioxopiperidin-3-yl)-4-(methyl((1-(2-(pyridin-2-yl)propyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 273)

Purified by Method 2. 'H NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta} 11.10$ (s, 1H), $8.54(\mathrm{~s}, 1 \mathrm{H}), 7.83-7.70$ $(\mathrm{m}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.35-7.19(\mathrm{~m}, 4 \mathrm{H}), 5.17-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 4.64-4.52((\mathrm{~m}, 2 \mathrm{~h})$, $3.56-3.44(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 3 \mathrm{H}), 2.74-2.55(\mathrm{~m}, 2 \mathrm{H}), 2.33-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.94(\mathrm{~m}, 2 \mathrm{H})$, 1.18: ($\mathrm{d}, J^{\prime}=7.0 \mathrm{~Hz}, 3 \mathrm{H}$). LC/MS (ES+): m/z $488.2(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(methyl((1-(pyridin-3-yl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 274)

Purified by Method 4. ${ }^{1}$ H NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta} 11.09(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~s}, 1 \mathrm{H})$, $8.71-8.64 .(\mathrm{m}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{~d}, . J=8.8 .8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ $(\mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.07(\mathrm{~m}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 2.98-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.65--$ $2.53(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.95(\mathrm{~m}, 1 \mathrm{H})$. LC/MS (ES+): m/z $446.1(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(methyl((1-(1-methyl-1H-pyrazol-3-yl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 275)

Purified by Method 4. 'H NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta} 11.09(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 7.89(\mathrm{~s}, 1 \mathrm{H})$, $7.66 \mathrm{i}(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.27(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.61(\mathrm{~m}, 1 \mathrm{H}), 5.19-5.08(\mathrm{~m}, 1 \mathrm{H}), 4.83((\mathrm{~s}$, 2 H), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.96-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.11-1.99(\mathrm{~m}, 1 \mathrm{H})$. LC/MS. (ES+): m/z. $449.1(\mathrm{M}+\mathrm{H})^{+}$

4-(((1-((R)-5-Chloro-2,3-dihydro-1H-inden-1-yl)-1H-1,2,3-triazol-4-yl)methyl)(methyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (Compound 276)

Purified by Method 7. 'H NMR (300 MHz , DMSO- d_{6}) $\boldsymbol{\delta} 11.09(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{t}, \mathrm{J}==$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.20-6.12(\mathrm{~m}, 1 \mathrm{H}), 5.15-\mathrm{c}$ $5.03(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~s}, 2 \mathrm{H}), 3.21-3.05(\mathrm{~m}, 1 \mathrm{H}), 3.04-2.80(\mathrm{~m}, 6 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.65-$ 2.52(m, 2H), 2.43-2.34(m, 1H), 2.11-1.90(m, 1H). LC/MS (ES+): m/z 519.1 (M+H) ${ }^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(methyl((1-(piperidin-4-yl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 277)

Purified by Method 7. 'H NMR (300 MHz, DMSO- \boldsymbol{d}_{6}) $\boldsymbol{\delta} 11.09$ ($\mathrm{s}, 1 \mathrm{H}$), $8.67 \mathrm{l}(\mathrm{bs}, 1 \mathrm{H}), 88.40((\mathrm{bs}$, $1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 2 \mathrm{H}), 5.18-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.75((\mathrm{appss}$, $3 \mathrm{H}), 3.46-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.18-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.54((\mathrm{~m}$, $2 \mathrm{H}), 2.32-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.18-1.96(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 1 \mathrm{H})(\mathrm{TFA}$ salt). LC/MS (ES+): m/m 452.1 $(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(methyl((1-(piperidin-4-ylmethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 278)

Purified by Method 7. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\boldsymbol{\delta} 11.10$ ($\left.\mathrm{s}, 1 \mathrm{H}\right), 8.48(\mathrm{bs}, 1 \mathrm{H}), 8.16(\mathrm{bs}$, $1 \mathrm{H}), 7.96 \mathrm{i}(\mathrm{s}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 2 \mathrm{H}), 5.17-5.061(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H})$, $4.29 \mathrm{l}\left(\mathrm{d}, \mathrm{J}^{\prime}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.30-3.17(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.93-2.721(\mathrm{~m}, 3 \mathrm{H}), 2.66-2.53((\mathrm{~m}$, 2H), $2.13-1.99$ (m, 2H), $1.62-1.49$ (m, 2H), $1.41-1.20(m, 4 H)$ (TFA salt).JLC/MS(ES+):m/z 466.2. $(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(((1-(4-fluorobenzy)-1H-1,2,3-triazol-4-yl)methyl)(methyl)amino)isoindoline-1,3-dione (Compound 279)

 $8.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 2 \mathrm{H}), 5.55(\mathrm{~s}, 2 \mathrm{H}), 5.16-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~d}$, $\left.J^{\prime}=2.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.92((\mathrm{~m}, 1 \mathrm{H})$. LC/MS, (ES+): m/z $477.1(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(methyl((1-(2-morpholinoethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 280)

Purified by Method 1. LC/MS (ES+): m/z 482.1 (M+H) ${ }^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(methyl((1-(((S)-pyrrolidin-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 281)

Purified by Method 7.LC/MS (ES+): m/z $452.1(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(methyl((1-(piperidin-3-ylmethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 282)

Purified by Method 7. 'H NMR (300 MHz , DMSO- \boldsymbol{d}_{6}) $\delta 11.10$ ($\mathrm{s}, 1 \mathrm{H}$), $8.55 \mathrm{f}(\mathrm{bs}, 1 \mathrm{H}), 8.26$ (bs , $1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H})$, $4.31(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.27-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.11-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.81(\mathrm{~m}$, $1 \mathrm{H}), 2.76-2.54(\mathrm{~m}, 3 \mathrm{H}), 2.24-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.09-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.61-$ $1.47^{\prime}(\mathrm{m}, 2 \mathrm{H}), 1.33(\mathrm{~s}, 1 \mathrm{H}), 1.17-1.05(\mathrm{~m}, 1 \mathrm{H})$ (TFA salt). LC/MS (ES+): $\mathrm{m} / \mathrm{z} .466 .2_{(}(\mathrm{M}+\mathrm{H})^{+}$

4-(((1-(2-(3,5-Dimethylisoxazol-4-yl)ethyl)-1H-1,2,3-triazol-4-yl)methyl)(methyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (Compound 283)

Purified by Method 4. LC/MS (ES+): m/z $492.2(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(((1-(2-methoxyethyl)-1H-1,2,3-triazol-4-yl)methyl)(methyl)amino)isoindoline-1,3-dione (Compound 284)

Purified by Method 3. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 11.09_{(\mathrm{s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{t}, \mathrm{J}==}$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=9.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 2 \mathrm{H}), 4.53-4.44(\mathrm{~m}, 2 \mathrm{H})$, $3.72-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.10-$ 1.98: (m, 1H). LC/MS (ES+): m/z $427.1(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(methyl((1-(2-(6-methylpyrazin-2-yl)ethyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 285)

Purified by Method 3. LC/MS (ES+): m/z $489.2(\mathrm{M}+\mathrm{H})^{+}$

4-(((1-(2-(2,2-Dichlorocyclopropyl)ethyl)-1H-1,2,3-triazol-4-yl)methyl)(methyl)amino)-2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (Compound 286)

Purified by Method 6. LC/MS (ES+): m/z $505.0(\mathrm{M}+\mathrm{H})^{+}$

3-(4-(((2-(2,6-Dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)(methyl)amino)methyl)-1H-1,2,3-triazol-1-yl)-N-methylpropanamide (Compound 287)

Purified by Method 2. LC/MS (ES+): m/z $454.2(\mathrm{M}+\mathrm{H})^{+}$
2-(2,6-Dioxopiperidin-3-yl)-4-(((1-(isoxazol-5-ylmethyl)-1H-1,2,3-triazol-4-
yl)methyl)(methyl)amino)isoindoline-1,3-dione (Compound 288)

 $7.71-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 5.18-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.76$ $(\mathrm{s}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.10-1.97(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}(\mathrm{ES}+)$: $\mathrm{m} / \mathrm{z}: 450.1(\mathrm{M}+\mathrm{H})^{+}$

2-(2,6-Dioxopiperidin-3-yl)-4-(methyl((1-((tetrahydrofuran-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl)amino)isoindoline-1,3-dione (Compound 289)

Purified by Method 3. LC/MS (ES+): m/z $453.2(\mathrm{M}+\mathrm{H})^{+}$

4-(((1-(2-Bromoethyl)-1H-1,2,3-triazol-4-yl)methyl)(methyl)amino)-2-(2,6-dioxopiperidin-3-
yl)isoindoline-1,3-dione (Compound 290)

Purified by Method 4. LC/MS (ES+): m/z $475.3(\mathrm{M}+\mathrm{H})^{+}$

Example: 3: Illustrative Preparation of tert-butyl 3-(4-(2-(tert-butoxy)-2-oxoethoxy)-6-methoxy-1,3-dioxoisoindolin-2-yl)-2,6-dioxopiperidine-1-carboxylate \& |[2-(2,6-Dioxo-piperidin-3-yl)-6-methoxy-1,3-dioxo-2,3-dihydro-1H-isoindol-4-yloxy]-acetic acid: Scheme 6:

Step 1: Preparation of 3-Methoxy-cyclohex-2-enone (6-2)

To a stirred solution of cyclohexane-1,3-dione 6 -1 ($5 \mathrm{~g}, 44.5 \mathrm{mmol})$ in ${ }^{2}$ methanol (50 mL), iodine ($337 \mathrm{mg}, 1.33 \mathrm{mmol}$) was added at room temperature and stirring was continued for further 15 minutes. After consumption of Cpd-1 as evidenced from TLC, solvent 'was removed,
residue: partitioned between ethyl acetate (50 ml) and saturated sodium thiosulphate solution, organic: part separated, washed with water, brine, dried over sodium sulphate and tevaporated to afford a crude residue which was purified over neutral alumina (elution with DCM) tro affordः3-methoxycyclohex-2-enone $6-2(3.00 \mathrm{~g}, 23.7 \mathrm{mmol}, 53 \%)$ as a yellow liquid. LCMS:IES+126.8.

Step 2: Preparation of Dimethyl 3-hydroxy-5-methoxyphthalate (6-3)

To a stirred suspension of potassium hydride ($2.11 \mathrm{~g}, 15.8 \mathrm{mmol}$) in dry 'THF ($(10 \mathrm{~mL})$ at $01^{\circ} \mathrm{C}$ under an inert atmosphere was added a solution of 3-methoxycyclohex-2-enone $16-2(2 \mathrm{~g}, 15.8$ $\mathrm{mmol})$ in dry THF (10 mL) followed by warming up to room temperature and stirring forffurther 15 h . The: reaction mixture was cooled down to $0{ }^{\circ} \mathrm{C}$, treated with freshly distilled chlorotrimethylsilane ($1.71 \mathrm{~g}, 15.8 \mathrm{mmol}$) in one portion followed lby vigorous stirring ffor 15 minutes. The: pale: yellow mixture was cooled down to $-78^{\circ} \mathrm{C}$, dimethyl but-2-ynedioate ($(2.24$ $\mathrm{g}, 15.8 \mathrm{mmol}$) was added dropwise, warmed up to $50^{\circ} \mathrm{C}$ over a period of 1 h . After an additional hour, the orange colored reaction mixture was diluted with xylene (10 mL), THF•was distilled off and the temperature gradually raised to $120^{\circ} \mathrm{C}$. After stirring at the same temperature for 12 hhrs , the: reaction mixture was cooled, extracted with ether ($2 \times 50 \mathrm{~mL}$), combined organic extracts washed with water, concentrated to afford a crude residue, which was purified lby fflash chromatography (elution with 10% ethyl-acetate in hexane) to obtain the ,desired product, ,dimethyl 3-hydroxy-5-methoxyphthalate 6-3 (750 mg, $3.12 \mathrm{mmol}, 19.7 \%$) as a light yellow solid. IGCMS: $m / z: 240.0$.

Step 13: Preparation of 3-Benzyloxy-5-methoxy-phthalic acid dimethyl ester 1(6-4)

A stirred solution of dimethyl 3-hydroxy-5-methoxyphthalate $16-3(650 \mathrm{mg}, 2.70 \mathrm{mmol})$ inidry DMF' (2 mL) was treated with benzyl bromide ($554 \mathrm{mg}, 3.24 \mathrm{mmol}$) and the mixture was heated at: $80^{\circ}{ }^{\circ} \mathrm{C}$ for 30 minutes in presence of potassium carbonate $(1.11 \mathrm{~g}, 8.10 \mathrm{mmol})$. After consumption of Cpd-3 as evident from TLC, the reaction mixture was partitioned between ethylacetate: ($2 \times 20 \mathrm{~mL}$) and ice cold water. The combined organic extracts were concentrated, residual crude purified by flash chromatography to obtain dimethyl 3-(benzyloxy)-5methoxyphthalate: 6-4 ($650 \mathrm{mg}, 1.96 \mathrm{mmol}, 72.9 \%$) as a sticky yellow solid. LCMS:IES+.331.1.

Step 4: Preparation of 3-Benzyloxy-5-methoxy-phthalic acid (6-5)

A stirred solution of dimethyl 3-(benzyloxy)-5-methoxyphthalate 6 -4 ($650 \mathrm{mg}, 1.96$ mmol) in mixture of MeOH -Water ($3: 1, \mathrm{v} / \mathrm{v}, 9 \mathrm{~mL}$) at RT was hydrolysed with llithium hydroxide: ($213 \mathrm{mg}, 5.09 \mathrm{mmol}$). After completion consumption of Cpd-4 as ensured lby lLCMS, the: volatiles; were stripped off and the residue acidified with saturated citric ;acid;solution, extracted with ethyl acetate, organic extracts dried over sodium sulphate and evaporated to obtain 3-(benzyloxy)-5-methoxyphthalic acid 6-5 ($350 \mathrm{mg}, 1.15 \mathrm{mmol}, 59.1^{\circ} \%$) as a a white solid whichrwas used in next step without further purification. LCMS: ES+ 301.1.

Step,5: Preparation of 4-Benzyloxy-6-methoxy-isobenzofuran-1,3-dione (6-6)

A mixture of 3-(benzyloxy)-5-methoxyphthalic acid 6-5 (200 mg, $661 \mu \mathrm{~mol})$ andacetic anhydride: $(2 \mathrm{~mL})$ was heated at $80^{\circ} \mathrm{C}$ for 1 h . The volatiles were stripped off to afford $4-$ (benzyloxy)-6-methoxyisobenzofuran-1,3-dione 6-6 (140 mg, $492 \mu \mathrm{~mol}, 74.8 \%$) as a' white solid, which was used in the next step without further purification. ${ }^{1} \mathrm{HNMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \$ 7.50$ (d, $J^{\prime}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.43 (t, $\left.J=7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.38-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.17$ (br :s, 1H), 7.14 (br:s, 1H), 5.38 ($\mathrm{s}, 2 \mathrm{H}$), 3.95 ($\mathrm{s}, 3 \mathrm{H}$).

Step, 6: Preparation of 4-Benzyloxy-2-(2,6-dioxo-piperidin-3-yl)-6-methoxy-isoindole-1,3-dione:(6-8)

To a stirred solution of 4-(benzyloxy)-6-methoxyisobenzofuran-1,3-dione 16-6((300 $\mathrm{mg}, 1.05 \mathrm{mmol}$) in acetic acid (3 mL), sodium acetate ($52.2 \mathrm{mg}, 1.26 \mathrm{mmol}$) was added ffollowed by the: addition of 3 -aminopiperidine-2,6-dione 6-7 ($161 \mathrm{mg}, 1.26 \mathrm{mmol}$). The reaction 1 mixture was; warmed at $100^{\circ} \mathrm{C}$ for 40 minutes. After consumption of Cpd-6 as evident from 'TLC, the reaction mass was partitioned between ethyl acetate (3 X 10 mL) and saturated sodiumbicarbonate, combined organic extracts dried over sodium sulfate, concentrated to affordalacrude, residue,which was; purified by column chromatography to afford 4-(benzyloxy)-2-(2,6-dioxopiperidin-3-yl)-6-methoxyisoindoline-1,3-dione 6-8 ($270 \mathrm{mg}, 684 \mu \mathrm{~mol}, 65.2 \%$) as a pale yellow sticky solid. LCMS: ES+ 395.1.

Step 7: Preparation of 3-(4-Benzyloxy-6-methoxy-1,3-dioxo-1,3-dihydro-isoindol-2-yl)-2,6-dioxo-piperidine-1-carboxylic acid tert-butyl ester (6-9)

A stirred solution 4-(benzyloxy)-2-(2,6-dioxopiperidin-3-yl)-6-methoxyisoindoline-1,3dione: $6-8:(260 \mathrm{mg}, 659 \mu \mathrm{~mol})$ in acetonitrile $(8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was treated with Boc anhydride $((157$ $\mathrm{mg}, 724 \mu \mathrm{~mol})$ in presence of catalytic amount of DMAP. The reaction mixture was warmed to room temperature and stirred for further 30 minutes. After consumption of $\mathrm{Cpd}-8$ as revidenced from TLC, the solvent was evaporated, the crude reaction mass was partitioned lbetween rethyl acetate: and water, combined organic extracts dried over sodium sulfate and concentrated to،afford al crude: residue: which was purified by column chromatography (elution with . 20% rethyl acetate in hexane) to afford tert-butyl 3-(4-(benzyloxy)-6-methoxy-1,3-dioxoisoindolin-2-yl)-2,6-dioxopiperidine-1-carboxylate $6-9(250 \mathrm{mg}, 505 \mu \mathrm{~mol}, 76.9 \%)$ as a :yellow solid. JLCMS: calculated for $[\mathrm{M}+\mathrm{H}-\mathrm{boc}]^{+} 395.3$; found 395.1.

Step 8: Preparation of 3-(4-Hydroxy-6-methoxy-1, 3-dioxo-1, 3-dihydro-isoindol-2-yl)-2,6-dioxo-piperidine-1-carboxylic acid tert-butyl ester (6-10)

A solution of tert-butyl 3-(4-(benzyloxy)-6-methoxy-1,3-dioxoisoindolin-2-yl)-2,6-dioxopiperidine-1-carboxylate 6-9 $(250 \mathrm{mg}, 505 \mu \mathrm{~mol})$ in ethyl acetate $(8 \mathrm{~mL})$ was ${ }^{(1)}$ hydrogenated
under ${ }^{1} 1 \mathrm{~atm}$ in presence of palladium-carbon ($\left.17.1 \mathrm{mg}, 161 \mu \mathrm{~mol}, 0.5 \mathrm{~mol} \%\right)$. After consumption of ${ }^{\text {C }}$ Cpd-8 as evidenced from TLC, the reaction mixture was filtered over a ${ }^{1}$ Celite lbed, ffiltrate concentrated to afford tert-butyl-3-(4-hydroxy-6-methoxy-1,3-dioxoisoindolin-2-yl)-2,6-dioxopiperidine-1-carboxylate $6-10(150 \mathrm{mg}, 370 \mu \mathrm{~mol}, 73.5 \%)$ as a white solid. ILCMS: IES+ 403.9.

Step 1 9: Preparation of tert-butyl 3-(4-(2-(tert-butoxy)-2-oxoethoxy)-6-methoxy-1,3-dioxoisoindolin-2-yl)-2,6-dioxopiperidine-1-carboxylate (Compound 291)

To the: stirred solution of dimethyl 3-hydroxy-5-methoxyphthalate $16-10(650 \mathrm{mg}, 2.70$ $\mathrm{mmol})$) in dry DMF (2 mL) was treated with tertiary butyl chloroacetate $(61.2 \mathrm{mg}, 407 \mu \mathrm{~mol})$ in presence: of K2CO3 ($152 \mathrm{mg}, 1.10 \mathrm{mmol}$) followed by stirring at room temperature for 2 hhr . After completion of reaction as evidenced from TLC, the reaction mixture was partitioned lbetween eethyl acetate: $(2 \mathrm{X} 20 \mathrm{~mL})$ and ice cold water, combined organic extracts concentrated and the resulting crude: was: purified by column chromatography to afford tert-butyl 3-(4-(2-(tert-butoxy)-2-oxoethoxy)-6-methoxy-1,3-dioxoisoindolin-2-yl)-2,6-dioxopiperidine-1-carboxylate Compound $291(100 \mathrm{mg}, 192 \mu \mathrm{~mol}, 52.3 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.07(\mathrm{~s}, 1 \mathrm{H})$, $6.83(\mathrm{~s}, 1 \mathrm{H}), 5.34\left(\mathrm{~d}, J^{\prime}=10.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.97-4.95(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.09-3.07(\mathrm{~m}, 1 \mathrm{H})$, 2.79-2.57 (m, 2H), 2.08-2.01 (m, 1H), 1.48 (s, 8H), 1.43 ($\mathrm{s}, 10 \mathrm{H}$); LCMS: calculated ffor [$\mathrm{M}+\mathrm{HH}-$ boc^{+}+ 419.4 ; found 419.1.

Step 10: Preparation of 2-((2-(2, 6-dioxopiperidin-3-yl)-6-methoxy-1, 3-dioxoisoindolin4 -yl)oxy)acetic acid (Compound 292)

Example:4: Illustrative Preparation of Thalidomide Analogs

Compound 293
20

Compound 294

Scheme: 7: N-Methylation of Imide

A 20 mL scintillation flask under N_{2} was charged with :2-(2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione ($500 \mathrm{mg}, 1.93 \mathrm{mmol}$) and the reaction mixture was diluted with $1 \mathrm{~N}, \mathrm{~N}$ dimethylformamide (5 mL 1.93 mmol) The solution was cooled to $0^{\circ} \mathrm{C}$, iiodomethane $((143$ $\mu \mathrm{L}, 2.31 \mathrm{mmol}$) and Potassium Carbonate ($533 \mathrm{mg}, 3.86 \mathrm{mmol}$) was added sequentially and the reaction was stirred to rt for 12 h . The reaction was filtered, concentrated; residue was purifiedwia Isco, $0-5 \% \mathrm{MeOH} / \mathrm{DCM}$ (40 g column, 16 CV) to provide 2-(1-methyl-2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione Compound 295 ($380 \mathrm{mg}, 1.39 \mathrm{mmol}, 72.3 \%$). ${ }^{13} \mathrm{C} \mathrm{NMR}((400 \mathrm{MHz}$, DMSO- $\left.d_{6}\right) \boldsymbol{\delta} 171.55,169.41,166.99,134.76,131.12,123.29,49.49,30.98,26.47,21.08 . J L C M S:$ $\mathrm{m} / \mathrm{z}: 273.2 \cdot[\mathrm{M}+\mathrm{H}]^{+}$

Example 5: Illustrative Preparation of Lenolidomide analogs
Scheme:8: Preparation of 3-(4-Bromo-1-oxoisoindolin-2-yl)piperidine-2,6-dione (Compound 296)

To a mixture of methyl 3-bromo-2-(bromomethyl)benzoate : $8-1$ ($500 \mathrm{mg}, 1.62 \mathrm{mmol}) 3$ -aminopiperidine-2,6-dione ($248 \mathrm{mg}, 1.94 \mathrm{mmol}$) and potassium carbonate ($279 \mathrm{mg}, 2.02 \mathrm{mmol}$) in ${ }^{\text {DMF }}(2.5 \mathrm{~mL})$, being heated to $45^{\circ} \mathrm{C}$.The mixture was left standing ,overnight. $\mathrm{LLCMS}_{\text {s }}$ showed the:reaction. The:reaction mixture was stirred for 2 hours at $45^{\circ} \mathrm{C}$ and cooled to $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$. JDeionized water (2.5 ml) was added to the reaction mixture at $20^{\circ} \mathrm{C}$ to $25^{\circ} \mathrm{C}$ and stirred for 15 minutes
to 20 minutes. The solid obtained was filtered, washed with de-ionized water ($(2 \times 5 \mathrm{mml})$ and andried under vacuum at $40^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ for 20 hours to obtain Compound :296 3-(4-bromo-1-oxoisoindolin-2-yl)piperidine-2,6-dione ($2.80 \mathrm{~g}, 8.66 \mathrm{mmol}$) as white soild. 1HNMR $(500 \mathrm{IMHz}$, DMSO- $d 6$): $\delta 11.02(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.17-5.13 (m, 1H), $4.44(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, \mathrm{~J}=18,1 \mathrm{H}), 2.95-2.88 \mathrm{I}(\mathrm{m}, 1 \mathrm{H}), .2 .62(\mathrm{~d}, \mathrm{~J}=1.5$, $1 \mathrm{H}), 2.51-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.01(\mathrm{~m}, 1 \mathrm{H})$. ES-MS (m/z): $322.91\left(\mathrm{M}+\mathrm{H}^{+}\right)$

Scheme:9: Preparation of Compounds 297 and 298.

Compound 298
Step, 1: Compound 297
Brought tert-butyl 3-ethynyl-3-hydroxy-azetidine-1-carboxylate ($274.66 \mathrm{mg}, 1.39 \mathrm{mmol})$, 3-(4-bromo-1-oxo-isoindolin-2-yl)piperidine-2,6-dione Compound 296 ($0.15 \mathrm{~g}, 464.19$ ıumol) Copper (I) iodide ($8.84 \mathrm{mg}, 46.42 \mathrm{umol}, 1.57 \mathrm{uL}$) and Bis(Triphenylphosphine)palladium (II) chloride: $(16.29 \mathrm{mg}, 23.21 \mathrm{umol})$ up in TEA $(4.64 \mathrm{~mL})$ which was freshly purged with , Arffor 120 minutes. The: MW vial was then sealed and heated in the MW reactor for 4 hours at $100^{\circ} \mathrm{C}$. The reaction was; then concentrated and purified by reversed phase isco $10-100 \%$ ACN/Waterw(0.1% TFA to, give :tert-butyl 3-[2-[2-(2,6-dioxo-3-piperidyl)-1-oxo-isoindolin-4-yl]ethynyl]-3-hydroxy-
azetidine-1-carboxylate Compound 297 ($15 \mathrm{mg}, 34.13 \mathrm{umol}, 7.35 \%$ yield). $\mathrm{LC} / \mathrm{MS}$ (ES-): $1 \mathrm{~m} / \mathrm{z}$ 438.3 [M-H]-

Step 2: Compound 298
tert-Butyl
3-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)ethynyl)-3-hydroxyazetidine-1-carboxylate (Compound 297) ($5.0 \mathrm{mg}, 0.01137 \mathrm{mmol}$) was lbrought up iin EtOH (2 mL) , added wet $5 \% \mathrm{Pd} / \mathrm{C}(10.0 \mathrm{mg})$ and then put reaction under a lhydrogen lballoon. Stirred atr.t. overnight. Filtered over celite and concentrated. Purified lby reversed phaseiisco 10$100 \%$ ACN/water w 0.1% TFA. Isolated tert-butyl 3-(2-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl) ethyl)-3-hydroxyazetidine-1-carboxylate (Compound 298$) ~(1.40 \mathrm{mg}$, $0.003156 \mathrm{mmol}, 27.7 \%$) as a white solid. LC/MS (ES-): m/z 442.2 [M-H]-

Scheme: 10: Preparation of Compounds 299 and 300.

Compound 296

Compound 299

Compound 300
Step, 1: Compound 299
To, a, solution of 3-(4-bromo-1-oxoisoindolin-2-yl)piperidine-2,6-dione (Compound 296 $(0.500 \mathrm{~g}, 1.54 \mathrm{mmol})$, potassium ((4-(tert-butoxycarbonyl)piperazin-1-yl)methyl)trifluoroborate $(563 \mathrm{mg}, 1.84 \mathrm{mmol})$ and Cesium carbonate $(1.50 \mathrm{~g}, 4.62 \mathrm{mmol})$ were taken, upjin)Dioxane (8 m mL
) and water' (2 mL) The reaction mixture was bubbled with argon through solvents ffor 10 m minutes. n-butyl diadamantyl phosphine ($110 \mathrm{mg}, 308 \mu \mathrm{~mol}$) and palladium acetate $(34.5 \mathrm{mg}, 154 \mu \mathrm{~mol})$ were: added and the vial was purged with Ar and sealed. The reaction was stirred at $100^{\circ \circ} \mathrm{C}$ ffor 16h,The:reaction progress was monitored by TLC and LCMS.er TLC showediconsumptionrof'SM, the: reaction mixture was cooled to room temperature and quenched lby adding water (25 mL). The mixture: was extracted with Ethyl Acetate (50 mLx 3). The organic layer was idried overanhydrous sodium sulfate, filtered and concentrated . The crude product was purified lby fflash column chromatography using 12.0 g redisef and eluted with Methanol in $\operatorname{DCM}(3 \%-5 \%)$ to oobtain tertbutyl 4-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)methyl)piperazine-1-carboxylate Compound $299(400 \mathrm{mg}, 903 \mu \mathrm{~mol}, 58.7 \%)$ as a grey solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, IDMSO- $\iota d 6)\{\boldsymbol{\delta}$ $1.38(\mathrm{~s}, 9 \mathrm{H}), 1.99-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.38(\mathrm{~m}, 4 \mathrm{H}), 2.57-2.64(\mathrm{~m}, .2 \mathrm{H}), 2.80-2.88(\mathrm{~m}, 1 \mathrm{H}), .2 .91-$ $3.33(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~d}, \mathrm{~J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}): 5.14 \mathrm{I}(\mathrm{dd}, \mathrm{J}=13.2 \mathrm{JHz}$ $\& 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.99(\mathrm{~s}$, $1 \mathrm{H}^{-}$). ES-MS (m/z): $443.05\left(\mathrm{M}+\mathrm{H}^{+}\right)$

Step 12: Compound 300
To a RB flask tert-butyl 4-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)methyl)piperazine-1-carboxylate Compound $299(0.350 \mathrm{~g}, 0.7909 \mathrm{mmol})$ in $1 \mathrm{DCM}\left(\left(6 \mathrm{~mL}{ }^{\prime}\right)\right.$) was addedl under nitrogen atmosphere at RT. To the reaction mixture 25% TFA in $\mathrm{DCM}\left({ }^{2} \mathrm{mLL}{ }^{\prime}\right)$) was added dropwise at $0^{\circ} \mathrm{C}$. and stirred the reaction mixture for 2 hours at RT. After completion of the starting, material the reaction mixture was concentrated by using rota vapour. The residue was triturated by diethyl ether $(15 \mathrm{~mL})$ to get Compound 300 TFA salt $(0.30 \mathrm{~g}, 0.8771 \mathrm{mmol}, 100.0 \%)$ as; an $_{l}$ off? white: solid. To a RB flask the TFA salt ($\left.0.030 \mathrm{~g}, 87.7 \mu \mathrm{~mol}\right)$ was added in $]$ DCM (5 m mL). potassium carbonate ($60.4 \mathrm{mg}, 438 \mu \mathrm{~mol}$) was added to the reaction mixture. Stirredthe 1 reaction mixture: for 1 hour at RT. Filtered the reaction mixture by using sintered to get 3 -(1-oxo-4-(piperazin-1-ylmethyl)isoindolin-2-yl)piperidine-2,6-dione Compound 300 ($15.0 \mathrm{mg}, 43.8 \mu \mathrm{~mol}$, $50.0, \%)$ asi a desired product. 'H NMR (400 MHz , DMSO- $d \sigma$) $\delta 1.99-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.26((\mathrm{~m}$, $4 \mathrm{H}), 2.38-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.68(\mathrm{~m}, 4 \mathrm{H}), 2.80-2.92(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H})$, $4.37^{\prime}(\mathrm{d}, \mathrm{J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, \mathrm{J}=12.8 \mathrm{~Hz} . \& .4 .8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H})$. ES-MS $(\mathrm{m} / \mathrm{z}): 343.24_{(}\left(\mathrm{M}+\mathrm{H}^{+}\right)$

Scheme 11:

Compound 296

Step 1: Compound 301

To a solution of 3-(4-bromo-1-oxoisoindolin-2-yl)piperidine-2,6-dione Compound 296 ((1 g, $3.09{ }^{\prime} \mathrm{mmol}$) , tert-butyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5,6-dihydropyridine$1(2 \mathrm{H})$-carboxylate $11-1(1.14 \mathrm{~g}, 3.70 \mathrm{mmol})$, cesium carbonate ($3.01 \mathrm{~g}, 9.27 \mathrm{mmol}$) and 1 Dioxane (8 mL.$)$ and WATER (2 mL) in (4:1), purged nitrogen for 10 min . Then added $\operatorname{Pd}(\mathrm{OAc}) 2(69.3$ $\mathrm{mg}, 309 \mu \mathrm{~mol})$ n-butyl diadamantyl phosphine ($221 \mathrm{mg}, 618 \mu \mathrm{~mol}$) and sealed the cap. stirred the reaction at $100^{\circ} \mathrm{C}$ for 1 h . The reaction progress was monitored by 'TLC. After completion of reaction quenched the reaction with water (20 mL) and extracted with ethyl acetate ($(10 \mathrm{mLx} 3)$. Combined the: organic layers and dried over anhydrous sodium ;sulfate, filtered and distilled ,washing; with pentane (10 mLx 3) was given to obtain tert-butyl 4-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-5,6-dihydropyridine-1(2H)-carboxylate (Compound :301) (500 $\mathrm{mg}, 1.17$ mmol, 38.1%) as off white solid. 'H NMR (400 MHz , DMSO- d6) $\delta 1.43$ ($\mathrm{s}, 9 \mathrm{H}$), 1.89-1.99 (m, $2 \mathrm{H}), 2.36-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.95(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.561(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{bs}, 2 \mathrm{H})$, $4.37^{\prime}(\mathrm{d}, \mathrm{J}=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, \mathrm{J}=13.2 \mathrm{~Hz}$ \& $.5 .2 \mathrm{~Hz}, 1 \mathrm{H}), 6.02$ (bs , 1H), 7.50-7.57 (m, 2H), 7.65 (d, J= $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 11.00(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}$ (ES+): $\mathrm{m} / \mathrm{z} \cdot 426.16 \mid[\mathrm{M}+\mathrm{H}]+$

Step 2: Compound 302

To a solution of tert-butyl 4-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-5,6-dihydropyridine-1 $(2 \mathrm{H})$-carboxylate (Compound 301$)(50 \mathrm{mg}, 117 \mu \mathrm{~mol})$ in IMETHANOL ($(2.5$ mL.$)$, DMF $(0.5 \mathrm{~mL})$ added $10 \% \mathrm{Pd} / \mathrm{C}(0 \mu \mathrm{~g}, 0 \mu \mathrm{~mol})$ and hydrogenated the reactionusinglballoon pressure: for 1 h .The reaction was monitored by TLC,filtered the RM via celite lbed and distilled the: filterate: ,washing from diethyl ether (5 mLx 3) was given to obtain tert-butyl 4 -(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)piperidine-1-carboxylate Compound :302 (15.0 mg, $35.0 \mu \mathrm{~mol}, 30.0 \%)$ as white solid. ${ }^{~}{ }^{\prime} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d 6\right) \boldsymbol{\delta} 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.48-1.62((\mathrm{~m}$, $2 \mathrm{H}), 1.72-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.82((\mathrm{~m}$, 2H), 2.89-2.97 (m, 1H), 4.05-4.15 (m, 2H), 4.36 (d, J= $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53$ ($\mathrm{d}, \mathrm{J}=16.8 \mathrm{lHz}, 1 \mathrm{H}$), 5.14 (dd, J= 13.2 Hzi \& $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{7} .58(\mathrm{~d}, \mathrm{~J}=$ 8.0Hz, 1H), 11.01(s, 1H). LC/MS (ES+): m/z $428.12[\mathrm{M}+\mathrm{H}]+$

Compound 303 was prepared by following procedure in scheme 10. Yield:86.9\% asllight brown solid. ${ }^{1}{ }^{\prime}$ HMR (400 MHz , DMSO- $d \sigma$) $\delta 2.01-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.66$ (m, 3H), 2.90-2.98 (m, 1H), 3.35 (bs, 2H), 3.77 (bs, 2H) 4.37(d, J= 17.2Hz, H), 4.56(d, J= 17.2Hz, $1 \mathrm{H}), 5.18$ (dd, J= $13.2 \mathrm{~Hz} \& 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{bs}, 1 \mathrm{H}), 7.55-7.62$ ($\mathrm{m}, 2 \mathrm{H}$), $7.71(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{JHz}$, 1H), 11.05 ($\mathrm{s}, 1 \mathrm{H}$). ES-MS (m/z): 326.22 ($\mathrm{M}+\mathrm{H}^{+}$-TFA).

Scheme: 12:

Compound 301

To solution of 3-(4-bromo-1-oxoisoindolin-2-yl)piperidine-2,6-dione Compound :301(1.0 $\mathrm{g}, 3.09 \mathrm{mmol})$, tert-butyl 4 -oxopiperidine-1-carboxylate ($1.53 \mathrm{~g}, 7.72 \mathrm{mmol}$) in (dry

Step,1: Compound 304
 Tetrahydrofuran (20 mL) , Sodium hydride ($123 \mathrm{mg}, 3.09 \mathrm{mmol}$) was added at $0^{\circ}{ }^{\circ} \mathrm{C}$ and the reaction mixture was stirred at same temperature for 1 h . Then the reaction mixture was evacuated and back filled with nitrogen to remove hydrogen gas. Then n-Butyl Lithium, $(6.16 \mathrm{~mL}, 15.4 \mathrm{mmol})$ was; added at $-78^{\circ} \mathrm{C}$ and stirred for another 16 h at rt . The reaction progress was ${ }_{1}$ monitored ${ }^{\circ} \mathrm{by}$ TLC and LCMS. TLC and LCMS showed product formation along with starting ${ }_{1}$ material and debrominated product. The reaction mixture was quenched saturated aqueous ;ammoniumıchloride
solution $(20 \mathrm{~mL})$ and extracted with ethylacetate (100.0 mLx 3). The organic layers'were driedover anhydrous: sodium sulfate, filtered and concentrated to afford crude product. 'The crrude product was: purified by flash column chromatography on combi-flash instrument (using 12.0 g 1 Redisef) andl eluted with 4% to 5% methanol in DCM to get tert-butyl 4-(2-(2,6-dioxopiperidin-3-yl)-1- oxoisoindolin-4-yl)-4-hydroxypiperidine-1-carboxylate Compound $304(190 \mathrm{mg}, 428 \mu \mathrm{~mol}, 13.8$ $\%)$ as: brown solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d 6$) $\delta 1.38$ ($\mathrm{s}, 9 \mathrm{H}$), 1.69-1.79 ($\mathrm{m}, 3 \mathrm{H}$), 1.902.01(m, 2H), 2.42-2.50 (m, 2H), 2.50-2.66 (m, 2H), 2.87-2.90 (m, 1H), 3.12-3.33 (m, 2.2 H$)$, $3.87(\mathrm{bs}, 2 \mathrm{H}) \cdot 4.59(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, \mathrm{J}=13.2 \mathrm{Hzz} \& 4.8 \mathrm{HHz}, 1 \mathrm{H})$, 5.32 ($\mathrm{s}, 1 \mathrm{H}$), 7.47 (t, J= $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.01(\mathrm{~s}, 1 \mathrm{H}$). ES-MS (m/z): $444.27\left(\mathrm{M}+\mathrm{H}^{+}\right)$

Step 12: Compound 305

Compound 305 was prepared by following procedure in scheme 10 . Yield $: 87.8 \%$ asllightlbrown solid. ${ }^{1}$ H NMR (400 MHz , DMSO- $d 6$) $\delta 1.87-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.37(\mathrm{~m}, 1 \mathrm{H})$, 2.41-2.42. (m, 2H), 2.49-2.58 (m, 3H), 2.92-2.99 (m, 1H), 3.24-3.37(m, 1H), 4.59 (d, J=18.0]Hz, $1 \mathrm{H}), 4.70$ ($\mathrm{d}, \mathrm{J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.16 (dd, J= $13.2 \mathrm{~Hz} \& 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.69$ ($\mathrm{s}, 1 \mathrm{H}), 7.52-7.58$ (m , 2H), 7.64-7.67 (m, 1H), 11.01(s, 1H). ES-MS (m/z): 344.21 ($\mathrm{M}+\mathrm{H}^{+}$-TFA)

Scheme: 13:

Compound 306

Step 1: 13-2
Brought tert-butyl 4-oxopiperidine-1-carboxylate ($76.8 \mathrm{mg}, 0.3856 \mathrm{mmol}$) and 3-(4-amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione 13-1 ($50 \mathrm{mg}, 0.1928 \mathrm{mmol}$) up iin DCE ($(1.92$ mL.$) /$ acetic acid ($200 \mu \mathrm{~L}, 3.31 \mathrm{mmol}$) and added 4A MS (small scoop, activated) and stirredat r.t. for 4 hours. Added sodium triacetoxyborohydride ($40.8 \mathrm{mg}, 0.1928 \mathrm{mmol}$) and stirredıO/N a at r.t. In_{\wedge} AM quenched with sat sodium bicarb solution and extracted into $\mathrm{dcm} \times x$. Dried combined organic: layers over sodium sulfate and concentrated. Purified by iisco 12 g column $(0-10 \%$ $\mathrm{MeOH} / \mathrm{DCM}$ to give tert-butyl 4-((2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)amino)piperidine-1-carboxylate 13-2 ($80.0 \mathrm{mg}, 0.1807 \mathrm{mmol}, 93.7 \%$) as an oil.

Step, 2: Compound 306

Compound 306 was prepared by following procedure in Scheme $10 .{ }^{1} \mathrm{H}$ NMR $1(400 \mathrm{MHz}, \mathrm{D}$ DSO$\left.d_{6}\right) \boldsymbol{\delta} 10.99^{\prime}(\mathrm{s}, 1 \mathrm{H}), 7.28(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.861(\mathrm{~d}, J==88.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19$ $-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~d}, . \mathrm{J}=12.5 \mathrm{~Hz}, 2 \mathrm{H}), .3 .10-2.84$ $(\mathrm{m}, 4 \mathrm{H}), 2.66-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.68$ $-1.44 \cdot(\mathrm{~m}, 2 \mathrm{H})$. LC/MS (ES+): m/z $343.3[\mathrm{M}+\mathrm{H}]+$

Scheme 14:

Step 1 1: 14-2 was prepared according to procedure in Scheme 8.

Step 12: Compound 307

To a a solution of 3-(6-nitro-1-oxoisoindolin-2-yl)piperidine-2,6-dione ($2.0 \mathrm{~g}, 16.91 \mathrm{mmol})$ in 10%, DMF in THF (30 ml) , $10 \% \mathrm{Pd} / \mathrm{C}(50 \%$ Moisture) (2 g) was added. 'The reaction 1 mixture was; stirred at rt for 1 hour under Hydrogen atmosphere. The reaction mixture was monitored by TLC and LCMS. After completion the reaction mixture was filtered through celite lbed andiwashed with methanol $(300.0 \mathrm{~mL})$. The filtrate was concentrated to get 3 -(6 -amino-1-oxoisoindolin-2-yl)piperidine-2,6-dione Compound $307\left(1.50 \mathrm{~g}, 5.78 \mathrm{mmol}, 83.7 \%\right.$) as dark gray solid. $\left.{ }^{1}{ }^{\mathrm{H}} \mathrm{H}\right] \mathrm{NMR}$ $(4001 \mathrm{MHz}$, DMSO- $d 6) \delta \quad 1.94-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.93(\mathrm{~m}, 1 \mathrm{H}), 4.12(\mathrm{~d}$, $\mathrm{J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), \quad 5.04(\mathrm{dd}, \mathrm{J}=13.6 \mathrm{~Hz} . \& .4 .8 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 6.81$ $(\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 10.95(\mathrm{~s}, 1 \mathrm{H}) . \quad E S-M S$ ($\mathrm{m} / \mathrm{z})^{2}: 260.20$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$,

Compound 308 was prepared by literature procedures (Muller, George W. et al. IFrom IU.S., 7629360, 08 Dec 2009) 1H NMR (500 MHz, DMSO-d6): $\delta 10.91$ (s, 1H), 7.35 ($(\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz} .1 \mathrm{H})$, 6.62-6.61 (m, 2H), 5.80 ($\mathrm{s}, 2 \mathrm{H}$), 5.02-4.98 (m, 1H), $4.25(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.101(\mathrm{~d}, \mathrm{~J}=17 \mathrm{~Hz}, 1 \mathrm{H})$, 2.92-2.85 (m, 1H), 2.58-2.55 (m, 1H), 2.38-2.30 (m, 1H), 1.95-1.91 (m, 1H). LLC/MS (ES+): m / z $260.1[\mathrm{M}+\mathrm{H}]+$

Scheme 15:

Compound 296

Step, 1: Compound 309
A mixture: of 3-(4-bromo-1-oxoisoindolin-2-yl)piperidine-2,6-dione ((Compound :296) ($1.8 \mathrm{i} \mathrm{g}, 5.57 \mathrm{mmol}$) , ZINC CYANIDE ($654 \mathrm{mg}, 5.57 \mathrm{mmol}$),
Tris(dibenzylideneacetone)dipalladium (, $222 \mu \mathrm{~mol}$), 1,1'BIS(DIPHENYLPHOSPHINO)FERROCENE (, $473 \mu \mathrm{~mol}$) in DMF $\left(35 \mathrm{~mL}^{\prime}\right)$ 'was lheated to $120^{\circ} \mathrm{C}$. under N 2 for 12 hours. The mixture was cooled to room temperature and poured into EtOAc; (100 mL) and sat. $\mathrm{NaHCO} 3(40 \mathrm{~mL})$. The EtOAc solution was washed with water $(2 \times 40$ $\mathrm{mL})$, brine: $(40 \mathrm{~mL})$, and dried (MgSO 4$)$. Solvent was removed and the residue was purifiedby reverse; phase flash to get 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindoline-4-carbonitrile Compound 309 (950 mg , $3.52 \mathrm{mmol}, 63.7$ \%) as white solid. 1 H NMR (500 MHz, DMSO-d6):
$\delta 11.02 \cdot(\mathrm{~s}, 1 \mathrm{H}), 8.14-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.70(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}$, $1 \mathrm{H}), 4.52(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.99$ (m, 1H). ES-MS (m/z): $343.24[\mathrm{M}+\mathrm{H}]^{+} 270.0$

Step 12: Compound 310

Compound 310 was prepared according to scheme 14.1 H NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d 6$): $\delta 11.06$ $(\mathrm{s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 2 \mathrm{H}), 7.81(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17$ $(\mathrm{dd}, \mathrm{J}=5.0 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathrm{~J}=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 2 \mathrm{H}), 2.27-2.91$ $(\mathrm{m}, 1 \mathrm{H}), 2.64-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.00(\mathrm{~m}, 1 \mathrm{H})$,

Scheme: 16: Preparation of Compound 311

To a a solution of 3-(4-bromo-1-oxoisoindolin-2-yl)piperidine-2,6-dione (compound 296) $(1 \mathrm{~g}, 3.09 \mathrm{mmol})$, tert-butyl 3-oxopiperazine-1-carboxylate ($1.23 \mathrm{~g}, 16.18 \mathrm{mmol}$) and iCesium carbonate ($3.01 \mathrm{~g}, 9.27 \mathrm{mmol}$) were added in Dioxane (15 mL) . Purged the reaction ${ }_{\text {, mixture for }}$ 15 minutes. DMEDA ($272 \mathrm{mg}, 3.09 \mathrm{mmol}$) and CuI ($292 \mathrm{mg}, 1.54 \mathrm{mmol}$) were added and purged the: reaction mixture for 5 minutes through argon. Stirred the RM at $100^{\circ} \mathrm{C}$ for about 16 hours. Progress; of the reaction was monitored by TLC and LCMS.TLC showed consumption of $S M$, the reaction mixture: was cooled to room temperature and quenched by adding water $\left(50 * 4_{1} \mathrm{~mL}\right)$. The mixture: was; extracted with Ethyl Acetate ($50 * 6 \mathrm{~mL}$). The organic layer was dried over ;anhydrous
sodium sulfate, filtered and dried . The crude product was purified lby flash column chromatography using. 12.0 g redisef and eluted with Methanol in DCM(2\%-5\%) to oobtain ttertbutyl 4-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-3-oxopiperazine-1-carboxylate ((170 $\mathrm{mg}, 384 \mu \mathrm{~mol}, 12.5 \%$) as an off-white solid. LC/MS (ES+): m/z 443[M+H]+

To'a round bottom flask tert-butyl 4-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-3-oxopiperazine-1-carboxylate $(0.050 \mathrm{~g}, 113 \mu \mathrm{~mol})$ in $\mathrm{DCM}(1.5 \mathrm{~mL})$ was added under mitrogen atmosphere at RT. 25% TFA IN DCM (1 mL) was added dropwise at $0^{\circ} \mathrm{C}$.Stirred the reaction mixture: for 2 hours at RT. After completion of the starting material the reaction mixture was concentrated. The residue was triturated by diethyl ether (4 mL) to get 3-(1-oxo-4-(2-oxopiperazin1 -yl)isoindolin-2-yl)piperidine-2,6-dione with TFA salt (compound 311$)(12.0 \mathrm{mg}, 35.0 \mu \mathrm{~mol}$, $31.0 \%)$ as a off white solid. 'H NMR (400 MHz , DMSO- d6) $\boldsymbol{\delta} 2.02-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.32((\mathrm{~m}$, $1 \mathrm{H}), 2.50-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.54(\mathrm{bs}, 2 \mathrm{H}), 3.87(\mathrm{bs}, 2 \mathrm{H}), 3.91(\mathrm{bs}, 2 \mathrm{H}), 4.22((\mathrm{~d}, \mathrm{~J}=$ $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, \mathrm{J}=13.2 \mathrm{~Hz} \& 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.65(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.04(\mathrm{~s}, 1 \mathrm{H})$. ES-MS $(\mathrm{m} / \mathrm{z}): 343.24\left(\mathrm{M}+\mathrm{lH}^{+}-\right.$ TFA)

Scheme: 17:

To a solution of tert-butyl 4-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-4-hydroxypiperidine-1-carboxylate (compound 304) (1.3 g, 2.93 mmol) in $1 \mathrm{DCM}(26 \mathrm{~mL})$, Diethylaminosulfur trifluoride (DAST) $(573 \mu \mathrm{~L}, 4.39 \mathrm{mmol})$ was added at $10^{\circ}{ }^{\circ} \mathrm{C}$. The reaction ${ }^{\prime}$ was stirred at rt for 1 h . Reaction progress was monitored by TLC and LCMS analysis. The reaction mixture: was, quenched with water $(20.0 \mathrm{~mL})$ and extracted with $\mathrm{DCM}_{(}\left(25.0_{1} \mathrm{mLx} 2\right)$. The sorganic layers; were: dried over sodium sulfate,filtered and concentrated to afford crude.The jproductrwas
purified by silica gel flash chromatography (12 g Isco gold, $\mathrm{DCM} / \mathrm{MeOH} ~(0-10 \%)$)to tgiveitert-butyl 4-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-4-fluoropiperidine-1-carboxylate ($(450 \mathrm{mg}$, 1.01 mmol , crude) with contamination of tert-butyl 4-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-3,6-dihydropyridine-1(2H)-carboxylate. The crude product 17-1 (58.51% by LCMS) as such taken for the next step without further purification. [$\mathrm{M}+\mathrm{H}]+446$

To a solution of tert-butyl 4-(2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolin-4-yl)-4-
 $\left(3.01 \mathrm{~mL}\right.$) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at rt for 2 h . The reaction progress was: monitored by TLC and LCMS analysis. After consumption of starting material the ssolvent was: evaporated to dryness and triturated with diethylether $(20.0 \mathrm{~mL})$ to afford 3 -(4-(4-fluoropiperidin-4-yl)-1-oxoisoindolin-2-yl)piperidine-2,6-dione with 'TFA salt $\mathbb{1}(250 \mathrm{mg}, 5544$ $\mu \mathrm{mol}$, crude) with contamination of 3-(1-oxo-4-(1,2,3,6-tetrahydropyridin-4-yl)isoindolin-2-yl)piperidine-2,6-dione with TFA salt 17-2. This compound as such taken for themext:step without further purification. $\mathrm{M}+\mathrm{H}+346$

Example :6: Illustrative Preparation of Heterocyclic Lenalidomide related compounds: Scheme: 18: Preparation Compound 312

Step.1: 18-2
Methyl 2-chloro-3-methylisonicotinate $18-1(4.73 \mathrm{~g}, 26.9 \mathrm{mmol}), \mathrm{NBS}(6.21,34.9 \mathrm{mmol})$, and $\operatorname{AIBN}(397 \mathrm{mg}, 2.42 \mathrm{mmol})$ in CCl4 (50 mL) were stirred at $\mathrm{Ti}=78 \mathrm{C}$ for $: 8 \mathrm{~h} \mathrm{~h} . \mathrm{RXN}$ is (done. Dilute; with MTBE, wash with $\mathrm{NaHCO} 3 \times 2$, water x 2 . Concentrate. TLC Jlooks clean. The،crude solid 15-2 was used directly without further purification.

Step 2: Compound 312
Methyl 3-(bromomethyl)-2-chloroisonicotinate $\quad 18-2 \quad 1(7.11 \mathrm{~g}, \quad: 26.9 \mathrm{mmol}), \quad 3-$ aminopiperidine-2,6-dione ($4.42 \mathrm{~g}, 26.9 \mathrm{mmol}$) in DMF (50 mL) was stirred at RT. IEt 3 N ($(2.2$ req.) was: added over 3 h . Stir for over the weekend. Dilute with DCM, wash with NaHCO .x.2, brine

Scheme 19:

$19-1$

$19-2$

TEA

DMSO, $100^{\circ} \mathrm{C}$

Compound 314

Step, 1: Preparation of Methyl 4-(bromomethyl)-6-chloronicotinate 19-2
To a solution of methyl 6-chloro-4-methylnicotinate ($0.5 \mathrm{~g}, \quad 2.69 \mathrm{mmol})$ in carbontetrachloride $(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere was added $\mathrm{NBS}(525 \mathrm{mg}, 2.95$ $\mathrm{mmol})$. After 5 minutes AIBN ($44.1 \mathrm{mg}, 269 \mu \mathrm{~mol}$) was added and the stirred reaction 1 mixture was; heated at $90^{\circ} \mathrm{C}$ for 5 h . After complete consumption of methyl 6 -chloro-4-methylnicotinate, the:reaction was, cooled to ambient temperature and diluted with water. The ,crude, reaction ${ }_{1}$ mixture was; extracted with DCM (3 x 50 mL) and the organic layer was washed with Brine, the phases
separated, and the organic layer dried over anhydrous sodium sulfate. The solution 'was ffiltered, concentrated and the crude residue was purified by silica gel column chromatography using 50% EtOAc: /Hexane as eluent. The pure fractions were combined and concentrated under reduced pressure: to provide methyl 4-(bromomethyl)-6-chloronicotinate ($135 \mathrm{mg}, 510 \mu \mathrm{~mol}, 18.9 \%$) as a cream colored solid. ES-MS (m/z): $264.04\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Step 1 2: Preparation of 3-(6-Chloro-3-oxo-1,3-dihydro-2H-pyrrolo[3,4-c]pyridin-2-yl)piperidine-2,6-dione (Compound 313)

To a solution of methyl 4-(bromomethyl)-6-chloronicotinate $19-2(0.3 \mathrm{~g}, 1.13 \mathrm{mmol})$ iin acetonitrile: (3 mL) was added DIPEA ($981 \mu \mathrm{~L}, 5.64 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$ under nitrogen atmosphere. The: reaction mixture was stirred for 5 minutes then 3 -aminopiperidine-2,6-dione ($222 \mathrm{mg}, 1.35$ $\mathrm{mmol})$ । wasi added. The reaction was then heated at $90^{\circ} \mathrm{C}$ for 32 hours. Upon completion of the reaction, the: solution was concentrated to provide a crude residue which was purifiedlby silicagel column chromatography using $25 \% \mathrm{MeOH} / \mathrm{DCM}$ as eluent. The pure fractions were pooled, and concentrated under reduced pressure to provide 3-(6-chloro-3-oxo-1,3-dihydro-2H-pyrrolo[3,4-c]pyridin-2-yl)piperidine-2,6-dione (compound 313) ($63.7 \mathrm{mg}, 227 \mu \mathrm{~mol}, 20.1 \%$) as an ©ff-white solid. ${ }^{1}$ HNMR (400 MHz, DMSO- $d 6$) $\delta 1.96-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.68(\mathrm{~m}, 1 \mathrm{H})$, 2.83-2.94.(m, 1H), $4.43(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13 \mathrm{(dd}, \mathrm{~J}=13.2 \mathrm{JHz}, 5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~s}, 1 \mathrm{H}), 11.03(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{ES}-\mathrm{MS}(\mathrm{m} / \mathrm{z}): 280.12\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Step 3: Com pound 314

To a solution of 3-(6-chloro-3-oxo-1,3-dihydro-2H-pyrrolo[3,4-c]pyridin-2-yl)piperidine- 2,6-dione: (compound 313) ($0.3 \mathrm{~g}, 1.07 \mathrm{mmol}$) in DMSO (6 mL) under an atmosphere of mitrogen, wasi added DIPEA ($745 \mu \mathrm{~L}, 4.28 \mathrm{mmol}$) and tert-butyl piperazine-1-carboxylate $(298 \mathrm{mg}, 1.60$ mmol). The: reaction mixture was at $110^{\circ} \mathrm{C}$ for 32 hours. The reaction was icooled and squenched with water. The aqueous solution was extracted with DCM ($3 \times 100 \mathrm{ml}$) and the combined organic layer was washed with brine solution, then dried over anhydrous sodium sulfate. The solution was filtered, concentrated and the crude solid was triturated with pentane and idiethyl etherttoprovide tert-butyl 4-(2-(2,6-dioxopiperidin-3-yl)-3-oxo-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl)piperazine-1-carboxylate (compound 314) ($134 \mathrm{mg}, 313 \mu \mathrm{~mol}, 29.1 \%$) as a a cream ccolored solid. ${ }^{1} \mathrm{HNMR}$ (400 MHz , DMSO- $d \sigma$) $\boldsymbol{\delta} 1.39(\mathrm{~s}, 9 \mathrm{H}), 1.93-1.96(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.50-$ $2.59^{\prime}(\mathrm{m}, 1 \mathrm{H}), 2.82-2.93(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{bs}, 4 \mathrm{H}), 3.64(\mathrm{bs}, 4 \mathrm{H}), 4.23$ ($\left.\mathrm{d}, \mathrm{J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.37$ ($(\mathrm{d}, \mathrm{J}=$ $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{dd}, \mathrm{J}=13.6 \mathrm{~Hz}, 4.8,1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~s}, 1 \mathrm{H}), 10.96(\mathrm{~s}, 1 \mathrm{H})$. IES-MS $(\mathrm{m} / \mathrm{z}): 430.38\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Scheme: 20: Preparation of Compound 315

To a solution of 3-(6-chloro-3-oxo-1,3-dihydro-2H-pyrrolo[3,4-c]pyridin-2-yl)piperidine-2,6-dione: ($350 \mathrm{mg}, 1.25 \mathrm{mmol}$) and 20-1 in dioxane (4 mL) and water (1 mL), was added cesium carbonate: ($1.21 \mathrm{~g}, 3.75 \mathrm{mmol}$). The solution was purged with nitrogen gas for 15 minutes, then palladium(II) acetate ($28.0 \mathrm{mg}, 125 \mu \mathrm{~mol}$) , and cataCXium® A ($89.6 \mathrm{mg}, 250 \mu \mathrm{~mol}$) were ${ }^{\boldsymbol{a}}$ added.

The:reaction was purged again nitrogen for 5 minutes then heated at $100^{\circ} \mathrm{C}$ ffor 1 hhour. ${ }^{\prime}$ The reaction was quenched with water $(20 \mathrm{~mL})$ and the solution extracted with ethyl acetate ($3 \times \mathrm{x} \times 20$ mL). The combined organic layers were dried over anhydrous sodium sulfate, ffiltered and concentrated. The crude residue was purified by silica gel flash chromatography using a $\mathrm{DCM} / \mathrm{MeOH}$ gradient $(0-10 \% \mathrm{MeOH})$ to provide tert-butyl 4-((2-(2,6-dioxopiperidin-3-yl)-3-oxo-2,3-dihydro-1H-pyrrolo[3,4-c]pyridin-6-yl)methyl)piperazine-1-carboxylate (compound $315)$) $(250 \mathrm{mg}, 563 \mu \mathrm{~mol}, 45.1 \%)$ as off-white solid. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}, \mathrm{DMSO}-\iota(6) i \delta 1.39$ ((s, $9 H), 1.99-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.41(\mathrm{~m}, 5 \mathrm{H}), 2.50-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.96 \mathrm{l}(\mathrm{m}, 1 \mathrm{H}), 3.32-3.34(\mathrm{bs}$, $4 \mathrm{H}), 3.74 \cdot(\mathrm{~s}, 2 \mathrm{H}), 4.40(\mathrm{~d}, \mathrm{~J}=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, \mathrm{J}=13.6 \mathrm{~Hz} \& \leqslant 5.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 11.02(\mathrm{~s}, 1 \mathrm{H}) . \quad$ ES-MS (m/z): $444.31 \mathrm{l}(\mathrm{M}+\mathrm{H})$

Compound 316 was synthesized following representative general procedure scheme 19 , step 1 to provide: desired product (384 mg) 61% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d 6$) $\delta 1.95-2.08$ ($(\mathrm{m}$, $1 \mathrm{H}), 2.35-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.98(\mathrm{~m}, 1 \mathrm{H}), 4.38(\mathrm{~d}, \mathrm{~J}=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55((\mathrm{~d}$, $\mathrm{J}=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{dd}, \mathrm{J}=13.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, \mathrm{~J}==\{8.01 \mathrm{~Hz}$, $1 \mathrm{H}), 11.03(\mathrm{~s}, 1 \mathrm{H})$. ES-MS (m/z): $280.00\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Compound 317 was synthesized following representative general procedure in scheme 20 to provide: the: desired product (300 mg) 38% yield.
${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d \sigma$) $\delta 1.38$ ($\mathrm{s}, 9 \mathrm{H}$), 1.99-2.01 (m, 1H), 2.17-2.24 (m, 1H), 2.38-2.43 (m, 4H), 2.44-2.49 (m, 1H), 2.50-2.62 (m, 4H), 2.88-2.92 (m, 1H), 3.73 ($\mathrm{s}, .2 \mathrm{H}$), 4.33 ($(\mathrm{d}, \mathrm{J}=18.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, \mathrm{J}=13.2 \mathrm{~Hz} \& 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{JHz}, 1 \mathrm{H})$, 8.12 ($\mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $11.01(\mathrm{~s}, 1 \mathrm{H})$. ES-MS (m/z): $444.28\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Scheme 21:

$21-1$

21-2

Compound 318

Step 1:

Methyl 3-(bromomethyl)-6-chloropicolinate 21-2 was :synthesized ffollowing representative: general procedure Scheme 19 , step 1 to provide desired product $(2.4!\mathrm{g}): 85 \%$ ryield. ES-MS. (m/z): $264.08\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Step 12 :

Compound 318 was synthesized following representative general procedure scheme 19 , step 2, to, provide desired product (1 g) 40% yield. ${ }^{1}$ H NMR (400 MHz , DMSO- $d 6$) $\boldsymbol{\delta} 1.95-2.08$ $(\mathrm{m}, 1 \mathrm{H}), 2.35-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.98(\mathrm{~m}, 1 \mathrm{H}), 4.39(\mathrm{~d}, \mathrm{~J}=18.0\rfloor \mathrm{Hz}, 1 \mathrm{H}), 4.51$ ($\mathrm{d}, \mathrm{J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}$), $5.16(\mathrm{dd}, \mathrm{J}=13.2 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=: 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.17$ ($(\mathrm{d}, \mathrm{J}==88.0$ $\mathrm{Hz}, 1 \mathrm{H}), 11.04(\mathrm{~s}, 1 \mathrm{H})$. ES-MS (m/z): $279.99\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Compound 319 was synthesized following representative general procedurein sscheme 20 to, provide desired product (250 mg) 45% yield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d \sigma$) $\delta 1.39$ ($\left.\mathrm{s}, 9 \mathrm{H}\right)$,
1.97-2.06 (m, 1H), 2.35-2.45 (m, 5H), 2.52-2.68 (m, 4H), 2.86-2.97(m, 1H), $3.71(\mathrm{~s}, .2 \mathrm{H}), 4.34$ $(\mathrm{d}, \mathrm{J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{dd}, \mathrm{J}=13.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{\prime} 7.66(\mathrm{~d}, \mathrm{~J}==$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 11.02(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{ES}-\mathrm{MS}(\mathrm{m} / \mathrm{z}): 444.24\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

3-(6-Chloro-1-oxo-1,3-dihydro-2H-pyrrolo[3,4-c]pyridin-2-yl)piperidine-2,6-dione (compound 320) was synthesized following representative general procedure scheme 19 , step ${ }_{2} 2$ to provide: desired product (1.4 g) 66% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d 6$) iס:2.01-2.04 ((m, $1 \mathrm{H}), 2.32-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.37-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.97(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}$, $\mathrm{J}=18.0 \mathrm{~Hz}, 1 \mathrm{H}) 5.17(\mathrm{dd}, \mathrm{J}=12.8 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~s}, 1 \mathrm{H}), 8.76$ ($\mathrm{s}, 1 \mathrm{H}), 11.05 \mathrm{(}(\mathrm{~s}, 1 \mathrm{H})$). IESMS. (m/z): 280.06 ($\mathrm{M}+\mathrm{H}^{+}$).

Compound 321 was synthesized following representative general procedureiin scheme'20
 1.99-2.04.(m, 1H), $2.39(\mathrm{bs}, 5 \mathrm{H}), 2.56-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.94(\mathrm{~m}, 1 \mathrm{H}), 3.31 \mathrm{l}(\mathrm{bs}, 4), 3.74(\mathrm{~s}, 2 \mathrm{H})$, $4.43(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, \mathrm{~J}=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{dd}, \mathrm{J}=13.2 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73$ ($\mathrm{s}, 1 \mathrm{H})$, $8.83(\mathrm{~s}, 1 \mathrm{H}), 11.03(\mathrm{~s}, 1 \mathrm{H}) . \quad$ ES-MS (m/z): $444.21\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Compound 322 was synthesized following representative general procedure scheme 19 , step, 3 to provide desired product (10 mg) 3% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d \sigma$) $\delta 1.42$ ((s, $9 \mathrm{H}), 1.95-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.95(\mathrm{~m}, 1 \mathrm{H}), 3.34_{\mathrm{I}}(\mathrm{bs}, 4 \mathrm{H})$, $3.55(\mathrm{bs}, 4 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, \mathrm{~J}=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, \mathrm{J}=12.8 \mathrm{JHz}, 5.2 \mathrm{JHz}$, $1 \mathrm{H}), 7.09$ ($\mathrm{s}, 1 \mathrm{H}$), $8.42(\mathrm{~s}, 1 \mathrm{H}), 11.00(\mathrm{~s}, 1 \mathrm{H})$. ES-MS (m/z): $430.22(\mathrm{M}+\mathrm{H})$.

Scheme: 22:

Compound 323

Step 1: 22-2

Methyl 5-(bromomethyl)-2-chloropyrimidine-4-carboxylate :22-2 'was synthesized following representative general procedure in scheme 21, step 1 to provide idesired product ($(1 \mathrm{~g})$ 59% yield. ES-MS (m/z): $264.89\left(\mathrm{M}+\mathrm{H}^{+}\right)$

Step , 2: Compound 323

Compound 323 was synthesized from 22-2 following representative g general procedureiin scheme: 21, step 2 to provide desired product (620 mg). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d \sigma$) $\delta 1.98-$ $2.101(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.46(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.95(\mathrm{~m}, 1 \mathrm{H}), 4.55(\mathrm{q}, \mathrm{J}=18.0 \mathrm{JHz}, 2 \mathrm{H})$, $5.20{ }^{(}(\mathrm{dd}, \mathrm{J}=13.2 \mathrm{~Hz}, 5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 11.07(\mathrm{~s}, 1 \mathrm{H}) . \mathrm{ES}-\mathrm{MS}$)(m/z): 281.05 ($\mathrm{M}+\mathrm{H}^{+}$).

Compound 324 was synthesized following representative general procedure in scheme 20 to provide: desired product (25 mg) 3% yield. ${ }^{\prime} \mathrm{H}$ NMR (400 MHz, DMSO- $d 6$) $i \delta 1.38((\mathrm{~s}, .9 \mathrm{H}), 1.95-$ $2.05(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.89(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{bs}, 8 \mathrm{H}), 3.86 \mathrm{l}(\mathrm{s}, 2 \mathrm{H}), 4.45 \mathrm{(d}, \mathrm{~J}=18.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.57$ (d, J=18.0 Hz, 1H), 5.12 (dd, J= $13.2 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}), 11.06$ ($\mathrm{s}, 1 \mathrm{H})$). ES-MS (m/z): $445.28\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Compound 325 was synthesized following representative general procedure scheme 19 , step. 3 tto provide: desired product (30 mg) 15% yield. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d 6$) $\boldsymbol{\delta} \mathbf{\delta} 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.98-$ $2.01(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.61(\mathrm{~m}, 1 \mathrm{H}), 2.82-2.93(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{bs}, 4 \mathrm{H}), 3.79(\mathrm{bs}$, 4H), 4.26 ($\mathrm{d}, \mathrm{J}=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.37 (d , J= $17.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.14 ($\mathrm{dd}, \mathrm{J}=13.2 \mathrm{~Hz}, 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.74$ $(\mathrm{s}, 1 \mathrm{H}), 11.02(\mathrm{~s}, 1 \mathrm{H}) . \quad \mathrm{ES}-\mathrm{MS}(\mathrm{m} / \mathrm{z}): 431.29\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

Example:7: Illustrative Preparation of 5-member Glutarimide

Scheme: 23:

Step-1

To a stirred solution of $23-2(448 \mathrm{mg}, 3.37 \mathrm{mmol})$ and $23-1(1000 \mathrm{mg}, 3.37 \mathrm{mmol})$ and Potassium carbonate ($931 \mathrm{mg}, 6.74 \mathrm{mmol}$) in Acetone (20.0 mL). It was stirred cat room temperature: for 16 hours. It was diluted with water and extracted with ethyl acetate. Organic part wasi dried over sodium sulfate, concentrated under reduced pressure and purified lby column chromatography using (silica, gradient, $0 \%-30 \%$ ethyl acetate in hexane to afford 3 as off white solid. Yield-20\%; LC MS: ES+ 349.3.

Step-2
Compound 23-3 ($100 \mathrm{mg}, 287 \mathrm{~mol}$) was taken in Ethanol $(10 \mathrm{~mL})$ in a aparr-shakervessel. It was: degassed with argon for 10 minutes. Platinum dioxide $(6.51 \mathrm{mg}, 28.7 \mu \mathrm{~mol})$ 'was added to the: reaction mixture. It was shacked in the presence of hydrogen at 50 psi for 16 h . It was ffiltered through celite and concentrated under reduced pressure and was purified lby column chromatography using (silica, gradient, 0\%-25\% Ethyl acetate in hexane)to provide'23-4as 'white solid. Yield-40\%; LC MS: ES+ 351.1.

Step-3

Compound 326

To a stirred solution of 23-4 (32 mg, $91.3 \mu \mathrm{~mol})$ in Acetonitrile ($\left(0.5 \mathrm{~mL}{ }^{\prime}\right)$ and 'Water ($(2$ $\mathrm{mL})$. Ceric ammonium nitrate $(99.7 \mathrm{mg}, 182 \mu \mathrm{~mol})$ was added to the reaction mixture and was stirred at room temperature for 2 hours. It was diluted with water and was extracted with eethyl acetate, dried over sodium sulfate and concentrated under reduced pressure. It 'was purified by preparative: TLC (40% ethyl acetate in hexane) to provide Compound 326 as off white solid. Yield-19\%; 1H NMR (400 MHz, DMSO-d6) $\delta 11.51(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, \mathrm{~J}=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.61$ $(\mathrm{m}, 2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=7.52 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{t}, \mathrm{J}=7.42 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, \mathrm{~J}=17.24 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, \mathrm{~J}$ $=17.24 \mathrm{~Hz}, 1 \mathrm{H}), 2.97-2.92(\mathrm{~m}, 1 \mathrm{H})$; LC MS: ES +231.3 .

Example :8: Illustrative Preparation of 7-member Glutarimide Scheme:24:

Step-1
To a mixture of 24-1 ($150 \mathrm{mg}, 780 \mu \mathrm{~mol})$ and 24-2 ($100 \mathrm{mg}, 780 \mu \mathrm{~mol})$ in .Acetic acid ($(3$ $\mathrm{mL})$ itaken was added Ammonium acetate ($60.1 \mathrm{mg}, 780 \mu \mathrm{~mol}$) and refluxed for ${ }^{\prime} 2$ hours. 'Water was: then added to the reaction mixture and the compound was extracted with IDCM. The organic phase: was: separated, dried over anhydrous sodium sulfate and evaporated in vacuo to obtain the crude: which was purified by silica gel column to afford 24-3 as white solid. Yield-21\%; ILClMS: ES+304.1.

Step-2

A mixture of periodic acid ($224 \mathrm{mg}, 984 \mu \mathrm{~mol}$) and chromium trioxide $(3.27 \mathrm{mg}, 32.8$ $\mu \mathrm{mol}$) in Acetonitrile ($(3.0 \mathrm{~mL}$) was stirred at room temperature for 30 min . Then acetic anhydride $(92.5 \mu \mathrm{~L}, 984 \mu \mathrm{~mol}) \quad$ was added. The reaction mixture was cooled to $00^{\circ} \mathrm{C}$ and $24-3(50 \mathrm{mg}, 164$ $\mu \mathrm{mol}$), was; added in one portion and the reaction mixture was further :stirred for 30 min at rroom temperature. After completion of the reaction, ice-water ($15-20 \mathrm{~mL}$) was added and the ${ }_{1}$ mixture was; extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic llayer was washed with saturated NaHCO_{3} solution, saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution, and finally with brine. The organic phase was; dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The: crude: product was filtered through silica gel column using ethyl acetate as eluent too „obtain Compound 327 as white solid. Yield- $40 \% ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) ; $\delta 10.86$ ($\mathrm{s}, 1 \mathrm{H}$), 8.34
$(\mathrm{d}, \mathrm{J}=7.96 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, \mathrm{~J}=7.36 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{t}, \mathrm{J}=7.78 \mathrm{~Hz}, 1 \mathrm{H}), 5.26 \mathrm{l}(\mathrm{dd}, \mathrm{J}=12,3.08 \mathrm{~Hz}$, $1 \mathrm{H})$, 3.18-3.09 (m, 1H), 2.66-2.52 (m, 2H), 2.18-2.12 (m, 1H), 1.99-1.82 (m, 2 H$)$; JLClMS:IES+ 318.2.

Example :9: Illustrative Preparation of 3,4-Substituted-2,6-Dioxopiperdine Intermediates Scheme: 25:

Step 1: Preparation of 2-(4-methyl-2-oxopiperidin-3-yl)isoindoline-1,3-dione 1(25-3)

To a stirred solution of compound $25-1(173 \mathrm{mg}, 1170 \mu \mathrm{~mol})$ in toluene $(5.0 \mathrm{~mL})$, compound 25-2 ($150.0 \mathrm{mg}, 1170 \mu \mathrm{~mol})$ was added and the reaction mixture 'was lheated at $120^{\circ} \mathrm{C}$

Step, 2: Preparation of 2-(4-methyl-2,6-dioxopiperidin-3-yl)isoindoline-1,3-dione (Compound 328)

To stirred solution of ${ }^{\prime}$ H5IO6 ($\left.793 \mathrm{mg}, 3480 \mu \mathrm{~mol}\right)$ and ${ }^{\prime} \mathrm{Cr2O} 31\left(28.9 \mathrm{mg},{ }^{\prime} 290 \mu \mathrm{~mol}\right)$ in acetonitrile : $(10.0 \mathrm{~mL})$, acetic anhydride $(0.1 \mathrm{~mL})$ was added at room temperature. The reaction mixture: was: then stirred at same temperature for 30 min . To this reaction mixture compound $25-$ $3 i(150.0 \cdot \mathrm{mg}, 580 \mu \mathrm{~mol})$ was added at $0^{\circ} \mathrm{C}$ at a time. The reaction mixture was then stirred at tthis

HATU, DIPEA, DMF

(S)-2-(4-(4-Chlorophenyl)-2,3,9-trimethyl-6 $\quad H$-thieno[3,2- f][1,2,4]triazolo[4,3$a][1,4]$ diazepin-6-yl)- N-(8-hydroxyoctyl)acetamide (50-2):

To a solution of (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)acetic acid $50-1(450 \mathrm{mg}, 1.12 \mathrm{mmol}) \mathrm{in}] \mathrm{DMF}(2.80 \mathrm{~mL})$
was added 8 -aminooctan- 1 -ol ($244 \mathrm{mg}, 1.68 \mathrm{mmol}$), Diisopropylethylamine $(389 \mu \mathrm{~L}, .2 .24 \mathrm{mmol})$ and HATU ($509 \mathrm{mg}, 1.34 \mathrm{mmol}$), The reaction was stirred for 24 h , at which time the reaction was concentrated and purified by isco (24 g column $0-10 \% \mathrm{MeOH} / \mathrm{DCM}$) to provide (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(3- hydroxypropyl)acetamide ($400 \mathrm{mg}, 67.6$ \%). LCMS ES+ = 529.1

Synthesis : of" (S)-2-(4-(4-Chlorophenyl)-2,3,9-trimethyl-6 $\quad H$-thieno[3,2- f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)- N-(8-oxooctyl)acetamide (50-3):

A 25 mL rbf was charged with (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepin-6-yl)-N-(8-hydroxyoctyl)acetamide $\quad 50-2 \quad 1(400 \mathrm{mg}, \quad 757$ $\mu \mathrm{mol})$ and dichloromethane (4 mL). Dess-Martin Periodinane (0.3 M in DCM, $3.02 \mathrm{~mL}, 908 \mu \mathrm{~mol}$) was: added and the reaction was stirred at rt for 1 h , then quenched with 0.5 mL iisopropanol, sat'd sodium thiosulfate, and sat'd sodium bicarbonate. The reaction was extracted $.3 \times \mathrm{x}$ IDCM, organics were: dried over Na2SO4, filtered and concentrated to provide (S)-2-(4-(4-chlorophenyl)-2,3,9-trimethyl-6 H-thieno[3,2- $f[[1,2,4]$ triazolo[4,3- $a][1,4]$ diazepin-6-yl)- N-(8-oxooctyl)acetamide ($3901 \mathrm{mg}, 741 \mathrm{mmol}, 98 \%$ yield) (50-3), which was used in subsequent reactions 'without further purification. LCMS ES+ 527.3.

Scheme : 27:
2-((S)-4-(4-Chlorophenyl)-2,3,9-trimethyl-6 $\quad H$-thieno[3,2- $f][1,2,4]$ triazolo[4,3-a][1,4]diazepin-6-yl)- N-(8-(4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperazin-1-yl)octyl)acetamide
(Degronimer 4)

2-[4-(4-chlorophenyl)-2,3,9-trimethyl-6H-[1,2,4]triazolothieno[1,4]diazepin-6-yl]-N-(8oxooctyl)acetamide : ($10 \mathrm{mg}, \quad 19.01$ umol) , 2-(2,6-dioxo-3-piperidyl)-4-piperazin-1-yl- isoindoline-1,3-dione : $(6.51 \mathrm{mg}, 19.01 \mathrm{umol})$, Sodium acetate $(7.80 \mathrm{mg}, 95.04$ umol, 5.10 uL) । were: added to a vial followed by DCM (95.04 uL). The solution was stirred at $25^{\circ} \mathrm{C} \mathrm{Cfor} 30$ \min and acetic acid ($3.42 \mathrm{mg}, 57.02 \mathrm{umol}, 3.26 \mathrm{uL}$) was added and stirred for an additional 30 mmin . The: reaction was cooled to $0^{\circ} \mathrm{C}$ and Sodium triacetoxyborohydride, 95% ($4.03 \mathrm{mg}, 19.01$ umol) , was added and the reaction was gradually warmed to RT and astirred for 12 lhours .1 ml of DMSO was; added to the reaction and the DCM was evaporated under vacuum. Upon completion of the:reaction as, determined by LCMS, the reaction was purified directly on a a reverse-phase $\mathbb{C} 18$ column, eluting; with $10-100 \% \mathrm{MeCN}$ in H 2 O . The product containing fractions 'were combined, solvent removed and product extracted 3 x CH 2 C 12 . The organic layers were dried over 1 Na 2 SO 4 , filtered and solvent removed to give 2-((S)-4-(4-chlorophenyl)-2,3,9-trimethyl-6 H-thieno[3,2$f][1,2,4]$ triazolo[4,3- $a][1,4]$ diazepin-6-yl)- N-(8-(4-(2-(2,6-dioxopiperidin-3-yl)-1,3-dioxoisoindolin-4-yl)piperazin-1-yl)octyl)acetamide ($13 \mathrm{mg}, 13.73$ umol, 72.21% yyield) as a yellow oil. 1H NMR (400 MHz , DMSO- $d 6$) $\delta 11.05(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{t}, \mathrm{J}, \mathrm{J}=$ $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12\left(\mathrm{t}, J^{\prime}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.87(\mathrm{dd}, J=9.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 5 \mathrm{H}),(6.43(\mathrm{~d}$,
$J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{bs}, 1 \mathrm{H}), 4.52-4.42(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.01(\mathrm{~m}, 6 \mathrm{H}), 2.62-2.541(\mathrm{~m}, 4 \mathrm{H}), 2.39$
$(\mathrm{s}, 2 \mathrm{H}), 2.22-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~s}, 2 \mathrm{H}), 1.50-1.38 \mathrm{l}(\mathrm{m}, 4 \mathrm{H}), 1.26(\mathrm{~s}, 6 \mathrm{H})$, 1.22. (s, 6H), $0.92\left(\mathrm{t}, J^{\prime}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.86-0.80(\mathrm{~m}, 1 \mathrm{H}) . \mathrm{LC} / \mathrm{MS}(\mathrm{ES}+): \mathrm{m} / \mathrm{z}: 852.5(\mathrm{M}+\mathrm{H})+$
X. REPRESENTATIVE DEGRONS OF THE PRESENT INVENTION

Table: 1

Compound \#	Structure	Kd
Compound 1		+++
$\underset{2}{\text { Compound }}$		+++
$\underset{3}{\text { Compound }}$		+
Compound		+
Compound 5		++++
$\underset{6}{\text { Compound }}$		++++

Compound
Compound

$\begin{gathered} \text { Compound } \\ \hline \end{gathered}$		++++
$\begin{gathered} \text { Compound } \\ 34 \end{gathered}$		++++
$\begin{aligned} & \text { Compound } \\ & 35 \end{aligned}$		++++
$\begin{gathered} \text { Compound } \\ 36 \end{gathered}$		++++
$\begin{gathered} \text { Compound } \\ 37 \end{gathered}$		++++
$\begin{gathered} \text { Compound } \\ 38 \end{gathered}$		++++
$\begin{gathered} \text { Compound } \\ 39 \end{gathered}$		++++
Compound 40		++++
Compound 41		++++

Compound
Compound
Compound
Compound
Compound
Compound
Compound
Compound

Compound 108		++
$\begin{gathered} \text { Compound } \\ 109 \end{gathered}$		+
Compound 110		+
Compound 111		+
Compound 112		+
Compound 113		+
Compound 114		+++
$\begin{aligned} & \text { Compound } \\ & 115 \end{aligned}$		+
Compound 116		+
Compound 117		+

$\left.\begin{array}{|c|ccc|}\hline \text { Compound } \\ 118\end{array}\right)$
$\left.\begin{array}{c|ccc|}\hline \text { Compound } \\ 128\end{array}\right)$

| Compound |
| :---: | :---: | :---: | :---: |
| 138 | Compound

Compound

| Compound |
| :---: | :---: | :---: |
| Compound |
| 162 |

| Compound |
| :---: | :---: | :---: | :---: |
| Compound |
| 167 | Compound

Compound
Compound

Compound 193		++++
$\underset{194}{\text { Compound }}$ 194		++++
$\underset{195}{\text { Compound }}$		
$\begin{gathered} \text { Compound } \\ 196 \end{gathered}$		
Compound 197		+++
Compound 198		+
$\begin{gathered} \text { Compound } \\ 199 \end{gathered}$		+
Compound 200		+++++

$\begin{array}{\|c} \text { Compound } \\ 201 \end{array}$		+++++
$\begin{array}{\|c} \text { Compound } \\ 202 \end{array}$		+++++
$\begin{array}{\|c} \text { Compound } \\ 203 \end{array}$		++++
$\begin{array}{\|c} \text { Compound } \\ 204 \end{array}$		++++
$\begin{array}{\|c\|} \hline \text { Compound } \\ 205 \end{array}$		+++
$\begin{array}{\|c} \hline \text { Compound } \\ 206 \end{array}$		+++++
$\begin{array}{\|c} \text { Compound } \\ 207 \end{array}$		
$\begin{array}{\|c\|} \hline \text { Compound } \\ 208 \end{array}$		+++++

Compound

In Table: 1 above $>100 \mu \mathrm{M}=+\quad>30 \mu \mathrm{M}=++\quad 50-100 \mu \mathrm{M}=+++\quad 10-50 \mu \mathrm{M}=++++$ $<10, \mu \mathrm{M}=+++++$.

Table: 2.

Compound $\#$	Structure	Kd

Compound

$\begin{gathered} \text { Compound } \\ 290 \end{gathered}$		
$\begin{gathered} \text { Compound } \\ 291 \end{gathered}$		+++++
$\underset{292}{\text { Compound }}$		+++++
$\begin{gathered} \text { Compound } \\ 293 \end{gathered}$		+++++
$\begin{gathered} \text { Compound } \\ 294 \end{gathered}$		++++
$\begin{gathered} \text { Compound } \\ 295 \end{gathered}$		+
$\begin{gathered} \text { Compound } \\ 296 \end{gathered}$		+++++

$\begin{gathered} \text { Compound } \\ 297 \end{gathered}$		+++++
$\begin{gathered} \text { Compound } \\ 298 \end{gathered}$		
$\begin{gathered} \text { Compound } \\ 299 \end{gathered}$		+++++
$\begin{gathered} \text { Compound } \\ 300 \end{gathered}$		+++++
$\begin{gathered} \text { Compound } \\ 301 \end{gathered}$		+++++

$\underset{302}{\text { Compound }}$		+++++
$\begin{gathered} \text { Compound } \\ 303 \end{gathered}$		+++++
Compound 304		++++
$\begin{gathered} \text { Compound } \\ 305 \end{gathered}$		++++
$\begin{gathered} \text { Compound } \\ 306 \end{gathered}$		+++++
$\begin{aligned} & \text { Compound } \\ & \mathbf{3 0 7} \end{aligned}$		+++++

$\begin{gathered} \text { Compound } \\ 308 \end{gathered}$		+++++
$\begin{gathered} \text { Compound } \\ 309 \end{gathered}$		
$\begin{gathered} \text { Compound } \\ 310 \end{gathered}$		
$\begin{gathered} \text { Compound } \\ 311 \end{gathered}$		++++
$\begin{aligned} & \text { Compound } \\ & 312 \end{aligned}$		+++++
$\begin{gathered} \text { Compound } \\ 313 \end{gathered}$		++++
$\begin{gathered} \text { Compound } \\ 314 \end{gathered}$		
$\begin{gathered} \text { Compound } \\ 315 \end{gathered}$		++++
$\begin{gathered} \text { Compound } \\ 316 \end{gathered}$		++++

$\begin{aligned} & \text { Compound } \\ & 317 \end{aligned}$		++++
$\begin{gathered} \text { Compound } \\ 318 \end{gathered}$		+++++
$\begin{gathered} \text { Compound } \\ 319 \end{gathered}$		++++
$\begin{gathered} \text { Compound } \\ 320 \end{gathered}$		
$\begin{gathered} \text { Compound } \\ 321 \end{gathered}$		
$\begin{gathered} \text { Compound } \\ 322 \end{gathered}$		
$\begin{gathered} \text { Compound } \\ 323 \end{gathered}$		++++
$\begin{gathered} \text { Compound } \\ 324 \end{gathered}$		++++
$\begin{gathered} \text { Compound } \\ 325 \end{gathered}$		+++
$\begin{gathered} \text { Compound } \\ 326 \end{gathered}$		+
$\begin{aligned} & \text { Compound } \\ & 327 \end{aligned}$		+

| Compound
 328 | | +++ |
| :---: | :---: | :---: | :---: |

In Table 2 above $>100 \mu \mathrm{M}=+\quad>30 \mu \mathrm{M}=++\quad 50-100 \mu \mathrm{M}=+++\quad 10-50 \mu \mathrm{M}=++++$
$<10 \mu \mathrm{M}=+++++$.

XI. REPRESENTATIVE DEGRONIMER OF THE PRESENT INVENTION

5 Table: 3.
Cmpd"

In Table 3 above $>100 \mu \mathrm{M}=+\quad>30 \mu \mathrm{M}=++\quad 50-100 \mu \mathrm{M}=+++\quad 10-50 \mu \mathrm{M}=++++$ $<10 \mu \mathrm{M}=+++++$.

Table: 4.
Cmpd\#

In Table 4 above $>100 \mu \mathrm{M}=+\quad>30 \mu \mathrm{M}=++\quad 50-100 \mu \mathrm{M}=+++\quad 10-50 \mu \mathrm{M}=++++$ $<10 \mu \mathrm{M}=+++++$.

Table 5.

Cell Line	Sample	Time (hr)	LD50	GI50	Emax
MOLT4.1	Degronimer 3	72	++	++	$* * * *$
MOLT4.2	Degronimer 3	72	+	+	$*$
MOLT4.1	Degronimer 4	72	++	++	$* * * *$
MOLT4.2	Degronimer 4	72	+	+	$*$

In Table 5 above for LD50 and GI50 $>1 \mu \mathrm{M}=+$ and $100 \mathrm{nM}-1 \mu \mathrm{M}=++$;
for $\operatorname{Emax}>50 \%=* \quad 0-50 \%=* * \quad-50 \%-0 \%=* * *$ and $-100 \%-0 \%=* * * *$

Table: 6.

Modification	Cell line	Time (hr)	Sample	Emax $[\% \mathbf{~}]$	DC50 $[\mathbf{n M}]$
BRD4_BD1	$293 T .29$	3	Degronimer 3	$* *$	++
BRD4_BD1	$293 T .29$	3	Degronimer 4	$* *$	++

In Table 6 above for DC50 $>0.83 \mu \mathrm{M}=+$ and $100 \mathrm{nM}-830 \mathrm{nM}=++$;
for Emax $>50 \%=*$ and $0-50 \%=* *$

Example: 11: CRBN-DDB1 Fluorescence Polarization (FP) Assay

Measuring; compound ligand binding to CRBN-DDB1 was carried outlusing antestablished sensitive: and quantitative in vitro fluorescence polarization (FP) based lbinding assay. ((See, II.J. Enyedy et: al, J. Med. Chem., 44: 313-4324 [2001]). Compounds were dispensed ffrom sserially diluted DMSO stock into black 384-well compatible fluorescence polarization plates using an Echoo acoustic: dispenser. Compound binding to CRBN-DDB1 was measured lby idisplacementrof either a (-)-Thalidomide- Alexa Fluor ${ }^{\circledR}$ or Pomalidomide-fluorescein conjugated probe dye. $九 \mathrm{~A}$ $20 \mu \mathrm{~L}$ mixture containing 400nM CRBN-DDB1 and 5 nM probe dye in 50 mM Hepes, $\mathrm{pH}{ }^{`} 7.4$, $200 \mathrm{mM} \mathrm{NaCl}, 1 \%$ DMSO and 0.1% pluronic acid-127 acid was added to 'wells containing compound and incubated at room temperature for 60 min . Matching control wells excluding CRBN-DDB1 were used to correct for background fluorescence. Plates were readionanIEnvision plate:reader with appropriate FP filter sets. The corrected S (perpendicular) and P I(parallel) walues were: used to calculate fluorescence polarization (FP) with the following equation: $\mathbb{F P}=$ $1000 *(\mathrm{~S}-\mathrm{G} * \mathrm{P}) /(\mathrm{S}+\mathrm{G} * \mathrm{P})$. The fractional amount of bound probe (FB) to ICRBN-DDB1 as a function of compound concentration was fitted according to Wang; FEBS Letters 360, ((1995), 111-114 to obtain fits for parameter offsets and binding constant $\left(\wedge_{A}\right)$ of icompetitoricompound.

Example :12: Cell Viability Analysis

RPMI 1640 medium and fetal bovine serum (FBS) were purchased from Gibco (Grand Island, NY, USA). CellTiter-Glo® 2.0 Assay was purchased from Promega((Medison,'WI,IUSA). MOLT4.1 (WT) cell line was purchased from ATCC (Manassas, VA, USA) andMOLT4.2(CRBN Knock: Out) cell line was generated in house. Cell culture flasks and 384-well imicroplates iwere acquired from VWR (Radnor, PA , USA).

MOLT4.1 and MOLT4.2 cell viability was determined based on ıquantification of ATP using; CellTiter-Glo® 2.0 luminescent Assay kit, which signals the presence of jmetabolicallyactive: cells. Briefly, MOLT4.1 and MOLT4.2 cells were seeded into 384 -well plates at a ccell density of 750 cells per well, the plates were kept at $37{ }^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO} 2$ overnight. IOn the following; day, test compounds were added to the cells from a top concentration of $1 \mu \mathrm{M}$ with 10 points, half $\log _{\text {t }}$ titration in duplicates. The cells treated in the absence of the test compound were the: negative control and the cells treated in the absence of CellTiter-Glo® 2.0 were the positive control. At the: same day of compound treatment, CellTiter-Glo® 2.0 was added to a plate with cells; treated in the absence of the test compound to establish Cytostatic control,value, $\left(\mathrm{C}_{\mathrm{T} 0}\right)$. .Cells
treated with the test compound were incubated for 72 hr . CellTiter-Glo reagent'wasthen addedto the: cells: and Luminescence was acquired on EnVision ${ }^{\text {TM }}$ Multilabel Reader (PerkinElmer, 'Santa Clara, CA, USA).

Example :13: HiBit Assay

Materials: DMEM no-phenol red medium and fetal lbovine serum (FBS) 'were purchased from Gibco (Grand Island, NY, USA). Nano-Glo® HiBiT Lytic Assay ${ }^{\text {® }}$ System was purchased from Promega. (Medison, WI, USA). 293T. 29 (HiBiT-BRD4 BD1) cell lline 'was generated iin house, ectopically expressing BRD4 BD1 domain with HiBiT fusion tag. Cell cculture fflasks and 384-well microplates were acquired from VWR (Radnor, PA, USA).

BRD4 BD1 Degradation Analysis: BRD4 BD1 degradation was determined lbased on quantification of luminescent signal using Nano-Glo® HiBiT Lytic Assay kit. 'Test compounds were: added to the: 384 -well plate from a top concentration of $1 \mu \mathrm{M}$ with 11 points, lhalfllogititration inı quadruplicates. 293T. 29 cells were added into 384 -well plates at a cell density of 15000 cells per well. The plates were kept at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO} 2$ for 3 hours. 'The cells treated iin the absence of the: test compound were the negative control and the cells treated with 30 nM of alknown]BRD4 degrader were: the positive control. After 3-hour incubation, Nano-Glo® HiBiT LLytic Assay reagents: were added to the cells. Luminescence was acquired on EnVision ${ }^{\mathrm{TM}}{ }$ MMultilabel 1 Reader (PerkinElmer, Santa Clara, CA, USA).

All publications and patent applications cited in this specification are herein jincorporated by reference: as. if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail lby way of jillustration and example: for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modificationsımay be: made: thereto, without departing from the spirit or scope of the invention as defined in the appended claims.

We claim.

1. A compound of Formula:

(II), or

or a pharmaceutically acceptable salt, N -oxide or isotopic derivative thereof;
wherein:
W^{1} is $\mathrm{CR}^{6} \mathrm{R}^{7}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}, \mathrm{C}=\mathrm{CH} 2, \mathrm{SO} 2, \mathrm{~S}(\mathrm{O}), \mathrm{P}(\mathrm{O})$ Oalkyl, $\mathrm{P}(\mathrm{O})$ NHalkyl, $\mathbb{P}(\mathrm{O}) \mathrm{N}($ alkyl $) 2$, $\mathrm{P}(\mathrm{O})$ alkyl, $\mathrm{P}(\mathrm{O}) \mathrm{OH}, \mathrm{P}(\mathrm{O}) \mathrm{NH}_{2}$;
W^{2} is $\mathrm{CR}^{8} \mathrm{R}^{9}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}, \mathrm{C}=\mathrm{CH} 2, \mathrm{SO} 2, \mathrm{~S}(\mathrm{O}), \mathrm{P}(\mathrm{O})$ Oalkyl, $\mathrm{P}(\mathrm{O}) \mathrm{NHalkyl}, \mathbb{P}(\mathrm{O}) \mathrm{N}($ alkyl $) 2$, $\mathrm{P}(\mathrm{O})$ alkyl, $\mathrm{P}(\mathrm{O}) \mathrm{OH}, \mathrm{P}(\mathrm{O}) \mathrm{NH} 2$;

X is independently selected from $\mathrm{NH}, \mathrm{NR}^{3}, \mathrm{CH}_{2}, \mathrm{CHR}^{3}, \mathrm{C}\left(\mathrm{R}^{3}\right)_{2}, \mathrm{O}$, and S ;
n is $0,1,2$, or 3 ;
=- is a s single or double bond;
wherein when \cdots represents a single bond, n is $0,1,2$, or 3 ;
wherein when $=-$ represents a double bond, n is 0,1 , or 2 ;
R^{1} is selected from:

or R^{1} is selected from:

R^{2} ' is alkyl, hydrogen, aliphatic, heteroaliphatic, aryl, heteroaryl or heterocyclic;
or R^{1} and R^{2} are combined to form a $4,5,6,7,8,9$, or 10 membered Theterocyclo or lheteroaryl species, wherein the heterocyclo or heteroaryl species is substituted with R^{12} at any desired position, wherein the heterocyclo or heteroaryl species is optionally further substituted with one: or more: substituents selected from R^{5};
$\mathrm{R}^{1 *}$ is selected from:

R^{3} is, selected at each instance from: alkyl, -C(O)H, -C(O)OH, --C(O)alkyl, --C(O)Oalkyl, alkene, and alkyne, aliphatic, heteroaliphatic, aryl, heteroaryl and heteroalkyl;
R^{4} is selected at each instance from: alkyl, alkene, alkyne, halogen, hydroxyl, alkoxy, azide, amino, cyano, $\quad-\mathrm{NH}($ aliphatic $), \quad-\mathrm{N}(\text { aliphatic })_{2}, \quad .-\mathrm{NHSO}_{2}$ (aliphatic), \quad N (aliphatic) SO_{2} alkyl, $-\mathrm{NHSO}_{2}$, aryl, heteroaryl or heterocyclic), $-\mathrm{N}($ alkyl $) \mathrm{SO}_{2}$ aryl, |heteroaryl or heterocyclic) -NHSO2alkenyl, -N(alkyl)SO2alkenyl, -NHSO2alkynyl,--N(alkyl)SO2alkynyl, and haloalkyl; aliphatic, heteroaliphatic, aryl, heteroaryl, heteroalkyl and icarbocyclic;
or two R^{4} substituents together with the carbon atom(s) to which they are lbound can fform al $3,4,5$ or 6 membered ring;
R^{5} and R^{14} are selected at each instance from: hydrogen, alkyl, alkene, alkyne, lhalogen, hydroxyl, alkoxy, azide, amino, cyano, - NH (aliphatic), - $\mathrm{N}(\text { aliphatic })_{2},--\mathrm{NHSO}_{2}$ (aliphatic), -N (aliphatic) SO_{2} alkyl, $-\mathrm{NHSO}_{2}$ aryl, heteroaryl or heterocyclic), - $\mathrm{N}($ alkyl $) \mathrm{SO}_{2}$, aryl, heteroaryl or heterocyclic) -NHSO2alkenyl, -N(alkyl)SO2alkenyl, -NHSO2alkynyl,--N(alkyl)SO2alkynyl, and haloalkyl; aliphatic, heteroaliphatic, aryl, heteroaryl, heteroalkyl and icarbocyclic;
or R^{5} is independently selected from $\mathrm{C}(\mathrm{O}) \mathrm{R}^{4}$, cyano, aryl, aryloxy, heterocyclo, hheteroaryl, arylalkyl, alkoxy, hydroxyl, O-arylalkyl, or cycloalkyl;
$R^{6}, R^{7}, R^{8}, R^{9}, R^{10}$, and R^{11}, are independently selected from hydrogen, alkyl, aliphatic, heteroaliphatic, hydroxyl, alkoxy, amine, -NH (aliphatic), and $-\mathrm{N}(\text { aliphatic })_{2}$,
or R^{6} and R^{7} together with the carbon to which they are lbound form a $3-4-4-5$, \sin (6membered spirocarbocycle, or a 4-, 5-, or 6 -membered spiroheterocycle comprising 1 or 2 heteroatoms selected from N and O ;
or R^{8} and R^{9} together with the carbon to which they are lbound form a $.3-, 4-, 5-$, or 6 membered spirocarbocycle, or a 4-, 5-, or 6-membered spiro heterocycle comprising 1 or ${ }^{\prime} 2$ heteroatoms selected from N and O ;
or $\cdot \mathrm{R}^{101}$ and R^{11} together with the carbon to which they are bound form a $3-, 4-, 5-$, or 6 membered spirocarbocycle, or a 4-, 5-, or 6-membered spiro heterocycle comprising 1 or 2 heteroatoms selected from N and O ;
or R^{6} and R^{8} form a 1 or 2 carbon bridged ring;
or R^{6} and R^{10} form a 1 or 2 carbon bridged ring;
or R^{8} and R^{10} form a 1 or 2 carbon bridged ring;
or R^{14} and R^{6} form a $3,4,5$, or 6 carbon fused ring;
or R^{14} and R^{10} form a $3,4,5$, or 6 carbon fused ring;
or $\cdot \mathrm{R}^{14}$ and R^{8} form a 1 or 2 carbon bridged ring;
or R^{14} and R^{4} form a $3,4,5$, or 6 carbon fused ring wherein R^{5} is on the carbon alphato $R^{14 \cdot}$ or $\cdot 1,2,3$, or 4 carbon bridged ring wherein R^{5} is not on the carbon alphato $1 R^{14}$; R^{12} is is Linker-Targeting Ligand;
R^{17} is selected from:

Y is: independently selected from N, CH, or CR^{101}, wherein $0,1,2$, or 3 instances of Y are selected to be: N ;
R^{101} is. independently selected at each occurrence from hydrogen, alkyl, alkene, alkyne, haloalkyl, alkoxy, hydroxyl, aryl, heteroaryl, heterocycle, arylalkyl, 乃heteroarylalkyl, heterocycloalkyl, aryloxy, heteroaryloxy, CN , -COOalkyl, $\mathrm{COOH}, \mathrm{NO}_{2}, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{CF}_{3}, \mathrm{NH}_{2}$, NHalkyl, $\mathrm{N}(\text { alkyl })_{2}$, aliphatic, and heteroaliphatic;

Linker is a chemical group that attaches the Degron to a Targeting Ligand; and Targeting Ligand is selected from those in FIGS. 1A through :8PPPPP.
2. A compound of Formula III or Formula IV:

(III)

or a pharmaceutically acceptable salt, N -oxide or isotopic derivative;
wherein:
R^{13} is selected from:

or R^{13} and R^{2} are combined to form a 4 to 10 membered heterocyclo or lheteroarylsspecies, wherein the: heterocyclo or heteroaryl species is optionally further substituted with one or more substituents: selected from R^{5}, and wherein the heterocyclo or heteroaryl species iis optionally further substituted with one or more $=\mathrm{O}$ (oxo) at a position allowed lby valence.
3. The: compound of claim 1 or 2 wherein W^{1} is $\mathrm{C}=\mathrm{O}, \mathrm{W}^{2}$ is $\mathrm{C}=\mathrm{O}$ and X iis.NH.
4. The compound of claim 1, 2 or 3 wherein the Linker has a a chain of .2 to ' 20 carbon atoms of which one or more carbons can be replaced by a heteroatom such as $1 \mathrm{O}, \mathbb{N}$, iS, or 1 P or 1 , $2,3,4,5,6,7,8,9,10,11$ or 12 ethylene glycol units.
5. The: compound of claim 1,2 or 3 wherein Linker is a moiety selected from IFormula ILI, Formula LII, Formula LIII, Formula LIV, Formula LV, Formula LVI, and IFormulalLVII:

(LIII),

(LIV),

(LV),

wherein:
X^{1} and X^{2} are independently selected from bond, $\mathrm{NH}, \mathrm{NR}^{25}, \mathrm{CH} 2, \mathrm{CHR}^{25}, \mathrm{C}\left(\mathrm{R}^{25}\right) 2,1 \mathrm{O}$, and S;
$R^{20}, R^{21}, R^{22}, R^{23}$, and R^{24} are independently selected from lbond, alkyl, --C(O)---C(O)O-, --$\mathrm{OC}(\mathrm{O})-,-\mathrm{C}(\mathrm{O})$ alkyl, - $\mathrm{C}(\mathrm{O}) \mathrm{Oalkyl},-\mathrm{C}(\mathrm{S})-,-\mathrm{SO} 2-,-\mathrm{S}(\mathrm{O})-,-\mathrm{C}(\mathrm{S})-,-\mathrm{C}(\mathrm{O}) \mathrm{NH}-,-\mathrm{NHC}(\mathrm{O})-$, -$\mathrm{N}(\mathrm{alkyl}) \mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{alkyl})-,-\mathrm{O}-,-\mathrm{S}-,-\mathrm{NH}-,-\mathrm{N}(\mathrm{alkyl})-,-\mathrm{CH}\left(-\mathrm{O}-\mathrm{R}^{26}\right)-,-\mathrm{CH}\left(-\mathrm{NHR}^{25}\right)-,--\mathrm{CH}(-$ $\left.\mathrm{NH}_{2}\right)$-, $-\mathrm{CH}\left(-\mathrm{NR}^{25}{ }_{2}\right)$-, - $\mathrm{C}\left(-\mathrm{O}-\mathrm{R}^{26}\right)$ alkyl, $-\mathrm{C}\left(-\mathrm{NHR}^{25}\right)$ alkyl-, $-\mathrm{C}\left(-\mathrm{NH}_{2}\right)$ alkyl-, $-\mathrm{C}\left(-\mathrm{NR}^{25}{ }_{2}\right)$ alkyl-, $\mathrm{C}\left(\mathrm{R}^{4} \mathrm{R}^{4}\right)-,-\operatorname{alkyl}\left(\mathrm{R}^{27}\right)$-alkyl $\left(\mathrm{R}^{28}\right)-,-\mathrm{C}\left(\mathrm{R}^{27} \mathrm{R}^{28}\right)-,-\mathrm{P}(\mathrm{O})\left(\mathrm{OR}^{26}\right) \mathrm{O}-,-\mathrm{P}(\mathrm{O})\left(\mathrm{OR}^{26}\right)-,-\mathrm{NHC}(\mathrm{O}) \mathrm{NH}-,-$ $\mathrm{N}\left(\mathrm{R}^{25}\right) \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{25}\right)-,-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{25}\right)$, polyethylene glycol, poly(lactic-co-glycolic acid), alkene, haloalkyl, alkoxy, alkyne, heteroarylalkyl, aryl, arylalkyl, heterocycle, aliphatic, lheteroaliphatic, heteroaryl, polypropylene glycol, lactic acid, glycolic acid, carbocycle, or --O-(CH2)1-12-O-,--NH-(CH2)1-12-NH-, -NH-(CH2)1-12-O-, or -O-(CH2)1-12-NH-, -S-(CH2)1-12-O-, --O-(CH2)1-12-S-, --S-$\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{S}-,-\mathrm{S}-\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{NH}-$ or $-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{S}-;$
R^{25} is selected at each instance from: alkyl, - $\mathrm{C}(\mathrm{O}) \mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{OH},-\mathrm{C}(\mathrm{O})$ alkyl, --C(O)Oalkyl, alkenyl, or alkynyl or alternatively can be aliphatic, heteroaliphatic, aryl, heteroaryl or heterocyclic;
R^{26} is. hydrogen, alkyl, silane, arylalkyl, heteroarylalkyl, alkene, and alkyne; or in ;addition to, these:can also be selected from aryl, heteroaryl, heterocyclic, aliphatic and heteroaliphatic; and
R^{27} and R^{28} are independently selected from hydrogen, alkyl, amine, or together with the carbon atom to, which they are attached, form $\mathrm{C}(\mathrm{O}), \mathrm{C}(\mathrm{S}), \mathrm{C}=\mathrm{CH}_{2}, \mathrm{a}_{1} \mathrm{C}_{3}-\mathrm{C}_{6}$:spirocarbocycle, or a $4-$-, 5 -, or 6 -membered spiroheterocycle comprising 1 or 2 heteroatoms selected from \mathfrak{N} and \mathfrak{O}, or form $\mathrm{a}_{1} 1$ or 2 carbon bridged ring.
6. The: compound of claim 1,2 or 3 wherein Linker is a moiety selected fromlFormulalLVIII, LIX, and LX:

7.

wherein the variables are as defined in claim 5.
9. The:compound of claim 1, 2, or 3, wherein the Linker is

, and

wherein the: variables are as defined in claim 5.
10. The:compound of claim 1,2 , or 3 , wherein the Linker is selected from:
$-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 1}$-(lower alkyl)-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 1}$ (lower alkoxyl)-,
$-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 1}$-(lower alkoxyl)- $\mathrm{OCH}_{2}-, \quad-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 1}$-(lower alkoxyl)-(lower aalkyl)- $\mathrm{OCH}_{2}-$, --
10 NR^{61} (CH2)n1-(cycloalkyl)-(lower alkyl)-OCH2-, - $\mathrm{NR}^{61}(\mathrm{CH} 2) \mathrm{n} 1-($ heterocycloalkyl $)$-, \quad-NR^{61} (CH2CH2O)n1-(lower alkyl)-O-CH2-, - NR^{61} (CH2CH2O)n1-(heterocycloalkyl)-O-CH2-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n} 1}$-Aryl-O-CH ${ }_{2}-,-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n} 1}$-(heteroaryl)-O-CH ${ }_{2}-$,
-NR ${ }^{61}$ (CH2CH2O)n1-(cycloalkyl)-O-(heteroaryl)-O-CH2-,
-NR ${ }^{61}$ (CH2CH2O)n1-(cycloalkyl)-O-Aryl-O-CH2-,
$15-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n} 1}$-(lower alkyl)-NH-Aryl-O- $\mathrm{CH}_{2}-$, -NR ${ }^{61}$ (CH2CH2O)n1-(lower alkyl)-O-Aryl-CH2,

- NR^{61} (CH2CH2O)n1-cycloalkyl-O-Aryl-,
-. $\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n} 11}$-cycloalkyl-O-heteroaryl-,
$-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{\mathrm{n} 1}-($ cycloalkyl $)-\mathrm{O}$-(heterocycle) $-\mathrm{CH}_{2}$,
$-\mathrm{NR}^{61}(\mathrm{CH} 2 \mathrm{CH} 2) \mathrm{n} 1$-(heterocycle)-(heterocycle)-CH2, and -NR ${ }^{61}$-(heterocycle)-CH2;
whereinnn is; $0,1,2,3,4,5,6,7,8,9$, or 10 ; and R^{61} is; H, , methyl, or ethyl.

68. The com_{4} ound of claim 1,2 , or 3 , wherein the Linker is selected from:

 SOCOCOM,

$\xrightarrow{3 \times 2}$

CF
R

为

10
N

and

$$
\mathrm{R}^{71} \text { is. -O-, -NH, -NMe, -Nalkyl, } \mathrm{N} \text { (aliphatic), -N(heteroaliphatic); }
$$

$\mathrm{m} 1, \mathrm{n} 2, \mathrm{o} 1, \mathrm{p} 1, \mathrm{q} 2$, and r 1 are independently $1,2,3,4$, or 5 .
11. A method for treating a patient with a medical disorder that can be treated by degrading a'Target

Protein that binds to a Targeting Ligand, comprising administering an effective amount of a compound of claim 1, 3, or 4-10, or a pharmaceutically acceptable salt thereof, optionally in \mathfrak{a} a pharmaceutically acceptable carrier.
12. A method for treating a patient with a medical disorder that can lbe treated lby lbinding to the: protein cereblon in vivo, comprising administering an effective amount of arcompoundroficlaim 2 , 3, or $4-10$, or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable: carrier.
13. The: method of claim 11 or 12 , wherein the disorder is selected from abnormal ceellular proliferation, a tumor, cancer, an immune disorder, autoimmune disorder, arthritis,llupus, diabetes, cardiovascular disease, an infectious disease, or an inflammatory condition.
14. The: method of claim 11 or 12, wherein the infectious disease is selected fromJHIV, IHBV, HCV, HSV, HPV, RSV, CMV, Ebola, Flavivirus, Pestivirus, Rotavirus, Influenza, Coronavirus, EBV, viral pneumonia, drug-resistant viruses, Bird flu, RNA virus, DNA virus, cadenovirus, poxvirus, Picornavirus, Togavirus, Orthomyxovirus, Retrovirus or Hepadnovirus, a IGramnegative, Gram-positive, Atypical, Staphylococcus, Streptococcus, E. Coli, :Salmonella, Helicobacter pylori, meningitis, gonorrhea, Chlamydiaceae, Mycoplasmataceae,ffungus, protozoa, helminth, worms, prion or parasite.
15. The: method of claim 11 or 12 , wherein the disorder is a cancer selected from the group consisting; of squamous-cell carcinoma, basal cell carcinoma, adenocarcinoma, thepatocellular carcinoma, renal cell carcinoma, cancer of the bladder, bowel, cervix, colon, esophagus, lhead, kidney, liver, lung, neck, ovary, pancreatic, prostate, stomach, leukemia, llymphoma, lBurkitt's lymphoma, Non-Hodgkin's lymphoma; melanoma; myeloproliferative disease; ssarcoma, hemangiosarcoma, Kaposi's sarcoma, liposarcoma, myosarcoma, peripheral neuroepithelioma, synovial sarcoma, glioma, astrocytoma, oligodendroglioma, ependymoma, 〔glioblastoma, neuroblastoma, ganglioneuroma, ganglioglioma, medulloblastoma, pineal icell ttumor, meningioma, meningeal sarcoma, neurofibroma, and Schwannoma; breasticancer, uterine,cancer, testicular cancer, thyroid cancer, astrocytoma, esophageal cancer, carcinosarcoma, JHodgkin's disease, Wilms' tumor and teratocarcinoma.

We claim.

We claim.

1. A compound of Formula:
2. A compound of Formula:

(I),

(II), or

or a pharmaceutically acceptable salt, N -oxide or isotopic derivative thereof;
or whanainaceutically acceptable salt, N -oxide or isotopic derivative thereof;
${ }^{\mathbf{x} x y^{1}}$ is $\mathrm{CR}^{6} \mathrm{R}^{7}, \mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}, \mathrm{C}=\mathrm{CH}_{2}, \mathrm{SO}_{2}, \mathrm{~S}(\mathrm{O}), \mathrm{P}(\mathrm{O})$ Oalkyl, $\mathrm{P}(\mathrm{O}) \mathrm{NH}$ alkyl, $\mathrm{P}(\mathrm{O}) \mathrm{N}(\text { alkyl })_{2}$,

$\mathrm{X}_{\mathrm{r}} \mathrm{is}$ independently selected from $\mathrm{NH}, \mathrm{NR}^{3}, \mathrm{CH}_{2}, \mathrm{CHR}^{3}, \mathrm{C}\left(\mathrm{R}^{3}\right)_{2}, \mathrm{O}$, and S ;
n is $=0$, is 2 , single or double bond;
$==$ wherein when $=-$ represents a single bond, n is $0,1,2$, or 3 ;
wherein when $=-$ represents a double bond, n is 0,1 , or 2 ;
R^{1} is selected from:

or R^{1} is selected from:

R^{2} is alkyl, hydrogen, aliphatic, heteroaliphatic, aryl, heteroaryl or heterocyclic;

R^{3} is selected at each instance from: alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{OH},-\mathrm{C}(\mathrm{O})$ alkyl, $-\mathrm{C}(\mathrm{O})$ Oalkyl,

 a 3, 4, 5 or 6 membered ring;
R^{5} and R^{14} are selected at each instance from: hydrogen, alkyl, alkene, alkyne, halogen,

 and haloalkyl; raliphatic, heteroaliphatic, aryl, heteroaryl, heteroalkyl and carbocychic; heteroaryl,

 heteroantoms selected from ther and withe carbon to which they are bound form a 3-, 4-, 5-, or 6-
 membered Spirocartocycle, of and-, ${ }^{\text {and }}$-, or 6 -membered spiro heterocycle comprising 1 or 2

R^{12} is Linker-Targeting Ligand;

Y is independently selected from N, CH, or CR^{101}, wherein $0,1,2$, or 3 instances of Y are
 selected to ${ }^{101}$ be N ; independently selected at each occurrence from hydrogen, alkyl, alkene, alkyne,

ind Targeting Ligand is selected from those in FIGS. 1A through 8PPPPP.
2. A compound of Formula III or Formula IV:

(III)

or a pharmaceutically acceptable salt, N -oxide or isotopic derivative; wherein:
R^{13} is selected from:

or R^{13} and R^{2} are combined to form a 4 to 10 membered heterocyclo or heteroaryl species,

 further substituted with one or more $=0(0 x o)$ at a position allowed by valence.
3. The compound of claim 1 or 2 , wherein W^{1} is $\mathrm{C}=\mathrm{O}, \mathrm{W}^{2}$ is $\mathrm{C}=\mathrm{O}$ and X is NH .
3. The compound of claim 1 or 2 , wherein W^{1} is $\mathrm{C}=0, \mathrm{~W}^{2}$ is $\mathrm{C}=0$ and X is NH .
4. The compound of claim 1,2 or 3, wherein the Linker has a chain of 2 to 20 carbon atoms

5. $6,7,8,9,10,11$ or 12 ethylene glycol units.
5. The compound of claim 1, 2 or 3, wherein Linker is a moiety selected from Formula LI,

Formula LII, Formula LIII, Formula LIV, Formula LV, Formula LVI, and Formula LVII:

(LI),
 (LII),
 (LIII),

(LIV),

(LV),

(LVII),
wherein:
X^{1} and X^{2} are independently selected from bond, $\mathrm{NH}, \mathrm{NR}^{25}, \mathrm{CH}_{2}, \mathrm{CHR}^{25}, \mathrm{C}\left(\mathrm{R}^{25}\right)_{2}, \mathrm{O}$, and S;
$R^{20}, R^{21}, R^{22}, R^{23}$, and R^{24} are independently selected from bond, alkyl, $-C(O)-C(O) O-,-$ $\mathrm{OC}(\mathrm{O})-,-\mathrm{C}(\mathrm{O})$ alkyl, - $\mathrm{C}(\mathrm{O}) \mathrm{Oalkyl},-\mathrm{C}(\mathrm{S})-,-\mathrm{SO}_{2}-,-\mathrm{S}(\mathrm{O})-,-\mathrm{C}(\mathrm{S})-,-\mathrm{C}(\mathrm{O}) \mathrm{NH}-,-\mathrm{NHC}(\mathrm{O})-,-$ $\mathrm{N}($ alkyl $) \mathrm{C}(\mathrm{O})-,-\mathrm{C}(\mathrm{O}) \mathrm{N}($ alkyl $)-,-\mathrm{O}-,-\mathrm{S}-,-\mathrm{NH}-,-\mathrm{N}($ alkyl $)-,-\mathrm{CH}\left(-\mathrm{O}-\mathrm{R}^{26}\right)-,-\mathrm{CH}\left(-\mathrm{NHR}{ }^{25}\right)$-, $-\mathrm{CH}(-$ $\left.\mathrm{NH}_{2}\right)$-, $-\mathrm{CH}\left(-\mathrm{NR}^{25}{ }_{2}\right)-,-\mathrm{C}\left(-\mathrm{O}-\mathrm{R}^{26}\right)$ alkyl, $-\mathrm{C}\left(-\mathrm{NHR}^{25}\right)$ alkyl-, $-\mathrm{C}\left(-\mathrm{NH}_{2}\right)$ alkyl-, $-\mathrm{C}\left(-\mathrm{NR}^{25}{ }_{2}\right)$ alkyl-, -
 $\mathrm{N}\left(\mathrm{R}^{25}\right) \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{25}\right)-,-\mathrm{N}(\mathrm{H}) \mathrm{C}(\mathrm{O}) \mathrm{N}\left(\mathrm{R}^{25}\right)$, polyethylene glycol, poly(lactic-co-glycolic acid), alkene, haloalkyl, alkoxy, alkyne, heteroarylalkyl, aryl, arylalkyl, heterocycle, aliphatic, heteroaliphatic, heteroaryl, polypropylene glycol, lactic acid, glycolic acid, carbocycle, or - $\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{O}-,-\mathrm{NH}-$ $\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{NH}-,-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{O}$, or $-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{NH}-,-\mathrm{S}-\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{O}-,-\mathrm{O}-\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{S}-,-\mathrm{S}-$ $\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{S}-,-\mathrm{S}-\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{NH}-$ or $-\mathrm{NH}-\left(\mathrm{CH}_{2}\right)_{1-12}-\mathrm{S}-$;
R^{25} is selected at each instance from: alkyl, $-\mathrm{C}(\mathrm{O}) \mathrm{H},-\mathrm{C}(\mathrm{O}) \mathrm{OH},-\mathrm{C}(\mathrm{O})$ alkyl, $-\mathrm{C}(\mathrm{O})$ Oalkyl, alkenyl, or alkynyl or alternatively can be aliphatic, heteroaliphatic, aryl, heteroaryl or heterocyclic;
heterocyclic; is hydrogen, alkyl, silane, arylalkyl, heteroarylalkyl, alkene, and alkyne; or in addition

 form a 1 or 2 carbon bridged ring.
6. The compound of claim 1,2 or 3, wherein Linker is a moiety selected from Formula LVIII, LIX, and LX:

7.

 (LX),
wherein each variable is as defined in claim 5.
7. The compound of claim 1, 2 or 3, wherein the Linker is selected from

5 wherein the variables are as defined in claim 5.
8. The compound of claim 1,2, or 3, wherein the Linker is

wherein the variables are as defined in claim 5.
9. The compound of claim 1,2 , or 3 , wherein the Linker is selected from:
$-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{nl}}$-(lower alkyl)-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{nl}}$-(lower alkoxyl)-,
$-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 1}$-(lower alkoxyl)- $\mathrm{OCH}_{2}{ }^{-}$, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 1}$-(lower alkoxyl)-(lower alkyl)- OCH_{2}, $\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{nl}}$-(cycloalkyl)-(lower alkyl)- $\mathrm{OCH}_{2}-, \quad-\mathrm{NR}^{61}\left(\mathrm{CH}_{2}\right)_{\mathrm{ml}}$-(heterocycloalkyl)-, $\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{nl}}$-(lower alkyl)-O- $\mathrm{CH}_{2}-,-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n} 1}$-(heterocycloalkyl)-O-CH2-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{ni}}$-Aryl-O-CH2${ }_{2}$, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{nl}}$-(heteroaryl)- $\mathrm{O}-\mathrm{CH}_{2}$-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\text {ni- }}$-(cycloalkyl)-O-(heteroaryl)-O-CH2-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{nl}}$-(cycloalkyl)-O-Aryl-O-CH2-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{nl}}$-(lower alkyl)-NH-Aryl-O- CH_{2}-, $-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{n 1}$-(lower alkyl)-O-Aryl-CH2,

- $\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{n} 1}$ "cycloalkyl-O-Aryl-,
- $\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{\mathrm{nl}}$-cycloalkyl-O-heteroaryl-,
$-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{\mathrm{n} 1}$-(cycloalkyl)-O-(heterocycle) $-\mathrm{CH}_{2}$,
$-\mathrm{NR}^{61}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{\mathrm{nl}}$-(heterocycle)-(heterocycle) $-\mathrm{CH}_{2}$, and $-\mathrm{NR}^{61}$-(heterocycle)- CH_{2};

$-\mathrm{NR}^{6 \mathrm{r}}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{\mathrm{n}} \mathrm{i}$-(heterocycle)-(heterocycle)-CH ${ }_{2}$, and -NR ${ }^{61}$-(heterocycle)- CH_{2};

R^{61} is H, methyl, or ethyl.
5 10. The compound of claim 1, 2, or 3, wherein the Linker is selected from:

,

(

$$
\overbrace{N^{2}}^{\text {N }}
$$

N

5

,

$\left\{\sum_{i=1}^{2 / 2}\right.$

5

R^{71} is $-\mathrm{O}-,-\mathrm{NH},-\mathrm{NMe},-\mathrm{Nalkyl}, \mathrm{N}($ aliphatic), $-\mathrm{N}($ heteroaliphatic $)$;

$\mathrm{m} 1, \mathrm{n} 2, \mathrm{o} 1, \mathrm{p} 1, \mathrm{q} 2$, and r 1 are independently $1,2,3,4$, or 5 .
11. A method for treating a patient with a medical disorder that can be treated by degrading a

Target Proterin that hinde th a Tarorting I igand frmpricing administering an offertive amnunt of 11. A method for treating a patient with medical disorder that can be treated by degrading a
 Target Protein that binds to a Targeting Ligand, comprising administering an effective amount of ${ }^{\mathrm{a}}$ nharmanonditiontry arcertable narrier. a compound of claim 1,3 , or $4-10$, or a pharmaceutically acceptable salt thereof, optionally in a pharmaceutically acceptable carrier.
12. A method for treating a patient with a medical disorder that can be treated by binding to
 12. ${ }^{\text {an }}$ method for treating a patient with a medical'disorder that can be treated by binding to
 2, arceentahleranrier. pharmaceutically acceptable salt thereof, optionally in a pharmaceutically cceptable carrier.
13. The method of claim 11 or 12 , wherein the disorder is selected from abnormal cellular

 proliferation, a tumor, cancer, an immune disorder, autoimmune disorder, arthritis, lupus, diabetes, cardiovascular disease, an infectious disease, or an inflammatory condition.
14. The method of claim 11 or 12, wherein the infectious disease is selected from HIV, HBV,

 Helicobacter pylori, meningitis, gonorrhea, Chlamydiaceae, Mycoplasmataceae, fungus, protozoa, helminth, worms, prion or parasite.
15. The method of claim 11 or 12 , wherein the disorder is a cancer selected from the group

 meningioma, meningeal sarcoma, neurofibroma, and Schwannoma; breast cancer, uterine cancer,
testicular cancer, thyroid cancer, astrocytoma, esophageal cancer, carcinosarcoma, Hodgkin's dicease, Wilms' tumor and teratocarcinoma
testicular' cancer, thyroid cancer, astrocytoma, esophageal cancer, carcinosarcoma, Hodgkin's disease, Wilms' tumor and teratocarcinoma.

FIG. 1A

FIG. 1B

FIG. 1C

FIG. 1D

FIG. 1E

FIG. 1F

FIG. 1G

FIG. 1H

FIG. 1I

FIG. 1J

FIG. 1K

FIG. 1L

FIG. 1M

FIG. 1N

FIG. 10

FIG. 1P

FIG. 1Q

FIG. 1R

FIG. 1S

FIG. 1T

FIG. 1U

FIG. 1V

FIG. 1W

FIG. 1X

FIG. 1Y

FIG. $1 Z$

FIG. 1AA

FIG. 1BB

FIG. 1CC

FIG. 1DD

FIG. 1EE

FIG. 1FF

FIG. 1GG

FIG. 1HH

FIG. 1II

FIG. 1JJ

FIG. 1KK

FIG. 1LL

FIG. 1MM

FIG. 1NN

FIG. 100

FIG. 1PP

FIG. 1QQ

FIG. 1RR

FIG. 1SS

FIG. 1TT

FIG. 1UU

FIG. 1VV

FIG. 1WW

FIG. 1XX

FIG. 1YY

FIG. 1ZZ

FIG. 1AAA

FIG. 1BBB

FIG. 1CCC

FIG. 1DDD

FIG. 1EEE

FIG. 1FFF

FIG. 1GGG

FIG. 1HHH

FIG. 1III

FIG. 1JJJ

FIG. 1KKK

FIG. 1LLL

FIG. 2A

FIG. 2B

FIG. 2C

FIG. 2D

FIG. 2E

FIG. 2F

FIG. 2G

FIG. 2H

FIG. 2I

derivatized TAE684

derivatized AT-9283

derivatized NVP-BSK805

derivatized Crizotinib

derivatized JNJ FMS

derivatized inhibitor of SHP-2 Domain of Tyrosine Phospatase

FIG. 2J

derivatized PTP1B

derivatized c-Kit/KDR kinase
derivatized mTORC1/2 kinase inhibitor OSl-027 inhibitor OSI-930

derivatized IGFIR/R kinase inhibitor OSI-906

FIG. 2K

FIG. 2L

FIG. 2M

FIG. 2N

FIG. 2 O

FIG. 2P

FIG. 2Q

FIG. 2R

FIG. 2S

FIG. 2 T

FIG. 2U

FIG. 2V

FIG. 2W

FIG. 2X

FIG. 2Y

FIG. 2Z

FIG. 2AA

FIG. 2BB

FIG. 2CC

FIG. 2DD

FIG. 2EE

FIG. 2FF

FIG. 2GG

FIG. 2HH

FIG. 2II

FIG. 2JJ

FIG. 2KK

FIG. 2LL

FIG. 2MM

FIG. 2NN

FIG. 200

FIG. 2PP

FIG. 2QQ

FIG. 2RR

FIG. 2SS

FIG. 2TT

FIG. 2UU

FIG. 2VV

FIG. 2WW

FIG. 2XX

FIG. 2YY

FIG. 2ZZ

FIG. 2AAA

FIG. 2BBB

FIG. 2CCC

FIG. 2DDD

FIG. 2EEE

FIG. 2FFF

FIG. 2GGG

FIG. 2HHH

FIG. 2III

FIG. 2JJJ

FIG. 2KKK

FIG. 2LLL

FIG. 2MMM

FIG. 2NNN

FIG. 2000

FIG. 2PPP

FIG. 2QQQ

FIG. 2RRR

FIG. 2SSS

FIG. 2TTT

FIG. 2UUU

FIG. 2VVV

FIG. 2WWW

FIG. 2XXX

FIG. 2YYY

FIG. 2ZZZ

FIG. 2AAAA

FIG. 2BBBB

FIG. 2CCCC

FIG. 2DDDD

FIG. 2EEEE

FIG. 2FFFF

FIG. 2GGGG

FIG. 2HHHH

FIG. 2IIII

FIG. 2JJJJ

FIG. 2KKKK

FIG. 2LLLL

FIG. 2MMMM

FIG. 2NNNN

FIG. 20000

FIG. 2PPPP

FIG. 2QQQQ

FIG. 2RRRR

FIG. 2SSSS

FIG. 2TTTT

FIG. 2UUUU

FIG. 2VVVV

FIG. 2WWWW

FIG. 2XXXX

FIG. 2YYYY

FIG. 2ZZZZ

FIG. 2AAAAA

FIG. 2BBBBB

FIG. 2CCCCC

FIG. 2DDDDD

FIG. 2EEEEE

FIG. 2FFFFF

FIG. 2GGGGG

FIG. 2HHHHH

FIG. 2IIIII

FIG. 2JJJJJ

FIG. 2KKKKK

FIG. 2LLLLL

FIG. 2MMMMM

FIG. 2NNNNN

FIG. 200000

FIG. 2PPPPP

FIG. 2QQQQQ

FIG. 2RRRRR

FIG. 2SSSSS

FIG. 2TTTTT

FIG. 2UUUUU

FIG. 2VVVVV

FIG. 2WWWWW

R.

FIG. 2XXXXX

FIG. 2YYYYY

FIG. 2ZZZZZ

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 3E

FIG. 3F

FIG. 3G

FIG. 3H

FIG. 3I

FIG. 3J

FIG. 3K

FIG. 3L

FIG. 3M

FIG. 3N

FIG. 30

FIG. 3P

FIG. 3Q

FIG. 3R

FIG. 3S

FIG. $3 T$

FIG. 3U

FIG. 3V

FIG. 3W

FIG. 3X

FIG. 3Y

FIG. 3Z

FIG. 3AA

FIG. 3BB

FIG. 3CC

FIG. 3DD

FIG. 3EE

FIG. 3FF

FIG. 3GG

FIG. 3HH

FIG. 3II

FIG. 3JJ

FIG. 3KK

FIG. 3LL

FIG. 3MM

FIG. 3NN

FIG. 300

FIG. 3PP

FIG. 3QQ

FIG. 3RR

FIG. 3SS

FIG. 3TT

FIG. 3UU

FIG. 3VV

FIG. 3WW

FIG. 3XX

FIG. 3YY

FIG. 3ZZ

FIG. 3AAA

FIG. 3BBB

FIG. 3CCC

FIG. 3DDD

FIG. 3EEE

FIG. 3FFF

FIG. 3GGG

FIG. 3HHH

FIG. 3III

FIG. 3JJJ

FIG. 3KKK

FIG. 3LLL

$X=H, \mathrm{~F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{Me}, \mathrm{CF}_{3} \mathrm{O}$
$X=\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{Me}, \mathrm{CF}_{3} \mathrm{O}$

FIG. 3MMM

FIG. 3NNN

FIG. 3000

FIG. 3PPP

FIG. 3QQQ

FIG. 3RRR

FIG. 3SSS

FIG. 3TTT

FIG. 3UUU

FIG. 3VVV

FIG. 3WWW

FIG. 3XXX

FIG. 3YYY

FIG. 3ZZZ

FIG. 3AAAA

FIG. 3BBBB

FIG. 3CCCC

FIG. 3DDDD

FIG. 3EEEE

FIG. 3FFFF

FIG. 3GGGG

FIG. 3HHHH

FIG. 3IIII

FIG. 3JJJJ

FIG. 3KKKK

FIG. 3LLLL

FIG. 3MMMM

FIG. 3 NNNN

FIG. 30000

FIG. 3PPPP

FIG. 3QQQQ

FIG. 3RRRR

FIG. 3SSSS

FIG. 3TTTT

FIG. 3UUUU

FIG. 3VVVV

FIG. 3WWWW

FIG. 3XXXX

FIG. 3YYYY

FIG. 3ZZZZ

FIG. 3AAAAA

$\mathrm{HO}^{\mathrm{NH}}$

FIG. 3BBBBB

FIG. 3CCCCC

FIG. 3DDDDD

FIG. 3EEEEE

FIG. 3FFFFF

FIG. 3GGGGG

FIG. 3HHHHH

FIG. 3IIIII

FIG. 3JJJJJ

FIG. 3KKKKK

FIG. 3LLLLL

FIG. 3MMMMM

FIG. 3NNNNN

FIG. 300000

FIG. 3PPPPP

FIG. 3QQQQQ

FIG. 3RRRRR

FIG. 3SSSSS

FIG. 3TTTTT

FIG. 3UUUUU

FIG. 3VVVVV

FIG. 3WWWWW

FIG. 3 XXXXX

FIG. 3YYYYY

FIG. 3ZZZZZ

FIG. 4A

FIG. 4B

FIG. 4C

FIG. 4D

FIG. 4E

FIG. 4F

FIG. 4G

FIG. 4H

FIG. 4I

FIG. 4J

C F

FIG. 4K

FIG. 4L

FIG. 4M

FIG. 4N

FIG. 40

FIG. 4P

FIG. 4Q

FIG. 4R

FIG. 4S

FIG. 4T

FIG. 4U

FIG. 4V

FIG. 4W

FIG. 4X

FIG. 4Y

FIG. 4Z

FIG. 4AA

FIG. 4BB

FIG. 4CC

FIG. 4DD

FIG. 4EE

FIG. 5A

FIG. 5B

FIG. 5C

FIG. 5D

FIG. 5E

FIG. 5F

FIG. 5G

FIG. 5H

FIG. 5I

FIG. 5J

FIG. 5K

FIG. 5L

FIG. 5M

FIG. 5N

FIG. 50

FIG. 5P

FIG. 5Q

FIG. 5R

FIG. 5S

FIG. 5T

FIG. 5U

FIG. 5V

FIG. 5W

FIG. 5X

FIG. 5Y

FIG. 5Z

FIG. 5AA

FIG. 5BB

FIG. 5CC

FIG. 5DD

FIG. 5EE

FIG. 5FF

FIG. 5GG

FIG. 5HH

FIG. 5II

FIG. 5JJ

FIG. 5KK

FIG. 5LL

FIG. 5MM

FIG. 5NN

FIG. 500

FIG. 5PP

FIG. 5QQ

FIG. 5RR

FIG. 5SS

FIG. 5TT

FIG. 5UU

FIG. 5VV

FIG. 5WW

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 6D

FIG. 6E

FIG. 6F

FIG. 6G

FIG. 6H

FIG. 6I

FIG. 6J

FIG. 6K

FIG. 6L

FIG. 6M

FIG. 6N

FIG. 60

FIG. 6P

FIG. 6Q

FIG. 6R

FIG. 6S

FIG. 6T

FIG. 6U

FIG. 6V

FIG. 6W

FIG. 6X

FIG. 6Y

FIG. 6Z

FIG. 6AA

FIG. 6BB

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 7D

FIG. 7E

FIG 7F

FIG. 8A

FIG. 8B

FIG. 8C

FIG. 8D

FIG. 8E

FIG. 8F

FIG. 8G

FIG. 8H

FIG. 8I

FIG. 8J

FIG. 8K

FIG. 8L

FIG. 8M

FIG. 8N

FIG. 80

FIG. 8P

FIG. 8Q

FIG. 8R

$\mathrm{X}=\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{Me}, \mathrm{CF}_{3} \mathrm{O}$

FIG. 8 S

$\mathrm{X}=\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{Me}, \mathrm{CF}_{3} \mathrm{O}$

$\mathrm{X}=\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{Me}, \mathrm{CF}_{3} \mathrm{O}$

FIG. 8T

FIG. 8U

FIG. 8V

FIG. 8 W

FIG. 8X

FIG. 8Y

FIG. 8Z

FIG. 8AA

FIG. 8BB

FIG. 8CC

FIG. 8DD

FIG. 8EE

FIG. 8FF

FIG. 8GG

FIG. 8HH

FIG. 8II

FIG. 8JJ

FIG. 8KK

FIG. 8LL

FIG. 8MM

FIG. 8NN

FIG. 800

FIG. 8PP

FIG. 8QQ

FIG. 8RR

FIG. 8SS

FIG. 8TT

FIG. 8UU

FIG. 8VV

FIG. 8WW

FIG. 8XX

FIG. 8YY

FIG. 8ZZ

FIG. 8AAA

FIG. 8BBB

FIG. 8CCC

FIG. 8DDD

FIG. 8EEE

FIG. 8FFF

FIG. 8GGG

FIG. 8HHH

FIG. 8III

FIG. 8JJJ

FIG. 8KKK

FIG. 8LLL

FIG. 8MMM

FIG. 8NNN

FIG. 8000

FIG. 8PPP

FIG. 8QQQ

FIG. 8RRR

FIG. 8SSS

FIG. 8TTT

FIG. 8UUU

FIG. 8VVV

FIG. 8WWW

FIG. 8XXX

FIG. 8YYY

FIG. 8ZZZ

FIG. 8AAAA

FIG. 8BBBB

FIG. 8CCCC

FIG. 8DDDD

FIG. 8EEEE

FIG. 8FFFF

FIG. 8GGGG

FIG. 8HHHH

FIG. 8IIII

FIG. 8JJJJ

FIG. 8KKKK

FIG. 8LLLL

FIG. 8MMMM

FIG. 8NNNN

FIG. 80000

FIG. 8PPPP

FIG. 8QQQQ

FIG. 8RRRR

FIG. 8SSSS

FIG. 8TTTT

FIG. 8UUUU

FIG. 8VVVV

FIG. 8WWWW

FIG. 8XXXX

FIG. 8YYYY

FIG. 8ZZZZ

FIG. 8AAAAA

FIG. 8BBBBB

FIG. 8CCCCC

FIG. 8DDDDD

FIG. 8EEEEE

FIG. 8FFFFF

FIG. 8GGGGG

FIG. 8HHHHH

FIG. 8IIIII

FIG. 8JJJJJ

FIG. 8KKKKK

FIG. 8LLLLL

EtO_{2}

FIG. 8MMMMM

FIG. 8NNNNN

FIG. 800000

FIG. 8PPPPP

FIG. 9

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
2. \square Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.

Claims Nos.: 4-9, 10A, 10B, 11-15
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. Ill Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1.

As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. \square As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.
3. \square As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. F

No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
No protest accompanied the payment of additional search fees.
Form PCT/ISA/2 10 (continuation of first sheet (2)) (January 2015)

A.	CLASSIFICATION	OF SUBJECT MATTER	
IPC	-	C07D 401/14;	C07K 14/47, 14/72 (201 7.01)
CPC	-	C07D 401/14; C07K 14/4705, 14/721	

According to International Patent Classification (IPC) or to both national classification and IPC

Minimum documentation searched (classification system followed by classification symbols) See Search History document			
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched See Search History document			
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) See Search History document			
C. DOCUMENTS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appro	priate, of the relevant passages	Relevant to claim No.
A A A	US 2016/0058872 A 1 (ARVINAS, INC.) 03 March 2016 (FISCHER, ES et al.) 'Structure of the DDB1-CRBN E3 thalidomide'; 07 August 2014, Nature; Volume 512, pa US 2015/0291562 A1 (ARVINAS, INC.) 15 October 20	abstract; figure 2; paragraph [0219] ubiquitin ligase in complex with ges 49-53; entire document 15; entire document	$\begin{aligned} & 1-2,3 / 1-2 \\ & 1-2,3 / 1-2 \\ & 1-2,3 / 1-2 \end{aligned}$
$\mathbf{I} \text { Further documents are listed in the continuation of Box } \mathrm{C} . \quad$			
Date of the actual completion of the international search Date of mailing of the international search report 10 July 2017 (10.07.2017) $\mathbf{0 4} \mathbf{4} \mathbf{G} 2017$			
Name and mailing address of the ISA/ Mail Stop PCT, Attn: ISA/US, Commissioner for Patents P.O. Box 1450, Alexandria, Virginia 22313-1450 Facsimile No. 571-273-8300		Authorized officer Shane Tho PCT Helpdesk: 571-272-4300 PCT OSP: 571-272-7774	

Form PCT/ISA/210 (second sheet) (January 2015)

