(19) United States
(12) Patent Application Publication

Broglie et al.
(10) Pub. No.: US 2006/0223102 A1
(43) Pub. Date: Oct. 5, 2006
(54) POLYNUCLEOTIDES AND METHODS FOR MAKING PLANTS RESISTANT TO FUNGAL PATHOGENS

Inventors: Karen E. Broglie, Landenberg, PA (US); Karlene H. Butler, Newark, DE (US); Marymar G. Butruille, Urbandale, IA (US); Alexandre de Silva Conceicao, Wilmington, DE (US); Travis James Frey, Huxley, IA (US); James A. Hawk, Newark, DE (US);
Jennifer S. Jaqueth, Des Moines, IA
(US); Elizabeth S. Jones, Prole, IA
(US); Dilbag Singh Multani,
Urbandale, IA (US); Petra Johanna
Christina Cecilia Wolters, Wilmington, DE (US)

Correspondence Address:
PIONEER HI-BRED INTERNATIONAL, INC. 7250 N.W. 62ND AVENUE
P.O. BOX 552

JOHNSTON, IA 50131-0552 (US)
(73) Assignees: E.I. du Pont de Nemours and Company; Pioneer Hi-Bred International, Inc.; University of Delaware
(21) Appl. No.:

11/397,275
(22) Filed:

Apr. 4, 2006

Related U.S. Application Data
(60) Provisional application No. 60/668,241, filed on Apr. 4, 2005. Provisional application No. 60/675,664, filed on Apr. 28, 2005.

Publication Classification
(51) Int. Cl.

C12Q	$1 / 68$	(2006.01)
A01H	$5 / 00$	(2006.01)
A01H	$1 / 00$	(2006.01)

(52) U.S. Cl. 435/6; 800/279; 800/320.1

(57)

ABSTRACT

This invention relates to polynucleotide sequences encoding a gene that can confer resistance to the plant pathogen Colletotrichum, which causes anthracnose stalk rot, leaf blight and top dieback in corn and other cereals. It further relates to plants and seeds of plants carrying chimeric genes comprising said polynucleotide sequences, which enhance or confer resistance to the plant pathogen Colletotrichum, and processes of making said plants and seeds. The invention further presents sequences that can be used as molecular markers that in turn can be used to identify the region of interest in corn lines resulting from new crosses and to quickly and efficiently introgress the gene from corn lines carrying said gene into other corn lines that do not carry said gene, in order to make them resistant to Colletotrichum and resistant to stalk rot.

Figure 2a

1

60
SEQ ID NO： 3 MEAALLS－－－GFIKTILPRLFSLV－QGRYKIHKGLKSDIKSLEKELHMIAVTID－－EQIS SEQ ID NO： 17 METAVLS－－－AVLRTLGPKLYAFLRDGHDLLRRDLERDVHYIRNEIAMIAAAIE－－EHDR SEQ ID NO： 15 MEGAIFSVAEGTVRSLLSKLSSLLSQE－SWFVRGVHGDIQYIKDELESMNAFLRYLTVLE SEQ ID NO： 14 MEGAVFSLTEGAVRSLICKLGCLLTED－TWLVQGVHGEIQYIKDELECMNAFLRNLTISQ SEQ ID NO： 16 MEGAIVSLTEGAVRGLLRKLAGVLAQE－SSPAQRVHGEVQYIKDELESMNAFLRSVSTSP SEQ ID NO： 18 MD－－－－－IVTGAISNLIPKLGELLTEE－EKLHKGVKKNIEDLGKELESMNAAL－－IKIGE

61

120
SEQ ID NO： 3 LGRKDQGAVLSLSIDELHELAHQIEDSIDRFLYHVTREQQ－－－－－－－－ASFFRRTVRSPK
 SEQ ID NO： 15 D－－－－HDTQVRIWMKQVREIAYDAEDCIDQFTHHLGESSGI－GFLYRLIYILGKLC－－－－ SEQ ID NO： 14 I－－－－HDDQVRIWMKQVREIAYDSEDCIDEFIHNLGESSEM－GFFGGLISMLRKLA－－－－ SEQ ID NO： 16 EDAAGHDDQVRVWMKQVREIAYDAEDCIDVFVRGRSHPAAAAGDEGRLVASLRRFVRLLA SEQ ID NO： 18 VPREQLDSQDKLWADEVRELSYVIEDVVDKFLVQV－DGIQFDDNNNKEKGEMKRTTELLK

121
180
SEQ TD NO： 3 TRTLS－＿－－RORLAAFVQFLKKI PEFAHOREKRYRVEAGISSSTRHTESSS－－CSSVSDP SEQ ID NO： 17 SMGA－－－－RAKFAAVIQELRRKSEELSRLRASYAAAAGEPSCWVATGSSALTLPASSSEA SEQ ID NO： 15 －－－－－－－CRHRIAMQLQELKARAQDVSERRSRYEVM－－IPKTTLQGAGPRLTRHASRHLD． SEQ ID NO： 14 －－ー－ー－－CRHRIALQLQEIKARAQDVGDRRSRYGVE－－I＿AKATHEEAHPRLTRHASLHID SEQ ID NO： 16 GALGVGGGDRSVAAQLRELKARARDAGERRTRYGVS－－LAAAAVRGGG－－－GSSSSGRLD SEQ ID NO： 18 KV－－－－KHKHGIAHAIKDIQEQLQKVADRRDRNKVF－－VPHPTRIIA－－－－－－－－－－ID

181

240

SEQ ID NO： 3 HTL－－－－－－KADVVGIDGPRDELVQQLTEEA－－EGLTKQLKVISIVGI HGSGKTVLAREV
SEQ ID NO： 17
SEQ ID NO： 15
SEQ ID NO： 14
SEQ ID NO： 16
SEQ ID NO： 18
HTL－－－－－－ASDIVGMDGPRDEILE－LIGET－－QG－－－QLKVISIVGFGGLGKTLLARQI PQLHALFTEEAQLVGLDEPRDKLVRWVMEAD－－－－－－PCRRVLAIVGFGGLGKTTLARMV PQLHALFAEEAQLVGIDEPRNELVSWLMEED－－－－－－LRLRVLAIVGEGGLGKTTLARMV PRIHALFTEEAQLVGIDGPREELVGWVMEEE－－－－－－PRLRVLAVVGEGGLGKTTLARMV PCLRALYAEATELVGIYGKRDQDLMRLLSMEGDDASNKRLKKVSIVGFGGLGKTTLARAV

241
300
SEQ ID NO： 3 YESD－V－－GRQFS－－LRAWVSATDRGPREVLMEILRNF－－－－－－GRPVVDSSS－－－－－－－ SEQ ID NO： 17 SEQ ID NO： 15 SEQ ID NO： 14 SEQ ID NO： 16 SEQ ID NO： 18

YESDAV－－AAQFH－－PRIWVRAAGKNAEDVLMDILQQI－－－－－－GMPVHHCHA－－－－－－－－－ CENPMVKGA－DFHCCP－LFIVSQTFNIRTLFQYMIRELIQRPNKAMAV－－－－AGGKHGHT CGSPVVKSA－DFQCCP－LFIISQTFNIRALFQHMVRELIQEPHKAMAI－－－－AGCKHGLI CGSPRVKGAADEQCSPPLVVVSQTFSITALFQHLLRELIQRPRKAMAAVAAAGGGGGDLV

301
360
SEQ ID NO： 3 －－ー－－－－－－－－－IDQLTVDL－－－－－RKHLGEK－－－－－－－RYFIVIDGM－QTDQW－STIET SEQ ID NO： 17 －－－－－－－－－－－－－SNLVVNL－－－－－RNCLESK－－－－－－－RFFVVIDDM－QREYWNSSFRN SEQ ID NO： 15 MDGNMDGMERWEVAVLAEKV－－－－－RQYLLDK－－－－－－－－YIVIFDDIWTISAWES－IRC SEQ ID NO： 14 TDDYLEGMERWEVAALTKNL－－－－－RRYFQDK－－－－－－－RYIVILDDIWTVSAWES－IRC SEQ ID NO： 16 AYDALQGMERWETAALASKAEGIPARQKFVHICGTITLYRYIVILDDIWSSSAWES－IKC SEQ ID NO： 18 －－－－－－－－－－DANQLIKKL－－－－－REFLENK－－－－－－－RYLVIIDDIWDEKIWEG－INF

Figure 2b

Figure 2c

		721
SEQ	ID NO: 3	TLPIEVLLLPCLLHLFGKFQFSDKIKITSD--------MQKFFLTGQSNLETLSGFITD
SEQ	ID NO: 17	FLPIQVLELPCLIHLFGVFKIQDADQQMRK---------L-KSFLTEKSKLETLAGFVTD
SEQ	ID NO: 15	RLPASASNLSCLKHLLVGHKVQLTRTTSVKCERPDSGLEMTAGVVKNMMALQSLAHIVVK
SEQ	ID NO: 14	KLPASAGNLSCLKHLFAGHKVQLTRTASVKFLRQSSGLEVATGVVKNMVALQSLVHIVVK
SEQ	ID NO: 16	KIPSSAANLTCLKHLLAGHKEQLTRTSSVKFLRPSSGLKMSHGVIRNMAKLQSLVHVEIK
SEQ	ID NO: 18	ELPSTVCNFRRLIYL-------------NLF--GCPVVPPVGVLQNLTSIEVLRGILVS
		781880
SEQ	ID NO: 3	GSQGLPQMMNYM-NLRKLKIWFERSKRS--TNFTD----LVNAVQKFIHDDKESNDPRSL
SEQ	ID NO: 17	RCQTFPQLMKHMTNLAKVKIWCENTADA--SSSSNSDVHLSEAIQEFIQRGTDVNDVRSL
SEQ	ID NO: 15	ERPAVLSEIGQLQKLQKLNVLFRGVEEN-WNAFLQSLVKLTGSLRSLSIHILDEKE-HSS
SEQ	ID NO: 14	DKSPVLREIGLLQNLTKINVLLRGVEEN-WNAFLESLSKLPGPLRSLSIHTLDEKE-HSL
SEQ	ID NO: 16	EHPSVFQEIALIQNLRKISVLFYGIEVN-WKPFLELLNMLSGSVRSLSIDIEDAQG-N-I
SEQ	ID NO: 18	VNI-IAQELGNLERLRVLDICERDGSLDLYKDFVKSLCNLH-HIESLRIEC--NSR-ETS
		841
SEQ	ID NO: 3	SLHFDDGTENILN-SLKAPCYLRSLKLKGNLL-ELPQFV----ISMRGLREICLSST-KL
SEQ	ID NO: 17	SLDVGECSQEFLNFSLGDSCYLSSLKLKGNKICRLPPFV----TSLAVLTDLCLSSSDRL
SEQ	ID NO: 15	SLEYLALIAE--SPPLFIRNF--SLK---GKLQRLPPWI----PSLRNVSRITFRDT-GL
SEQ	ID NO: 14	SLDNLAFV-E--SPPLFITKF--SLA---GELERLPPWI----PSLRNVSRFALRRT-EL
SEQ	ID NO: 16	SISSLEMLSSLVSPPIFITSF--SLT---GKLGSLPPWV----ASLRSVSRLTLRRS-QL
SEQ	ID NO: 18	SFELVDLLGERWVPPVHFREFVSSMP---SQLSALRGWIKRDPSHLSNLSELILSSVKDV
		901960
SEQ	ID NO: 3	TSGLLATLANLKGLQHLKLI-----ADVLEDFIIEGQAFLGLLHLCFVLERATL-----P
SEQ	ID NO: 17	SSDVLAALSNVRALRYLKLI-----ARHLDRFVIERGDLQSLRRLHIVVVSMTTMSKQQP
SEQ	ID NO: 15	HAEAIGVLGDLPNLLCLK-LYQRS YADD--HIFFAHGNFLKLR----MLVIDNMENIRNV
SEQ	ID NO: 14	HADAIGVLGDLPNLLCLK-LYHKSYADN--CIVFCHGKFVKLK----LLIIDNLERIEKM
SEQ	ID NO: 16	RADAIHVLGGLQNLLCLK-LYHKS YADD--RLVFPQGGFARVK----ILIDDNLVNLEKL
SEQ	ID NO: 18	QQDDVEIIGGL---LCLRRLFIITSTDQTQRLLVIRADGFRCT----VDFRLDCGSATQI
		961
SEQ	ID NO: 3	IIEGGALPYLISLKLICKDLVG---LGDIKINRLK--CLKEVSLDHRVASETREIWEKAA
SEQ	ID NO: 17	EIQEGALPNLESFHLLCKDLDGPCGHGGIRIDSLGLGCLREIVLDDGVRETAKEQWKDAA
SEQ	ID NO: 15	HFEKGSVPNLE-------------------WLTIAFLQEP--KDGITG-----------1-1
SEQ	ID NO: 14	QFDAGSVTNLE--------------------RLTLSFLREP--KYGISG
SEQ	ID NO: 16	HFNEGSMPNLE-------------------RLTLSFLREP--KDGISG
SEQ	ID NO: 18	LFEPGALPRAVRV-------------------WFSLGVRVTK--EDGNRG
		1021
SEQ	ID NO: 3	EKHPNRPKVLLVNSSDESEIKAVDCSVASRPAVSEANGTSPMSEVD--VREDDIQMT
SEQ	ID NO: 17	RRHPKRPKVVFVGAGDVVDRRRVGAAAAAAPAAGESNSAMAPAAVASVVAAGDVKRPARE
SEQ	ID NO: 15	-LE-----NLLKLKEIE-----------------------FFGDI ILSMVTKV
SEQ	ID NO: 14	LE-----NLPKLKEIE----------------------FFGDIILSVVTKV
SEQ	ID NO: 16	-LN-----NLLKLKEVE----------------------FEGNIVSSVVSKV
SEQ	ID NO: 18	-FDLGLQGNLFSLREFVS----.--------------------
		1081
SEQ	ID.NO: 3	---LNQGLSAAAEKQMNCAVQPSSKAELNSDFNNISFPEVALGLTEL.
SEQ	ID NO: 17	ESDISAALASLPAK-MARLLGAASIHQSSGTQGELSCGGNGASQRHFS
SEQ	ID NO: 15	ASCMK----AHPNR--PRVIGDKWNNVT----------------EYA
SEQ	ID NO: 14	ASCVK----AHPNH--PRVIGDKWNIVT----------------EYA
SEQ	ID NO: 16	VSCVK----DHPNH--PRVVGDKWNIVT-----------------VYN
EQ	NO: 18	EAAVR

Figure 4

Figure 5

Figure 6

Figure 7a

Figure 7b

Figure 8a

DE811ASR(BC3)

DE811ASR(BC5)

MP305 chromosomal segment
Recurrent parent chromosomal segment
Chromosomal segment could be MP305 or recurrent parent Location of Rcg1 gene

DE811ASR(BC5)

> Rcg1 Insertion Site
Mo17 and B73

Figure 9b

50,330 bp of Rcg1 Non-colinear Region set forth in SEQ ID NO: 137

Figure 10
Figure 11

dai $=$ days after inoculation

Figure 14
$1=$ DE811
$2=$ PH705
$3=$ PH5W4
$4=$ PH87P
\square Positive
\square Negative

Figure 15

Figure 16

Figure 17

uo!ssajbord asces!a

6L. OJnธิ!

Hefrit															
Sch:															
i_{1} \% \%															
Run															

PH705 x PH87P	PH705 x PH87P
Rcg1 negative	Rcg1 positive

PH705 x PH87P	PH705 x PH87P
Rcg1 negative	Rcg1 positive

Figure 20 Inoculated internode

Figure 21

Figure 22

Figure 23
C00060-01-R1
FLP 11 F C00060-01-PCA
C00060-01-F1

Exon 1

C00060-02-F1
Exon 2
Rcg1 gene with introns and exons
4212 bp

Rcg1 gene with introns and exons
Figure 24
C00060-01-R-Taq . FrFLP|F

Rcg1 gene with introns and exons
4212 bp

POLYNUCLEOTIDES AND METHODS FOR MAKING PLANTS RESISTANT TO FUNGAL PATHOGENS

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to and the benefit of U.S. Provisional Application Nos. 60/668,241 and 60/675,664, filed on Apr. 4, 2005 and Apr. 28, 2005, respectively, which are herein incorporated by reference in their entirety.

THE NAMES OF THE PARTIES TO A JOINT RESEARCH AGREEMENT

[0002] A joint Research Project Agreement was executed on Feb. 18, 2002 for map-based cloning and gene expression studies of a maize gene(s) that confer(s) resistance to ASR. The names of the parties executing the joint Research Project Agreement are the University of Delaware and E.I. du Pont de Nemours and Company.

Field of the Invention

[0003] This invention relates to compositions and methods useful in creating or enhancing pathogen-resistance in plants. Additionally, the invention relates to plants that have been genetically transformed with the compositions of the invention.

BACKGROUND OF THE INVENTION

[0004] Colletotrichum graminicola (Ces.) (Cg), more commonly known as anthracnose, is the causative agent of anthracnose leaf blight, anthracnose stalk rot (ASR) and top dieback that affects Zea mays (L.), also known as maize or corn. It is the only known common stalk rot that also causes a leaf blight (Bergstrom, et al., (1999), Plant Disease, 83:596-608, White, D. G. (1998), Compendium of Com Diseases, pp. 1-78). It has been known to occur in the United States since 1855 and has been reported in the Americas, Europe, Africa, Asia, and Australia (McGee, D.C. (1988), Maize Diseases: A Reference Source for Seed Technologists, APS Press, St. Paul, Minn.; White, (1998) supra; White, et al., (1979) Proc. Annu. Com Sorghum Res $\left.\operatorname{Conf}\left(34^{\text {th }}\right), ~ 1-15\right)$. In the United States alone, over 37.5 million acres are infested annually with average yield losses of 6.6% nationwide (See FIG. 1). The yield losses are due both to low kernel weight in infected plants and "lodging," that is, the falling over of the plants due to weakness in the stalks caused by the infection (Dodd, J., (1980), Plant Disease, 64:533-537). Lodged plants are more difficult to harvest and are susceptible to other diseases. After infection, typically the upper portion of the stalk dies first while the lower stalk is still green. Externally, infection can be recognized by blotchy black patches on the outer rind of the stalk, while internally the pith tissue is discolored or black in appearance. Inoculation occurs in a number of ways. Roots may grow through stalk debris and become infected. This will become an increasing problem as "no till" methods of agriculture are more widely adopted due to their environmental benefits. The fungus may also infect the stalks through insect damage and other wounds (White (1998) supra). Stalk infection may be preceded by leaf infection causing leaf blight and providing inoculum for stalk infection. There is controversy in the technical literature as to the
number of different varieties or races of Cg present in nature. The pathogen is transmitted by wind or contaminated seed lots. Spores remain viable for up to 2 years (McGee (1988) supra; Nicholson, et al., (1980), Phytopathology, 70:255261; Warren, H. L. (1977), Phytopathology, 67:160-162; Warren, et al., (1975), Phytopathology, 65:620-623).
[0005] Farmers may combat infection by corn fungal diseases such as anthracnose through the use of fungicides, but these have environmental side effects, and require monitoring of fields and diagnostic techniques to determine which fungus is causing the infection so that the correct fungicide can be used. Particularly with large field crops such as corn, this is difficult. The use of corn lines that carry genetic or transgenic sources of resistance is more practical if the genes responsible for resistance can be incorporated into elite, high yielding germplasm without reducing yield. Genetic sources of resistance to Cg have been described. There have been several maize lines identified that carry some level of resistance to Cg (White, et al. (1979) supra). These included A556, MP305, H21, SP288, CI88A, and FR16. A reciprocal translocation testcross analysis using A556 indicated that genes controlling resistance to ASR lie on the long arms of chromosomes 1,4 , and 8 as well as both arms of chromosome 6 (Carson, M. L. (1981), Sources of inheritance of resistance to anthracnose stalk rot of com. Ph.D. Thesis, University of Illinois, Urbana-Champaign). Introgression of resistance derived from such lines is complex. Another inbred, LB31, was reported to carry a single dominant gene controlling resistance to ASR but appears to be unstable, especially in the presence of European corn borer infestation (Badu-Apraku et al., (1987) Phytopathology77: 957-959). The line MP305 was found to carry two dominant genes for resistance, one with a major effect and one with a minor effect (Carson (1981) supra). MP305 has been made available by the University of Mississippi through the National Plant Germplasm System (GRIN ID: NSL 250298) operated by the United States Department of Agriculture. See Compilation of North American Maize Breeding Germplasm, J. T. Gerdes et al., Crop Science Society of America, 1993. Seed of MP305 can be obtained through W. Paul Williams, Supervisory Research Geneticist USDA-ARS, Corn Host Plant Resistance Research Unit, Box 9555, 340 Dorman Hall, Mississippi State, Miss. 39762.
[0006] It has been reported that there are two genes linked on the long arm of chromosome 4 that confer resistance to Cg (Toman, et al., (1993), Phytopathology, 83:981-986; Cowen, N et al. (1991) Maize Genetics Conference Abstracts 33). A significant resistance quantitative trait locus (QTL) on chromosome 4 has also been reported (Jung, et al., (1994), Theoretical and Applied Genetics, 89:413-418). Jung et al. (supra) reported that UMC15 could be used to select for the QTL on chromosome 4 in MP305, and suggested that the QTL is on a 12 cM region of chromosome 4 between UMC15 and UMC66. In fact, as discussed in more detail below, the region between UMC15 and UMC66 as reported on the IBM2 neighbors 4 genetic map is approximately 129 cM , and selection for the QTL in the manner suggested by Jung et al. (1994, supra) would at best select a large chromosomal interval with considerable linkage drag and negative phenotypic effect, and at worst, a double recombination could occur between the two markers resulting in a false positive selection for the Rcg1 locus.
[0007] Much work has been done on the mechanisms of disease resistance in plants in general. Some mechanisms of resistance are non-pathogen specific in nature, or so-called "non-host resistance." These may be based on cell wall structure or similar protective mechanisms. However, while plants lack an immune system with circulating antibodies and the other attributes of a mammalian immune system, they do have other mechanisms to specifically protect against pathogens. The most important and best studied of these are the plant disease resistance genes, or " R " genes. One of very many reviews of this resistance mechanism and the R genes can be found in Bekhadir et al., (2004), Current Opinion in Plant Biology 7:391-399. There are 5 recognized classes of R genes: intracellular proteins with a nucleotidebinding site (NBS) and a leucine-rich repeat (LRR); transmembrane proteins with an extracellular LRR domain (TMLRR); transmembrane and extracellular LRR with a cytoplasmic kinase domain (TM-CK-LRR); membrane signal anchored protein with a coiled-coil cytoplasmic domain (MSAP-CC); and membrane associated kinases with an N -terminal myristylation site (MAK-N) (See, for example: Cohn, et al., (2001), Immunology, 13:55-62; Dangl, et al. (2001), Nature, 411:826-833).
[0008] The resistance gene of the embodiments of the present invention encodes a novel R gene related to the NBS-LRR type. While multiple NBS-LRR genes have been described, they differ widely in their response to different pathogens and exact action. To Applicants' knowledge, the novel R gene described in this disclosure is the only one demonstrated to provide resistance to Cg .

SUMMARY OF THE INVENTION

[0009] Embodiments of this invention are based on the fine mapping, cloning and characterization of the gene responsible for the major portion of the resistance phenotype from the line MP305, the introgression of a truncated chromosomal interval with the MP305 resistance locus into other lines with little or no linkage drag, the demonstration of the use of that gene as a transgene and the use of molecular markers to move the gene or transgene into elite lines using breeding techniques.
[0010] Embodiments include an isolated polynucleotide comprising a nucleotide sequence encoding a polypeptide capable of conferring resistance to Colletotrichum, wherein the polypeptide has an amino acid sequence of at least 50%, at least 75%, at least 80%, at least 85%, at least 90%, and at least 95% identity, when compared to SEQ ID NO:3 or the sequences deposited with the Agricultural Research Service (ARS) Culture Collection on Feb. 22, 2006 as Patent Deposit No. NRRL B-30895, based on the NeedlemanWunsch alignment algorithm, or a complement of the nucleotide sequence, wherein the complement and the nucleotide sequence consist of the same number of nucleotides and are 100% complementary.
[0011] Additional embodiments of the present invention include a vector comprising the polynucleotide of an embodiment of the present invention, such as SEQ ID NO: 3, or the sequences of the plasmid deposited as Patent Deposit No. NRRL-30895, and a recombinant DNA construct comprising the polynucleotide of an embodiment of the present invention operably linked to at least one regulatory sequence. A plant cell, as well as a plant, each
comprising the recombinant DNA construct of an embodiment of the present invention, and a seed comprising the recombinant DNA construct are also embodied by the present invention.
[0012] The methods embodied by the present invention include 1) a method for transforming a host cell, including a plant cell, comprising transforming the host cell with the polynucleotide of an embodiment of the present invention, 2) a method for producing a plant comprising transforming a plant cell with the recombinant DNA construct of an embodiment of the present invention and regenerating a plant from the transformed plant cell, and 3) methods of conferring or enhancing resistance to Colletotrichum and/or stalk rot, comprising transforming a plant with the recombinant DNA construct of an embodiment of the present invention, thereby conferring and/or enhancing resistance to Colletotrichum or stalk rot.
[0013] Additional embodiments include methods of determining the presence or absence of the polynucleotides of an embodiment of the present invention, or the Rcg1 locus, in a corn plant, comprising at least one of (a) isolating nucleic acid molecules from the corn plant and determining if an Rcg1 gene is present or absent by amplifying sequences homologous to the polynucleotide, (b) isolating nucleic acid molecules from the corn plant and performing a Southern hybridization, (c) isolating proteins from the corn plant and performing a western blot using antibodies to the Rcg1 protein, (d) isolating proteins from the corn plant and performing an ELISA assay using antibodies to the Rcg1 protein, or (e) demonstrating the presence of mRNA sequences derived from the Reg1 mRNA transcript and unique to Rcg1, thereby determining the presence of the polynucleotide or the Rcg1 locus in the corn plant.
[0014] Methods of altering the level of expression of a protein capable of conferring resistance to Colletotrichum or stalk rot in a plant or plant cell comprising (a) transforming a plant cell with the recombinant DNA construct of an embodiment of the present invention and (b) growing the transformed plant cell under conditions that are suitable for expression of the recombinant DNA construct wherein expression of the recombinant DNA construct results in production of altered levels of a protein capable of conferring resistance to Colletotrichum or stalk rot in the transformed host are also embodied by the present invention.
[0015] An additional method embodied by the present invention is a method of conferring or enhancing resistance to Colletotrichum and/or stalk rot in a corn plant, comprising (a) crossing a first corn plant lacking the Rcg1 locus with a second corn plant containing the Rcg1 locus to produce a segregating population, (b) screening the segregating population for a member containing the Rcg 1 locus with a first nucleic acid, not including UMC15a or UMC66, capable of hybridizing with a second nucleic acid linked to or located within the Rcg1 locus, and (c) selecting the member for further crossing and selection.
[0016] Methods of enhancing resistance to Colletotrichum and/or stalk rot, or introgressing Colletotrichum and/or stalk rot resistance into a corn plant, comprising performing marker assisted selection of the corn plant with a nucleic acid marker, wherein the nucleic acid marker specifically hybridizes with a nucleic acid molecule having a first nucleic acid sequence that is linked to a second nucleic acid
sequence that is located on the Rcg1 locus of MP305 and selecting the corn plant based on the marker assisted selection are also embodiments of the present invention. Specific FLP, MZA and Rcg1 specific SNP markers disclosed herein are further aspects of the invention.
[0017] Additional embodiments are an improved donor source of germplasm for introgressing resistance or enhancing resistance to Colletotrichum or stalk rot into a corn plant, said germplasm comprising DE811ASR (BC5) and progeny derived therefrom. Said progeny can be further characterized as containing the DE811ASR (BC5) Rcg1 sequences disclosed herein, molecular markers in or genetically linked to Rcg1, resistance or enhanced resistance to Colletotrichum, or any combinations thereof.
[0018] Further embodiments include processes for identifying corn plants that display newly conferred or enhanced resistance to Colletotrichum by detecting alleles of at least 2 markers in the corn plant, wherein at least one of the markers is on or within the chromosomal interval below UMC2041 and above the Rcg1 gene, and at least one of the markers is on or within the interval below the Rcg1 gene and above UMC2200. Similar embodiments encompassed by this process include at least one of the markers being on or within the chromosomal interval below UMC1086 and above the Rcg1 gene, on or within the chromosomal interval below UMC2285 and above the Rcg1 gene, and at least one of the markers is on or within the interval below the Rcg 1 gene and above UMC2200, on or within the interval below the Rcg1 gene and above UMC2187, or on or within the interval below the Rcg1 gene and above UMC15a. Further embodiments related to the same process include those in which at least one of the markers is capable of detecting a polymorphism located at a position corresponding to nucleotides 7230 and 7535 of SEQ ID NO: 137, nucleotides 11293 and 12553 of SEQ ID NO: 173, nucleotides 25412 and 29086 of SEQ ID NO: 137, or nucleotides 43017 and 50330 of SEQ ID NO: 137.
[0019] Further embodiments include processes for identifying corn plants that display newly conferred or enhanced resistance to Colletotrichum by detecting alleles of at least 2 markers in the corn plant, wherein at least one of the markers on or within the chromosomal interval below UMC2041 and above the Rcg1 gene is selected from the markers listed in Table 16, and at least one of the markers on or within the interval below the Rcgl gene and above UMC2200 is also selected from the markers listed in Table 16. Embodiments include processes for identifying corn plants that display newly conferred or enhanced resistance to Colletotrichum by selecting for at least four markers or at least six, wherein at least two or three of the markers are on or within the chromosomal interval below UMC2041 and above the Rcg1 gene, and at least two or three of the markers are on or within the interval below the Rcg1 gene and above UMC2200. Additional embodiments include this same process when the two or three markers on or within the chromosomal interval below UMC2041 and above the Rcg1 gene, as well as the two or three markers on or within the interval below the Rcg1 gene and above UMC2200, are selected from those listed in Table 16. Another embodiment of this process includes detecting allele 7 at MZA1112, detecting allele 2 at MZA2591, or detecting allele 8 at MZA3434. Corn plants and seeds produced by the embodied processes are also embodiments of the invention, including
those corn plants which do not comprise the same alleles as MP305 at or above UMC2041, or at or below UMC2200 at the loci shown in Table 16.
[0020] Other embodiments include processes for identifying corn plants that display newly conferred or enhanced resistance to Colletotrichum by detecting alleles of at least 2 markers in the corn plant, wherein at least one of the markers is on or within the chromosomal interval below UMC2041 and above the Rcg1 gene, and at least one of the markers is on or within the interval below the Rcg 1 gene and above UMC2200, and where the process detects the presence or absence of at least one marker located within the Rcg1 gene. A further such embodiment includes a modification of this process in which four markers are selected for, in which two of the markers are within the chromosomal interval below UMC2285 and above the Rcg 1 gene, and at least two of the markers are within the interval below the Rcg1 gene and above UMC15a. A further embodiment of this process includes the Rcg1 gene having been introgressed from a donor corn plant, including MP305 or DE811ASR(BC5), into a recipient corn plant to produce an introgressed corn plant. This process also includes the instance when the introgressed corn plant is selected for a recombination event below the Rcg1 gene and above UMC15a, so that the introgressed corn plant retains a first MP305 derived chromosomal interval below the Rcg1 gene and above UMC15a, and does not retain a second MP305 derived chromosomal interval at and below UMC15a. Corn plants and seeds produced by these processes are also embodiments of the invention. Introgressed corn plants embodied by the invention include those that are Rcg1 locus conversions of PH705, PH5W4, PH51K or PH87P, or progeny thereof.
[0021] A further embodiment of the invention is a process of identifying a corn plant that displays enhanced resistance to Colletotrichum infection, by detecting in the corn plant the presence or absence of at least one marker at the Rcg1 locus, and selecting the corn plant in which the at least one marker is present. Embodiments include when at least one marker is on or within SEQ ID NO: 137, and also when the at least one marker is capable of detecting a polymorphism located at a position in SEQ ID NO: 137 corresponding to the position between nucleotides 1 and 536, between nucleotides 7230 and 7535, between nucleotides 11293 and 12553, between nucleotides 25412 and 29086; and between nucleotides 43017 and 50330, and also when at least one marker is on or within the Rcg1 coding sequence, or located on or within the polynucleotide set forth in SEQ ID NO: 1. Another embodiment includes when the process detects a single nucleotide polymorphism at a position in SEQ ID NO: 1 corresponding to one or more of position 413, 958, 971, 1099, 1154, 1235, 1250,1308, 1607, 2001, 2598, and 3342. Markers included by the processes in these embodiments include SNP markers C00060-01 and C00060-02, markers that detect an mRNA sequence derived from the Rcg1 mRNA transcript and unique to Rcg1, and FLP markers on an amplicon generated by a primer pair set forth in this disclosure, such as those of SEQ ID NO:s 35-42, and their complements. Another embodiment includes when the process detects the presence or absence of at least two markers within the Rcg1 locus, including C00060-01 and C00060-02. Corn plants and seeds produced by these processes are also embodiments of the invention. Introgressed corn plants embodied by the invention include those that are

Rcg1 locus conversions of PH705, PH5W4, PH51 K or PH87P, or progeny thereof. Such embodiments include corn seed comprising a first MP305 derived chromosomal interval defined by BNLG2162 and UMC1051, and not comprising a second MP305 derived chromosomal interval above UMC2041 or below UMC1051, and when the corn seed comprises the Rcg1 gene and, when grown, produces a corn plant that exhibits resistance to Colletotrichum infection. Seed of the embodiments also includes corn seed comprising a first MP305 derived chromosomal interval between, but not including, UMC2285 and UMC15a, and not comprising a second MP305 derived chromosomal interval at or above UMC2285 or at or below UMC15a, and furthermore such corn seed which comprises the Rcg1 gene and, when grown, produces a corn plant that exhibits resistance to Colletotrichum infection. Corn plants and plant cells produced from this seed are also included in the embodiments of the invention.
[0022] Additional embodiments include seed of a corn variety designated DE811ASR(BC5), or the corn seed deposited as ATCC accession number PTA-7434, or a progeny seed derived from that variety, that comprises the Rcg1 gene, that when grown, produces a plant that exhibits enhanced or newly conferred resistance to Colletotrichum infection. Plants and plant cells grown from this seed are also embodiments, as well as progeny seed that retain a first MP305 or DE811ASR(BC5) derived chromosomal interval within, but not including, UMC2285 and UMC15a, and progeny seed that do not comprise a second MP305 derived chromosomal interval at or above UMC2285 or at or below UMC15a. Plants and plant cells of the above seed are included as embodiments. Progeny seed that is an Rcg1 locus conversion of PH705, PH5W4, PH51K or PH87P, or a progeny thereof is also embodied in the invention, as are progeny seed that comprise at least two or more of allele 7 at MZA11123, allele 2 at MZA2591, or allele 8 at MZA3434. Further embodiments include progeny seed which comprise a cytosine nucleotide at MZA2591.32, a thymine nucleotide at MZA2591.35, and a cytosine nucleotide at MZA3434.17.
[0023] Additional embodiments include a computer system for identifying a corn plant that displays newly conferred or enhanced resistance to Colletotrichum infection comprising a database comprising an allele score information for one or more corn plants for four or more marker loci closely linked to or within the Rcg1 locus, and instructions that examine said database to determine inheritance of the chromosomal interval or portions thereof defined by the four or more marker loci and compute whether or not the one or more corn plants comprise the Rcg1 gene. Further embodiments include a computer system for identifying a corn plant that displays newly conferred or enhanced resistance to Colletotrichum infection comprising a database comprising allele score information for one or more corn plants for one or more marker loci within the Rcg1 locus, and instructions that examine said database to determine inheritance of the Rcg1 locus. The allele score information for one or more corn plants for such computer systems may further comprise two, three, or more marker loci within the Rcg1 locus.
[0024] Embodiments also include genetic markers on or within SEQ ID NOs: 140 through 146 for MZA3434, MZA2591, MZA11123, MZA15842, MZA1851, MZA8761 and MZA11455, respectively. Other embodiments include
genetic markers located on or in the Rcg1 locus or the Rcg1 gene, including those located on SEQ ID NO: 137, for example those located on regions corresponding to nucleotides between 1 and 536 , between 7230 and 7535 , between 11293 and 12553 , between 25412 and 29086, and the region between nucleotides 43017 and 50330. Embodied markers also include those located on SEQ ID NO: 1, such as those located on or within nucleotide positions 550-658 of SEQ ID NO: 1, or those located on or within nucleotide positions 1562-1767 of SEQ ID NO: 1 . Markers of the embodiments include those on markers located on amplicons generated by a primer pair wherein the first primer is an odd-numbered sequence from SEQ ID NO: 23 to 41 , and wherein the second primer is an even-numbered sequence from SEQ ID NO: 24 to 42 .
[0025] Further embodiments include corn plants obtainable by a method comprising: crossing MP305 or DE811ASR(BC5) [Deposit No. PTO-7434] as a first parent plant, with a different plant that lacks an Rcg1 locus as a second parent plant, thereby to obtain progeny comprising the Rcg1 locus of the first parent; and optionally further comprising one or more further breeding steps to obtain progeny of one or more further generations comprising the Rcg1 locus of the first parent. Such embodied corn plants include both inbred and hybrid plants. Seeds of such plants, including those seeds which are homozygous and heterozygous for the Rcg1 locus, and methods of obtaining corn products resulting from the processing of those seeds are embodied in the invention. Using such seed in food or feed or the production of a corn product, such as corn flour, corn meal and corn oil is also an embodiment of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] FIG. 1 is a map of the United States showing the severity of anthracnose stalk rot infestation by county for 2002.
[0027] FIG. 2 (a, b, c) is an alignment of a polypeptide sequence of the embodiments (SEQ ID NO: 3) comparing it to other known NBS-LRR polypeptides.
[0028] FIG. 3 is a graph produced by Windows QTL Cartographer software showing a statistical analysis of the chance (Y axis) that the locus responsible for the Cg resistance phenotype is located at a particular position along the chromosome (X axis) as defined by FLP markers.
[0029] FIG. 4 is an electrophoresis gel blot of aliquots of RT-PCR reactions which reveals the presence of a 260 bp band present in the samples derived from both infected and uninfected resistant plants but absent from susceptible samples. RT-PCR fragments were obtained from 12.5 ng total RNA from DE811 and DE811ASR stalk tissue. cDNA obtained by reverse transcription was amplified using Rcg1 specific primers and 18 S rRNA primers as an internal standard.
[0030] FIG. 5 is a schematic diagram of the Mu-tagging strategy used to validate the Rcg 1 gene.
[0031] FIG. 6 is the gene structure of Rcg1 showing the location of four different mutator insertion sites.
[0032] FIG. 7($a-b)$ is a series of genetic map images with increasing resolution of the map of the region near the Rcg1 gene. Map distances for $7(a)$ for the map labelled " A " are in
cM and in relation to the IBM2 Neighbors 4 genetic map. Map distances for $7(b)$ for the map labelled " B " were developed using 184 individuals from the BC 7 population, and map distances for $7(\mathrm{~b})$ for the map labelled "C" were developed using 1060 individuals from the BC 7 population. Genetic mapping in the BC7 population increased the map resolution greater than 10 -fold, when compared with the published map. The location of the markers shown to the right of each map is based on extrapolation of their location on the physical map.
[0033] FIG. 8(a-b) is a genetic map image showing the chromosomal interval with the Rcg1 gene in DE811ASR (BC 3), the reduced size of the chromosomal interval with the Rcg1 gene obtained in DE811ASR (BC5) and the further reduced size of the chromosomal interval in inbreds obtained by initially using DE811ASR (BC5) as a donor source. For all markers, the map distances shown were reported on the IBM2 neighbors map publicly available on the Maize GDB, apart from for MZA15842, FLP27 and FLP56 for which map positions were extrapolated using regression analysis relative to the high resolution maps in FIG. 7(b), maps B and C, using the positions of UMC2285, PH1093 and CSU166a which were common to both maps.
[0034] FIGS. 9(a-b). FIG. 9 (a) shows the alignment of the non-colinear region from DE811ASR (BC5) relative to B73 and Mo17. The BAC sizes in FIG. 9 (a) are estimates. FIG. $9(b)$ shows a portion of the non-colinear region as set forth in SEQ ID NO: 137 on which Rcg 1 resides, including the repetitive regions therein, as well as the Rcg1 exons 1 and 2.
[0035] FIG. $10(a-b)$ show distributions of average leaf lesion size in different individual plants at 15 days after inoculation with Cg in the DE811ASR(BC5) and DE811 lines, respectively.
[0036] FIG. 11 shows a comparison of average leaf lesion size on plants of DE811 and DE811ASR(BC5) infected with Cg at 7 and 15 days after inoculation.
[0037] FIG. 12 shows the average severity of disease four to five weeks after inoculation with Cg in stalks of hybrids derived from crossing DE811ASR(BC5) and DE811 to the line indicated.
[0038] FIG. 13 shows the improvement in yield at maturity after inoculation with Cg in hybrids derived from crossing DE811ASR(BC5) to the line indicated when compared to the yield of hybrids derived from crossing DE811 to the line indicated.
[0039] FIG. 14 shows the severity of disease at 5 different locations caused by Cg in stalks of inbred lines derived from DE811ASR(BC5) or MP305 four to five weeks after inoculation. Differences between the lines which were positive and negative for the Rcg 1 gene are statistically significant at a P value of less than 0.05 .
[0040] FIG. 15 shows disease progression in representative stalks from inbred PH705 lines which are positive and negative for Rcg1.
[0041] FIG. 16 shows disease progression in representative stalks from inbred PH87P lines which are positive and negative for Rcg 1 .
[0042] FIG. 17 shows the severity of disease four to-five weeks after inoculation at 5 different locations caused by Cg
in stalks of hybrids derived from crossing DE811ASR(BC5) to the line indicated. Differences between the lines which were positive and negative for the Rcg1 gene are statistically significant at a P value of less than 0.05 , except for location 5.
[0043] FIG. 18 shows disease progression in representative stalks from hybrids created from PH4CV and PH705 lines which are positive and negative for Rcg1.
[0044] FIG. 19 shows disease progression in representative stalks from hybrids created from PH705 and PH87P lines which are positive and negative for Rcg1.
[0045] FIG. 20 shows the method of scoring for disease severity in corn stalks. The stalks are given a score, designated antgr75, which represents the number of internodes (up to 5, including the inoculated internode) that are more than 75% discolored. This results in a score ranging from 0 to 5 , with 0 indicating less than 75% discoloration in the inoculated internode, and 5 indicating 75% or more discoloration of the first five internodes, including the inoculated internode.
[0046] FIG. 21 shows a contig on the B73 physical map that is homologous to the region into which the Rcg1 non-colinear region containing DE811ASR (BC5) is inserted, which demonstrates that many B73 derived bacterial artificial chromosomes (BACs) are available in the region of interest from which sequence information can be obtained.
[0047] FIG. 22 shows the alignment of the genetic map containing MZA and public markers with the physical maps of Mo17 and B73. The genetic map distances were developed by using 1060 individuals from the BC7 mapping population. An analysis of a Mo17 BAC library also showed the Rcg1 locus to be non-colinear with the corresponding region of Mo17. The location of the markers shown by dotted lines to the B73 map are extrapolations from the Mo17 physical map location. The location of the markers shown by dotted lines to the Mo17 map are extrapolations from the B73 physical map location.
[0048] FIG. 23 shows the oligos for the Rcg1 hybridization markers designed for use with Invader ${ }^{\mathrm{TM}}$ reactions.
[0049] FIG. 24 shows the oligos for the Rcg1 hybridization markers designed for use with TaqMane reactions.
[0050] FIG. 25 shows the results of a northern blot obtained from approximately 1.5 mg of polyA-enriched RNA isolated from resistant and susceptible plants $0,3,6,9$, and 13 days post inoculation (dpi). The membrane was probed with a random primer labeled 420 bp Rcg 1 fragment. Resistant tissue is from DE811ASR(BC5) and susceptible tissue is from DE811.
[0051] FIG. 26 shows that PCR amplification using Rcg1 specific primer pairs only amplifies in the resistant line DE811ASR(BC5) and donor parent MP305, but not in susceptible line DE811, with the exception of FLP110F-R, which amplifies the coiled coil-nucleotide binding site region, which is highly conserved, and thus amplifies a region elsewhere in the genome that is not Rcg1 in the DE811 line. A 100 bp ladder was used for fragment sizing.

DETAILED DESCRIPTION OF THE INVENTION

[0052] Embodiments of the present invention provide compositions and methods (or processes) directed to induc-
ing pathogen resistance, particularly fungal resistance, in plants. The compositions are novel nucleotide and amino acid sequences that confer or enhance resistance to plant fungal pathogens. Specifically, certain embodiments provide polypeptides having the amino acid sequence set forth in SEQ ID NO: 3, and variants and fragments thereof. Isolated nucleic acid molecules, and variants and fragments thereof, comprising nucleotide sequences that encode the amino acid sequence shown in SEQ ID NO: 3 are further provided.
[0053] Nucleotide sequences that encode the polypeptide of SEQ ID NO: 3 are set forth in SEQ ID NOs: 1 and 4. Plants, plant cells, seeds, and microorganisms comprising a nucleotide sequence that encodes a polypeptide of the embodiments are also disclosed herein.
[0054] A deposit of the Rcg1 nucleic acid molecule was made on Feb. 22, 2006 with the Agricultural Research Service (ARS) Culture Collection, housed in the Microbial Genomics and Bioprocessing Research Unit of the National Center for Agricultural Utilization Research (NCAUR), under the Budapest Treaty provisions. The deposit was given the following accession number: NRRL B-30895. The address of NCAUR is 1815 N. University Street, Peoria, Ill., 61604. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. $\S 112$. The deposit will irrevocably and without restriction or condition be available to the public upon issuance of a patent. However, it should be understood that the availability of a deposit does not constitute a license to practice the subject invention in derogation of patent rights granted by government action.
[0055] A sample of 2500 seeds of DE811ASR (BC5) were deposited in the American Type Culture Collection (ATCC), 10801 University Blvd., Manassas, Va. 20110-2209, USA on Mar. 13, 2006 and assigned Deposit No. PTO-7434. Access to this deposit will be available during the pendency of the application to the Commissioner of Patents and Trademarks, persons determined by the Commissioner to be entitled thereto upon request, and corresponding officials in foreign patent offices in which this patent application is filed. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. The deposit will irrevocably and without restriction or condition be available to the public upon issuance of a patent. However, it should be understood that the availability of the deposit does not constitute a license to practice the subject invention or methods in derogation of patent rights.
[0056] The full length polypeptide of the embodiments (SEQ ID NO: 3) shares varying degrees of homology with known polypeptides of the NBS-LRR family. In particular, the novel polypeptide of the embodiments shares homology with NBS-LRR proteins isolated from Oryza sativa (Accession Nos. NP_910480 (SEQ ID NO: 14), NP_910482 (SEQ ID NO: 16), NP 921091 (SEQ ID NO: 17) and NP_910483 (SEQ ID NO: 15)) and Hordeum vulgare (Accession No. AAG37354 (SEQ ID NO: 18); Zhou et al., (2001) Plant Cell 13:337-350). FIG. 1 provides an alignment of the amino acid sequence set forth in SEQ ID NO: 3 with the O. sativa and H. vulgare antifungal proteins (SEQ ID NOs: 14-18).
[0057] Amino acid alignments using the GAP program indicate that SEQ ID NO:3 shares approximately 42.3\% sequence similarity with the O. sativa antifungal protein NP_910480 (SEQ ID NO: 14), 41.7\% sequence similarity with the O. sativa protein NP_910482 (SEQ ID NO: 16), 56.9% similarity with the O. sativa protein NP_-921091 (SEQ ID NO: 17) and 42.1% sequence similarity with the O. sativa protein NP_910483 (SEQ ID NO: 15). Furthermore, SEQ ID NO: 3 shares approximately 42.8% sequence similarity with the H. vulgare protein AAG37354 (SEQ ID NO: 18).
[0058] The NBS-LRR group of R-genes is the largest class of R-genes discovered to date. In Arabidopsis thaliana, over 150 are predicted to be present in the genome (Meyers, et al., (2003), Plant Cell, 15:809-834; Monosi, et al., (2004), Theoretical and Applied Genetics, 109:1434-1447), while in rice, approximately 500 NBS-LRR genes have been predicted (Monosi, (2004) supra). The NBS-LRR class of R genes is comprised of two subclasses. Class 1 NBS-LRR genes contain a TIR-To11/Interleukin-1 like domain at their N^{\prime} terminus; which to date have only been found in dicots (Meyers, (2003) supra; Monosi, (2004) supra). The second class of NBS-LRR contain either a coiled-coil domain or an (nt) domain at their N terminus (Bai, et al. (2002) Genome Research, 12:1871-1884; Monosi, (2004) supra; Pan, et al., (2000), Journal of Molecular Evolution, 50:203-213). Class 2 NBS-LRR have been found in both dicot and monocot species. (Bai, (2002) supra; Meyers, (2003) supra; Monosi, (2004) supra; Pan, (2000) supra).
[0059] The NBS domain of the gene appears to have a role in signaling in plant defense mechanisms (van der Biezen, et al., (1998), Current Biology: CB, 8:R226-R227). The LRR region appears to be the region that interacts with the pathogen AVR, products (Michelmore, et al., (1998), Genome Res., 8:1113-1130; Meyers, (2003) supra). This LRR region in comparison with the NBS domain is under a much greater selection pressure to diversify (Michelmore, (1998) supra; Meyers, (2003) supra; Palomino, et al., (2002), Genome Research, 12:1305-1315). LRR domains are found in other contexts as well; these 20-29-residue motifs are present in tandem arrays in a number of proteins with diverse functions, such as hormone-receptor interactions, enzyme inhibition, cell adhesion and cellular trafficking. A number of recent studies revealed the involvement of LRR proteins in early mammalian development, neural development, cell polarization, regulation of gene expression and apoptosis signaling.
[0060] The gene of the embodiments is clearly related to the NBS-LRR of the class 2 family, but does not completely fit the classical mold. The amino end has homology to so-called nucleotide binding sites (NBS). There is a leucine rich region as well, located, as expected, downstream of the NBS. However, unlike previously studied NBS-LRR proteins, the leucine rich region lacks the systematic repetitive nature found in more classical LRR domains, much less consistently following the typical Lxx repeat pattern and in particular having no instances of the consensus sequences described by Wang et al. ((1999) Plant J. 19:55-64; see especially, FIG. 5) or Bryan et al. ((2000), Plant Cell 12:2033-2045; see especially, FIG. 3).
[0061] As the LRR region is the receptor portion of an NBS-LRR, when a new LRR such as that of this disclosure
is found, the range of its activity, that is, the range of pathogens to which it will respond, is not immediately obvious from the sequence. The gene of the embodiments was isolated on the basis of the Cg resistance phenotype, and therefore the novel LRR responds to Cg . However, it is not excluded that it responds to other pathogens not tested in the work done heretofore.
[0062] The nucleic acids and polypeptides of the embodiments find use in methods for conferring or enhancing fungal resistance to a plant. Accordingly, the compositions and methods disclosed herein are useful in protecting plants from fungal pathogens. "Pathogen resistance,""fungal resistance," and "disease resistance" are intended to mean that the plant avoids the disease symptoms that are the outcome of plant-pathogen interactions. That is, pathogens are prevented from causing plant diseases and the associated disease symptoms, or alternatively, the disease symptoms caused by the pathogen are minimized or lessened, such as, for example, the reduction of stress and associated yield loss. One of skill in the art will appreciate that the compositions and methods disclosed herein can be used with other compositions and methods available in the art for protecting plants from pathogen attack.
[0063] Hence, the methods of the embodiments can be utilized to protect plants from disease, particularly those diseases that are caused by plant fungal pathogens. As used herein, "fungal resistance" refers to enhanced resistance or tolerance to a fungal pathogen when compared to that of a wild type plant. Effects may vary from a slight increase in tolerance to the effects of the fungal pathogen (e.g., partial inhibition) to total resistance such that the plant is unaffected by the presence of the fungal pathogen. An increased level of resistance against a particular fungal pathogen or against a wider spectrum of fungal pathogens constitutes "enhanced" or improved fungal resistance. The embodiments of the invention also will enhance or improve fungal plant pathogen resistance, such that the resistance of the plant to a fungal pathogen or pathogens will increase. The term "enhance" refers to improve, increase, amplify, multiply, elevate, raise, and the like. Herein, plants of the invention are described as being resistant to infection by Cg or having 'enhanced resistance' to infection by Cg as a result of the Rcg1 locus of the invention. Accordingly, they typically exhibit increased resistance to the disease when compared to equivalent plants that are susceptible to infection by Cg because they lack the Rcg1 locus. For example, using the scoring system described in Example 11 (also see FIG. 20), they typically exhibit a one point, two point or three point or more decrease in the infection score, or even a reduction of the score to 1 or 0 , when compared to equivalent plants that are susceptible to infection by Cg because they lack the Rcg1 locus
[0064] In particular aspects, methods for conferring or enhancing fungal resistance in a plant comprise introducing into a plant at least one expression cassette, wherein the expression cassette comprises a nucleotide sequence encoding an antifungal polypeptide of the embodiments operably linked to a promoter that drives expression in the plant. The plant expresses the polypeptide, thereby conferring fungal resistance upon the plant, or improving the plant's inherent level of resistance. In particular embodiments, the gene confers resistance to the fungal pathogen, Cg .
[0065] Expression of an antifungal polypeptide of the embodiments may be targeted to specific plant tissues where pathogen resistance is particularly important, such as, for example, the leaves, roots, stalks, or vascular tissues. Such tissue-preferred expression may be accomplished by rootpreferred, leaf-preferred, vascular tissue-preferred, stalkpreferred, or seed-preferred promoters.
[0066] As used herein, "nucleic acid" includes reference to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, encompasses known analogues (e.g., peptide nucleic acids) having the essential nature of natural nucleotides in that they hybridize to single-stranded nucleic acids in a manner similar to naturally occurring nucleotides.
[0067] The terms "polypeptide,""peptide," and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. Polypeptides of the embodiments can be produced either from a nucleic acid disclosed herein, or by the use of standard molecular biology techniques. For example, a truncated protein of the embodiments can be produced by expression of a recombinant nucleic acid of the embodiments in an appropriate host cell, or alternatively by a combination of ex vivo procedures, such as protease digestion and purification
[0068] As used herein, the terms "encoding" or "encoded" when used in the context of a specified nucleic acid mean that the nucleic acid comprises the requisite information to direct translation of the nucleotide sequence into a specified protein. The information by which a protein is encoded is specified by the use of codons. A nucleic acid encoding a protein may comprise non-translated sequences (e.g., introns) within translated regions of the nucleic acid or may lack such intervening non-translated sequences (e.g., as in cDNA).
[0069] The embodiments of the invention encompass isolated or substantially purified polynucleotide or protein compositions. An "isolated" or "purified" polynucleotide or protein, or biologically active portion thereof, is substantially or essentially free from components that normally accompany or interact with the polynucleotide or protein as found in its naturally occurring environment. Thus, an isolated or purified polynucleotide or protein is substantially free of other cellular material, or culture medium when produced by recombinant techniques (e.g. PCR amplification), or substantially free of chemical precursors or other chemicals when chemically synthesized. Optimally, an "isolated" polynucleotide is free of sequences (for example, protein encoding sequences) that naturally flank the polynucleotide (i.e., sequences located at the 5^{\prime} and 3^{\prime} ends of the polynucleotide) in the genomic DNA of the organism from which the polynucleotide is derived. For example, in various embodiments, the isolated polynucleotide can contain less than about 5 kb , about 4 kb , about 3 kb , about 2 kb , about 1 kb , about 0.5 kb , or about 0.1 kb of nucleotide sequence that naturally flank the polynucleotide in genomic DNA of the cell from which the polynucleotide is derived. A protein that is substantially free of cellular material includes preparations of protein having less than about 30%, about 20%,
about 10%, about 5%, or about 1% (by dry weight) of contaminating protein. When the protein of the embodiments, or a biologically active portion thereof, is recombinantly produced, optimally culture medium represents less than about 30%, about 20%, about 10%, about 5%, or about 1% (by dry weight) of chemical precursors or non-protein-of-interest chemicals.
[0070] Fragments and variants of the disclosed nucleotide sequences and proteins encoded thereby are also encompassed by the embodiments. "Fragment" is intended to mean a portion of the nucleotide sequence or a portion of the amino acid sequence and hence protein encoded thereby. Fragments of a nucleotide sequence may encode protein fragments that retain the biological activity of the native protein and hence have the ability to confer fungal resistance upon a plant. Alternatively, fragments of a nucleotide sequence that are useful as hybridization probes do not necessarily encode fragment proteins retaining biological activity. Thus, fragments of a nucleotide sequence may range from at least about 15 nucleotides, about 50 nucleotides, about 100 nucleotides, and up to the full-length nucleotide sequence encoding the polypeptides of the embodiments.
[0071] A fragment of a nucleotide sequence that encodes a biologically active portion of a polypeptide of the embodiments will encode at least about 15 , about 25 , about 30 , about 40 , or about 50 contiguous amino acids, or up to the total number of amino acids present in a full-length polypeptide of the embodiments (for example, 980 amino acids for the peptide encoded by SEQ ID NO:1). Fragments of a nucleotide sequence that are useful as hybridization probes or PCR primers generally need not encode a biologically active portion of a protein.
[0072] As used herein, "full-length sequence," in reference to a specified polynucleotide, means having the entire nucleic acid sequence of a native sequence. "Native sequence" is intended to mean an endogenous sequence, i.e., a non-engineered sequence found in an organism's genome.
[0073] Thus, a fragment of a nucleotide sequence of the embodiments may encode a biologically active portion of a polypeptide, or it may be a fragment that can be used as a hybridization probe or PCR primer using methods disclosed below. A biologically active portion of an antipathogenic polypeptide can be prepared by isolating a portion of one of the nucleotide sequences of the embodiments, expressing the encoded portion of the protein and assessing the ability of the encoded portion of the protein to confer or enhance fungal resistance in a plant. Nucleic acid molecules that are fragments of a nucleotide sequence of the embodiments comprise at least about 15 , about 20 , about. 50 , about 75 , about 100 , or about 150 nucleotides, or up to the number of nucleotides present in a full-length nucleotide sequence disclosed herein (for example, 4212 nucleotides for SEQ ID NO: 1).
[0074] "Variants" is intended to mean substantially similar sequences. For polynucleotides, a variant comprises a deletion and/or addition of one or more nucleotides at one or more internal sites within the native polynucleotide and/or a substitution of one or more nucleotides at one or more sites in the native polynucleotide. As used herein, a "native" polynucleotide or polypeptide comprises a naturally occurring nucleotide sequence or amino acid sequence, respec-
tively. One of skill in the art will recognize that variants of the nucleic acids of the embodiments will be constructed such that the open reading frame is maintained. For polynucleotides, conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence of one of the polypeptides of the embodiments. Naturally occurring allelic variants such as these can be identified with the use of well-known molecular biology techniques, as, for example, with polymerase chain reaction (PCR) and hybridization techniques as outlined below. Variant polynucleotides also include synthetically derived polynucleotides, such as those generated, for example, by using site-directed mutagenesis but which still encode a protein of the embodiments. Generally, variants of a particular polynucleotide of the embodiments will have at least about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% or more sequence identity to that particular polynucleotide as determined by sequence alignment programs and parameters described elsewhere herein.
[0075] Variants of a particular polynucleotide of the embodiments (i.e., the reference polynucleotide) can also be evaluated by comparison of the percent sequence identity between the polypeptide encoded by a variant polynucleotide and the polypeptide encoded by the reference polynucleotide. Thus, for example, isolated polynucleotides that encode a polypeptide with a given percent sequence identity to the polypeptide of SEQ ID NO: 3 are disclosed. Percent sequence identity between any two polypeptides can be calculated using sequence alignment programs and parameters described elsewhere herein. Where any given pair of polynucleotides of the embodiments is evaluated by comparison of the percent sequence identity shared by the two polypeptides they encode, the percent sequence identity between the two encoded polypeptides is at least about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% or more sequence identity
[0076] "Variant" protein is intended to mean a protein derived from the native protein by deletion or addition of one or more amino acids at one or more internal sites in the native protein and/or substitution of one or more amino acids at one or more sites in the native protein. Variant proteins encompassed by the embodiments are biologically active, that is they continue to possess the desired biological activity of the native protein, that is, the ability to confer or enhance plant fungal pathogen resistance as described herein. Such variants may result, for example, from genetic polymorphism or from human manipulation. Biologically active variants of a native protein of the embodiments will have at least about 40%, about 45%, about 50%, about 55%, about 60%, about 65%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99% or more sequence identity to the amino acid sequence for the native protein as determined by sequence alignment programs and parameters described elsewhere herein. A biologically active variant of a protein of the embodiments may differ from that protein by as few as about

1-15 amino acid residues, as few as about $1-10$, such as about $6-10$, as few as about 5 , as few as $4,3,2$, or even 1 amino acid residue.
[0077] The proteins of the embodiments may be altered in various ways including amino acid substitutions, deletions, truncations, and insertions. Methods for such manipulations are generally known in the art. For example, amino acid sequence variants and fragments of the antipathogenic proteins can be prepared by mutations in the DNA. Methods for mutagenesis and polynucleotide alterations are well known in the art. See, for example, Kunkel (1985) Proc. Natl. Acad. Sci. USA 82:488-492; Kunkel et al. (1987) Methods in Enzymol. 154:367-382; U.S. Pat. No. 4,873,192; Walker and Gaastra, eds. (1983) Techniques in Molecular Biology (MacMillan Publishing Company, New York) and the references cited therein. Guidance as to appropriate amino acid substitutions that do not affect biological activity of the protein of interest may be found in the model of Dayhoff et al. (1978) Atlas of Protein Sequence and Structure (Natl. Biomed. Res. Found., Washington, D.C.), herein incorporated by reference. Conservative substitutions, such as exchanging one amino acid with another having similar properties, may be optimal.
[0078] Thus, the genes and polynucleotides of the embodiments include both naturally occurring sequences as well as mutant forms. Likewise, the proteins of the embodiments encompass both naturally occurring proteins as well as variations and modified forms thereof. Such variants will continue to possess the desired ability to confer or enhance plant fungal pathogen resistance. Obviously, the mutations that will be made in the DNA encoding the variant must not place the sequence out of reading frame and optimally will not create complementary regions that could produce secondary mRNA structure. See, EP Patent No. 0075444.
[0079] The deletions, insertions, and substitutions of the protein sequences encompassed herein are not expected to produce radical changes in the characteristics of the protein. However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by screening transgenic plants which have been transformed with the variant protein to ascertain the effect on the ability of the plant to resist fungal pathogenic attack.
[0080] Variant polynucleotides and proteins also encompass sequences and proteins derived from mutagenic or recombinogenic procedures, including and not limited to procedures such as DNA shuffling. One of skill in the art could envision modifications that would alter the range of pathogens to which the protein responds. With such a procedure, one or more different protein coding sequences can be manipulated to create a new protein possessing the desired properties. In this manner, libraries of recombinant polynucleotides are generated from a population of related sequence polynucleotides comprising sequence regions that have substantial sequence identity and can be homologously recombined in vitro or in vivo. For example, using this approach, sequence motifs encoding a domain of interest may be shuffled between the protein gene of the embodiments and other known protein genes to obtain a new gene coding for a protein with an improved property of interest, such as increased ability to confer or enhance plant fungal pathogen resistance. Strategies for such DNA shuffling are
known in the art. See, for example, Stemmer (1994) Proc. Natl. Acad. Sci. USA 91:10747-10751; Stemmer (1994) Nature 370:389-391; Crameri et al. (1997) Nature Biotech 15:436-438; Moore et al. (1997) J. Mol. Biol. 272:336-347; Zhang et al. (1997) Proc. Natl. Acad. Sci. USA 94:45044509; Crameri et al. (1998) Nature 391:288-291; and U.S Pat. Nos. 5,605,793 and 5,837,458.
[0081] The polynucleotides of the embodiments can be used to isolate corresponding sequences from other organisms, particularly other plants. In this manner, methods such as PCR, hybridization, and the like can be used to identify such sequences based on their sequence homology to the sequences set forth herein. Sequences isolated based on their sequence identity to the entire sequences set forth herein or to variants and fragments thereof are encompassed by the embodiments. Such sequences include sequences that are orthologs of the disclosed sequences. "Orthologs" is intended to mean genes derived from a common ancestral gene and which are found in different species as a result of speciation. Genes found in different species are considered orthologs when their nucleotide sequences and/or their encoded protein sequences share at least about 60%, about 70%, about 75%, about 80%, about 85%, about 90%, about 91%, about 92%, about 93%, about 94%, about 95%, about 96%, about 97%, about 98%, about 99%, or greater sequence identity. Functions of orthologs are often highly conserved among species. Thus, isolated polynucleotides that encode for a protein that confers or enhances fungal plant pathogen resistance and that hybridize under stringent conditions to the sequences disclosed herein, or to variants or fragments thereof, are encompassed by the embodiments.
[0082] In a PCR approach, oligonucleotide primers can be designed for use in PCR reactions to amplify corresponding DNA sequences from cDNA or genomic DNA extracted from any organism of interest. Methods for designing PCR primers and PCR cloning are generally known in the art and are disclosed in Sambrook et al. (1989) Molecular Cloning. A Laboratory Manual (2d ed., Cold Spring Harbor Laboratory Press, Plainview, N.Y.). See also Innis et al., eds. (1990) PCR Protocols: A Guide to Methods and Applications (Academic Press, New York); Innis and Gelfand, eds. (1995) PCR Strategies (Academic Press, New York); and Innis and Gelfand, eds. (1999) PCR Methods Manual (Academic Press, New York). Known methods of PCR include, and are not limited to, methods using paired primers, nested primers, single specific primers, degenerate primers, gene-specific primers, vector-specific primers, partially-mismatched primers, and the like.
[0083] In hybridization techniques, all or part of a known polynucleotide is used as a probe that selectively hybridizes to other corresponding polynucleotides present in a population of cloned genomic DNA fragments or cDNA fragments (i.e., genomic or cDNA libraries) from a chosen organism. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as ${ }^{32} \mathrm{P}$, or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the polynucleotides of the embodiments. Methods for preparation of probes for hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook et al. (1989) supra
[0084] For example, an entire polynucleotide disclosed herein, or one or more portions thereof, may be used as a probe capable of specifically hybridizing to corresponding polynucleotides and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique and are optimally at least about 10 nucleotides in length, at least about 15 nucleotides in length, or at least about 20 nucleotides in length. Such probes may be used to amplify corresponding polynucleotides from a chosen organism by PCR. This technique may be used to isolate additional coding sequences from a desired organism or as a diagnostic assay to determine the presence of coding sequences in an organism. Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook et al. (1989) supra.
[0085] Hybridization of such sequences may be carried out under stringent conditions. By "stringent conditions" or "stringent hybridization conditions" is intended conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2 -fold over background). Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less than about 1000 nucleotides in length, optimally less than 500 nucleotides in length.
[0086] Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about $30^{\circ} \mathrm{C}$. for short probes (e.g., 10 to 50 nucleotides) and at least about $60^{\circ} \mathrm{C}$. for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl , 1% SDS (sodium dodecyl sulphate) at $37^{\circ} \mathrm{C}$., and a wash in $1 \times$ to $2 \times \mathrm{SSC}(20 \times \mathrm{SSC}=3.0 \mathrm{M} \mathrm{NaCl} / 0.3 \mathrm{M}$ trisodium citrate $)$ at 50 to $55^{\circ} \mathrm{C}$. Exemplary moderate stringency conditions include hybridization in 40 to 45% formamide, 1.0 M NaCl , 1% SDS at $37^{\circ} \mathrm{C}$., and a wash in $0.5 \times$ to $1 \times \operatorname{SSC}$ at 55 to 60° C . Exemplary high stringency conditions include hybridization in 50% formamide, $1 \mathrm{M} \mathrm{NaCl}, 1 \% \mathrm{SDS}$ at $37^{\circ} \mathrm{C}$., and a final wash in $0.1 \times \mathrm{SSC}$ at 60 to $65^{\circ} \mathrm{C}$. for at least 30 minutes. Optionally, wash buffers may comprise about 0.1% to about 1% SDS. Duration of hybridization is generally less than about 24 hours, usually about 4 to about 12 hours. The duration of the wash time will be at least a length of time sufficient to reach equilibrium.
[0087] Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the thermal melting point $\left(\mathrm{T}_{\mathrm{m}}\right)$ can be approximated from the equation of Meinkoth and Wahl (1984) Anal. Biochem. 138:267-284: $\mathrm{T}_{\mathrm{m}}=81.5^{\circ} \mathrm{C} .+16.6(\log \mathrm{M})+0.41(\%$ GC) -0.61 ($\%$ form) $-500 / \mathrm{L}$; where M is the molarity of monovalent cations, \% GC is the percentage of guanosine
and cytosine nucleotides in the DNA, \% form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T_{m} is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T_{m} is reduced by about $1^{\circ} \mathrm{C}$. for each 1% of mismatching; thus, T_{m}, hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with $\geqq 90 \%$ identity are sought, the T_{m} can be decreased $10^{\circ} \mathrm{C}$. Generally, stringent conditions are selected to be about $5^{\circ} \mathrm{C}$. lower than the T_{m} for the specific sequence and its complement at a defined ionic strength and pH . However, severely stringent conditions can utilize a hybridization and/or wash at $1,2,3$, or $4^{\circ} \mathrm{C}$. lower than the T_{m}; moderately stringent conditions can utilize a hybridization and/or wash at $6,7,8,9$, or 10° C. lower than the T_{m}; low stringency conditions can utilize a hybridization and/or wash at $11,12,13,14,15$, or $20^{\circ} \mathrm{C}$. lower than the T_{m}. Using the equation, hybridization and wash compositions, and desired T_{m}, those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T_{m} of less than $45^{\circ} \mathrm{C}$. (aqueous solution) or $32^{\circ} \mathrm{C}$. (formamide solution), it is optimal to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) Laboratory Techniques in Biochemistry and Molecular BiologyHybridization with Nucleic Acid Probes, Part I, Chapter 2 (Elsevier, N.Y.); and Ausubel et al., eds. (1995) Current Protocols in Molecular Biology, Chapter 2 (Greene Publishing and Wiley-Interscience, New York). See Sambrook et al. (1989) supra.
[0088] Various procedures can be used to check for the presence or absence of a particular sequence of DNA, RNA, or a protein. These include, for example, Southern blots, northern blots, western blots, and ELISA analysis. Techniques such as these are well known to those of skill in the art and many references exist which provide detailed protocols. Such references include Sambrook et al. (1989) supra, and Crowther, J. R. (2001), The ELISA Guidebook, Humana Press, Totowa, N.J., USA.
[0089] The following terms are used to describe the sequence relationships between two or more polynucleotides or polypeptides: (a) "reference sequence," (b) "comparison window," (c) "sequence identity," and, (d) "percentage of sequence identity."
[0090] (a) As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a fulllength cDNA or gene sequence, or the complete cDNA or gene sequence.
[0091] (b) As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two polynucleotides. Generally, the comparison window is at least about 20 contiguous nucleotides in length, and optionally can be about 30 , about 40 , about 50 , about

100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.
[0092] Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent sequence identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988) CABIOS 4:11-17; the local alignment algorithm of Smith et al. (1981) Adv. Appl. Math. 2:482; the global alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453; the search-forlocal alignment method of Pearson and Lipman (1988) Proc. Natl. Acad. Sci. 85:2444-2448; the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 872264, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877.
[0093] Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, and are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, Calif.); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys Inc., 9685 Scranton Road, San Diego, Calif., USA). Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins et al. (1988) Gene 73:237-244 (1988); Higgins et al. (1989) CABIOS 5:151-153; Corpet et al. (1988) Nucleic Acids Res. 16:10881-90; Huang et al. (1992) CABIOS 8:15565; and Pearson et al. (1994) Meth. Mol. Biol. 24:307-331. The ALIGN program is based on the algorithm of Myers and Miller (1988) supra. A PAM120 weight residue table, a gap length penalty of 12 , and a gap penalty of 4 can be used with the ALIGN program when comparing amino acid sequences. The BLAST programs of Altschul et al (1990) J. Mol. Biol. 215:403 are based on the algorithm of Karlin and Altschul (1990) supra. BLAST nucleotide searches can be performed with the BLASTN program, score $=100$, wordlength $=12$, to obtain nucleotide sequences homologous to a nucleotide sequence encoding a protein of the embodiments. BLAST protein searches can be performed with the BLASTX program, score $=50$, wordlength $=3$, to obtain amino acid sequences homologous to a protein or polypeptide of the embodiments. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al. (1997) supra. When utilizing BLAST, Gapped BLAST, PSIBLAST, the default parameters of the respective programs (e.g., BLASTN for nucleotide sequences, BLASTX for proteins) can be used. See www.ncbi.nlm.nih.gov. Alignment may also be performed manually by inspection.
[0094] Unless otherwise stated, sequence identity/similarity values provided herein refer to the value obtained using GAP Version 10 using the following parameters: \% identity and \% similarity for a nucleotide sequence using Gap Weight of 50 and Length Weight of 3, and the nwsgapd-
na.cmp scoring matrix; \% identity and \% similarity for an amino acid sequence using Gap Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix; or any equivalent program thereof. By "equivalent program" is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10.
[0095] GAP uses the algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the GCG Wisconsin Genetics Software Package for protein sequences are 8 and 2 , respectively. For nucleotide sequences the default gap creation penalty is 50 while the default gap extension penalty is 3 . The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200 . Thus, for example, the gap creation and gap extension penalties can be $0,1,2,3,4,5,6,7,8,9,10,15,20,25,30,35,40$, $45,50,55,60,65$ or greater.
[0096] GAP presents one member of the family of best alignments. There may be many members of this family, and no other member has a better quality. GAP displays four figures of merit for alignments: Quality, Ratio, Identity, and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is the percent of the symbols that are similar. Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50 , the similarity threshold. The scoring matrix used in Version 10 of the GCG Wisconsin Genetics Software Package is BLOSUM62 (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915).
[0097] (c) As used herein, "sequence identity" or "identity" in the context of two polynucleotides or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such conservative substitutions are said to have "sequence simi-
larity" or "similarity." Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1 . The scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, Calif.).
[0098] (d) As used herein, "percentage of sequence identity" means the value determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.
[0099] The use of the term "polynucleotide" is not intended to limit the embodiments to polynucleotides comprising DNA. Those of ordinary skill in the art will recognize that polynucleotides can comprise ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides. Such deoxyribonucleotides and ribonucleotides include both naturally occurring molecules and synthetic analogues. The polynucleotides of the embodiments also encompass all forms of sequences including, and not limited to, singlestranded forms, double-stranded forms, and the like.
[0100] Isolated polynucleotides of the embodiments can be incorporated into recombinant DNA constructs capable of introduction into and replication in a host cell. A "vector" may be such a construct that includes a replication system and sequences that are capable of transcription and translation of a polypeptide-encoding sequence in a given host cell. A number of vectors suitable for stable transfection of plant cells or for the establishment of transgenic plants have been described in, e.g., Pouwels et al., Cloning Vectors: A Laboratory Manual, 1985, supp. 1987; Weissbach and Weissbach, Methods for Plant Molecular Biology, Academic Press, 1989; and Flevin et al., Plant Molecular Biology Manual, Kluwer Academic Publishers, 1990. Typically, plant expression vectors include, for example, one or more cloned plant genes under the transcriptional control of 5^{\prime} and 3 ' regulatory sequences and a dominant selectable marker. Such plant expression vectors also can contain a promoter regulatory region (e.g., a regulatory region controlling inducible or constitutive, environmentally- or developmen-tally-regulated, or cell- or tissue-specific expression), a transcription initiation start site, a ribosome binding site, an RNA processing signal, a transcription termination site, and/or a polyadenylation signal.
[0101] The terms "recombinant construct,""expression cassette,""expression construct,""chimeric construct,""construct,'""recombinant DNA construct" and "recombinant DNA fragment" are used interchangeably herein and are nucleic acid fragments. A recombinant construct comprises
an artificial combination of nucleic acid fragments, including, and not limited to, regulatory and coding sequences that are not found together in nature. For example, a recombinant DNA construct may comprise regulatory sequences and coding sequences that are derived from different sources, or regulatory sequences and coding sequences derived from the same source and arranged in a manner different than that found in nature. Such construct may be used by itself or may be used in conjunction with a vector. If a vector is used then the choice of vector is dependent upon the method that will be used to transform host cells as is well known to those skilled in the art. For example, a plasmid vector can be used. The skilled artisan is well aware of the genetic elements that must be present on the vector in order to successfully transform, select and propagate host cells comprising any of the isolated nucleic acid fragments of the embodiments. Screening to obtain lines displaying the desired expression level and pattern of the polynucleotides or of the Rcg1 locus may be accomplished by amplification, Southern analysis of DNA, northern analysis of mRNA expression, immunoblotting analysis of protein expression, phenotypic analysis, and the like.
[0102] The term "recombinant DNA construct" refers to a DNA construct assembled from nucleic acid fragments obtained from different sources. The types and origins of the nucleic acid fragments may be very diverse.
[0103] In some embodiments, expression cassettes comprising a promoter operably linked to a heterologous nucleotide sequence of the embodiments are further provided. The expression cassettes of the embodiments find use in generating transformed plants, plant cells, and microorganisms and in practicing the methods for inducing plant fungal pathogen resistance disclosed herein. The expression cassette will include 5^{\prime} and 3^{\prime} regulatory sequences operably linked to a polynucleotide of the embodiments. "Operably linked" is intended to mean a functional linkage between two or more elements. "Regulatory sequences" refer to nucleotides located upstream. (5' non-coding sequences), within, or downstream (3^{\prime} non-coding sequences) of a coding sequence, and which may influence the transcription, RNA processing, stability, or translation of the associated coding sequence. Regulatory sequences may include, and are not limited to, promoters, translation leader sequences, introns, and polyadenylation recognition sequences. For example, an operable linkage between a polynucleotide of interest and a regulatory sequence (a promoter, for example) is functional link that allows for expression of the polynucleotide of interest. Operably linked elements may be contiguous or non-contiguous. When used to refer to the joining of two protein coding regions, by operably linked is intended that the coding regions are in the same reading frame. The cassette may additionally contain at least one additional gene to be cotransformed into the organism Alternatively, the additional gene(s) can be provided on multiple expression cassettes. Such an expression cassette is provided with a plurality of restriction sites and/or recombination sites for insertion of the polynucleotide that encodes an antipathogenic polypeptide to be under the transcriptional regulation of the regulatory regions. The expression cassette may additionally contain selectable marker genes.
[0104] The expression cassette will include in the $5^{\prime}-3^{\prime}$ direction of transcription, a transcriptional initiation region
(i.e., a promoter), translational initiation region, a polynucleotide of the embodiments, a translational termination region and, optionally, a transcriptional termination region functional in the host organism. The regulatory regions (i.e., promoters, transcriptional regulatory regions, and translational termination regions) and/or the polynucleotide of the embodiments may be native/analogous to the host cell or to each other. Alternatively, the regulatory regions and/or the polynucleotide of the embodiments may be heterologous to the host cell or to each other. As used herein, "heterologous" in reference to a sequence is a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous polynucleotide is from a species different from the species from which the polynucleotide was derived, or, if from the same/analogous species, one or both are substantially modified from their original form and/or genomic locus, or the promoter is not the native promoter for the operably linked polynucleotide.
[0105] The optionally included termination region may be native with the transcriptional initiation region, may be native with the operably linked polynucleotide of interest, may be native with the plant host, or may be derived from another source (i.e., foreign or heterologous) to the promoter, the polynucleotide of interest, the host, or any combination thereof. Convenient termination regions are available from the Ti-plasmid of A. tumefaciens, such as the octopine synthase and nopaline synthase termination regions. See also Guerineau et al. (1991) Mol. Gen. Genet 262:141-144; Proudfoot (1991) Cell 64:671-674; Sanfacon et al. (1991) Genes Dev. 5:141-149; Mogen et al. (1990) Plant Cell 2:1261-1272; Munroe et al. (1990) Gene 91:151158; Ballas et al. (1989) Nucleic Acids Res. 17:7891-7903; and Joshi et al. (1987) Nucleic Acids Res. 15:9627-9639. In particular embodiments, the potato protease inhibitor 11 gene (PinII) terminator is used. See, for example, Keil et al. (1986) Nucl. Acids Res. 14:5641-5650; and An et al. (1989) Plant Cell 1:115-122, herein incorporated by reference in their entirety.
[0106] A number of promoters can be used in the practice of the embodiments, including the native promoter of the polynucleotide sequence of interest. The promoters can be selected based on the desired outcome. A wide range of plant promoters are discussed in the recent review of Potenza et al. (2004) In Vitro Cell Dev Biol-Plant 40:1-22, herein incorporated by reference. For example, the nucleic acids can be combined with constitutive, tissue-preferred, pathogen-inducible, or other promoters for expression in plants. Such constitutive promoters include, for example, the core promoter of the Rsyn7 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Pat. No. 6,072,050; the core CaMV 35S promoter (Odell et al. (1985) Nature 313:810-812); rice actin (McElroy et al. (1990) Plant Cell 2:163-171); ubiquitin (Christensen et al. (1989) Plant Mol. Biol. 12:619-632 and Christensen et al. (1992) Plant Mol. Biol. 18:675-689); pEMU (Last et al. (1991) Theor. Appl. Genet. 81:581-588); MAS (Velten et al. (1984) EMBO J. 3:2723-2730); ALS promoter (U.S. Pat. No. 5,659,026), and the like. Other constitutive promoters include, for example, U.S. Pat. Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; $5,466,785 ; 5,399,680 ; 5,268,463 ; 5,608,142$; and 6,177,611.
[0107] It may sometimes be beneficial to express the gene from an inducible promoter, particularly from a pathogeninducible promoter. Such promoters include those from pathogenesis-related proteins (PR proteins), which are induced following infection by a pathogen; e.g., PR proteins, SAR proteins, beta-1,3-glucanase, chitinase, etc. See, for example, Redolfi et al. (1983) Neth. J. Plant Pathol. 89:245254; Uknes et al. (1992) Plant Cell 4:645-656; and Van Loon (1985) Plant Mol. Virol. 4:111-116. See also WO 99/43819, herein incorporated by reference.
[0108] Of interest are promoters that result in expression of a protein locally at or near the site of pathogen infection. See, for example, Marineau et al. (1987) Plant Mol. Biol. 9:335-342; Matton et al. (1989) Molecular Plant-Microbe Interactions 2:325-331; Somsisch et al. (1986) Proc. Natl. Acad. Sci. USA 83:2427-2430; Somsisch et al. (1988) Mol. Gen. Genet. 2:93-98; and Yang (1996) Proc. Natl. Acad. Sci. USA 93:14972-14977. See also, Chen et al. (1996) Plant J. 10:955-966; Zhang et al. (1994) Proc. Natl. Acad. Sci. USA 91:2507-2511; Warner et al. (1993) Plant J. 3:191-201; Siebertz et al. (1989) Plant Cell 1:961-968; U.S. Pat. No. $5,750,386$ (nematode-inducible); and the references cited therein. Of particular interest is the inducible promoter for the maize PRms gene, whose expression is induced by the pathogen Fusarum moniliforme (see, for example, Cordero et al. (1992) Physiol. Mol. Plant Path. 41:189-200).
[0109] Additionally, as pathogens find entry into plants through wounds or insect damage, a wound-inducible promoter may be used in the constructions of the embodiments. Such wound-inducible promoters include potato proteinase inhibitor (pin II) gene (Ryan (1990) Ann. Rev. Phytopath 28:425-449; Duan et al. (1996) Nature Biotechnology 14:494-498); wun1 and wun2, U.S. Pat. No. 5,428,148; win1 and win2 (Stanford et al. (1989) Mol. Gen. Genet. 215:200-208); systemin (McGurl et al. (1992) Science 225:1570-1573); WIP1 (Rohmeier et al. (1993) Plant Mol. Biol. 22:783-792; Eckelkamp et al. (1993) FEBS Letters 323:73-76); MPI gene (Corderok et al. (1994) Plant J. $6(2): 141-150)$; and the like, herein incorporated by reference.
[0110] Chemical-regulated promoters can be used to modulate the expression of a gene in a plant through the application of an exogenous chemical regulator. Depending upon the objective, the promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, and are not limited to, the maize In2-2 promoter, which is activated by benzenesulfonamide herbicide safeners, the maize GST promoter, which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, and the tobacco PR-1a promoter, which is activated by salicylic acid. Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena et al. (1991) Proc. Natl. Acad. Sci. USA 88:1042110425 and McNellis et al. (1998) Plant J. 14(2):247-257) and tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz et al. (1991) Mol. Gen Genet. 227:229-237, and U.S. Pat. Nos. 5,814,618 and $5,789,156$), herein incorporated by reference.
[0111] Tissue-preferred promoters can be utilized to target enhanced expression of the polypeptides of the embodiments within a particular plant tissue. For example, a tissue-preferred promoter may be used to express a polypeptide in a plant tissue where disease resistance is particularly important, such as, for example, the roots, the stalk or the leaves. Tissue-preferred promoters include Yamamoto et al. (1997) Plant J. 12(2):255-265; Kawamata et al. (1997) Plant Cell Physiol. 38(7):792-803; Hansen et al. (1997) Mol. Gen Genet 254(3):337-343; Russell et al. (1997) Transgenic Res. 6(2):157-168; Rinehart et al. (1996) Plant Physiol. 112(3):1331-1341; Van Camp et al. (1996) Plant Physiol. 112(2):525-535; Canevascini et al. (1996) Plant Physiol. 112(2):513-524; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Lam (1994) Results Probl. Cell Differ. 20:181-196; Orozco et al. (1993) Plant Mol Biol. 23(6):1129-1138; Matsuoka et al. (1993) Proc Natl. Acad. Sci. USA 90(20):9586-9590; and Guevara-Garcia et al. (1993) Plant J. 4(3):495-505. Such promoters can be modified, if necessary, for weak expression.
[0112] Vascular tissue-preferred promoters are known in the art and include those promoters that selectively drive protein expression in, for example, xylem and phloem tissue. Vascular tissue-preferred promoters include, and are not limited to, the Prunus serotina prunasin hydrolase gene promoter (see, e.g., International Publication No. WO 03/006651), and also those found in U.S. patent application Ser. No. 10/109,488.
[0113] Stalk-preferred promoters may be used to drive expression of a polypeptide of the embodiments. Exemplary stalk-preferred promoters include the maize MS8-15 gene promoter (see, for example, U.S. Pat. No. 5,986,174 and International Publication No. WO 98/00533), and those found in Graham et al. (1997) Plant Mol Biol 33(4): 729735.
[0114] Leaf-preferred promoters are known in the art. See, for example, Yamamoto et al. (1997) Plant J. 12(2):255-265; Kwon et al. (1994) Plant Physiol. 105:357-67; Yamamoto et al. (1994) Plant Cell Physiol. 35(5):773-778; Gotor et al. (1993) Plant J. 3:509-18; Orozco et al. (1993) Plant Mol. Biol. 23(6):1129-1138; and Matsuoka et al. (1993) Proc. Natl. Acad. Sci. USA 90(20):9586-9590.
[0115] Root-preferred promoters are known and can be selected from the many available from the literature or isolated de novo from various compatible species. See, for example, Hire et al. (1992) Plant Mol. Biol. 20(2):207-218 (soybean root-specific glutamine synthetase gene); Keller and Baumgartner (1991) Plant Cell 3(10): 1051-1061 (rootspecific control element in the GRP 1.8 gene of French bean); Sanger et al. (1990) Plant Mol. Biol. 14(3):433-443 (root-specific promoter of the mannopine synthase (MAS) gene of Agrobacterium tumefaciens); and Miao et al. (1991) Plant Cell 3(1):11-22 (full-length cDNA clone encoding cytosolic glutamine synthetase (GS), which is expressed in roots and root nodules of soybean). See also Bogusz et al. (1990) Plant Cell 2(7):633-641, where two root-specific promoters isolated from hemoglobin genes from the nitro-gen-fixing nonlegume Parasponia andersonii and the related non-nitrogen-fixing nonlegume Trema tomentosa are described. The promoters of these genes were linked to β-glucuronidase reporter gene and introduced into both the nonlegume Nicotiana tabacum and the legume Lotus
comiculatus, and in both instances root-specific promoter activity was preserved. Leach and Aoyagi (1991) describe their analysis of the promoters of the highly expressed rolC and rolD root-inducing genes of Agrobacterium rhizogenes (see Plant Science (Limerick) 79(1):69-76). They concluded that enhancer and tissue-preferred DNA determinants are dissociated in those promoters. Teeri et al. (1989) used gene fusion to lacZ to show that the Agrobacterium T-DNA gene encoding octopine synthase is especially active in the epidermis of the root tip and that the TR2' gene is root specific in the intact plant and stimulated by wounding in leaf tissue, an especially desirable combination of characteristics for use with an insecticidal or larvicidal gene (see EMBO J. 8(2):343-350). The TR1' gene, fused to nptII (neomycin phosphotransferase 11) showed similar characteristics. Additional root-preferred promoters include the VfENODGRP3 gene promoter (Kuster et al. (1995) Plant Mol. Biol. 29(4):759-772); and rolB promoter (Capana et al. (1994) Plant Mol. Biol. 25(4):681-691. See also U.S. Pat. Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732; and 5,023,179.
[0116] "Seed-preferred" promoters include both "seedspecific" promoters (those promoters active during seed development such as promoters of seed storage proteins) as well as "seed-germinating" promoters (those promoters active during seed germination). See Thompson et al. (1989) BioEssays 10:108, herein incorporated by reference. Such seed-preferred promoters include, and are not limited to, Cimi (cytokinin-induced message); cZ19B1 (maize 19 kDa zein); milps (myo-inositol-1-phosphate synthase) (see WO $00 / 11177$ and U.S. Pat. No. 6,225,529; herein incorporated by reference). Gamma-zein is a preferred endosperm-specific promoter. Glob-1 is a preferred embryo-specific promoter. For dicots, seed-specific promoters include, and are not limited to, bean β-phaseolin, napin, β-conglycinin, soybean lectin, cruciferin, and the like. For monocots, seedspecific promoters include, and are not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa zein, g-zein, waxy, shrunken 1 , shrunken 2 , globulin 1 , etc. See also WO 00/12733, where seed-preferred promoters from end $\mathbf{1}$ and end $\mathbf{2}$ genes are disclosed; herein incorporated by reference.
[0117] Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.
[0118] Expression cassettes may additionally contain 5^{\prime} leader sequences. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (Encephalomyocarditis 5' noncoding region) (Elroy-Stein et al. (1989) Proc. Natl. Acad. Sci. USA 86:6126-6130); potyvirus leaders, for example, TEV leader (Tobacco Etch Virus) (Gallie et al. (1995) Gene 165(2):233-238), MDMV leader (Maize Dwarf Mosaic Virus), and human immunoglobulin heavy-chain binding protein (BiP) (Macejak et al. (1991) Nature 353:90-94); untranslated leader from the coat
protein mRNA of alfalfa mosaic virus (AMV RNA 4) (Jobling et al. (1987) Nature 325:622-625); tobacco mosaic virus leader (TMV) (Gallie et al. (1989) in Molecular Biology of RNA, ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel et al. (1991) Virology81:382-385). See also, Della-Cioppa et al. (1987) Plant Physiol. 84:965-968. Other methods known to enhance translation can also be utilized, for example, introns, and the like.
[0119] In preparing the expression cassette, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be involved to provide for convenient restriction sites, removal of superfluous DNA, removal of restriction sites, or the like. For this purpose, in vitro mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.
[0120] The expression cassette can also comprise a selectable marker gene for the selection of transformed cells. Selectable marker genes are utilized for the selection of transformed cells or tissues. Marker genes include genes encoding antibiotic resistance, such as those encoding neomycin phosphotransferase 11 (NEO) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate (2,4-D). Additional selectable markers include phenotypic markers such as β-galactosidase and fluorescent proteins such as green fluorescent protein (GFP) (Su et al. (2004) Biotechnol Bioeng 85:610-9 and Fetter et al. (2004) Plant Cell 16:215-28), cyan florescent protein (CYP) (Bolte et al. (2004) J. Cell Science 117:943-54 and Kato et al. (2002) Plant Physiol 129:913-42), and yellow florescent protein (PhiYFPTM from Evrogen, see, Bolte et al. (2004) J. Cell Science 117:943-54). For additional selectable markers, see generally, Yarranton (1992) Curr. Opin. Biotech. 3:506511; Christopherson et al. (1992) Proc. Natl. Acad. Sci. USA 89:6314-6318; Yao et al. (1992) Cell 71:63-72; Reznikoff (1992) Mol. Microbiol. 6:2419-2422; Barkley et al. (1980) in The Operon, pp. 177-220; Hu et al. (1987) Cell 48:555566; Brown et al. (1987) Cell 49:603612; Figge et al. (1988) Cell 52:713-722; Deuschle et al. (1989) Proc. Natl. Acad. Aci. USA 86:5400-5404; Fuerst et al. (1989) Proc. Natl. Acad. Sci. USA 86:2549-2553; Deuschle et al. (1990) Science 248:480-483; Gossen (1993) Ph.D. Thesis, University of Heidelberg; Reines et al. (1993) Proc. Natl. Acad. Sci. USA 90:1917-1921; Labow et al. (1990) Mol. Cell. Biol. 10:3343-3356; Zambretti et al. (1992) Proc. Natl. Acad. Sci. USA 89:3952-3956; Baim et al. (1991) Proc. Natl. Acad. Sci. USA 88:5072-5076; Wyborski et al. (1991) Nucleic Acids Res. 19:4647-4653; Hillenand-Wissman (1989) Topics Mol. Struc. Biol. 10:143-162; Degenkolb et a. (1991) Antimicrob. Agents Chemother. 35:1591-1595; Kleinschnidt et al. (1988) Biochemistry 27:1094-1104; Bonin (1993) Ph.D. Thesis, University of Heidelberg; Gossen et al. (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Oliva et al. (1992) Antimicrob. Agents Chemother. 36:913-919; Hlavka et al. (1985) Handbook of Experimental Pharmacology, Vol. 78 (Springer-Verlag, Berlin); Gill et al. (1988) Nature 334:721724. Such disclosures are herein incorporated by reference.
[0121] The above list of selectable marker genes is not meant to be limiting. Any selectable marker gene can be used in the embodiments.
[0122] The gene of the embodiments can be expressed as a transgene in order to make plants resistant to Cg . Using the different promoters described elsewhere in this disclosure, this will allow its expression in a modulated form in different circumstances. For example, one might desire higher levels of expression in stalks to enhance resistance to Cg -caused stalk rot. In environments where Cg-caused leaf blight is more of a problem, lines with higher expression levels in leaves could be used. However, one can also insert the entire gene, both native promoter and coding sequence, as a transgene. Finally, using the gene of the embodiments as a transgene will allow quick combination with other traits, such as insect or herbicide resistance.
[0123] In certain embodiments the nucleic acid sequences of the embodiments can be stacked with any combination of polynucleotide sequences of interest in order to create plants with a desired phenotype. This stacking may be accomplished by a combination of genes within the DNA construct, or by crossing Rcg1 with another line that comprises the combination. For example, the polynucleotides of the embodiments may be stacked with any other polynucleotides of the embodiments, or with other genes. The combinations generated can also include multiple copies of any one of the polynucleotides of interest. The polynucleotides of the embodiments can also be stacked with any other gene or combination of genes to produce plants with a variety of desired trait combinations including and not limited to traits desirable for animal feed such as high oil genes (e.g., U.S. Pat. No. 6,232,529); balanced amino acids (e.g. hordothionins (U.S. Pat. Nos. 5,990,389; 5,885,801; 5,885,802; and 5,703,409); barley high lysine (Williamson et al. (1987) Eur. J Biochem. 165:99-106; and WO 98/20122); and high methionine proteins (Pedersen et al. (1986) J. Biol. Chem. 261:6279; Kirihara et al. (1988) Gene 71:359; and Musumura et al. (1989) Plant Mol. Biol. 12: 123)); increased digestibility (e.g., modified storage proteins (U.S. application Ser. No. 10/053,410, filed Nov. 7, 2001); and thioredoxins (U.S. application Ser. No. 10/005,429, filed Dec. 3, 2001)), the disclosures of which are herein incorporated by reference. The polynucleotides of the embodiments can also be stacked with traits desirable for insect, disease or herbicide resistance (e.g., Bacillus thuringiensis toxic proteins (U.S. Pat. Nos. 5,366,892; 5,747,450; 5,737,514; 5723,756; 5,593,881; Geiser et al (1986) Gene 48:109); lectins (Van Damme et al. (1994) Plant Mol. Biol. 24:825); fumonisin detoxification genes (U.S. Pat. No. 5,792,931); avirulence and disease resistance genes (Jones et al. (1994) Science 266:789; Martin et al. (1993) Science 262:1432; Mindrinos et al. (1994) Cell 78:1089); acetolactate synthase (ALS) mutants that lead to herbicide resistance such as the S4 and/or Hra mutations; inhibitors of glutamine synthase such as phosphinothricin or basta (e.g., bar gene); and glyphosate resistance (EPSPS genes, GAT genes such as those disclosed in U.S. Patent Application Publication US2004/0082770, also WO02/36782 and WO03/092360)); and traits desirable for processing or process products such as high oil (e.g., U.S. Pat. No. 6,232,529); modified oils (e.g., fatty acid desaturase genes (U.S. Pat. No. 5,952,544; WO 94/11516)); modified starches (e.g., ADPG pyrophosphorylases (AGPase), starch synthases (SS), starch branching enzymes (SBE) and starch debranching enzymes (SDBE)); and poly-
mers or bioplastics (e.g., U.S. Pat. No. 5,602,321; betaketothiolase, polyhydroxybutyrate synthase, and acetoacetyl-CoA reductase (Schubert et al. (1988) J. Bacteriol. 170:5837-5847) facilitate expression of polyhydroxyalkanoates (PHAs)), the disclosures of which are herein incorporated by reference. One could also combine the polynucleotides of the embodiments with polynucleotides providing agronomic traits such as male sterility (e.g., see U.S. Pat. No. $5.583,210$), stalk strength, flowering time, or transformation technology traits such as cell cycle regulation or gene targeting (e.g. WO 99/61619; WO 00/17364; WO 99/25821), the disclosures of which are herein incorporated by reference.
[0124] These stacked combinations can be created by any method including and not limited to cross breeding plants by any conventional or TopCross ${ }^{\circledR}$ methodology, or genetic transformation. If the traits are stacked by genetically transforming the plants, the polynucleotide sequences of interest can be combined at any time and in any order. For example, a transgenic plant comprising one or more desired traits can be used as the target to introduce further traits by subsequent transformation. The traits can be introduced simultaneously in a co-transformation protocol with the polynucleotides of interest provided by any combination of transformation cassettes. For example, if two sequences will be introduced, the two sequences can be contained in separate transformation cassettes (trans) or contained on the same transformation cassette (cis). Expression of the sequences can be driven by the same promoter or by different promoters. In certain cases, it may be desirable to introduce a transformation cassette that will suppress the expression of the polynucleotide of interest. This may be combined with any combination of other suppression cassettes or overexpression cassettes to generate the desired combination of traits in the plant.
[0125] The methods of the embodiments may involve, and are not limited to, introducing a polypeptide or polynucleotide into a plant. "Introducing" is intended to mean presenting to the plant the polynucleotide. In some embodiments, the polynucleotide will be presented in such a manner that the sequence gains access to the interior of a cell of the plant, including its potential insertion into the genome of a plant. The methods of the embodiments do not depend on a particular method for introducing a sequence into a plant, only that the polynucleotide gains access to the interior of at least one cell of the plant. Methods for introducing polynucleotides into plants are known in the art including, and not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods. "Transformation" refers to the transfer of a nucleic acid fragment into the genome of a host organism, resulting in genetically stable inheritance. Host organisms containing the transformed nucleic acid fragments are referred to as "transgenic" organisms. "Host cell" refers the cell into which transformation of the recombinant DNA construct takes place and may include a yeast cell, a bacterial cell, and a plant cell. Examples of methods of plant transformation include Agrobacterium-mediated transformation (De Blaere et al.,1987, Meth. Enzymol. 143:277) and particle-accelerated or ugene gun" transformation technology (Klein et al., 1987, Nature (London) 327:70-73; U.S. Pat. No.4,945,050), among others.
[0126] "Stable transformation" is intended to mean that the nucleotide construct introduced into a plant integrates into the genome of the plant and is capable of being inherited by the progeny thereof. "Transient transformation" or "transient expression" is intended to mean that a polynucleotide is introduced into the plant and does not integrate into the genome of the plant or a polypeptide is introduced into a plant.
[0127] Transformation protocols as well as protocols for introducing polypeptides or polynucleotide sequences into plants may vary depending on the type of plant or plant cell, i.e., monocot or dicot, targeted for transformation. Suitable methods of introducing polypeptides and polynucleotides into plant cells include microinjection (Crossway et al. (1986) Biotechniques 4:320-334), electroporation (Riggs et a1. (1986) Proc. Natl. Acad. Sci. USA 83:5602-5606, Agro-bacterium-mediated transformation (U.S. Pat. Nos. 5,563, 055 and $5,981,840$), direct gene transfer (Paszkowski et al. (1984) EMBO J. 3:2717-2722), and ballistic particle acceleration (see, for example, Sanford et al., U.S. Pat. Nos. 4,945,050; 5,879,918; 5,886,244; and 5,932,782; Tomes et al. (1995) in Plant Cell, Tissue, and Organ Culture: Fundamental Methods, ed. Gamborg and Phillips (SpringerVerlag, Berlin); McCabe et al. (1988) Biotechnology 6:923926); and Lec1 transformation (WO 00/28058). Also see, Weissinger et al. (1988) Ann. Rev. Genet. 22:421 -477; Sanford et al. (1987) Particulate Science and Technology 5:27-37 (onion); Christou et al. (1988) Plant Physiol. 87:671-674 (soybean); McCabe et al. (1988) Bio/Technology 6:923-926 (soybean); Finer and McMullen (1991) In Vitro Cell Dev. Biol. 27P:175-182 (soybean); Singh et al. (1998) Theor. Appl. Genet. 96:319-324 (soybean); Datta et al. (1990) Biotechnology 8:736-740 (rice); Klein et al. (1988) Proc. Natl. Acad. Sci. USA 85:4305-4309 (maize); Klein et al. (1988) Biotechnology 6:559-563 (maize); U.S. Pat. Nos. 5,240,855; 5,322,783 and 5,324,646; Klein et al. (1988) Plant Physiol. 91:440-444 (maize); Fromm et al. (1990) Biotechnology 8:833-839 (maize); Hooykaas-Van Slogteren et al. (1984) Nature (London) 311:763-764; U.S. Pat. No. 5,736,369 (cereals); Bytebier et al. (1987) Proc. Natl. Acad. Sci. USA 84:5345-5349 (Liliaceae); De Wet et al. (1985) in The Experimental Manipulation of Ovule Tissues, ed. Chapman et al. (Longman, New York), pp. 197-209 (pollen); Kaeppler et al. (1990) Plant Cell Reports 9:415-418 and Kaeppler et al. (1992) Theor. Appl. Genet. 84:560-566 (whisker-mediated transformation); D'Halluin et al. (1992) Plant Cell 4:1495-1505 (electroporation); Li et al. (1993) Plant Cell Reports 12:250-255 and Christou and Ford (1995) Annals of Botany 75:407-413 (rice); Osjoda et al. (1996) Nature Biotechnology 14:745-750 (maize via Agrobacterium tumefaciens); all of which are herein incorporated by reference.
[0128] Methods are known in the art for the targeted insertion of a polynucleotide at a specific location in the plant genome. In one embodiment, the insertion of the polynucleotide at a desired genomic location is achieved using a site-specific recombination system. See, for example, WO99/25821, WO99/25854, WO99/25840, WO99/25855, and WO99/25853, all of which are herein incorporated by reference. Briefly, the polynucleotide of the embodiments can be contained in transfer cassette flanked by two non-identical recombination sites. The transfer cassette is introduced into a plant have stably incorporated into its genome a target site which is flanked by two non-
identical recombination sites that correspond to the sites of the transfer cassette. An appropriate recombinase is provided and the transfer cassette is integrated at the target site. The polynucleotide of interest is thereby integrated at a specific chromosomal position in the plant genome.
[0129] The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick et al. (1986) Plant Cell Reports 5:8184. These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting progeny having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure expression of the desired phenotypic characteristic has been achieved. In this manner, the embodiments provides transformed seed (also referred to as "transgenic seed") having a nucleotide construct of the embodiments, for example, an expression cassette of the embodiments, stably incorporated into their genome.
[0130] As used herein, the term "plant" can be a whole plant, any part thereof, or a cell or tissue culture derived from a plant. Thus, the term "plant" can refer to any of: whole plants, plant components or organs (including but not limited to embryos, pollen, ovules, seeds, leaves, flowers, branches, fruit, kernels, ears, cobs, husks, stalks, roots, root tips, anthers, and the like), plant tissues, plant cells, plant protoplasts, plant cell tissue cultures from which maize plant can be regenerated, plant calli, plant clumps, and plant seeds. A plant cell is a cell of a plant, either taken directly from a seed or plant, or derived through culture from a cell taken from a plant. Grain is intended to mean the mature seed produced by commercial growers for purposes other than growing or reproducing the species. Progeny, variants, and mutants of the regenerated plants are also included within the scope of the embodiments, provided that these parts comprise the introduced polynucleotides.
[0131] The embodiments of the invention may be used to confer or enhance fungal plant pathogen resistance or protect from fungal pathogen attack in plants, especially corn (Zea mays). It will protect different parts of the plant from attack by pathogens, including and not limited to stalks, ears, leaves, roots and tassels. Other plant species may also be of interest in practicing the embodiments of the invention, including, and not limited to, other monocot crop plants.
[0132] Where appropriate, the polynucleotides may be optimized for increased expression in the transformed organism. For example, the polynucleotides can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowri (1990) Plant Physiol. 92:1-11 for a discussion of host-preferred codon usage. Methods are available in the art for synthesizing plant-preferred genes. See, for example, U.S. Pat. Nos. $5,380,831$, and 5,436,391, and Murray et al. (1989) Nucleic Acids Res. 17:477498, herein incorporated by reference.
[0133] The embodiments of the present invention may be effective against a variety of plant pathogens, particularly fungal pathogens, such as, for example, Colletotrichum, including Cg . The embodiments of the present invention may also be effective against maize stalk rot, including anthracnose stalk rot, wherein the causative agent is Colle-
totrichum. Other plant pathogenic fungi and oomycetes (many of the latter of which have been historically been considered fungi although modern taxonomists have now classified them separately) include, and are not limited to, the following: Soybeans: Phytophthora megasperma fsp. glycinea, Macrophomina phaseolina, Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium oxysporum, Diaporthe phaseolorum var. sojae (Phomopsis sojae), Diaporthe phaseolorum var. caulivora, Sclerotium rolfsii, Cercospora kikuchii, Cercospora sojina, Peronospora manshurica, Colletotrichum dematium (Colletotrichum truncatum), Corynespora casslicola, Septoria glycines, Phyllosticta sojicola, Alternaria alternata, Microsphaera diffusa, Fusarium semitectum, Phialophora gregata, Glomerella glycines, Phakopsora pachyrhizi, Pythium aphanidermatum, Pythium ultimum, Pythium debaryanum, Fusarium solani; Canola: Albugo candida, Alternaria brassicae, Leptosphaeria maculans, Rhizoctonia solani, Sclerotinia sclerotiorum, Mycosphaerella brassiccola, Pythium ultimum, Peronospora parasitica, Fusarium roseum, Alternaria alternata; Alfalfa: Pythium ultimum, Pythium irregulare, Pythium splendens, Pythium debaryanum, Pythium aphanidermatum, Phytophthora megasperma, Peronospora trifoliorum, Phoma medicaginis var. medicaginis, Cercospora medicaginis, Pseudopeziza medicaginis, Leptotrochila medicaginis, Fusarium oxysporum, Verticillium albo-atrum, Aphanomyces euteiches, Stemphylium herbarum, Stemphylium alfalfae, Colletotrichum trifolil, Leptosphaerulina briosiana, Uromyces striatus, Sclerotinia trifoliorum, Stagnospora meliloti, Stemphylium botryosum, Leptotrochila medicaginis; Wheat: Urocystis agropyri, Alternaria altemata, Cladosporium herbarum, Fusarium graminearum, Fusarium avenaceum, Fusarium culmorum, Ustilago tritici, Ascochyta tritici, Cephalosporium gramineum, Collotetrichum graminicola, Erysiphe graminis f.sp. tritici, Puccinia graminis f.sp. tritici, Puccinia recondite f.sp. tritici, Puccinia striiformis, Pyrenophora tritici-repentis, Septoria nodorum, Septoria tritici, Septoria avenae, Pseudocercosporella herpotrichoides, Rhizoctonia solani, Rhizoctonia cerealis, Gaeumannomyces graminis var. tritici, Pythium aphanidermatum, Pythium arrhenomanes, Pythium ultimum, Bipolaris sorokiniana, Claviceps purpurea, Tilletia tritici, Tilletia laevis, Ustilago tritici, Tilletia indica, Rhizoctonia solani, Pythium arrhenomannes, Pythium gramicola, Pythium aphanidermatum; Sunflower: Plasmophora halstedii, Sclerotinia sclerotiorum, Septoria helianthi, Phomopsis helianthi, Alternaria helianthi, Alternaria zinniae, Botrytis cinerea, Phoma macdonaldii, Macrophomina phaseolina, Erysiphe cichoracearum, Rhizopus oryzae, Rhizopus arrhizus, Rhizopus stolonifer, Puccinia helianthi, Verticillium dahliae, Erwinia carotovorum pv. carotovora, Cephalosporium acremonium, Phytophthora cryptogea, Albugo tragopogonis; Corn: Fusarium moniliforme var. subglutinans, Erwinia stewartii, Fusarium moniliforme, Gibberella zeae (Fusarium graminearum), Stenocarpella maydi (Diplodia maydis), Pythium irregulare, Pythium debaryanum, Pythium graminicola, Pythium splendens, Pythium ultimum, Pythium aphanidermatum, Aspergillus flavus, Bipolaris maydis O, T (Cochliobolus heterostrophus), Helminthosporium carbonum I, II \& III (Cochliobolus carbonum), Exserohilum turcicum I, II \& III, Helminthosporium pedicellatum, Physoderma maydis, Phyllosticta maydis, Kabatiella maydis, Cercospora sorghi, Ustilago maydis, Puccinia sorghi, Puccinia polysora, Macrophomina phaseolina, Penicillium
oxalicum, Nigrospora oryzae, Cladosporium herbarum, Curvularia lunata, Curvularia inaequalis, Curvularia pallescens, Trichoderma viride, Claviceps sorghi, Erwinia chrysanthemi pv. zea, Erwinia carotovora, Diplodia macrospora, Sclerophthora macrospora, Peronosclerospora sorghi, Peronosclerospora philippinensis, Peronosclerospora maydis, Peronosclerospora sacchari, Sphacelotheca reiliana, Physopella zeae, Cephalosporium maydis, Cephalosporium acremonium; Sorghum: Exserohilum turcicum, Colletotrichum graminicola (Glomerella graminicola), Cercospora sorghi, Gloeocercospora sorghi, Ascochyta sorghina, Puccinia purpurea, Macrophomina phaseolina, Perconia circinata, Fusarium moniliforme, Altemaria altemata, Bipolaris sorghicola, Helminthosporium sorghicola, Curvularia lunata, Phoma insidiosa, Ramulispora sorghi, Ramulispora sorghicola, Phyllachara sacchari, Sporisorium reilianum (Sphacelotheca reiliana), Sphacelotheca cruenta, Sporisorium sorghi, Claviceps sorghi, Rhizoctonia solani, Acremonium strictum, Sclerophthona macrospora, Peronosclerospora sorghi, Peronoscierospora philippinensis, Sclerospora graminicola, Fusarium graminearum, Fusarium oxysporum, Pythium arrhenomanes, Pythium graminicola, etc.
[0134] "Germplasm" refers to genetic material of or from an individual (e.g., a plant), a group of individuals (e.g., a plant line, variety or family), or a clone derived from a line, variety, species, or culture. The germplasm can be part of an organism or cell, or can be separate from the organism or cell. In general, germplasm provides genetic material with a specific molecular makeup that provides a physical foundation for some or all of the hereditary qualities of an organism or cell culture. As used herein, germplasm includes cells, seed or tissues from which new plants may be grown, or plant parts, such as leaves, stems, pollen, or cells, that can be cultured into a whole plant.
[0135] The term "allele" refers to one of two or more different nucleotide sequences that occur at a specific locus. A first allele is found on one chromosome, while a second allele occurs at the same position on the homologue of that chromosome, e.g., as occurs for different chromosomes of a heterozygous individual, or between different homozygous or heterozygous individuals in a population. A "favorable allele" is the allele at a particular locus that confers, or contributes to, an agronomically desirable phenotype, e.g., resistance to Cg infection. A favorable allele of a marker is a marker allele that segregates with the favorable phenotype. A favorable allelic form of a chromosome segment is a chromosome segment that includes a nucleotide sequence that contributes to superior agronomic performance at one or more genetic loci physically located on the chromosome segment. "Allele frequency" refers to the frequency (proportion or percentage) of an allele within a population, or a population of lines. One can estimate the allele frequency within a population by averaging the allele frequencies of a sample of individuals from that population.
[0136] An allele "positively" correlates with a trait when it is linked to it and when presence of the allele is an indicator that the desired trait or trait form will occur in a plant comprising the allele. An allele negatively correlates with a trait when it is linked to it and when presence of the allele is an indicator that a desired trait or trait form will not occur in a plant comprising the allele.
[0137] An individual is "homozygous" if the individual has only one type of allele at a given locus (e.g., a diploid individual has a copy of the same allele at a locus for each of two homologous chromosomes). An individual is "heterozygous" if more than one allele type is present at a given locus (e.g., a diploid individual with one copy each of two different alleles). A special case of a heterozygous situation is where one chromosome has an allele of a gene and the other chromosome lacks that gene, locus or region com-pletely-in other words, has a deletion relative to the first chromosome. This situation is referred to as "hemizygous." The term "homogeneity" indicates that members of a group have the same genotype at one or more specific loci. In contrast, the term "heterogeneity" is used to indicate that individuals within the group differ in genotype at one or more specific loci.
[0138] The embodiments provide not only a gene and its functional variants for use in transgenic applications, but sequences and processes that allow the Rcg1 resistance gene to be moved between corn lines using marker assisted breeding. The embodiments also relate to plants produced by these processes that retain a truncated chromosomal interval comprising the Rcg1 resistance gene.
[0139] A genetic map is a graphical representation of a genome (or a portion of a genome such as a single chromosome) where the distances between landmarks on a chromosome are measured by the recombination frequencies between the landmarks. Recombinations between genetic landmarks can be detected using a variety of molecular genetic markers (also called molecular markers) that are described in more detail herein.
[0140] For markers to be useful at detecting recombinations, they need to detect differences, or polymorphisms, within the population being monitored. For molecular markers, this means differences at the DNA level due to polynucleotide sequence differences (eg SSRs, RFLPs, FLPs, SNPs). The genomic variability can be of any origin, for example, insertions, deletions, duplications, repetitive elements, point mutations, recombination events, or the presence and sequence of transposable elements. Molecular markers can be derived from genomic or expressed nucleic acids (e.g., ESTs). ESTs are generally well conserved within a species, while other regions of DNA (typically noncoding) tend to accumulate polymorphism, and therefore, can be more variable between individuals of the same species. A large number of corn molecular markers are known in the art, and are published or available from various sources, such as the Maize GDB internet resource and the Arizona Genomics Institute internet resource run by the University of Arizona.
[0141] Molecular markers can be used in a variety of plant breeding applications (eg see Staub et al. (1996) Hortscience 31: 729-741; Tanksley (1983) Plant Molecular Biology Reporter. 1: 3-8). One of the main areas of interest is to increase the efficiency of backcrossing and introgressing genes using marker-assisted selection (MAS). A molecular marker that demonstrates linkage with a locus affecting a desired phenotypic trait provides a useful tool for the selection of the trait in a plant population. This is particularly true where the phenotype is hard to assay, e.g. many disease resistance traits, or, occurs at a late stage in the plants development, e.g. kernel characteristics. Since DNA marker
assays are less laborious, and take up less physical space, than field phenotyping, much larger populations can be assayed, increasing the chances of finding a recombinant with the target segment from the donor line moved to the recipient line. The closer the linkage, the more useful the marker, as recombination is less likely to occur between the marker and the gene causing the trait, which can result in false positives. Having flanking markers decreases the chances that false positive selection will occur as a double recombination event would be needed. The ideal situation is to have a marker in the gene itself, so that recombination can not occur between the marker. and the gene. Such a marker is called a 'perfect marker'.
[0142] When a gene is introgressed by MAS, it is not only the gene that is introduced but also the flanking regions (Gepts. (2002). Crop Sci; 42: 1780-1790). This is referred to as "linkage drag." In the case where the donor plant is highly unrelated to the recipient plant, as in the case of the Rcgl locus being introgressed from MP305, an exotic source, into elite inbreds, these flanking regions carry additional genes that may code for agronomically undesirable traits. This "linkage drag" may also result in reduced yield or other negative agronomic characteristics even after multiple cycles of backerossing into the elite corn line. This is also sometimes referred to as "yield drag." The size of the flanking region can be decreased by additional backcrossing, although this is not always successful, as breeders do not have control over the size of the region or the recombination breakpoints (Young et al. (1998) Genetics 120:579-585). In classical breeding it is usually only by chance that recombinations are selected that contribute to a reduction in the size of the donor segment (Tanksley et al. (1989). Biotechnology 7: 257-264). Even after 20 backcrosses in backcrosses of this type, one may expect to find a sizeable piece of the donor chromosome still linked to the gene being selected. With markers however, it is possible to select those rare individuals that have experienced recombination near the gene of interest. In 150 backcross plants, there is a 95% chance that at least one plant will have experienced a crossover within 1 cM of the gene, based on a single meiosis map distance. Markers will allow unequivocal identification of those individuals. With one additional backeross of 300 plants, there would be a 95% chance of a crossover within 1 cM single meiosis map distance of the other side of the gene, generating a segment around the target gene of less than 2 cM based on a single meiosis map distance. This can be accomplished in two generations with markers, while it would have required on average 100 generations without markers (See Tanksley et al., supra). When the exact location of a gene is known, a series of flanking markers surrounding the gene can be utilized to select for recombinations in different population sizes. For example, in smaller population sizes recombinations may be expected further away from the gene, so more distal flanking markers would be required to detect the recombination.
[0143] The availability of integrated linkage maps of the maize genome containing increasing densities of public maize markers has facilitated maize genetic mapping and MAS. See, e.g. the IBM2 Neighbors 4 map [online], [retrieved on Mar. 21, 2006]. Retrieved from the Internet:<URL: http://www.maizegdb.org/cgi-bin/displaymaprecord.cgi?id=871214>
[0144] The key components to the implementation of MAS are: (i) Defining the population within which the marker-trait association will be determined, which can be a segregating population, or a random or structured population; (ii) monitoring the segregation or association of polymorphic markers relative to the trait, and determining linkage or association using statistical methods; (iii) defining a set of desirable markers based on the results of the statistical analysis, and (iv) the use and/or extrapolation of this information to the current set of breeding germplasm to enable marker-based selection decisions to be made. The three types of markers described in this disclosure can be used in marker assisted selection protocols; simple sequence repeat (SSR, also known as microsatellite) markers, single nucleotide polymorphism (SNP) markers and fragment length polymorphic (FLP) markers. SSRs can be defined as relatively short runs of tandemly repeated DNA with lengths of 6 bp or less (Tautz (1989) Nucleic Acid Research 17: 6463-6471; Wang et al. (1994) Theoretical and Applied Genetics, 88:1-6) Polymorphisms arise due to variation in the number of repeat units, probably caused by slippage during DNA replication (Levinson and Gutman (1987) Mol Biol Evol 4: 203-221). The variation in repeat length may be detected by designing PCR primers to the conserved nonrepetitive flanking regions (Weber and May (1989) Am J Hum Genet 44:388-396). SSRs are highly suited to mapping and MAS as they are multi-allelic, codominant, reproducible and amenable to high throughput automation (Rafalski et al. (1996) Generating and using DNA markers in plants. In: Non-mammalian genomic analysis: a practical guide. Academic press. pp 75-135).
[0145] For example, an SSR marker profile of MP305 is provided in Example 5 herein. This marker profile was generated by gel electrophoresis of the amplification products generated by the primer pairs for these markers. Scoring of marker genotype is based on the size of the amplified fragment, which in this case was measured by the base pair weight of the fragment. While variation in the primer used or in laboratory procedures can affect the reported base pair weight, relative values will remain constant regardless of the specific primer or laboratory used. Thus, when comparing lines, the SSR profiles being compared should be obtained from the same lab, so that the same primers and equipment is used. For this reason, when comparing plants or lines vis a vis specific markers, it is preferable to state that such plants or lines have the same (or different) alleles at specified loci (e.g. one can say that if a plant does not comprise the MP305 derived chromosomal interval at or below UMC15a, it will not comprise the same alleles as MP305 at all of the loci at or below UMC15a listed on Table 6 in Example 5). An SSR service for corn is available to the public on a contractual basis by DNA Landmarks in Saint-Jean-sur-Richelieu, Quebec, Canada.
[0146] Various types of FLP markers can be generated. Most commonly, amplification primers are used to generate fragment length polymorphisms. Such FLP markers are in many ways similar to SSR markers, except that the region amplified by the primers is not typically a highly repetitive region. Still, the amplified region, or amplicon, will have sufficient variability among germplasm, often due to insertions or deletions, such that the fragments generated by the amplification primers can be distinguished among polymorphic individuals, and such indels are known to occur frequently in maize (Bhattramakki et al. (2002). Plant Mol Biol

48, 539-547; Rafalski (2002b), supra). The term "indel" refers to an insertion or deletion, wherein one line may be referred to as having an insertion relative to a second line, or the second line may be referred to as having a deletion relative to the first line. The MZA markers disclosed herein are examples of amplified FLP markers that have been selected because they are in close proximity to the Rcgl gene.
[0147] SNP markers detect single base pair nucleotide substitutions. Of all the molecular marker types, SNPs are the most abundant, thus having the potential to provide the highest genetic map resolution (Bhattramakki et al. 2002 Plant Molecular Biology 48:539-547). SNPs can be assayed at an even higher level of throughput than SSRs, in a so-called 'ultra-high-throughput' fashion, as they do not require large amounts of DNA and automation of the assay may be straight-forward. SNPs also have the promise of being relatively low-cost systems. These three factors together make SNPs highly attractive for use in MAS. Several methods are available for SNP genotyping, including but not limited to, hybridization, primer extension, oligonucleotide ligation, nuclease cleavage, minisequencing and coded spheres. Such methods have been reviewed in: Gut (2001) Hum Mutat 17 pp. 475-492; Shi (2001) Clin Chem 47, pp. 164-172; Kwok (2000) Pharmacogenomics 1, pp. 95-100; Bhattramakki and Rafalski (2001) Discovery and application of single nucleotide polymorphism markers in plants. In: R. J. Henry, Ed, Plant Genotyping: The DNA Fingerprinting of Plants, CABI Publishing, Wallingford. A wide range of commercially available technologies utilize these and other methods to interrogate SNPs including Masscode ${ }^{\mathrm{TM}}$ (Qiagen), Invader ${ }^{\circledR}$ (Third Wave Technologies), SnapShot $\mathbb{\circledR}$ (Applied Biosystems), Taqman ${ }^{\circledR}$ (Applied Biosystems) and Beadarrays ${ }^{\text {TM }}$ (Illumina).
[0148] A number of SNPs together within a sequence, or across linked sequences, can be used to describe a haplotype for any particular genotype (Ching et al. (2002), BMC Genet. 3:19 pp Gupta et al. 2001, Rafalski (2002b), supra). Haplotypes can be more informative than single SNPs and can be more descriptive of any particular genotype. For example, a single SNP may be allele 'T' for MP305, but the allele ' T ' might also occur in the maize breeding population being utilized for recurrent parents. In this case, a haplotype, e.g. a series of alleles at linked SNP markers, may be more informative. Once a unique haplotype has been assigned to a donor chromosomal region, that haplotype can be used in that population or any subset thereof to determine whether an individual has a particular gene. See, for example, WO2003054229. Using automated high throughput marker detection platforms known to those of ordinary skill in the art makes this process highly efficient and effective.
[0149] As described herein, many of the primers listed in Tables 1 and 2 can readily be used as FLP markers to select for the Rcg1 locus. These primers can also be used to convert these markers to SNP or other structurally similar or functionally equivalent markers (SSRs, CAPs, indels, etc), in the same regions. One very productive approach for SNP conversion is described by Rafalski (2002a) Current opinion in plant biology 5 (2): 94-100 and also Rafalski (2002b) Plant Science 162: 329-333. Using PCR, the primers are used to amplify DNA segments from individuals (preferably inbred) that represent the diversity in the population of interest. The PCR products are sequenced directly in one or
both directions. The resulting sequences are aligned and polymorphisms are identified. The polymorphisms are not limited to single nucleotide polymorphisms (SNPs), but also include indels, CAPS, SSRs, and VNTRs (variable number of tandem repeats). Specifically with respect to the fine map information described herein, one can readily use the information provided herein to obtain additional polymorphic SNPs (and other markers) within the region amplified by the primers listed in this disclosure. Markers within the described map region can be hybridized to BACs or other genomic libraries, or electronically aligned with genome sequences, to find new sequences in the same approximate location as the described markers.
[0150] In addition to SSR's, FLPs and SNPs as described above, other types of molecular markers are also widely used, including but not limited to expressed sequence tags (ESTs) and SSR markers derived from EST sequences, and randomly amplified polymorphic DNA (RAPD). As used herein, the term "Genetic Marker" shall refer to any type of nucleic acid based marker, including but not limited to, Restriction Fragment Length Polymorphism (RFLP), Simple Sequence Repeat (SSR), Random Amplified Polymorphic DNA (RAPD), Cleaved Amplified Polymorphic Sequences (CAPS) (Rafalski and Tingey, 1993, Trends in Genetics 9:275-280), Amplified Fragment Length Polymorphism (AFLP) (Vos et al., 1995, Nucleic Acids Res. 23:4407-4414), Single Nucleotide Polymorphism (SNP) (Brookes, 1999, Gene 234:177-186), Sequence Characterized Amplified Region (SCAR) (Paran and Michelmore, 1993, Theor. Appl. Genet. 85:985-993), Sequence Tagged Site (STS) (Onozaki et al., 2004, Euphytica 138:255-262), Single Stranded Conformation Polymorphism (SSCP) (Orita et al., 1989, Proc Natl Acad Sci USA 86:2766-2770), Inter-Simple Sequence Repeat (ISSR) (Blair et al., 1999, Theor. Appl. Genet. 98:780-792), Inter-Retrotransposon Amplified Polymorphism (IRAP), Retrotransposon-Microsatellite Amplified Polymorphism (REMAP) (Kalendar et al., 1999, Theor. Appl. Genet. 98:704-711), an RNA cleavage product (such as a Lynx tag) and the like.
[0151] More generically, the term "molecular marker" may be used to refer to a genetic marker, as defined above, or an encoded product thereof (e.g., a protein) used as a point of reference when identifying a linked locus. A marker can be derived from genomic nucleotide sequences or from expressed nucleotide sequences (e.g., from a spliced RNA, a cDNA, etc.), or from an encoded polypeptide. The term also refers to nucleic acid sequences complementary to or flanking the marker sequences, such as nucleic acids used as probes or primer pairs capable of amplifying the marker sequence. A "molecular marker probe" is a nucleic acid sequence or molecule that can be used to identify the presence of a marker locus, e.g., a nucleic acid probe that is complementary to a marker locus sequence. Alternatively, in some aspects, a marker probe refers to a probe of any type that is able to distinguish (i.e., genotype) the particular allele that is present at a marker locus. Nucleic acids are complementary" when they specifically hybridize in solution, e.g., according to Watson-Crick base pairing rules. Some of the markers described herein are also referred to as hybridization markers when located on an indel region, such as the non-collinear region described herein. This is because the insertion region is, by definition, a polymorphism vis a vis a plant without the insertion. Thus, the marker need only indicate whether the indel region is present or absent. Any
suitable marker detection technology may be used to identify such a hybridization marker, e.g. SNP technology is used in the examples provided herein.
[0152] A "genomic nucleic acid" is a nucleic acid that corresponds in sequence to a heritable nucleic acid in a cell. Common examples include nuclear genomic DNA and amplicons thereof. A genomic nucleic acid is, in some cases, different from a spliced RNA, or a corresponding cDNA, in that the spliced RNA or cDNA is processed, e.g., by the splicing machinery, to remove introns. Genomic nucleic acids optionally comprise non-transcribed (e.g., chromosome structural sequences, promoter regions, enhancer regions, etc.) and/or non-translated sequences (e.g., introns), whereas spliced RNA/cDNA typically do not have nontranscribed sequences or introns. A "template nucleic acid" is a nucleic acid that serves as a template in an amplification reaction (e.g., a polymerase based amplification reaction such as PCR, a ligase mediated amplification reaction such as LCR, a transcription reaction, or the like). A template nucleic acid can be genomic in origin, or alternatively, can be derived from expressed sequences, e.g., a cDNA or an EST.
[0153] The term "amplifying" in the context of nucleic acid amplification is any process whereby additional copies of a selected nucleic acid (or a transcribed form thereof) are produced. Typical amplification methods include various polymerase based replication methods, including the polymerase chain reaction (PCR), ligase mediated methods such as the ligase chain reaction (LCR) and RNA polymerase based amplification (e.g., by transcription) methods. An "amplicon" is an amplified nucleic acid, e.g., a nucleic acid that is produced by amplifying a template nucleic acid by any available amplification method (e.g., PCR, LCR, transcription, or the like).
[0154] Isozyme profiles and linked morphological characteristics can, in some cases, also be indirectly used as markers. Even though they do not directly detect DNA differences, they are often influenced by specific genetic differences. However, markers that detect DNA variation are far more numerous and polymorphic than isozyme or morphological markers (Tanksley (1983) Plant Molecular Biology Reporter 1:3-8).
[0155] Sequence alignments or contigs may also be used to find sequences upstream or downstream of the specific markers listed herein. These new sequences, close to the markers described herein, are then used to discover and develop functionally equivalent markers.
[0156] For example, different physical and/or genetic maps are aligned to locate equivalent markers not described within this disclosure but that are within similar regions. These maps may be within the maize species, or even across other species that have been genetically or physically aligned with maize, such as rice, wheat, barley or sorghum.
[0157] As noted in Example 2, by using common sequences from the region flanking the Rcg1 locus that hybridized to BACs in the Mo17 and the B73 BAC libraries, the BACs from both libraries were lined up with BACs from the DE811ASR(BC5) homologous region flanking the Rcg1 locus in a tiling path as shown in FIG. 9(a). The public B73 BACs, c0113f01 and c0117e18 were identified as directly north and south, respectively, of the Rcg1 locus.
[0158] With this information, an extended non-contiguous tiling path of B73 BACs between genetic markers UMC2285 and UMC15a, UMC2285 and UMC2187, UMC1086 and UMC2200, or UMC2041 and UMC2200, can be created by aligning genetic markers within this region with the physical map of the B73 BAC. Alignment information of the genetic and physical maps of B73 is obtained from the maize genome database of the Arizona Genomics Institute on the world wide web, accessed by entering the following web address prefixed by "www.": genome.arizona.edu/fpc/maize/\#webagcol. In the WebChrom view, one can select the genetic markers in the vicinity of the Rcg1 gene and get a link to the physical contig where these genetic markers are located. By aligning the physical map in such way with the genetic map one can find a plethora of B73 BACs in the region between the chromosomal intervals defined by genetic markers UMC2285 and UMC15a, UMC2285 and UMC2187, UMC1086 and UMC2200, or UMC2041 and UMC2200. The BACs can be used by one of ordinary skill in the art to develop new markers for introgression of the Reg1 locus into maize germplasm. In particular, such genetic markers would be useful for tracking the Rcg1 locus in any lines into which the Rcg1 locus or Rcg1 gene has been introgressed, and for selecting for recurrent parent genome in a backcrossing program.
[0159] For example, in order to design polymorphic markers that will be useful for introgression and selection of the Rcg1 gene or locus in other maize germplasm, sequence information of the region surrounding the Rcg1 locus can be used. There are many B73 derived bacterial artificial chromosomes (BACs) available in the region of interest from which sequence information can be obtained. An example of BACs in the region of interest is shown in FIG. 21, which shows a contig on the B73 physical map that is homologous to the Rcg1 region in DE811ASR (BC5) [FIG. 21 retrieved Mar. 10, 2006]. Retrieved from the Internet <URL: http:// www.genome.arizona.edu/cgi-bin/WebAGCoL/WebFPC/ WebFPC_Direct_v2.1.cgi?name=maize\&contig= $187 \&$ mark er=ssu1>. Sequence information is obtained either through information that is already publicly available (e.g. BAC end-sequence, sequence of Expressed Sequence Tags (ESTs) that hybridize to BACs in this region, overgo probes that often relate to these ESTs, etc.) or by obtaining new sequence by directly sequencing BAC clones in this region. From this sequence one can determine which regions are most unique using several different methods known to one of ordinary skill in the art. For example, by using gene prediction software or by blasting the sequence against all available maize sequence, one can select for non-repetitive sequence. Low copy sequence can be used to develop a wide array of nucleic acid based markers. These markers are used to screen the plant material in which the Rcg1 locus is present and the plant material in which the Rcg1 locus is absent. If a marker outside of the Rcg1 locus is desired, then the markers are used to screen the plant material in which the Rcg1 locus is present and the plant material in which the Rcg1 locus is absent to determine if the marker is polymorphic in such germplasm. Polymorphic markers are then used for marker assisted introgression and selection of the Rcg1 region and optimally also recurrent parent genome selection, in other maize germplasm. Thus, with the location of the Rcg1 locus identified and its association with resistance to Colletotrichum established, one of ordinary skill in the art can utilize any number of existing markers, or readily
develop new markers, that can be used introgress or identify the presence or absence of the Rcg1 locus in germplasm, and to select for recurrent parent genome in a backcrossing program.
[0160] On a genetic map, linkage of one molecular marker to a gene or another molecular marker is measured as a recombination frequency. In general, the closer two loci (e.g., two SSR markers) are on the genetic map, the closer they lie to each other on the physical map. A relative genetic distance (determined by crossing over frequencies, measured in centimorgans; cM) can be proportional to the physical distance (measured in base pairs, e.g., kilobase pairs [kb] or mega-basepairs [Mbp]) that two linked loci are separated from each other on a chromosome. A lack of precise proportionality between cM and physical distance can result from variation in recombination frequencies for different chromosomal regions, e.g., some chromosomal regions are recombination "hot spots," while others regions do not show any recombination, or only demonstrate rare recombination events. Some of the introgression data and mapping information suggest that the region around the Rcg1 locus is one that does have a high amount of recombination.
[0161] In general, the closer one marker is to another marker, whether measured in terms of recombination or physical distance, the more strongly they are linked. The closer a molecular marker is to a gene that encodes a polypeptide that imparts a particular phenotype (disease resistance), whether measured in terms of recombination or physical distance, the better that marker serves to tag the desired phenotypic trait. If possible, the best marker is one within the gene itself, since it will always remain linked with the gene causing the desired phenotype.
[0162] Genetic mapping variability can also be observed between different populations of the same crop species, including maize. In spite of this variability in the genetic map that may occur between populations, genetic map and marker information derived from one population generally remains useful across multiple populations in identification of plants with desired traits, counter-selection of plants with undesirable traits and in guiding MAS.
[0163] To locate equivalent markers across genetic maps, a mapping population may be used to confirm whether any such equivalent marker is within the region described herein and therefore useful for selection of Rcg1. Using this method, the equivalent marker, along with the markers listed herein, are mapped on such mapping population. Any equivalent marker that falls within the same region can be used to select for Rcg1. Mapping populations known in the art and that may be used for this purpose include, but are not limited to, the IBM populations and T218 X GT119 IF_{2} population described in Sharopova, N. et al. (2002) Plant Mol Biol 48(5):463-481 and Lee, M. et al. (1999): Tools for high resolution genetic mapping in maize-status report. Proc. Plant Animal Genome VII, Jan. 17-21, 1999, San Diego, USA, P. 146; the UMC 98 population, described in Davis, G. L. et al. (1999) Genetics 152(3):1137-72 and in Davis, M. D. et al., (1998) The 1998 UMC Maize Genetic Map: ESTs, Sequenced Core Markers, and Nonmaize Probes as a Foundation for Gene Discovery, Maize Genetics Conference Abstracts 40.
[0164] As used herein, "introgression" or "introgressing" shall refer to moving a gene or locus from one line to another
by: (1) crossing individuals of each line to create a population; and (2) selecting individuals carrying the desired gene or locus. After each cross, the selection process is repeated. For example, the gene of the embodiments, or the locus containing it, may be introgressed into a recurrent parent that is not resistant or only partially resistant, meaning that it is sensitive or susceptible or partially so, to Cg . The recurrent parent line with the introgressed gene or locus then has enhanced or newly conferred resistance to Cg . This line into which the Rcg1 locus has been introgressed is referred to herein as an Rcg1 locus conversion.
[0165] The process of introgressing is often referred to as "backcrossing" when the process is repeated two or more times. In introgressing or backcrossing, the "donor" parent refers to the parental plant with the desired gene or locus to be introgressed. The "recipient" parent (used one or more times) or "recurrent" parent (used two or more times) refers to the parental plant into which the gene or locus is being introgressed. For example, see Ragot, M. et al. (1995) Marker-assisted backcrossing: a practical example, in Techniques et Utilisations des Marqueurs Moleculaires (Les Colloques, Vol. 72, pp. 45-56 and Openshaw et al., (1994) Marker-assisted Selection in Backcross Breeding, Analysis of Molecular Marker Data, pp. 41-43. The initial cross gives rise to the F1 generation; the term " BCl " then refers to the second use of the recurrent parent, "BC2" refers to the third use of the recurrent parent, and so on.
[0166] In the case of Rcg1, where the sequence of the gene and very nearby regions are available, DNA markers based on the gene itself or closely linked sequences can be developed for direct selection of the donor gene in the recurrent parent background. While any polymorphic DNA sequence from the chromosomal region carrying the gene could be used, the sequences provided in the embodiments allow the use of DNA markers within or close to the gene, minimizing false positive selection for the gene. Flanking markers limit the size of the donor genome fragments introduced into the recipient background, thus minimizing so called "linkage drag," meaning the introduction of undesirable sequences from the donor line that could impact plant performance in otherwise elite germplasm. The embodiments provide multiple examples of DNA markers that could be so used, and the person skilled in the art will be able to use the genomic sequences provided to create even more markers. An example is to use markers that hybridize (in the case of RFLP assays) or anneal (in the case of PCR assays) specifically (exclusively) to sequences closely linked, including within, the locus. In principle, sequences that also hybridize or anneal elsewhere in the genome could be used if several such markers are used in combination. When PCR reactions are used, in practice the length of the primers used in the amplification reaction should be at least about 15 nucleotides, but depending on the sequences and hybridization conditions, any length that provides specific annealing can be used, such as about 16 , about 17 , about 18 , about 19 , about 20 , about 21 , about 22 , about 23 , about 24 , about 25 , about 26, about 27, about 28 or longer. For PCR reactions the term "anneal" is commonly used, and as used herein it shall be understood to have the same meaning as "hybridize."
[0167] Thus, by using the markers and processes described herein, one may produce a plant comprising a truncated chromosomal interval comprising the Rcg1 locus
and/or the Rcg1 gene. The term "chromosomal interval" or "chromosomal segment" refers to a contiguous linear span of genomic DNA that resides in planta on a single chromosome, usually defined with reference to two markers defining the end points of the chromosomal interval. The specified interval may include the markers at the end points (e.g. one or more markers on or within the chromosomal interval defined by marker A and marker B) or may exclude the markers at the end points of the interval (e.g. one or more markers within the chromosomal interval defined by marker A and marker B). A truncated chromosomal interval refers to a chromosomal interval that has been reduced in size by selecting for one or more recombination events that have reduced the size of the chromosomal interval. A "recombination event" refers to the occurrence of recombination between homologous chromosomes, and refers to a specific chromosomal location where such a recombination has occurred (e.g. a recombination of a chromosomal interval internal to the end points of the chromosome will have a recombination event at each end of the chromosomal interval). The truncated chromosomal interval may be defined with reference to one or both new markers at the end points of the segment. The length of two chromosomal segments may be measured by either centimorgans or base pairs. The genetic elements or genes located on a single chromosomal interval are physically linked. The size of a chromosomal interval is not particularly limited, but in the context of the embodiments of the present invention, generally the genetic elements located within a single chromosomal interval are also genetically linked.
[0168] By using the processes of the embodiments, it is possible to select for a plant that comprises a truncated chromosomal interval comprising the Rcg1 gene. Specifically, with respect to the invention described in more detail in the examples below, the chromosomal interval may be reduced to a length of 12 cM or less, 10 cM or less, 8 cM or less, 6 cM or less, 4 cM or less, 3 cM or less, 2.5 cM or less, 2 cM or less, 1.5 cM or less, 1 cM or less, 0.75 cM or less, 0.50 cM or less, or 0.25 cM or less, in each case as measured with respect to the map distances as shown on the IBM2 Neighbors 4 genetic map as in effect on Mar. 21, 2006. As measured in base pairs, the chromosomal interval may be reduced to a length of 15 mbp or less, 10 mbp or less, 5 mbp or less, 3 mbp or less, 1 mpb or less, 500 kbp or less, or 250 kbp or less. One of ordinary skill in the art would understand that it is undesirable to cause a break in the chromosomal region so proximal to the Rcgl coding sequence (e.g. within 5 kpb or less, within 4 kbp or less, 3 kbp or less, 2 kbp or less, 1 kbp or less, or 0.5 kbp or less), such that the promoter and other upstream regulatory elements would be unlinked from the coding sequence.
[0169] The term "locus" generally refers to a genetically defined region of a chromosome carrying a gene or, possibly, two or more genes so closely linked that genetically they behave as a single locus responsible for a phenotype. When used herein with respect to Rcg1, the "Rcg1 locus" shall refer to the defined region of the chromosome carrying the Rcg1 gene including its associated regulatory sequences, plus the region surrounding the Rcg1 gene that is noncolinear with B73, or any smaller portion thereof that retains the Rcg1 gene and associated regulatory sequences. This locus has also been referred to elsewhere as the ASR locus, and will be referred to as the Rcg1 locus here.
[0170] A "gene" shall refer to a specific genetic coding region within a locus, including its associated regulatory sequences. The region encoding the Rcg 1 primary transcript, referred to herein as the "Rcg1 coding sequence", will be used to define the position of the Rcg1 gene, and one of ordinary skill in the art would understand that the associated regulatory sequences will be within a distance of about 4 kb from the Rcg1 coding sequence, with the promoter located upstream. One embodiment of the present invention is the isolation of the Rcg1 gene and the demonstration that it is the gene responsible for the phenotype conferred by the presence of the locus.
[0171] As used herein, "linked" or "linkage" (as distinguished from the term "operably linked") shall refer to the genetic or physical linkage of loci or genes. Loci or genes are considered genetically linked if the recombination frequency between them is less than about 50% as determined on a single meiosis map. They are progressively more linked if the recombination frequency is about 40%, about 30%, about 20%, about 10% or less, as determined on a single meiosis map. Two or more genes are physically linked (or syntenic) if they have been demonstrated to be on a single piece of DNA, such as a chromosome. Genetically linked genes will in practice be physically linked (or syntenic), but the exact physical distance (number of nucleotides) may not have been demonstrated yet. As used herein, the term "closely linked" refers to genetically linked markers within 15 cM or less, including without limitation 12 cM or less, 10 cM or less, 8 cM or less, 7 cM or less, 6 cM or less, 5 cM or less, 4 cM or less, 3 cM or less, 2 cM or less, 1 cM or less and 0.5 cM or less, as determined on the IBM2 neighbors 4 genetic map publicly available on the Maize GDB website previously referenced in this disclosure. A DNA sequence, such as a short oligonucleotide representing a sequence within a locus or one complementary to it, is also linked to that locus.
[0172] A "line" or "strain" is a group of individuals of identical parentage that are generally inbred to some degree and that are generally homozygous and homogeneous at most loci.
[0173] An "ancestral line" or "progenitor" is a parent line used as a source of genes, e.g., for the development of elite lines. "Progeny" are the descendents of the ancestral line, and may be separated from their ancestors by many generations of breeding. For example, many elite lines are the progeny of B73 or Mo17. A "pedigree structure" defines the relationship between a descendant and each ancestor that gave rise to that descendant. A pedigree structure can span one or more generations, describing relationships between the descendant and it's parents, grand parents, great-grand parents, etc.
[0174] An "elite line" or "elite variety" is an agronomically superior line or variety that has resulted from many cycles of breeding and selection for superior agronomic performance. An "elite inbred line" is an elite line that is an inbred, and that has been shown to be useful for producing sufficiently high yielding and agronomically fit hybrid varieties (an "elite hybrid variety"). Numerous elite lines and varieties are available and known to those of skill in the art of corn breeding. Similarly, "elite germplasm" is an agronomically superior germplasm, typically derived from and/
or capable of giving rise to a plant with superior agronomic performance, such as an existing or newly developed elite line of corn.
[0175] In contrast, an "exotic corn line" or "exotic corn germplasm" is germplasm derived from corn not belonging to an available elite line, elite variety or elite germplasm. In the context of a cross between two corn plants, an exotic line or exotic germplasm is not closely related by descent to the elite line, elite variety or elite germplasm with which it is crossed. Most commonly, the exotic line or exotic germplasm is selected to introduce novel genetic elements (typically novel alleles) into a breeding program.
[0176] Units, prefixes, and symbols may be denoted in their SI accepted form. Unless otherwise indicated, nucleic acids are written left to right in 5^{\prime} to 3^{\prime} orientation; amino acid sequences are written left to right in amino to carboxyl orientation, respectively. Numeric ranges are inclusive of the numbers defining the range. Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPACIUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes. The above-defined terms are more fully defined by reference to the specification as a whole.
[0177] With respect to map directions noted herein, instead of the terms 5^{\prime} and 3^{\prime}, the terms "north" and "above" are used (e.g., a marker north of the Rcg1 gene refers to a marker above the Rcg1 gene, as determined with reference to the maps provided in a vertical orientation, such as FIGS. 7 and 8, and to the left of the Rcg1 gene, as determined with reference to maps provided in a horizontal orientation, such as FIG. 22). Likewise, the terms "south" and "below" are used (e.g. a marker south of the Rcg1 gene refers to a marker below the Rcg1 gene, as determined with reference to the vertically oriented maps provided herein, and to the right of the Rcg1 gene, as determined with reference to the horizontally oriented maps provided herein). More specifically, above the Rcg1 coding sequence refers to the chromosome above, or north of the primary transcript in SEQ ID NO: 1 (at about FLP110F), and below the Rcg1 coding sequence refers to the chromosome below or south of the primary transcript in SEQ ID NO: 1 (at about FLPA1R). See FIG. 26. The term "proximal" and "distal" are relative terms meaning, respectively, nearer and farther from a specified location (e.g., the Rcg1 gene) when used to compare two points on a map relative to the specified location.
[0178] The term "computer systems" refers generally to various automated systems used to perform some or all of the method steps described herein. The term "instructions" refers to computer code that instructs the computer system to perform some or all of the method steps. In addition to practicing some or all of the method steps, digital or analog systems, e.g., comprising a digital or analog computer, can also control a variety of other functions such as a user viewable display (e.g., to permit viewing of method results by a user) and/or control of output features (e.g., to assist in marker assisted selection or control of automated field equipment).
[0179] Certain of the methods described herein are optionally (and typically) implemented via a computer program or programs (e.g., that store and can be used to analyze molecular marker data). Thus, the embodiments provide
digital systems, e.g., computers, computer readable media, and/or integrated systems comprising instructions (e.g., embodied in appropriate software) for performing the methods herein. The digital system will include information (data) corresponding to plant genotypes for a set of genetic markers, and optionally, phenotypic values and/or family relationships. The system can also aid a user in performing marker assisted selection for Rcg1 according to the methods herein, or can control field equipment which automates selection, harvesting, and/or breeding schemes.
[0180] Standard desktop applications such as word processing software (e.g., Microsoft Word ${ }^{\text {TM }}$ or Corel WordPerfect ${ }^{\mathrm{TM}}$) and/or database software (e.g., spreadsheet software such as Microsoft Excel ${ }^{\mathrm{TM}}$, Corel Quattro Pro ${ }^{\mathrm{TM}}$, or database programs such as Microsoft Access ${ }^{\text {TM }}$ or Paradox ${ }^{\text {TM }}$) can be adapted to the embodiments by inputting data which is loaded into the memory of a digital system, and performing an operation as noted herein on the data. For example, systems can include the foregoing software having the appropriate genotypic data, and optionally pedigree data, used in conjunction with a user interface (e.g., a GUI in a standard operating system such as a Windows, Macintosh or LINUX system) to perform any analysis noted herein, or simply to acquire data (e.g., in a spreadsheet) to be used in the methods herein. The computer can be, e.g., a PC (Intel x86 or Pentium chip-compatible DOS, ${ }^{\text {TM }}$ OS2, ${ }^{\text {TM }}$ WINDOWS, ${ }^{\text {тм }}$ WINDOWS NT, ${ }^{\text {TM }}$ WINDOWS 95 , ${ }^{\text {м }}$ WINDOWS98, ${ }^{\text {TM }}$ LINUX, Apple-compatible, MACINTOSH ${ }^{\text {TM }}$ compatible, Power PC compatible, or a UNIX compatible (e.g., SUNTM work station) machine) or other commercially common computer which is known to one of skill. Software for performing association analysis and/or phenotypic value prediction can be constructed by one of skill using a standard programming language such as Visualbasic, Fortran, Basic, Java, or the like, according to the methods herein.
[0181] Any system controller or computer optionally includes a monitor which can include, e.g., a cathode ray tube ("CRT") display, a flat panel display (e.g., active matrix liquid crystal display, liquid crystal display), or others. Computer circuitry is often placed in a box which includes numerous integrated circuit chips, such as a microprocessor, memory, interface circuits, and others. The box also optionally includes a hard disk drive, a floppy disk drive, a high capacity removable drive such as a writeable CD-ROM, and other common peripheral elements. Inputting devices such as a keyboard or mouse optionally provide for input from a user and for user selection of genetic marker genotype, phenotypic value, or the like in the relevant computer system.
[0182] The computer typically includes appropriate software for receiving user instructions, either in the form of user input into a set of parameter fields, e.g., in a GUI, or in the form of preprogrammed instructions, e.g., preprogrammed for a variety of different specific operations. The software then converts these instructions to an appropriate language for instructing the system to carry out any desired operation. For example, a digital system can instruct selection of plants comprising certain markers, or control field machinery for harvesting, selecting, crossing or preserving crops according to the relevant method herein.
[0183] The invention can also be embodied within the circuitry of an application specific integrated circuit (ASIC)
or programmable logic device (PLD). In such a case, the invention is embodied in a computer readable descriptor language that can be used to create an ASIC or PLD. The invention can also be embodied within the circuitry or logic processors of a variety of other digital apparatus, such as PDAs, laptop computer systems, displays, image editing equipment, etc.

EXAMPLES

[0184] The embodiments of the invention are further defined in the following examples, in which all parts and percentages are by weight and degrees are Celsius, unless otherwise stated. It should be understood that these examples, while indicating embodiments of the invention, are given by way of illustration only. From the above discussion and these examples, one skilled in the art can ascertain the essential characteristics of the embodiments of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications to adapt it to various usages and conditions. Thus, various modifications of the embodiments of the invention in addition to those shown and described herein will be apparent to those skilled in the art from the foregoing description. Such modifications are also intended to fall within the scope of the appended claims. The disclosure of each reference set forth herein is incorporated by reference in its entirety. Examples 14 and 7-12 are actual. Examples 5, 6 and 13 are actual in part and prophetic in part.

Example 1

Fine Mapping of the Rcg1 Locus to a Specific Region of 4L

[0185] In order to map and clone the gene responsible for the resistance of corn line MP305 to Cg , lines had previously been created which differed as little as possible from each other genetically with the exception of the presence of the locus responsible for the resistant phenotype. Such lines are called near isogenic lines. To this end, DE811 had been crossed to MP305 and the progeny had been backcrossed to the sensitive line DE811 three times, at each backeross selecting for resistance to Cg and otherwise for characteristics of DE811 (Weldekidan and Hawk, (1993), Maydica, 38:189-192). The resulting line was designated DE811ASR (BC3) (Weldekidan and Hawk, (1993) supra). This line was used as the starting point for the fine mapping of the Rcg1 locus. It was first necessary to know roughly where in the maize genome it was located. Using standard genetic methods, Jung et al. ((1994) supra) had previously localized the locus on the long arm of chromosome 4.
[0186] Since the Rcg1 locus had previously been mapped to the long arm of maize chromosome 4 , using the information on markers near the locus obtained by Jung et al. (1994) supra, all available public and private simple sequence repeat (SSR) markers located in the region of the chromosome designated 4.06-4.08 were analyzed to determine if these markers were polymorphic between the two near isogenic lines DE811 and DE811ASR (BC5). The DE811ASR (BC5) line was derived from the DE811ASR (BC3) line described by Weldekidan and Hawk (1993), supra through two backcrosses to DE811 under selection for resistance to Cg , followed by 5 generations of selfing and selection to obtain the BC 5 line. The BC 5 line was back-
crossed twice more to DE 811 to create the BC 7 segregating population used for fine mapping. In order to be able to conduct phenotypic evaluation on a family basis, BC7 individuals were selfed to create BC 7 S 1 families.
[0187] From this analysis two SSR markers, PH1093 and UMC2041, were discovered to be polymorphic. Using the publicly available inter-mated (Coe et al. (2002) Plant Physiol. 128:9-12; Gardiner, et al., (2004), Plant Physiol., 134:1317-1326; Yim et al., (2002) Plant Physiol. 130:16861696) B73 X Mo17 (IBM) neighbors map (Lee et al. (2002) Plant Mol Biol 48:453-61; Sharopova et al., (2002) Plant Mol Biol 48:463-81), the sequences of three nearby Restriction Fragment Length Polymorphism (RFLP) markers, CDO365, CSU166 and CDO127, were used to create fragment length polymorphic markers (hereafter designated FLPs). FLPs are markers that can be assayed using gel electrophoresis or any similar high-resolution fragment separation method following a PCR reaction using primers of a defined sequence. All three markers were found to be polymorphic. The FLPs used in mapping the Rcg1 locus are summarized in Table 1. Any primers for the MZA FLPs shown on Table 1, which also have the same MZA markers names shown on Table 2, will amplify a region of the FLP internal to the internal sequence shown on Table 2. The annealing temperature for all the primers listed in Table 1 is $60^{\circ} \mathrm{C}$.
[0188] In order to determine whether the presence of these three polymorphic FLPs and two polymorphic SSRs was associated with the resistant phenotype, indicating that the region carrying the Rcg1 locus was located on a chromosomal segment containing these three markers, a table was created in which the phenotypic status of 4784 individuals determined by field observation and the genotypic status relative to each of the five markers, determined by fragment size analysis, were entered. This data was submitted sequentially to the software programs Joinmap (Van Ooijen, et al., (2001), Plant Research International, Wageningen, the Netherlands) and Windows QTL Cartographer (Wang, et al., (2004), (online, version 2.0 retrieved on Jun. 14, 2004 and version 2.5 retrieved on Feb. 22, 2005); retrieved from the North Carolina State University Statistical Genetics and Bioinformatics website on the Internet <URL: http://statgen.ncsu.edu/qtlcart/WQTLCart.htm>. The former program determines the order of the markers along the chromosomal region. The latter determines if a particular allele of a marker (a particular form of the two polymorphic forms of the marker) is significantly associated with the presence of the phenotype. Markers for which the presence of one or the other allele is more significantly associated with the resistant phenotype are more likely to be closer to the gene responsible for the resistant phenotype. FIG. 3 depicts a graph produced by Windows QTL Cartographer showing a statistical analysis of the chance (Y axis) that the locus responsible for the Cg resistance phenotype is located at a particular position along the chromosome (X axis) as defined by FLP markers.
[0189] From the integrated physical and genetic map as described by Fengler, et al., ((2004) Plant and Animal Genome XII Abstract Book, Page 192 (Poster number P487), January 10-14, San Diego, Calif.) and Gardiner, (2004) supra, it was possible to identify two bacterial
artificial chromosome (BAC) contigs, derived from a Mo17 BAC library, harboring the above mentioned genetic markers.
[0190] However, the two BAC contigs containing the markers flanking the region of interest contained a gap of unknown size. In order to identify further BACs to bridge this gap, a dense genetic map containing markers (Fengler, (2004) supra) with known positions on the physical map was used to find additional markers genetically linked to markers previously identified on the two BAC contigs. These additional markers in Table 2, were used to identify BAC contigs from a B73 BAC library which closed the physical gap between the previously found Mo17-derived BAC contigs (Coe et al. (2002) supra; Gardiner (2004) supra; Yim et al. (2002) supra. Four markers, MZA11455, MZA6064, MZA2591 and MZA15842, were used for mapping purposes. In Table 2, "E" stands for "external" and "I" stands for "internal," which respectively refer to the outer and inner primers used during nested PCR. The external set is used in the first round of PCR, after which the internal sequences are used for a second round of PCR on the products of the first round. This increases the specificity of the reaction. Upper case letters indicate portions of the primer based on vector sequences, which are later used to sequence the PCR product. They are not maize sequences. For the forward internal
nested MZA primers, the upper case portion of the sequence is SEQ ID NO: 126, and for the reverse internal nested MZA primers, the upper case portion is SEQ ID NO: 127. The sequences shown in Table 2 for the internal forward MZA nested primers are therefore a combination of SEQ ID NO: 126 plus the SEQ ID NO: for each respective primer. Similarly, the sequences shown in Table 2 for the internal reverse MZA nested primers are a combination of SEQ ID NO: 127 plus the SEQ ID NO: for each respective primer. These combinations are indicated in the SEQ ID NO: column of Table 2. The annealing temperature for all the primers listed in Table 2 is $55^{\circ} \mathrm{C}$. All markers set forth in Table 2 have shown polymorphism within a diverse panel of corn germplasm, including MP305 and the corn lines shown on Table 18.
[0191] The sequences of the ends of several of these BACs, as well as ESTs known to be located on these BACs, were used in order to identify new markers with which to further narrow the range in which the locus was located. The further markers used for this purpose are designated FLP8, FLP27, FLP33, FLP41, FLP56 and FLP95 in Table 1. In a manner similar to that described above, phenotype and genotypic correlations were made. It was determined that the locus was most likely located between FLP 8 and FLP 27 (See FIG. 3).

TABLE 1

		Markers and primer pairs used in Examples 1, 4 and 5			
Used in		SEQ			SEQ
Example	Name	Forward	ID NO	Reverse	ID NO:
1, 4	FLP8	CATGGAAGCCCCACAATAAC	24	ACATGGGTCCAAAGATCGAC	23
1, 4	FLP27	AGCCCTATTTCCTGCTCCTG	26	GCATGCCCCATCTGGTATAG	25
1,4	FLP33	CTGTCGTTCGGTtttGctic	28	GCATTCACATGTTCCTCACC	27
1, 4	FLP41	TGTGTTCGCATCAAGGTGT	30	CTGTAAGGCACCCGATGTTT	29
1, 4	FLP56	GGTCTGGGAATGCTAAAGAGG	32	TGTCCAGGGTtGACAGAAAACG	31
1, 4	FLP95	ATTTCGACGGAGGGTTCTTTC	33	GCAGCAGGAGGAGCTCATAG	34
4	FLP110	ATGGAGGCTGCCCTGCTGAG	35	CGTATACCTCTCTGGCAAGGACGG	36
4	FLP111	tTCCTGTTCGTCTGTATCTGATCCG	37	TTTGATTCCGGTCGAGTATAACCTG	38
4	FLP112	GAAACTGCCTTCCCAGATAAACAATG	39	CAAGATCGGTGAGTTGGTGCTTC	40
4	F'LP113F	ATCACAGATGGGTCTCAAGGATTGC	41		
4	FLPA1R			TTCCAAGCAATTCACAGCTC	42
1, 5	UMC1612	AGGTCCAGGTTACAGAGCAAGAGA	43	GCTAGTAGGTGCATGGTGGITTCT	44
1, 4, 5	UMC2041	CTACACAAGCATAGAGGCCTGGAG	45	CAGTACGAGACGATGGAGGACAT	46
1, 4	CDO127	TGCTGTtGTtACTCGGGTtG	47	CTCTGCCTCAGCACAAATTC	48
1, 4, 5	PHI093	AGTGCGTCAGCTTCATCGCCTACAAG	49	AGGCCATGCATGCTTGCAACAATGGATACA	50
1, 4	CDO365	CTTCCAGAGGCAAAGCGTAG	51	TGTCACCCATGATCCAGTTG	52
1, 4, 5	CSU166	TATTGTGCACGTCACCTTGG	53	GGGCAGACTTACTGCTGGAG	54
1, 4	UMC2285	ATCTGCCTCCTTTTCCTTGG	55	AAGTAGCTGGGCTTGGGAGg	56
1, 4	MZA11455	ACGAAGCAATTTCACCTTCC	57	TGTGGAACTAACCCTCAGCATAG	58

TABLE 1-continued

		Markers and primer pairs	sed	Examples 1, 4 and 5	
Used in Example Name		SEQ			SEQ
1	MA6064	CGAGAACCGGAGAAGAAGG	59	TTGGGCTGCTGTATITTGTG	60
1, 4	MZA15842	GACGCAGCTGTGAAGTTGG	61	CACCGGAATACCTTGACCAC	62
1, 5	UMC1086	CATGAAAGTTTTCCTGTGCAGATT	63	GGGCAACTTTAGAGGTCGATTTATT	64
5	UMC1466	GATCCACTAGGGTtTCGGGGT	65	CGAATAGTGGTCTCGCGTCTATCT	66
5	UMC1418	GAGCCAAGAGCCAGAGCAAAG	67	TCACACACACACTACACTCGCAAT	68
5	BNLG2 162	CACCGGCATTCGATATCITT	69	GTCTGCTGCtAGTGGTGGTG	70
5	CSU166	AAATATCGGCTTTGGTCACG	71	TCGTCCTTCCTCAATTCGAC	72
5	UMC1051	AAtgatcgantgccattatttge	73	CTGATCTGACTAAGGCCATCAAAC	74
5	UMC2187	ACCCAACAAGTCTTAATCGGGTTT	75	GTCCACCCTACCTCTCAACAAACA	76
5	UMC1371	CATGTGAATGGAAGTGTCCCTTT	77	GCATCCTTTTCGTTTCAATATGC	78
5	UMC1856	AGATCTGTTTTGCTTTGCTCTGCT	79	CATGCCtTtattctcacactancg	80

[0192]

TABLE 2

Name	Forward	Primer Pairs Used in Example 1			SEQ	
		SEQ		Reverse		
		ID	NOs:			NOs:
MZA1215 E	Agcccaattctgtagatccaa		81	Tgcatgcaccggatccttc		82
MZA1215 I	TGTAAAACGACGGCCAGTagcagcagacgat gcaaaga		$+83$	GGAAACAGCTATGACCATGaggctggcggtggacttga	127	$+84$
MZA1216 E	Coggcetacggcaacaagaa		85	agggtacggtgacccgaag		86
MZA1216 I	TGTAAAACGACGGCCAGTttcagagacgctg tcgtacct	126	+ 87	GGAAACAGCTATGACCATGacgacgcatggcactagcta	127	$+88$
MZA3434 E	Tgtaccgcagaactcca		89	ttgcattcacatgttcctcac		90
MZA3434 I	TGTAAAACGACGGCCAGTctactacgacggc cgeta		+ 91	GGAAACAGCTATGACCATGttgcagtagttttgtagcagg	127	+ 92
MZA2591 E	Agtaaataacagcattgacctc		93	tccaacggcggtcactcc		94
MZA2591 I	TGTAAAACGACGGCCAGTctatataacaggg ccotggaa		+ 95	GGAAACAGCTATGACCATGcacaaagcccacaagctaag	127	+ 96
MZA11123 E	Accacaatctgaagcaagtag		97	cacagaaacatctggtgctg		98
MZA11123 I	TGTAAAACGACGGCCAGTaaagaccaagaaa tgcagtcc	126	+ 99	GGAAACAGCTATGACCATGagacatcacgtaacagtttcc	127	$+100$
MZA15842 E	Ctcgattggcatacgegata		101	ttccttctccacgcagttca		102
MZA15842 I	TGTAAAACGACGGCCAGTagaaggtatttgc catggctta		$+103$	GGAAACAGCTATGACCATGgtttcacttgctgaaggcagtc	127	+ 104
MZA11455 E	Gaccgatgaaggcaattgtga		105	accaaatagtectagataatgg		106
MZA11455I I	TGTAAAACGACGGCCAGTttcaaccttctga ctgacacat		+ 107	GGAAACAGCTATGACCATGtaaacatagtcataaaaattac	127	+ 108

TABLE 2-continued

Name	Nested MZA Primer Pairs Used in Example 1			
	Forward	SEQ ID NOs:	Reverse	$\begin{gathered} \text { SEQ } \\ \text { ID NOs: } \end{gathered}$
MZA6064 E	Tcgaatgtattttttaatgcgg	109	atccacaatggcacttgggt	110
MZA6064 I	TGTAAAACGACGGCCAGTcagctatttttgt cttcttcct	$126+111$	GGAAACAGCTATGACCATGggtcagattccaattcggac	$127+112$
MZA11394 E	Tcgtcctaacagcetgtgtt	113	gtcoggatcaaatggatcgt	114
MZA11394 I	TGTAAAACGACGGCCAGTaacagcctgtgtt gaataaggt	$126+115$	GGAAACAGCTATGACCATGcgtgttccgtcgagggagt	$127+116$
MZA8761 E	Ttctttgattctactcttgagc	117	cttcatggacgectgagatt	118
MZA8761 I	TGTAAAACGACGGCCAGTtagagctttctga actgatagc	$126+119$	GGAAACAGCTATGACCATGttggcatttagcttctctcca	$127+120$
MZA1851 E	Atatattgcaccacttaaagce	121	gggtgttatcacttgttctata	122
MZA1841 I	TGTAAAACGACGGCCAGTtggagtcettgac catttgc	$126+123$	GGAAACAGCTATGACCATGtatagcacttctagcgagtat	$127+124$
MZA16510 E	Aacaacaaggegacggtgat	127	Tcatcttcgtcgtcctcatc	130
MZA16510 I	TGTAAAACGACGGCCAGTgatcatcctgccg gagtt	$126+131$	GGAAACAGCTATGACCATGaaccgaaaacacaccetc	$127+132$
MZA1719 E	ccagcggtagattatatacag	133	cggtttggtctgatgaggc	134
MZA1719 I	TGTAAAACGACGGCAGTctcgggaaccttgt tggga	$126+135$	GGAAACAGCTATGACCATGtgaaatccgaacctcctttg	$127+136$

Example 2

Isolation of BAC Clones from the Resistant Lines and Identification of Candidate Genes in the Region of the Rcg1 Locus
[0193] In order to isolate the gene responsible for the phenotype conferred by the Rcg1 locus, BACs containing the region between the FLP 8 and FLP 27 markers were isolated from a BAC library prepared from the resistant line DE811ASR (BC5). This library was prepared using standard techniques for the preparation of genomic DNA (Zhang et al. (1995) Plant Journal 7:175-184) followed by partial digestion with HindIII and ligation of size selected fragments into a modified form of the commercially available vector $\mathrm{pCC1BAC}{ }^{\text {TM }}$ (Epicentre, Madison, USA). After transformation into EPI300 ${ }^{\text {TM }} E$. coli cells following the vendors instructions (Epicentre, Madison, USA), 125,184 recombinant clones were arrayed into 326384 -well microtiter dishes. These clones were then gridded onto nylon filters (Hybond $\mathrm{N}+$, Amersham Biosciences, Piscataway, USA).
[0194] The library was probed with overlapping oligonucleotide probes (overgo probes; Ross et al. (1999) Screening large-insert libraries by hybridization, p.5.6.1-5.6.52, In A. Boyl, ed. Current Protocols in Human Genetics. Wiley, New York) designed on the basis of sequences found in the BAC sequences shown in the previous example to be present between FLP8 and FLP27. BLAST search analyses were done to screen out repeated sequences and identify unique sequences for probe design. The position and interspacing of the probes along the contig was verified by PCR. For each
probe two 24 -mer oligos self-complementary over 8 bp were designed. Their annealing resulted in a 40 bp overgo, whose two 16 bp overhangs were filled in. The probes used in this way are presented in Table 4. Note that some of these probes were based on markers also used in Example 1 and Table 1, but the exact sequences are different as they were to be used as overgo probes rather than just PCR primers. Probes for hybridization were prepared as described (Ross et al. (1999) supra), and the filters prepared by the gridding of the BAC library were hybridized and washed as described by (Ross et al. (1999) supra). Phosphorimager analysis was used for detection of hybridization signals. Thereafter, the membranes were stripped of probes by placing them in a justboiled solution of $0.1 \times$ SSC and 0.1% SDS and allowing them to cool to room temperature in the solution overnight. [0195] BACs that gave a positive signal were isolated from the plates. Restriction mapping, PCR experiments with primers corresponding to the markers previously used and sequences obtained from the ends of each BAC were used to determine the order of the BACs covering the region of interest. Four BACs that spanned the entire region were selected for sequencing. These BACs were sequenced using standard shotgun sequencing techniques and the sequences assembled using the Phred/Phrap/Consed software package (Ewing et al. (1998) Genome Research, 8:175-185).
[0196] After assembly, the sequences thought to be in the region closest to the locus on the basis of the mapping data were annotated, meaning that possible gene-encoding regions and regions representing repetitive elements were deduced. Gene encoding (genic) regions were sought using the fGenesH software package (Softberry, Mount Kisco,
N.Y., USA). fGenesH predicted a portion of a protein, that when BLASTed (BLASTx/nr), displayed partial homology at the amino acid level to a portion of a rice protein that was annotated as encoding for a protein that confers disease resistance in rice. The portion of the maize sequence that displayed homology to this protein fell at the end of a contiguous stretch of BAC consensus sequence and appeared to be truncated. In order to obtain the full representation of the gene in the maize BAC, the rice amino acid sequence was used in a tBLASTn analysis against all other consensus sequences from the same maize BAC clone. This resulted in the identification of a consensus sequence representing the 3^{\prime} end of the maize gene. However, the center portion of the gene was not represented in the sequences so obtained. PCR primers were designed based on the 5^{\prime} and 3^{\prime} regions of the putative gene and used in a PCR experiment with DNA from the original maize BAC as a template. The sequence of the resulting PCR product contained sequence bridging the 5^{\prime} and 3^{\prime} fragments previously isolated.
[0197] DE811ASR (BC5) has been deposited with the ATCC, and the methods described herein may be used to obtain a BAC clone comprising the Rcg1 locus. As shown in FIG. 9(a), the DE811ASR (BC5) chromosomal interval with the Rcg1 locus is non-colinear with the corresponding region of B73 and Mo17 (See FIGS. 9 and 22), as determined by the analysis of BAC libraries.
[0198] Using common sequence that hybridize to BACs in the Mo17 and the B73 BAC libraries, the corresponding BACs from both libraries were lined up in a tiling path as shown in FIG. 22. The B73 BACs in FIG. 22 were given shorter names for the purposes of the figure. Table 3, below, shows the BAC ID for each BAC designation indicated on FIG. 22. The public B73 BACs, c0113f01 and c0117e18 are directly north and south, respectively, of the Rcg1 locus indel region, with the deletion occurring in B73. Information about these two BACs can be viewed on several websites including the maize GDB website (maizegdb.org), the Gramene website (gramene.org) and the maize genome database of the Arizona Genomics Institute (genome.arizona.edu). The Arizona Genomics Institute website also provides the Maize Agarose FPC Map, version Jul. 19, 2005, which identifies BACs contiguous with c0113f01 and c0117e18. By searching on those databases, a multitude of BACs were identified that form a contig of the regions flanking the Rcg1 locus. Thus, the precise location of the Rcg1 locus and Rcg1 gene have now been identified on both the maize genetic and physical map. See FIGS. 7(a,b) and 22.

TABLE 3

BAC designations in FIG. 22, which were part of either the 187 contig (B73a through B73p) or 188 contig (B73q through B73af) of B73as shown on the Arizona Genomics Institute website mentioned above.	
B73 BAC	
designation in FIG. 22	B73 BAC ID
B73a	c0100m06
B73b	b0050k15
B73c	c0127n01
B73d	c0449o09
B73e	c0046c06
B73f	c0212g06
B73g	c0153114

TABLE 3-continued

[0199] The complete sequence of the putative gene is set forth in SEQ ID NO: 1. The gene contains one intron, from nucleotide 950 to nucleotide 1452 of SEQ ID NO: 1 . Reverse transcriptase-PCR using RNA prepared from DE81 1ASR (BC5) plants was used to determine the borders of the intron. The protein coding sequence of the gene is set forth in SEQ ID NO: 2, and the amino acid translation is set forth in SEQ ID NO 3. The predicted protein has a molecular weight of 110.76 kD .
[0200] The amino end from approximately amino acids 157 to 404 has homology to so-called nucleotide binding sites (NBS). There is a region with loose homology to LRR domains located approximately from amino acids 528 to 846. However, unlike previously studied NBS-LRR proteins, the leucine rich region lacks the systematic repetitive nature (Lxx) found in more classical LRR domains and in particular having no instances of the consensus sequences described by Wang et al. ((1999), Plant J. 19:55-64) or Bryan et al. ((2000), Plant Cell 12:2033-2045). The gene has loose homology with a family of rice genes and a barley gene as shown in FIG. $2(a, b$ and c). Most of the homology is at the amino terminal end of the protein; the carboxyl end is quite distinct. This is demonstrated by the use of bold type, in FIG. 2 (a, b and c), which are amino acids identical to the gene of the embodiments, while those which are non-identical are not shown in bold type.

TABLE 4

Example 3

Comparison of Genetic Structure in the Region of

 the Rcg1 Locus Between Resistant and Susceptible Lines and Expression Profiles of Candidate Genes Found in that Region Between Resistant and Susceptible Lines[0201] Having found a candidate gene in the region genetically defined to carry the locus responsible for the resistance to anthracnose phenotype, efforts were undertaken first to determine if there might be other genes present in the region and second to determine if the expression patterns of the candidate gene were consistent with its putative role. Fu and Dooner ((2002), Proc Natl Acad Sci 99:9573-9578) and Brunner et al. ((2005), Plant Cell 17:343-360) have demonstrated that different corn inbred lines may have significant rearrangements and lack of colinearity with respect to each other. Comparison of such genomes over larger regions can thus be complex. Such a comparison of the genomes of Mo17 (Missouri 17) and DE811ASR (BC5) revealed that in the region where the candidate gene is found in DE811ASR (BC5), a large insertion relative to Mol7 is present. Regions within and surrounding the insertion were sequenced and scanned for possible genes. A gene encoding a subunit of Ribulose bisphosphate carboxylase (Rubisco, a protein involved in carbon fixation after photosynthesis whose gene is present in multiple copies in the corn genome) was found in both the DE811ASR (BC5) and Mo17 genomes, just downstream of the position of the Rcg1 gene. A pseudogene (a gene rendered nonfunctional due to mutations disrupting the coding sequence) related to a vegetative storage protein was found, present only in the DE811ASR (BC5) genome some distance upstream of the Rcg1 gene. The only structurally intact gene likely to encode a protein with a function likely to be related to disease resistance was the Rcgl gene isolated in the previous example. Other genes equally unlikely to be involved in disease resistance were located at a greater distance from the most likely position of the locus, as well as a large number of repetitive sequences
[0202] In order to determine if and where the Rcg1 gene was transcribed, two techniques were used. First, the RNA profiles of resistant and susceptible plant materials were surveyed using Massively Parallel Signature Sequencing (MPSS; Lynx Therapeutics, Berkeley, USA). Briefly, cDNA libraries were constructed and immobilized on microbeads as described (Brenner, S. et al. (2000) Nat. Biotechnol.

18(6): 630-634). The construction of the library on a solid support allows the library to be arrayed in a monolayer and thousands of clones to be subjected to nucleotide sequence analysis in parallel. The analysis results in a "signature" 17 -mer sequence whose frequency of occurrence is proportional to the abundance of that transcript in the plant tissue. cDNA derived from RNA prepared from DE811ASR(BC5) and from DE811 (control line, susceptible to Cg) was subjected to MPSS analysis. Bioinformatic inspection of the resulting signatures showed that a signature sequence, referred to herein as Lynx 19, (SEQ ID NO: 19) was present at 43 parts per million (ppm) in RNA samples from DE811ASR (BC5) uninfected stalks and at 65 ppm in infected, resistant stalks 9 days post inoculation (DPI) with Cg . This signature sequence was not detected in cDNA libraries of uninfected or Cg-infected stalks of the susceptible corn line DE811. An analysis of the sequence of Rcg1 indicates that the 17 -mer tag is present at nucleotides 3945 to 3961 of SEQ ID NO: 1 in the putative 3^{\prime} untranslated region of the gene.
[0203] Further proof that Rcg1 is exclusively expressed in corn lines that are derived from MP305 and resistant to anthracnose stalk rot was obtained by RT-PCR experiments. Total RNA was isolated from uninfected and Cg-infected stalks of resistant (DE811ASR1 (BC5)) and susceptible (DE811) corn lines using RNA STAT-60 ${ }^{\text {TM }}$ (Iso-Tex Diagnostics, Friendswood, Tex., USA). Total RNA (250 ng) from $0,3,6,9$, and 13 DPI resistant and susceptible samples was copied into cDNA and amplified using a GeneAmp $®$ RNAPCR kit (Applied Biosystems, Foster City, Calif., USA). The cDNA synthesis reaction was assembled according to the kit protocol using random hexamers as primers and incubated at $42^{\circ} \mathrm{C}$. for 45 minutes. For PCR, KEB131 (SEQ ID NO: 20) and KEB138 (SEQ ID NO: 21), both designed from the putative 3' untranslated sequence of Rcg1, were used as the upstream and downstream primers, respectively. The cDNA was amplified for 30 cycles consisting of 1 minute at $94^{\circ} \mathrm{C}$., 2 minutes at $50^{\circ} \mathrm{C}$. and 3 minutes at $72^{\circ} \mathrm{C}$. followed by a 7 minute extension at 72° C. As shown in FIG. 4, agarose gel electrophoresis of an aliquot of the RT-PCRs revealed the presence of a 260 bp band present in the samples derived from both infected and uninfected resistant plants but absent from susceptible samples. DNA sequence analysis confirmed that this fragment corresponded to nt 3625 to 3884 of the Rcg1 sequence consistent with the amplification product predicted from primers KEB131 and KEB138.

Example 4
Isolation of Lines Containing Mu Insertions in the Candidate Gene

[0204] One method to determine if a gene is responsible for a phenotype is to disrupt the gene genetically through the insertion of a transposition element (so-called transposon tagging) and then determine if the relevant phenotype of the plant is altered, in this case from resistant to Cg to susceptible to Cg . In corn this can be done using the mutator (Mu) element (Walbot, V. (1992) Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:49-82). The basic strategy, outlined in FIG. 5, was to introduce active mutator elements into lines carrying the resistance gene, isolating plants homozygous for the resistance gene by assaying associated DNA markers as well as resistance to Cg by inoculation with Cg , then crossing those homozygous plants with a susceptible "tester" line. If the resistance gene is dominant, in principle all the resulting progeny would be resistant but heterozygous for the gene. However, if a Mu element inserted into the resistance gene in a way that disrupted its function, that individual would be susceptible to Cg . The disrupted gene can then be isolated and characterized.
[0205] MP305 was crossed with fifteen diverse mutator stocks (lines carrying active mutator elements). The resulting Fls were inter-mated (crossed with each other) in all possible combinations. To track the chromosomal region 4L on which the resistance locus was known to reside (see Example 1) a variety of DNA markers known to be in the vicinity of the locus from the work described in Example 1 were selected and used on the Mu-tagged materials. About 1500 progeny plants from the inter-mating process were examined for resistance to Cg and for the presence of these markers. Analysis of the markers was done using either Southern blots (Botstein et al., (1980) Am. J. Hum. Gen. 32:314-331) for RFLP markers or by PCR for FLP markers as described in Example 1. Plants that were homozygous for all the markers tested and resistant to Cg were selected and test crossed with susceptible tester lines (A63, EH6WA and EF09B). About 16,000 test cross seeds generated from these homozygous and resistant plants were then planted and were used as female parents (meaning the pollen producing tassels were removed) and crossed with the susceptible tester lines used as males. All the female plants were screened for susceptibility to Cg . More than ten susceptible plants (putative knockout mutants) were identified. The open pollinated seed from each of these susceptible plants was harvested, along with eight resistant siblings as controls.
[0206] DNA from a pool of 24 seedlings (grown in paper towels) from each of the putative knockouts and the control resistant siblings was extracted. This DNA was used as template for amplifying the flanking sequence from the site of Mu-insertion using gene-specific primers in combination with a consensus primer designed from the terminal inverted repeats (TIR) from the Mutator element sequence (SEQ ID NO: 125). In other words, PCR products would only be observed if a Mu element had inserted into the candidate gene isolated in Example 2. The primers FLP110F, FLP110R, FLP111F, FLP111R, FLP112F, FLP112R, FLP113F, and FLPA1R were used as the gene-specific primers (See Table 1). PCR amplified products were blotted onto nylon membranes and hybridized with a DNA probe from the candidate gene isolated in Example 2. PCR prod-
ucts that showed strong hybridization were excised from the gel, purified, cloned and sequenced. The resulting sequences were analyzed by aligning with sequences from the candidate gene and Mu-TIR. Mutator elements cause a direct 9 bp duplication at the site of insertion. Based on the flanking sequence information and a direct 9 bp duplication, four independent insertions were identified in exon 1 of the candidate gene (FIG. 5). One insertion (m177) was detected approximately 97 bp upstream of the initiation codon, in the 5^{\prime} untranslated region of the gene. One common insertion event, 270 bp downstream of the initiation codon, was detected in three susceptible plants: $\mathrm{m} 164, \mathrm{~m} 159$, and m 179 . The m171 susceptible plant was found to contain two Mu-insertions, 556 bp and 286 bp downstream of the initiation codon. When Southern blots were carried out using the exonl region of the gene as a DNA probe, the modified hybridization pattern observed further confirmed these results.
[0207] This and the preceding examples may be summarized as follows. The earlier work cited in Example 1 showed that a previously observed locus conferring resistance to Cg was localized on the long arm of maize chromosome 4. The nature of this locus, its exact location or the gene(s) encoded by it were completely unknown. The work done in Example 1 demonstrates that the locus can be mapped to a very small region of the long arm of chromosome 4 . Example 2 demonstrates that there is only one gene to be found in this chromosomal region likely to be such a resistance gene. It encodes a novel form of an NBS-LRR protein, a family of proteins known to be involved in resistance to pathogens but which vary widely in their sequence and specificity of resistance. Example 3 shows that this gene is present only in the resistant line, not the isogenic susceptible line, and that transcripts corresponding to this gene are found in the resistant line, indicating that the gene is expressed, and these transcripts are found only in the resistant line. Example 4 demonstrates that in four independently isolated Mu insertion events, when the gene is disrupted by insertion of a Mu element, the phenotype of these plants is changed from resistant to susceptible to Cg . Taken together, these data provide overwhelming evidence that the subject of the embodiments of this invention is a gene that can enhance or confer Cg resistance to corn plants.

Example 5

Backcrossing of the Rcg1 Locus into Susceptible Lines

[0208] An Rcg1 locus introgression of an inbred was made to confirm that the Rcg1 locus could be successfully backcrossed into inbreds, and that hybrids produced with the inbred line with the Rcg1 locus would have enhanced or conferred Cg resistance. DE811ASR (BC5) was also developed and used as an improved donor source for introgression of the Rcgl locus. Next, several additional inbreds were utilized as recurrent parents in order to use the marker assisted breeding methods described herein to efficiently introgress the Reg1 locus into a variety of inbred and hybrid genetic backgrounds, thereby enhancing or conferring resistance to Cg . Each of these examples are discussed in more detail below.

Proof of Concept (PH09B)

[0209] MP305 is a white kernel color inbred line with strong resistance to Cg , but its late flowering, poor yield and weak agronomic characteristics make it a poor donor parent in the absence of the use of the marker assisted breeding methods described herein. A molecular marker profile of MP305 is provided in Table 6. Primers used for the SSRs reported in the table can be constructed from publicly available sequences found in the Maize GDB on the World Wide Web at maizegdb.org (sponsored by the USDA Agricultural Research Service), in Sharopova et al. (Plant Mol. Biol. 48(5-6):463481), and/or in Lee et al. (Plant Mol. Biol. 48(5-6); 453-461). UMC15a is an RFLP marker, and the score reported is based on EcoR1 restriction.
[0210] To demonstrate the phenotypic value of the Rcg1 locus, the locus was first introgressed into line PH09B (U.S. Pat. No. $5,859,354$) through to the BC3 stage as follows. The F1 population derived from the cross between MP305 and line PH 09 B was backcrossed once more to line PH 09 B , resulting in a BC 1 population. Seedlings were planted out and backcrossed again to line PH09B to develop a BC2 population. DNA was prepared from leaf punches of BC2 families. To determine which BC 2 families to plant for further backcrosses, genotyping was carried out on DNA from BC2 families using primers for markers flanking the region of interest, UMC2041, PH1093 and CSU166 (See Table 1). Seeds from BC2 families were planted and individual plants were genotyped again for the presence of the MP305 version of that region of the chromosome using the same three markers noted above. Positive plants were backcrossed to line PH 09 B once more to develop BC3 populations. Seed from these BC3 populations was planted and plants were selfed to obtain BC3S1 families segregating for the region of interest as well as BC3S1 families missing the region of interest. These families were used for phenotypic comparison (BC3S1 segregating versus BC 3 S 1 without the region of interest).
[0211] In order to observe the performance of the Rcg1 gene in a heterozygous situation such as would be found in a commercial hybrid, appropriate testcrosses were made. Specifically, BC3S1 families segregating for the region of interest were planted and individual BC 3 S 1 plants were genotyped. Plants homozygous for the Rcgl gene as well as plants homozygous for the null allele (lacking the gene on both chromosomes) within each family were used to make testcrosses with inbreds PH2EJ (U.S. Pat. No. 6,333,453), PH2NO (U.S. Pat. No. 6,124,533), PH4CV (U.S. Pat. No. $6,897,363$) and PH8CW (U.S. Pat. No. $6,784,349$).
[0212] In the case of both the BC3S1 lines and the hybrids, the observed phenotypic differences indicated significant improvement for ASR resistance in lines and hybrids containing the region carrying Rcg1. The effect of the introgressed Rcg1 locus in the BC3S1 families and the derived testcross hybrids resulted in an improvement in terms of both the number of internodes infected and the number of internodes infected at more than 75%. The scores, using a visual scoring system commonly used by plant breeders, are shown in Table 5 below. The data clearly demonstrate that using crossing techniques to move the gene of the embodiments into other lines genetically competent to use the gene result in enhanced resistance to Cg .

TABLE 5

Effect of the introgressed Rcg1 region on degree of resistance to anthracnose stalk rot in BC3S1 families and derived test crosses.			
	Rcg1	Number of internodes infected	Number of internodes $>75 \%$ infected
BC3S1	Absent	3.1	2.4
	Present	2.3	1.5
	Difference	0.8	0.9
PH2EJ	Absent	2.6	1.5
	Present	2.1	0.9
	Difference	0.5	0.6
PH2NO	Absent	3.0	2.1
	Present	2.4	1.3
	Difference	0.6	0.8
PH4CV	Absent	2.8	1.8
	Present	2.2	1.0
	Difference	0.6	0.8
PH8CW	Absent	2.9	1.7
	Present	2.3	0.8
	Difference	0.6	0.9

[0213]

TABLE 6

Molecular marker profile of MP305					
Marker Name	Base Pair Weight	Bin	Marker Name	Base Pair Weight	Bin
phi295450	191.1	4.01	ume1667	154.65	4.08
phi213984	302.23	4.01	phi438301	212.76	4.05
phi096	235.07	4.04	ume1808	106.67	4.08
mmc0471	241.6	4.04	umc1043	199.6	4.07
ume1969	65.01	4.05	ume1871	148.48	4.08
umc1662	116.14	4.05	dupssr28	100.64	4.08
ume2061	125.34	4.05	ume1466	110.91	4.08
phi079	185.76	4.05	umc1418	153.12	4.08
bnlg1937	235.87	4.05	ume1899	111.81	4.08
ume1382	153.7	4.05	bnlg2162	144.98	4.08
bnlg1217	194.36	4.05	ume2041	165.17	4.08
ume1390	133.46	4.05	ume2285	156	4.08
bnlg1265	221.83	4.05	umc1086	95.57	4.08
ume1303	127.2	4.05	umel612	108.54	4.08
bnlg252	167.85	4.06	ume15a	approx 10 kb with EcoRI restriction	4.08
ume1895	142	4.05	cdo365	411.5	4.08
ume1175	279.6	4.05	ume1051	125.9	4.08
ume1317	110.12	4.05	ume2187	84.94	4.08
umc1548	159.52	4.05	umc1371	120.6	4.08
ume1451	110.69	4.05	ume1132	132.14	4.08
umc1896	87.89	4.05	umc1856	156.88	4.08
ume1511	166.43	4.05	ume2153	131.97	4.08
umc1851	114.13	4.05	umc2200	151	4.08
ume1791	153.23	4.05	phi066	160	4.08
bnlg1755	216.93	4.05	umc1039	222.7	4.08
ume1702	94.8	4.05	ume2139	134.2	4.09
ume1346	96.39	4.05	ume1559	141.09	4.09
ume1142	146.98	4.05	umc1999	131.55	4.09
mme0371	230.82	4.06	ume1820	138.94	4.09
ume1945	113.52	4.06	ume1173	168.02	4.09
ume1093	222.7	4.06	umel650	139.84	4.09
umc2027	111	4.06	umc1328	161.33	4.09
bnlg1621	184.11	4.06	umc1740	98.2	4.09
umc1299	144.46	4.06	umc1643	145.23	4.09
ume1869	154.39	4.06	ume1989	100.5	4.09
bnlg2291	201.5	4.06	umc1284	144.39	4.09
bnlg1784	237.23	4.07	ume1574	155.11	4.09
dupssr34	326.01	4.07	umc2137	158.1	4.08
ume1651	99.59	4.07	ume1101	160.12	4.09

TABLE 6-continued

Marker Name	Molecular marker profile of MP305				Bin
	Base Pair Weight	Bin	Marker Name	Base Pair Weight	
ume2038	122.19	4.07	ume2046	115.82	4.09
ume1847	160.17	4.07	phi314704	143.54	4.09
ume1620	148.2	4.07	bnlg1890	251.68	4.11
umc1194	162.29	4.07	phi076	158.05	4.11

DE811ASR(BC5) as Most Improved Donor for Use in Backcrossing
[0214] Although MP305 was utilized in the above experiment, as is illustrated in FIG. 8(a), DE811ASR(BC5) retains a smaller MP305 chromosomal interval with the Reg 1 locus than DE811ASR(BC3) (and of course MP305 as well), and therefore is particularly useful as a donor source for the Rcg1 gene. The shortened chromosomal interval from the DE811ASR(BC5) source has been shown to be associated with an improved agronomic phenotype. Twenty two plants from the DE811ASR(BC3) derived line, 20 plants from the DE811ASR(BC5)derived line, five DE811 plants and five MP305 plants were grown in a greenhouse from November 2005 through March 2006 and data were taken for plant height and ear height; dates when 50% of the plants shed pollen (midshed), when 50% of the plants had visual ear shoots (midves) and when 50% of the plants had silks protruding from the earshoots (mids1k); and kernel color was observed. On average, the DE811ASR(BC5) line was shorter than DE811ASR(BC3) (293 cm vs 345 cm) and the location of the ear was lower in the DE811ASR(BC5) than in the DE811ASR $(\mathrm{BC} 3)(146 \mathrm{~cm}$ vs 183 cm$)$, both of which are positive traits in terms of elite variety development. DE811ASR(BC5) was earlier for midshed, midves and midslk compared to DE811ASR(BC3). Midshed was approximately 1 day earlier, midves was approximately 6 days earlier and midslk was approximately 3 days earlier for DE811ASR(BC5) compared to DE811ASR(BC3).
[0215] Kernels of DE811ASR(BC5) had a yellowishbrown (bronze) color whereas kernels of DE811ASR(BC3) had a pale yellow cap. Dates for midshed, midves and midslk were similar for DE811ASR(BC5) and DE811, whereas MP305 was approximately 11 days later for midshed and did not produce 50% visual ear shoots, nor 50% silks during the growing period. While these data are based on only a few plants for DE811 and MP305, and ears were not produced on those few lines, these greenhouse results resemble observations of these lines in the field. These data indicate that DE811ASR(BC5) resembles the DE811 recurrent parent much more closely than DE811ASR(BC3). Thus, DE811ASR(BC5) is an excellent initial donor source for the Rcg1 locus and the Rcg1 gene, both genotypically and phenotypically. In addition, DE811ASR(BC5) is particularly useful when introgressing the Rcg1 locus into germplasm with similar adaptation to DE811.
[0216] DE811 was developed by J. Hawk (Hawk, J. A. (1985). Crop Science Vol 25: p716) and has been described as a yellow dent inbred line that originated from selfing and selection for six generations in a pedigree program out of a cross of B68 to an inbred derived from [B37 Ht X (C103.X Mp 3204 double cross) sel.]. DE811 silked 1 to 2 days later
than B73 in tests in Delaware, but 4 days later than B73 at Missouri. Limited yield trials indicate that DE811 has satisfactory combining ability. It is a good silker (forms good silks, a component of the maize female flower important for fertility) and pollen shedder and can be crossed to earlier maturity germplasm for Northern US adaptation and to later maturity germplasm for Southern US adaptation. Thus, DE811ASR (BC5), in combination with the markers and breeding methods disclosed herein, is useful as an initial donor source for introgressing the Rcg1 gene into a wide variety of germplasm, including germplasm adapted to all of the regions in the US where Cg is present.

Creation of Inbred Rcg1 Locus Conversions

[0217] Following the tests for successful Rcg1 locus introgression in PH 09 B described above, additional Rcg1 locus conversions were carried out on other inbred lines. The first series had 5 backcrosses, with MP305 and DE811ASR(BC5) as donors. For the second series of backcrosses, molecular markers were used to reduce the chromosome interval in the BC5 conversions from the first series. These BC5 conversions were selected for crossovers below the Rcg1 gene. Those selected plants were then backcrossed to create the BC6 generation. Plants with crossovers above the gene were selected in the BC6 generation.

First Series of Backcrosses

[0218] In the first series, DE811ASR(BC5) was used as the primary donor source, but parallel introgressions were also made to the same inbreds using MP305 as a donor source. These data, described in more detail below, show that while $\operatorname{DE} 811 \mathrm{ASR}(\mathrm{BC} 5)$ is the preferred donor in many situations, MP305 can also be effectively used with the marker assisted breeding methods of the embodiments taught herein.
[0219] Elite inbred lines primarily adapted to North American growing conditions were selected for use as recurrent parents. The inbreds lines initially selected for use as recurrent parents were lines PHOR8 (U.S. Pat. No. 6,717,036), PH7CH (U.S. Pat. No. 6,730,835), PH705 (U.S. Pat. No. 6,903,25), PH5W4 (U.S. Pat. No. 6,717,040), PH51K (U.S. Pat. No. 6,881,881) and PH87P (U.S. Pat. No. $6,888,051$). Each of these lines was crossed with DE811ASR (BC5) as well as with MP305. The F1 generation derived from each of these crosses was backcrossed once more to the respective inbred line, resulting in a first backeross (the recurrent parent BC 1) generation. Seedlings were planted out and DNA was prepared from leaf punches. PCR reactions were carried out using primers for markers flanking the region of interest; UMC1466, UMC1418, BNLG2162, UMC1086, UMC2041, UMC1612, CSU166, UMC1051, UMC2187, UMC1371, and UMC1856 were used in the early BC rounds (See Table 1) while in later BC rounds, UMC1418, BNLG2162, UMC1051, UMC2041, UMC2187, UMC1371 and UMC1856 were used. Seedlings whose PCR reactions gave a positive result (meaning that the MP305 derived Rcg1 locus was present) were then further backcrossed to the respective inbred lines to make a BC2. This procedure, called "genotyping", identifies the genetic composition of a plant at the site of a particular marker. These steps were repeated for the recurrent parent $\mathrm{BC} 3, \mathrm{BC} 4$ and BC5 development. Analysis shows that, after five backcrosses, these lines retained a significantly truncated chromosomal interval comprising the Rcg1 locus, and,
based on visual observations, no indication of negative effects resulting from the presence of the Rcg 1 locus was observed.
[0220] Recurrent parent selection was also carried out by selecting the plants most phenotypically like the recurrent parent. Using these genotypic and phenotypic methods, high quality conversions were selected with a high percentage of recurrent parent across the whole genome.
[0221] This example also illustrates that flanking markers are not used exclusively to select either for or away from the Rcg1 gene. Seedlings whose PCR reactions gave a positive result (meaning that the MP305 derived Rcg1 locus was present) were then further backcrossed to the respective inbred lines to make the final backcross (the recurrent parent BC5 generation) in this first series. Where the closest flanking polymorphic markers determined that the gene was present, the next set of double flanking polymorphic markers more distal to the gene were used for recurrent parent selection. Thus, the use of markers flanking the Rcg1 gene or Rcg1 locus serves to illuminate the recombination occurring in the region.

Second Series of Backcrossing

[0222] The inbred Rcg1 locus conversions made using the SSRs flanking the Rcg1 locus in the first series of backcrossing were then used as donors in a successive round of backerossing. For this series of backcrossing, SNP markers were developed for the Rcg1 gene that enabled marker assisted selection in a high throughput manner, as described in Example 13, to select for the Rcg1 gene. SNP markers were also designed in the region around the Rcg1 locus, allowing flanking markers to be used to select away from the MP305 chromosomal interval surrounding the Rcg 1 locus, and to select for the recurrent parent genotype, thereby greatly reducing linkage drag. It is only through physically mapping and cloning the gene that such precise markerassisted recurrent parent selection is possible.
[0223] First, the recurrent parent BC5 plants resulting from the first series of backcrossing were re-screened with the more precise marker set, and recombination was selected for south of the Rcg1 gene. Flanking markers tightly linked to the Rcg1 gene (MZA8761, MZA1851, UMC1051, and UMC2187) were used to select for recurrent parent to the south of the gene in small population sizes of approximately 40 progeny. (See FIG. 8(a-b)). These progeny were then analyzed using the FLP markers disclosed herein, to more precisely determine the point of recombination. This data showed that some progeny were selected with recurrent parent genome less than 1 cM (based on IBM2 Neighbors genetic map distances) south of the Rcg1 gene, as shown in FIG. 8(b). Other progeny had recurrent parent genome less than 4 cM south of the Rcg1 gene. These marker-selected BC 5 conversions were then used as donors, and crossed to near-isogenic counterparts of PH705, PH5W4, PH51K and PH87P as the recurrent parents to give a BC6 population. Markers in the Rcg1 gene were again used to select for Rcg1, with flanking markers to the north of Rcg1 this time being used to select for recurrent parent. In this round of selections, recombinations were detected in each population between Rcg1 and the marker MZA15842. The position of MZA15842 on the IBM2 Neighbors genetic map can be extrapolated from its position on the high resolution map shown in FIG. 7(b), map B, using regression relative to the
flanking markers UMC2285 and PH1093. This placed MZA15842 at 520.5 cM on the IBM2 Neighbors genetic map. Therefore, as shown in FIG. $8(b)$, in two rounds of backcrossing, the donor genome was reduced to a segment of less than 6 cM in each population, or less than 0.8% of chromosome 4, based on the IBM2 Neighbors genetic map distances, and in some progeny the segment was less than 2.1 cM , or less than 0.25% of chromosome 4 . For comparison, the MP305 chromosomal interval with the Rcg1 locus in DE811ASR (BC 3) was 131 cM , or approximately 16% of chromosome 4, based on the IBM2 Neighbors genetic map distances. It is only through physically mapping and cloning the gene that such precise and efficient marker-assisted recurrent parent selection is possible.

Further Analysis

[0224] Therefore, as a result of fine mapping the location of the Rcg1 gene, one may utilize any two flanking markers that are genetically linked with the Rcg1 gene to select for a small chromosomal region with crossovers both north and south of the Rcg1 gene. This has the benefit of reducing linkage drag, which can be a confounding factor when trying to introgress a specific gene from non-adapted germplasm, such as MP305, into elite germplasm, such as the inbred lines noted above. FIGS. 7 and 22, and Table 16 show many combinations of markers flanking the Rcg1 gene and locus that may be used for this purpose. Some specific flanking markers that may be used for selecting truncated chromosomal intervals that include the Rcg1 gene or locus are UMC2285 and UMC15a, UMC2285 and UMC2187, UMC1086 and UMC2200, UMC2041 and UMC2200, UMC2041 and PH1093, MZA11455 and UMC15a, MZA11455 and MZA3434, MZA15842 and MZA3434, and FLP8 and FLP33. Optionally, on or within each of these chromosomal intervals, one could utilize at least $1,2,3,4$, $5,6,7,8,9,10,11,12,13,14,15,16$ or more markers in order to locate the recombination event and select for the Rcg1 gene or Rcg1 locus with the maximum amount of recurrent parent genotype. Further, one may have at least 2, $3,4,5,6,7,8,9,10,11,12,13,14,15$, or more markers between the north end of such chromosomal interval and the top of the Rcg1 gene and/or between the south end of such chromosomal interval and the bottom of the Rcg1 gene.
[0225] It is advantageous to have closely linked flanking markers for selection of a gene, and highly advantageous to have markers within the gene itself. This is an improvement over the use of a single marker or distant flanking markers, since with a single marker or with distant flanking markers the linkage associated with Rcg1 may be broken, and by selecting for such markers one is more likely to inadvertently select for plants without the Rcg1 gene. Since marker assisted selection is often used instead of phenotypic selection once the marker-trait association has been confirmed, the unfortunate result of such a mistake would be to select plants that are not resistant to Cg and to discard plants that are resistant to Cg. In this regard, markers within the Rcg1 gene are particularly useful, since they will, by definition, remain linked with resistance to Cg as enhanced or conferred by the gene. Further, markers within the Rcg1 locus are just as useful for a similar reason. Due to their very close proximity to the Rcg1 gene they are highly likely to remain linked with the Rcg1 gene. Once introgressed with the Rog1 gene, such elite inbreds may be used both for hybrid seed
production and as a donor source for further introgression of the Rcg1 gene into other inbred lines.
[0226] Thus, the data clearly shows that inbred progeny converted by using DE811ASR(BC5) as a donor source retain the truncated MP305 chromosomal interval. The inbreds comprising the truncated MP305 chromosomal interval are very useful as donor sources themselves, and there is no need to revert to $\operatorname{DE811ASR}(\mathrm{BC} 5)$ as a donor source. By using marker assisted breeding as described herein, the truncated MP305 chromosomal interval can be further reduced in size as necessary without concern for losing the linkage between the markers and the Rcg1 gene. Phenotypically, a reduced chromosomal interval is associated with improved agronomic performance, as was demonstrated for DE811ASR(BC5) versus DE811ASR(BC3) described above.

Example 6
 Use of Rcg1 as a Transgene to Create Resistant Corn Plants

[0227] The Rcg1 gene can be expressed as a transgene as well, allowing modulation of its expression in different circumstances. The following examples show how the Rcg1 gene could be expressed in different ways to combat different diseases or protect different portions of the plant, or simply to move the Rcg1 gene into different corn lines as a transgene, as an alternative to the method described in Example 5 .

Example 6a:

[0228] In this example, the Rcg1 gene is expressed using its own promoter. The upstream region of the Rcg1 gene was sequenced using the same BACs which in Example 2 provided the sequences of the protein-coding section of the gene. The sequence of $1684 \mathrm{bp} 5^{\prime}$ to the ATG is set forth in SEQ ID NO: 24.
[0229] In order to transform the complete Rcg1 gene, including the promoter and protein encoding region, a 5910 bp fragment extending from position 41268 through position 47176 in SEQ ID NO: 137 was amplified by PCR using BAC clone \#24 (pk257m7) as template DNA. To enable cloning using the Gateway ${ }^{\circledR}$ Technology (Invitrogen, Carlsbad, USA), attB sites were incorporated into the PCR primers, and the amplified product was cloned into pDONR221 vector by Gateway ${ }^{(B)}$ BP recombination reaction. The resulting fragment, flanked by attL sites, was moved by the Gateways LR recombination reaction into a binary vector. The construct DNA was then used for corn transformation as described in Example 7.

Example 6b:

[0230] In order to express the Rcg1 gene throughout the plant at a low level, the coding region of the gene and its terminator are placed behind the promoters of either a rice actin gene (U.S. Pat. No. 5,641,876 and U.S. Pat. No. $5,684,239$) or the F3. 7 gene (U.S. Pat. No. $5,850,018$). To enable cloning using the Gateway ${ }^{\circledR}$ Technology (Invitrogen, Carlsbad, USA), attB sites are incorporated into PCR primers that are used to amplify the Rcg 1 gene starting 35 bp upstream from its initiation codon. A NotI site is added to the attB1 primer. The amplified Rcg1 product is cloned into
pDONR221 vector by Gateway (\mathbb{B}) BP recombination reaction (Invitrogen, Carlsbad, USA). After cloning, the resulting Rcg1 gene is flanked by attL sites and has a unique NotI site at 35 bp upstream the initiation codon. Thereafter, promoter fragments are PCR amplified using primers that contain NotI sites. Each promoter is fused to the NotI site of Rcg1. In the final step, the chimeric gene construct is moved by Gateway ${ }^{(B)}$ LR recombination reaction (Invitrogen, Carlsbad, USA) into the binary vector PHP20622. This is used for corn transformation as described in Example 7.

Example 6c:

[0231] In order to express the Rcg1 gene throughout the plant at a high level, the coding region of the gene and its terminator were placed behind the promoter, 5^{\prime} untranslated region and an intron of a maize ubiquitin gene (Christensen et al. (1989) Plant Mol. Biol. 12:619-632; Christensen et al. (1992) Plant Mol. Biol. 18:675-689). To enable cloning using the Gateway ${ }^{\circledR}$ echnology (Invitrogen, Carlsbad, USA), attB sites were incorporated into PCR primers that were used to amplify the Rcg1 gene starting at 142 bp upstream of the initiation codon. The amplified product was cloned into pDONR221 (Invitrogen, Carlsbad, USA) using a Gateway ${ }^{(1)}$ BP recombination reaction (Invitrogen, Carlsbad, USA). After cloning, the resulting Rcg1 gene was flanked by attL sites. In the final step, the Rcg 1 clone was moved by Gateway ${ }^{\mathbb{A}}$) LR recombination reaction (Invitrogen, Carlsbad, USA) into a vector which contained the maize ubiquitin promoter, 5^{\prime} untranslated region and first intron of the ubiquitin gene as described by Christensen et al.(supra) followed by Gateway(ß) ATTR1 and R2 sites for insertion of the Rcg1 gene, behind the ubiquitin expression cassette. The vector also contained a marker gene suitable for corn transformation, so the resulting plasmid, carrying the chimeric gene (maize ubiquitin promoter-ubiquitin 5^{\prime} untranslated region-ubiquitin intron 1-Rcg1), was suitable for corn transformation as described in Example 7.

Example 6d:

[0232] In order to express the Rcg1 gene at a stalkpreferred, low level of expression, the coding region of the gene and its terminator are placed behind the promoter of the Br 2 gene (U.S. application Ser. No. 10/931,077). The fragment described in Example 6b containing the Rcg1 coding region flanked by attL sites and containing a unique NotI site 35 bp upstream of the Rcg1 initiation codon is used to enable cloning using the Gateways Technology (Invitrogen, Carlsbad, USA). Promoter fragments of either Br2 or ZM-419 are PCR amplified using primers that contain NotI sites. Each promoter is fused to the NotI site of Rcg1. In the final step, the chimeric gene construct is moved by Gateway ${ }^{(B)}$ LR recombination reaction (Invitrogen, Carlsbad, USA) into the binary vector PHP20622. This is used for corn transformation as described in Example 7.

Example 7

Agrobacterium-Mediated Transformation of Maize and Regeneration of Transgenic Plants

[0233] The recombinant DNA constructs prepared in Example 6a and 6c were used to prepare transgenic maize plants as follows.
[0234] Maize was transformed with selected polynucleotide constructs described in Example 6a and 6c using the
method of Zhao (U.S. Pat. No. 5,981,840, and PCT patent publication WO98/32326). Briefly, immature embryos were isolated from maize and the embryos contacted with a suspension of Agrobacterium, where the bacteria were capable of transferring the polynucleotide construct to at least one cell of at least one of the immature embryos (step 1: the infection step). In this step the immature embryos were immersed in an Agrobacterium suspension for the initiation of inoculation. The embryos were co-cultured for a time with the Agrobacterium (step 2: the co-cultivation step). The immature embryos were cultured on solid medium following the infection step. Following this cocultivation period an optional "resting" step was performed. In this resting step, the embryos were incubated in the presence of at least one antibiotic known to inhibit the growth of Agrobacterium without the addition of a selective agent for plant transformants (step 3: resting step). The immature embryos were cultured on solid medium with antibiotic, but without a selecting agent, for elimination of Agrobacterium and for a resting phase for the infected cells. Next, inoculated embryos were cultured on medium containing a selective agent, and growing transformed callus was recovered (step 4: the selection step). The callus was then regenerated into plants (step 5: the regeneration step), and calli grown on selective medium were cultured on solid medium to regenerate the plants.

Example 8

Transgenic Plant Evaluation

[0235] Transgenic plants were made as described in Example 7 using the constructs described in Examples 6 a and 6 c , respectively. For both the native Rcgl gene and the ubiquitin Rcgl gene constructs, 30 independent events and 10 vector only control events were generated.
[0236] Leaf discs of each native gene transgenic event were harvested for total RNA isolation. RT-PCR was performed using the gene specific primers FLP111F and FLP111R set forth in SEQ ID NOS: 37 and 38. In 30 out of 30 transgenic events, the expected 637 bp RT-PCR band was present indicating expression of the native gene construct. Disease assays were performed in the greenhouse on the same 30 native Rcg1 transgenic events to determine if the plants were resistant to Cg . To accomplish this, leaf blight assays were first carried out on 5 sibling plants of each event using the procedures described in Example 10. A single event was found to show a significant reduction in disease relative to control plants lacking the native Rcg1 gene construct. Plants that had been subjected to the leaf blight assay were allowed to develop two weeks post anthesis and were then further tested by Cg inoculation into the first elongated stalk internode. These stalk infection assays showed a single transgenic event expressing the native Rcgl transgene to be more resistant to infection by Cg when compared to control plants. However, this event differed from the positive event identified via the leaf infection assays.
[0237] Plants transformed with the ubiquitin Regl construct described in Example 6c were analyzed in a similar fashion. RT-PCR analysis showed that 28 out of 30 transgenic events contained the expected transcript band, indicating expression of the ubiquitin Rcg 1 construct. When leaf infection assays were performed on 5 plants from each of the

30 events, a single event was identified that showed a statistically significant reduction in disease compared to control plants. The transgenic plants were further analyzed by stalk infection assays. Three events were found to exhibit increased resistance to stalk rot when compared to control plants lacking the ubiquitin Rcg1 gene. These transgenic events did not include the former positive event identified in the leaf blight assays.
[0238] The results of these experiments were considered encouraging for the events that showed some resistance but overall inconclusive for several reasons. Positive events showing increased disease resistance by the leaf blight assay failed to correlate with those identified by the stalk infection assay. This is in contrast to the DE811ASR(BC5) positive control which shows a clear increase in resistance relative to DE811 in both leaf blight and stalk infection assays. In addition, assays of the primary transgenics showed a higher degree of variability than assays of DE811 or DE811ASR(BC5) controls. This was often seen within replicates as well as across negative control events. This latter observation may render discrimination of positive from negative events difficult. The possible causes for the inconclusive nature of the disease assay results include but are not limited to the following. It is well known to those skilled in the art that transgenic plants being tissue culture derived, exhibit greater plant to plant variability than control plants that are seed derived. Moreover, gene expression in primary transformants, that is, plants which have been through the transformation and regeneration process described in Example 7, is often unpredictable due to the stress of tissue culture procedures. If, in fact, the events are negative, which cannot be determined at this point, there are several technical reasons why this could be the case. The assays carried out also did not determine if the protein encoded by the Rcg1 gene is actually present in the transgenic lines - only the presence of a segment of the predicted mRNA was assayed using RT-PCR. It could be that artifacts were introduced into the gene cassette during transforma-tion-extensive Southern blots or sequencing were not carried out to determine the integrity of the entire construct in the transgenic lines. In order to more carefully study these transgenic lines, plants of later generations will be grown in larger numbers under field conditions and assayed for disease resistance. It is anticipated that these future transgenic plants will more clearly exhibit increased resistance to Cg.

Example 9

Analysis of Rcg1 Gene Distribution Across Germplasm and Identification of Rcg1 Sequence Variants

[0239] Following the identification, sequencing and fine mapping of Rcg1, other lines were screened for the Rcg1 gene. To determine the presence of the Rcg1 gene in other maize germplasm, gene specific primers combinations FLP111F and FLP111R as well as FLP113F and FLPA1R were used to amplify genomic DNA from a diverse panel of maize inbred lines, including those lines listed on Table 18 and F2834T, by polymerase chain reaction. In only 14 (including MP305) out of the panel of maize inbred lines an amplification product was detected, indicating that the Rcg1 gene is only present in a very small percentage of the inbred lines that were screened. Thus, in addition to using MP305
or DE811ASR (BC5) as the donor source, other sources containing the Rcg1 gene can also be used as a donor source. For example the public inbred lines TX601 (available under ID 'Ames 22763' from National Plant Germplasm System (NPGS)) and F2834T (available under ID 'Ames 27112' from NPGS) which contain the Rcg1 gene can be used as donor sources in crosses with other maize inbred lines not containing the Rcg1 gene, and selecting for the Rcg1 gene by using markers as described herein.
[0240] Variants of the Rcg1 gene were also identified and analyzed for single nucleotide polymorphisms (SNPs). SNPs were identified at positions on Sequence ID number 1 corresponding to one or more of position 413, 958, 971, 1099, 1154, 1235, 1250, 1308, 1607, 2001, 2598 and 3342. (See Table 7). Not all of the allelic variants of the Rcg1 gene indicated a resistant phenotype. Therefore, these SNPs can be used as markers to precisely identify and track the Rcg1 sequence in a plant breeding program, and to distinguish between resistant and susceptible allelic variants. Further, these SNPs indicate that there are variant sequences that show a resistant phenotype and can be used in the methods and products disclosed herein. Four other lines have also been found to contain an Rcg1 allele: BYD10, 7F11, CML 261 and CML277. Testing of 10 plants did not provide sufficient data to conclusively determine whether line 7F11 is resistant. No data are available on the resistance of the BYD10, CML261 and CML277 lines, and sequencing of these alleles has not been completed.
procedure. Four common household sewing needles were glued to a metal support such that the holes for the thread extended out from the piece of metal, with all four needles extending an equal distance. This apparatus was dipped in a suspension of Cg spores at 5×10^{6} spores $/ \mathrm{mL}$ and then pushed through the surface of a young corn leaf such that the leaf was wounded and the wounds simultaneously inoculated with the spores. A wet cotton swab was placed on the midrib near the inoculation site and the entire area covered with plastic film and, over that, reflective cloth, both attached with tape, to keep it moist and shaded. The plants were left in this state for $50-54$ hours in a standard greenhouse, after which the tape, cloth and plastic film were removed. At 7 and 15 days after inoculation the size of the lesion was measured and recorded in units of square centimeters.
[0242] FIG. 10 $(a-b)$ shows the distribution of lesion sizes 15 days after inoculation across all the individual leaves. Lesion sizes vary in each data set, but virtually all of the DE811 leaves (FIG. 10 b) had lesion sizes significantly larger than the largest lesions to be found on the DE811ASR(BC5) leaves (FIG. 10a). The data are summarized for both the 7 day and 15 day post-inoculation data sets in FIG. 11. At both 7 and 15 days, the average lesion size was smaller on the leaves carrying the Rcg1 gene. The difference becomes larger over time as the fungus has time

TABLE 7

	Phenotype	SNPs identified in allelic variants of the Rcg1 gene												
		\# Plants Tested	Consensus position											
			413	958	971	1099	1154	1235	1250	1308	1607	2001	2598	3342
$\begin{aligned} & \text { SEQ ID NO: } 1 \\ & \text { from } \end{aligned}$	Resistant	Over 500 plants over	A	A	G	C	C	A	A	C	A	A	G	C
DE811ASR (BC5)		4.5 years												
PHBTB	Resistant	150-210, over 3 years	A	A	G	C	C	A	A	:	A	A	G	C
PH26T	Resistant	$\begin{aligned} & 50 \text {, over } 1 \\ & \text { year } \end{aligned}$	A	A	G	C	C	A	A	:	A	A	G	C
TX601	Insufficient data	$\begin{aligned} & 10, \text { over } 1 \\ & \text { year } \end{aligned}$	A	A	G	C	C	?	A	:	A	A	G	C
F2834T	No data	-	A	A	G	C	C	A	A	:	A	A	G	C
B54	No data	-	c	C	C	T	A	A	T	:	G	G	A	A
PH0RC	Insufficient data	19 , over 1 year	C	C	C	T	A	A	T	:	G	G	A	A
PH277	Insufficient data	$17 \text {, over } 1$ year	C	C	C	T	A	A	T	:	G	G	A	A
PHDGP	Susceptible	150-210, over 3 years	C	C	C	T	A	A	T	:	G	G	A	A
PHDH7	No data	-	C	C	C	T	A	A	T	:	G	G	A	A
MP305 (public)	Resistant	50	A	A	G	C	C	A	A	C	A	A	G	C

Length of Consensus $=4212$ nucleotides.
SEQ ID NO: 1 is the Reg1 sequence. For the remaining lines, the sequence available spanned from the "atg" start codon in the first exon to the "tga" stop codon in the second exon.
The consensus position is based on SEQ ID NO: 1.

Example 10

Lines Containing the Rcg1 Gene are Resistant to Anthracnose-Induced Leaf Blight
[0241] The near isogenic lines DE811 and DE811ASR described in Example 1 were tested for differences in resistance to leaf blight caused by Cg using the following
to grow and cause further damage, so that while the difference is approximately two fold at 7 days, by 15 days it is more than four fold and in fact the fungus has made only minor progress on the DE811ASR(BC5) leaves. These results clearly demonstrate that the presence of the locus containing the Rcgl gene confers resistance to anthracnose leaf blight.

Example 11

Hybrid Lines Derived from DE811ASR(BC5) have Higher Yield than Hybrids Derived from DE811 when Infected with Colletotrichum graminicola
[0243] In order to demonstrate that corn hybrids containing the Rcg1 gene have higher yield potential when infected with Cg than hybrid lines without Rcg1, DE811ASR (BC5) and DE811, the isogenic lines described in Example 1, were each crossed to inbred lines B73Ht and Mo17Ht, which are both susceptible to Cg.
[0244] The hybrid lines were grown and evaluated for response to Cg in 2005 at six locations in five different states of the USA. For each hybrid line, three replications of four rows were planted at approximately 74,000 plants per hectare. Plants were inoculated with Cg at the base of the stalk approximately 10 days after flowering. The first row of each four-row plot was evaluated to determine if the inoculations had been successful by determining the response to Cg four to five weeks after inoculation. The stalks were split and the progression of the disease was scored by observation of the characteristic black color of the fungus as it grows up the stalk. Disease ratings were conducted as described by Jung et al. (1994) Theoretical and Applied Genetics, 89:413-418). The total number of internodes discolored greater than 75% (antgr75) was recorded on the first five internodes (See FIG. 20). This provided a disease score ranging from 0 to 5 , with zero indicating no internodes more than 75% discolored and 5 indicating complete discoloration of the first five internodes. The center two plots were harvested via combine at physiological maturity and grain yield in $\mathrm{kg} / \mathrm{ha}$ was determined.
[0245] The results summarized over all locations are shown in FIG. 12 for disease severity and in FIG. 13 for yield. The data show that hybrids containing Rcg1 (DE811ASR(BC5)/B73Ht and DE811ASR(BC5)/Mo17Ht) have much less disease progression than hybrids without Rcg1 (DE811/B73Ht and DE811/Mo17Ht). The high scores for disease progression in the susceptible hybrids (lacking Rcg1) show the successful infection of the experiment with Cg . Furthermore, the data show that when infected with Cg , hybrids containing Rcg1 have a higher yield than hybrids lacking Reg1. Differences of the individual pairwise comparisons are significant at $\mathrm{P}<0.05$.
[0246] These results clearly demonstrate that by using the methods of the embodiments one can create hybrids which yield more kg of grain per hectare when infected with Cg .

Example 12

Inbred and Hybrid Rcg1 Locus Conversions Derived from DE811ASR (BC5) or MP305 are Resistant to Colletotrichum ciraminicola Induced Stalk Rot

[0247] In order to demonstrate that commercial corn lines can be made resistant to Cg -induced stalk rot, MP305 and DE811ASR (BC5) were crossed with PH87P, PH5W4, and PH705. The resulting progeny were crossed again to the same three lines (i.e., the lines were used as recurrent parents in a backcrossing program) three more times, each time selecting for the presence of the Rcg1 gene using molecular markers as described in Example 5 above. As controls, selected backcross lines which lacked the Rcg1 gene were also collected from the same backerossing program. After three backcrosses were completed, several versions were
selected and selfed to obtain BC3S1 families. Individual BC3S1 plants were genotyped and plants homozygous positive and homozygous negative for Rcg1 were selfed to obtain BC3S2 families, which were then phenotyped. BC3S2 versions containing Rcg1 and, as controls, selected versions without the gene, were planted in single row plots containing approximately 25 plants per row. The experiment was planted in five different locations in five different states of the United States, designated Locations 1, 2, 3, 4, and 5. At approximately two weeks after flowering, plants were inoculated with Cg at the base of the stalk. Four to five weeks later the stalks were split and progression of the disease evaluated by visually estimating the amount of disease in the stalk. A visual score was assigned to each stalk based on the degree of infection of each internode for the inoculated internode and the four internodes above the inoculation internode. A low score thus indicates resistance to the disease. The compiled results for all rows and locations are summarized in FIG. 14. Representative pictures of two lines are shown in FIGS. 15 and 16. The data show that at all locations, each of the elite inbred lines was made more resistant to the disease by the presence of the Rcg1 gene.
[0248] Corn seed sold to farmers is "hybrid," meaning that it is most commonly the result of a cross of two inbred parents, referred to as a single cross hybrid. Many years of breeding and production experience have shown that the use of single cross hybrids result in higher yields. It is thus important for commercial applications that the Rcg1 gene function in the hybrid plants (those in the farmer's production field) even when it is present in only one of the two parents used to make single cross hybrid seed. One of the inbred lines into which the Rcg1 line had been crossed, PH705, was thus used to create hybrid seed by crossing with PH 4 CV , an elite inbred that does not carry the Rcg1 gene. The resulting hybrid seeds were used in experiments identical to those described for the inbred lines as discussed above and scored in the same way at all five locations. The data are summarized for all locations in FIG. 17, which also shows the performance of the inbred PH705, and representative pictures shown in FIGS. 18 and 19. As can be seen, a clear difference in disease progression was observed in all locations for hybrid PH705×PH5W4 and in four of the five locations for PH705×PH87P. In the fifth location, environmental conditions were very stressful for plant growth, resulting in plants that were in poor condition. Under these conditions, measurements of plant disease resistance are often not reliable
[0249] The results with both inbred lines and hybrid combinations containing Rcg1 clearly demonstrate that using the methods of the embodiments one can create commercially useful lines which are resistant to Cg -induced stalk rot.

Example 13

Markers within the Rcg1 Coding Sequence, Marker Locations and Designs Within the Rcg1 Locus, and Haplotypes for the Flanking Chromosomal Region
[0250] Three levels of marker locations may be utilized as a result of the fine mapping and cloning of the Rcg1 gene, markers designed within the Rcg 1 coding sequence, markers designed within the non-colinear region that identify the Rcg1 locus (but outside of the Rcg1 coding sequence), and markers designed within the flanking colinear region.

Markers within the Rcg1 Coding Sequence

[0251] Following the identification and fine mapping of the Rcg1 gene, hybridization markers were designed that
will function on SNP platforms. Since the Rcg1 gene occurs in a non-colinear region of the maize genome, the hybridization marker will be present in lines comprising the Rcgl gene and absent on lines that do not comprise the Rcg1 gene. These markers identify polynucleotide sequences specific to the Rcg1 coding sequence listed on SEQ ID NO: 1. As noted in Table 7, there are other corn lines with variants of the Rcg1 coding sequence set forth in SEQ ID NO: 1, and these markers were also designed to also identify these Rcg1 coding sequence variants.
[0252] To accomplish this, a consensus map of variant Rcg1 coding sequence from different sources was created, as shown on Table 7. This consensus map aligned 4209 bases of the Rcg1 coding sequence isolated from MP305 with 3451 bases from PHBTB and 3457 bases from PH26T. The Rcg1 gene in both PHBTB and PH26T show resistance to anthracnose. Next, segments of the Rcg1 coding sequence were BLASTed against several databases including NT (Public DNA from NCBI) and the highest homology hits were aligned with the Rcgl consensus sequence to determine the segments that shared high homology and had common segments with other resistance genes in the NBSLRR family. Regions unique to the Rcg1 coding sequence and common across the different sources of Rcg1 were selected for marker design. Specifically, since FLP111F and FLP111R primers produced a single amplicon that reliably diagnosed the presence of Rcg1 from different sources, the regions where FLP111F and FLP111R hybridized were therefore targeted for development of a SNP marker design.
[0253] An Invader ${ }^{\mathrm{TM}}$ (Third Wave Technologies, Madison, Wis.) marker was designed using a 1413 bp segment from the consensus sequence that contained both primer sites, with the primer regions themselves being targeted for probe and Invader ${ }^{\text {TM }}$ oligo hybridization. Primers were designed around each probe site to give an amplicon size below 150 bp . This marker indicated the presence of the Rcg1 coding sequence with fluorescence due to hybridization, with the absence of the Rcg 1 coding sequence resulting in no fluorescence. A control fluorescence signal can also be generated by designing a marker that hybridizes to a second highly conserved maize gene, so that the presence of the Rcg1 coding sequence results in fluorescence of two dyes (Rcg1 and the conserved gene) and the absence of Rcg1 results in fluorescence due to the conserved gene only. This 'control' florescence may be used to reduce lab error by distinguishing between the situations where the Rcg 1 is in fact absent and the situation where a false negative has occurred because of a failed reaction. Such markers are not limited to a specific marker detection platform. Taqman ${ }^{(1)}$ markers (Applied Biosystems) were also designed to the same location (primer pairs FLP111F and FLP111R), that were used as for the Invader ${ }^{\mathrm{TM}}$ markers. The markers are shown on Table 15 and FIGS. 23 and 24.
[0254] The marker designs C00060-01-A and C0006002 -A were tested across a wide variety of sources and were highly successful at identifying plants that contained the Rcg1 locus and the Rcg1 gene, regardless of the source of the Rcg1 locus or Rcg1 gene. These markers were also used against a control set of nearly 100 diverse inbred lines known not to carry the gene, and no fluorescence was detected in the control set. Plants in which one or both of marker designs C00060-01-A and C00060-02-A confirmed as having Rcg1 include those shown in Table 7.
[0255] Therefore, this example shows that, based on the teaching provided herein, markers can be constructed that identify the Rcg1 coding sequence in a variety of sources.

Markers Within the Rcg1 Locus

[0256] Markers may be designed to the Rcg1 locus in addition to or instead of using markers within the Rcg1 coding sequence itself. The close physical distance between the Rcg1 coding sequence and the non-colinear region makes it unlikely that the linkage between markers within the non-colinear region but outside of the Rcg1 coding sequence would be lost through recombination. As with markers for the Rcg1 coding sequence, a marker showing as present or absent would be sufficient to identify the Rcg1 locus.
[0257] To design markers for this region, a $64,460 \mathrm{bp}$ segment of non-colinear region including the Rcg1 gene and the region directly north of the Rcg1 gene was sequenced. BACs in this sequence were broken up into sub-clones of approximately approximately 800 nucleotides in length and sequenced. These sequences were then assembled to construct the BAC sequence, and genic and repetitive regions were identified. Repetitive regions were identified in order to avoid placing markers in repetitive regions. Similarly, sequences with high homology with known maize sequences were easily avoided by a simple BLAST search. Potential sequences were avoided that contained SSRs, runs of As, Ts or Gs, or that would result in the generation of probes low in GC content which can cause problems within the Invader ${ }^{\text {TM }}$ platform. See FIG. $9(b)$ and Table 17.
[0258] Selected segments were then put into Invader Creator ${ }^{\text {TM }}$ software (Third Wave, Madison, Wis.), which generates oligos for an Invader ${ }^{T M}$ reaction. This produced a sense and an anti-sense design for all SNPs. The sense designs with the best scores and no penalties were selected. Although these markers have been designed, they have not yet been tested.
[0259] Primers were designed using Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 available on the world wide web for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, N.I., pp 365-386). Primers were selected outside of the Invader ${ }^{\text {TM }}$ components, and preferred primers close to or below 150 bp long were selected. Primer temperature and length was adjusted to be most useful for the Invader ${ }^{\mathrm{TM}}$ platform, although if using other detection platforms primers would be optimized for use with such platforms.

Markers in the Colinear Region and Associated Haplotypes

[0260] Closely linked markers flanking the Rcg1 locus may be effectively used to select for a progeny plant that has inherited the Rcg1 locus from a parent that comprises the Rcg1 locus. The markers described herein, such as those listed on Table 16, as well as other markers genetically or physically mapped to the same chromosomal segment, may be used to select for a truncated chromosomal segment comprising the Rcg1 locus. Typically, a set of these markers will be used, (e.g., 2 or more, 3 or more, 4 or more, 5 or more) in the flanking region above the gene and a similar set in the flanking region below the gene. Optionally, as described above, a marker within the Rcg1 gene and/or Rcg1 locus may also be used. The parents and their progeny are screened for these sets of markers, and the markers that are polymorphic between the two parents are used for selection. The most proximal polymorphic markers to the Rcg1 gene or Rcg1 locus are used to select for the gene or locus, and the more distal polymorphic markers are used to select
against the gene or locus. In an introgression program, this allows for selection of the Rcg1 gene or Rcg1 locus genotype at the more proximal polymorphic markers, and selection for the recurrent parent genotype at the more distal polymorphic markers. As described in more detail in Example 5 above, this process allowed for the efficient selection of a truncated chromosomal segment comprising the Reg 1 locus.
[0261] The process described above requires knowledge of the parental genotypes used in the cross. Optionally, haplotypes may be used so that the Rcg1 gene or Rcg1 locus can be selected for without first genotyping the specific parents used in the cross. This is a highly efficient way to select for the Rcg1 locus, especially in the absence of using markers within the Rcg1 gene or the Rcg1 locus.
[0262] All plants to be used in the breeding program, such as a gene introgression program, are screened with markers. The markers disclosed herein or equivalent markers on the same chromosomal segment may be used. The plant haplotypes (a series of SNP or other markers in linkage disequilibrium) are noted. The haplotype of the resistant plant around the Rcg 1 locus is compared with the haplotype of the other plants to be used that do not comprise the Rcg1 locus. A haplotype unique to the resistant plant around the Rcgl locus is then used for selection, and this haplotype will specifically identify the chromosomal segment from the resistant plant with the Rcg1 locus.
[0263] Based on an analysis of MP305 and a diverse set of several hundred corn lines, including 50 public corn lines shown in Table 18, a unique SNP haplotype for the MP305 chromosomal segment with the Rcg1 locus was identified. This SNP haplotype uniquely identifies the MP305 chromosomal segment that extends across MZA3434, MZA2591 and MZA11123. See FIG. 22, SEQ ID NO: 140, 141 and 142, and Tables 8, 9 and 10.
[0264] First, the primer pairs described in Table 2 for these three MZA's were used to identify haplotypes. The primer pairs MZA3434 E forward and reverse were used to amplify the genomic DNA of the set of corn lines. The PCR fragments were further purified by amplification with MZA3434 I forward and reverse primer pairs. This process was repeated for MZA2591 and MZA11123. The resulting PCR fragments were sequenced in the forward and reverse direction and the sequences were aligned to give a consensus sequence (see the sequences set forth in SEQ ID NOs: 140, 141 and 142). SNPs and indels within these consensus sequences are shown in Tables 8, 9 and 10. These series of SNPs and indels were compared across the set of genotypes.
[0265] For MZA3434, haplotype 8 was a rare haplotype allele, and was unique to MP305 and only one other corn line. This process was repeated for MZA2591, and MP305 was found to have haplotype 2 at MZA2591, which was shared by only two other corn lines. MP305 was the only corn line to have both haplotype 8 at MZA3434 and haplotype 2 at MZA2591, and therefore, the combination of these two haplotypes, 8 at MZA3434 and 2 at MZA2591, uniquely identifies the MP305 chromosomal region comprising the Rcg1 locus. MP305 also had an informative haplotype at MZA11123. MP305 was found to have haplotype 7 , which was shared by 66 other corn lines, but none of these corn lines had haplotype 8 at MZA3434, or haplotype 2 at MZA2591. Therefore, any combination of 2 haplotypes at MZA3434, MZA2591 or MZA11123 could be used to uniquely identify MP305 among these genotypes. The hap-
lotypes can then be interrogated by sequencing the fragment or by designing markers to each SNP or indel within a fragment.
[0266] Polymorphisms within haplotypes can be used to tag the haplotype. So called 'Tag-SNPs', or 'haplotype-tags' can be very useful in plant breeding, as more information than the polymorphism itself can be determined via extrapolation to the haplotype. A haplotype can also be defined as a series of polymorphisms across sequences, and these may be termed 'long-range haplotypes'.
[0267] Rare polymorphisms were observed within haplotypes that could be used as 'haplotype tags'. For example, either the SNPs MZA2591.32 (allele c) or MZA2591.35 (allele t) could be used to tag the haplotype 2 at MZA2591, and like haplotype 2, both were unique to MP305 and two other corn lines. The combination of SNPs MZA2591.32 (allele c) and MZA2591.35 (allele t) combined with MZA3434.17 (allele c) gave a 'long-range' haplotype that could be used to distinguish MP305 from all of the other genotypes in the study.
[0268] In addition, other markers, MZA15842, MZA11455, MZA8761 and MZA1851 also showed polymorphism with MP305. For MZA15842, only 18 of the other corn lines shared the same haplotype as MP305; for MZA11455, only 43 of the other corn lines shared the same haplotype as MP305; for MZA8761, only about half of the other corn lines shared the same haplotype as MP305; and for MZA1851, only about half of the other corn lines shared the same haplotype as MP305. Consensus sequences were developed for these markers, and are set forth in SEQ ID NOs: 143-146. SNPs and indels within these consensus sequences are shown in Tables 11-14. Four examples of unique haplotypes using the MZA markers are:
[0269] MZA11123 (haplotype 7)
[0270] MZA15842 (haplotype 3)
[0271] MZA8761 (haplotype 1)
and
[0272] MZA11123 (haplotype 7)
[0273] MZA15842 (haplotype 3)
[0274] MZA1851 (haplotype 1)
And
[0275] MZA11455 (haplotype 6)
[0276] MZA11123 (haplotype 7)
[0277] MZA15842 (haplotype 3)
[0278] MZA16510 (haplotype 4)
and
[0279] MZA11455 (haplotype 6)
[0280] MZA11123 (haplotype 7)
[0281] MZA15842 (haplotype 3)
[0282] MZA11394 (haplotype 6).
[0283] Multiple combination within all of the markers disclosed herein, or other markers within the region, also will contain unique haplotypes that identify the Rcg1 locus.

TABLE 8

	MZA3434 Polymorphisms					
	MZA3434.3	MZA3434.4	MZA3434.6	MZA3434.17	MZA3434.2	MZA3434.5
Nucleotide position on SEQ ID NO: 140	282	283	327	343	377	387
Type	DEL	DEL	DEL	SNP	DEL	DEL
Size of indel	6	1	4		2	2
MP305	W	M	W	C	W	M
Counter allele	M	W	M	T	M	W

$\mathrm{M}=$ "Mutant": differs to consensus
$\mathrm{W}=$ 'wild type': same as consensus,
[0284]

TABLE 9

$\mathrm{M}=$ "Mutant": differs to consensus
$\mathrm{W}=$ 'wild type': same as consensus,
[0285]

TABLE 10

MZA11123 Polymorphisms								
	MZA11123.5	MZA11123.18	MZA11123.2	MZA11123.13	MZA11123.34	MZA11123.37	MZA11123.40	MZA11123.41
Nucleotide position on	631	641	650	671	703	727	744	786
SEQ ID NO: 142								
Type	DEL	INS	INS	INS	SNP	SNP	SNP	SNP
Size of indel	1	1	1	10				
MP305	W	W	W	W	G	T	C	A
Counter allele	M	M	M	M	A	C	A	G

TABLE 10-continued

MZA11123 Polymorphisms							
	MZA11123.45	MZA11123.48	MZA11123.9	MZA11123.19	MZA11123.59	MZA11123.17	MZA11123.16
Nucleotide	807	864	915	934	956	991	1010
SEQ ID							
NO: 142							
Type	SNP	SNP	INS	DEL	SNP	DEL	DEL
Size of indel			18	1		3	3
MP305	C	T	W	W	C	M	W
Counter allele	A	A	M	M	T	W	M

$\mathrm{M}=$ "Mutant": differs to consensus
$\mathrm{W}=$ 'wild type': same as consensus,
[0286]

TABLE 11

MZA15842 Polymorphisms					
	MZA15842.3	MZA15842.4	MZA15842.5	MZA15842.7	MZA15842.8
Nucleotide position on SEQ ID NO: 143	287	295	313	337	353
Type	SNP	SNP	SNP	SNP	SNP
MP305	T	A	T	C	T
Counter Allele	C	G	A	T	C
	MZA15842.9	MZA15842.10	MZA15842.11	MZA15842.12	MZA15842.3
Nucleotide position on SEQ ID NO: 143	366	436	439	463	287
Type	SNP	SNP	SNP	SNP	SNP
MP305	T	G	A	A	T
Counter Allele	C	A	G	G	C

$\mathrm{M}=$ "Mutant": differs to consensus
$\mathrm{W}=$ 'wild type': same as consensus,
[0287]

TABLE 12

MZA8761 Polymorphisms							
	MZA8761.3	MZA8761.6	MZA8761.7	MZA8761.8	MZA8761.9	MZA8761.10	MZA8761.11
Nucleotide position on SEQ ID NO: 145	595	633	671	681	687	696	702
Type	DEL	SNP	SNP	SNP	SNP	SNP	SNP
Size of indel	7						
MP305	W	G	T	G	T	G	C
Counter allele	M	A	C	C	C	T	A
	MZA8761.4	MZA8761.2	MZA8761.1	MZA8761.5	MZA8761.12	MZA8761.13	MZA8761.14
Nucleotide position on SEQ ID NO: 145	710	710	710	722	779	882	901
Type	DEL	DEL	INS	DEL	SNP	SNP	SNP
Size of indel	1	1	1	1			
MP305	W	W	W	W	T	C	T
Counter allele	M	M	M	M	G	T	C

$\mathrm{M}=$ "Mutant": differs to consensus
$\mathrm{W}=$ 'wild type': same as consensus,

TABLE 13

MZA1851 Polymorphisms						
	MZA1851.24	MZA1851.41	MZA1851.32	MZA1851.49	MZA1851.51	MZA1851.52
Nucleotide position on SEQ ID NO: 144	1213	1236	1271	1465	1615	1617
Type	INS	SNP	INS	SNP	SNP	SNP
Size of indel	19		34			
MP305	W	G	W	A	C	A
Counter Allele	M	A	M	G	A	C
		MZA1851.53	MZA1851.54	MZA1851.55	MZA1851.56	MZA1851.35
Nucleotide position on SEQ ID NO: 144		1686	1697	1698	1701	1717
Type		SNP	SNP	SNP	SNP	DEL
Size of indel						6
MP305		T	A	G	T	W
Counter Allele		C	C	C	C	M

$\mathrm{M}=$ "Mutant": differs to consensus
$\mathrm{W}=$ 'wild type': same as consensus,
[0289]

TABLE 14

MZA11455 Polymorphisms								
	MZA11455.3	MZA11455.5	MZA11455.2	MZA11455.7	MZA11455.8	MZA11455.10	MZA11455.11	MZA11455.12
Nucleotide position on SEQ ID NO: 146	373	392	402	425	426	432	435	491
Type Size of indel	$\begin{gathered} \mathrm{DEL} \\ 1 \end{gathered}$	SNP	$\begin{gathered} \text { DEL } \\ 10 \end{gathered}$	SNP	SNP	SNP	SNP	SNP
MP305	M	G	M	G	C	C	A	T
Counter allele	W	C	W	A	G	G	G	A
	MZA11455.4	MZA11455.13	MZA11455.14	MZA11455.15	MZA11455.1	MZA11455.17	MZA11455.18	MZA11455.19
Nucleotide position on SEQ ID NO: 146	526	552	581	599	610	611	628	634
Type Size of indel	DEL	SNP	SNP	SNP	$\begin{gathered} \text { DEL } \\ 3 \end{gathered}$	SNP	SNP	SNP
MP305	M	A	G	G	W	G	C	A
Counter allele	W	G	A	C	M	A	G	C

$\mathrm{M}=$ "Mutant": differs to consensus
$\mathrm{W}=$ 'wild type': same as consensus,
[0290]

TABLE 15

	Markers within the Rcg1 Coding Sequence				
	SNP Platform				
	Invader	Invader	Taqman	Taqman	PCR
Marker Name	C00060-01-A	C00060-02-A	C00060-01	C00060-02	FLP111
Forward Primer Name	C00060-01-F1	C00060-02-F1	C00060-01-F-Taq	C00060-02-F-Taq	FLP111F
Position on SEQ ID NO: 1	550-567	1562-1586	552-568	1634-1659	595-619

TABLE 15-continued

	Markers within the Rcg1 Coding Sequence				
	SNP Platform				
	Invader	Invader	Taqman	Taqman	PCR
Forward Primer Sequence	SEQ ID NO: 145	SEQ ID NO: 146	SEQ ID NO: 147	SEQ ID NO: 148	SEQ ID NO: 37
Reverse Primer Name	C00060-01-R1	C00060-02-R1	C00060-01-R-Taq	C00060-02-R-Taq	FLP111RB
Position on SEQ ID NO: 1	641-658	1739-1767	599-620	1707-1730	1676-1700
Reverse Primer Sequence	SEQ ID NO: 149	SEQ ID NO: 150	SEQ ID NO: 151	SEQ ID NO: 152	SEQ ID NO: 153
Probe Name	C00060-01-PCA	C00060-02-PCA	C00060-01-P-Taq	C00060-02-P-Taq	
Position on SEQ ID NO: 1	586-603	1685-1701	570-595	1662-1693	
Probe Sequence	SEQ ID NO: 154	SEQ ID NO: 155	SEQ ID NO: 156	SEQ ID NO: 157	

[0291]

TABLE 16
Markers contained within defined chromosomal intervals that can be used to select for Rcg1.
The public markers are taken from the IBM2 neighbors 4 map, while the relative locations of the Pioneer markers (prefix ' MZA ') were determined by mapping to the same genetic map, and by location on the physical map.

Interval (and position on IBM2 neighbors 4 map in cM)	Position relative to Rcg1	Markers that could be used for selection of Rcg1
$\begin{aligned} & \text { UMC2041 } \\ & \text { (483.93) - } \\ & \text { UMC2200 } \\ & (543.44) \end{aligned}$	Above the Rcg1 gene UMC2041 - Rcg1 Below the Rcg1 gene Rcg1 - UMC2200	UMC2041, AY112127, UMC1086, AY110631, UMC2285, MZA8136, MZA6064, NPI270, NP1300C, PHP20071, CDO127a, RGP1102, UAZ122, BNL17.05, MZA11455, MZA15842, MZA11123, MZA2591 PHI093, MZA1215, MZA1216, MZA3434, CL12681_1, NPI444, UMC15a, MZA8761, CSU166a, CDO365, CSU1038b, CSU1073b, CSU597a, RGPG111, UMN433, PHP20562, C2, NPI910, CSU178a, CSU202, TDA44, MZA1851, UMC1051, MZA11394, PCO136722, UMC2187, NPI410, PSR109B, UMC1371, UMC1842, UMC1856, AY109980, UMC1132, NFD106, AY105971, AY110989, ENSI002A, RZ596B, BNL23A, BNL29, UMC 2200
UMC1086 (500.59) - UMC2200 (543.44)	Above the Rcg1 gene UMC1086 - Rcg1 Below the Rcg1 gene Rcg1- UMC2200	UMC1086, AY110631, UMC2285, MZA8136, MZA6064, NPI270, NPI300C, PHP20071, CDO127a, RGPI102, UAZ122, BNL17.05, MZA11455, MZA15842, MZA11123, MZA2591 PHI093, MZA1215, MZA1216, MZA3434, CL12681_1, NPI444, UMC15a, MZA8761, CSU166a, CDO365, CSU1038b, CSU1073b, CSU597a, RGPG111, UMN433, PHP20562, C2, NP1910, CSU178a, CSU202, TDA44, MZA1851, UMC1051, MZA11394, PCO136722, UMC2187, NPI410, PSR109B, UMC1371, UMC1842, UMC1856, AY109980, UMC1132, NFD106, AY105971, AY110989, ENSI002A, RZ596B, BNL23A, BNL29, UMC2200
$\begin{aligned} & \text { UMC2285 } \\ & (514.9)- \\ & \text { UMC2187 } \\ & (531.7) \end{aligned}$	Above the Rcg1 gene UMC2285 - Rcg1	UMC2285, MZA8136, MZA6064, NPI270, NPI300C, PHP20071, CDO127a, RGP1102, UAZ122, BNL17.05, MZA11455, MZA15842, MZA11123, MZA2591
	Below the Rcg1 gene Rcg1 - UMC2187	PHI093, MZA1215, MZA1216, MZA3434, CL12681_1, NPI444, UMC15a, MZA8761, CSU166a, CDO365, CSU1038b, CSU1073b, CSU597a, RGPG111, UMN433, PHP20562, C2, NPI910, CSU178a, CSU202, TDA44, MZA1851, UMC1051, MZA11394, PCO136722, UMC2187

TABLE 16-continued

Markers contained within defined chromosomal intervals that can be used to select for Rcg1. The public markers are taken from the IBM2 neighbors 4 map, while the relative locations of the Pioneer markers (prefix 'MZA') were determined by mapping to the same genetic map, and by location on the physical map.		
Interval (and position on IBM2 neighbors map in cM	Position relative to Rcg1	Markers that could be used for selection of Rcg1
Within UMC2285 (514.9) - UMC15a (525.8)	Above the Rcg1 gene, within UMC2285- Rcg1 Below the Rcg1 gene, within Rcg1 UMC15a	MZA8136, MZA6064, NPI270, NPI300C, PHP20071, CDO127a, RGP102, UAZ122, BNL17.05, MZA11455, MZA15842, MZA11123, MZA2591 PH1093, MZA1215, MZA1216, MZA3434, CL12681_1, NPI444

TABLE 17

Marker Name	$\begin{aligned} & \text { SNP sequence } \\ & \text { position on } \\ & \text { SEQ ID NO: } 137 \end{aligned}$	SNP Sequence	Markers Within the Rcg1 Locus		Forward Primer	Reverse Primer
			Invader Oligo	Invader Probe		
PHD0001-01	12-270	SEQ ID NO: 158	SEQ ID NO: 159	SEQ ID NO: 160	SEQ ID NO: 161	SEQ ID NO: 162
PHD0002-01	272-530	SEQ ID NO: 163	SEQ ID NO: 164	SEQ ID NO: 165	SEQ ID NO: 166	SEQ ID NO: 167
PHD0003-01	7232-7500	SEQ ID NO: 168	SEQ ID NO: 169	SEQ ID NO: 170	SEQ ID NO: 171	SEQ ID NO: 172
PHD0004-01	11302-11580	SEQ ID NO: 173	SEQ ID NO: 174	SEQ ID NO: 175	SEQ ID NO: 176	SEQ ID NO: 177
PHD0005-01	11581-11880	SEQ ID NO: 178	SEQ ID NO: 179	SEQ ID NO: 180	SEQ ID NO: 181	SEQ ID NO: 182
PHD0006-01	11881-12170	SEQ ID NO: 183	SEQ ID NO: 184	SEQ ID NO: 185	SEQ ID NO: 186	SEQ ID NO: 187
PHD0007-01	12171-12470	SEQ ID NO: 188	SEQ ID NO: 189	SEQ ID NO: 190	SEQ ID NO: 191	SEQ ID NO: 192
PHD0008-01	25417-25690	SEQ ID NO: 193	SEQ ID NO: 194	SEQ ID NO: 195	SEQ ID NO: 196	SEQ ID NO: 197
PHD0009-01	25692-25950	SEQ ID NO: 198	SEQ ID NO: 199	SEQ ID NO: 200	SEQ ID NO: 201	SEQ ID NO: 202
PHD0010-01	25951-26200	SEQ ID NO: 203	SEQ ID NO: 204	SEQ ID NO: 205	SEQ ID NO: 206	SEQ ID NO: 207
PHD0011-01	26602-26860	SEQ ID NO: 208	SEQ ID NO: 209	SEQ ID NO: 210	SEQ ID NO: 211	SEQ ID NO: 212
PHD0012-01	26932-27200	SEQ ID NO: 213	SEQ ID NO: 214	SEQ ID NO: 215	SEQ ID NO: 216	SEQ ID NO: 217
PHD0013-01	27322-27580	SEQ ID NO: 218	SEQ ID NO: 219	SEQ ID NO: 220	SEQ ID NO: 221	SEQ ID NO: 222
PHD0014-01	28472-28740	SEQ ID NO: 223	SEQ ID NO: 224	SEQ ID NO: 225	SEQ ID NO: 226	SEQ ID NO: 227
PHD0015-01	28791-2900?	SEQ ID NO: 228	SEQ ID NO: 229	SEQ ID NO: 230	SEQ ID NO: 231	SEQ ID NO: 232

TABLE 18-continued

TABLE 18

List of Public Lines use in Haplotype Analysis		
$38-11$	CO109	MP305
A165	D02	N28
A188	D146	OH07
A509	F2	OH40B
A556	F252	OH43
A619	F257	OH45
A632	F283	OS420
B	F7	OS426
B14	GT119	PA91
B37	H84	R159
B42	H99	SC213R

List of Public Lines use in Haplotype Analysis		
B64	HATO4	SD105
B73	HY	SRS303
B84	Indiana H60	T232
B89	K187-11217	TR9-1-1-6
B94	K55	TX601
C103	L1546	V3
C106	L317	W153R
CI66	Minn49	WF9
CM49	MO13	
CM7	Mo17	

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 232
<210> SEQ ID NO 1
<211> LENGTH: 4212
<212> TYPE: DNA
<213> ORGANISM: Zea mays
<220> FEATURE:
<221> NAME/KEY: gene
<222> LOCATION: (0)...(0)
<223> OTHER INFORMATION: Nucleotide sequence for Rcg1:
    bac811h.pk257.m04
<220> FEATURE:
<221> NAME/KEY: exon
<222> LOCATION: (143)...(948)
<223> OTHER INFORMATION: exon 1
<220> FEATURE:
<221> NAME/KEY: exon
<222> LOCATION: (1452)...(3588)
<223> OTHER INFORMATION: exon 2
<220> FEATURE:
<221> NAME/KEY: intron
<222> LOCATION: (949)...(1451)
<223> OTHER INFORMATION: intron 1
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (143)...(948)
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (1452)...(3588)
<400> SEQUENCE: 1
```

aaaccctca ccacattttc ctcaaccaca tgatggagat tggggctact agatactatg 60
cctggtggta gactggtagc tgatgtcttt ggaccagtag ttggtgctag atttgtgaac 120
tctaccaagg tgagaaacgg ag atg gag gct gcc ctg ctg agc ggg ttc atc 172
Met Glu Ala Ala Leu Leu Ser Gly Phe Ile

aaa acc atc ctg cca agg ctc ttc tca ctg gta caa ggg aga tac aag 220
Lys Thr Ile Leu Pro Arg Leu Phe Ser Leu Val Gln Gly Arg Tyr Lys
152025
ctg cac aag ggc ctc aag agc gac atc aaa tcg ctg gag aaa gag ctc
Leu His Lys Gly Leu Lys Ser Asp Ile Lys Ser Leu Glu Lys Glu Leu
303540
cat atg atc gct gtt aca atc gat gaa caa atc tcg ctg ggg agg aag316
His Met Ile Ala Val Thr Ile Asp Glu Gln Ile Ser Leu Gly Arg Lys
$45 \quad 50 \quad 55$
gat cag gga gct gtg ctg agc ctc tca att gat gag ctg cat gaa ctg364
Asp Gln Gly Ala Val Leu Ser Leu Ser Ile Asp Glu Leu His Glu Leu
$\begin{array}{rrr}60 & 65 & 70\end{array}$
get cac caa atc gag gac tcc ata gat cgc ttc ttg tac cat gtg acc412
$\begin{array}{rl}\text { Ala His Gln Ile Glu Asp } \\ 75 & 80\end{array}$
agg gag cag caa gca tcc ttt ttt cgt cgg act gta cgg tcg ccg aag 460
Arg Glu Gln Gln Ala Ser Phe Phe Arg Arg Thr Val Arg Ser Pro Lysact ctg ttg tca cgt cag cgg ctg gct gcc gag gtt cag ttc ctg aag508
Thr Leu Leu Ser Arg Gln Arg Leu Ala Ala Glu Val Gln Phe Leu Lys 110 115 120aag ata cog gag gag gcg cac cag cga gag aag agg tac agg gtc ttc556Lys Ile Pro Glu Glu Ala His Gln Arg Glu Lys Arg Tyr Arg Val Phe125130135

acc cgg cac act gaa tog tct tcc tgt tcg tct gta tct gat ccg cac 480
Thr Arg His Thr Glu Ser Ser Ser Cys Ser Ser Val Ser Asp Pro His145150155160aca ctt aag gcc gac gtc gtc ggc atc gac ggt ccc agg gac gag ctt528
Thr Leu Lys Ala Asp Val Val Gly Ile Asp Gly Pro Arg Asp Glu Leu$165170 \quad 175$gtg cag cag tta acc gaa gag gca gag ggc cta aca aag cag ctc aag576Val Gln Gln Leu Thr Glu Glu Ala Glu Gly Leu Thr Lys Gln Leu Lys$180 \quad 185$ 190gtg atc tcc atc gtc ggg atc cat ggc tcc ggc aag acc gtc ctt gcc624
Val Ile Ser Ile Val Gly Ile His Gly Ser Gly Lys Thr Val Leu Ala 195200205
aga gag gta tac gag agc gac gtc ggc cgg cag ttc agt ctc cgg gca672Arg Glu Val Tyr Glu Ser Asp Val Gly Arg Gln Phe Ser Leu Arg Ala210215220
tgg gtt tct gct act gac aga ggt ccg aga gag gtg ctc atg gag atc 720$\begin{array}{rl}\text { Trp Val Ser Ala Thr Asp Arg Gly Pro Arg Glu Val Leu Met Glu Ile } \\ 225 & 230 \\ 235 & 240\end{array}$
ctc cga aat ttt ggt agg cca gtg gtg gat agc tct agt att gac cag 768
Leu Arg Asn Phe Gly Arg Pro Val Val Asp Ser Ser Ser Ile Asp Gln 245250255
ctt acg gta gat ctc agg aaa cac ttg ggt gag aaa agg tat ttc att 816
Leu Thr Val Asp Leu Arg Lys His Leu Gly Glu Lys Arg Tyr Phe Ile260265270
gta atc gat ggc atg caa aca gat cag tgg agc acc att gaa act gcc 864Val Ile Asp Gly Met Gln Thr Asp Gln Trp Ser Thr Ile Glu Thr Ala275280285
ttc cca gaa aac aat gtt gtt agc agc aga gta att gtt aca aca aca 912Phe Pro Glu Asn Asn Val Val Ser Ser Arg Val Ile Val Thr Thr Thr290295300
atc cgg tca gta gct aat tct tgc agc tct tct aac ggt tat gtg cacIle Arg Ser Val Ala Asn Ser Cys Ser Ser Ser Asn Gly Tyr Val His$\begin{array}{lll}305 & 310 & 315\end{array}$
aaa atg aaa aga ctt agt gac gaa cac tca gag caa ttg ttt atc aag 1008Lys Met Lys Arg Leu Ser Asp Glu His Ser Glu Gln Leu Phe Ile Lys325330335
aaa get tgc cca aca aaa tat tca ggt tat act cga cog gaa tca aaa
Lys Ala Cys Pro Thr Lys Tyr Ser Gly Tyr Thr Arg Pro Glu Ser Lys 340 345 350
gaa gtt ctg aag aaa tgt gat ggt caa cca ctt gct ctt gtt act atg
Glu Val Leu Lys Lys Cys Asp Gly Gln Pro Leu Ala Leu Val Thr Met 355 360 $\begin{aligned} & 365\end{aligned}$
ggc caa ttc ttg agg aaa aat ggt tgg ccc aca gga ccc aac tgc gaa
Gly Gln Phe Leu Arg Lys Asn Gly Trp Pro Thr Gly Pro Asn Cys Gluaat gtg tgt aga gat ctt aga cga cat ctg gag cag gat gat aca ttgAsn Val Cys Arg Asp Leu Arg Arg His Leu Glu Gln Asp Asp Thr Leu385390395400
gag aga atg cga agg gtg ctt atc cac agc tta tct agt ctt cct agc 1248 Glu Arg Met Arg Arg Val Leu Ile His Ser Leu Ser Ser Leu Pro Ser
cat gtt ccc aaa gcc tgc ctt ttg tat ttt ggt atg ttt cca tgt gat 1296 His Val Pro Lys Ala Cys Leu Leu Tyr Phe Gly Met Phe Pro Cys Asp 420425430 cat ccc ata aag agg aag agc ctg atg agg cga tgg tta gca gag gga 1344105611041152

$<210>$	SEQ ID NO 3
$<211>$	LENGTH: 980
$<212>$	TYPE PRT
$<213>$ ORGANISM: Zea mays	
$<220>$ FEATURE:	
$<221>$ NAME/KEY: DOMAIN	
$<222>$ LOCATION: (157)...(404)	
$<223>$ OTHER INFORMATION: Region showing homology to nucleotide binding	
	site (NBS) domain.
$<220>$	FEATURE:
$<221>$ NAME/KEY: DOMAIN	
$<222>$	LOCATION: (528)...(846)
$<223>$	OTHER INFORMATION: Region showing loose homology to leucine-rich
	repeat (LRR) domain.


```
<210> SEQ ID NO 4
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer a20Cforw4881
<400> SEQUENCE: 4
```

cagggcctac ttggtttagt aata
$<210\rangle$ SEQ ID NO 5
$<211>$ LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer a20Crev 4920
$<400\rangle$ SEQUENCE : 5
gggtactaca ctagcctatt acta
$<210>$ SEQ ID NO 6
$<211>$ LENGTH: 24
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer a20fis 19 forw 1110
$<400>$ SEQUENCE $: 6$

```
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer a20fis19rev1149
<400> SEQUENCE: 7
```

gtcaaacaga tagccgcaga ttgg
$<210>$ SEQ ID NO 8
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer n07fis 13 forw5 1524
$<400\rangle$ SEQUENCE : 8
tacaaaacta ctgcaacgcc tata
$<210>S E Q$ ID NO 9
<211> LENGTH: 24
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer n07fis13rev51563
<400> SEQUENCE : 9
ctcacccca agtatatata ggcg

```
<210> SEQ ID NO 10
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer n07Bforw10439/53434
<400> SEQUENCE: 10
```

cattggacct cttccccact aaga

```
<210> SEQ ID NO 11
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer n07Brev10478/53473
<400> SEQUENCE : }1
```

tccttgagtc cagtgctctt agtg
$<210>$ SEQ ID NO 12
$<211>$ LENGTH: 24
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer n07Aforw 4333
$<400>$ SEQUENCE : 12

```
<210> SEQ ID NO 13
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer n07Arev4372
```


$<210>$ SEQ ID NO 15
$<211>$ LENGTH: 953
$<212>$ TYPE $:$ PRT
$<213>$ ORGANISM $:$ Oryza sativa
$<220>$ FEATURE:
$<221>$ NAME/KEY: PEPTIDE
$<222>$ LOCATION: (0)...(0)
$<223>$ OTHER INFORMATION: Accession No. NP_910483 Rice NBS-LRR
$<400>$ SEQUENCE $: 15$

$<210>$ SEQ ID NO 16
$<211>$ LENGTH: 989
$<212>$ TYPE : PRT
$<213>$ ORGANISM: Oryza sativa
$<220>$ FEATURE $:$
$<221>$ NAME/KEY: PEPTIDE
$<222>$ LOCATION: (0)...(0)
$<223>$ OTHER INFORMATION: Accession No: NP_910482 Rice NBS-LRR
$<400>$ SEQUENCE : 16

Asn Ala Phe Leu Arg Ser Val Ser Thr Ser Pro Glu Asp Ala Ala Gly
505560
His Asp Asp Gln Val Arg Val Trp Met Lys
65

70 $\underset{75}{70}$| Gln Val Arg Glu Ile Ala |
| :---: |
| 80 |

Tyr Asp Ala Glu Asp Cys Ile Asp Val Phe Val Arg Gly Arg Ser His
85

-continued

$<210>$ SEQ ID NO 18
<211> LENGTH: 958
$<212>$ TYPE: PRT
$<213>$ ORGANISM: Hordeum vulgare
<220> FEATURE:
<221> NAME/KEY: PEPTIDE
<222> LOCATION: (0)...(0)
<223> OTHER INFORMATION: Accession No. AAG37354, Barley powdery mildew resistance protein
$<400>$ SEQUENCE : 18

Gly	Glu	$\begin{aligned} & \text { Asn } \\ & 595 \end{aligned}$	Ser	Ser	Leu	\ln	$\begin{aligned} & \text { Leu } \\ & 600 \end{aligned}$	Asn	Leu	$\text { Lys } I$	Asp	$\begin{aligned} & \text { Val } \\ & 605 \end{aligned}$	Gly	His Leu
Thr	$\begin{aligned} & \text { His } \\ & 610 \end{aligned}$	Leu	Arg	yr	Leu	$\begin{gathered} \text { Gly } \\ 615 \end{gathered}$	Leu	Glu	Gly	Thr	$\begin{aligned} & \text { Asn } \\ & 620 \end{aligned}$		Ser	Lys Leu
Pro	Ala	Glu	Ile	ly	Lys	Leu	Gln	Phe	Leu	Glu	Val	Leu	Asp	Leu Gly
625					630					635				640
Asn	Asn	His	Asn	$\begin{aligned} & \text { Leu } \\ & 645 \end{aligned}$	Lys	Glu	Leu	Pro	$\begin{aligned} & \text { Ser } \\ & 650 \end{aligned}$	Thr	Val	Cys	Asn	$\begin{aligned} & \text { Phe Arg } \\ & 655 \end{aligned}$
Arg	Leu	Ile	$\begin{aligned} & \text { Tyr } \\ & 660 \end{aligned}$	eu	Asn	Leu	Phe	$\begin{aligned} & \text { Gly } \\ & 665 \end{aligned}$	Cys	Pro	Val	Val	$\begin{aligned} & \text { Pro } \\ & 670 \end{aligned}$	Pro Val
Gly	al	Leu 675	Gln	sn	Leu	r	$\begin{aligned} & \text { Ser } \\ & 680 \end{aligned}$	Ile	Glu	Val	eu	Arg 685	Gly	Ile Leu
Val	$\begin{aligned} & \text { Ser } \\ & 690 \end{aligned}$	1	n	le	e	Ala 695	1 n	Iu	eu	$\text { Gly } I$	$\begin{aligned} & \text { Asn } \\ & 700 \end{aligned}$	Leu	Glu	Arg Leu
$\begin{aligned} & \text { Arg } \\ & 705 \end{aligned}$	Val	Leu	Asp	Ile	$\begin{aligned} & \text { Cys } \\ & 710 \end{aligned}$	Phe	Arg	Asp	Gly	$\begin{aligned} & \text { Ser } \\ & 715 \end{aligned}$	Leu	Asp	Leu	$\begin{array}{r} \text { Tyr Lys } \\ 720 \end{array}$
Asp	Phe	Val	Lys	$\begin{aligned} & \text { Ser } \\ & 725 \end{aligned}$	Leu	Cys	Asn	Leu	$\begin{aligned} & \text { His } \\ & 730 \end{aligned}$	His	Ile	Glu	Ser	$\begin{aligned} & \text { Leu Arg } \\ & 735 \end{aligned}$
Ile	Glu	Cys	$\begin{aligned} & \text { Asn } \\ & 740 \end{aligned}$	Ser	Arg	Glu	Thr	$\begin{aligned} & \text { Ser } \\ & 745 \end{aligned}$	Ser	Phe	Glu	Leu	$\begin{aligned} & \mathrm{Val} \\ & 750 \end{aligned}$	Asp Leu
Leu	Gly	$\begin{aligned} & \text { Glu } \\ & 755 \end{aligned}$	Arg	Trp	al	ro	$\begin{aligned} & \text { Pro } \\ & 760 \end{aligned}$	Val	His	Phe	$r g$	$\begin{aligned} & \text { Glu } \\ & 765 \end{aligned}$	Phe	Val Ser
Ser	$\begin{aligned} & \text { Met } \\ & 770 \end{aligned}$	Pro	er	\ln	eu	$\begin{aligned} & \text { Ser } \\ & 775 \end{aligned}$	Ala	Leu	Arg		$\begin{aligned} & \text { Trp } \\ & 780 \end{aligned}$	Ile	Lys	Arg Asp
$\begin{aligned} & \text { Pro } \\ & 785 \end{aligned}$	Ser	His		er	$\begin{aligned} & \text { Asn } \\ & 790 \end{aligned}$	Leu	Ser	Glu	Leu	$\begin{aligned} & \text { Ile } \\ & 795 \end{aligned}$	Leu	Ser	Ser	$\begin{aligned} \text { Val Lys } \\ 800 \end{aligned}$
Asp	Val	Gln	Gln	$\begin{aligned} & \text { Asp } \\ & 805 \end{aligned}$	Asp	al	Glu	Ile	$\begin{aligned} & \text { Ile } \\ & 810 \end{aligned}$	Gly	Gly	Leu	Leu	$\begin{aligned} & \text { Cys Leu } \\ & 815 \end{aligned}$
Arg	Arg	Leu	$\begin{aligned} & \text { Phe } \\ & 820 \end{aligned}$	Ile	Ile	hr	Ser	$\begin{aligned} & \text { Thr } \\ & 825 \end{aligned}$	Asp	Gln	Thr	Gln	$\begin{aligned} & \text { Arg } \\ & 830 \end{aligned}$	Leu Leu
Val	Ile	$\begin{aligned} & \text { Arg } \\ & 835 \end{aligned}$	Ala	Asp	Gly	he	$\begin{aligned} & \text { Arg } \\ & 840 \end{aligned}$	Cys	Thr	Val	Asp	Phe 845	Arg	Leu Asp
Cys	$\begin{aligned} & \mathrm{Gly} \\ & 850 \end{aligned}$	Ser	Ala	hr	\ln	$\begin{aligned} & \text { Ile } \\ & 855 \end{aligned}$	Leu	Phe	Glu	Pro	$\begin{aligned} & \text { Gly } \\ & 860 \end{aligned}$	Ala	Leu	Pro Arg
$\begin{aligned} & \text { Ala } \\ & 865 \end{aligned}$	Val	Arg	Val	$r p$	$\begin{aligned} & \text { Phe } \\ & 870 \end{aligned}$	Ser	Leu	Gly	al	$\begin{aligned} & \text { Arg } \\ & 875 \end{aligned}$	Val	Thr	Lys	$\begin{array}{r} \text { Glu } \begin{array}{l} \text { Asp } \\ 880 \end{array} \end{array}$
Gly	Asn	Arg	Gly	Phe 885	Asp	Leu	Gly	Leu	$\begin{aligned} & \mathrm{Gln} \\ & 890 \end{aligned}$	Gly	Asn	Leu	Phe	$\begin{aligned} & \text { Ser Leu } \\ & 895 \end{aligned}$
Arg	Glu	Phe	$\begin{aligned} & \text { Val } \\ & 900 \end{aligned}$	Ser	Val	Tyr	Met	$\begin{aligned} & \text { Tyr } \\ & 905 \end{aligned}$	Cys	Gly	Gly	Ala	$\begin{aligned} & \text { Arg } \\ & 910 \end{aligned}$	Val Gly
Glu	Ala	$\begin{aligned} & \text { Lys } \\ & 915 \end{aligned}$			Glu	la	$\begin{aligned} & \text { Ala } \\ & 920 \end{aligned}$	Val	Arg	Arg	Ala	$\begin{aligned} & \text { Leu } \\ & 925 \end{aligned}$	Glu	Ala His
Pro	$\begin{aligned} & \text { Ser } \\ & 930 \end{aligned}$	His	Pro	Arg	Ile	$\begin{aligned} & \text { Tyr } \\ & 935 \end{aligned}$	Ile	Gln	Met	Arg	$\begin{aligned} & \text { Pro } \\ & 940 \end{aligned}$	His		Ala Lys
$\begin{aligned} & \text { Gly } \\ & 945 \end{aligned}$	Ala	His	Asp	Asp	$\begin{aligned} & \text { Asp } \\ & 950 \end{aligned}$	Leu	Cys	Glu	Asp	$\begin{aligned} & \text { Glu } \\ & 955 \end{aligned}$	Glu	Glu	Asn	

```
<210> SEQ ID NO 19
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

```
<223> OTHER INFORMATION: MPSS Signature Sequence Tag
<400> SEQUENCE: 19
```

gatctcataa ctaggat
$<210>$ SEQ ID NO 20
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: Oligonucleotide Primer KEB131
$<400>$ SEQUENCE : 20
tgatccttga ttgtccatgg
$<210>$ SEQ ID NO 21
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer KEB138
$<400>$ SEQUENCE : 21
cogttgcttg catatatgct
$<210>$ SEQ ID NO 22
$<211>$ LENGTH: 1684
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Zea mays
$<220>$ FEATURE:
$<221>$ NAME/KEY: promoter
$<222>$ LOCATION: (0)...(0)
$<223>$ OTHER INFORMATION: Rcg1 Promoter Region
$<400>$ SEQUENCE : 22actgtcgggg accataatta ggggtaccct caagacgcct aattctcagc tggtaacccc60
catcagcata aagctgcaaa ggcctgatgg gcacgattaa gtcagggatc agtccacacg 120
agtgactcga tcgcgcttca cccgagccta gcctcggccg aaggcagccg acctcgagag 180
acttccgtct cgcccgaggc cccccttttt atggcggaca catcaccggc ttgcccaagg 240
ccttggcttc gctcagaagc aaccttgact aaatcaccac accgactgac caaattgcag 300
gggcatttaa cgcaaaggtg gcctgacacc tctatcctga cacgcgcccc cggcagagce 360
gaggtgaccg cogtcactcc accgctccac tggccagtct gacagaagga cagcgccgco 420
tgcgccactc cgactgcagt gccactcgac agagtgagtc tgacaggcaa ctaggccttg 480
ccgaaggcgc cacggcgaac tccgctcogc ccgaccccag ggctcggact cgggctaaga 540
cccggaagac ggcgaactcc gctccgccog accccaggge tcggactcgg gctaagacce 600
ggaagacggc gaactccgct cegcccgacc ccagggctcg gactcgggct aagacccgga 660
agacggcgaa ctccgctccg cecgacccca gggctcggac tcgggctaag acccggaaga 720
cggcgaactc cgctccgccc gaccccaggg ctcggactcg ggctaagacc cggaagacgg 780
cgaactccgc tccgcccgac cccagggctc agactcaggc taagacccgg aagacgacga 840
aactccgcct cgcccgacce cagggctcgg actccgccot ggcctcggce ggacgacttc 900
cgcetcgccc gaccecctgg ctcgggctcg gccacagcaa ctgaaggcaa gactcaacct 960
-continued

aacgtcatca	tcaccetacc	cogaatcgac togggtcacg	gagaacaaga coggcgtctc	1080
gtcoggccag	ctcogccaga	ggggcaatga tggcgctcca	cgagctctat gacgacggcg	1140
gcecccagct	ctcttacggc	agcaggacaa cgtcagcagg	gactcgaccg ctccaacagc	1200
tgtcectcca	tcaggctccg	ccgcaccacc gatagccacg	acatcacgce agcaggatgc	1260
ccagatctct	coggctgcca	catcggcatg tacctagggc	actagctctc cotccgctag	1320
acacgtagca	ctctgctaca	tccccattgt acacctgggt	cctctectta cgactataaa	1380
aggaaggacc	agggtcttct	cagagaaggt tggccgcgcg	ggaccgagga cgggacaggc	1440
gctctcttgg	ggcegctcgc	ttccctcacc cgcgtggacg	cttgtaaccc ccctactgca	1500
agcgcacctg	acctgggegc	gggacgaaca cgaaggccge	gggacttcca cotctctcac	1560
getcggctcc	ggcegcctcg	cctctcccec ctccgegcte	geccacgege tcgacccatc	1620
tgggctgggg	cacgcagcac	actcactcgt cggcttaggg	accccetgtc tcgaaacgce	1680
gaca				1684

$<210>$ SEQ ID NO 23
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer Frey8 Forward
$<400>$ SEQUENCE : 23
acatgggtcc aaagatcgac

```
<210> SEQ ID NO 24
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer Frey8 Reverse
<400> SEQUENCE: 24
```

catggaagcc ccacaataac

```
<210> SEQ ID NO 25
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer Frey27 Forward
<400> SEQUENCE: 25
```

gcatgcecca totggtatag
$<210>$ SEQ ID NO 26
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: Oligonucleotide Primer Frey27 Reverse
$<400>$ SEQUENCE: 26
agccetattt cctgctcctg

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer Frey33 Forward
<400> SEQUENCE: 27
```

gcattcacat gttcctcacc
$<210>$ SEQ ID NO 28
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer Frey33 Reverse
$<400>$ SEQUENCE : 28
ctgtcgttcg gttttgcttc
$<210>$ SEQ ID NO 29
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer Frey 41 Forward
$<400>$ SEQUENCE : 29
ctgtaaggca cccgatgttt
$<210>$ SEQ ID NO 30
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: Oligonucleotide Primer Frey 41 Reverse
$<400>$ SEQUENCE : 30
tgtgttcgca tcaaaggtgt 20

```
<210> SEQ ID NO 31
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer Frey56 Forward
<400> SEQUENCE: 31
```

tgtccagggt tacagaaaac g
$<210>$ SEQ ID NO 32
$<211>$ LENGTH: 21
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: Oligonucleotide Primer Frey56 Reverse
$<400>$ SEQUENCE : 32
ggtctgggaa tgctaaagag g

```
<210> SEQ ID NO 33
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer Frey95 Forward
```

```
<400> SEQUENCE: 33
atttcgacgg agggttcttc 20
<210> SEQ ID NO 34
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer Frey95 Reverse
<400> SEQUENCE: 34
```

gcagcaggag gagctcatag
$<210\rangle$ SEQ ID NO 35
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer Frey110 Forward
<400> SEQUENCE: 35
atggaggctg ccctgctgag
$<210>$ SEQ ID NO 36
$<211>$ LENGTH: 24
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer Frey110 Reverse
$<400>$ SEQUENCE: 36
cgtatacctc tctggcaagg acgg 24
$<210>$ SEQ ID NO 37
<211> LENGTH: 25
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer Frey111 Forward
<400> SEQUENCE : 37
ttcctgttcg tctgtatctg atccg
$<210>$ SEQ ID NO 38
<211> LENGTH: 25
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer Frey111 Reverse
$<400\rangle$ SEQUENCE : 38
tttgattccg gtcgagtata acctg
$<210\rangle$ SEQ ID NO 39
<211> LENGTH: 25
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer Frey112 Forward
<400> SEQUENCE : 39

```
<210> SEQ ID NO 40
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer Frey112 Reverse
<400> SEQUENCE: 40
```

caagatcggt gaagttggtg cttc
$<210>$ SEQ ID NO 41
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer Frey113F Forward
<400> SEQUENCE: 41
atcacagatg ggtctcaagg attgc
<210> SEQ ID NO 42
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer Alex1R Reverse
$<400>$ SEQUENCE: 42
ttccaagcaa ttcacagctc
<210> SEQ ID NO 43
$<211>$ LENGTH: 24
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc1612 Forward
$<400>$ SEQUENCE: 43
aggtccaggt tacagagcaa gaga 24

<210> SEQ ID NO 44

<211> LENGTH: 24

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer umc1612 Reverse

<400> SEQUENCE: 44
gctagtaggt gcatggtggt ttct
<210> SEQ ID NO 45
$<211>$ LENGTH: 24
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc 2041 Forward
<400> SEQUENCE: 45
ctacacaagc atagaggcet ggag

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc2041 Reverse
<400> SEQUENCE: 46
```

cagtacgaga cgatggagga cat
$<210\rangle$ SEQ ID NO 47
<211> LENGTH: 20
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer cdol27 Forward
$<400>$ SEQUENCE: 47
tgctgttgtt actcgggttg
$<210>$ SEQ ID NO 48
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer cdo127 Reverse
<400> SEQUENCE : 48
ctctgcetca gcacaaattc
$<210>$ SEQ ID NO 49
$<211>$ LENGTH: 26
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer phi093 Forward
$<400>$ SEQUENCE: 49
agtgcgtcag cttcatcgcc tacaag 26

```
<210> SEQ ID NO 50
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer phi093 Reverse
<400> SEQUENCE: 50
```

aggccatgca tgcttgcaac aatggataca
$<210>$ SEQ ID NO 51
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer cdo365 Forward
$<400>$ SEQUENCE : 51
cttccagagg caaagcgtag
$<210>$ SEQ ID NO 52
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer cdo 365 Reverse
<400> SEQUENCE: 52
tgtcacccat gatccagttg
<210> SEQ ID NO 53
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer asul6 Forward
$<400>$ SEQUENCE: 53
tattgtgcac gtcaccttgg 20
$<210\rangle$ SEQ ID NO 54
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer csul66 Reverse
<400> SEQUENCE: 54
gggcagactt actgctggag
$<210>$ SEQ ID NO 55
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer umc 2285 Forward
$<400>$ SEQUENCE : 55
atctgcetcc ttttccttgg 20
$<210\rangle$ SEQ ID NO 56
<211> LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc 2285 Reverse
$<400\rangle$ SEQUENCE : 56
aagtagctgg gcttggaggg
$<210\rangle$ SEQ ID NO 57
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer MZA11455 Forward
<400> SEQUENCE: 57
acgaagcaat ttcaccttcc
$<210\rangle$ SEQ ID NO 58
$<211>$ LENGTH: 23
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer MZA11455 Reverse
$<400\rangle$ SEQUENCE : 58

```
<210> SEQ ID NO 59
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA6064 Forward
<400> SEQUENCE: 59
```

cgagaaccgg agaagaagg
$<210\rangle$ SEQ ID NO 60
<211> LENGTH: 20
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer MZA6064 Reverse
$<400\rangle$ SEQUENCE: 60
ttgggctgct gtattttgtg
$<210>$ SEQ ID NO 61
<211> LENGTH: 19
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA15842 Forward
$<400>$ SEQUENCE : 61
gacgcagctg tgaagttgg
$<210>$ SEQ ID NO 62
<211> LENGTH: 20
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA15842 Reverse
<400> SEQUENCE : 62
caccggaata cettgaccac
$<210\rangle$ SEQ ID NO 63
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc 1086 Forward
<400> SEQUENCE: 63
catgaaagtt ttcctgtgca gatt
$<210>$ SEQ ID NO 64
$<211>$ LENGTH: 25
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer umc 1086 Reverse
$<400>$ SEQUENCE : 64

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc1466-FA Forward
<400> SEQUENCE: 65
```

gatccactag ggtttcgggg t
$<210\rangle$ SEQ ID NO 66
$<211>$ LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc1466-FA Reverse
$<400>$ SEQUENCE: 66
cgaatagtgg tctcgcgtct atct
$<210>$ SEQ ID NO 67
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc1418-PA Forward
<400> SEQUENCE : 67
gagccaagag ccagagcaaa g
$<210>$ SEQ ID NO 68
$<211>$ LENGTH: 24
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer umc1418-PA Reverse
$<400>$ SEQUENCE: 68
tcacacacac actacactcg caat

```
<210> SEQ ID NO 69
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer BNLG2162-DA Forward
<400> SEQUENCE: 69
```

caccggcatt cgatatcttt
$<210>$ SEQ ID NO 70
$<211>$ LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: Oligonucleotide Primer BNLG2162-DA Reverse
$<400>$ SEQUENCE : 70
gtctgctgct agtggtggtg

```
<210> SEQ ID NO 71
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer csul66-IA Forward
```

```
<400> SEQUENCE: 71
aaatatcggc tttggtcacg 20
<210> SEQ ID NO 72
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer asu166-IA
<400> SEQUENCE: 72
```

tcgtccttcc tcaattcgac
$<210\rangle$ SEQ ID NO 73
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc1051 Forward
<400> SEQUENCE: 73
aatgatcgaa atgccattat ttgt
$<210>$ SEQ ID NO 74
$<211>$ LENGTH: 24
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer umc 1051 Reverse
$<400>$ SEQUENCE $: 74$
ctgatctgac taaggccatc aaac
$<210\rangle$ SEQ ID NO 75
<211> LENGTH: 24
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc2187 Forward
$<400>$ SEQUENCE : 75
acccaacaag tcttaatcgg gttt
$<210>$ SEQ ID NO 76
$<211>$ LENGTH: 24
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer umc 2187 Reverse
$<400>$ SEQUENCE $: 76$
gtccacccta cctctcaaca aaca
$<210>$ SEQ ID NO 77
$<211>$ LENGTH: 23
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer umc 1371 Forward
$<400>$ SEQUENCE $: 77$
SEQUENCE : 77

```
<210> SEQ ID NO 78
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc1371 Reverse
<400> SEQUENCE: 78
```

gcatcctttt cgtttcaaat atgc 24
<210> SEQ ID NO 79
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer umc1856 Forward
<400> SEQUENCE: 79
agatctgttt tgctttgctc tgct24
$<210>$ SEQ ID NO 80
$<211>$ LENGTH: 24
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION : Oligonucleotide Primer umc 1856 Reverse
$<400>$ SEQUENCE : 80
catgccttta ttctcacaca aacg 24

```
<210> SEQ ID NO 81
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA1215 External Nested
    Forward Primer
<400> SEQUENCE: 81
```

agcecaattc tgtagatcca a 21
<210> SEQ ID NO 82
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA1215 External Nested
Reverse Primer
<400> SEQUENCE: 82
tgcatgcacc ggatccttc 19
<210> SEQ ID NO 83
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA1215 Internal Nested
Forward Primer
<400> SEQUENCE: 83

```
<210> SEQ ID NO 84
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA1215 Internal Nested
    Reverse Primer
<400> SEQUENCE: 84
aggctggcgg tggacttga19
```

```
<210> SEQ ID NO }8
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA1216 External Nested
    Forward Primer
<400> SEQUENCE : 85
ccggcctacg gcaacaagaa 20
<210> SEQ ID NO }8
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA1216 External Nested
    Reverse Primer
<400> SEQUENCE: 86
```

agggtacggt gacccgaag19

$<210>$	SEQ ID NO 87
$<211>$	LENGTH: 20
$<212>$	TYPE $:$ DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE $:$
$<223>$	OTHER INFORMATION: Oligonucleotide Primer MZA1216 Internal Nested
	Forward Primer
$<400>$	SEQUENCE $: 87$
ttcgagacgc tgtcgtacct	

<210> SEQ ID NO 88
<211> LENGTH: 20
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA1216 Internal Nested
Reverse Primer
<400> SEQUENCE : 88
acgacgcatg gcactagcta
<210> SEQ ID NO 89
<211> LENGTH: 18
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer MZA3434 External Nested
Forward Primer
<400> SEQUENCE: 89

```
<210> SEQ ID NO 90
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA3434 External Nested
    Reverse Primer
<400> SEQUENCE: 90
```

ttgcattcac atgttcctca c 21

```
<210> SEQ ID NO 91
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA3434 Internal Nested
    Forward Primer
<400> SEQUENCE: 91
```

ctactacgac ggcegcta18
$<210\rangle$ SEQ ID NO 92
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA3434 Internal Nested
Reverse Primer
$<400>$ SEQUENCE : 92
ttgcagtagt tttgtagcag g 21
<210> SEQ ID NO 93
<211> LENGTH: 22
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA2591 External Nested
Forward Primer
<400> SEQUENCE: 93
agtaaataac agcattgacc tc22
$<210\rangle$ SEQ ID NO 94

<211> LENGTH: 18

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer MZA2591 External Nested

 Reverse Primer
 $<400>$ SEQUENCE : 94
tccaacggeg gtcactcc

```
<210> SEQ ID NO 95
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA2591 Internal Nested
    Forward Primer
```

<400> SEQUENCE: 95

```
ctatataaca gggccctgga a
```

<210> SEQ ID NO }9

```
<210> SEQ ID NO }9
<211> LENGTH: 20
<211> LENGTH: 20
<212> TYPE: DNA
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA2591 Internal Nested
<223> OTHER INFORMATION: Oligonucleotide Primer MZA2591 Internal Nested
    Reverse Primer
    Reverse Primer
<400> SEQUENCE: 96
```

<400> SEQUENCE: 96

```
cacaaagccc acaagctaag 20
\(<210\rangle\) SEQ ID NO 97
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Oligonucleotide Primer MZA11123 External Nested
    Forward Primer
\(<400>\) SEQUENCE : 97
accacaatct gaagcaagta g 21
\(<210>\) SEQ ID NO 98
<211> LENGTH: 20
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA11123 External Nested
    Reverse Primer
\(<400\rangle\) SEQUENCE : 98
cacagaaaca tctggtgctg
\(<210>\) SEQ ID NO 99
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA11123 Internal Nested
    Forward Primer
<400> SEQUENCE : 99
aagaccaag aaatgcagtc c 21
```

<210> SEQ ID NO 100
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZAl1123 Internal Nested
Reverse Primer

```
\(<400>\) SEQUENCE : 100
agacatcacg taacagtttc \(c\)
```

<210> SEQ ID NO 101
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA15842 External Nested
Forward Primer

```
```

<400> SEQUENCE: 101
ctcgattggc atacgcgata 20
<210> SEQ ID NO 102
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA15842 External Nested
Reverse Primer
<400> SEQUENCE: 102
ttccttctcc acgcagttca 20

```
```

<210> SEQ ID NO 103

```
<210> SEQ ID NO 103
<211> LENGTH: 22
<211> LENGTH: 22
<212> TYPE: DNA
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA15842 Internal Nested
<223> OTHER INFORMATION: Oligonucleotide Primer MZA15842 Internal Nested
        Forward Primer
        Forward Primer
<400> SEQUENCE: 103
<400> SEQUENCE: 103
agaaggtatt tgccatggct ta 22
<210> SEQ ID NO 104
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA15842 Internal Nested
        Reverse Primer
<400> SEQUENCE : 104
gtttcacttg ctgaaggcag tc22
```

<210> SEQ ID NO 105

<211> LENGTH: 21

$<212>$ TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer MZA11455 External Nested

 Forward Primer
 $<400>$ SEQUENCE : 105
gaccgatgaa ggcaattgtg a 21

<210	$>$ SEQ ID NO 106
$<211>$	LENGTH: 22
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE $:$
$<223>$	OTHER INFORMATION: Oligonucleotide Primer MZA11455 External Nested
	Reverse Primer
$<400>$	SEQUENCE $: 106$

accaaatagt cctagataat $g g$
22

```
<210> SEQ ID NO 107
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
```

<220> FEATURE:

```
<223> OTHER INFORMATION: Oligonucleotide Primer MZA11455 Internal Nested
        Forward Primer
<400> SEQUENCE: 107
ttcaaccttc tgactgacac at22
```

$<210>$ SEQ ID NO 108

<211> LENGTH: 22

$<212>$ TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer MZA11455 Internal Nested

 Reverse Primer
 <400> SEQUENCE: 108
taaacatagt cataaaatt ac 22

$<210>$	SEQ ID NO 109
$<211>$	LENGTH: 22
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Oligonucleotide Primer MZA6064 External Nested
	Forward Primer
$<400>$	SEQUENCE : 109

tcgaatgtat tttttaatgc gg22

$<210>$ SEQ ID NO 110

<211> LENGTH: 20

$<212>$ TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer MZA6064 External Nested

 Reverse Primer
 $<400>$ SEQUENCE : 110
atccacaatg gcacttgggt 20

$<210>$	SEQ ID NO 111
$<211>$	LENGTH: 22
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Oligonucleotide Primer MZA6064 Internal Nested
	Forward Primer

$<400>$ SEQUENCE : 111
cagctatttt tgtctcctc ct22

<210> SEQ ID NO 112

<211> LENGTH: 20

$<212>$ TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer MZA6064 Internal Nested

 Reverse Primer
 $<400\rangle$ SEQUENCE : 112
ggtcagattc caattcggac

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MzA11394 External Nested
        Forward Primer
<400> SEQUENCE: 113
```

tcgtcctaac agcctgtgtt 20
$<210\rangle$ SEQ ID NO 114
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide Primer MZA11394 External Nested
Reverse Primer
$<400>$ SEQUENCE : 114
gtccggatca aatggatcgt20

$<210>$ SEQ ID NO 115

<211> LENGTH: 22

$<212>$ TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer MZA11394 Internal Nested

 Forward Primer
 $<400\rangle$ SEQUENCE: 115
aacagcetgt gttgaataag gt 22

$<210>$	SEQ ID NO 116
$<211>$	LENGTH: 19
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Oligonucleotide Primer MZA11394 Internal Nested
	Reverse Primer
$<400>$	SEQUENCE $: 116$

cgtgttccgt cgagggagt19

$<210>$ SEQ ID NO 117

<211> LENGTH: 22

$<212>$ TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer MZA8761 External Nested

 Forward Primer
 $<400\rangle$ SEQUENCE : 117
ttctttgatt ctactcttga gc22

$<210>$ SEQ ID NO 118

<211> LENGTH: 20

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer MZA8761 External Nested

 Reverse Primer
 $<400>$ SEQUENCE : 118
cttcatggac gcctgagatt

```
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA8761 Internal Nested
    Forward Primer
<400> SEQUENCE: 119
tagagctttc tgaactgata gc22
```

<210> SEQ ID NO 120

<211> LENGTH: 21

<212> TYPE: DNA

$<213>$ ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer MzA8761 Internal Nested

 Reverse Primer
 <400> SEQUENCE: 120
ttggcattta gcttctctcc a 21

$<210>$	SEQ ID NO 121
$<211>$	LENGTH: 22
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Oligonucleotide Primer MZA1851 External Nested
	\quad Forward Primer

<400> SEQUENCE: 121
atatattgca ccacttaag cc 22

```
<210> SEQ ID NO 122
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA1851 External Nested
        Reverse Primer
```

$<400\rangle$ SEQUENCE : 122
gggtgttatc acttgttcta ta 22

```
<210> SEQ ID NO 123
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA1851 Internal Nested
    Forward Primer
```

<400> SEQUENCE: 123
tggagtcctt gaccatttgc20

$<210>$ SEQ ID NO 124

<211> LENGTH: 22

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer MZA1851 Internal Nested

 Reverse Primer
 $<400>$ SEQUENCE : 124

```
<210> SEQ ID NO 125
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Degenerate oligonucleotide consensus primer
    designed from the terminal inverted repeats (TIR)
    from the Mutator element sequence
<400> SEQUENCE: 125
agagaagcca acgccawcgc ctcyatttcg tc
```

```
<210> SEQ ID NO 126
```

<210> SEQ ID NO 126
<211> LENGTH: 18
<211> LENGTH: 18
<212> TYPE: DNA
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer used linked in
<223> OTHER INFORMATION: Oligonucleotide primer used linked in
combination with MZA internal primers in order to sequence PCR
combination with MZA internal primers in order to sequence PCR
products
products
<400> SEQUENCE: 126

```
<400> SEQUENCE: 126
```

tgtaaaacga cggccagt

```
<210> SEQ ID NO 127
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer used linked in
    combination with MZA internal primers in order to sequence PCR
    products
```

<400> SEQUENCE: 127
ggaaacagct atgaccatg19

$<210\rangle$ SEQ ID NO 128	
<211> LENGTH: 1698	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Rcg1 promoter with 14 bp of cloning oligonucleotide sequence added at 5 ' end	
<400> SEQUENCE : 128	
gaggctcggg ggctactgtc ggggaccata attaggggta ccctcaagac gcctaattct 60	
cagctggtaa cccccatcag cataaagctg caaaggcotg atgggcacga ttaagtcagg	120
gatcagtcca cacgagtgac tcgatcgegc ttcacccgag cetagcctcg gccgaaggca	180
gccgacctcg agagacttcc gtctcgcocg aggcccccct ttttatggcg gacacatcac	240
cggcttgccc aaggcettgg cttcgctcag aagcaacctt gactaaatca ccacaccgac	300
tgaccaaatt gcaggggcat ttaacgcaaa ggtggcetga cacctctatc ctgacacgeg	360
cccceggcag agcegaggtg accgecgtca ctccaccgct ccactggcca gtctgacaga	420
aggacagcgc cgcctgcgce actccgactg cagtgccact cgacagagtg agtctgacag	480
gcaactaggc cttgcegaag gegccacggc gaactccgct cegccegacc ccagggcteg	540
gactcgggct a ${ }^{\text {a }}$ acccgga agacggcgaa ctccgctccg cccgacccca gggetcggac	600
togggctaag accoggaaga cggcgaactc cgctcogccc gaccccaggg ctcggacteg	660
ggctaagacc cggaagacgg egaactccgc tccgcecgac cccagggctc ggactcgggc	720

$<210>$	SEQ ID NO 129
$<211>$	LENGTH: 20
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE :
$<223>$	OTHER INFORMATION: Oligonucleotide Primer MZA16510 External Nested
	Forward Primer
$<400>$	SEQUENCE : 129

aacaacaagg cgacggtgat

```
<210> SEQ ID NO 130
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA16510 External Nested
    Reverse Primer
<400> SEQUENCE: 130
tcatcttcgt cgtcctcatc 20
```

$<210>$	SEQ ID NO 131
$<211>$	LENGTH: 18
$<212>$	TYPE $:$ DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Oligonucleotide Primer MZA16510 Internal Nested
	Forward Primer

$<400>$ SEQUENCE: 131
gatcatcctg coggagtt

```
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MZA16510 Internal Nested
    Reverse Primer
<400> SEQUENCE: 132
```

aaccgaaaac acaccctc

```
<210> SEQ ID NO 133
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MzA1719 External Nested
    Forward Primer
```

<400> SEQUENCE: 133
ccagcggtag attatataca g 21

$<210>$	SEQ ID NO 134
$<211>$	LENGTH: 19
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION : Oligonucleotide Primer MZA1719 External Nested
	Reverse Primer
$<400>$	SEQUENCE : 134

cggtttggtc tgatgaggc

```
<210> SEQ ID NO 135
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide Primer MzA1719 Internal Nested
    Forward Primer
<400> SEQUENCE : 135
```

ctcgggaacc ttgttggga19

$<210>$ SEQ ID NO 136

<211> LENGTH: 21

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Oligonucleotide Primer MZA1719 Internal Nested

 Reverse Primer
 <400> SEQUENCE : 136
tgaaatccag aacctccttt g

```
<210> SEQ ID NO 137
<211> LENGTH: 50330
<212> TYPE: DNA
<213> ORGANISM: zea mays
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (0)...(0)
<223> OTHER INFORMATION: Non-colinear sequence
<220> FEATURE:
<221> NAME/KEY: repeat_region
<222> LOCATION: (537)...(7229)
<223> OTHER INFORMATION: Highly repetitive region
```


gggcaggcgg cgctgttttc ttgtcaggtc agtcagtgga ggggcgacgt gactgcggtc 8640
actttggccc taccgactga ggaacgtgcg tcaggataag gtgtcaggcg atccttgcat 8700
tgaatgctcc tgcgatacag tcggttggtg aggcgatctg gccaaggttg cttcactgcg 8760
aagcetgcce gagctgggce tcgggcgagt cgggggtgcg ctcgtttctt tgaggaggce 8820
8880
ctcgggcgag gegtgaatcc gcctgggtct actgttcctg cccgaggctg ggctcgagcg8940
ataatcacca ggtgtgctgg gaccaagtct cacacatatg atgattcatg gcacaggatc 9000
gaatgtcaca tctttactac ataacaggag ttctatacaa aataaataag taattacatt 9060
ataaggagac aacggtccag caacccaaag ttgactggga gacgacgacc tagatctctctcacgaactc atcgcagcat cetccatgcg cctcatcctg cggtacttgt tcttgacetg9180
tggggggggt gagacagcaa gagtgagctc acatacgttc atcgctcaac aagttgtggg 9240
gaataatgtg catgatctcg ccaaaggtgg gagctcacgt gaagtgtaag gcttaccaaa 9300
gaggatggtt agagctgagc attgctttta aagttggtca aaattttatt agcaattact 9360
aagtataagt aaataccaac ccaattaagt agtagaacaa aagtaacaac atcacctgcg 9420
atgcaatgca tatgacaaat tgagtttag ttccataatt taatcatcag agagtcctga 9480
gctgctcatg accgtgagct cggctagtat accagtttta cactctgcag aggttgtaccctttacccac aagtcatgtt acccatttgc gaagggatcg egacttccca tacacctcta 9600
ccaaggaggc gaggcagggt aacactacga ggcctttaca aagttccact agcttcagaa 9660
aacccgctac agtttatagg aagctccaat gcagggttct tgcctgaccg ccatcgcagc 9720
aaaatcaacc aaggacctcc ctacactgac cactccccta ctgccettgc ccctttcggg 9780
taaggtagtc ctccactggc tttcctaatt aatcagccaa gagcgtccat aaacccttgt 9840
ggtggcacgt gtttctcaag ttaagctcta tgttccaatt aacattaatg atcttgacat 9900
gaacataaat agaataacaa aataactgga acatagatat gataattaat tatcccaaat 9960
ccatgtaaag caatagcaaa ctacccaagt gattcagggg taaacaaggt aatgagataa 10020
acaatctagg gtaacctatt gggtcccatc aaaattaacc tatgcatgaa tagtgataat 10080
aacgaatatt attgggtaac agaagtgatc aagggcacaa cttgccttta atgagcacct 10140
gctcagctac ttcaacctgc tgctcaccag gatcctcatt cacgggctct tctactcgcc 10200
acaatacaaa caagcacaat atatagagaa atcaacatca caccaaacat gtaaacaaac 10260
tacacagtaa taatctatgc attaaaataa aatcctagga acagaaatca taattttcgg 10320
agttatagat tttaagttat ggattttcaa aggttttatg tgtttaaaat agattaagtg 10380
aggaattaaa tttcttactg tttcatgac aaacagagg ctctaagtga tagagaatta 1044010500
attattgaag ttctagcaat tatttcceta ttaaaaatcc cttttccaat tattactc 10560
aatttcaaac agctctggat cgagcctcaa ttaccgaaaa gtgcaggggc ttctgcgcat 10620
aattttctaa gactcagaat actatgcagt ggacggcggg tttattcctc ggttttccag 10680
ggtttctctt acaaaactga cccqcqaagg ggtatcagcc gatctcgqcc gcaggatgtg 10740
aagtggacgg cocagattaa ttcatacaac ttaacaaatc ggtatgcacc caaggcceac 10800
ggatacgaaa tccatgaccg agagagttcc acgtcattga cctaacctaa ccatcggatc 10860

ctccgacagg gacggcgaca acctcggcgg tggcgggcgc cggcatggcc ggcacgacag 20040
gcgggctcag ggccacgttg gcgtcagccg cctcctcaac cacgatggcc gcctcggcag 20100
aagagccggc ctcgggagcc cgcttctcag agaccggcga cgcccgagcc ccctgcggtg 20160
aagtaccccg cgaaagggtt ggctgaatga caaggcccgg ggcggcgctg gccacacagt 20220
ccggcgccgt cttgagggce ttccggggtg ccaggtcggt ctggccatga ctttgcttgc 20280
tggatataaa aaaagaggag gaaagaaaga tcacggcoga gacatatgaa tgggaagcca 20340
agacgaagac gtcccgggat actcacccac ttcgggccat tatccaccgc gcctgggggg 20400
aggtctcttg gatcccggct cccaaggcgg ccgccgaggt ccgcttcgcc ggcattttcg 20460
gegccaccet cgcegtggac gccegggaag aagattgcce gggcgcggtt gegacgacct 20520
gagggtcacc cccatgcgcc accggtgcga gcggcggccc ctcgggagcg gacgccctga 20580
cotggcectc cggagccacc tcagctcctc cggccgaggg aacaggtgac acctcgggtc 20640
gcccccgtgc ctcggactgg gaccccgacg ccccaactcc ggggactgat ggtgtcggcc 20700
cgcgeggggg etggctcgac gactcctggc cgcaccccga gccggggccg aggccgagac 20760
gggcggccat gtcgtcctcc tcctcatcat cgtcgtcatc gtcgtcgtcg ggcgtctccg 20820
gcgacggctc cotcgggagt cettccctct cetgctggcg acggcgcttc tccaaggegt 20880
cccgagcecg cetccgctcg cgggcccggg cettctccgc gtccttcttt ttcttcttct 20940
cctccgegge gactcgccge getgcacggt ccaccgcatc ctccgggacc cgtggcaggg 21000
agggcttgtg ccaccccaca tcctaaaagg aggggagaaa ggaacccgat cataaggacc 21060
cggaacgacc caatgtacga agaaggaagg agcgaacact caccaaagtt acgcacccct 21120
ggtcggggcg catccgaagc tgggagtatg cgtgggggtc cggcttcccc atcgcagccg 21180
acacccgcca ttggagggcg ttgaagggaa gaggatcagg ggacattcgc gagccctccc 21240
agtcagcctc tggggtcatc tcctagagcg acagcogecg ctccgccaat ggaagcacce 21300
tccgacggtg gatggcagcg atcactcccg cagcggtgag tcccccctcc cgcaactcct 21360
tcagggcetg gagaaggggc tcgaggttct tctgtctctc gtgcggggtc ctgtggcgec 21420
aggcgtcggt ggcagcagta actactctct gggagaacgg tgggagcaac tcaccgtcat 21480
tccggaggta gaaccaccgg cgctgccacc ccttgttcga ggacgcaaga atggcaggaa 21540
tgtactgtga cgcecgcgac tgcctcagca aaagagtgca gecgccggcc cgcaccgctg 21600
cacggaccct cctctcctcc gtcgacaagg cgaaaagctc ggcgaggaag agatgagtcc 21660
gcaaatccca atggggggcg atccccaagt acccttcgca taccgctacg aagatagcgg 21720
cotgcgagat ggagttgggg gagaggttat gcaattccac cccgtagtgg aacaggatag 21780
ctcgcataaa gcggccegtc ggcacaccga atccccgctc gtggaaggag acgaagctca 21840
cgacgtaccc cagcggtggg gacggagcgg ctccacccac gggaggaatc cactctggcc 21900
gctgcttatc ggtgaggggg cggagcaaac cetcgccgac cagctcctcc agatcgcteg 21960
ctgtcaccgt ggaaaaaggc cacggatcac gcggggggat tatggtcact cgatccgcca 22020
tcaccaaaat ggaagagatg gcggcgcggg gggcagggag ggcggttttt tctcttctcc 22080
gactaaagtt tcccgggttg cgaaaaccta aagggaaagg aaggaagaag agcaaagaac 22140
cgtcaccgga ccccctctcg agtatatgaa ggccagggcg aaaccgtttc cagcgctcca 22200
cccqgaccgq acgeggqatt cqaaaaacgc gagqcqaaac agccqttcct cgaacggctc 22260

aagcgcacct gacctgggcg cgggacgaac acgaaggccg cgggacttcc acctctctca 42840
cgetcggctc cggecgcctc gectctcccc cctccgcgct egcccacgeg ctcgacciat 42900
ctgggctggg gcacgcagca cactcactcg tcggcttagg gaccccctgt ctcgaaacgc 42960
cgacaaaaac cctcaccaca tttcctcaa ccacatgatg gagattgggg ctactagata 43020
ctatgcctgg tggtagactg gtagctgatg tctttggacc agtagttggt gctagatttg 43080
tgaactctac caaggtgaga aacggagatg gaggctgccc tgctgagcgg gttcatcaaa 43140
accatcctgc caaggctctt ctcactggta caagggagat acaagctgca caagggcctc 43200
aagagcgaca tcaaatcgct ggagaaagag ctccatatga tcgctgttac aatcgatgaa 43260
caaatctcgc tggggaggaa ggatcaggga gctgtgctga gcctctcaat tgatgagctg 43320
43380
gagcagcaag catccttttt tcgtcggact gtacggtcge cgaagactct gttgtcacgt 43440
cagcggctgg ctgccgaggt tcagttcctg aagaagatac cggaggaggc gcaccagcga 43500
gagaagaggt acagggtctt cgccggcctt tcttcctcta cccggcacac tgaatcgtct 43560
tcctgttcgt ctgtatctga tccgcacaca cttaaggccg acgtcgtcgg catcgacggt 43620
cccagggacg agcttgtgca gcagttaace gaagaggcag agggcctaac aaagcagctc 43680
aaggtgatct ccatcgtcgg gatccatggc tccggcaaga cegtccttgc cagagaggta 43740
tacgagagcg acgtcggceg gcagttcagt ctccgggcat gggtttctgc tactgacaga 43800
ggtccgagag aggtgctcat ggagatcctc cgaaattttg gtaggccagt ggtggatagc 4386043920

atgttaaaaa acagtgtaag agttggagtt tgaacccatg ccctgattaa agaagggcaa 47400
aagacacttg gtgaagctat ctaaccaata gaacatcatg ctcaaatatt ttaatattga 47460
atataaattg tatatatgta tatacatttt tttataaaat ttaaaaaatt ataatcgtgt 47520
cgggctgtgc cagcactacg gactgaggct acagcccaag cacggcacga cgttcttggc 47580
tcttgcaagc attagattgt ttctgagact acattggcgc aatggactcg atggtgtttg 47640
aggttgctga attggatgaa gcaacaatga tttgtcacac taacagtaaa atgaaaggtt 47700
atttgttatt tttaaacgtt agttattgct acgaagtagc ataatttata tgaagtacat 47760
ccagttttta ttgatgcctg actttaacaa tcacttcata ttttgatata tctttttat 47820
aagtttgagt tcagtgactt attttagaaa tttgagctca caaactttct cttatttggt 47880
ctctgtatgg tggaattatg tcattttata atttttgttc gttcagccag tcgttgtgaa 47940
ctttcttcta actgctcact tcattggccg tattgtacca agacatattg gatgtagtaa 48000
accataacat cagatagtta aatcaaaaaa atattatacg gagagcggag acaataaata 48060
aaaaatcttg aaattttttg gtggatagtt tatataggta ttgttgtaag ccgtcgcaac 48120
gcacgtgtaa ccgactagta ctaagtgaat tccccacttg tgggaattgt gagattgttt 48180
ttatatgaac gaatattgta ggtaaatgag taacataata ttccttttgt taacacctg 48240
atctggtacg tcaaaaccac gtatgtacca tatgttttaa cttttgtatc tggtagaatg 48300
gactgaagta aagaatctca tccatcgact gctgctaata tatgcagctt cccagatcag 48360
aggtcccaaa catgtcacca cttaccaatt aaatctctta tttacttggc cttcccatga 48420
nnmnnnnnan nnnnnnnnnn nnnnnnnnnn nnnnnnnngt tenttcttgc gttccgttgn 48900
ttnnnnnnnn gnnngnnggn aatnnnannn taaannagnn actnaatnnn aagnttatac 48960
cnntagttta atttgtttac cctcccagga atattgcacg cetcgatgta ggcctccact 49020
cagactttat ttgggtactt tagtattggg gtttttatag tggtgccctc ggttttgctg 49080
gtgtgctcat ttttatcctt ggttccgctt tattttgctc agttttgccc ttccagtgct 49140
atagaacaga agggcaaaag tgagcaaaaa aaacacaac taaggataaa aatgagcaca 49200aaaattgagt gcggtctgtg cccccqctaa gccgcccaac ccaaccttga tgaatttcct49560
ctgtcttcgc tgaagtgtca ttcagtggtg atcaggaaca aatcccatcc caaactcaag 49620

| cagagaacat tacaagttaa cataactgaa gttgaaccag atggtggtca gaatgagaag | 49680 |
| :--- | :--- | :--- |
| gcctgcaaca gtcaatttgt tctgattcct tttgtgcagg ctgctacagg ttgttctcct | 49740 |
| gacgagaaa gcagttctaa gccggttgaa ttcgtgcagg atgcatacaa cagaaccatg | 49800 |
| cagactgaac ctcattgtgg atggcaatat ttttttcaat ctctgatact agtaccaagt | 49860 |
| cagcatgttt tgtccatccc catggcaatg gcatagagat agaactttct ataaatagtc | 49920 |
| ttgaggatca ggggacaagt caatcttgtg aaatcctaag taatacggag tacaagtttg | 49980 |
| tctgaaatat cacatcgagc gattgtgtgt gcgcgcctac tagctcatga aagtcctggt | 50040 |
| actgaagttt tcatttttct caagtcataa attatgcagg atgttataac tccacagagg | 50100 |
| gttatggagg ggacaaatag agcaaaatgt ggatggaaac atagaacaca gcaggctgcg | 50160 |
| gaaaggaaa cataatctgt tcatccgctg acacaaaagc aagaacctct atttgagtgg | 50220 |
| aacctacaac ccattgtcac cgttgctcta ttgggtcttc agaagaaatt ttgactagaa | 50280 |

$<210>$ SEQ ID NO 138
$<211>$ LENGTH: 507
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: MZA3434 Processed consensus sequence
$<400>$ SEQUENCE: 138
gtcatgtccc ccctcattag aggcgctact ggacatgtgg aagctgccat gttcggctgc 60
aacgacgcca cccaggtgta caaggagctg caggaggcca tcaaatccta cccggacgec 120
ttccaccocg tcatcggctt cgacaacatc aagcagacgc agtgcgtcag cttcatcgcc 180
tacaagcccc cgggcagcga ctagaccgeg cccgccggcc gccccccgcc ggctagctag 240
ctagctagct cctgcgtgag ctagtagcta gctagtgcca tgcgtcgtct ctgtcgttcg 300
gttttgcttc ggggtcaccg tgtacccttt gcttgcttgg tttcttcttt ccttttttcc 360
ttttttttt cttcttttcc ccggccatgg ttcctttgct ttccagcagt tctctgctgg 420
atgtaatgta tccattgttg caagcatggc cttgcattgg ctacctctat acctgctaaa 480
$\begin{array}{ll}\text { aaactactgc aaatggtcat agctgtc } & 507\end{array}$

<210> SEQ ID NO 139	
<211> LENGTH: 650	
<212> TYPE: DNA	
$<213>$ ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: MZA2591 Processed consensus sequence	
<400> SEQUENCE: 139	
asggtaccaa ctaaagggge ctggaatcat ggaagcccac aataaccagg agcgagctac	60
ctgcgaagce acatctctcc ttcctcttca tcgatagtac tcatctccat attcaggtaa	120
ataacatcgt ctgcatgceg cgcgccccta atagcatctc gatcacattt ttgtgttctt	180
gacttctcct cggaagcett cttgtttaac aacttatat tagtcgttgg tcgatctttg	240
gacccacatg taaatcttgg ttcgcgtcog ccgtgcagtg cagaggcaca agctaagcca	300
tgagcaacgg tggtaaccge agcaggggeg gegcgaggtt cgagctgcag ctgcacctgt	360
cgecgcegcc gcecgtggct aggagggtgt aggtttactg egtatgctac tgcagcgact	420

cgtcttcttc cccgagctcg tgcgtgtcgt ctgactgcat tccagggagc aattcgecga	480
ttgtaatcgg cgcetgcacg cggtgcatga tgtactgcat ggtgtccaag aatgacttcc	540
ccacctgcat caactgcaag cagccetgcc tcgtgtacct cctccactgc tcttggcece	600
tgctgcagcg gcaccggcaa ggceaattaa aakgacttca acctttcgta	650
$<210\rangle$ SEQ ID NO 140	
<211> LENGTH: 731	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223) OTHER INFORMATION: MZA11123 Processed consensus sequence	
<400> SEQUENCE: 140	
tcaaatcctg gggggaaacc ttccgggtgg gtcattgcaa aatgggcagt ttatgggctc	60
cttaatgatg gggggtcacg gttcgggggt tttttcggcc gggaccatgt ttcggtctct	120
tcttaatata ataccgggag gcagtttttc ctcctcccog gcogcgtttt ttagtgtaaa	180
tatgcaaatg taccatcttg attggcttct atgatctaca ttttagtgta ggctgcaagt	240
ccacgagctt tgaaaagtta cacaatctgg attatttgca agtcgtaaac acttatagga	300
ctcagtgact agattggacc agcctgttgc attcatgcaa ttgttaggct aattgtcatt	360
tcaccttcag tctacaatga aatggttaac atagtgcatg gatttcttcc attggtacat	420
caataataat atccaacagc gctaatgaga tgtacgtctt gtttccagat gttacagatc	480
caactgcaaa tggtgcagcg tggcgctgct gggccgccea gtaacgagaa tactgagcac	540
acagaagaat gactgaatct gtgaacagac acttctgcat cgtggtgtaa taataaggag	600
aatactgatg agcacacacg ctgaagaatc tgtaaatagg cggcgatgag gatgggacaa	660
aagaaagcca aggattggcg atacctgggc tggggaaact gtacgggtaa aaacttaata	720
agggggttta a	731

$<210>$ SEQ ID NO 141
<211> LENGTH: 704
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: MZA15842 Processed consensus sequence
$<400>$ SEQUENCE : 141

taaccacccg cotggctaat tgttccgacc atttttatag cotgcatggc ttacattgtc	60
ttcacgaggg tcaacaggat attcagattg cgcatttgga cttaaacca gcaaatatat	120
tacttgacag tgacatggtt cctaacttg ctgattttgg tatgtcaagg ctcttcagtc	180
tcgaacaagt ttatatcctt gcttccaagc ctatgggaac aatgtaagct cattaagttt	240
actgaatgtg ctttcttgat cttatatggc ttgcaacacc tttgaaactt atttggttta	300
aaagacacat ttaattttcc ttcattagta catgtgtcct gaagtataag gaaaccttag	360
ttcgttaact caaaagattt ctatttggct aagtttatag agaagagtat tagcatatac	420
catattaaaa agctagctat gaaaatatat ttcatagtgg gtttaatgat gatcatttga	480
tactccctct gccccaattt ataatccgtt taactttttt actctaagtt tgatcgactc	540
gtcttattca aaacttatgc gagaaaatgg aaaattcaaa gccatactta aagcatatta	600
tatgctaaat gacatcacag taaaattaa taacaattat gattttttta ataggacgaa	660

ttggtcaaag ttagggtaaa aaagtcaaac aaattataaa ttgg	704
$<210\rangle$ SEQ ID NO 142	
<211> LENGTH: 665	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: MZA1851 Processed consensus sequence	
<400> SEQUENCE: 142	
aaaaggaaa ttttttttt taaaaaaac ggaggctcta acagggctct gggtagtggc	60
ccaaactgtg ccaatatgga taatggaaga ttcttggggc agagtattaa gggaagttgt	120
ttttttcttc ttcttttggt tggtcttttt agctgaatg gatgacatga ttgcctatgt	180
tatgtattgg gtaattttag ttgtcaaaat atatctttac agctatacgc tatcgetgtg	240
ctctgagcac ctcaaaacat ccaggtgatg acatctacac atggggttgg ggaggcgeca	300
atgggacttt tttcgaagag ggccattctt ccggtggaca gctggtgagt tgctttcaga	360
ccacaactgt ttccgcttga tggcaacaat gtgcggcatg cataatcccc acaggacacc	420
attcatatgg atatggtcga actgacttgc tacttgcagg gacatggaaa cgacgtagac	480
tattttgagc ctatgatggt tccctttggc acgaatgcca gagccgtcca tgtatcgtgt	540
ggcttcaatc atactggtgc aatttacgag tgctccgagg actttgactg acgtgagact	600
tgcagacagc agatccgcat gtcttggaga cttaggttag ttatcaaata tactcgetga	660
ggaaa	665

$<210>$ SEQ ID NO 143
$<211>$ LENGTH: 698
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: MZA8761 Processed consensus sequence
$<400>$ SEQUENCE: 143
tgccaaaggg ggaacagtta aggctttata gaagggraag atttggttca ggtaactggg 60
ctcacatttg ttactatttg gaatcatagg ggttcaagca tttaaaaaga actgggatcc 120
ctaccaccag tttggagtgt tccacaaata cacttttatg tccttgggca tcgccaaggg 180
ctgctttttt ttctttgggt attcctgtta actcagatgc tcaaaaattg ggacaatatt 240
gacatgccct cttgattaga agtgtttgta gtttgtaatt tgcatcttat actttcatga 300
gtactcgagc cattgttgtg ttctcagttg atgtaatttc attatttaaa cttcttgttg 360
ggttgtctaa tggaatgcaa aaaaaatact tgaaaaatga cagatagcag atccagcagc 420
aattgaggca atggtagata aagtaattgc tgataatcca aagcaacttg agcagtaccg 480
tgctggaaaa actaagctac aaggattttt tgctggccag gtttgtcaat tgatgactag 540
cactgtttgt cccttcagct aggatgtatt atcagtgatc atatttgttt caattgatta 600
taggtgatga aagcatcgaa gggaaggcca acccagtttt gttgaataaa attcttgaaa 660
aattcttgga gagaagtttt tgctaaattt tatataaa 698
$<210\rangle$ SEO ID NO 144<212> TYPE: DNA<213> ORGANISM: Artificial Sequence

<220> FEATURE:	
<223> OTHER INFORMATION: MZA11455 Processed consensus sequence	
<400> SEQUENCE : 144	
ttgaggcaat ttaaataagc attgcaggga aggcccagta caaacgttca accttctgac	60
tgacacatgt tgtggaacta accctcagca taggagcaag agaaaatga ctgggaagag	120
aatgactggg aagagagatt gtttgcatgc acgtagcaga tatctgagag ctacagagga	180
aagctgggaa atagaagaag ctctaaaaca aggagtgttt ctggaaattc tttagttttc	240
aaaaacact ttctgaaaat gtgtgtacaa gaaaattcca ggaaggtgaa attgcttcgt	300
tgactgcagt gggaagggga aagagagaag ctagaatctc atgtcgagta atccagtaca	360
atgtgttctt ttgtctggtc taaattcttg taacagctct tcctatgatg gaagaatcca	420
ttcaacaatt ccacctatga ttactggatt gagtatgttg aataggttgg ttgaggctat	480
ctagtaattt tatgactatt taatttattt ataactattt a	521

$<210\rangle$ SEQ ID NO 145
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer C00060-01-F1
<400> SEQUENCE: 145
ggtcttcgcc ggectttc
$<210>$ SEQ ID NO 146
$<211>$ LENGTH: 25
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: Oligonucleotide primer c00060-02-F1
$<400>$ SEQUENCE : 146
ggtcagtagc taattcttgc agctc
$<210>$ SEQ ID NO 147
$<211>$ LENGTH: 17
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: Oligonucleotide primer C00060-01-F-Taq
$<400>$ SEQUENCE: 147
tcttcgecgg cotttct 17
$<210>$ SEQ ID NO 148
$<211>$ LENGTH: 26
$<212>$ TYPE $:$ DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide primer C00060-02-F-Taq
$<400>$ SEQUENCE $: 148$
cagagcaatt gtttatcaag aaagct 26

```
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer C00060-01-R1
<400> SEQUENCE: 149
```

gggaccgtcg atgccgac

```
<210> SEQ ID NO 150
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer C00060-02-R1
<400> SEQUENCE: 150
```

tttcctcaag aattggccca tagtaacaa
$<210>$ SEQ ID NO 151
$<211>$ LENGTH: 22
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide primer C00060-01-R-Taq
$<400>$ SEQUENCE: 151
gcggatcaga tacagacgaa ca
$<210\rangle$ SEQ ID NO 152
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer C00060-02-R-Taq
$<400>$ SEQUENCE: 152
ggttgaccat cacatttctt caga

```
<210> SEQ ID NO 153
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer FLP111RB
<400> SEQUENCE: 153
```

caggttatac tcgaccggaa tcaaa
$<210>$ SEQ ID NO 154
<211> LENGTH: 30
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide probe C00060-01-PCA
<400> SEQUENCE: 154
acggacgcgg aggaacagga agacgattca
30
$<210>$ SEQ ID NO 155
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Oligonucleotide probe C00060-02-PCA
<400> SEQUENCE : 155

```
acggacgcgg agctcgaccg gaatcaaaa
```

```
<210> SEQ ID NO 156
```

<210> SEQ ID NO 156
<211> LENGTH: 26
<211> LENGTH: 26
<212> TYPE: DNA
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide probe C00060-01-P-Taq
<223> OTHER INFORMATION: Oligonucleotide probe C00060-01-P-Taq
<400> SEQUENCE: 156

```
<400> SEQUENCE: 156
```

cctctacccg gcacactgaa tcgtct 26
$<210>$ SEQ ID NO 157
<211> LENGTH: 32
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223 > OTHER INFORMATION: Oligonucleotide probe C00060-02-P-Taq
<400> SEQUENCE: 157
cccaacaaa tattcaggtt atactcgacc gg 32
$<210\rangle$ SEQ ID NO 158
<211> LENGTH: 259
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: SNP Sequence for Marker PHD0001-01
<400> SEQUENCE: 158
tttagaaact cagctagtgc ttttggcaac caaccccac agccaaacag ctgcatgtct 60
agaggtagag gagtagactc ctcacaccgg gtaagtctag ctgagtatta gtatactcag 120
ccttgcttgt ggcataattt ttacaggttc tctggaggaa atggttgctg gagtgacttg 180
gcegtccatc ttgccaccgg gttggactgt cgagtgggac cetgccttgg ctgaggagga 240
gcatgaggag tgatgggac 259

```
<210> SEQ ID NO 159
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader Oligo for Marker PHD0001-01
<400> SEQUENCE : 159
```

tgccacaagc aaggctgagt atactaatac tcat 34

```
<210> SEQ ID NO 160
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader Probe for Marker PHD0001-01
<400> SEQUENCE: 160
```

cgcgccgagg getagactta cccggt
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence

```
<220> FEATURE:
<223> OTHER INFORMATION: Forward Oligonucleotide Primer for Marker
    PHD0001-01
<400> SEQUENCE: 161
tagtgctttt ggcaaccaaa cc
```

```
<210> SEQ ID NO 162
```

<210> SEQ ID NO 162
<211> LENGTH: 22
<211> LENGTH: 22
<212> TYPE: DNA
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<220> FEATURE:
<223> OTHER INFORMATION: Reverse Oligonucleotide Primer for Marker
<223> OTHER INFORMATION: Reverse Oligonucleotide Primer for Marker
PHDO001-01
PHDO001-01
<400> SEQUENCE: 162

```
<400> SEQUENCE: 162
```

ccatttcctc cagagaacct gt

```
<210> SEQ ID NO 163
<211> LENGTH: 259
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNP Sequence for Marker PHD0002-01
<400> SEQUENCE: 163
```

ggcttcccca tctctctatt tatttaccgt tagtttattt cogctgcact tcgaacaatg 60
atggttactt ttgcaaaac tccgaggatg atgatgatgg tgatgtaata atttaatact 120
ctgacatgta tggttttatg ctttattgta tttgctctgt gactcacctt cgagtgagat 180
tgtggtactt gatcctgtca gtggccgtgt cggactagat cogagggatt gacgggttat 240
tcccaattaa gtgtggtct 259

```
<210> SEQ ID NO 164
211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader Oligo for Marker PHD0002-01
<400> SEQUENCE: 164
```

ggccactgac aggatcaagt accacaatct cactct
<210> SEQ ID NO 165
<211> LENGTH: 27
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader Probe for Marker PHD0002-01
<400> SEQUENCE: 165
cgcgccgagg gaaggtgagt cacagag 27

```
<210> SEQ ID NO 166
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Forward Oligonucleotide Primer for Marker
    PHD0002-01
<400> SEQUENCE: 166
```


ggatgatgat gatggtgatg taa

```
<210> SEQ ID NO 167
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Reverse Oligonucleotide Primer for Marker
        PHDO002-01
<400> SEQUENCE: 167
```

ccgtcaatcc ctcggatcta gt
$<210>$ SEQ ID NO 168
<211> LENGTH: 269
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNP Sequence for Marker PHD0003-01
<400> SEQUENCE: 168
acgctgctgc gacaaggcec tcgccegcat ccccactcga ggggcgagga caagctatca 60
aagccgaaga gccggaggtc cgaccgcagg tggcgccgag aaaccttctc tggctgccac 120
cacctcagca cogacgacgg cagccacctg cccaccaaca cocgccgggc cgtgaccaat 180
gtgctcggtt ggcactgttg ggtcatgcgc agggttgcct cgagtcgcgg caccggttcc 240
gcagtcgaga aggcgcggga ggaggcgcg 269
$<210>$ SEQ ID NO 169
$<211>$ LENGTH: 21
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Invader Oligo for Marker PHD0003-01
$<400>$ SEQUENCE : 169
tggctgccgt cgtcggtgct t

```
<210> SEQ ID NO 170
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader Probe for Marker PHD0003-01
<400> SEQUENCE : }17
```

cgcgccgagg gaggtggtgg cagc

```
<210> SEQ ID NO 171
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Forward Oligonucleotide Primer for Marker
    PHD0003-01
```

<400> SEQUENCE: 171
ggacaagcta tcaaagccga ag

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Reverse Oligonucleotide Primer for Marker
    PHD0003-01
<400> SEQUENCE: 172
```

caaccgagca cattggtcac
$<210>$ SEQ ID NO 173
<211> LENGTH: 279
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNP Sequence for marker PHD0004-01
<400> SEQUENCE: 173
cacgaacacc ccaaaccaca tgccgaggct gtagagtcgc cccagggttg aatcgaccga 60
ggcggtcatt tctccctga ccacggcgaa gagcggcacg gtgcgcaact ggttttcctg 120
atagtgggca ccggcgtgaa attaggccgc caactcgcgc cecgatgcac cgacccacaa 180
tcgccaaggc ttctgctgcg caaacgagtt ccccgctgtg atggccgaag cacagcacag 240
caggtggacg gcagcggacc agtcgcggcg gcgcacaga 279

```
<210> SEQ ID NO 174
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader Oligo for marker PHD0004-01
<400> SEQUENCE: 174
```

tggeggccta atttcacgcc ggtt
$<210>$ SEQ ID NO 175
$<211>$ LENGTH: 28
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Invader Probe for marker PHD0004-01
$<400>$ SEQUENCE : 175
cgcgccgagg geccactatc aggaaaac
$<210>$ SEQ ID NO 176
<211> LENGTH: 21
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Forward oligonucleotide primer for marker
PHD0004-01
$<400>$ SEQUENCE : 176
ggtcatttct cecctgacca c

```
<210> SEQ ID NO 177
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Reverse oligonucleotide primer for marker
    PHDO004-01
```

<400> SEQUENCE: 177
agcagaagcc ttggcgatt 19

$<210>$ SEQ ID NO 178

<211> LENGTH: 300

$<212>$ TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: SNP Sequence for marker PHD0005-01

$<400>$ SEQUENCE : 178
ttggggcgag cagggaggag aagaggaaca gcggcttcgg gtgttatagg cgcagggtaa60
aggaggggac gaacaggtca cgctggcgcg atgccgcacc tatatgacga gtccgggctg 120
aggacgttaa ccgggcggcg ctagaatcct ggggcttcgg cagaggccgt tgcgggagta 180
gcggcgggca ggtgtgccgc cagcgctgta cgcggggtcg gggcacggag gttgttgcgc 240
taggggtccg cgatttccgt gaatcgggca cgagctcacc agcgccaccg gttttgcgca 300
$<210>$ SEQ TD NO 179
<211> LENGTH: 2

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Invader Oligo for marker PHD0005-01

<400> SEQUENCE: 179
cgctactccc gcaacggcct ctt
$<210>$ SEQ ID NO 180
$<211>$ LENGTH: 22
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: Invader Probe for marker PHD0005-01
$<400>$ SEQUENCE : 180
cgcgccgagg gccgaagccc ca 22

<210> SEQ ID NO 181

<211> LENGTH: 22

<212> TYPE: DNA

$<213>$ ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Forward oligonucleotide primer for marker

 PHD0005-01
 <400> SEQUENCE: 181
ctatatgacg agtccgggct ga
$<210\rangle$ SEQ ID NO 182
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Reverse oligonucleotide primer for marker
PHD0005-01
<400> SEQUENCE: 182
acccctagcg caacaacct

```
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNP sequence for marker PHD0006-01
<400> SEQUENCE: 183
```

cgaagcggag gaaatgtagg gagggagaag aagaccactg coggctgggt ggataagtta 60
gctgggtgac cetggaatgt ggggcccgcc tggcggcgac gegaaggcca cacgagcgag 120
tgaggggcgt tgggtcgtgc ggtatcggaa aaaaaagaat gggccgaaag tgaggattcg 180
gcccaagtag tgttttattg tttttctttt tcttattttt tttcaaattc aactttaaat 240
tcccatttaa attcaaattt agtggtggat ctatcttcac attaatttcc 290

```
<210> SEQ ID NO 184
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader oligo for marker PHD0006-01
<400> SEQUENCE: 184
```

tcgctcgtgt ggccttcgeg tct
$<210>$ SEQ ID NO 185
<211> LENGTH: 21
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader probe for marker PHD0006-01
$<400>$ SEQUENCE : 185
cgcgccgagg gcegccagge g

$<210>$	SEQ ID NO 186
$<211>$	LENGTH: 22
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE $:$
$<223>$	OTHER INFORMATION: Forward oligonucleotide primer for marker
	PHDOO06-01
$<400>$	SEQUENCE : 186

ggctgggtgg ataagttagc tg

```
<210> SEQ ID NO 187
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Reverse oligonucleotide primer for marker
    PHD0006-01
<400> SEQUENCE: 187
```

cactttcggc ccattctttt t
<211> LENGTH: 300
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
$<220>$ FEATURE:
<223> OTHER INFORMATION: SNP Sequence for marker PHD0007-01
<400> SEQUENCE: 188
caacttaaac atggcatggg tgaacttatt tattttcaat atttatttta ttaaaactag 60
tgctatgttt ctccaaatta gagtttaat gctatgtgtc ccttaatata ttaatatatg 120
ggtactaaca catttatttt actatccaca aatgcacaat caagtaaaaa ctcagcatga 180
tgcataattt atttgagtgt cttctattaa ttatttattg tatagatgag gtgtccacat 240
gaaatggtaa atagggataa cccacacaca tgtaaaggaa tataatctct ccttttagat 300
$<210>$ SEQ ID NO 189

$$
<211\rangle \text { LENGTH: } 58
$$

$$
<212\rangle \text { TYPE: DNA }
$$

$$
<213>\text { ORGANISM: Artificial Sequence }
$$

$$
<220>\text { FEATURE: }
$$

<223> OTHER INFORMATION: Invader oligo for marker PHD0007-01

$$
<400>\text { SEQUENCE : } 189
$$

tttctccaaa ttagagttta aatgctatgt gtcccttaat atattaatat atgggtat 58
$<210>$ SEQ ID NO 190
$<211>$ LENGTH: 36
$<212>$ TYPE: DNA
220> <223> OTHER INFORMATION: Invader probe for marker PHD0007-01
<400> SEQUENCE: 190
cgcgccgagg ctaacacatt tattttacta tccaca 36

$<210\rangle$ SEQ ID NO 191

<211> LENGTH: 22

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Forward oligonucleotide primer for marker

 PHD0007-01
 <400> SEQUENCE: 191
ttaaacatgg catgggtgaa ct22
<210> SEQ ID NO 192

<211> LENGTH: 24

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: Reverse oligonucleotide primer for marker

 PHD0007-01
 $<400>$ SEQUENCE: 192
tgcatcatgc tgagttttta cttg
$<210>$ SEQ ID NO 193
$<211>$ LENGTH: 274
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: SNP Sequence for marker PHD0008-01
$<400>$ SEQUENCE : 193
cggcgqccac aagtcagtcg ccgaaaatta cctqttcttt tcgqtgqgcc tctgacggcc 60
gccgaaaata acaagtgccg aaaatagtat ttaaaatac aaaaataac agaaaattca 120
tacaataaca qaaaattcat acttgagtcc acaacataaa acttaagtcc atacaaacat 180

```
aaagtccaca aatagtccat acaaacataa agtccacaaa tagtccatta caaagcacaa 240
tgccgcacaa agctaactcc atcacatatc gggg 274
<210> SEQ ID NO 194
<211> LENGTH: 51
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader oligo for marker PHD0008-01
<400> SEQUENCE: 194
tttgtatgga ctatttgtgg actttatgtt tgtatggact taagttttat t
\(<210>\) SEQ ID NO 195
\(<211>\) LENGTH: 29
\(<212>\) TYPE: DNA
\(<213>\) ORGANISM: Artificial Sequence
\(<220>\) FEATURE:
\(<223>\) OTHER INFORMATION: Invader probe for marker PHD0008-01
\(<400>\) SEQUENCE: 195
cgcgccgagg gttgtggact caagtatga 29
<210> SEQ ID NO 196
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Forward oligonucleotide primer for markerPHDOO08-01
<400> SEQUENCE: 196
```

cgaaatac aagtgccgaa aa 22

$<210>$	SEQ ID NO 197
$<211>$	LENGTH: 23
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$ FEATURE:	
$<223>$ OTHER INFORMATION: Reverse oligonucleotide primer for marker	
	PHDOO08-01
$<400>$	SEQUENCE : 197

ggcattgtgc tttgtaatgg act 23

```
<210> SEQ ID NO 198
<211> LENGTH: 259
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNP sequence for marker PHD0009-01
<400> SEQUENCE: 198
```

cgttggagtt gtgtccacta ccttcagaag cgaaaaactc gttgacgaag tcgtgtaacg 60
ggtttagatt ctaaagaaaa aagaagacat taataacgat attagttaca tgtatgacca 120
ctattcaac aaattgtttc tcaactaac ctctcatgga gtagctccot cccotgcata 180
tgctcctcct ggtgctggta tgagcggtgg tggcgtgttg tggcccatga ccccggatcc 240
ctacaaaatc aagtttagt 259

```
<210> SEQ ID NO 199
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader oligo for marker PHD0009-01
<400> SEQUENCE : 199
```

gggagctact ccatgagagg ttagtttgag aaacaatttg tttgaatat

```
<210> SEQ ID NO 200
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader probe for marker PHD0009-01
<400> SEQUENCE: 200
```

cgcgccgagg gtggtcatac atgtaactaa tatc

$<210>$	SEQ ID NO 201
$<211>$	LENGTH: 24
$<212>$	TYPE : DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE $:$
$<223>$	OTHER INFORMATION: Forward oligonucleotide primer for marker
	PHDOO09-01
$<400>$	SEQUENCE : 201

aagtcgtgta acgggtttag attc

```
<210> SEQ ID NO 202
```

<211> LENGTH: 19
<212> TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Reverse oligonucleotide primer for marker
PHD0009-01
<400> SEQUENCE: 202
cagcaccagg aggagcata
$<210\rangle$ SEQ ID NO 203
<211> LENGTH: 250
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNP sequence for marker PHD0010-01
$<400>$ SEQUENCE: 203
aaagatttga aattagattg atacaaacga caagtcttaa ctaaattgaa gcacctgagg 60
tggaggtggc ggagcatgta atccccactg aggcatcgac ggctgaaact gagggaaaac 120
aatggttgt tgttgtgcet gctgtggaaa ccaagaccgt tgcaaatata atatgttagt 180
tatagaacca atatcgagcg tgttgagaag aaataagaca ctcacgttca ttgcttgttg 240
ggcctgtgcg 250

```
<210> SEQ ID NO 204
<211> LENGTH: 34
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader oligo for marker PHD0010-01
```

```
<400> SEQUENCE: 204
gcaggcacaa caacaaccat ttgttttccc tcat 34
<210> SEQ ID NO 205
<211> LENGTH: 26
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader probe for marker PHD0010-01
<400> SEQUENCE: 205
cgcgccgagg gtttcagccg tcgatg 26
\begin{tabular}{rl}
\(<210>\) & SEQ ID NO 206 \\
\(<211>\) & LENGTH: 22 \\
\(<212>\) & TYPE: DNA \\
\(<213>\) & ORGANISM: Artificial Sequence \\
\(<220>\) & FEATURE: \\
\(<223>\) & OTHER INFORMATION: Forward oligonucleotide primer for marker \\
& PHDO010-01 \\
\(<400>\) & SEQUENCE : 206
\end{tabular}
ggagcatgta atccccactg ag
<210> SEQ ID NO 207
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Reverse oligonucleotide primer for marker
        PHD0010-01
<400> SEQUENCE: 207
```

tctcaacacg ctcgatattg gt

```
<210> SEQ ID NO 208
<211> LENGTH: 259
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNP sequence for marker PHD0011-01
<400> SEQUENCE: 208
```

atttccggcg gttgtggcag gccgccaaaa atagcagata attttcggcg gctataggtg 60
ggccatcgaa aattacattg gccgccgaaa atgttcaaca gtgttgttgt gatagcaacc 120
aacaggtatg agccacaata ctacacattg caacttggga aagtaattta ctggtcacca 180
tatttccgaa tagctggtta tgatatgata tttacaaatc ttccaattca ttccttcagc 240
ttaaatgaat ctcattaat 259
$<210>$ SEQ ID NO 209
$<211>$ LENGTH: 40
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: Invader oligo for marker PHD0011-01
$<400>$ SEQUENCE : 209

```
<210> SEQ ID NO 210
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader probe for marker PHD0011-01
<400> SEQUENCE: 210
```

cgcgccgagg getatcacaa caacactgt 29

```
<210> SEQ ID NO 211
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Forward oligonucleotide primer for marker
        PHD0011-01
```

<400> SEQUENCE: 211
taggtgggcc atcgaaaatt ac 22

$<210>$	SEQ ID NO 212
$<211>$	LENGTH: 24
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Reverse oligonucleotide primer for marker
	\quad PHDOO11-01
$<400>$	SEQUENCE : 212

ttcggaaata tggtgaccag taaa 24

$<210>$ SEQ ID NO 213

<211> LENGTH: 269

<212> TYPE: DNA

<213> ORGANISM: Artificial Sequence

<220> FEATURE:

<223> OTHER INFORMATION: SNP sequence for marker PHD0012-01

$<400>$ SEQUENCE: 213
ttgtaaaaa caaggttttg taaatggatt tattttatg ctcaaactta aattgaacaa 60
ttcaatcacg cacaattgct atgctgacag aagtttatga caagtttgag cataatgttg 120
taataataat gagaccettc atgatcttgt tgttattcca catttccatc tctcctcgaa 180
gcatagcagt gcccaccatt ttctaccgag tcagcaacaa taatctaggc tgaaagaaca 240
atggacaaca gcttcgtgtg ttgtccatc 269
$<210>$ SEQ ID NO 214
$<211>$ LENGTH: 51
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE :
$<223>$ OTHER INFORMATION: Invader oligo for marker PHD0012-01
$<400>$ SEQUENCE : 214
gtggaataac aacaagatca tgaagggtct cattattatt acaacattat t

```
<210> SEQ ID NO 215
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader probe for marker PHD0012-01
```

```
<400> SEQUENCE: 215
cgcgccgagg gctcaaactt gtcataaact t
<210> SEQ ID NO 216
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Forward oligonucleotide primer for marker
    PHDO012-01
<400> SEQUENCE: 216
tcaatcacgc acaattgcta tg
```

$<210>$	SEQ ID NO 217
$<211>$	LENGTH: 22
$<212>$	TYPE: DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Reverse oligonucleotide primer for marker
	PHDO012-01
$<400>$	SEQUENCE : 217

agaaaatggt gggcactgct at
$<210>$ SEQ ID NO 218
$<211>$ LENGTH: 259
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: SNP sequence for marker PHD0013-01
$<400>$ SEQUENCE : 218
tacaatattt gcctatggtg ttacaaggag tggaaagata catacgatgc atgtgggaaa 60
acttattaca atatttttcc tttaatagt tttacctttg tagagtgtat gtttctagtc 120
ataggctttg aagtatgcct catgctacca attaacatgc aaaacttgg actaatctta 180
ctgatactaa gatctaacat agttgtcaac ctccttggtt ggacatttta gttgcttttg 240
ttgtattaag cttttaatt 259

```
<210> SEQ ID NO 219
<211> LENGTH: 45
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader oligo for marker PHD0013-01
<400> SEQUENCE: 219
```

ccaagttttt gcatgttaat tggtagcatg aggcatactt caaat

```
<210> SEQ ID NO 220
<211> LENGTH: 31
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader probe for marker PHD0013-01
<400> SEQUENCE: 220
```

```
<210> SEQ ID NO 221
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Forward oligonucleotide primer for marker
    PHD0013-01
<400> SEQUENCE: 221
```

acatacgatg catgtgggaa aa
$<210\rangle$ SEQ ID NO 222
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
$<223>$ OTHER INFORMATION: Reverse oligonucleotide primer for marker
PHD0013-01
$<400>$ SEQUENCE : 222
aatgtccaac caaggaggtt ga

```
<210> SEQ ID NO 223
<211> LENGTH: 269
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNP sequence for marker PHD0014-01
<400> SEQUENCE: 223
```

attggatttg tggtggggtg cgtgggcggg catcacgcgt ggcgatggca ctggaagcac 60
ggggaacagg gcaggtgtag ggtgggggca ggcgatggaa tggcgcggca tgcttgcggc 120
cgattgtcct tgcgtggatg gaggggattg cgggctcgag gatgaggatg gcgggatgcg 180
cgcgcctttc gtcgatcgaa cgtgggcacg ggacgaggat tgcattgcgc ggccacgcgg 240
gggcgagatt ggegtcgtcg gtgggatgt 269
$<210>$ SEQ ID NO 224
$<211>$ LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader oligo for marker PHD0014-01
$<400>$ SEQUENCE: 224
ccgccatcct catcctcgag coct
$<210>$ SEQ ID NO 225
$<211>$ LENGTH: 25
$<212>$ TYPE: DNA
$<213>$ ORGANISM: Artificial Sequence
$<220>$ FEATURE:
$<223>$ OTHER INFORMATION: Invader probe for marker PHD0014-01
$<400>$ SEQUENCE : 225
cgegcegagg gcaatcccet ccatc

```
<210> SEQ ID NO 226
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Forward oligonucleotide primer for marker
```

PHD0014-0
<400> SEQUENCE: 226
cttgcggccg attgtcct

```
<210> SEQ ID NO 227
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Reverse oligonucleotide primer for marker
    PHD0014-01
<400> SEQUENCE : }22
```

accgacgacg ccaatctc

```
<210> SEQ ID NO 228
<211> LENGTH: 210
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: SNP sequence for marker PHD0015-01
<400> SEQUENCE: 228
```

aattgctatt ttagccettc taacgtgggc tctctgctat tatgtgaccc tctgtctatg 60
acttgtgtga ccatttgtgt ctatgatttg tgggactggt ggtaaaatag agaagttcac 120
aactgagagt gacaaaatag caaattctcc cacgggggcg ggggcacgac gcaccagtgt 180
ggacgtccac actatagcct tatagagtag 210
$<210>$ SEQ ID NO 229
<211> LENGTH: 39
$<212>$ TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader oligo for marker PHD0015-01
$<400>$ SEQUENCE: 229
cccgtgggag aatttgctat tttgtcactc tcagttgtt
$<210>$ SEQ ID NO 230
<211> LENGTH: 32
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Invader probe for marker PHD0015-01
$<400>$ SEQUENCE : 230
cgcgccgagg gaacttctct attttaccac ca
32

$<210>$	SEQ ID NO 231
$<211>$	LENGTH: 24
$<212>$	TYPE : DNA
$<213>$	ORGANISM: Artificial Sequence
$<220>$	FEATURE:
$<223>$	OTHER INFORMATION: Forward oligonucleotide primer for marker
	PHDO015-01

$<400>$ SEQUENCE : 231
tgacttgtgt gaccatttgt gtct 24
$<210\rangle$ SEQ ID NO 232

```
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Reverse oligonucleotide primer for marker
    PHD0015-01
<400> SEQUENCE: 232
gtccacactg gtgcqtcgt
```


What is claimed is:

1. A process of identifying a corn plant that displays newly conferred or enhanced resistance to Colletotrichum infection, the process comprising detecting in the corn plant alleles of at least two markers, wherein at least one of said markers is on or within the chromosomal interval below UMC2041 and above the Rcg1 gene, and at least one of said markers is on or within the chromosomal interval below the Rcg1 gene and above UMC2200
2. The process of claim 1, wherein at least one of said markers is on or within the chromosomal interval below UMC1086 and above the Rcg 1 gene, and at least one of said markers is on or within the chromosomal interval below the Rcg1 gene and above UMC2200
3. The process of claim 1, wherein at least one of said markers is on or within the chromosomal interval below UMC2285 and above the Rcg1 gene, and at least one of said markers is on or within the chromosomal interval below the Rcg1 gene and above UMC2187.
4. The process of claim 1, wherein at least one of said markers is within the chromosomal interval below UMC2285 and above the Rcg1 gene, and at least one of said markers is within the chromosomal interval below the Rcg1 gene and above UMC15a.
5. The process of claim 4 , further comprising selecting for at least four markers, wherein at least two of said markers are within the chromosomal interval below UMC2285 and above the Rcg 1 gene, and at least two of said markers are within the chromosomal interval below the Rcgl gene and above UMC15a.
6. The process of claim 1, wherein at least one of said markers is on or within SEQ ID NO.137, wherein the at least one marker is capable of detecting a polymorphism located at a position selected from the group consisting of:
(a) the position in SEQ ID NO: 137 corresponding to nucleotides between 7230 and 7535 ;
(b) the position in SEQ ID NO: 137 corresponding to nucleotides between 11293 and 12553
(c) the position in SEQ ID NO: 137 corresponding to nucleotides between 25412 and 29086; and
(d) the position in SEQ ID NO: 137 corresponding to nucleotides between 43017 and 50330 .
7. The process of claim 1 , wherein the at least one marker on or within the chromosomal interval below UMC2041 and above the Rcg1 gene is selected from the markers listed in Table 16, and wherein at least one marker on or within the chromosomal interval below the Rcg1 gene and above UMC2200 is selected from the markers listed in Table 16.
8. The process of claim 1 , further comprising selecting for at least four markers, wherein at least two of said markers are on or within the chromosomal interval below UMC2041 and above the Rcg1 gene, and at least two of said markers are on or within the chromosomal interval below the Rcg1 gene and above UMC2200.
9. The process of claim 8, wherein the at least two markers on or within the chromosomal interval below UMC2041 and above the Rcg 1 gene are selected from the markers listed in Table 16, and wherein the at least two markers on or within the chromosomal interval below the Rcg1 gene and above UMC2200 are selected from the markers listed in Table 16.
10. The process of claim 1, further comprising selecting for at least six markers, wherein at least three of said markers are on or within the chromosomal interval below UMC2041 and above the Rcg1 gene, and at least three of said markers are on or within the chromosomal interval below the Rcg1 gene and above UMC2200.
11. The process of claim 10 , wherein the at least three markers on or within the chromosomal interval below UMC2041 and above the Rcg1 gene are selected from the markers listed in Table 16, and wherein the at least three markers on or within the chromosomal interval below the Rcg1 gene and above UMC2200 are selected from the markers listed in Table 16.
12. The process of claim 1 , wherein the process further comprises detecting at least two or more of (a) allele 7 at MZA11123, (b) allele 2 at MZA2591, and (c) allele 8 at MZA3434
13. A corn plant produced by the process of claim 12.
14. A seed of the corn plant of claim 13
15. The corn plant of claim 1 , wherein the corn plant does not comprise the same alleles as MP305 at or above UMC2041 or at or below UMC2200 at the loci shown in Table 16
16. The process of claim 1 , further comprising electronically transmitting or electronically storing data representing the detected alleles in a computer readable medium.
17. The process of claim 1 , further comprising detecting in the corn plant the presence or absence of at least one marker within the Rcg1 gene.
18. The process of claim 17 , further comprising selecting for at least four markers, wherein at least two of said markers are within the chromosomal interval below UMC2285 and above the Rcg1 gene, and at least two of said markers are within the chromosomal interval below the Rcg1 gene and above UMC15a.
19. The process of claim 17, wherein the Rcg1 gene is introgressed from a donor corn plant into a recipient corn plant to produce an introgressed corn plant.
20. The process of claim 19, wherein the donor corn plant is MP305 or DE811ASR(BC5).
21. The process of claim 19 , wherein the introgressed corn plant is selected for a recombination event below the Rcg1 gene and above UMC15a, so that the introgressed corn plant retains a first MP305 derived chromosomal interval below the Rcg1 gene and above UMC15a, and does not retain a second MP305 derived chromosomal interval at and below UMC15a.
22. An introgressed corn plant produced by the process of claim 21.
23. A seed of the introgressed corn plant of claim 22.
24. The introgressed corn plant produced by the process of claim 21, wherein the introgressed corn plant is an Rcg1 locus conversion of PH705, PH5W4, PH51K or PH87P, or a progeny thereof.
25. A process of identifying a corn plant that displays enhanced resistance to i Colletotrichum infection, the process comprising detecting in the corn plant the presence or absence of at least one marker at the Rcg1 locus, and selecting the corn plant in which the at least one marker is present.
26. The process of claim 25 , wherein the at least one marker is on or within SEQ ID NO: 137.
27. The process of claim 26 , wherein the at least one marker is capable of detecting a polymorphism located at a position selected from the group consisting of:
(a) the position in SEQ ID NO: 137 corresponding to nucleotides between 1 and 536;
(b) the position in SEQ ID NO: 137 corresponding to nucleotides between 7230 and 7535;
(c) the position in SEQ ID NO: 137 corresponding to nucleotides between 11293 and 12553;
(d) the position in SEQ ID NO: 137 corresponding to nucleotides between 25412 and 29086; and
(e) the position in SEQ ID NO: 137 corresponding to nucleotides between 43017 and 50330 .
28. The process of claim 25 , wherein the at least one marker is on or within the Rcg1 coding sequence.
29. The process of claim 28, wherein the Rcg1 coding sequence comprises a nucleotide sequence encoding a polypeptide, wherein the polypeptide has an amino acid sequence of at least 95% identity when compared to SEQ ID NO:3 based on the Needleman-Wunsch alignment algorithm.
30. The process of claim 28 , wherein the at least one marker is on or within the polynucleotide set forth in SEQ ID NO: 1 .
31. The process of claim 28 , wherein the at least one marker detects a single nucleotide polymorphism at a position in the nucleotide sequence set forth as SEQ ID NO: 1 corresponding to one or more of position 413, 958, 971, $1099,1154,1235,1250,1308,1607,2001,2598$, and 3342.
32. The process of claim 28 , wherein the at least one marker is an SNP marker selected from the group consisting of C00060-01 and C00060-02.
33. The process of claim 28 , wherein the at least one marker is an FLP marker on an amplicon generated by a primer pair comprising a first and second primer, wherein the first primer is selected from the group consisting of:
(a) the sequence set forth in SEQ ID NO: 35 and the complement thereof;
(b) the sequence set forth in SEQ ID NO: 37 and the complement thereof;
(c) the sequence set forth in SEQ ID NO: 39 and the complement thereof; and
(d) the sequence set forth in SEQ ID NO: 41 and the complement thereof;
and wherein the second primer is selected from the group consisting of
(a) the sequence set forth in SEQ ID NO: 36 and the complement thereof;
(b) the sequence set forth in SEQ ID NO: 38 and the complement thereof;
(c) the sequence set forth in SEQ ID NO: 40 and the complement thereof; and
(d) the sequence set forth in SEQ ID NO: 42 and the complement thereof.
34. The process of claim 25 , wherein the at least one marker detects an mRNA sequence derived from the Rcg1 mRNA transcript and unique to Rcg1.
35. The process of claim 25, wherein said process further comprises detecting in the corn plant the presence or absence of at least two markers within the Rcg1 locus.
36. The process of claim 35 , wherein the at least two markers are C00060-01 and C00060-02.
37. The process of claim 36, wherein the Rcg1 locus is introgressed from a donor corn plant into a recipient corn plant to produce an introgressed corn plant.
38. The process of claim 37 , wherein the donor corn plant is MP305 or DE811ASR(BC5).
39. An introgressed corn plant produced by the process of claim 38.
40. A seed of the introgressed corn plant of claim 39.
41. The introgressed corn plant produced by the process of claim 38, wherein the introgressed corn plant is an Rcg1 locus conversion of PH705, PH5W4, PH51K or PH87P, or a progeny thereof.
42. The process of claim 25 , further comprising electronically transmitting or electronically storing data representing the presence or absence of the at least one marker in a computer readable medium.
