WO2013156331A1 - Synergistic compositions comprising pyraclostrobin and an insecticidal compound - Google Patents

Synergistic compositions comprising pyraclostrobin and an insecticidal compound Download PDF

Info

Publication number
WO2013156331A1
WO2013156331A1 PCT/EP2013/057285 EP2013057285W WO2013156331A1 WO 2013156331 A1 WO2013156331 A1 WO 2013156331A1 EP 2013057285 W EP2013057285 W EP 2013057285W WO 2013156331 A1 WO2013156331 A1 WO 2013156331A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
chloro
phenyl
pyridyl
compound
Prior art date
Application number
PCT/EP2013/057285
Other languages
French (fr)
Inventor
Markus Gewehr
Original Assignee
Basf Se
Basf Schweiz Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Basf Schweiz Ag filed Critical Basf Se
Publication of WO2013156331A1 publication Critical patent/WO2013156331A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N47/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
    • A01N47/08Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
    • A01N47/10Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
    • A01N47/24Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing the groups, or; Thio analogues thereof

Definitions

  • the present invention relates to synergistic mixtures comprising
  • the invention furthermore relates to the following mixtures comprising comprising
  • the invention relates to a method for controlling pests, this refers to includes animal pests and harmful fungi, using the inventive mixtures and to the use of compound I and compound II (or the compounds inventive ternary and quaternary mixtures) for preparing such mixtures, and also to compositions comprising such mixtures.
  • the invention relates to a method for controlling harmful fungi, using the inventive mixtures of compound I and II (or the inventive ternary and quaternary mixtures) and to the use of compound I and the compound II (or the compounds inventive ternary and quaternary mix- tures) as defined above for preparing such mixtures, and also to compositions comprising such mixtures.
  • the present invention provides methods for the control of animal pests (such as insects, acarids or nematodes) comprising contacting the animal pest (the insect, aca- rid or nematode) or their food supply, habitat, breeding grounds or their locus with a pesticidally effective amount of the inventive mixtures.
  • animal pests such as insects, acarids or nematodes
  • the present invention also relates to a method of protecting plants from attack or infestation by animal pests (insects, acarids or nematodes) comprising contacting the plant, or the soil or water in which the plant is growing, with a pesticidally effective amount of the inventive mixture.
  • animal pests insects, acarids or nematodes
  • the present invention also comprises a method for protection of plant propagation material (preferably seed) from harmful pests, such as fungi or insects, arachnids or nematodes comprising contacting the plant propagation materials (preferably seeds) with an inventive mixture in pesticidally effective amounts
  • plant propagation material is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. pota- toes), which can be used for the multiplication of the plant.
  • vegetative plant material such as cuttings and tubers (e. g. pota- toes)
  • These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring.
  • the term propagation material de- notes seeds.
  • the present invention also comprises a method for protection of plant propagation material (preferably seed) from harmful fungi comprising contacting the plant propagation materials (preferably seeds) with the inventive mixture in pesticidally effective amounts
  • the invention relates to a method for controlling harmful fungi using the inventive mixtures and to the use of the compound I and the compound II (or the compounds inventive ternary and quaternary mixtures) for preparing such mixtures, and also to compositions comprising such mixtures.
  • the present invention further relates to plant-protecting active ingredient mixtures having syner- gistically enhanced action of improving the health of plants and to a method of applying such inventive mixtures to the plants.
  • C-1 dimethyl-phthalamide
  • C-5 ethanimine
  • Pyflubumide which is N-[3-isobutyl-4-[2,2,2-trifluoro-1-methoxy-1 -(trifluoromethyl)ethyl]phenyl]- 1 ,3,5-trimethyl-N-(2-methylpropanoyl)pyrazole-4-carboxamide, as well as its pesticidal action is known from WO 07/020986.
  • Cycloxaprid which is 5-((6-Chloro-pyridin-3-yl)[3H2]-methyl)-7-nitro -1 1 -oxa-2,5-diaza- tricyclo[6.2.1.02, 6]undec-6-ene, as well as its pesticidal action is known from WO 2010/069266 and WO 201 1/069456.
  • Fufenozide which N'-tert-butyl-N'-(3,5-dimethylbenzoyl)-2,7-dimethyl-2,3-dihydrobenzofuran-6- carbohydrazide, as well as its pesticidal action is known from CN1313276A.
  • Fluxapyroxad is known from WO 2006/087343 and can be prepared in the manner described.
  • the remaining compounds II as well as their pesticidal action and methods for producing them are generally known. For instance, they may be found in the e-Pesticide Manual V5.2 (ISBN 978 1 901396 85 0) (2008-201 1 ) among other publications.
  • pests embrace animal pests, and harmful fungi.
  • Another difficulty in relation to the use of pesticides is that the repeated and exclusive application of an individual pesticidal compound leads in many cases to a rapid selection of pests, that means animal pests, and harmful fungi, which have developed natural or adapted resistance against the active compound in question. Therefore there is a need for pest control agents that help prevent or overcome resistance.
  • Another problem underlying the present invention is the desire for compositions that improve plants, a process which is commonly and hereinafter referred to as "plant health”.
  • plant health comprises various sorts of improvements of plants that are not connected to the control of pests.
  • advantageous properties are im- proved crop characteristics including: emergence, crop yields, protein content, oil content, starch content, more developed root system (improved root growth), improved stress tolerance (e.g.
  • tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, pigment content, photosynthetic activity, less input needed (such as fertilizers or water), less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, enhanced plant vigor, increased plant stand and early and better germination; or any other advantages familiar to a person skilled in the art.
  • the mixtures as defined in the outset show markedly enhanced action against pests compared to the control rates that are possible with the individual compounds and/or is suitable for improving the health of plants when applied to plants, parts of plants, seeds, or at their locus of growth.
  • the ratio by weight of compound I and II is from 20000:1 to 1 :20000, from 500:1 to 1 :500, pref- erably from 100:1 to 1 :100 (for example ratios from 99:1 , 98:2, 97:3, 96:4, 95:5, 94:6, 93:7, 92:8, 91 :9, 90:10, 89:1 1 , 88:12, 87:13, 86:14, 85:15, 84:16, 83:17, 82:18, 81 :19, 80:20, 79:21 , 78:22, 77:23, 76:24, 75:25, 74:26, 73:27, 72:28, 71 :29, 70:30, 69:31 , 68:32, 67:33, 66:34, 65:45, 64:46, 63:47, 62:48, 61 :49, 60:40, 59:41 , 58:
  • the present invention relates to mixtures comprising
  • the ratio by weight of compound I and II is from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
  • the present invention relates to mixtures comprising pyra- clostrobin as compound I and wherein compound II is selected from the group consisting of cy- cloxaprid, flometoquin, flufiprole, flupyradifurone, fufenozide, pyflubumide, N2-[2-(3-chloro-2- pyridyl)-5-[(5-methyltetrazol-2-yl)methyl]pyrazol-3-yl]-5-cyano-N1 ,3-dimethyl-phthalamide, 3- bromo-N2-[5-bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-5-chloro-N1-(1- cyclopropylethyl)phthalamide, 1 -[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-3- (trifluoromethyl)
  • the ratio by weight of compound I and II is from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10
  • Pyraclostrobin and cycloxaprid in synergistically effective amounts preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
  • Pyraclostrobin and flufiprole in synergistically effective amounts preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
  • Pyraclostrobin and flupyradifurone in synergistically effective amounts preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
  • Pyraclostrobin and C-1 in synergistically effective amounts preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
  • Pyraclostrobin and C-2 in synergistically effective amounts preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
  • Pyraclostrobin and C-3 in synergistically effective amounts preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
  • Pyraclostrobin and C-4 in synergistically effective amounts preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
  • Pyraclostrobin and C-6 in synergistically effective amounts preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
  • Pyraclostrobin and flupyradifurone in synergistically effective amounts preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
  • Pyraclostrobin and flupyradifurone in synergistically effective amounts preferably in a ratio by weight from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
  • dinotefuran and fluxapyroxad and pyraclostrobin dinotefuran and fluxapyroxad and pyraclostrobin; or acetamiprid and fluxapyroxad and pyraclostrobin;
  • the inventive mixtures can further contain one or more insecticides, fungicides, herbicides.
  • the inventive mixtures can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof.
  • agrochemical compositions e.g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof.
  • composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g.
  • compositions types are defined in the "Catalogue of pesticide formulation types and international coding system", Technical Monograph No. 2, 6 th Ed. May 2008, CropLife International.
  • compositions are prepared in a known manner, such as described by Mollet and
  • auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, disper- sants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibil- izers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
  • Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g.
  • mineral oil fractions of medium to high boiling point e.g. kerosene, diesel oil
  • oils of vegetable or animal origin oils of vegetable or animal origin
  • aliphatic, cyclic and aromatic hydrocarbons e. g. toluene, paraffin, tetrahydronaphthalene, alkylated
  • lactates carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.
  • Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
  • mineral earths e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide
  • polysaccharides e.g. cellulose, starch
  • fertilizers
  • Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emusifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol.1 : Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
  • Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof.
  • sulfonates are alkylaryl- sulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates.
  • sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethox- ylated alcohols, or of fatty acid esters.
  • phosphates are phosphate esters.
  • Exam- pies of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.
  • Suitable nonionic surfactants are alkoxylates, N-subsituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof.
  • alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents.
  • Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide.
  • N-subsititued fatty acid amides are fatty acid glucamides or fatty acid alkanolamides.
  • esters are fatty acid esters, glycerol esters or monoglycerides.
  • sugar- based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or al- kylpolyglucosides.
  • polymeric surfactants are home- or copolymers of vinylpyrroli- done, vinylalcohols, or vinylacetate.
  • Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines.
  • Suitable amphoteric surfactants are alkylbetains and imidazolines.
  • Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide.
  • Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or pol- yethyleneamines.
  • Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the inventive mixtures on the target.
  • examples are surfactants, mineral or vegetable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
  • Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anor- ganic clays (organically modified or unmodified), polycarboxylates, and silicates.
  • Suitable bactericides are bronopol and isothiazolinone derivatives such as alkyliso- thiazolinones and benzisothiazolinones.
  • Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
  • Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.
  • Suitable colorants e.g. in red, blue, or green
  • Suitable colorants are pigments of low water solubility and water- soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanofer- rate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).
  • Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.
  • composition types and their preparation are:
  • 10-60 wt% of an inventive mixture and 5-15 wt% wetting agent e.g. alcohol alkoxylates
  • a water-soluble solvent e.g. alcohols
  • an inventive mixture and 1 -10 wt% dispersant e. g. polyvinylpyrrolidone
  • organic solvent e.g. cyclohexanone
  • emulsifiers e.g. calcium dodecylben- zenesulfonate and castor oil ethoxylate
  • water-insoluble organic solvent e.g. aromatic hydrocarbon
  • Emulsions (EW, EO, ES)
  • emulsifiers e.g. calcium dodecylbenzene- sulfonate and castor oil ethoxylate
  • water-insoluble organic solvent e.g. aromatic hydrocarbon
  • an inventive mixture 20-60 wt% are comminuted with addition of 2- 10 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0.1- 2 wt% thickener (e.g. xanthan gum) and water ad 100 wt% to give a fine active substance sus- pension. Dilution with water gives a stable suspension of the active substance.
  • dispersants and wetting agents e.g. sodium lignosulfonate and alcohol ethoxylate
  • 0.1- 2 wt% thickener e.g. xanthan gum
  • water ad 100 wt% to give a fine active substance sus- pension.
  • Dilution with water gives a stable suspension of the active substance.
  • binder e.g. polyvinylalcohol
  • an inventive mixture 50-80 wt% of an inventive mixture are ground finely with addition of dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt% and prepared as water- dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
  • dispersants and wetting agents e.g. sodium lignosulfonate and alcohol ethoxylate
  • 50-80 wt% of an inventive mixture are ground in a rotor-stator mill with addition of 1-5 wt% dispersants (e.g. sodium lignosulfonate), 1 -3 wt% wetting agents (e.g. alcohol ethoxylate) and solid carrier (e.g. silica gel) ad 100 wt%. Dilution with water gives a stable dispersion or solution of the active substance.
  • dispersants e.g. sodium lignosulfonate
  • 1 -3 wt% wetting agents e.g. alcohol ethoxylate
  • solid carrier e.g. silica gel
  • an inventive mixture In an agitated ball mill, 5-25 wt% of an inventive mixture are comminuted with addition of 3- 10 wt% dispersants (e.g. sodium lignosulfonate), 1-5 wt% thickener (e.g. carboxy- methylcellulose) and water ad 100 wt% to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance.
  • dispersants e.g. sodium lignosulfonate
  • 1-5 wt% thickener e.g. carboxy- methylcellulose
  • an inventive mixture 5-20 wt% are added to 5-30 wt% organic solvent blend (e.g. fatty ac- id dimethylamide and cyclohexanone), 10-25 wt% surfactant blend (e.g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100 %.
  • organic solvent blend e.g. fatty ac- id dimethylamide and cyclohexanone
  • surfactant blend e.g. alcohol ethoxylate and arylphenol ethoxylate
  • Microcapsules An oil phase comprising 5-50 wt% of an inventive mixture, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules.
  • an oil phase comprising 5-50 wt% of an inventive mixture according to the invention, 0-40 wt% water insoluble organic solvent (e.g.
  • an isocyanate monomer e.g. diphenylmethene-4,4'- diisocyanatae
  • a protective colloid e.g. polyvinyl alcohol
  • the addition of a polyamine results in the formation of pol- yurea microcapsules.
  • the monomers amount to 1-10 wt%. The wt% relate to the total CS composition.
  • Dustable powders (DP, DS)
  • an inventive mixture are ground finely and mixed intimately with solid carrier (e.g. finely divided kaolin) ad 100 wt%.
  • solid carrier e.g. finely divided kaolin
  • an inventive mixture is ground finely and associated with solid carrier (e.g. silicate) ad 100 wt%.
  • solid carrier e.g. silicate
  • organic solvent e.g. aromatic hydro- carbon
  • compositions types i) to xi) may optionally comprise further auxiliaries, such as 0.1-1 wt% bactericides, 5-15 wt% anti-freezing agents, 0.1-1 wt% anti-foaming agents, and 0.1 -1 wt% colorants.
  • the resulting agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active substance.
  • the active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
  • Solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), pow- ders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds.
  • the compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Appli- cation can be carried out before or during sowing.
  • Methods for applying the inventive mixtures and compositions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material.
  • the inventive mixtures or the compositions thereof, respectively are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
  • the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.01 to 1.0 kg per ha, and in particular from 0.05 to 0.75 kg per ha.
  • amounts of active substance of from 0.01 -10kg, preferably from 0.1 -1000 g, more preferably from 1 -100 g per 100 kilogram of plant propagation material (preferably seeds) are generally required.
  • the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
  • oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix).
  • pesticides e.g. herbicides, insecticides, fungicides, growth regulators, safeners
  • These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.
  • the user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system.
  • the ag- rochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained.
  • 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
  • composition according to the invention such as parts of a kit or parts of an inventive mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.
  • either individual compounds of the inventive mixtures formulated as composition or partially premixed components may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate (tank mix).
  • either individual components of the composition according to the in- vention or partially premixed components e. g. components comprising the compound I and II (or the compounds inventive ternary and quarternary mixtures), can be applied jointly (e. .g. after tankmix) or consecutively.
  • the present invention comprises a method for controlling pests, that means ani- mal pests and/or harmful fungi, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant propagation material (preferably seed) are treated with an pesticidally effective amount of a mixture.
  • inventive mixtures are suitable for controlling the following fungal plant diseases:
  • Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. Candida) and sunflowers (e. g. A. tragopogonis); Alternaria spp. (Alternaria leaf spot) on vegetables, rape ⁇ A. brassicola or brassi- cae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e. g. A. solani or A. alternata), tomatoes (e. g. A. solani or A. alternata) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A.
  • tritici anthracnose
  • Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis) or Northern leaf blight ( ⁇ . zeicola) on corn, e. g. spot blotch (B. sorokiniana) on cereals and e.g. B. oryzae on rice and turfs
  • Blumeria previously Erysiphe
  • gram- inis gram- inis
  • Botrytis cinerea (teleomorph: Botry- otinia fuckeliana: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad-leaved trees and evergreens, e. g. C. u/m/ (Dutch elm disease) on elms; Cercospora spp.
  • Botrytis cinerea teleomorph: Botry- otinia fuckeliana: grey mold
  • fruits and berries e. g. strawberries
  • vegetables e. g. lettuce, carrots, celery and cabbages
  • rape flowers, vines, forestry plants and wheat
  • Bremia lactucae
  • Crocospora leaf spots on corn (e.g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e. g. C. beticola), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvum: leaf mold) and cereals, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C.
  • Gray leaf spot C. zeae-maydis
  • rice sugar beets
  • sugar cane e. g. C. beticola
  • sugar cane vegetables
  • coffee e. g. C. sojina or C. kiku
  • Corticium spp. e. g. C. sa- sa/ // (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans and ornamentals; Cycloconium spp., e. g. C. oleaginum on olive trees; Cylindrocarpon spp. (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C.
  • lirio- dendri teleomorph: Neonectria liriodendri: Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D.
  • phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyr- enophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formiti- poria (syn. Phellinus) punctata, F.
  • Phaeomoniella chlamydospora (earlier Phaeo- acremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa
  • E. pisi such as cucurbits (e. g. E. cichoracearum), cabbages, rape (e. g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turcicum); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F graminearum or F.
  • cucurbits e. g. E. cichoracearum
  • cabbages rape (e. g. E. cruciferarum)
  • Eutypa lata Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella
  • Cladosporium vitis on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bana- nas, soft fruits and ground nuts, such as e.
  • vines e. g. P. tracheiphiia and P. tetraspora
  • soybeans e. g. P. gregata: stem rot
  • Phoma lingam root and stem rot
  • P. betae root rot, leaf spot and damping-off
  • sugar beets e. g. Pho- mopsis spp. on sunflowers, vines (e. g. P. viticola: can and leaf spot) and soybeans
  • stem rot P. phaseoli, teleomorph: Diaporthe phaseolorum
  • Physoderma maydis brown spots
  • Podosphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits, e. g. P. leucotricha on apples; Polymyxa spp., e. g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral diseases; Pseudocercosporella herpo- trichoides (eyespot, teleomorph: Tapesia yallundae) on cereals, e. g. wheat or barley; Pseu- doperonospora (downy mildew) on various plants, e.
  • Puccinia spp. rusts on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, P.
  • kuehnii orange rust
  • Pyrenophora anamorph: Drechslera
  • tritici-repentis tan spot
  • P. feres net blotch
  • Pyricularia spp. e. g. P. oryzae (teleo- morph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals
  • Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P.
  • Ramularia spp. e. g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, veg- etables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R.
  • deformans leaf curl disease
  • T. pruni plum pocket
  • plums Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans); Tilietia spp. (common bunt or stinking smut) on cereals, such as e. g. T. tritici (syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e. g. U.
  • occulta stem smut
  • Uro- myces spp. rust
  • vegetables such as beans (e. g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e. g. U. betae);
  • Ustilago spp. loose smut) on cereals (e. g. U. nuda and U.
  • corn e. g. U. maydis: corn smut
  • sugar cane e. g. V. inaequalis
  • Venturia spp. scab
  • apples e. g. V. inaequalis
  • pears e. g. Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. V. dahliae on strawberries, rape, potatoes and tomatoes.
  • the mixtures according to the present inventino and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials.
  • the term "protection of materials” is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and pa- perboard, textiles, leather, paint dispersions, plastics, colling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria.
  • Ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Sclerophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidiomy- cetes such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleurotus spp., Poria spp., Serpula spp.
  • yeast fungi are worthy of note: Candida spp. and Saccharomyces cerevisae.
  • fungi are particularly important for controlling a multitude of fungi on various cultivated plants, such as bananas, cotton, vegetable species (for example cucumbers, beans and cucurbits), cereals such as wheat, rye, barley, rice, oats; grass coffee, potatoes, corn, fruit species, soya, tomatoes, grapevines, ornamental plants, sugar cane and also on a large number of seeds.
  • the inventive mixtures are used in soya (soybean), cereals and corn.
  • the inventive mixtures exhibit also outstanding action against animal pests from the following orders: insects from the order of the lepidopterans (Lepidoptera), for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Choris- toneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendroli- mus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha fun
  • Dichromothrips corbetti Dichromothrips ssp , Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci, termites (Isoptera), e.g. Calotermes flavicollis, Leucotermes flavipes, Heterotermes aureus, Re- ticulitermes flavipes, Reticulitermes virginicus, Reticulitermes lucifugus, Termes natalensis, and Coptotermes formosanus, cockroaches (Blattaria - Blattodea), e.g.
  • Blattella germanica Blattella asahinae, Periplaneta americana, Periplaneta japonica, Periplaneta brunnea, Periplaneta fuligginosa, Periplaneta aus- tralasiae, and Blatta oriental ' s, true bugs (Hemiptera), e.g.
  • Hoplocampa minuta Hoplocampa testudinea
  • Monomorium pharaonis Solenopsis geminata
  • Solenopsis invicta
  • Vespuia squamosa Paravespula vulgaris, Paravespula pennsylvanica, Paravespula germanica, Doli- chovespula maculata, Vespa crabro, Polistes rubiginosa, Camponotus floridanus, and Linepi- thema humile, crickets, grasshoppers, locusts (Orthoptera), e.g.
  • Arachnoidea such as arachnids (Acarina), e.g. of the families Argasidae, Ixodidae and Sar- coptidae, such as Amblyomma americanum, Amblyomma variegatum, Ambryomma maculatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Dermacentor andersoni, Dermacentor variabilis, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ixodes scapularis, Ixodes holocyclus, Ixodes pacificus, Ornithodorus mou- bata, Ornithodorus hermsi, Ornithodorus turicata, Ornithonyssus bacoti, Otobius megnini, Der- manyssus
  • Tarsonemidae spp. such as Phytonemus palli- dus and Polyphagotarsonemus latus
  • Tenuipalpidae spp. such as Brevipalpus phoenicis
  • Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and Oligonychus pratensis; Araneida, e.g. Latrodectus mactans, and Loxosceles reclusa, fleas (Siphonaptera), e.g.
  • Earwigs (DermapteraJ, e.g. forficula auricularia, lice (Phthiraptera), e.g. Pediculus humanus capitis, Pediculus humanus corporis, Pthirus pubis, Haematopinus eurysternus, Haematopinus suis, Linognathus vituli, Bovicola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus, plant parasitic nematodes such as root-knot nematodes, Meloidogyne arenaria, Meloidogyne chitwoodi, Meloidogyne exigua, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javan- ica and other Meloidogyne species; cyst nematodes, Globodera rostochiensis, Globodera pal
  • the mixtures according to the invention can be applied to any and all developmental stages of pests, such as egg, larva, pupa, and adult.
  • the pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures.
  • Locus means a plant, plant propagation material (preferably seed), soil, area, material or envi- ronment in which a pest is growing or may grow.
  • pesticidally effective amount means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or oth- erwise diminishing the occurrence and activity of the target organism.
  • the pesticidally effective amount can vary for the various mixtures / compositions used in the invention.
  • a pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
  • the present invention comprises a method for improving the health of plants, wherein the plant, the locus where the plant is growing or is expected to grow or plant propagation material, from which the plant grows, is treated with an plant health effective amount of an inventive mixture.
  • plant effective amount denotes an amount of the inventive mixtures, which is sufficient for achieving plant health effects as defined herein below. More exemplary information about amounts, ways of application and suitable ratios to be used is given below. Again, the skilled artisan is well aware of the fact that such an amount can vary in a broad range and is dependent on various factors, e.g. the treated cultivated plant or material and the climatic conditions.
  • inventive mixtures are employed by treating the fungi or the plants, plant propagation materials (preferably seeds), materials or soil to be protected from fungal attack with a pesticidally effective amount of the active compounds.
  • the application can be carried out both before and after the infection of the materials, plants or plant propagation materials (preferably seeds) by the pests.
  • the term plant refers to an entire plant, a part of the plant or the propagation material of the plant.
  • inventive mixtures and compositions thereof are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g.
  • cereals e. g. wheat, rye, barley, triticale, oats or rice
  • beet e. g. sugar beet or fodder beet
  • fruits such as pomes, stone fruits or soft fruits, e. g.
  • the inventive mixturs and compositions thereof are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, bar- ley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
  • field crops such as potatoes sugar beets, tobacco, wheat, rye, bar- ley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
  • cultivación of plant propagation materials with the inventive mixtures and compositions thereof, respectively is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; potatoes, tomatoes, vines, rice, corn, cotton and soybeans.
  • the term "cultivated plants” is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://cera-gmc.org/, see GM crop database therein).
  • Genetically modified plants are plants, which genetic material has been so modi- fied by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination.
  • one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant.
  • Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e. g. by gly- cosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.
  • auxin herbicides
  • herbicides e. bromoxynil or ioxynil herbicides as a result of conventional methods of breeding or genetic engineering. Furthermore, plants have been made resistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as ALS inhibitors, HPPD inhibitors, auxin herbicides, or ACCase inhibitors.
  • ALS inhibitors e.g. described in Pest Managem. Sci.
  • cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), e. g. Clearfield ® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e. g.
  • plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as ⁇ -endotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bl) or Cry9c; vegetative insecticidal pro- teins (VIP), e. g. VIP1 , VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e. g. Photorhabdus spp.
  • VIP vegetative insecticidal pro- teins
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins
  • toxins produced by fungi such Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins
  • proteinase inhibitors such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors
  • ribosome-inactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroid oxidase, ecdyster- oid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase
  • ion channel blockers such as blockers of
  • these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins.
  • Hybrid proteins are characterized by a new combination of protein domains, (see, e. g. WO 02/015701 ).
  • Further examples of such toxins or genetically modified plants ca- pable of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278,
  • WO 95/34656 EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073.
  • the methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above.
  • These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins toler- ance to harmful pests from all taxonomic groups of athropods, especially to beetles (Coelop- tera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda).
  • Genetically modified plants capable to synthesize one or more insecticidal proteins are, e.
  • plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens.
  • proteins are the so-called "path- ogenesis-related proteins" (PR proteins, see, e. g. EP-A 392 225), plant disease resistance genes (e. g. potato cultivars, which express resistance genes acting against Phytophthora in- festans derived from the mexican wild potato Solanum bulbocastanum) or T4-lysozym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacte- ria such as Erwinia amylvora).
  • PR proteins path- ogenesis-related proteins
  • plant disease resistance genes e. g. potato cultivars, which express resistance genes acting against Phytophthora in- festans derived from the mexican wild potato Solanum bulbocastanum
  • plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass produc- tion, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.
  • plants are also covered that contain by the use of recombinant DNA tech- niques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera ® rape, DOW Agro Sciences, Canada).
  • recombinant DNA tech- niques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera ® rape, DOW Agro Sciences, Canada).
  • plants are also covered that contain by the use of recombinant DNA tech- niques a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora ® potato, BASF SE, Germany).
  • recombinant DNA tech- niques a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora ® potato, BASF SE, Germany).
  • the separate or joint application of the compounds of the inventive mixtures is carried out by spraying or dusting the seeds, the seedlings, the plants or the soils before or after sowing of the plants or before or after emergence of the plants.
  • the inventive mixtures are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part) and through trophallaxis and transfer.
  • Preferred application methods are into water bodies, via soil, cracks and crevices, pastures, manure piles, sewers, into water, on floor, wall, or by perimeter spray application and bait.
  • the inventive mixtures are prepared into a bait preparation.
  • the bait can be a liquid, a solid or a semisolid preparation (e.g. a gel).
  • the bait employed in the composition is a product which is sufficiently attractive to incite insects such as ants, termites, wasps, flies, mosquitoes, crickets etc. or cockroaches to eat it.
  • This attractant may be chosen from feeding stimulants or para and / or sex pheromones readily known in the art.
  • Methods to control infectious diseases transmitted by insects with the inventive mixtures and their respective compositions also comprise treating surfaces of huts and houses, air spraying and impregnation of curtains, tents, clothing items, bed nets, tsetse-fly trap or the like.
  • Insecticidal compositions for application to fibers, fabric, knitgoods, non-wovens, netting material or foils and tarpaulins preferably comprise a composition including the inventive mixtures, optionally a repellent and at least one binder.
  • inventive mixtures and the compositions comprising them can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities).
  • the quantity of active ingredient ranges from 0.0001 to 500 g per 100 m 2 , preferably from 0.001 to 20 g per 100 m 2 .
  • Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound per m 2 treated material, desirably from 0.1 g to 50 g per m 2 .
  • Insecticidal compositions for use in the impregnation of materials typically contain from 0.001 to 95 weight %, preferably from 0.1 to 45 weight %, and more preferably from 1 to 25 weight % of at least one repellent and / or insecticide.
  • the typical content of active ingredient is from 0.0001 weight % to 15 weight %, desirably from 0.001 weight % to 5% weight % of active compound.
  • the composition used may also comprise other additives such as a solvent of the active material, a flavoring agent, a preserving agent, a dye or a bitter agent. Its attractiveness may also be enhanced by a special color, shape or texture.
  • the content of the mixture of the active ingredients is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %.
  • Compound No C-1 is N2-[2-(3-chloro-2-pyridyl)-5-[(5-methyltetrazol-2-yl)methyl] pyrazol-3-yl]-5- cyano-N1 ,3-dimethyl-phthalamide) as indicated above.
  • the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
  • MTP micro titer plate
  • a spore suspension of Pyricularia oryzae in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added.
  • the plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.
  • the stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations.
  • MTP micro titer plate
  • a spore suspension of Septoria tritici in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added.
  • the plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.
  • the measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds.

Abstract

The present invention relates to synergistic mixtures comprising pyraclostrobin as compound I; and one insectidical compound II selected from the group consisting of cycloxaprid, flometoquin, fluensulfone, flufiprole, flupyradifurone, fufenozide, pyflubumide, N2-[2-(3-chloro-2-pyridyl)-5-[(5-methyltetrazol-2-yl)methyl]pyrazol-3-yl]-5-cyano-N1,3-dimethyl-phthalamide, 3-bromo-N2-[5-bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-5-chloro-N1-(1-cyclopropylethyl)phthalamide, 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-3-(trifluoromethyl)-1,2,4-triazole, 2-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-(trifluoromethyl)-1,2,4-triazol-3-amine, 1-(4-chloro-3-fluoro-phenyl)-N-[(2-methyl-3-phenyl-phenyl)methoxy]-2-methylsulfanyl-ethanimine, 2-(5-amino-1,3,4-thiadiazol-2-yl)-N-[5-bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-4-chloro-6-methyl-benzamide, 1-[(6-chloro-3-pyridyl)methyl]-7-methyl-8-nitro-5-propoxy-3,5,6,7-tetrahydro-2H-imidazo[1,2-a]pyridine, methyl (E)-2-[2-[[2-(2,4-dichloroanilino)-6-(trifluoromethyl)pyrimidin-4-yl]oxymethyl]phenyl]-3-methoxy-prop-2-enoate and 1-[(E)-[2-(4-cyanophenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene]amino]-3-(4-(difluoromethoxy)phenyl)urea; in synergistic effective amounts.

Description

SYNERGISTIC COMPOSITIONS COMPRISING PYRACLOSTROBIN AND
AN INSECTICIDAL COMPOUND
Description The present invention relates to synergistic mixtures comprising
1 ) pyraclostrobin as compound I; and
2) one insectidical compound II selected from the group consisting of flupyradifurone, N2-[2- (3-chloro-2-pyridyl)-5-[(5-methyltetrazol-2-yl)methyl]pyrazol-3-yl]-5-cyano-N1 ,3-dimethyl- phthalamide, cycloxaprid, flometoquin, fluensulfone, flufiprole, , fufenozide, pyflubumide, 3- bromo-N2-[5-bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-5-chloro-N 1 -(1 - cyclopropylethyl)phthalamide, 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-3- (trifluoromethyl)-1 ,2,4-triazole, 2-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5- (trifluoromethyl)-1 ,2,4-triazol-3-amine, 1-(4-chloro-3-fluoro-phenyl)-N-[(2-methyl-3-phenyl- phenyl)methoxy]-2-methylsulfanyl-ethanimine, 2-(5-amino-1 ,3,4-thiadiazol-2-yl)-N-[5- bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-4-chloro-6-methyl-benzamide, 1-[(6-chloro-3- pyridyl)methyl]-7-methyl-8-nitro-5-propoxy-3,5,6,7-tetrahydro-2H-imidazo[1 ,2-a]pyridine, methyl (E)-2-[2-[[2-(2,4-dichloroanilino)-6-(trifluoromethyl)pyrimidin-4-yl]oxymethyl]phenyl]- 3-methoxy-prop-2-enoate and 1-[(E)-[2-(4-cyanophenyl)-1 -[3- (trifluoromethyl)phenyl]ethylidene]amino]-3-(4-(difluoromethoxy)phenyl)urea;
in synergistic effective amounts.
The invention furthermore relates to the following mixtures comprising comprising
dinotefuran and fluxapyroxad and metalaxyl, or
dinotefuran and fluxayproxad and metalaxyl and pyraclostrobin; or
dinotefuran and fluxapyroxad and pyraclostrobin;
acetamiprid and fluxapyroxad and pyraclostrobin;
fluxapyroxad and pyraclostrobin and thiacloprid;
fluxapyroxad and pyraclostrobin and nitenpyram
fluxapyroxad and metalaxyl and thiacloprid;
fluxapyroxad and metalaxyl and nitenpyram;
fluxapyroxad and pyraclostrobin and metalaxyl and thiacloprid;
fluxapyroxad and pyraclostrobin and metalaxyl and nitenpyram;
fluxapyroxad and pyraclostrobin and thiacloprid; or
fluxapyroxad and pyraclostrobin and nitenpyram;
in synergistically effective amounts.
The above-referred mixtures are herein below also referred as "inventive mixtures". Moreover, the invention relates to a method for controlling pests, this refers to includes animal pests and harmful fungi, using the inventive mixtures and to the use of compound I and compound II (or the compounds inventive ternary and quaternary mixtures) for preparing such mixtures, and also to compositions comprising such mixtures. Moreover, the invention relates to a method for controlling harmful fungi, using the inventive mixtures of compound I and II (or the inventive ternary and quaternary mixtures) and to the use of compound I and the compound II (or the compounds inventive ternary and quaternary mix- tures) as defined above for preparing such mixtures, and also to compositions comprising such mixtures.
In one embodiment, the present invention provides methods for the control of animal pests (such as insects, acarids or nematodes) comprising contacting the animal pest (the insect, aca- rid or nematode) or their food supply, habitat, breeding grounds or their locus with a pesticidally effective amount of the inventive mixtures.
Moreover, in another embodiment the present invention also relates to a method of protecting plants from attack or infestation by animal pests (insects, acarids or nematodes) comprising contacting the plant, or the soil or water in which the plant is growing, with a pesticidally effective amount of the inventive mixture.
Additionally, the present invention also comprises a method for protection of plant propagation material (preferably seed) from harmful pests, such as fungi or insects, arachnids or nematodes comprising contacting the plant propagation materials (preferably seeds) with an inventive mixture in pesticidally effective amounts
The term "plant propagation material" is to be understood to denote all the generative parts of the plant such as seeds and vegetative plant material such as cuttings and tubers (e. g. pota- toes), which can be used for the multiplication of the plant. This includes seeds, roots, fruits, tubers, bulbs, rhizomes, shoots, sprouts and other parts of plants, including seedlings and young plants, which are to be transplanted after germination or after emergence from soil. These young plants may also be protected before transplantation by a total or partial treatment by immersion or pouring. In a particular preferred embodiment, the term propagation material de- notes seeds.
Additionally, the present invention also comprises a method for protection of plant propagation material (preferably seed) from harmful fungi comprising contacting the plant propagation materials (preferably seeds) with the inventive mixture in pesticidally effective amounts
Moreover, the invention relates to a method for controlling harmful fungi using the inventive mixtures and to the use of the compound I and the compound II (or the compounds inventive ternary and quaternary mixtures) for preparing such mixtures, and also to compositions comprising such mixtures.
The present invention further relates to plant-protecting active ingredient mixtures having syner- gistically enhanced action of improving the health of plants and to a method of applying such inventive mixtures to the plants. N2-[2-(3-chloro-2-pyridyl)-5-[(5-(trifluorme ^
dimethyl-phthalamide (hereinafter also referred to as "C-1 ", formula set forth below) is disclosed in WO 2010069502 and WO 201 1157664.
Figure imgf000004_0001
C-1
3-bromo-N2-[5-bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-5-chloro-N1-(1- cyclopropylethyl)phthalamide (hereinafter also referred to as "C- 2", formula set forth below) is disclosed in WO 2005/077934
Figure imgf000004_0002
1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-3-(trifluoromethyl)-1 ,2,4-triazole (here- inafter also referred to as "C-3", formula set forth below) is disclosed in WO 06/043635 und WO 201 1152320
Figure imgf000004_0003
2-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-(trifluoromethyl)-1 ,2,4-triazol-3 amine (hereinafter also referred to as "C-4", formula set forth below) is disclosed in WO 06/043635 und WO 201 1152320
Figure imgf000004_0004
1-(4-chloro-3-fluoro-phenyl)-N-[(2-meth^
ethanimine (hereinafter also referred to as "C-5", formula set forth below) is disclosed in CN154646A.
2-(5-amino-1 ,3,4-thiadiazol-2-yl)-N-[5-bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-4-chloro-6- methyl-benzamide (hereinafter also referred to as "C-6", formula set forth below) is disclosed in CN 101747325
Figure imgf000005_0002
1-[(6-chloro-3-pyridyl)methyl]-7-methyl-8-nitro-5-propoxy-3,5,6,7-tetrahydro-2H-imidazo[1 ,2- a]pyridine (hereinafter also referred to as "C-7 ", formula set forth below) is disclosed in WO 2007/101369
Figure imgf000005_0003
Methyl (E)-2-[2-[[2-(2,4-dichloroanilino)-6-(trifluoromethyl)pyrimidin-4-yl]oxymethyl]phenyl]-3- methoxy-prop-2-enoate (hereinafter also referred to as "C-8", formula set forth below) is discl
Figure imgf000005_0004
C-8
1-[(E)-[2-(4-cyanophenyl)-1-[3-(trifluoromethyl)phenyl]ethylidene]amino]-3-(4- (difluoromethoxy)phenyl)urea (hereinafter also referred to as "C-9", formula set forth below) is disclosed in CN 1071577A
Figure imgf000006_0001
Pyflubumide, which is N-[3-isobutyl-4-[2,2,2-trifluoro-1-methoxy-1 -(trifluoromethyl)ethyl]phenyl]- 1 ,3,5-trimethyl-N-(2-methylpropanoyl)pyrazole-4-carboxamide, as well as its pesticidal action is known from WO 07/020986.
Cycloxaprid, which is 5-((6-Chloro-pyridin-3-yl)[3H2]-methyl)-7-nitro -1 1 -oxa-2,5-diaza- tricyclo[6.2.1.02, 6]undec-6-ene, as well as its pesticidal action is known from WO 2010/069266 and WO 201 1/069456. Fufenozide, which N'-tert-butyl-N'-(3,5-dimethylbenzoyl)-2,7-dimethyl-2,3-dihydrobenzofuran-6- carbohydrazide, as well as its pesticidal action is known from CN1313276A.
Fluxapyroxad is known from WO 2006/087343 and can be prepared in the manner described. The remaining compounds II as well as their pesticidal action and methods for producing them are generally known. For instance, they may be found in the e-Pesticide Manual V5.2 (ISBN 978 1 901396 85 0) (2008-201 1 ) among other publications.
The published PCT applications WO 2005/058040, WO 2008/095913, WO 2009/098230, WO 2009/098210, WO 2006/089876, WO 2009/098225, WO 201 1/039104, WO 201 1/039105, WO 201 1/067205, WO 2011/067209, WO 201 1/069930, WO 2011/069967, WO 201 1/144593, WO 2010108507 and DE 102007045920 disclose several synergistic mixtures with inter alia fluxapyroxad, further fungicides and/or insecticides. However, none of these documents explicitly discloses the mixtures referred to above. One typical problem arising in the field of pest control lies in the need to reduce the dosage rates of the active ingredient in order to reduce or avoid unfavorable environmental or toxicolog- ical effects whilst still allowing effective pest control.
In regard to the instant invention the term pests embrace animal pests, and harmful fungi.
Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum of pests, e.g. both animal pests and harmful fungi.
There also exists the need for pest control agents that combine knock-down activity with prolonged control, that is, fast action with long lasting action.
Another difficulty in relation to the use of pesticides is that the repeated and exclusive application of an individual pesticidal compound leads in many cases to a rapid selection of pests, that means animal pests, and harmful fungi, which have developed natural or adapted resistance against the active compound in question. Therefore there is a need for pest control agents that help prevent or overcome resistance. Another problem underlying the present invention is the desire for compositions that improve plants, a process which is commonly and hereinafter referred to as "plant health".
The term plant health comprises various sorts of improvements of plants that are not connected to the control of pests. For example, advantageous properties that may be mentioned are im- proved crop characteristics including: emergence, crop yields, protein content, oil content, starch content, more developed root system (improved root growth), improved stress tolerance (e.g. against drought, heat, salt, UV, water, cold), reduced ethylene (reduced production and/or inhibition of reception), tillering increase, increase in plant height, bigger leaf blade, less dead basal leaves, stronger tillers, greener leaf color, pigment content, photosynthetic activity, less input needed (such as fertilizers or water), less seeds needed, more productive tillers, earlier flowering, early grain maturity, less plant verse (lodging), increased shoot growth, enhanced plant vigor, increased plant stand and early and better germination; or any other advantages familiar to a person skilled in the art. It was therefore an object of the present invention to provide pesticidal mixtures which solve the problems of reducing the dosage rate and / or enhancing the spectrum of activity and / or combining knock-down activity with prolonged control and / or to resistance management and/or promoting the health of plants. We have found that this object is in part or in whole achieved by the mixtures comprising the active compounds defined in the outset.
Especially, it has been found that the mixtures as defined in the outset show markedly enhanced action against pests compared to the control rates that are possible with the individual compounds and/or is suitable for improving the health of plants when applied to plants, parts of plants, seeds, or at their locus of growth.
It has been found that the action of the inventive mixtures goes far beyond the fungicidal and/or insecticidal and/or plant health improving action of the active compounds present in the mixture alone.
Moreover, we have found that simultaneous, that is joint or separate, application of the compound I and the compound II (or the compounds inventive ternary and quaternary mixtures) or successive application of the compound I and the compound II (or the compounds inventive ternary and quaternary mixtures) allows enhanced control of pests, that means animal pests, and harmful fungi, compared to the control rates that are possible with the individual compounds (synergistic mixtures). Moreover, we have found that simultaneous, that is joint or separate, application of the compound I and the compound II (or the compounds inventive ternary and quaternary mixtures) or successive application of the compound I and the compound II (or the compounds inventive ternary and quaternary mixtures) allows enhanced control of pests, that means harmful fungi, compared to the control rates that are possible with the individual compounds (synergistic mixtures).
Moreover, we have found that simultaneous, that is joint or separate, application of the compound I and the compound II (or the compounds inventive ternary and quaternary mixtures) or successive application of the compound I and the compound II and compound(s) III (or the compounds inventive ternary and quaternary mixtures) provides enhanced plant health effects compared to the plant health effects that are possible with the individual compounds.
The ratio by weight of compound I and II is from 20000:1 to 1 :20000, from 500:1 to 1 :500, pref- erably from 100:1 to 1 :100 (for example ratios from 99:1 , 98:2, 97:3, 96:4, 95:5, 94:6, 93:7, 92:8, 91 :9, 90:10, 89:1 1 , 88:12, 87:13, 86:14, 85:15, 84:16, 83:17, 82:18, 81 :19, 80:20, 79:21 , 78:22, 77:23, 76:24, 75:25, 74:26, 73:27, 72:28, 71 :29, 70:30, 69:31 , 68:32, 67:33, 66:34, 65:45, 64:46, 63:47, 62:48, 61 :49, 60:40, 59:41 , 58:42, 57:43, 56:44, 55:45, 54:46, 53:47, 52:48, 51 :49, 50:50, 49:51 , 48:52, 47:53, 46:54, 45:55, 44:56, 43:57, 42:58, 41 :59, 40:60, 39:61 , 38:62, 37:63, 36:64, 35:65, 34:66, 33:67, 32:68, 31 :69, 30:70, 29:71 , 28:72, 27:73, 26:74, 25:75, 24:76, 23:77, 22:78, 21 :79, 20:80, 19:81 , 18:82, 17:83, 16:84, 15:85, 14:86, 13:87, 12:88, 1 1 :89, 10:90, 9:91 , 8:92, 7:93, 6:94, 5:95, 4:96, 3:97, 2:98, to 1 :99) more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, including also ratios from 10:1 to 1 :10, 1 :5 to 5:1 , or 1 :1.
Thus, preferably the present invention relates to mixtures comprising
1 ) pyraclostrobin as compound I; and
2) one insectidical compound II selected from the group consisting of cyclox-aprid, flometoquin, fluensulfone, flufiprole, flupyradifurone, fufenozide, pyflubumide, N2-[2-(3-chloro-2- pyridyl)-5-[(5-methyltetrazol-2-yl)methyl]pyrazol-3-yl]-5-cyano-N1 ,3-dimethyl-phthalamide, 3- bromo-N2-[5-bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-5-chloro-N1-(1- cyclopropylethyl)phthalamide, 1 -[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-3- (trifluoromethyl)-1 ,2,4-triazole, 2-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5- (trifluoromethyl)-l ,2,4-triazol-3-amine, 1-(4-chloro-3-fluoro-phenyl)-N-[(2-methyl-3-phenyl- phenyl)methoxy]-2-methylsulfanyl-ethanimine, 2-(5-amino-1 ,3,4-thiadiazol-2-yl)-N-[5-bromo-2- (3-chloro-2-pyridyl)pyrazol-3-yl]-4-chloro-6-methyl-benzamide, 1 -[(6-chloro-3-pyridyl)methyl]-7- methyl-8-nitro-5-propoxy-3,5,6,7-tetrahydro-2H-imidazo[1 ,2-a]pyridine, methyl (E)-2-[2-[[2-(2,4- dichloroanilino)-6-(trifluoromethyl)pyrimidin-4-yl]oxymethyl]phenyl]-3-methoxy-prop-2-enoate and 1 -[(E)-[2-(4-cyanophenyl)-1 -[3-(trifluoromethyl)phenyl]ethylidene]amino]-3-(4- (difluoromethoxy)phenyl)urea
in synergistic effective amounts, wherein the ratio by weight of compound I and II is from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10. In a more preferred embodiment the present invention relates to mixtures comprising pyra- clostrobin as compound I and wherein compound II is selected from the group consisting of cy- cloxaprid, flometoquin, flufiprole, flupyradifurone, fufenozide, pyflubumide, N2-[2-(3-chloro-2- pyridyl)-5-[(5-methyltetrazol-2-yl)methyl]pyrazol-3-yl]-5-cyano-N1 ,3-dimethyl-phthalamide, 3- bromo-N2-[5-bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-5-chloro-N1-(1- cyclopropylethyl)phthalamide, 1 -[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-3- (trifluoromethyl)-l ,2,4-triazole, 2-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5- (trifluoromethyl)-1 ,2,4-triazol-3-amine, 2-(5-amino-1 ,3,4-thiadiazol-2-yl)-N-[5-bromo-2-(3-chloro- 2-pyridyl)pyrazol-3-yl]-4-chloro-6-methyl-benzamide and 1 -[(6-chloro-3-pyridyl)methyl]-7-methyl- 8-nitro-5-propoxy-3,5,6,7-tetrahydro-2H-imidazo[1 ,2-a]pyridine;
in synergistic effective amounts, wherein the ratio by weight of compound I and II is from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10
The following mixtures are most preferred:
Pyraclostrobin and cycloxaprid in synergistically effective amounts, preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Pyraclostrobin and flufiprole in synergistically effective amounts, preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Pyraclostrobin and flupyradifurone in synergistically effective amounts, preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Pyraclostrobin and C-1 in synergistically effective amounts, preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Pyraclostrobin and C-2 in synergistically effective amounts, preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Pyraclostrobin and C-3 in synergistically effective amounts, preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Pyraclostrobin and C-4 in synergistically effective amounts, preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Pyraclostrobin and C-6 in synergistically effective amounts, preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Pyraclostrobin and C-7 in synergistically effective amounts, preferably in a ratio by weight g
from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Pyraclostrobin and N2-[2-(3-chloro-2-pyridyl)-5-[(5-methyltetrazol-2-yl)methyl]pyrazol-3-yl]-5- cyano-N1 ,3-dimethyl-phthalamide in synergistically effective amounts, preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Pyraclostrobin and flupyradifurone in synergistically effective amounts, preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Utmost preference is given to the following mixtures:
Pyraclostrobin and N2-[2-(3-chloro-2-pyridyl)-5-[(5-methyltetrazol-2-yl)methyl]pyrazol-3-yl]-5- cyano-N1 ,3-dimethyl-phthalamide in synergistically effective amounts, preferably in a ratio by weight from 20000:1 to 1 :20000, from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
Pyraclostrobin and flupyradifurone in synergistically effective amounts, preferably in a ratio by weight from 500:1 to 1 :500, preferably from 100:1 to 1 :100 more preferably from 50:1 to 1 :50, most preferably from 20:1 to 1 :20, and utmost preferred from 10:1 to 1 :10.
The ratios by weight for the respective ternary mixtures comprising
dinotefuran and fluxapyroxad and metalaxyl, or
dinotefuran and fluxapyroxad and pyraclostrobin; or acetamiprid and fluxapyroxad and pyraclostrobin;
fluxapyroxad and pyraclostrobin and thiacloprid;
fluxapyroxad and pyraclostrobin and nitenpyram
fluxapyroxad and metalaxyl and thiacloprid;
fluxapyroxad and metalaxyl and nitenpyram;
fluxapyroxad and pyraclostrobin and thiacloprid; or
fluxapyroxad and pyraclostrobin and nitenpyram, or
are from 1 :100:100 to 100:1 :1 , preferably from 50:1 :1 to 1 :50:50, more preferably from 1 :20:20 to 20:1 :1 .
The ratios by weight for the respective quaternay mixture comprising
dinotefuran and fluxayproxad and metalaxyl and pyraclostrobin; or
fluxapyroxad and pyraclostrobin and metalaxyl and thiacloprid; or
fluxapyroxad and pyraclostrobin and metalaxyl and nitenpyram; or
is from 1 :100:100:100 to 100:1 :1 :1 , preferably from 50:1 :1 :1 to 1 :50:50:50, more preferably from 1 :20:20:20 to 20:1 :1 :1. All above-referred mixtures are herein below referred to as "inventive mixtures".
The inventive mixtures can further contain one or more insecticides, fungicides, herbicides. The inventive mixtures can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further compositions types are defined in the "Catalogue of pesticide formulation types and international coding system", Technical Monograph No. 2, 6th Ed. May 2008, CropLife International.
The compositions are prepared in a known manner, such as described by Mollet and
Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001 ; or Knowles, New developments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.
Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, disper- sants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibil- izers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders.
Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.
Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.
Suitable surfactants are surface-active compounds, such as anionic, cationic, nonionic and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emusifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol.1 : Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).
Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sulfates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylaryl- sulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sulfates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethox- ylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Exam- pies of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates. Suitable nonionic surfactants are alkoxylates, N-subsituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-subsititued fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters or monoglycerides. Examples of sugar- based surfactants are sorbitans, ethoxylated sorbitans, sucrose and glucose esters or al- kylpolyglucosides. Examples of polymeric surfactants are home- or copolymers of vinylpyrroli- done, vinylalcohols, or vinylacetate.
Suitable cationic surfactants are quaternary surfactants, for example quaternary ammonium compounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or pol- yethyleneamines.
Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the inventive mixtures on the target. Examples are surfactants, mineral or vegetable oils, and other auxilaries. Further examples are listed by Knowles, Adjuvants and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.
Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), anor- ganic clays (organically modified or unmodified), polycarboxylates, and silicates.
Suitable bactericides are bronopol and isothiazolinone derivatives such as alkyliso- thiazolinones and benzisothiazolinones.
Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea and glycerin.
Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids. Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water- soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanofer- rate) and organic colorants (e.g. alizarin-, azo- and phthalocyanine colorants).
Suitable tackifiers or binders are polyvinylpyrrolidons, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.
Examples for composition types and their preparation are:
i) Water-soluble concentrates (SL, LS)
10-60 wt% of an inventive mixture and 5-15 wt% wetting agent (e.g. alcohol alkoxylates) are dissolved in water and/or in a water-soluble solvent (e.g. alcohols) ad 100 wt%. The active sub- stance dissolves upon dilution with water.
ii) Dispersible concentrates (DC)
5-25 wt% of an inventive mixture and 1 -10 wt% dispersant (e. g. polyvinylpyrrolidone) are dissolved in organic solvent (e.g. cyclohexanone) ad 100 wt%. Dilution with water gives a dis- persion.
iii) Emulsifiable concentrates (EC)
15-70 wt% of an inventive mixture and 5-10 wt% emulsifiers (e.g. calcium dodecylben- zenesulfonate and castor oil ethoxylate) are dissolved in water-insoluble organic solvent (e.g. aromatic hydrocarbon) ad 100 wt%. Dilution with water gives an emulsion.
iv) Emulsions (EW, EO, ES)
5-40 wt% of an inventive mixture and 1 -10 wt% emulsifiers (e.g. calcium dodecylbenzene- sulfonate and castor oil ethoxylate) are dissolved in 20-40 wt% water-insoluble organic solvent (e.g. aromatic hydrocarbon). This mixture is introduced into water ad 100 wt% by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion.
v) Suspensions (SC, OD, FS)
In an agitated ball mill, 20-60 wt% of an inventive mixture are comminuted with addition of 2- 10 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0.1- 2 wt% thickener (e.g. xanthan gum) and water ad 100 wt% to give a fine active substance sus- pension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt% binder (e.g. polyvinylalcohol) is added.
vi) Water-dispersible granules and water-soluble granules (WG, SG)
50-80 wt% of an inventive mixture are ground finely with addition of dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt% and prepared as water- dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.
vii) Water-dispersible powders and water-soluble powders (WP, SP, WS)
50-80 wt% of an inventive mixture are ground in a rotor-stator mill with addition of 1-5 wt% dispersants (e.g. sodium lignosulfonate), 1 -3 wt% wetting agents (e.g. alcohol ethoxylate) and solid carrier (e.g. silica gel) ad 100 wt%. Dilution with water gives a stable dispersion or solution of the active substance.
viii) Gel (GW, GF)
In an agitated ball mill, 5-25 wt% of an inventive mixture are comminuted with addition of 3- 10 wt% dispersants (e.g. sodium lignosulfonate), 1-5 wt% thickener (e.g. carboxy- methylcellulose) and water ad 100 wt% to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance.
iv) Microemulsion (ME)
5-20 wt% of an inventive mixture are added to 5-30 wt% organic solvent blend (e.g. fatty ac- id dimethylamide and cyclohexanone), 10-25 wt% surfactant blend (e.g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100 %. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion.
iv) Microcapsules (CS) An oil phase comprising 5-50 wt% of an inventive mixture, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g. methylmethacrylate, methacrylic acid and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt% of an inventive mixture according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocyanate monomer (e.g. diphenylmethene-4,4'- diisocyanatae) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). The addition of a polyamine (e.g. hexamethylenediamine) results in the formation of pol- yurea microcapsules. The monomers amount to 1-10 wt%. The wt% relate to the total CS composition.
ix) Dustable powders (DP, DS)
1 -10 wt% of an inventive mixture are ground finely and mixed intimately with solid carrier (e.g. finely divided kaolin) ad 100 wt%.
x) Granules (GR, FG)
0.5-30 wt% of an inventive mixture is ground finely and associated with solid carrier (e.g. silicate) ad 100 wt%. Granulation is achieved by extrusion, spray-drying or fluidized bed.
xi) Ultra-low volume liquids (UL)
1 -50 wt% of an inventive mixture are dissolved in organic solvent (e.g. aromatic hydro- carbon) ad 100 wt%.
The compositions types i) to xi) may optionally comprise further auxiliaries, such as 0.1-1 wt% bactericides, 5-15 wt% anti-freezing agents, 0.1-1 wt% anti-foaming agents, and 0.1 -1 wt% colorants. The resulting agrochemical compositions generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of active substance. The active substances are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).
Solutions for seed treatment (LS), Suspoemulsions (SE), flowable concentrates (FS), pow- ders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds. The compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40%, in the ready-to-use preparations. Appli- cation can be carried out before or during sowing. Methods for applying the inventive mixtures and compositions thereof, respectively, on to plant propagation material, especially seeds include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material. Preferably, the inventive mixtures or the compositions thereof, respectively, are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.
When employed in plant protection, the amounts of active substances applied are, depending on the kind of effect desired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.01 to 1.0 kg per ha, and in particular from 0.05 to 0.75 kg per ha.
In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.01 -10kg, preferably from 0.1 -1000 g, more preferably from 1 -100 g per 100 kilogram of plant propagation material (preferably seeds) are generally required.
When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.
Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides (e.g. herbicides, insecticides, fungicides, growth regulators, safeners) may be added to the active substances or the compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1.
The user applies the composition according to the invention usually from a predosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the ag- rochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.
According to one embodiment, individual components of the composition according to the invention such as parts of a kit or parts of an inventive mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.
In a further embodiment, either individual compounds of the inventive mixtures formulated as composition or partially premixed components, e. g. components set forth in the inventive mixtures may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate (tank mix).
In a further embodiment, either individual components of the composition according to the in- vention or partially premixed components, e. g. components comprising the compound I and II (or the compounds inventive ternary and quarternary mixtures), can be applied jointly (e. .g. after tankmix) or consecutively.
As said above, the present invention comprises a method for controlling pests, that means ani- mal pests and/or harmful fungi, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant propagation material (preferably seed) are treated with an pesticidally effective amount of a mixture.
Advantageously, the inventive mixtures are suitable for controlling the following fungal plant diseases:
Albugo spp. (white rust) on ornamentals, vegetables (e. g. A. Candida) and sunflowers (e. g. A. tragopogonis); Alternaria spp. (Alternaria leaf spot) on vegetables, rape {A. brassicola or brassi- cae), sugar beets (A. tenuis), fruits, rice, soybeans, potatoes (e. g. A. solani or A. alternata), tomatoes (e. g. A. solani or A. alternata) and wheat; Aphanomyces spp. on sugar beets and vegetables; Ascochyta spp. on cereals and vegetables, e. g. A. tritici (anthracnose) on wheat and A. hordei on barley; Bipolaris and Drechslera spp. (teleomorph: Cochliobolus spp.), e. g. Southern leaf blight (D. maydis) or Northern leaf blight (β. zeicola) on corn, e. g. spot blotch (B. sorokiniana) on cereals and e.g. B. oryzae on rice and turfs; Blumeria (formerly Erysiphe) gram- inis (powdery mildew) on cereals (e. g. on wheat or barley); Botrytis cinerea (teleomorph: Botry- otinia fuckeliana: grey mold) on fruits and berries (e. g. strawberries), vegetables (e. g. lettuce, carrots, celery and cabbages), rape, flowers, vines, forestry plants and wheat; Bremia lactucae (downy mildew) on lettuce; Ceratocystis (syn. Ophiostoma) spp. (rot or wilt) on broad-leaved trees and evergreens, e. g. C. u/m/ (Dutch elm disease) on elms; Cercospora spp. (Cercospora leaf spots) on corn (e.g. Gray leaf spot: C. zeae-maydis), rice, sugar beets (e. g. C. beticola), sugar cane, vegetables, coffee, soybeans (e. g. C. sojina or C. kikuchii) and rice; Cladosporium spp. on tomatoes (e. g. C. fulvum: leaf mold) and cereals, e. g. C. herbarum (black ear) on wheat; Claviceps purpurea (ergot) on cereals; Cochliobolus (anamorph: Helminthosporium of Bipolaris) spp. (leaf spots) on corn (C. carbonum), cereals (e. g. C. sativus, anamorph: B. soro- kiniana) and rice (e. g. C. miyabeanus, anamorph: H. oryzae); Colletotrichum (teleomorph: Glomerella) spp. (anthracnose) on cotton (e. g. C. gossypii), corn (e. g. C. graminicola: Anthracnose stalk rot), soft fruits, potatoes (e. g. C. coccodes: black dot), beans (e. g. C. lindemu- thianum) and soybeans (e. g. C. truncatum or C. gloeosporioides); Corticium spp., e. g. C. sa- sa/ // (sheath blight) on rice; Corynespora cassiicola (leaf spots) on soybeans and ornamentals; Cycloconium spp., e. g. C. oleaginum on olive trees; Cylindrocarpon spp. (e. g. fruit tree canker or young vine decline, teleomorph: Nectria or Neonectria spp.) on fruit trees, vines (e. g. C. lirio- dendri, teleomorph: Neonectria liriodendri: Black Foot Disease) and ornamentals; Dematophora (teleomorph: Rosellinia) necatrix (root and stem rot) on soybeans; Diaporthe spp., e. g. D.
phaseolorum (damping off) on soybeans; Drechslera (syn. Helminthosporium, teleomorph: Pyr- enophora) spp. on corn, cereals, such as barley (e. g. D. teres, net blotch) and wheat (e. g. D. tritici-repentis: tan spot), rice and turf; Esca (dieback, apoplexy) on vines, caused by Formiti- poria (syn. Phellinus) punctata, F. mediterranea, Phaeomoniella chlamydospora (earlier Phaeo- acremonium chlamydosporum), Phaeoacremonium aleophilum and/or Botryosphaeria obtusa; Elsinoe spp. on pome fruits (E. pyri), soft fruits (E. veneta: anthracnose) and vines (E. ampelina: anthracnose); Entyloma oryzae (leaf smut) on rice; Epicoccum spp. (black mold) on wheat; Erysiphe spp. (powdery mildew) on sugar beets (E. betae), vegetables (e. g. E. pisi), such as cucurbits (e. g. E. cichoracearum), cabbages, rape (e. g. E. cruciferarum); Eutypa lata (Eutypa canker or dieback, anamorph: Cytosporina lata, syn. Libertella blepharis) on fruit trees, vines and ornamental woods; Exserohilum (syn. Helminthosporium) spp. on corn (e. g. E. turcicum); Fusarium (teleomorph: Gibberella) spp. (wilt, root or stem rot) on various plants, such as F graminearum or F. culmorum (root rot, scab or head blight) on cereals (e. g. wheat or barley), F. oxysporum on tomatoes, F. solani on soybeans and F. verticillioides on corn; Gaeumanno- myces graminis (take-all) on cereals (e. g. wheat or barley) and corn; Gibberella spp. on cereals (e. g. G. zeae) and rice (e. g. G. fujikuroi: Bakanae disease); Glomerella cingulata on vines, pome fruits and other plants and G. gossypii on cotton; Grainstaining complex on rice; Gui- gnardia bidweliii (black rot) on vines; Gymnosporangium spp. on rosaceous plants and junipers, e. g. G. sabinae (rust) on pears; Helminthosporium spp. (syn. Drechslera, teleomorph: Cochliobolus) on corn, cereals and rice; Hemileia spp., e. g. H. vastatrix (coffee leaf rust) on coffee; Isariopsis clavispora (syn. Cladosporium vitis) on vines; Macrophomina phaseolina (syn. phaseoli) (root and stem rot) on soybeans and cotton; Microdochium (syn. Fusarium) nivale (pink snow mold) on cereals (e. g. wheat or barley); Microsphaera diffusa (powdery mildew) on soybeans; Monilinia spp., e. g. M. laxa, M. fructicola and M. fructigena (bloom and twig blight, brown rot) on stone fruits and other rosaceous plants; Mycosphaerella spp. on cereals, bana- nas, soft fruits and ground nuts, such as e. g. M. graminicola (anamorph: Septoria tritici, Septo- ria blotch) on wheat or M. fijiensis (black Sigatoka disease) on bananas; Peronospora spp. (downy mildew) on cabbage (e. g. P. brassicae), rape (e. g. P. parasitica), onions (e. g. P. de- sfrucfor), tobacco (P. tabacina) and soybeans (e. g. P. manshurica); Phakopsora pachyrhizi and P. meibomiae (soybean rust) on soybeans; Phiaiophora spp. e. g. on vines (e. g. P. tracheiphiia and P. tetraspora) and soybeans (e. g. P. gregata: stem rot); Phoma lingam (root and stem rot) on rape and cabbage and P. betae (root rot, leaf spot and damping-off) on sugar beets; Pho- mopsis spp. on sunflowers, vines (e. g. P. viticola: can and leaf spot) and soybeans (e. g. stem rot: P. phaseoli, teleomorph: Diaporthe phaseolorum); Physoderma maydis (brown spots) on corn; Phytophthora spp. (wilt, root, leaf, fruit and stem root) on various plants, such as paprika and cucurbits (e. g. P. capsici), soybeans (e. g. P. megasperma, syn. P. sojae), potatoes and tomatoes (e. g. P. infestans: late blight) and broad-leaved trees (e. g. P. ramorum: sudden oak death); Plasmodiophora brassicae (club root) on cabbage, rape, radish and other plants; Plas- mopara spp., e. g. P. viticola (grapevine downy mildew) on vines and P. halstedii on sunflowers; Podosphaera spp. (powdery mildew) on rosaceous plants, hop, pome and soft fruits, e. g. P. leucotricha on apples; Polymyxa spp., e. g. on cereals, such as barley and wheat (P. graminis) and sugar beets (P. betae) and thereby transmitted viral diseases; Pseudocercosporella herpo- trichoides (eyespot, teleomorph: Tapesia yallundae) on cereals, e. g. wheat or barley; Pseu- doperonospora (downy mildew) on various plants, e. g. P. cubensis on cucurbits or P. humili o hop; Pseudopezicula tracheiphiia (red fire disease or .rotbrenner', anamorph: Phiaiophora) on vines; Puccinia spp. (rusts) on various plants, e. g. P. triticina (brown or leaf rust), P. striiformis (stripe or yellow rust), P. hordei (dwarf rust), P. graminis (stem or black rust) or P. recondita (brown or leaf rust) on cereals, such as e. g. wheat, barley or rye, P. kuehnii (orange rust) on sugar cane and P. asparagi on asparagus; Pyrenophora (anamorph: Drechslera) tritici-repentis (tan spot) on wheat or P. feres (net blotch) on barley; Pyricularia spp., e. g. P. oryzae (teleo- morph: Magnaporthe grisea, rice blast) on rice and P. grisea on turf and cereals; Pythium spp. (damping-off) on turf, rice, corn, wheat, cotton, rape, sunflowers, soybeans, sugar beets, vegetables and various other plants (e. g. P. ultimum or P. aphanidermatum); Ramularia spp., e. g. R. collo-cygni (Ramularia leaf spots, Physiological leaf spots) on barley and R. beticola on sugar beets; Rhizoctonia spp. on cotton, rice, potatoes, turf, corn, rape, potatoes, sugar beets, veg- etables and various other plants, e. g. R. solani (root and stem rot) on soybeans, R. solani (sheath blight) on rice or R. cerealis (Rhizoctonia spring blight) on wheat or barley; Rhizopus stolonifer (black mold, soft rot) on strawberries, carrots, cabbage, vines and tomatoes; Rhyn- chosporium secalis (scald) on barley, rye and triticale; Sarocladium oryzae and S. attenuatum (sheath rot) on rice; Sclerotinia spp. (stem rot or white mold) on vegetables and field crops, such as rape, sunflowers (e. g. S. sclerotiorum) and soybeans (e. g. S. rolfsii or S. sclerotiorum); Septoria spp. on various plants, e. g. S. glycines (brown spot) on soybeans, S. tritici (Septoria blotch) on wheat and S. (syn. Stagonospora) nodorum (Stagonospora blotch) on cereals; Un- cinula (syn. Erysiphe) necator (powdery mildew, anamorph: Oidium tuckeri) on vines; Se- tospaeria spp. (leaf blight) on corn (e. g. S. turcicum, syn. Helminthosporium turcicum) and turf; Sphacelotheca spp. (smut) on corn, (e. g. S. miliaria: head smut), sorghum und sugar cane; Sphaerotheca fuliginea (powdery mildew) on cucurbits; Spongospora subterranea (powdery scab) on potatoes and thereby transmitted viral diseases; Stagonospora spp. on cereals, e. g. S. nodorum (Stagonospora blotch, teleomorph: Leptosphaeria [syn. Phaeosphaeria] nodorum) on wheat; Synchytrium endobioticum on potatoes (potato wart disease); Taphrina spp., e. g. T. deformans (leaf curl disease) on peaches and T. pruni (plum pocket) on plums; Thielaviopsis spp. (black root rot) on tobacco, pome fruits, vegetables, soybeans and cotton, e. g. T. basicola (syn. Chalara elegans); Tilietia spp. (common bunt or stinking smut) on cereals, such as e. g. T. tritici (syn. T. caries, wheat bunt) and T. controversa (dwarf bunt) on wheat; Typhula incarnata (grey snow mold) on barley or wheat; Urocystis spp., e. g. U. occulta (stem smut) on rye; Uro- myces spp. (rust) on vegetables, such as beans (e. g. U. appendiculatus, syn. U. phaseoli) and sugar beets (e. g. U. betae); Ustilago spp. (loose smut) on cereals (e. g. U. nuda and U.
avaenae), corn (e. g. U. maydis: corn smut) and sugar cane; Venturia spp. (scab) on apples (e. g. V. inaequalis) and pears; and Verticillium spp. (wilt) on various plants, such as fruits and ornamentals, vines, soft fruits, vegetables and field crops, e. g. V. dahliae on strawberries, rape, potatoes and tomatoes.
The mixtures according to the present inventino and compositions thereof, respectively, are also suitable for controlling harmful fungi in the protection of stored products or harvest and in the protection of materials. The term "protection of materials" is to be understood to denote the protection of technical and non-living materials, such as adhesives, glues, wood, paper and pa- perboard, textiles, leather, paint dispersions, plastics, colling lubricants, fiber or fabrics, against the infestation and destruction by harmful microorganisms, such as fungi and bacteria. As to the protection of wood and other materials, the particular attention is paid to the following harmful fungi: Ascomycetes such as Ophiostoma spp., Ceratocystis spp., Aureobasidium pullulans, Sclerophoma spp., Chaetomium spp., Humicola spp., Petriella spp., Trichurus spp.; Basidiomy- cetes such as Coniophora spp., Coriolus spp., Gloeophyllum spp., Lentinus spp., Pleurotus spp., Poria spp., Serpula spp. and Tyromyces spp., Deuteromycetes such as Aspergillus spp., Cladosporium spp., Penicillium spp., Trichorma spp., Alternaria spp., Paecilomyces spp. and Zygomycetes such as Mucor spp., and in addition in the protection of stored products and har- vest the following yeast fungi are worthy of note: Candida spp. and Saccharomyces cerevisae.
They are particularly important for controlling a multitude of fungi on various cultivated plants, such as bananas, cotton, vegetable species (for example cucumbers, beans and cucurbits), cereals such as wheat, rye, barley, rice, oats; grass coffee, potatoes, corn, fruit species, soya, tomatoes, grapevines, ornamental plants, sugar cane and also on a large number of seeds. In a preferred embodiment, the inventive mixtures are used in soya (soybean), cereals and corn.
The inventive mixtures exhibit also outstanding action against animal pests from the following orders: insects from the order of the lepidopterans (Lepidoptera), for example Agrotis ypsilon, Agrotis segetum, Alabama argillacea, Anticarsia gemmatalis, Argyresthia conjugella, Autographa gamma, Bupalus piniarius, Cacoecia murinana, Capua reticulana, Cheimatobia brumata, Choris- toneura fumiferana, Choristoneura occidentalis, Cirphis unipuncta, Cydia pomonella, Dendroli- mus pini, Diaphania nitidalis, Diatraea grandiosella, Earias insulana, Elasmopalpus lignosellus, Eupoecilia ambiguella, Evetria bouliana, Feltia subterranea, Galleria mellonella, Grapholitha funebrana, Grapholitha molesta, Heliothis armigera, Heliothis virescens, Heliothis zea, Hellula undalis, Hibernia defoliaria, Hyphantria cunea, Hyponomeuta malinellus, Keiferia lycopersicella, Lambdina fiscellaria, Laphygma exigua, Leucoptera coffeella, Leucoptera scitella, Lithocolletis blancardella, Lobesia botrana, Loxostege sticticalis, Lymantria dispar, Lymantria monacha, Ly- onetia clerkella, Malacosoma neustria, Mamestra brassicae, Orgyia pseudotsugata, Ostrinia nubilalis, Panolis flammea, Pectinophora gossypiella, Peridroma saucia, Phalera bucephala, Phthorimaea operculella, Phyllocnistis citrella, Pieris brassicae, Plathypena scabra, Plutella xy- lostella, Pseudoplusia includens, Rhyacionia frustrana, Scrobipalpula absoluta, Sitotroga cere- alella, Sparganothis piileriana, Spodoptera frugiperda, Spodoptera littoralis, Spodoptera litura, Thaumatopoea pityocampa, Tortrix viridana, Trichoplusia ni and Zeiraphera canadensis, beetles (Coleoptera), for example Agrilus sinuatus, Agriotes lineatus, Agriotes obscurus, Am- phimallus solstitialis, Anisa drus dispar, Anthonomus grand is, Anthonomus pomorum, Aphtho- na euphoridae, Athous haemorrhoidalis, Atomaria linearis, Blastophagus piniperda, Blitophaga undata, Bruchus rufimanus, Bruchus pisorum, Bruchus lentis, Byctiscus betulae, Cassida nebu- losa, Cerotoma trifurcata, Cetonia aurata, Ceuthorrhynchus assimilis, Ceuthorrhynchus napi, Chaetocnema tibialis, Conoderus vespertinus, Crioceris asparagi, Ctenicera ssp., Diabrotica longicornis, Diabrotica semipunctata, Diabrotica 12-punctata Diabrotica speciosa, Diabrotica virgifera, Epilachna varivestis, Epitrix hirtipennis, Eutinobothrus brasiliensis, Hylobius abietis, Hypera brunneipennis, Hypera postica, Ips typographus, Lema bilineata, Lema melanopus, Leptinotarsa decemlineata, Limonius californicus, Lissorhoptrus oryzophilus, Melanotus com- munis, Meligethes aeneus, Melolontha hippocastani, Melolontha melolontha, Oulema oryzae, Ortiorrhynchus sulcatus, Otiorrhynchus ovatus, Phaedon cochleariae, Phyllobius pyri, Phyllotre- ta chrysocephala, Phyllophaga sp., Phyllopertha horticola, Phyllotreta nemorum, Phyllotreta striolata, PopHlia japonica, Sitona lineatus and Sitophilus granaria, flies, mosquitoes (Diptera), e.g. Aedes aegypti, Aedes albopictus, Aedes vexans, Anastrepha ludens, Anopheles maculipennis, Anopheles crucians, Anopheles albimanus, Anopheles gam- biae, Anopheles freeborni, Anopheles leucosphyrus, Anopheles minimus, Anopheles quadri- maculatus, Calliphora vicina, Ceratitis capitata, Chrysomya bezziana, Chrysomya hominivorax, Chrysomya macellaria, Chrysops discalis, Chrysops silacea, Chrysops atlanticus, Cochliomyia hominivorax, Contarinia sorghicola Cordylobia anthropophaga, Culicoides furens, Culex pipiens, Culex nigripalpus, Culex quinquefasciatus, Culex tarsalis, Culiseta inornata, Culiseta melanura, Dacus cucurbitae, Dacus oleae, Dasineura brassicae, Delia antique, Delia coarctata, Delia pla- tura, Delia radicum, Dermatobia hominis, Fannia canicularis, Geomyza Tripunctata, Gasterophi- lus intestinalis, Glossina morsitans, Glossina palpalis, Glossina fuscipes, Glossina tachinoides, Haematobia irritans, Haplodiplosis equestris, Hippelates spp., Hylemyia platura, Hypoderma lineata, Leptoconops torrens, Liriomyza sativae, Liriomyza trifolii, Lucilia caprina, Lucilia cu- prina, Lucilia sericata, Lycoria pectoralis, Mansonia titillanus, Mayetiola destructor, Musca do- mestica, Muscina stabulans, Oestrus ovis, Opomyza florum, Oscinella frit, Pegomya hysocyami, Phorbia antiqua, Phorbia brassicae, Phorbia coarctata, Phlebotomus argentipes, Psorophora columbiae, Psila rosae, Psorophora discolor, Prosimulium mixtum, Rhagoletis cerasi, Rhago- letis pomonella, Sarcophaga haemorrhoidalis, Sarcophaga sp., Simulium vittatum, Stomoxys calcitrans, Tabanus bovinus, Tabanus atratus, Tabanus lineola, and Tabanus similis, Tipula oleracea, and Tipula paludosa thrips (Thysanoptera), e.g. Dichromothrips corbetti, Dichromothrips ssp , Frankliniella fusca, Frankliniella occidentalis, Frankliniella tritici, Scirtothrips citri, Thrips oryzae, Thrips palmi and Thrips tabaci, termites (Isoptera), e.g. Calotermes flavicollis, Leucotermes flavipes, Heterotermes aureus, Re- ticulitermes flavipes, Reticulitermes virginicus, Reticulitermes lucifugus, Termes natalensis, and Coptotermes formosanus, cockroaches (Blattaria - Blattodea), e.g. Blattella germanica, Blattella asahinae, Periplaneta americana, Periplaneta japonica, Periplaneta brunnea, Periplaneta fuligginosa, Periplaneta aus- tralasiae, and Blatta oriental's, true bugs (Hemiptera), e.g. Acrosternum hilare, Blissus leucopterus, Cyrtopeltis notatus, Dysdercus cingulatus, Dysdercus intermedius, Eurygaster integriceps, Euschistus impictiventris, Leptoglossus phyllopus, Lygus lineolaris, Lygus pratensis, Nezara viridula, Piesma quadrata, Solubea insularis , Thyanta perditor, Acyrthosiphon onobrychis, Adelges lands, Aphidula na- sturtii, Aphis fabae, Aphis forbesi, Aphis pomi, Aphis gossypii, Aphis grossulariae, Aphis schneideri, Aphis spiraecola, Aphis sambuci, Acyrthosiphon pisum, Aulacorthum solani, Be- misia argentifolii, Brachycaudus cardui, Brachycaudus helichrysi, Brachycaudus persicae, Brachycaudus prunicola, Brevicoryne brassicae, Capitophorus horni, Cerosipha gossypii, Chae- tosiphon fragaefolii, Cryptomyzus ribis, Dreyfusia nordmannianae, Dreyfusia piceae, Dysaphis radicola, Dysauiacorthum pseudosolani, Dysaphis plantaginea, Dysaphis pyri, Empoasca fabae, Hyalopterus pruni, Hyperomyzus lactucae, Macrosiphum avenae, Macrosiphum euphorbiae, Macrosiphon rosae, Megoura viciae, Melanaphis pyrarius, Metopolophium dirhodum, Myzus persicae, Myzus ascalonicus, Myzus cerasi, Myzus varians, Nasonovia ribis-nigri, Nilaparvata lugens, Pemphigus bursarius, Perkinsiella saccharicida, Phorodon humuli, Psylla mail, Psylla piri, Rhopalomyzus ascalonicus, Rhopalosiphum maidis, Rhopalosiphum padi, Rhopalosiphum insertum, Sappaphis mala, Sappaphis mali, Schizaphis graminum, Schizoneura lanuginosa, Sitobion avenae, Trialeurodes vaporariorum, Toxoptera aurantiiand, Viteus vitifolii, Cimex lectu- larius, Cimex hemipterus, Reduvius senilis, Triatoma spp., and Arilus critatus. ants, bees, wasps, sawflies (Hymenoptera), e.g. Athalia rosae, Atta cephalotes, Atta capiguara, Atta cephalotes, Atta laevigata, Atta robusta, Atta sexdens, Atta texana, Crematogaster spp., Hoplocampa minuta, Hoplocampa testudinea, Monomorium pharaonis, Solenopsis geminata, Solenopsis invicta, Solenopsis richteri, Solenopsis xyloni, Pogonomyrmex barbatus, Pogo- nomyrmex californicus, Pheidole megacephala, Dasymutilla occidentalis, Bombus spp. Vespuia squamosa, Paravespula vulgaris, Paravespula pennsylvanica, Paravespula germanica, Doli- chovespula maculata, Vespa crabro, Polistes rubiginosa, Camponotus floridanus, and Linepi- thema humile, crickets, grasshoppers, locusts (Orthoptera), e.g. Acheta domestica, Gryllotalpa gryllotalpa, Lo- custa migratoria, Melanoplus bivittatus, Melanoplus femurrubrum, Melanoplus mexicanus, Mel- anoplus sanguinipes, Melanoplus spretus, Nomadacris septemfasciata, Schistocerca america- na, Schistocerca gregaria, Dociostaurus maroccanus, Tachycines asynamorus, Oedaleus sen- egalensis, Zonozerus variegatus, Hieroglyphus daganensis, Kraussaria angulifera, Calliptamus italicus, Chortoicetes terminifera, and Locustana pardalina,
Arachnoidea, such as arachnids (Acarina), e.g. of the families Argasidae, Ixodidae and Sar- coptidae, such as Amblyomma americanum, Amblyomma variegatum, Ambryomma maculatum, Argas persicus, Boophilus annulatus, Boophilus decoloratus, Boophilus microplus, Dermacentor silvarum, Dermacentor andersoni, Dermacentor variabilis, Hyalomma truncatum, Ixodes ricinus, Ixodes rubicundus, Ixodes scapularis, Ixodes holocyclus, Ixodes pacificus, Ornithodorus mou- bata, Ornithodorus hermsi, Ornithodorus turicata, Ornithonyssus bacoti, Otobius megnini, Der- manyssus gallinae, Psoroptes ovis, Rhipicephalus sanguineus, Rhipicephalus appendiculatus, Rhipicephalus evertsi, Sarcoptes scabiei, and Eriophyidae spp. such as Aculus schlechtendali, Phyllocoptrata oleivora and Eriophyes sheldoni; Tarsonemidae spp. such as Phytonemus palli- dus and Polyphagotarsonemus latus; Tenuipalpidae spp. such as Brevipalpus phoenicis;
Tetranychidae spp. such as Tetranychus cinnabarinus, Tetranychus kanzawai, Tetranychus pacificus, Tetranychus telarius and Tetranychus urticae, Panonychus ulmi, Panonychus citri, and Oligonychus pratensis; Araneida, e.g. Latrodectus mactans, and Loxosceles reclusa, fleas (Siphonaptera), e.g. Ctenocephalides felis, Ctenocephalides canis, Xenopsylla cheopis, Pulex irritans, Tunga penetrans, and Nosopsyllus fasciatus, silverfish, firebrat (Thysanura), e.g. Lepisma saccharina and Thermobia domestica, centipedes (Chilopoda), e.g. Scutigera coleoptrata, millipedes (Diplopoda), e.g. Narceus spp.,
Earwigs (DermapteraJ, e.g. forficula auricularia, lice (Phthiraptera), e.g. Pediculus humanus capitis, Pediculus humanus corporis, Pthirus pubis, Haematopinus eurysternus, Haematopinus suis, Linognathus vituli, Bovicola bovis, Menopon gallinae, Menacanthus stramineus and Solenopotes capillatus, plant parasitic nematodes such as root-knot nematodes, Meloidogyne arenaria, Meloidogyne chitwoodi, Meloidogyne exigua, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javan- ica and other Meloidogyne species; cyst nematodes, Globodera rostochiensis, Globodera pallida, Globodera tabacum and other Globodera species, Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; seed gall nematodes, Anguina funesta, Anguina tritici and other Anguina species; stem and foliar nematodes, Aphelenchoides besseyi, Aphelenchoides fragariae, Aphelenchoides ritzemabosi and other Aphelenchoides species; sting nematodes, Belonoiaimus longicaudatus and other Beionolaimus species; pine nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; ring nematodes, Criconema species, Criconemella species, Criconemoides species, and Meso- criconema species; stem and bulb nematodes, Ditylenchus destructor, Ditylenchus dipsaci, Ditylenchus myceliophagus and other Ditylenchus species; awl nematodes, Dolichodorus species; spiral nematodes, Helicotylenchus dihystera, Helicotylenchus multicinctus and other Heli- cotylenchus species, Rotylenchus robustus and other Rotylenchus species; sheath nematodes, Hemicycliophora species and Hemicriconemoides species; Hirshmanniella species; lance nematodes, Hoplolaimus columbus, Hoplolaimus galeatus and other Hoplolaimus species; false root-knot nematodes, Nacobbus aberrans and other Nacobbus species; needle nematodes, Longidorus elongates and other Longidorus species; pin nematodes, Paratylenchus species; lesion nematodes, Pratylenchus brachyurus, Pratylenchus coffeae, Pratylenchus curvitatus, Pratylenchus goodeyi, Pratylencus neglectus, Pratylenchus penetrans, Pratylenchus scribneri, Pratylenchus vulnus, Pratylenchus zeae and other Pratylenchus species; Radinaphelenchus cocophilus and other Radinaphelenchus species; burrowing nematodes, Radopholus similis and other Radopholus species; reniform nematodes, Rotylenchulus reniformis and other Rotylen- chulus species; Scutellonema species; stubby root nematodes, Trichodorus primitivus and other Trichodorus species; Paratrichodorus minor and other Paratrichodorus species; stunt nematodes, Tylenchorhynchus claytoni, Tylenchorhynchus dubius and other Tylenchorhynchus spe- cies and Merlinius species; citrus nematodes, Tylenchulus semipenetrans and other Tylenchu- lus species; dagger nematodes, Xiphinema americanum, Xiphinema index, Xiphinema diversi- caudatum and other Xiphinema species; and other plant parasitic nematode species.
The mixtures according to the invention can be applied to any and all developmental stages of pests, such as egg, larva, pupa, and adult. The pests may be controlled by contacting the target pest, its food supply, habitat, breeding ground or its locus with a pesticidally effective amount of the inventive mixtures or of compositions comprising the mixtures.
"Locus" means a plant, plant propagation material (preferably seed), soil, area, material or envi- ronment in which a pest is growing or may grow.
In general, "pesticidally effective amount" means the amount of the inventive mixtures or of compositions comprising the mixtures needed to achieve an observable effect on growth, including the effects of necrosis, death, retardation, prevention, and removal, destruction, or oth- erwise diminishing the occurrence and activity of the target organism. The pesticidally effective amount can vary for the various mixtures / compositions used in the invention. A pesticidally effective amount of the mixtures / compositions will also vary according to the prevailing conditions such as desired pesticidal effect and duration, weather, target species, locus, mode of application, and the like.
As said above, the present invention comprises a method for improving the health of plants, wherein the plant, the locus where the plant is growing or is expected to grow or plant propagation material, from which the plant grows, is treated with an plant health effective amount of an inventive mixture. The term "plant effective amount" denotes an amount of the inventive mixtures, which is sufficient for achieving plant health effects as defined herein below. More exemplary information about amounts, ways of application and suitable ratios to be used is given below. Anyway, the skilled artisan is well aware of the fact that such an amount can vary in a broad range and is dependent on various factors, e.g. the treated cultivated plant or material and the climatic conditions.
When preparing the mixtures, it is preferred to employ the pure active compounds, to which further active compounds against pests, such as insecticides, herbicides, fungicides or else herbicidal or growth-regulating active compounds or fertilizers can be added as further active components according to need.
The inventive mixtures are employed by treating the fungi or the plants, plant propagation materials (preferably seeds), materials or soil to be protected from fungal attack with a pesticidally effective amount of the active compounds. The application can be carried out both before and after the infection of the materials, plants or plant propagation materials (preferably seeds) by the pests. In the context of the present invention, the term plant refers to an entire plant, a part of the plant or the propagation material of the plant.
The inventive mixtures and compositions thereof are particularly important in the control of a multitude of phytopathogenic fungi on various cultivated plants, such as cereals, e. g. wheat, rye, barley, triticale, oats or rice; beet, e. g. sugar beet or fodder beet; fruits, such as pomes, stone fruits or soft fruits, e. g. apples, pears, plums, peaches, almonds, cherries, strawberries, raspberries, blackberries or gooseberries; leguminous plants, such as lentils, peas, alfalfa or soybeans; oil plants, such as rape, mustard, olives, sunflowers, coconut, cocoa beans, castor oil plants, oil palms, ground nuts or soybeans; cucurbits, such as squashes, cucumber or mel- ons; fiber plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruits or mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes, cucurbits or paprika; lauraceous plants, such as avocados, cinnamon or camphor; energy and raw material plants, such as corn, soybean, rape, sugar cane or oil palm; corn; tobacco; nuts; coffee; tea; bananas; vines (table grapes and grape juice grape vines); hop; turf; sweet leaf (also called Stevia); natural rubber plants or ornamental and forestry plants, such as flowers, shrubs, broad-leaved trees or evergreens, e. g. conifers; and on the plant propagation material, such as seeds, and the crop material of these plants.
Preferably, the inventive mixturs and compositions thereof, respectively are used for controlling a multitude of fungi on field crops, such as potatoes sugar beets, tobacco, wheat, rye, bar- ley, oats, rice, corn, cotton, soybeans, rape, legumes, sunflowers, coffee or sugar cane; fruits; vines; ornamentals; or vegetables, such as cucumbers, tomatoes, beans or squashes.
Preferably, treatment of plant propagation materials with the inventive mixtures and compositions thereof, respectively, is used for controlling a multitude of fungi on cereals, such as wheat, rye, barley and oats; potatoes, tomatoes, vines, rice, corn, cotton and soybeans. The term "cultivated plants" is to be understood as including plants which have been modified by breeding, mutagenesis or genetic engineering including but not limiting to agricultural biotech products on the market or in development (cf. http://cera-gmc.org/, see GM crop database therein). Genetically modified plants are plants, which genetic material has been so modi- fied by the use of recombinant DNA techniques that under natural circumstances cannot readily be obtained by cross breeding, mutations or natural recombination. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides e. g. by gly- cosylation or polymer additions such as prenylated, acetylated or farnesylated moieties or PEG moieties.
Plants that have been modified by breeding, mutagenesis or genetic engineering, e. g. have been rendered tolerant to applications of specific classes of herbicides, such as auxin herbicides such as dicamba or 2,4-D; bleacher herbicides such as hydroxylphenylpyruvate dioxy- genase (HPPD) inhibitors or phytoene desaturase (PDS) inhibittors; acetolactate synthase (ALS) inhibitors such as sulfonyl ureas or imidazolinones; enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibitors, such as glyphosate; glutamine synthetase (GS) inhibitors such as glufosinate; protoporphyrinogen-IX oxidase inhibitors; lipid biosynthesis inhibitors such as acetyl CoA carboxylase (ACCase) inhibitors; or oxynil (i. e. bromoxynil or ioxynil) herbicides as a result of conventional methods of breeding or genetic engineering. Furthermore, plants have been made resistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as ALS inhibitors, HPPD inhibitors, auxin herbicides, or ACCase inhibitors. These herbicide resistance technologies are e. g. described in Pest Managem. Sci. 61 , 2005, 246; 61 , 2005, 258; 61 , 2005, 277; 61 , 2005, 269; 61 , 2005, 286; 64, 2008, 326; 64, 2008, 332; Weed Sci. 57, 2009, 108; Austral. J. Agricult. Res. 58, 2007, 708; Science 316, 2007, 1 185; and references quoted therein. Several cultivated plants have been rendered tolerant to herbicides by conventional methods of breeding (mutagenesis), e. g. Clearfield® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e. g. imazamox, or ExpressSun® sunflowers (DuPont, USA) being tolerant to sulfonyl ureas, e. g. tribenuron. Genetic engineering methods have been used to render cultivated plants such as soybean, cotton, corn, beets and rape, tolerant to herbicides such as glyphosate and glufosinate, some of which are commercially available under the trade names RoundupReady® (glyphosate-tolerant, Monsanto, U.S.A.), Cul- tivance® (imidazolinone tolerant, BASF SE, Germany) and LibertyLink® (glufosinate-tolerant, Bayer CropScience, Germany).
Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as δ-endotoxins, e. g. CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bl) or Cry9c; vegetative insecticidal pro- teins (VIP), e. g. VIP1 , VIP2, VIP3 or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e. g. Photorhabdus spp. or Xenorhabdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins produced by fungi, such Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroid oxidase, ecdyster- oid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-reductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone ester- ase; diuretic hormone receptors (helicokinin receptors); stilben synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new combination of protein domains, (see, e. g. WO 02/015701 ). Further examples of such toxins or genetically modified plants ca- pable of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278,
WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810 und WO 03/52073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above. These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins toler- ance to harmful pests from all taxonomic groups of athropods, especially to beetles (Coelop- tera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda). Genetically modified plants capable to synthesize one or more insecticidal proteins are, e. g., described in the publications mentioned above, and some of which are commercially available such as YieldGard® (corn cultivars producing the CrylAb toxin), YieldGard® Plus (corn cultivars producing CrylAb and Cry3Bb1 toxins), Starlink® (corn cultivars producing the Cry9c toxin), Herculex® RW (corn cultivars producing Cry34Ab1 , Cry35Ab1 and the enzyme Phosphinothri- cin-N-Acetyltransferase [PAT]); NuCOTN® 33B (cotton cultivars producing the Cry1 Ac toxin), Bollgard® I (cotton cultivars producing the CrylAc toxin), Bollgard® II (cotton cultivars producing Cry1 Ac and Cry2Ab2 toxins); VIPCOT® (cotton cultivars producing a VIP-toxin); NewLeaf® (po- tato cultivars producing the Cry3A toxin); Bt-Xtra®, NatureGard®, KnockOut®, BiteGard®, Pro- tecta®, Bt1 1 (e. g. Agrisure® CB) and Bt176 from Syngenta Seeds SAS, France, (corn cultivars producing the CrylAb toxin and PAT enyzme), MIR604 from Syngenta Seeds SAS, France (corn cultivars producing a modified version of the Cry3A toxin, c.f. WO 03/018810), MON 863 from Monsanto Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the
CrylAc toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the Cry1 F toxin and PAT enzyme).
Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called "path- ogenesis-related proteins" (PR proteins, see, e. g. EP-A 392 225), plant disease resistance genes (e. g. potato cultivars, which express resistance genes acting against Phytophthora in- festans derived from the mexican wild potato Solanum bulbocastanum) or T4-lysozym (e. g. potato cultivars capable of synthesizing these proteins with increased resistance against bacte- ria such as Erwinia amylvora). The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g. in the publications mentioned above.
Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e. g. bio mass produc- tion, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.
Furthermore, plants are also covered that contain by the use of recombinant DNA tech- niques a modified amount of substances of content or new substances of content, specifically to improve human or animal nutrition, e. g. oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g. Nexera® rape, DOW Agro Sciences, Canada).
Furthermore, plants are also covered that contain by the use of recombinant DNA tech- niques a modified amount of substances of content or new substances of content, specifically to improve raw material production, e. g. potatoes that produce increased amounts of amylopectin (e. g. Amflora® potato, BASF SE, Germany).
The separate or joint application of the compounds of the inventive mixtures is carried out by spraying or dusting the seeds, the seedlings, the plants or the soils before or after sowing of the plants or before or after emergence of the plants.
The inventive mixtures are effective through both contact (via soil, glass, wall, bed net, carpet, plant parts or animal parts), and ingestion (bait, or plant part) and through trophallaxis and transfer.
Preferred application methods are into water bodies, via soil, cracks and crevices, pastures, manure piles, sewers, into water, on floor, wall, or by perimeter spray application and bait.
According to another preferred embodiment of the invention, for use against non crop pests such as ants, termites, wasps, flies, mosquitoes, crickets, locusts, or cockroaches the inventive mixtures are prepared into a bait preparation.
The bait can be a liquid, a solid or a semisolid preparation (e.g. a gel). The bait employed in the composition is a product which is sufficiently attractive to incite insects such as ants, termites, wasps, flies, mosquitoes, crickets etc. or cockroaches to eat it. This attractant may be chosen from feeding stimulants or para and / or sex pheromones readily known in the art.
Methods to control infectious diseases transmitted by insects (e.g. malaria, dengue and yellow fever, lymphatic filariasis, and leishmaniasis) with the inventive mixtures and their respective compositions also comprise treating surfaces of huts and houses, air spraying and impregnation of curtains, tents, clothing items, bed nets, tsetse-fly trap or the like. Insecticidal compositions for application to fibers, fabric, knitgoods, non-wovens, netting material or foils and tarpaulins preferably comprise a composition including the inventive mixtures, optionally a repellent and at least one binder.
The inventive mixtures and the compositions comprising them can be used for protecting wooden materials such as trees, board fences, sleepers, etc. and buildings such as houses, outhouses, factories, but also construction materials, furniture, leathers, fibers, vinyl articles, electric wires and cables etc. from ants and/or termites, and for controlling ants and termites from doing harm to crops or human being (e.g. when the pests invade into houses and public facilities).
In the case of soil treatment or of application to the pests dwelling place or nest, the quantity of active ingredient ranges from 0.0001 to 500 g per 100 m2, preferably from 0.001 to 20 g per 100 m2.
Customary application rates in the protection of materials are, for example, from 0.01 g to 1000 g of active compound per m2 treated material, desirably from 0.1 g to 50 g per m2.
Insecticidal compositions for use in the impregnation of materials typically contain from 0.001 to 95 weight %, preferably from 0.1 to 45 weight %, and more preferably from 1 to 25 weight % of at least one repellent and / or insecticide. For use in bait compositions, the typical content of active ingredient is from 0.0001 weight % to 15 weight %, desirably from 0.001 weight % to 5% weight % of active compound. The composition used may also comprise other additives such as a solvent of the active material, a flavoring agent, a preserving agent, a dye or a bitter agent. Its attractiveness may also be enhanced by a special color, shape or texture.
For use in spray compositions, the content of the mixture of the active ingredients is from 0.001 to 80 weights %, preferably from 0.01 to 50 weight % and most preferably from 0.01 to 15 weight %. Biological Data
The active compounds were formulated separately as a stock solution having a concentration of 10000 ppm in dimethyl sulfoxide. Compound No C-1 is N2-[2-(3-chloro-2-pyridyl)-5-[(5-methyltetrazol-2-yl)methyl] pyrazol-3-yl]-5- cyano-N1 ,3-dimethyl-phthalamide) as indicated above.
1. Activity against the late blight pathogen Phytophthora infestans in the microtiter test (Phytin) The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Phytophtora infestans containing a pea juice-based aqueous nutrient medium or DDC medium was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation. The expected efficacies of active compound mixtures were determined using Colby's formula [R.S. Colby, "Calculating synergistic and antagonistic responses of herbicide combinations", Weeds 15, 20-22 (1967)] and compared with the observed efficacies.
The results are shown below in table 1. Table 1
Figure imgf000028_0001
2. Activity against rice blast Pyricularia oryzae in the microtiterplate test (Pyrior)
The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Pyricularia oryzae in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.
The expected efficacies of active compound mixtures were determined using Colby's formula [R.S. Colby, "Calculating synergistic and antagonistic responses of herbicide combinations", Weeds 15, 20-22 (1967)] and compared with the observed efficacies.
The results are shown below in table 2.
Table 2
Figure imgf000028_0002
3. Activity against leaf blotch on wheat caused by Septoria tritici (Septtr)
The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Septoria tritici in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.
The expected efficacies of active compound mixtures were determined using Colby's formula [R.S. Colby, "Calculating synergistic and antagonistic responses of herbicide combinations", Weeds 15, 20-22 (1967)] and compared with the observed efficacies.
The results are shown below in table 3. Table 3
Figure imgf000029_0001
4. Activity against early blight caused by Alternaria solani The stock solutions were mixed according to the ratio, pipetted onto a micro titer plate (MTP) and diluted with water to the stated concentrations. A spore suspension of Alternaria solani in an aqueous biomalt or yeast-bactopeptone-glycerine solution was then added. The plates were placed in a water vapor-saturated chamber at a temperature of 18°C. Using an absorption photometer, the MTPs were measured at 405 nm 7 days after the inoculation.
The measured parameters were compared to the growth of the active compound-free control variant (100%) and the fungus-free and active compound-free blank value to determine the relative growth in % of the pathogens in the respective active compounds.
These percentages were converted into efficacies. The expected efficacies of active compound mixtures were determined using Colby's formula [R.S. Colby, "Calculating synergistic and antagonistic responses of herbicide combinations", Weeds 15, 20-22 (1967)] and compared with the observed efficacies.
The results are shown below in table 4.
Table 4
Active compound Concentration Mixture Observed Calculated Synergism
/ active mixture (ppm) efficacy efficacy ac(%)
cording to
Colby (%)
Pyraclostrobin 0.016 - 19
0.004 3
C-1 63 - 0
flupyradifurone 63 - 0
Pyraclostrobin 0.016 1 : 4000 57 19 38
C-1 63
Pyraclostrobin 0.004 1 : 16 000 30 3 27
C-1 63
Pyraclostrobin 0.016 1 : 4000 41 19 22
flupyradifurone 63
Pyraclostrobin 0.004 1 : 16 000 22 3 19
flupyradifurone 63

Claims

Claims
1. Pesticidal mixtures comprising, as active components,
1 ) pyraclostrobin as compound I; and
2) one insectidical compound II selected from the group consisting of flupyradifurone, N2-[2-(3-chloro-2-pyridyl)-5-[(5-methyltetrazol-2-yl)methyl]pyrazol-3-yl]-5-cyano- N1 ,3-dimethyl-phthalamide, cycloxaprid, flometoquin, fluensulfone, flufiprole, , fufe- nozide, pyflubumide, , 3-bromo-N2-[5-bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-5- chloro-N1 -(1-cyclopropylethyl)phthalamide, 1-[2-fluoro-4-methyl-5-(2,2,2- trifluoroethylsulfinyl)phenyl]-3-(trifluoromethyl)-1 ,2,4-triazole, 2-[2-fluoro-4-methyl-5- (2,2,2-trifluoroethylsulfinyl)phenyl]-5-(trifluoromethyl)-1 ,2,4-triazol-3-amine, 1 -(4- chloro-3-fluoro-phenyl)-N-[(2-methyl-3-phenyl-phenyl)methoxy]-2-methylsulfanyl- ethanimine, 2-(5-amino-1 ,3,4-thiadiazol-2-yl)-N-[5-bromo-2-(3-chloro-2- pyridyl)pyrazol-3-yl]-4-chloro-6-methyl-benzamide, 1 -[(6-chloro-3-pyridyl)methyl]-7- methyl-8-nitro-5-propoxy-3,5,6J-tetrahydro-2H-imidazo[1 ,2-a]pyridine, methyl (E)-2- [2-[[2-(2,4-dichloroanilino)-6-(trifluoromethyl)pyrimidin-4-yl]oxymethyl]phenyl]-3- methoxy-prop-2-enoate and 1 -[(E)-[2-(4-cyanophenyl)-1-[3- (trifluoromethyl)phenyl]ethylidene]amino]-3-(4-(difluoromethoxy)phenyl)urea in synergistic effective amounts.
2. The mixture according to claim 1 , wherein compound II is selected from the group consisting of flupyradifurone, N2-[2-(3-chloro-2-pyridyl)-5-[(5-methyltetrazol-2-yl)methyl]pyrazol-3- yl]-5-cyano-N1 ,3-dimethyl-phthalamide, cycloxaprid, flometoquin, flufiprole, , fufenozide, pyflubumide, , 3-bromo-N2-[5-bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-5-chloro-N1-(1- cyclopropylethyl)phthalamide, 1-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-3- (trifluoromethyl)-1 ,2,4-triazole, 2-[2-fluoro-4-methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5- (trifluoromethyl)-l ,2,4-triazol-3-amine, 2-(5-amino-1 ,3,4-thiadiazol-2-yl)-N-[5-bromo-2-(3- chloro-2-pyridyl)pyrazol-3-yl]-4-chloro-6-methyl-benzamide and 1 -[(6-chloro-3- pyridyl)methyl]-7-methyl-8-nitro-5-propoxy-3,5,6,7-tetrahydro-2H-imidazo[1 ,2-a]pyridine.
3. The mixture according to claim 1 , wherein compound II is selected from the group consisting of flupyradifurone, N2-[2-(3-chloro-2-pyridyl)-5-[(5-methyltetrazol-2-yl)methyl]pyrazol-3- yl]-5-cyano-N1 ,3-dimethyl-phthalamide, cycloxaprid, flufiprole, 3-bromo-N2-[5-bromo-2-(3- chloro-2-pyridyl)pyrazol-3-yl]-5-chloro-N 1 -(1 -cyclopropylethyl)phthalamide, 1 -[2-fluoro-4- methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-3-(trifluoromethyl)-1 ,2,4-triazole, 2-[2-fluoro-4- methyl-5-(2,2,2-trifluoroethylsulfinyl)phenyl]-5-(trifluoromethyl)-1 ,2,4-triazol-3-amine, 2-(5- amino-1 ,3,4-thiadiazol-2-yl)-N-[5-bromo-2-(3-chloro-2-pyridyl)pyrazol-3-yl]-4-chloro-6- methyl-benzamide and 1-[(6-chloro-3-pyridyl)methyl]-7-methyl-8-nitro-5-propoxy-3, 5,6,7- tetrahydro-2H-imidazo[1 ,2-a]pyridine.
4. A mixture as claimed in any of claims 1 to 3, wherein compound II is N2-[2-(3-chloro-2- pyridyl)-5-[(5-methyltetrazol-2-yl)methyl]pyrazol-3-yl]-5-cyano-N1 ,3-dimethyl-phthalamide or flupyradifurone.
5. A mixture as claimed in any of claims 1 to 4, wherein the weight ratio of the compound of formula I to compound of formula II is from 20000:1 to 1 :20000.
6. A mixture as claimed in any of claims 1 to 4, wherein the weight ratio of the compound of formula I to compound of formula II is from 100:1 to 1 :100
7. A pesticidal composition, comprising a liquid or solid carrier and a mixture as defined in any of claims 1 to 6.
8. A method for controlling phytopathogenic pests, wherein the pest, their habitat, breeding grounds, their locus or the plants to be protected against pest attack, the soil or plant propagation material are treated with an effective amount of a mixture as defined in any of claims 1 to 6.
9. A method for improving the health of plants, wherein the plant, the locus where the plant is growing or is expected to grow or plant propagation material from which the plant grows are treated with an effective amount of a mixture as defined in any of claims 1 to 6.
10. A method for protection of plant propagation material from pests comprising contacting the plant propagation materials with a mixture as defined in any of claims 1 to 5 in pesticidally effective amounts. 1 1. A method as claimed in claim 10, wherein the mixture as defined in any of claims 1 to 6 is applied in an amount of from 0.01 g to 10 kg per 100 kg of plant propagation materials.
A method as claimed in claims 8 to 1 1 , wherein the mixture as defined in any of claims 1 to 6 are applied simultaneously, that is jointly or separately, or in succession.
13. Plant propagation material, comprising the mixture as defined in any of claims 1 to 5 in an amount of from 0.01 g to 10 kg per 100 kg of plant propagation materials.
PCT/EP2013/057285 2012-04-16 2013-04-08 Synergistic compositions comprising pyraclostrobin and an insecticidal compound WO2013156331A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12164239 2012-04-16
EP12164239.1 2012-04-16

Publications (1)

Publication Number Publication Date
WO2013156331A1 true WO2013156331A1 (en) 2013-10-24

Family

ID=48050037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/057285 WO2013156331A1 (en) 2012-04-16 2013-04-08 Synergistic compositions comprising pyraclostrobin and an insecticidal compound

Country Status (1)

Country Link
WO (1) WO2013156331A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106472538A (en) * 2016-10-12 2017-03-08 佛山迅拓奥科技有限公司 A kind of cycloxaprid and carbamide compound synergic insecticide
CN110419537A (en) * 2019-07-24 2019-11-08 江门市植保有限公司 It is a kind of for preventing and treating the composition pesticide of potato disease insect pest
WO2020148660A1 (en) * 2019-01-17 2020-07-23 Pi Industries Ltd. Composition comprising tolfenpyrad and pyraclostrobin
US20210000116A1 (en) * 2014-11-07 2021-01-07 Basf Se Pesticidal mixtures
CN115088714A (en) * 2022-06-30 2022-09-23 广西南亚热带农业科学研究所 Pesticide composition for preventing and treating psylla chinensis

Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
EP0451878A1 (en) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modifying plants by genetic engineering to combat or control insects
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
CN1071577A (en) 1991-07-05 1993-05-05 浦罗纽朗公司 Handle the toxicity of chemotherapy reagent and Anti-virus agent with acylated pyrimidine nucleosides
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
CN1313276A (en) 2001-03-26 2001-09-19 江苏省农药研究所 Diacyl hydrazide compounds as insecticide, intermediate for preparing said compounds and their preparing process
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
CN1546469A (en) 2003-12-15 2004-11-17 南开大学 Method for producing sulfolane by hydrogenation of sulfolene
WO2005058040A1 (en) 2003-12-18 2005-06-30 Basf Aktiengesellschaft Fungicidal mixtures based on carbamate derivatives and insecticides
WO2005077934A1 (en) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. Anthranilamides, process for the production thereof, and pest controllers containing the same
WO2006043635A1 (en) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient
WO2006087343A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Pyrazole carboxylic acid anilides, method for the production thereof and agents containing them for controlling pathogenic fungi
WO2006089876A1 (en) 2005-02-22 2006-08-31 Basf Aktiengesellschaft Composition and method for improving plant health
WO2007020986A1 (en) 2005-08-12 2007-02-22 Nihon Nohyaku Co., Ltd. Substituted pyrazolecarboxylic acid anilide derivative or salt thereof, intermediate thereof, agent for agricultural and horticultural use, and use thereof
WO2007101369A1 (en) 2006-03-09 2007-09-13 East China University Of Science And Technology Preparation method and use of compounds having high biocidal activities
WO2008095913A2 (en) 2007-02-06 2008-08-14 Basf Se Pesticidal mixtures
DE102007045920A1 (en) 2007-09-26 2009-04-09 Bayer Cropscience Ag Active agent combination, useful e.g. for combating animal pests and/or plant pathogenic fungus, comprises a substituted 5H-furan-2-one compound and an active agent e.g. azoxystrobin, fluoxastrobin, tertanol, triadimenol and triadimefon
WO2009098230A2 (en) 2008-02-05 2009-08-13 Basf Se Pesticidal mixtures
WO2009098210A2 (en) 2008-02-05 2009-08-13 Basf Se Pesticidal mixtures
WO2009098225A2 (en) 2008-02-05 2009-08-13 Basf Se Pesticidal mixtures
WO2010043639A2 (en) * 2008-10-16 2010-04-22 Basf Se Pesticidal mixtures
CN101747325A (en) 2010-01-15 2010-06-23 江苏省农药研究所股份有限公司 Neighboring Heterocyclic formanilide compound and synthesis method and application thereof
WO2010069266A1 (en) 2008-12-19 2010-06-24 华东理工大学 Heterocyclic nitrogenous or oxygenous compounds with insecticidal activity formed from dialdehydes and their preparation and uses thereof
WO2010069502A2 (en) 2008-12-18 2010-06-24 Bayer Cropscience Ag Tetrazole substituted anthranilic acid amides as pesticides
WO2010108507A2 (en) 2009-03-25 2010-09-30 Bayer Cropscience Ag Synergistic combinations of active ingredients
WO2010139271A1 (en) 2009-06-05 2010-12-09 中国中化股份有限公司 E-type phenyl acrylic ester compounds containing substituted anilino pyrimidine group and uses thereof
WO2011039105A2 (en) 2009-09-29 2011-04-07 Basf Se Pesticidal mixtures
WO2011039104A2 (en) 2009-09-29 2011-04-07 Basf Se Pesticidal mixtures
WO2011067209A2 (en) 2009-12-02 2011-06-09 Basf Se Pesticidal mixtures
WO2011067205A1 (en) 2009-12-02 2011-06-09 Basf Se Pesticidal mixtures of triazamate with strobilurines
WO2011069456A1 (en) 2009-12-09 2011-06-16 华东理工大学 Divalent and oxabridged heterocyclic neonicotinoid compounds and preparation methods thereof
WO2011069930A2 (en) 2009-12-10 2011-06-16 Basf Se Pesticidal mixtures
WO2011069967A2 (en) 2009-12-10 2011-06-16 Basf Se Pesticidal mixtures
WO2011144593A1 (en) 2010-05-18 2011-11-24 Basf Se Pesticidal mixtures comprising insecticides and pyraclostrobin
WO2011152320A1 (en) 2010-06-01 2011-12-08 クミアイ化学工業株式会社 Triazole compound having pest-controlling activity
WO2011157664A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Process for preparing tetrazole-substituted anthranilamide derivatives and novel crystal polymorph of these derivatives

Patent Citations (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451878A1 (en) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modifying plants by genetic engineering to combat or control insects
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
CN1071577A (en) 1991-07-05 1993-05-05 浦罗纽朗公司 Handle the toxicity of chemotherapy reagent and Anti-virus agent with acylated pyrimidine nucleosides
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
CN1313276A (en) 2001-03-26 2001-09-19 江苏省农药研究所 Diacyl hydrazide compounds as insecticide, intermediate for preparing said compounds and their preparing process
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
CN1546469A (en) 2003-12-15 2004-11-17 南开大学 Method for producing sulfolane by hydrogenation of sulfolene
WO2005058040A1 (en) 2003-12-18 2005-06-30 Basf Aktiengesellschaft Fungicidal mixtures based on carbamate derivatives and insecticides
WO2005077934A1 (en) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. Anthranilamides, process for the production thereof, and pest controllers containing the same
WO2006043635A1 (en) 2004-10-20 2006-04-27 Kumiai Chemical Industry Co., Ltd. 3-triazolylphenyl sulfide derivative and insecticide/acaricide/nematicide containing the same as active ingredient
WO2006087343A1 (en) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Pyrazole carboxylic acid anilides, method for the production thereof and agents containing them for controlling pathogenic fungi
WO2006089876A1 (en) 2005-02-22 2006-08-31 Basf Aktiengesellschaft Composition and method for improving plant health
WO2007020986A1 (en) 2005-08-12 2007-02-22 Nihon Nohyaku Co., Ltd. Substituted pyrazolecarboxylic acid anilide derivative or salt thereof, intermediate thereof, agent for agricultural and horticultural use, and use thereof
WO2007101369A1 (en) 2006-03-09 2007-09-13 East China University Of Science And Technology Preparation method and use of compounds having high biocidal activities
WO2008095913A2 (en) 2007-02-06 2008-08-14 Basf Se Pesticidal mixtures
DE102007045920A1 (en) 2007-09-26 2009-04-09 Bayer Cropscience Ag Active agent combination, useful e.g. for combating animal pests and/or plant pathogenic fungus, comprises a substituted 5H-furan-2-one compound and an active agent e.g. azoxystrobin, fluoxastrobin, tertanol, triadimenol and triadimefon
WO2009098230A2 (en) 2008-02-05 2009-08-13 Basf Se Pesticidal mixtures
WO2009098210A2 (en) 2008-02-05 2009-08-13 Basf Se Pesticidal mixtures
WO2009098225A2 (en) 2008-02-05 2009-08-13 Basf Se Pesticidal mixtures
WO2010043639A2 (en) * 2008-10-16 2010-04-22 Basf Se Pesticidal mixtures
WO2010069502A2 (en) 2008-12-18 2010-06-24 Bayer Cropscience Ag Tetrazole substituted anthranilic acid amides as pesticides
WO2010069266A1 (en) 2008-12-19 2010-06-24 华东理工大学 Heterocyclic nitrogenous or oxygenous compounds with insecticidal activity formed from dialdehydes and their preparation and uses thereof
WO2010108507A2 (en) 2009-03-25 2010-09-30 Bayer Cropscience Ag Synergistic combinations of active ingredients
WO2010139271A1 (en) 2009-06-05 2010-12-09 中国中化股份有限公司 E-type phenyl acrylic ester compounds containing substituted anilino pyrimidine group and uses thereof
WO2011039105A2 (en) 2009-09-29 2011-04-07 Basf Se Pesticidal mixtures
WO2011039104A2 (en) 2009-09-29 2011-04-07 Basf Se Pesticidal mixtures
WO2011067209A2 (en) 2009-12-02 2011-06-09 Basf Se Pesticidal mixtures
WO2011067205A1 (en) 2009-12-02 2011-06-09 Basf Se Pesticidal mixtures of triazamate with strobilurines
WO2011069456A1 (en) 2009-12-09 2011-06-16 华东理工大学 Divalent and oxabridged heterocyclic neonicotinoid compounds and preparation methods thereof
WO2011069930A2 (en) 2009-12-10 2011-06-16 Basf Se Pesticidal mixtures
WO2011069967A2 (en) 2009-12-10 2011-06-16 Basf Se Pesticidal mixtures
CN101747325A (en) 2010-01-15 2010-06-23 江苏省农药研究所股份有限公司 Neighboring Heterocyclic formanilide compound and synthesis method and application thereof
WO2011144593A1 (en) 2010-05-18 2011-11-24 Basf Se Pesticidal mixtures comprising insecticides and pyraclostrobin
WO2011152320A1 (en) 2010-06-01 2011-12-08 クミアイ化学工業株式会社 Triazole compound having pest-controlling activity
WO2011157664A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Process for preparing tetrazole-substituted anthranilamide derivatives and novel crystal polymorph of these derivatives

Non-Patent Citations (17)

* Cited by examiner, † Cited by third party
Title
"e-Pesticide Manual", vol. 5.2, 2008
"Technical Monograph No. 2, 6th Ed.", May 2008, CROPLIFE INTERNATIONAL, article "Catalogue of pesticide formulation types and international coding system"
AUSTRAL. J. AGRICULT. RES., vol. 58, 2007, pages 708
KNOWLES: "Agrow Reports DS243", 2005, T&F INFORM, article "New developments in crop protection product formulation"
KNOWLES: "Agrow Reports DS256", 2006, T&F INFORMA UK, article "Adjuvants and additives"
MCCUTCHEON'S: "Emulsifiers & Detergents", vol. 1, 2008, MCCUTCHEON'S DIRECTORIES
MOLLET; GRUBEMANN: "Formulation technology", 2001, WILEY VCH
PEST MANAGEM. SCI, vol. 61, 2005, pages 258
PEST MANAGEM. SCI, vol. 61, 2005, pages 269
PEST MANAGEM. SCI, vol. 61, 2005, pages 277
PEST MANAGEM. SCI, vol. 61, 2005, pages 286
PEST MANAGEM. SCI, vol. 64, 2008, pages 326
PEST MANAGEM. SCI, vol. 64, 2008, pages 332
PEST MANAGEM. SCI., vol. 61, 2005, pages 246
R.S. COLBY: "Calculating synergistic and antagonistic responses of herbicide combinations", WEEDS, vol. 15, 1967, pages 20 - 22, XP001112961
SCIENCE, vol. 316, 2007, pages 1185
WEED SCI., vol. 57, 2009, pages 108

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210000116A1 (en) * 2014-11-07 2021-01-07 Basf Se Pesticidal mixtures
CN106472538A (en) * 2016-10-12 2017-03-08 佛山迅拓奥科技有限公司 A kind of cycloxaprid and carbamide compound synergic insecticide
WO2020148660A1 (en) * 2019-01-17 2020-07-23 Pi Industries Ltd. Composition comprising tolfenpyrad and pyraclostrobin
CN110419537A (en) * 2019-07-24 2019-11-08 江门市植保有限公司 It is a kind of for preventing and treating the composition pesticide of potato disease insect pest
CN115088714A (en) * 2022-06-30 2022-09-23 广西南亚热带农业科学研究所 Pesticide composition for preventing and treating psylla chinensis

Similar Documents

Publication Publication Date Title
EP2482665B1 (en) Pesticidal mixtures
US20110055978A1 (en) Pesticidal Mixtures
US20120021905A1 (en) Pesticidal Mixtures
WO2011144593A1 (en) Pesticidal mixtures comprising insecticides and pyraclostrobin
EP2237675A2 (en) Pesticidal mixtures
WO2009098210A2 (en) Pesticidal mixtures
WO2016071168A1 (en) Pesticidal mixtures
US20120238447A1 (en) Pesticidal Mixtures of Triazamate with Strobilurines
EP2395841A1 (en) Pesticidal mixtures
WO2009098228A2 (en) Pesticidal mixtures
WO2013156331A1 (en) Synergistic compositions comprising pyraclostrobin and an insecticidal compound
WO2010092031A2 (en) Pesticidal mixtures
US20120316062A1 (en) Pesticidal mixtures
US8748341B2 (en) Pesticidal mixtures
WO2020148660A1 (en) Composition comprising tolfenpyrad and pyraclostrobin
WO2010043639A2 (en) Pesticidal mixtures
WO2010043552A1 (en) Pesticidal mixtures comprising metaflumizone and an azole fungicide
WO2010043553A1 (en) Pesticidal mixtures comprising metaflumizone and a fungicidal compound
WO2011069930A2 (en) Pesticidal mixtures
WO2021019412A1 (en) Composition of chlorantraniliprole, picoxystrobin and propiconazole
WO2009098227A2 (en) Pesticidal mixtures
WO2010000791A1 (en) Pesticidal mixtures comprising metaflumizone and a fungicidal pyrazole-4-carboxamide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13714657

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13714657

Country of ref document: EP

Kind code of ref document: A1