WO2018224675A1 - Utilisation d'un amphidinol pour son activite fongicide et/ou bactericide sur les champignons, les oomycetes et/ou bacteries pathogenes des plantes et semences de culture - Google Patents

Utilisation d'un amphidinol pour son activite fongicide et/ou bactericide sur les champignons, les oomycetes et/ou bacteries pathogenes des plantes et semences de culture Download PDF

Info

Publication number
WO2018224675A1
WO2018224675A1 PCT/EP2018/065224 EP2018065224W WO2018224675A1 WO 2018224675 A1 WO2018224675 A1 WO 2018224675A1 EP 2018065224 W EP2018065224 W EP 2018065224W WO 2018224675 A1 WO2018224675 A1 WO 2018224675A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusarium
amphidinium
plants
colletotrichum
molecule
Prior art date
Application number
PCT/EP2018/065224
Other languages
English (en)
Inventor
Yann THOMAS
Odon THIEBEAULD
Original Assignee
Immunrise Biocontrol France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immunrise Biocontrol France filed Critical Immunrise Biocontrol France
Priority to CN201880052003.6A priority Critical patent/CN111315216B/zh
Priority to BR112019025727-6A priority patent/BR112019025727B1/pt
Priority to RU2019144319A priority patent/RU2790051C2/ru
Priority to EP18728908.7A priority patent/EP3634129A1/fr
Priority to JP2020518570A priority patent/JP7248663B2/ja
Priority to US16/620,047 priority patent/US11278027B2/en
Priority to CA3066485A priority patent/CA3066485A1/fr
Publication of WO2018224675A1 publication Critical patent/WO2018224675A1/fr
Priority to US17/666,943 priority patent/US11793197B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/04Oxygen or sulfur attached to an aliphatic side-chain of a carbocyclic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/04Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom
    • A01N43/14Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings
    • A01N43/16Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with one hetero atom six-membered rings with oxygen as the ring hetero atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/06Oxygen or sulfur directly attached to a cycloaliphatic ring system
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N65/00Biocides, pest repellants or attractants, or plant growth regulators containing material from algae, lichens, bryophyta, multi-cellular fungi or plants, or extracts thereof
    • A01N65/03Algae

Definitions

  • amphidinol for its fungicidal and / or bactericidal activity on fungi, oomvetes and / or pathogenic bacteria of plants and cultured seeds
  • the invention relates to the field of seed antifungals and anti-bactericides.
  • Fusarium wilt is associated with a species complex comprising two genera of phytopathogenic fungi, Fusarium and Microdochium (1). These two genera include about 19 species capable of inducing fusariosis of the ear of wheat.
  • the most common species in Europe are F. graminearum, F. culmorum, F. avenaceum, F. poae, M. nivale and M. majus.
  • the genus Fusarium belongs to the division Ascomycetes and the family Nectriaceae.
  • the genus Microdochium belongs to the family Tuberculariaceae and includes two species, M. nivale and M. majus, causing the same symptoms on ear and leaves as Fusaria.
  • Several fusarium species, of which Fusarium graminearum is the most represented, can be found together the scale of the region, of the plot or on the same ear thus forming the Fusarium complex.
  • the severity, incidence and prevalence of each species vary according to geographical location, climatic variations and cultural practices. The presence on the same ear of several of these species is likely to change their balance and their dynamics of toxin production. Fusarium wilt can devastate a crop a few weeks before harvest.
  • Septoria Septoria is a wheat disease that causes significant yield losses and causes the most economic losses in the world, especially in humid temperate regions.
  • Two main forms of septoria can be distinguished: Septoria leaf spot (Phaeosphaeria nodorum) and leaf septoria (Mycosphaerella graminicola).
  • the septoriose of the ears is mainly present in the continental areas whereas that of the leaves is mainly present in the north-west and on the maritime borders where the mushroom finds climatic conditions favorable to its development.
  • the symptoms caused by M graminicola appear successively in the form of chlorosis, spots of light green color, before evolving into brownish spots called necroses. These necroses eventually merge into each other (coalescence).
  • M. graminicola is a hemibiotropic fungus establishing a first biotrophic phase where the infection takes place on living tissues and then occurs during the necrotrophic phase during which the fungus expresses toxins producing the death of the colonized tissues. Depending on the environmental conditions, reproduction of M. graminicola is sexual in nature (ascospore production) or asexual (production of pycnidiospores).
  • Ascospores disseminated by wind over long distances, contribute in particular to the survival of the fungus in the absence of a host plant and is considered as the main source of primary inoculum to initiate the disease.
  • Pycnidiospores for their part, are mostly produced during the epidemic phase of the disease during several successive infectious cycles. These spores are dispersed over short distances by the action of splashing raindrops. The decline in potential yields is all the more important as the last leaves under the ear involved in grain filling are severely affected by the disease. Yield losses due to septoria disease have been estimated at 1-2 t.ha- 1 on average, with cases as high as 3-3.5 t.ha- 1 , which represents a 40% decrease in yields. Control methods for controlling M.
  • graminicola are based on the use of fungicide and resistant cultivars.
  • fungicide efficacy due to a strong selection of pathogens with, for example, resistance to the strobilurin family as well as a recent loss of triazole efficacy in the field. .
  • the diseases of the vine nowadays, the vine is cultivated all over the world playing a central role in the economy of many countries. It is consumed in table grapes and juices, but its main exploitation is in the wine industry.
  • the European Union is the largest wine producer in the world and the world 's largest exporter of wine products. The sector thus contributes about 15 billion euros a year to the economy of the European Union (www.cev.be).
  • the French vineyard covered nearly 865,000 ha, or nearly 3% of arable land and allows France to be the world's largest wine producer with 51.1 million hectoliters.
  • the vine has to face many attacks of pathogens including fungal diseases.
  • the slow form is characterized by specific leaf colorings: yellowish internervary spots on white varieties and bordered with red on black grape varieties, the remaining green veins. These tasks progress gradually to browning and drying out. Foliar symptoms of the slow form can be visible one year on one vine and disappear the following year.
  • the apoplectic form is characterized by rapid drying of aerial organs, branches, leaves and clusters of part or all of the vine stock. This symptom usually occurs when summers are hot, causing the vines to die in just a few days without warning symptoms.
  • the variety of sources of inoculum and the very slow and non-visible development of fungi in the vine make the implementation of control methods very complicated.
  • Gray mold is a fungal disease caused by an ascomycete fungus called Botrytis cinerea. It belongs to the class of Leotiomycetes, to the order Helotiales and the family Sclerotiniaceae.
  • B. cinerea is a necrotrophic fungus capable of colonizing healthy plant tissue, already infected, as well as dead tissue (saprophytism). On leaf, the symptoms appear as brown spots with a greyish felting on the underside (fructifications of the mushroom) which tend to increase and invade the whole limb. Clusters can be affected before flowering and dry out.
  • the two diseases that are most severely affecting vineyards today are downy mildew and powdery mildew.
  • the causal agent of downy mildew, oomycete Plasmospora viticola belonging to the peronospore order, is a mandatory parasite; to keep it alive and multiply it, it is obligatory to propagate it on surviving vine leaves.
  • P. viticola attacks all the herbaceous tissues of the vine as well as clusters. It causes defoliation, browning and drying of berries and stems.
  • downy mildew can devastate up to 75% of the crop of the season.
  • the life cycle of P. viticola includes a sexual phase and an asexual phase.
  • the asexual phase leads to the production of spores necessary for secondary infections and dispersal of the pathogen over a short distance, while the sexual phase produces quiescent and cold-resistant oospores allowing the passage of winter and infections.
  • the first macroscopic evidence for the presence of late blight in a vineyard is the appearance of pale yellow spots and irregular (oil stains) magnifying on the upper or adaxial face, leaves.
  • the fight against mildew is mainly organized by preventive measures by fungicide sprays. If it is possible to stop an attack, the damage, once caused on the inflorescences and clusters, are irremediable. Powdery mildew
  • the powdery mildew of the vine (Erysiphe necator) is a biotrophic obligate ascomycete belonging to the order Erysiphales.
  • the fungus colonizes the surface of all the green organs of the vine, especially the upper surface of the leaves, and spreads on the berries.
  • a sexual phase that is characterized by the production of cleistothecia containing ascospores can alternate with an asexual phase leading to the formation of conidiophores carrying conidiophores.
  • the fungus survives as hyphae in dormant buds or cleistothecia on the surface of the plant.
  • the spores contained in the cleistothecia will be released in the spring to germinate on the surface of the buds and young leaves.
  • a primary hypha then develops on the leaf surface, then an increasingly complex and branched mycelial network lines the leaf surface.
  • conidiophores differentiate from the mycelium constituting the beginning of the sporulation stage and colonize other green tissues of the plant giving rise to secondary infections.
  • the presence of conidial mycelium and conidiophores on the surface of infected host tissues gives a powdery, greyish-white appearance. White felting develops on the flower buds that dry out. Only young berries with a sugar level ⁇ 8% are sensitive to powdery mildew. All leaf surfaces may be susceptible to infection, regardless of age.
  • Infected young leaves first turn dark green, then the leaves deform and become stunted.
  • the upper surface of the leaves may have lighter, chlorotic spots that resemble the stains of late blight oil.
  • the health pressure is therefore particularly strong in viticulture. Fungicide treatments intended mainly to control downy mildew and powdery mildew are applied according to a specific schedule to prevent damage due to the appearance of a disease.
  • the European Union (EU) employs around 68 000 tonnes of fungicides a year to control vine diseases, which accounts for 65% of the fungicides used in agriculture, while only 3.3% of the EU is occupied by vines (Eurostat, 2007).
  • EU European Union
  • Apple scab Apple scab is one of the main fungal diseases of the apple tree (genus Malus) with monilia and powdery mildew. It is caused by an ascomycete fungus called Venturia inaequelis, of which there are several thousand strains, causing black or brown lesions on the surface of leaves, buds or fruits and sometimes even on the wood. The fruits and the lower part of the leaves are especially sensitive.
  • the fungus overwinters on leaves that fall from infected trees in the form of perithecia.
  • the perithecia are filled with ascospores.
  • Ascospores are ejected into the air of the orchard during wet days and reach the trees through air movement. This discharge of ascospores begins at budbreak and continues for 6 to 10 weeks, most often until the end of June.
  • the ascospores reach the foliage and the leaves are wet for some time, they germinate and penetrate the leaves: there is then primary infection.
  • the fungal infection becomes visible in one to three weeks on different parts of the tree. Dark olive or brown spots of about 5 mm appear on the leaves and may eventually cover the entire leaf. Infected flowers may fall. Fruit infection is first recognized by gray spots on the stem.
  • conidia are another form of reproductive structure.
  • conidia escape there is secondary infection. Conidia can infect any part of the tree and those produced in late summer can even grow on stored fruits. The heavy rain is responsible for dispersing the conidia.
  • the disease rarely kills its host but can significantly reduce (up to 100%) fruit quality and production in the absence of fungicide treatment.
  • the control strategy requires effective action in the spring to prevent the released spores from infecting or developing on trees.
  • the traditional method of protection was to begin fungicide application at budbreak and repeat treatments every seven days until the end of June to protect new growth. Apple orchards are the most treated fungicides and insecticides with an average of 28.8 fungicide treatments per year, of which 19 are dedicated to scab (data IN A).
  • bacteria bacteria
  • microalgae algae
  • invertebrates a source of new bioactive molecules and which are still little exploited
  • marine microorganisms accumulate bioactive secondary metabolites whose unique structure is not found in terrestrial organisms. These metabolites therefore potentially represent new molecules of interest.
  • Certain substances derived from marine organisms have been described as having antifungal activity or a natural defense substance activity, but the search for these molecules is still very little developed (3).
  • Microalgae are unicellular organisms that play a key role in aquatic ecosystems. Producing organic material, they play an important ecological role as they form the basis of the marine food chain. However, their enormous ability to colonize all the world's oceans suggests that they have probably developed effective strategies for controlling pathogens, particularly through the production of natural pesticides. For example, the abundant proliferation in coastal areas of microalgae producing biotoxins is responsible for the formation of toxic algal blooms (HABs) with a significant effect on the trophic cascade.
  • HABs toxic algal blooms
  • dinoflagellates belonging to the order Gymnodiniales and the family Gymnodiniaceae are present in temperate and tropical marine waters living in free form or in symbiosis with invertebrates (for example, corals).
  • Dinoflagellates synthesize a large number of secondary metabolites of the polyketide type (compounds having a biological or pharmacological activity that may be toxic in order to confer a survival advantage), several of which have been characterized, including those responsible for HABs (4).
  • the model species of dinoflagellates, Amphidinium carterae produces a profusion of different bioactive compounds, many of which have become so developed as therapeutic agents (5).
  • amphidinols are polyhydroxy-polyenes (long chain ployctides) which exhibit strong anti-fungal and hemolytic activity. They thus increase the membrane permeability by associating with the membrane lipids (6).
  • compounds similar to amphidinols having a long polyhydroxy chain have been isolated such as lingshuiols, karatungiols, carteraol E, luteophanols, colopsinols, and amphezonol A (5).
  • amphidinol 18 one of the molecules responsible for the fungicidal effect of a cell extract of Amphidinium carterae on many plant pathogenic fungi is amphidinol 18.
  • a first subject of the invention relates to the use of the molecule of formula (I) below:
  • ⁇ i is selected from the group consisting of:
  • R 4 represents H or OH
  • n is equal to 0 or 1 and
  • n 0 or 1
  • ⁇ 2 is selected from the group consisting of: and for its fungicidal and / or bactericidal activity on fungi, oomycetes and / or pathogenic bacteria of plants and crop seeds.
  • Another subject of the invention relates to a method for controlling fungi, oomycetes and / or pathogenic bacteria of plants and crop seeds comprising the application to the crop plants and / or the coating of said seeds of the molecule. of formula (I).
  • a first subject of the invention relates to the use of the molecule of formula (I) below
  • R 4 represents H or OH
  • n is is equal to 0 or 1
  • n 0 or 1
  • RI is:
  • R2 is N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl-N-(2-aminoethyl)-2-aminoethyl
  • the molecule of formula (I) is amphidinol 18 or amphidinol 19:
  • Amphidinol 19 The molecule of formula (I) is an amphidinol.
  • the molecule of formula (I) may be synthetic or extracted from cells of one or more microalgae of the genus Amphidinium.
  • Suitable Amphidiniums are selected from the group consisting of Amphidinium achromaticum, Amphidinium aculeatum, Amphidinium acutissimum, Amphidinium acutum, Amphidinium alinii, Amphidinium aloxalocium, Amphidinium amphidinioides, Amphidinium asymmetricum, Amphidinium aureum, Amphidinium belauense, Amphidinium bidentatum, Amphidinium bipes, Amphidinium boekhoutensis, Amphidinium boggayum, Amphidinium caerulescens, Amphidinium carbunculus, Amphidinium carterae, Amphidinium celestinum, Amphidinium chattonii, Amphidinium coeruleum, Amphidinium conradii, Amphidinium conus, Amphidinium coprosum, Amphidinium corallinum, Amphidinium diverentum, Amphidinium cra
  • the molecule of formula (I) is extracted from Amphidinium carterae.
  • the Amphidinium carterae strain used according to the invention is CCMP 1314, AC208 or AC792.
  • Said extract may be prepared by any method of cell extraction known to those skilled in the art, solid-liquid or liquid-liquid, for example an extraction in inorganic or organic solvent, which may be chosen from the group consisting of water , aqueous solutions, hydrocarbon solvents (aliphatics, aromatics), oxygenated solvents (alcohols, ketones, acids, esters and ethers), halogenated solvents (dichloromethane, cholerform) and mixtures in any miscible proportion of these solvents.
  • inorganic or organic solvent which may be chosen from the group consisting of water , aqueous solutions, hydrocarbon solvents (aliphatics, aromatics), oxygenated solvents (alcohols, ketones, acids, esters and ethers), halogenated solvents (dichloromethane, cholerform) and mixtures in any miscible proportion of these solvents.
  • the solvent is water or oxygenated solvents, preferably alcohols, particularly preferably C1 to C4 alcohols such as methanol or ethanol.
  • alcohols particularly preferably C1 to C4 alcohols such as methanol or ethanol.
  • C1 to C4 alcohols are preferred.
  • said extract is a water-soluble fraction.
  • the molecule of formula (I) is used in an amount of between 0.1 and 5 mg / ml, preferably between 0.5 and 3 mg / ml, particularly preferably between 0.75 and 1 mg / mL.
  • This fungicidal activity on fungi and / or pathogenic oomycetes of plants and crop seeds may in particular be exercised by inhibition of spore germination or by inhibition of growth of the fungus and / or oomycetes.
  • the activity is exerted by a lytic activity of the cell walls and membranes which results in cell lysis.
  • Cultivating plants are in particular chosen from the group consisting of cereals such as wheat, corn, barley, rice, soya, fruits and vegetables such as potatoes, carrots, apples, peaches, apricots, tomatoes, radishes, beans, vines and ornamental plants.
  • cereals such as wheat, corn, barley, rice, soya
  • fruits and vegetables such as potatoes, carrots, apples, peaches, apricots, tomatoes, radishes, beans, vines and ornamental plants.
  • Said cultivation plants are in particular chosen from the group consisting of the genera Abelmoschus, Acacia, Achras, Agave, Agrostis, Aleurites, Allium, Anacardium, Pineapple, Annona, Apium, Arachis, Areca, Armoracia, Arracacia, Artocarpus, Asparagus, Aspidosperma, Avena, Bertholletia, Beta, Boehmeria, Borassus, Brassica, Cajanus, Camellia, Cannabis, Capsicum, Carica, Carthamus, Carum, Carya, Castanea, Ceiba, Ceratonia, Chenopodium, Chrysanthemum, Cicer, Cichorium, Cinchona, Cinnamomum, Citrullus, Citrus, Cocos, Coffea, Cola, Colocasia, Corchorus, Corylus, Crotalaria, Cucumis, Cucurbita, Cydonia, Cymbopogon, Cynara, Dactyl
  • the plant pathogenic fungi and crop seeds are ascomycetes or basidiomycetes, preferably ascomycetes.
  • the said pathogenic fungi of plants and crop seeds are pathogenic fungi of plants and crop seeds of the following types:
  • Acrocalymma Acrocalymma medicaginis, Fusarium, Fusarium affine, Fusarium arthrosporioides, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium moniliforme, Fusarium incarnatum, Fusarium solani, Fusarium langsethiae, Fusarium mangiferae, Fusarium oxysporum f.sp. albedinis, Fusarium oxysporum f.sp. asparagi, Fusarium oxysporum f.sp. batatas, Fusarium oxysporum f.sp.
  • Botrytis Botrytis, Botrytis allii, Botrytis anthophila, Botrytis cinerea, Botrytis fabae, Botrytis narcissicola,
  • Claviceps Claviceps fusiformis, Claviceps purpurea, Claviceps sorghum, Claviceps zizaniae,
  • Oculimacula Oculimacula acuformis, Oculimacula yallundae, Blumeria, Blumeria graminis,
  • Pyrenophora Pyrenophora avenae, Pyrenophora chaetomioides, Pyrenophora graminea, Pyrenophora seminiperda, Pyrenophora teres, Pyrenophora teres f. maculata, Pyrenophora teres f. teres, Pyren ophora tritici-repen tis,
  • Ramularia Ramularia collo-cygni, Ramularia beticola, Ramularia coryli, Ramularia cyclaminicola, Ramularia macrospora, Ramularia menthicola, Ramularia necator, Ramularia primulae, Ramularia spinaciae, Ramularia subtilis, Ramularia tenella, Ramularia vallisumbrosae,
  • Rhynchosporium Rhynchosporium secalis
  • Microdochium Microdochium oryzae
  • Pezzicula Pezzicula alba, Pezzicula malicorticis,
  • Puccinia puccinia Puccinia angustata, Puccinia arachidis, Puccinia aristidae, Puccinia asparagi, Puccinia cacabata, Puccinia campanulae, Puccinia carthami, Puccinia coronata, Puccinia dioicae, Puccinia erianthi, Puccinia extensicola, Puccinia helianthi, Puccinia hordei, Puccinia jaceae, Puccinia kuehnii, Puccinia malvacearum, Puccinia mariae-wilsoniae, Puccinia melanocephala, Puccinia menthae, Puccinia oxalidis, Puccinia pelargonii-zonalis, Puccinia pittieriana, Puccinia poarum, Puccinia purpurea, Puccinia recondita, Puccinia schedon
  • Venturia Venturia inaequalis. Venturia carpophila, Acrodontium, Acrodontium simplex,
  • Albonectria Albonectria rigidiuscula, Allodus, Allodus podophylli, Amphobotrys, Amphobotrys ricini, Anguillosporella, Anguillosporella vermiformis, Anthostomella, Anthostomella pullulons,
  • Antrodia Antrodia albida, Antrodia serialiformis, Antrodia serialis,
  • Ascochyta Ascochyta asparagina, Ascochyta bohemica, Ascochyta caricae, Ascochyta doronici, Ascochyta fabae f.sp. lentis, Ascochyta graminea, Ascochyta hordei, Ascochyta humuli, Ascochyta pisi, Ascochyta prasadii, Ascochyta sorghi, Ascochyta spinaciae, Ascochyta tarda, Ascochyta tritici,
  • Asteroma Asteroma caryae
  • Athelia Athelia arachnoidea, Athelia rolfsii,
  • Aurantiporus Aurantiporus fissilis
  • Biscogniauxia Biscogniauxia capnodes, Biscogniauxia marginata,
  • Botryosphaeria Botryosphaeria, Botryosphaeria cocogena, Botryosphaeria dothidea, Botryosphaeria marconii, Botryosphaeria obtusa, Botryosphaeria rhodina, Botryosphaeria ribis, Botryosphaeria stevensii, Botryosporium, Botryosporium pulchrum, Botryotinia, Botryotinia fuckeliana, Botryotinia polyblastis, Boxwood blight, Brachybasidiaceae, Brasiliomyces, Brasiliomyces malachrae, Briosia, Briosia ampelophaga, Brown ring patch, Buckeye rot of tomato, Bulbomicrosphaera, Cadophora, Cadophora malorum, Caespitotheca,
  • Calonectria Calonectria ilicicola, Calonectria indusiata, Calonectria kyotensis, Calonectria pyrochroa, Calonectria quinqueseptata
  • Camarotella Camarotella acrocomiae, Camarotella costaricensis, Canna rust,
  • Capitorostrum Capitorostrum cocoes
  • Ceratocystis Ceratocystis, Ceratocystis adiposa, Ceratocystis coerulescens, Ceratocystis fimbriata, Ceratocystis moniliformis, Ceratocystis oblonga, Ceratocystis obpyriformis, Ceratocystis paradoxa, Ceratocystis pilifera, Ceratocystis pluriannulata, Ceratocystis polyconidia, Ceratocystis tanganyicensis, Ceratocystis zombamontana, Ceratorhiza, Ceratorhiza hydrophila
  • Cercoseptoria Cercoseptoria ocellata, Cercosporella, Cercosporella rubi Ceriporia, Ceriporia spissa, Ceriporia xylostromatoides, Cerrena, Cerrena unicolor, Ceuthospora, Ceuthospora lauri,
  • Choanephora Choanephora cucurbitarum, Choanephora infundibulifera, Chrysanthemum, Chrysanthemum white rust, Chrysomyxa, Chrysomyxa cassandrae,
  • Chrysomyxa Chrysomyxa himalensis, Chrysomyxa ledi, Chrysomyxa ledi var. Rhododendri, Chrysomyxa ledicola, Chrysomyxa nagodhii, Chrysomyxa neoglandulosi, Chrysomyxa piperiana, Chrysomyxa pirolata, Chrysomyxa pyrolae, Chrysomyxa reticulata, Chrysomyxa roanensis, Chrysomyxa succinea, Cladosporium, Cladosporium arthropodii, Cladosporium cladosporioides, Cladosporium cladosporioides f.sp. pisicola, Cladosporium cucumerinum, Cladosporium herbarum, Cladosporium herbarum, Cladosporium herbarum, Cladosporium herbarum
  • Coprinopsis Coprinopsis psychromorbida, Cordana, Cordana johnstonii, Cordana musae, Coriolopsis floccosa,
  • Crinipellis Crinipellis sarmentosa, Cronartium, Cronartium ribicola, Cryphonectriaceae, Cryptobasidiaceae, Cryptocline, Cryptocline cyclaminis, Cryptomeliola,
  • Cryptosporella Cryptosporella umbrina, Cryptosporiopsis, Cryptosporiopsis tarraconensis, Cryptosporium, Cryptosporium minimum,
  • Curvularia Curvularia, Curvularia lunata, Curvularia caricae-papayae, Curvularia penniseti, Curvularia senegalensis, Curvularia trifolii,
  • Cyclaneusma needle cast Cylindrocarpon
  • Cylindrocarpon ianthothele var. ianthothele
  • Cylindrocarpon magnusianum Cylindrocarpon musae
  • Cylindrocladiella Cylindrocladiella camelliae, Cylindrocladiella parva
  • Cytospora Cytospora palmarum, Cytospora personata, Cytospora sacchari, Cytospora sacculus, Cytospora terebinthi,
  • Cytosporina Cytosporina ludibunda, Dactuliophora, Dactuliophora elongata,
  • Discosia Discosia artocreas, Discostroma, Discostroma corticola,
  • Distocercospora Distocercospora livistonae
  • Dothiorella Dothiorella, Dothiorella brevicollis, Dothiorella dominicana, Dothiorella dulcispinae, Dothiorella gregaria,
  • Drechslera Drechslera, Drechslera avenacea, Drechslera campanulata, Drechslera dematioidea, Drechslera gigantea, Drechslera glycines, Drechslera musae-sapientium, Drechslera teresf. maculata, Drechslera wirreganensis,
  • Eballistra Eballistra lineata, Eballistra oryzae, Eballistraceae,
  • Entyloma Entyloma ageratinae, Entyloma dahliae, Entyloma ellisii, Epicoccum, Epicoccum nigrum,
  • Exobasidiaceae Exobasidium burtii, Exobasidium reticulatum, Exobasidium vaccinii var. japonium, exobasidium vaccinii-uliginosi, exobasidium vexans, xxophiala alkalophila, exophiala, exophiala angulospora, exophiala attenuata, exophiala calicioides, exophiala castellanii, exophiala dermatitidis, exophiala dopicola, exophiala exophialae, exophiala heteromorpha, exophiala hongkongensis, exophiala jeanselmei, Exophiala lecanii-corni, Exophiala mansonii, Exophiala mesophila, Exophiala moniliae, Exophiala negronii, Exophiala phaeomuriform
  • Galactomyces Galactomyces candidum, Ganoderma, Ganoderma brownii, Ganoderma lobatum, Ganoderma megaloma, Ganoderma meredithiae, Ganoderma orbiforme, Ganoderma philippii, Ganoderma sessile, Ganoderma tornatum, Ganoderma zonatum,
  • Geastrumia Geastrumia polystigmatis
  • Geotrichum Geotrichum candidum, Geotrichum klebahnii, Gibberella, Gibberella acuminata, Gibberella avenacea, Gibberella baccata, Gibberella cyanogena, Gibberella fujikuroi, Gibberella intricans, Gibberella pulicaris, Gibberella stilboides, Gibberella tricincta, Gibberella xylarioides, Gibberella zeae,
  • Gliocladiopsis Gliocladiopsis tenuis, Gliocladium, Gliocladium vermoeseni, Gloeocercospora, Gloeocercospora sorghi, Gloeocystidiellum, Gloeocystidiellum porosum,
  • Gloeophyllum Gloeophyllum mexicanum, Gloeophyllum trabeum, Gloeoporus, Gloeoporus dichrous,
  • Gymnosporangium Gymnosporangium kernianum, Gymnosporangium libocedri, Gymnosporangium nelsonii, Gymnosporangium yamadae,
  • Haematonectria Haematonectria haematococca
  • Hyphodermella Hyphodermella corrugata, Hyphodontia, Hyphodontia aspera, Hyphodontia sambuci, Hypoxylon, Hypoxylon tinctor,
  • Inonotus Inonotus, Inonotus arizonicus, Inonotus cuticularis, Inonotus dryophilus, Inonotus hispidus, Inonotus ludovicianus,
  • Leandria Leandria momordicae, Lentinus, Lentinus tigrinus
  • Lenzites Lenzites betulina, Lenzites elegans,
  • Leohumicola Leohumicola atra, Leohumicola incrustata, Leohumicola levissima,
  • Leptosphaerulina Leptosphaerulina crassiasca, Leptosphaerulina trifolii
  • Leptothyrium Leptothyrium nervisedum
  • Leucocytospora Leucocytospora leucostoma, Leucostoma, Leucostoma auerswaldii, Leucostoma canker, Leucostoma kunzei, Leucostoma persoonii
  • Leveillula Leveillula compositarum, Leveillula leguminosarum, Leveillula taurica,
  • Linochora Linochora graminis
  • Macrophoma Macrophoma mangiferae, Macrophoma theicola
  • Melampsora Melampsora United, Melampsora occidentalis, Melanconis, Melanconis carthusiana, Melanconium, Melanconium juglandinum, Meliola, Meliola mangiferae, Meliola zangii, Meruliopsis, Meruliopsis ambigua, Microascus, Microascus brevicaulis,
  • Monochaetia Monochaetia coryli, Monochaetia mali, Monographella, Monographella albescens, Monographella cucumerina, Monographella nivalis,
  • Mucor Mucor circinelloides, Mucor hiemalis, Mucor mucedo, Mucor paronychius, Mucor piriformis, Mucor racemosus, Mycenae, Mycena citricolor,
  • Mycocentrospora Mycocentrospora acerina
  • Mycosphaerella Mycosphaerella recutita, Mycosphaerella rosicola, Mycosphaerella rubi, Mycosphaerella stigma-platani, Mycosphaerella striatiformans
  • Nemania Nemania broadcast, Nemania serpens,
  • Neocosmospora Neocosmospora vasitis, Neodeightonia, Neodeightonia phoenicum
  • Neoerysiphe Neoerysiphe galeopsidis
  • Neofabraea Neofabraea perennans
  • Neofusicoccum Neofusicoccum mangiferae
  • Oidiopsis Oidiopsis gossypii, Oidium, Oidium arachidis, Oidium caricae-papayae, Oidium indicum, Oidium mangiferae, Oidium manihotis,
  • Ophiobolus Ophiobolus anguillides, Ophiobolus cannabinus, Ophioirenina,
  • Oxyporus Oxyporus corticola
  • Periconia Periconia circinata, Periconiella, Periconiella cocoes,
  • Pestalotia Pestalotia, Pestalotia longiseta, Pestalotia rhododendri, Pestalotiopsis, Pestalotiopsis adjustta, Pestalotiopsis arachidis, Pestalotiopsis disseminata, Pestalotiopsis guepini, Pestalotiopsis leprogena, Pestalotiopsis longiseta, Pestalotiopsis mangiferae, Pestalotiopsis palmarum, Pestalotiopsis sydowiana, Pestalotiopsis theae,
  • Peyronellaea Peyronellaea curtisii
  • Phaeocytostroma Phaeocytostroma iliau, Phaeocytostroma sacchari
  • Phaeoramularia Phaeoramularia heterospora, Phaeoramularia indica, Phaeoramularia manihotis,
  • Phaeoseptoria Phaeoseptoria musae, Phaeosphaerella, Phaeosphaerella mangiferae, Phaeosphaerella theae,
  • Phaeosphaeriopsis Phaeosphaeriopsis obtusispora
  • Phaeotrichoconis Phaeotrichoconis crotalariae, Phialophora, Phialophora asteris, Phialophora cinerescens, Phialophora gregata, Phialophora tracheiphila,
  • Phoma glomerata Phoma gleamina, Phoma glabalata, Phoma glabalata, Phoma glabella, Phoma glabarica, Phoma glabella, Phoma macropora, Phoma microspora, Phoma narcissi, Phoma nebulosa, Phoma oncidii-sphacelati, Phoma pinodella, Phoma sclerotioides, Phoma
  • Phomopsis cannabina Phomopsis coffeae, Phomopsis ganjae, Phomopsis javanica, Phomopsis longicolla, Phomopsis mangiferae, Phomopsis prunorum, Phomopsis sclerotioides, Phomopsis theae, Phragmidium, Phragmidium mucronatum, Phragmidium rosae-pimpinellifoliae, Phragmidium rubi- idaei, Phragmidium violaceum,
  • Phyllachora Phyllachora, Phyllachora banksiae, Phyllachora cannabis, Phyllachora graminis, Phyllachora gratissima, Phyllachora musicola, Phyllachora pomigena, Phyllachora sacchari,
  • Phyllosticta Phyllosticta, Phyllosticta alliariaefoliae Phyllosticta arachidis-hypogaeae, Phyllosticta batatas, Phyllosticta capitalensis, Phyllosticta carpogena, Phyllosticta coffeicola, Phyllosticta concentrica, Phyllosticta coryli, Phyllosticta cucurbitacearum, Phyllosticta cyclaminella, Phyllosticta Erratica, Phyllosticta hawaiiensis Phyllosticta lentisci, Phyllosticta manihotis, Phyllosticta micropuncta, Phyllosticta mortonii , Phyllosticta nicotianae, Phyllosticta palmetto, Phyllosticta penici
  • Piricaudiopsis Piricaudiopsis, Piricaudiopsis punicae, Piricaudiopsis rhaphidophorae, Piricaudiopsis rosae, Plenodomus, Plenodomus destruens, Plenodomus meliloti, Pleosphaerulina, Pleosphaerulina sojicola,
  • Pleospora Pleospora alfalfae, Pleospora betae, Pleospora herbarum, Pleospora lycopersici, Pleospora tarda, Pleospora theae,
  • Podosphaera Podosphaera fuliginea, Podosphaera fusca, Podosphaera leucotricha, Podosphaera macularis, Podosphaera pannosa
  • Powdery mildew, Pseudocercospora, Pseudocercospora arecacearum, Pseudocercospora cannabina, Pseudocercospora fuligena, Pseudocercosporella herpotrichoides, Pseudocercospora gunnerae, Pseudocercospora pandoreae, Pseudocercospora puderi, Pseudocercospora rhapisicola, Pseudocercospora theae, Pseudocercospora vitis, Pseudocercosporella capsellae, Pseudocochliobolus, Pseudocochliobolus eragrostidis,
  • Pucciniaceae Pucciniastrum, Pucciniastrum americanum, Pucciniastrum arcticum, Pucciniastrum epilobii, Pucciniastrum hydrangeae,
  • Ramulispora Ramulispora sorghum, Ramulispora sorghicola, Rhinocladium, Rhinocladium corticola, Rhizophydium, Rhizophydium graminis,
  • Rhizopus Rhizopus arrhizus, Rhizopus circinans, Rhizopus microsporus, Rhizopus oryzae, Rhytisma, Rhytisma punctatum, Rhytisma vitis, Rigidoporus, Rigidoporus vinctus,
  • Seimatosporium Seimatosporium mariae, Seimatosporium rhododendri,
  • Serpula Serpula lacrymans, Setosphaeria, Setosphaeria rostrata, Setosphaeria turcica,
  • Stagonospora Stagonospora, Stagonospora avenae, Stagonospora meliloti, Stagonospora recedens, Stagonospora sacchari, Stagonospora tainanensis, Stagonospora
  • Stegocintractia Stegocintractia junci, Stemphylium, Stemphylium alfalfae, Stemphylium bolickii, Stemphylium cannabinum, Stemphylium globuliferum, Stemphylium lycopersici, Stemphylium reminderforme, Stemphylium solani, Stemphylium vesicarium,
  • Stenella Stenella anthuriicola, Stigmatomycosis,
  • Stigmina Stigmina carpophila, Stigmina palmivora, Stigmina platani-racemosae, Stromatinia, Stromatinia cepivora, Sydowiella, Sydowiella depressula, Sydowiellaceae,
  • Thielaviopsis Thielaviopsis, Thielaviopsis basicola, Thielaviopsis ceramica, Thyrostroma, Thyrostroma compactum, Tiarosporella, Tiarosporella urbis-rosarum,
  • Tilletia Tilletia barclayana, Tilletia caries, Tilletia controversa, Tilletia laevis, Tilletia tritici, Tilletia walkeri,
  • Tranzschelia Tranzschelia pruni-spinosae
  • Trichoderma Trichoderma koningii, Trichoderma paucisporum, Trichoderma songyi, Trichoderma theobromicola, Trichoderma viride,
  • Tubercularia Tubercularia lateritia
  • Typhula ishula blight, Typhula idahoensis, Typhula incarnata, Typhula ishikariensis, Typhula variabilis, Ulocladium, Ulocladium consortia, Uncinula,
  • Uredo Uredo, Uredo behnickiana, Uredo 4.000eriana, Uredo musae, Uredo nigropuncta, Uredo rangelii, Urocystis, Urocystis agropyri, Urocystis brassicae, Urocystis occulta,
  • Urophlyctis Urophlyctis, Urophlyctis leprosides, Urophlyctis trifolii,
  • Ustilago Ustilago avenae, Ustilago esculenta, Ustilago hordei, Ustilago maydis, Ustilago nigra, Ustilago nuda, Ustilago scitaminea, Ustilago tritici, Vankya, Vankya ornithogali,
  • Veronaea Veronaea musae
  • Verticillium Verticillium, Verticillium albo-atrum, Verticillium alfalfae, Verticillium dahliae, Verticillium isaacii, Verticillium klebahnii, Verticillium longisporum, Verticillium nonalfalfae, Verticillium theobromae, Verticillium wilt, Verticillium zaregamsianum,
  • the crop plants targeted by the invention are as follows:
  • Claviceps purpurea, Erysiphe graminis, Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, Fusarium langsethiae, Fusarium poae, Fusarium pseudograminearum, Gaeumannomyces graminis, Leptosphaeria nodorum, Microdochium spp., Mycosphaerella graminicola, Oculimacula acuformis, Oculimacula yallundae, Puccinia recondita, Puccinia striiformis, Pyrenophora tritici-repentis, Rhizoctonia cerealis, Microdochium and Zymoseptoria tritici
  • Cochliobolus miyabeanus Fusarium fijikuro, Magnaporthe oryzae, Microdochium oryzae, Pyricularia oryzae, Rhizoctonia oryzae, Rhizoctonia solani, Sarocladium oryzae, Ustilaginoides virens
  • Botrytis cinerea Erysiphe necator, Plasmopara viticola, Guignardia bidwelli, Erisyphe necator, Diplodia seriata
  • Cercopora kikuchii Colletotrichum dematium, Corynespora cassiicola, Fusarium graminearum, Pythium spp., Rhizoctonia solani, Sclerotinia sclerotiorum, Septoria wisteria
  • Apple tree (Malus domestica) Monilia fructigena, Monilia laxa, Pezzicula alba, Pezzicula malicorticis, Venturia inaequalis
  • Botrytis cinerea Strawberry (Fragaria sp)
  • Aternaria alternata Alternaria dauci
  • Alternaria radicina Peach Pieris persica
  • apricot Pieris armeniaca
  • the pairs of fungi or bacteria vs. are as follows:
  • Vine Botrytis cinerea, Erysiphe necator, Plasmopara viticola, Guignardia bidwelli, Erisyphe necator, Diplodia seriata
  • Potato Alternia alternata, Alternaria solani, Phytophtora infestations, Rhizoctonia solani Tomato: Phytophtora infestations
  • the invention also relates to a method for controlling fungi, oomycetes and / or pathogenic bacteria of plants and cultured seeds comprising the application to the culture plants of the molecule of formula (I):
  • Ri is selected from the group consisting of:
  • R 3 represents H or SO 3 Na
  • R 4 represents H or OH
  • n is equal to 0 or 1
  • n 0 or 1
  • R2 is selected from the group consisting of
  • RI is:
  • R 3 is H or SO 3 Na.
  • R2 is This struggle can be curative or preventive, preferably curative.
  • the application to the crop plants can be carried out by any means known to those skilled in the art to reach the parts of plants affected by the fungus and / or bacteria.
  • the molecule of formula (I) is applied at a dose of between 0.1 and 5 mg / ml, preferably between 0.5 and 3 mg / ml, particularly preferably between 0.75 and 1 mg / ml. mL.
  • the seed coating can be carried out by any technique known to those skilled in the art that keeps the asset in contact with the seed.
  • the coating can be carried out by dusting or spraying.
  • the coating may include formulants and adjuvants.
  • formulants The purpose of the formulants is to make it possible to apply and maintain the active substance (s) on the grain, in equal and constant proportion throughout the entire application process of the product, and this at very low doses.
  • Formulants include: organic solvents or water, dispersants, emulsifiers, surfactants or wetting agents, dyes ...
  • Surfactants and emulsifiers have the property of joining together and stably maintaining two incompatible liquids together.
  • the pelliculants correspond to the application of a microporous film on the surface of the seed. They do not change the shape or size of the seed. They improve coverage and homogeneity of treatment. When the seeds are used by the farmer, they improve the user's comfort at the time of sowing by removing dust and facilitating the flow of seeds into the seed drill. They improve the action of the active substance (s) in culture condition. The enrobants change the shape, size and weight of the seed. They improve the precision of the sowing.
  • the methods for controlling the fungi and / or pathogenic bacteria of the plants and treatment culture seeds according to the invention are particularly suitable against a fusarium, preferably a fusarium, cited in Table 1.
  • Fusarium oxysporum f. sp. cucumerinum FUSACC Cucumber neck Fusarium wilt Gibberella fujikuroi GIBBFU Fusarium wilt Albonectria rigidiuscula CALORI Fusarium wilt Gibberella stilboides GIBBST Fusarium wilt Fusarium oxysporum f. sp. carthami FUSACA Fusarium head blight Gibberella baccata GIBBBA Fusarium head blight
  • GIBBFS Fusarium wilt Gibberella zeae GIBBZE Fusarium wilt Fusarium oxysporum f. sp. elaeidis FUSAEL Disease Name Pathogen Code OEPP Fusarium wilt Fusarium oxysporum f. sp. wisteria FUSAGY Fusarium wilt Fusarium oxysporum f. sp. tracheiphilum FUSAT Fusarium tuberosity of the
  • the methods for controlling fungi, oomycetes and / or pathogenic bacteria of the plants and treatment culture seeds according to the invention are particularly suitable for fungi or bacteria vs. bacteria. following crop plants:
  • microalga Amphidinium carterae, strain AC208 comes from Algobank (Caen) and the microalgae Prymnesium parvum, strain RCC 1436, and Phaeodactylum tricornutum, strain CCMP 632, come from the marine microorganism bank of Roscoff (RCC: Roscoff Culture Collection). These microalgae are grown in Ll artificial seawater (https://ncma.bigelow.org/algal-recipes) at 19 ° C with a day / night cycle of 12H / 12H. The luminous intensity used is 100 ⁇ . The biomass is recovered at the end of the exponential phase of growth by centrifugation (15 min at 3000 RPM).
  • the cell pellet obtained is frozen and then subjected to lyophilization using a laboratory freeze-dryer (Alpha 1-2 LDplus, labconco) in order to stably keep the active ingredient for a long time. After lyophilization, the dry matter is weighed.
  • a laboratory freeze-dryer Alpha 1-2 LDplus, labconco
  • Example 3 Germination Test of Fusarium graminearum
  • the spores of Fusarium graminearum are grown in the depleted "Mung bean" medium.
  • the spores are separated from the mycelium by filtration on miracloth (Calbiochem), centrifuged and then resuspended at 1.6 ⁇ 10 6 spores / ml.
  • About 16,000 spores are incubated in the presence of the control solution or A extract. carterae at different concentrations. After incubation for 10 min at room temperature, the spores are placed on a coverslip for germination count after 6H or on a petri dish for observation of mycelium growth after 72H.
  • the bioguidative fractionation strategy was chosen: the A. carterae is fractionated on an HPLC column and biogenic activity tests against F. graminearum spores are performed for each fraction to determine which fraction contains the molecule (s) responsible for the anti-fungal activity. .
  • Injection temperature 24 ° C.
  • Solvent A MilliQ water + 0.1% formic acid
  • Solvent B Methanol
  • FIG. 1B The chromatogram obtained under these conditions is shown in FIG. 1B.
  • Activity tests on the growth of F. graminearum were performed with 5 mg / ml of each fraction.
  • the results indicate that only the fraction F1 still has the biocidal activity (FIG. 1C), a MIC of 0.75 mg / ml could be determined for this fraction (FIG. 1D).
  • the fraction F1 was subjected to a new fractionation according to the following protocol:
  • the F1 extract was dissolved at 5 g / L in methanol. The following conditions have been applied for extract D:
  • Injection temperature 24 ° C.
  • FIG. 2A The chromatogram obtained under these conditions is presented in FIG. 2A.
  • Activity tests on the growth of F. graminearum were performed with 5 mg / ml of each fraction.
  • the results indicate that only the Fl-2 and Fl-3 fractions possess the biocidal activity (Figure 2B), a MIC of 0.75 mg / ml could be determined for the Fl-2 fraction ( Figure 2C).
  • Electrospray needle voltage 4500 V at room temperature
  • Figure 3A shows the mass spectrum acquired in electrospray ionization in positive mode on the molecule of interest collected Fl-2.
  • the exact mass determined is 1381.8276 Daltons. It corresponds to a sodium adduct formed during ionization ([M + Na] + ). After deducting the sodium mass of 23 Daltons, the mass of the molecular peak of the compound is 1358.8 Da.
  • NMR analysis was carried out according to the following procedure: The samples corresponding to the Fl-2 peak were collected and then were completely dissolved in about 350 ⁇ of deuterated methanol (MeOD 4 ).
  • HSQC Number of scans: 64; 512 increments
  • HMBC Number of scans: 48; 512 increments - COZY: Number of scans: 56; 256 increments
  • TOCSY Number of scans: 48; 256 increments
  • the 13 C DEPT135 sequence is an experiment that sorts the carbons according to the number of directly bound protons: CH3 and CH> 0 and CH2 ⁇ 0.
  • the sequence COSY Correlation SpectroscopY
  • the sequence TOCSY Total Correlation SpectroscopY
  • the sequence TOCSY is a homonuclear 2D experiment that allows to identify protons in scalar interaction spaced by 3 or more bonds.
  • the HSQC (Heteronuclear Single Quantum Correlation) sequence is a heteronuclear 2D experiment that highlights the direct interactions between a carbon and the directly bound proton (s).
  • the HMBC (Heteronuclear Multiple Bond Correlation) sequence is a heteronuclear 2D experiment that highlights the correlations between protons and carbons separated by 2 or 3 distance bonds.
  • the 1D spectra were processed by a Fourier transform.
  • the spectra were processed by a Fourier transform in both dimensions.
  • the 1 H acquired spectrum shown in Figure 4A, highlights a series of peaks distributed over a broad spectral window between 1 and 6ppm. This confirms that the object compound contains aliphatic and olefinic protons. These displacements also suggest the presence of heteroatoms such as oxygen.
  • the 13 C DEPT135 spectrum (FIG. 4B) shows a series of peaks on the spectral window between 13 and 211 ppm.
  • the 2D HMBC and HSQC sequences make it possible to highlight the sequence of the carbons between them.
  • 2D sequences COZY and TOCSY make it possible to confirm the sequence of the structure from proton displacements and their correlations.
  • Ni (2n c + 2 - n H + n N - n x ) / 2
  • ne the number of carbon atoms
  • n H the number of hydrogen atoms
  • n N the number of nitrogen atoms
  • n x the number of halogen atoms.
  • the 11 unsaturations are divided according to: - 1 ketone function

Abstract

Utilisation de la molécule de formule (I) suivante pour son activité fongicide et/ou bactéricide sur les champignons, les oomycètes et/ou bactéries pathogènes des plantes et semences de culture.

Description

Utilisation d'un amphidinol pour son activité fongicide et/ou bactéricide sur les champignons, les oomvcètes et/ou bactéries pathogènes des plantes et semences de culture
L'invention concerne le domaine des antifongiques et anti-bactéricides des semences. Après la seconde guerre mondiale et afin de faire face à l'accroissement mondial de la population, l'avènement de la « révolution verte » a été mis en place en faisant appel aux programmes modernes de sélection variétale, à l'irrigation, aux engrais et aux pesticides de synthèse afin de contrôler la fertilité des sols et les organismes pathogènes. Ces différents éléments ont ainsi permis de quasiment tripler la production alimentaire mondiale en l'espace d'une quarantaine d'années. Aujourd'hui, le défi de l'agriculture est de nourrir 9 milliards d'individus à l'horizon 2050 et de continuer à accroître la production par unité de surface tout en tenant compte des ressources de plus en plus limitées et des contraintes croissantes. Par exemple, les pertes potentielles, dues aux stress biotiques et en l'absence de méthodes de protection des cultures, s'élèveraient à plus de la moitié de la production des céréales. Les produits phytosanitaires conventionnels font donc partie intégrante de la protection des cultures dans le monde afin de limiter les pertes. Cependant, ces produits chimiques ont un fort impact négatif sur la santé humaine et l'environnement incitant à utiliser d'autre moyen de lutte contre les maladies infectieuses tels que le bio-contrôle (ensemble des méthodes de protection des végétaux par l'utilisation de mécanisme naturel). L'objet de ce brevet vise à exploiter les algues unicellulaires, issues du phytoplancton, comme source de nouvelles molécules naturelles capables d'agir en tant que « pesticide biologique » en affectant directement la survie des phytopathogènes infectant des cultures d'importances agronomiques majeures, tels que le blé et la vigne.
Les fusarioses
En Europe, plusieurs maladies sur blé (Triticum aestivum) sont responsables de pertes de rendement ou encore d'une dégradation de la qualité sanitaire des grains. Une des plus importantes est la septoriose (Septoria spp.). La fusariose est associée à un complexe d'espèces regroupant deux genres de champignons phytopathogènes, Fusarium et Microdochium (1). Ces deux genres englobent environ 19 espèces capables d'induire la fusariose de l'épi de blé. Les espèces les plus fréquentes en Europe sont F. graminearum, F. culmorum, F. avenaceum, F. poae, M. nivale et M. majus. Le genre Fusarium appartient à la division des Ascomycètes et à la famille des Nectriacées. Le genre Microdochium appartient à la famille des Tuberculariacées et regroupe deux espèces, M. nivale et M. majus, provoquant les mêmes symptômes sur épi et sur feuilles que les Fusaria. Plusieurs espèces de fusarium, dont Fusarium graminearum est le plus représenté, peuvent se retrouver ensemble à l'échelle de la région, de la parcelle ou sur un même épi formant ainsi le complexe fusarien. La sévérité, l'incidence et la prévalence de chaque espèce varient selon la localisation géographique, les variations climatiques ainsi que les pratiques culturales. La présence sur un même épi de plusieurs de ces espèces est susceptible de modifier leur équilibre et leur dynamique de production de toxines. La fusariose du blé peut dévaster une culture quelques semaines avant la récolte. Elle peut être associée à la fois à de fortes pertes de rendement (avortement et faible poids des grains), une réduction de leur qualité germinative ou encore une diminution de leur qualité par la présence de toxines dans les grains. En effet, les champignons du genre Fusarium, mais pas du genre Michrodochium, sont capables de produire des métabolites secondaires toxiques, les mycotoxines, dont la présence augmente l'incidence de la maladie sur les productions agricoles et constitue un problème majeur économique et de santé publique. Les principaux moyens de lutte contre la fusariose regroupent les pratiques culturales, la résistance variétale et la lutte chimique. A l'heure actuelle, peu de variétés de blé sont résistantes à la fusariose. Cependant, il existe des variétés tolérantes possédant des niveaux de résistance partiels limitant les pertes de rendement et l'accumulation des toxines dans les récoltes. Une fois la culture installée, le recours à la lutte chimique est possible mais d'une efficacité limitée. La diversité des agents pathogènes ainsi que leur sensibilité différente aux matières actives complexifient cette lutte. Par exemple, les champignons du genre Fusarium sont sensibles aux triazoles alors que les champignons du genre Microdochium sont sensibles aux strobilurines.
Les septorioses La septoriose est une maladie du blé responsable d'importantes pertes de rendement et qui provoque le plus de pertes économiques dans le monde, notamment dans les régions tempérées humides. Deux principales formes de septorioses peuvent être distinguées : La septoriose des épis (Phaeosphaeria nodorum) et la septoriose foliaire (Mycosphaerella graminicola). En France, la septoriose des épis est surtout présente dans les zones continentales alors que celle des feuilles l'est principalement dans le nord-ouest et sur les bordures maritimes où le champignon trouve des conditions climatiques favorables à son développement. Les symptômes provoqués par M graminicola apparaissent successivement sous forme de chloroses, taches de couleur vert clair, avant d'évoluer en taches brunâtres appelées nécroses. Ces nécroses finissent par se fondre les unes dans les autres (coalescence). Ensuite, apparaissent sur ces nécroses les pycnides, fructifications noires à peine visibles à l'œil nu. La nuisibilité de la septoriose en termes de pertes de photosynthèse, croissance ou rendement a été étudiée par plusieurs équipes de recherche. Une nuisibilité qualitative exprimant l'impact de la maladie sur la teneur en protéines des grains récoltés peut ainsi être établie. M. graminicola est un champignon hémibiotrophe établissant une première phase biotrophe où l'infection se déroule sur des tissus vivants puis survient la phase nécrotrophe pendant laquelle le champignon exprime des toxines produisant la mort des tissus colonisés. En fonction des conditions environnementales, la reproduction de M. graminicola est de nature sexuée (production d'ascospores) ou asexuée (production de pycnidiospores). Les ascospores, disséminées par le vent sur de longues distances participent notamment à la survie du champignon en l'absence de plante hôte et est considéré comme la source principale d'inoculum primaire pour initier la maladie. Les pycnidiospores, quant à eux, sont en majorité produites durant la phase épidémique de la maladie au cours de plusieurs cycles infectieux successifs. Ces spores sont dispersées sur de courtes distances par l'action de l'éclaboussement des gouttes de pluie. La baisse des rendements potentiels est d'autant plus importante que les dernières feuilles sous l'épi impliquées dans le remplissage des grains sont sévèrement touchées par la maladie. Les pertes de rendement imputable à la septoriose ont été évaluées à 1-2 t.ha"1 en moyenne, avec des cas allant jusqu'à 3-3,5 t.ha"1, ce qui représente une diminution de 40 % des rendements. Les méthodes de lutte pour contrôler M. graminicola sont basées sur l'utilisation de fongicide et de cultivars résistants. Cependant, ces dernières années ont vu une perte importante de l'efficacité des fongicides due à une forte sélection des agents pathogènes avec, par exemple, une résistance à la famille des strobilurines ainsi qu'une perte récente de l'efficacité des triazoles en champ.
Les maladies de la vigne De nos jours, la vigne est cultivée dans le monde entier jouant un rôle central dans l'économie de nombreux pays. Elle est consommée en raisin de table et en jus, mais son exploitation principale repose sur l'industrie du vin. L'Union Européenne est le plus grand producteur de vin au monde et le plus grand exportateur mondial de produits viti - vinicoles. Le secteur rapporte ainsi à l'économie de l'Union Européenne environ 15 milliards d'euros par an (www. ceev.be). En 2010, le vignoble français couvrait près de 865 000 ha, soit près de 3 % des terres arables et permet à la France d'être le premier producteur mondial de vin avec 51,1 millions d'hectolitres. La vigne doit faire face à de nombreuses attaques d'agents pathogènes dont les maladies cryptogamiques. Celles-ci sont appelées « maladie du bois » lorsqu'elles touchent les parties lignifiées de la plante, c'est le cas notamment de l'esca, du black dead arm ou de l'eutypiose. Les champignons qui infectent les baies et les parties herbacées de la vigne (feuilles, tiges...) induisent les maladies « cryptogamiques du feuillage » dont font partie la pourriture grise, le black rot, le mildiou et l'oïdium. L'esca
Si le mildiou, l'oïdium et la pourriture grise représentent les trois principales maladies cryptogamiques affectant les vignobles à travers le monde, les maladies du bois causées par des agents fongiques deviennent des facteurs limitant de la production de raisins. Les viticulteurs sont actuellement confrontés à deux problèmes majeurs concernant ces maladies du bois : l'absence de méthodes de lutte et une méconnaissance profonde des différents facteurs biotiques et abiotiques.
Les espèces de champignon les plus répandues à travers le monde pour la maladie de l'esca sont les ascomycètes Diplodia seriata, Diplodia mutila, Neofusicoccum parvum et Neofusicoccum luteum. En France, les espèces les plus isolées sont Diplodia seriata et Botryosphaeria dothidea. De nombreux autres champignons dont certains pathogènes sont fréquemment isolés des nécroses du bois de plantes atteintes d'esca. C'est le cas d'Eutypa lata, agent responsable de l'Eutypiose. Cette maladie se présente sous deux formes : la forme lente et la forme apoplectique. Les symptômes foliaires sont caractéristiques de la forme lente même s'ils peuvent être présents chez la forme apoplectique. La forme lente se caractérise par des colorations foliaires spécifiques : tâches internervaires jaunâtres sur cépages blancs et bordées de rouges sur cépages noirs, les nervures restantes vertes. Ces tâches évoluent progressivement vers un brunissement et un dessèchement. Les symptômes foliaires de la forme lente peuvent être visibles une année sur un cep et disparaître l'année suivante. La forme apoplectique est caractérisée par un dessèchement rapide des organes aériens, rameaux, feuilles et grappes d'une partie ou de la totalité du cep de vigne. Ce symptôme se manifeste généralement lorsque les étés sont chauds, entraînant la mort des ceps en quelques jours seulement sans symptômes annonciateurs. La variété des sources d'inoculum et le développement très lent et non visible des champignons dans le bois de vigne rendent très compliquée la mise en oeuvre des méthodes de lutte. De plus, l'évolution de la réglementation des produits phytosanitaires à l'échelle européenne a conduit à l'interdiction de produits chimiques à base d'arsénite de sodium à cause des effets cancérogènes sur l'homme et de la forte toxicité de ces produits sur l'environnement. De nombreuses recherches sont menées à travers le monde pour tester de nouvelles molécules utilisables en pépinière ou au vignoble.
La pourriture grise
La pourriture grise est une maladie cryptogamique causée par un champignon ascomycète appelé Botrytis cinerea. Il appartient à la classe des Leotiomycetes, à l'ordre des Helotiales et la famille des Sclerotiniaceae. B. cinerea est un champignon nécrotrophe capable de coloniser les tissus végétaux sains, déjà infectés, ainsi que les tissus morts (saprophytisme). Sur feuille, les symptômes apparaissent sous forme de tâches brunes avec un feutrage grisâtre sur la face inférieure (fructifications du champignon) qui ont tendance à s'accroître et à envahir tout le limbe. Les grappes peuvent être touchées avant la floraison et se dessécher. Elles sont surtout sensibles au stade de la véraison où il y a développement d'une coloration brune des baies des cépages blancs et l'apparition d'un épais feutrage gris. Les conidies sont disséminées par le vent et pénètrent dans les organes herbacés de façon directe ou par le biais de blessures. C'est pourquoi l'éclatement des baies dû au mildiou favorise les infections par B. cinerea. Cette maladie entraîne non seulement des pertes de rendement pouvant aller jusqu'à 40 % (Viniflhor, données 2006) mais elle altère également les qualités organoleptiques des vins. Néanmoins, Botrytis cinerea est également responsable de la « pourriture noble » nécessaire à l'obtention de certains vins liquoreux. Le mildiou
Les deux maladies qui touchent le plus sévèrement les vignobles à l'heure actuelle sont le mildiou et l'oïdium. L'agent responsable du mildiou, l'oomycète Plasmospora viticola appartenant à l'ordre péronosporale, est un parasite obligatoire ; pour le maintenir en vie et le multiplier, il est obligatoire de le propager sur des feuilles de vigne en survie. P. viticola s'attaque à tous les tissus herbacés de la vigne ainsi qu'aux grappes. Il provoque des défoliations, le brunissement et l'assèchement des baies et des tiges. En l'absence de traitement et dans des conditions climatiques favorables, le mildiou de la vigne peut dévaster jusqu'à 75 % de la récolte de la saison.
Le cycle de vie de P. viticola comprend une phase sexuée et une phase asexuée. La phase asexuée conduit à la production de spores nécessaires aux infections secondaires et à la dispersion de l'agent pathogène sur une courte distance, tandis que la phase sexuée produit des oospores quiescentes et résistantes au froid permettant le passage de l'hiver et les infections primaires. La première preuve macroscopique de la présence de mildiou dans un vignoble est l'apparition de tâches jaune pâle et irrégulières (tâches d'huile) grossissant sur la face supérieure ou adaxiale, des feuilles. A mesure que la colonisation interne du mycélium avance, le développement de coussins blancs cotonneux sur la face inférieure en correspondance avec les tâches d'huile devient plus important. Dans les infections avancées ces symptômes sont accompagnés de tissus morts bruns. La lutte contre le mildiou s'organise principalement par des mesures préventives par des pulvérisations de fongicides. S'il est possible de stopper une attaque, les dégâts, une fois occasionnés sur les inflorescences et les grappes, sont irrémédiables. L'oïdium
L'oïdium de la vigne (Erysiphe necator) est un ascomycète biotrophe obligatoire appartenant à l'ordre des Erysiphales. Le champignon colonise la surface de tous les organes verts de la vigne, notamment la face supérieure des feuilles, et se propage sur les baies. Une phase sexuée qui est caractérisée par la production de cléistothèces contenant des ascospores peut alterner avec une phase asexuée conduisant à la formation de conidiophores portant des conidies. Durant la phase hivernale de repos de la vigne, le champignon survit sous forme d'hyphes dans les bourgeons dormants ou de cléistothèces à la surface de la plante. Les spores contenues dans les cléistothèces seront libérées au printemps pour germer à la surface des bourgeons et des jeunes feuilles. Un hyphe primaire se développe ensuite sur la surface de la feuille, puis un réseau mycélien de plus en plus complexe et ramifié tapisse la surface foliaire. Par la suite, des conidiophores se différencient à partir du mycélium constituant le début de l'étape de sporulation et coloniseront d'autres tissus verts de la plante donnant lieu aux infections secondaires. La présence du mycélium et des conidiophores portant les conidies à la surface des tissus infectés de l'hôte donne une apparence poudreuse de couleur blanche grisâtre. Le feutrage blanc se développe sur les boutons floraux qui se dessèchent. Seules les jeunes baies ayant un taux de sucre < 8 % sont sensibles à l'oïdium. Toutes les surfaces foliaires peuvent être sensibles à l'infection et ce, quelque soit leur âge. Les jeunes feuilles infectées prennent d'abord une coloration vert foncé puis les feuilles se déforment et deviennent rabougries. La surface supérieure des feuilles peut présenter des tâches de teinte plus claire et chlorotique ressemblant aux tâches d'huile du mildiou. A l'heure actuelle, le principal moyen de lutte contre les maladies qui touchent le plus sévèrement les vignobles est l'utilisation de pesticides et fongicides en grande quantité. La pression sanitaire est donc particulièrement forte en viticulture. Les traitements fongicides destinés à lutter principalement contre le mildiou et l'oïdium sont appliqués selon un calendrier précis pour prévenir les dommages dus à l'apparition d'une maladie. L'Union Européenne (UE) emploie environ 68 000 tonnes de fongicides par an pour contrôler les maladies de la vigne, ce qui représente 65 % des fongicides utilisés dans l'agriculture alors que seulement 3,3 % de la surface agricole utile de l'UE est occupée par la vigne (Eurostat, 2007). Afin de limiter la forte pression des produits chimiques sur l'environnement et la santé, il est nécessaire d'isoler des molécules d'origine naturelle qui joueront un rôle de protection des cultures contre les maladies infectieuses afin de remplacer à terme les produits phytosanitaires chimiques utilisés jusqu'à présent.
La tavelure du pommier La tavelure est avec la moniliose et l'oïdium une des principales affections fongiques du pommier (genre Malus). Elle est causée par un champignon ascomycète nommé Venturia inaequelis, dont il existe plusieurs milliers de souches, causant des lésions noires ou brunes à la surface des feuilles, des bourgeons ou des fruits et parfois même sur le bois. Les fruits et la partie inférieure des feuilles y sont spécialement sensibles.
Le champignon hiverne sur les feuilles qui tombent des arbres infectés, sous la forme de périthèces. Au printemps, au moment de l'éclosion des bourgeons, les périthèces se remplissent d'ascospores. Les ascospores sont éjectées dans l'air du verger lors des journées humides et atteignent les arbres grâce aux déplacements d'air. Cette décharge d'ascospores commence au débourrement et se poursuit pendant 6 à 10 semaines, le plus souvent jusqu'à la fin juin. Lorsque les ascospores atteignent le feuillage et que les feuilles sont mouillées pendant un certain temps, ils germent et pénètrent les feuilles : il y a alors infection primaire. Selon les conditions d'humidité et de température, l'infection fongique devient visible en une à trois semaines sur les différentes parties de l'arbre. Des taches olive foncé ou brunes d'environ 5 mm apparaissent sur les feuilles et peuvent éventuellement couvrir toute la feuille. Les fleurs infectées peuvent tomber. L'infection des fruits se reconnaît d'abord par des taches grises au niveau de la tige.
Suite à l'infection primaire et pour le reste de l'été, le champignon se développe et engendre des conidies qui sont une autre forme de structure reproductrice. Lorsque les conidies s'échappent, il y a infection secondaire. Les conidies peuvent infecter n'importe quelle partie de l'arbre et celles produites en fin d'été peuvent même se développer sur les fruits entreposés. La pluie forte se charge de disperser les conidies.
La maladie tue rarement son hôte mais peut réduire significativement (jusqu'à 100 %) la qualité et la production des fruits en l'absence de traitement par fongicide. Après les moyens préventifs qui consistent à ramasser les feuilles tombées lors de l'automne, la stratégie de lutte impose d'agir efficacement au printemps afin d'éviter que les spores relâchées n'infectent ou ne puissent se développer sur les arbres. La méthode traditionnelle de protection consistait à commencer l'application de fongicide dès le débourrement et de répéter les traitements tous les sept jours environ jusqu'à la fin juin afin de protéger les nouvelles pousses. Les vergers de pommier sont les plus traités en fongicides et en insecticides avec une moyenne de 28,8 traitements fongicides par an, dont 19 sont dédiés à la tavelure (données IN A).
Les micro-algues
Les molécules d'origine naturelle ayant un nouveau mécanisme d'action et capable de contourner les résistances développées par les agents pathogènes ont un devenir majeur pour l'élaboration de nouveaux produits phytosanitaires respectueux de l'environnement. Les océans représentent une variété considérable d'organismes (bactéries, microalgues, algues, animaux vertébrés et invertébrés) qui sont une source de nouvelles molécules bioactives et qui sont encore peu exploités (2). Par exemple, les micro-organismes marins accumulent des métabolites secondaires bioactifs dont leur structure unique n'est pas retrouvée chez les organismes terrestres. Ces métabolites représentent donc potentiellement de nouvelles molécules d'intérêt. Certaines substances issues d'organismes marins ont été décrits comme possédant une activité antifongique ou une activité de substance naturelle de défense, mais la recherche de ces molécules est encore très peu développée (3).
Les micro-algues sont des organismes unicellulaires jouant un rôle clé dans les écosystèmes aquatiques. Produisant du matériel organique, ils jouent un rôle écologique important car ils représentent la base de la chaîne alimentaire du milieu marin. Cependant, leur incroyable capacité à coloniser l'ensemble des océans du globe suggère qu'elles ont probablement développé des stratégies de lutte efficaces contre les agents pathogènes via notamment la production de pesticides naturels. Par exemple, l'abondante prolifération dans les régions côtières des micro-algues produisant des biotoxines est responsable de la formation des bloom toxiques d'algue (HABs : Harmful algal blooms) ayant une conséquence importante sur la cascade trophique.
Parmi les micro-algues, les dinoflagellés, appartenant à l'ordre des Gymnodiniales et à la famille des Gymnodiniacées sont présents dans les eaux marines tempérées et tropicales vivant sous forme libres ou en symbiose avec les invertébrés (par exemple, les coraux). Les dinoflagellés synthétisent un nombre important de métabolites secondaires de type polycétides (composés ayant une activité biologique ou pharmacologique pouvant être toxique afin de conférer un avantage pour la survie) dont plusieurs ont été caractérisés dont ceux responsables des HAB (4). Par exemple, l'espèce modèle des dinoflagellés, Amphidinium carterae, produit une profusion de différents composés bioactifs dont plusieurs ont le devenir d'être développés en tant qu'agents thérapeutiques (5). Les polycétides produits par les espèces d' Amphidinium sont extrêmement diverses en structure et forment trois catégories : les macrolides, les polycétides linéaires et les polycétides à longue chaîne. Par exemple, les amphidinols sont des polyhydroxy-polyenes (ploycétides à longue chaîne) qui présentent une forte activité anti-fongique et hémolytique. Ils augmentent ainsi la perméabilité membranaire en s'associant avec les lipides membranaires (6). Parmi les différentes souches d' Amphidinium, des composées similaires aux amphidinols ayant une longue chaîne polyhydroxy ont été isolés tels que les lingshuiols, karatungiols, carteraol E, luteophanols, colopsinols, et amphezonol A (5).
Afin de limiter la forte pression des produits chimiques sur l'environnement et la santé, il est nécessaire d'isoler des molécules d'origine naturelle qui joueront un rôle de protection des cultures contre les maladies infectieuses afin de remplacer à terme les produits phytosanitaires chimiques utilisés jusqu'à présent. Ces « pesticides biologiques » pourraient ainsi affecter directement la survie des phytopathogènes des cultures d'importances agronomiques majeures, tels que le blé et la vigne.
De façon surprenante, les inventeurs ont identifié qu'une des molécules responsables de l'effet fongicide d'un extrait cellulaire d'Amphidinium carterae sur de nombreux champignons pathogènes des plantes est l'amphidinol 18.
RESUME DE L'INVENTION
Un premier objet de l'invention concerne l'utilisation de la molécule de formule (I) suivante :
Figure imgf000010_0001
dans laquelle :
i est choisi dans le groupe constitué de :
Figure imgf000010_0002
OH
OR3 ' OH
Figure imgf000011_0001
où :
3 représente H ou SOsNa,
R4 représente H ou OH,
' représente une liaison simple ou une liaison double,
n est est égal à 0 ou 1 et
m est égal à 0 ou 1; et
■ 2 est choisi dans le groupe constitué de : et
Figure imgf000011_0002
pour son activité fongicide et/ou bactéricide sur les champignons, les oomycètes et/ou bactéries pathogènes des plantes et semences de culture.
Un autre objet de l'invention concerne un procédé de lutte contre les champignons, les oomycètes et/ou les bactéries pathogènes des plantes et semences de culture comprenant l'application sur les plantes de culture et/ou l'enrobage desdites semences de la molécule de formule (I).
LEGENDE DES FIGURES
Figure 1. Fractionnement de l'extrait D sur colonne C18 en phase inversée et test d'activité des différentes fractions de l'extrait D obtenues par HPLC
A. Test in vitro d'inhibition de croissance de F. graminearum de l'extrait D à 5 g/L obtenu après extraction au méthanol
B. Chromatogramme liquide obtenu après injection de l'extrait D. Les échantillons ont été assemblées suivant les pointillés afin de constituer 5 fractions, notées Fl à F5.
C. Test in vitro d'inhibition de croissance de F. graminearum des fractions Fl à F5 à une concentration de 5 g/L D. Test in vitro d'inhibition de croissance de F. graminearum de la fraction Fl à une concentration de 0,5 g/L, 0,75 g/L, 1 g/L, 1,5 g/L, 2,5 g/L et de 5 g/L
- : témoin négatif : les spores sont incubées en présence du tampon seul
Figure 2. Fractionnement de la fraction Fl sur colonne C18 en phase inversée et test d'activité des différentes fractions obtenues par HPLC
A. Chromatogramme liquide obtenu après injection de la fraction Fl. Les échantillons ont été assemblées suivant les pointillées afin de constituer 5 fractions, notées Fl-1 à Fl-5.
B. Test in vitro d'inhibition de croissance de F. graminearum des fractions Fl à F5 à une concentration de 5 g/L
C. Test in vitro d'inhibition de croissance de F. graminearum de la fraction Fl-2 à des concentrations allant de 0,0005 g/L à 1 g/L
- : témoin négatif : les spores sont incubées en présence du tampon seul
Figure 3. Analyse de la fraction Fl-2 par spectrométrie de masse.
A. Spectre de masse acquis en ionisation electrospray en mode positif sur la molécule d'intérêt collectée Fl-2
B. Spectre de masse en tandem de l'ion 1381,8276Da détecté en A. Les pics entourés sont en adéquation avec ceux retrouvés dans ΓΑΜ18 caractérisé par Nuzzo et al., 2014 (7)
Figure 4. Analyse de la fraction Fl-2 par RMN.
A. Spectre RMN ΧΗ (solvant MeOD4) obtenu pour la molécule de la fraction Fl-2 issue de l'extrait D
B. Spectre RMN 13C DEPT135 (solvant MeOD4) obtenu pour la molécule de la fraction Fl-2 issue de l'extrait D
Figure 5. Formule développée de la molécule Amphidinol 18, issue de la fraction Fl-2 de l'extrait D
Toutes les corrélations COSY et TOCSY entre chacun des protons sont représentées en gras DESCRIPTION DETAILLEE DE L'INVENTION
Un premier objet de l'invention concerne l'utilisation de la molécule de formule (I) suivante
Figure imgf000013_0001
où :
3 représente H ou SOsNa,
R4 représente H ou OH,
' représente une liaison simple ou une liaison double, n est est égal à 0 ou 1 et
m est égal à 0 ou 1; et
2 est choisi dans le groupe constitué de :
HO
, ^¾ et OH pour son activité fongicide et/ou bactéricide sur les champignons, les oomycètes et/ou bactéries pathogènes des plantes et semences de culture.
De préférence, RI est :
Figure imgf000014_0001
où représente H ou SOsNa.
De préférence, R2 est
De préférence, la molécule de formule (I) est l'amphidinol 18 ou l'amphidinol 19 :
Figure imgf000014_0002
Amphidinol 18
Figure imgf000014_0003
Amphidinol 19 La molécule de formule (I) est un amphidinol.
La molécule de formule (I) peut être synthétique ou extraite de cellules d'une ou plusieurs microalgues du genre Amphidinium.
Les Amphidinium
Des Amphidinium appropriés sont choisis dans le groupe constitué de Amphidinium achromaticum, Amphidinium aculeatum, Amphidinium acutissimum, Amphidinium acutum, Amphidinium alinii, Amphidinium aloxalocium, Amphidinium amphidinioides, Amphidinium asymmetricum, Amphidinium aureum, Amphidinium belauense, Amphidinium bidentatum, Amphidinium bipes, Amphidinium boekhoutensis, Amphidinium boggayum, Amphidinium caerulescens, Amphidinium carbunculus, Amphidinium carterae, Amphidinium celestinum, Amphidinium chattonii, Amphidinium coeruleum, Amphidinium conradii, Amphidinium conus, Amphidinium coprosum, Amphidinium corallinum, Amphidinium corpulentum, Amphidinium crassum, Amphidinium cristatum, Amphidinium cucurbita, Amphidinium cucurbitella, Amphidinium cupulatisquama, Amphidinium curvatum, Amphidinium cyaneoturbo, Amphidinium dentatum, Amphidinium discoidale, Amphidinium dubium, Amphidinium eilatiensis, Amphidinium emarginatum, Amphidinium fastigium, Amphidinium filum Bôhm, Amphidinium flagellons, Amphidinium flexum, Amphidinium galbanum, Amphidinium gibbosum, Amphidinium glaucovirescens, Amphidinium glaucum, Amphidinium globosum, Amphidinium hadai, Amphidinium herdmanii, Amphidinium incoloratum, Amphidinium inflatum, Amphidinium kesselitzii, Amphidinium kesslitzii, Amphidinium klebsii, Amphidinium lacunarum, Amphidinium lanceolatum, Amphidinium lefevrei, Amphidinium lilloense, Amphidinium lissae, Amphidinium longum, Amphidinium luteum, Amphidinium machapungarum, Amphidinium macrocephalum, Amphidinium mammillatum, Amphidinium manannini, Amphidinium mananninii, Amphidinium massartii, Amphidinium mootonorum, Amphidinium mucicola, Amphidinium nasutum, Amphidinium obliquum, Amphidinium obrae, Amphidinium oceanicum, Amphidinium oculatum, Amphidinium operculatum, Amphidinium operculatum var. steinii, Amphidinium ornithocephalum, Amphidinium ovoideum, Amphidinium ovum, Amphidinium pacificum, Amphidinium pelagicum, Amphidinium phthartum, Amphidinium psammophila, Amphidinium psittacus, Amphidinium purpureum, Amphidinium pusillum, Amphidinium rhynchocephalum, Amphidinium roseolum, Amphidinium ruttneri, Amphidinium salinum, Amphidinium schilleri, Amphidinium schroederi, Amphidinium scissum, Amphidinium sphagnicola, Amphidinium sphénoïdes, Amphidinium steinii, Amphidinium stellatum, Amphidinium stigmatum, Amphidinium sulcatum, Amphidinium tortum, Amphidinium trochodinioides, Amphidinium trochodinoides, Amphidinium trulla, Amphidinium truncatum, Amphidinium turbo, Amphidinium vernal, Amphidinium vigrense, Amphidinium vitreum, Amphidinium vittatum, Amphidinium wigrense, Amphidinium yoorugurrum, Amphidinium yuroogurrum.
De préférence, la molécule de formule (I) est extraite de Amphidinium carterae. Il existe plusieurs souches d'Amphidinium carterae en collection comme les souches CCMP 124, 1314, 3177 (CCMP = Culture Collection of Marine Phytoplankton), AC 208, 792 (AC =Algobank Cean), BEA 01198 (BEA= Banco Espafiol de Algas).
Avantageusement, la souche d'Amphidinium carterae utilisée selon l'invention est CCMP 1314, AC208 ou AC792.
Extraction
Ledit extrait peut être préparé par toute méthode d'extraction cellulaire connue de l'homme du métier, solide-liquide ou liquide-liquide, par exemple une extraction en solvant inorganique ou organique, lequel peut être choisi dans le groupe constitué de l'eau, des solutions aqueuses, des solvants hydrocarbonés (les aliphatiques, les aromatiques), des solvants oxygénés (alcools, cétones, acides, esters et éthers), des solvants halogénés (dichlorométhane, cholorforme) et des mélanges en toute proportion miscibles de ces solvants.
Avantageusement, on priviligiera comme solvant l'eau ou les solvants oxygénés, de préférence les alcools, de manière particulièrement préférée les alcools en Cl à C4 comme le méthanol ou l'éthanol. De manière particulièrement préférée, on priviligiera les alcools en Cl à C4.
De préférence, ledit extrait est une fraction hydrosoluble.
Concentration
De préférence, la molécule de formule (I) est utilisée en une quantité comprise entre 0,1 et 5 mg/mL, de préférence comprise entre 0,5 et 3 mg/mL, de manière particulièrement préférée comprise entre 0,75 et 1 mg/mL.
Mode d'action
Cette activité fongicide sur les champignons et/ou les oomycètes pathogènes des plantes et semences de culture peut en particulier s'exercer par inhibition de la germination des spores ou par inhibition de la croissance du champignon et/ou des oomycètes. L'activité s'exerce par une activité lytique des parois et membranes cellulaires qui aboutit à la lyse cellulaire.
Plantes de culture Lesdites plantes de culture sont en particulier choisies dans le groupe constitué des céréales comme le blé, maïs, orge, riz, soja, des fruits et légumes comme pomme de terre, carotte, pommiers, pêchers, abricotiers, tomates, radis, haricots, de la vigne et des plantes d'ornement.
Lesdites plantes de culture sont en particulier choisies dans le groupe constitué des genres Abelmoschus, Acacia, Achras, Agave, Agrostis, Aleurites, Allium, Anacardium, Ananas, Annona, Apium, Arachis, Areca, Armoracia, Arracacia, Artocarpus, Asparagus, Aspidosperma, Avena, Bertholletia, Beta, Boehmeria, Borassus, Brassica, Cajanus, Camellia, Cannabis, Capsicum, Carica, Carthamus, Carum, Carya, Castanea, Ceiba, Ceratonia, Chenopodium, Chrysanthemum, Cicer, Cichorium, Cinchona, Cinnamomum, Citrullus, Citrus, Cocos, Coffea, Cola, Colocasia, Corchorus, Corylus, Crotalaria, Cucumis, Cucurbita, Cydonia, Cymbopogon, Cynara, Dactylis, Daucus, Dioscorea, Diospyros, Echinochloa, Elaeis, Elettaria, Eleusine, Eragrostis, Eriobotrya, Eugenia, Fagopyrum, Ficus, Foeniculum, Fragaria, Furcraea, Glycine, Glycyrrhiza, Gossypium, Guizotia, Helianthus, Hevea, Hibiscus, Hordeum, Humulus, llex, Indigofera, Ipomoea, Jasminum, Jugions, Lactuca, Lagenaria, Lavandula, Lawsonia, Lens, Lepidium, Lespedeza, Linum, Litchi, Lolium, Lopmoea, Lotus, Lupinus, Lycopersicon, Lygeum, Macadamia, Malus, Mangifera, Manihot, Maranta, Medicago, Mentha, Mespilus, Metroxylon, Moringa, Musa, Myristica, Nicotiana, Olea, Onobrychis, Oryza, Panicum, Papaver, Pastinaca, Pelargonium, Pennisetum, Persea, Phaseolus, Phleum, Phoenix, Phormium, Pimpinella, Piper, Pistacia, Pisum, Prunus, Psidium, Punica, Pyrus, Raphanus Rheum, Ribes, Ricinus, Rose, Rubus, Saccharum, Scorzonera, Secale Sechium, Sesamum, Setaria, Solanum, Sorghum, Spinacia, Theobroma, Tragopogon, Trifolium, Trigonella, Triticum, Urena, Vaccinium, Valerianella, Vanilla, Vicia, Vigna, Vitellaria, Vitis, Xanthosoma, Zea, Zingiber.
Pathogènes
Lesdits champignons pathogènes des plantes et semences de culture sont des ascomycètes ou des basidiomycètes, de préférence des ascomycètes. Lesdits champignons pathogènes des plantes et semences de culture sont des champignons pathogènes des plantes et semences de culture des genres :
Acrocalymma, Acrocalymma medicaginis, Fusarium, Fusarium affine, Fusarium arthrosporioides, Fusarium crookwellense, Fusarium culmorum, Fusarium graminearum, Fusarium moniliforme, Fusarium incarnatum, Fusarium solani, Fusarium langsethiae, Fusarium mangiferae, Fusarium oxysporum f.sp. albedinis, Fusarium oxysporum f.sp. asparagi, Fusarium oxysporum f.sp. batatas, Fusarium oxysporum f.sp. betae, Fusarium oxysporum f.sp. cannabis, Fusarium oxysporum f.sp. carthami, Fusarium oxysporum f.sp. cattleyae, Fusarium oxysporum f.sp. ciceris, Fusarium oxysporum f.sp. coffea, Fusarium oxysporum f.sp. cubense, Fusarium oxysporum f.sp. cyclaminis, Fusarium oxysporum f.sp. dianthi, Fusarium oxysporum f.sp. lentis, Fusarium oxysporum f.sp. Uni, Fusarium oxysporum f.sp. lycopersici, Fusarium oxysporum f.sp. medicaginis, Fusarium oxysporum f.sp. pisi, Fusarium oxysporum f.sp. radicis-lycopersici, Fusarium oxysporum f.sp. spinacia, Fusarium oxysporum, Fusarium pallidoroseum, Fusarium patch, Fusarium proliferatum, Fusarium redolens, Fusarium sacchari, Fusarium solani, Fusarium subglutinans, Fusarium sulphureum, Fusarium tricinctum, Fusarium wilt,
Botrytis, Botrytis allii, Botrytis anthophila, Botrytis cinerea, Botrytis fabae, Botrytis narcissicola,
Alternaria, Alternaria alternata, Alternaria brassicae, Alternaria brassicicola, Alternaria carthami, Alternaria cinerariae, Alternaria dauci, Alternaria dianthi, Alternaria dianthicola, Alternaria euphorbiicola, Alternaria helianthi, Alternaria helianthicola, Alternaria japonica, Alternaria leucanthemi, Alternaria limicola, Alternaria linicola, Alternaria padwickii, Alternaria panax, Alternaria radicina, Alternaria raphani, Alternaria saponariae, Alternaria senecionis, Alternaria solani, Alternaria tenuissima, Alternaria triticina, Alternaria zinniae, Erisyphe, Erisyphe necator, Erysiphe betae, Erysiphe brunneopunctata, Erysiphe cichoracearum, Erysiphe cruciferarum, Erysiphe graminisf. sp. Avenae, Erysiphe graminisf.sp. tritici, Erysiphe heraclei, Erysiphe pisi,
Claviceps, Claviceps fusiformis, Claviceps purpurea, Claviceps sorghi, Claviceps zizaniae,
Gaeumannomyces, Gaeumannomyces graminis, Leptosphaeria, Leptosphaeria nodorum, Leptosphaeria acuta, Leptosphaeria cannabina, Leptosphaeria coniothyrium, Leptosphaeria libanotis, Leptosphaeria lindquistii, Leptosphaeria maculans, Leptosphaeria musarum, Leptosphaeria pratensis, Leptosphaeria sacchari, Leptosphaeria woroninii,
Microdochium, Microdochium spp. Microdochium bolleyi, Microdochium dimerum, Microdochium panattonianum, Microdochium phragmitis,
Mycosphaerella, Mycosphaerella arachidis, Mycosphaerella areola, Mycosphaerella berkeleyi, Mycosphaerella bolleana, Mycosphaerella brassicicola, Mycosphaerella caricae, Mycosphaerella caryigena, Mycosphaerella cerasella, Mycosphaerella coffeicola, Mycosphaerella confusa, Mycosphaerella cruenta, Mycosphaerella dendroides, Mycosphaerella eumusae, Mycosphaerella gossypina, Mycosphaerella graminicola, Mycosphaerella henningsii, Mycosphaerella horii, Mycosphaerella juglandis, Mycosphaerella lageniformis, Mycosphaerella linicola, Mycosphaerella louisianae, Mycosphaerella musae, Mycosphaerella musicola, Mycosphaerella palmicola, Mycosphaerella pinodes, Mycosphaerella pistaciarum, Mycosphaerella pistacina, Mycosphaerella platanifolia, Mycosphaerella polymorpha, Mycosphaerella pomi, Mycosphaerella punctiformis, Mycosphaerella pyri,
Oculimacula, Oculimacula acuformis, Oculimacula yallundae, Blumeria, Blumeria graminis,
Pyrenophora, Pyrenophora avenae, Pyrenophora chaetomioides, Pyrenophora graminea, Pyrenophora seminiperda, Pyrenophora teres, Pyrenophora teres f. maculata, Pyrenophora teres f. teres, Pyren ophora tritici-repen tis,
Ramularia, Ramularia collo-cygni, Ramularia beticola, Ramularia coryli, Ramularia cyclaminicola, Ramularia macrospora, Ramularia menthicola, Ramularia necator, Ramularia primulae, Ramularia spinaciae, Ramularia subtilis, Ramularia tenella, Ramularia vallisumbrosae,
Rhynchosporium, Rhynchosporium secalis,
Cochliobolus, Cochliobolus, Cochliobolus carbonum, Cochliobolus cymbopogonis, Cochliobolus hawaiiensis, Cochliobolus heterostrophus, Cochliobolus lunatus, Cochliobolus miyabeanus, Cochliobolus ravenelii, Cochliobolus sativus, Cochliobolus setariae, Cochliobolus spicifer, Cochliobolus stenospilus, Cochliobolus tuberculatus, Cochliobolus victoriae,
Microdochium, Microdochium oryzae,
Pyricularia, Pyricularia oryzae,
Sarocladium, Sarocladium oryzae, Ustilaginoides, Ustilaginoides virens,
Cercospora, Cercospora, Cercospora apii, Cercospora apii f.sp. clerodendri, Cercospora apiicola, Cercospora arachidicola, Cercospora asparagi, Cercospora atrofiliformis, Cercospora beticola, Cercospora brachypus, Cercospora brassicicola, Cercospora brunkii, Cercospora cannabis, Cercospora cantuariensis, Cercospora capsici, Cercospora carotae, Cercospora corylina, Cercospora fuchsiae, Cercospora fusca, Cercospora fusimaculans, Cercospora gerberae, Cercospora halstedii, Cercospora handelii, Cercospora hayi, Cercospora hydrangeae, Cercospora kikuchii, Cercospora lentis, Cercospora liquidambaris, Cercospora longipes, Cercospora longissima, Cercospora mamaonis, Cercospora mangiferae, Cercospora medicaginis, Cercospora melongenae, Cercospora minuta, Cercospora nicotianae, Cercospora odontoglossi, Cercospora papayae, Cercospora penniseti, Cercospora pisa- sativae, Cercospora platanicola, Cercospora puderii, Cercospora pulcherrima, Cercospora rhapidicola, Cercospora rosicola, Cercospora sojina, Cercospora solani, Cercospora solani-tuberosi, Cercospora sorghi, Cercospora theae, Cercospora tuberculans, Cercospora vexans, Cercospora vicosae, Cercospora zeae-maydis, Cercospora zebrina, Cercospora zonata,
Corynespora, Corynespora cassiicola,
Phakospora, Phakospora pachyrhizi, Phakopsora gossypii, Colletotrichum, Colletotrichum acutatum, Colletotrichum arachidis, Colletotrichum capsici, Colletotrichum céréale, Colletotrichum coffeanum, Colletotrichum crassipes, Colletotrichum dematium, Colletotrichum dematium f. spinaciae, Colletotrichum derridis, Colletotrichum destructivum, Colletotrichum gloeosporioides, Colletotrichum glycines, Colletotrichum gossypii, Colletotrichum graminicola, Colletotrichum higginsianum, Colletotrichum kahawae, Colletotrichum lindemuthianum, Colletotrichum Uni, Colletotrichum mangenotii, Colletotrichum musae, Colletotrichum nigrum, Colletotrichum orbiculare, Colletotrichum pisi, Colletotrichum sublineolum, Colletotrichum trichellum, Colletotrichum trifolii, Colletotrichum truncatum,
Pythium spp,
Diplodia, Diplodia allocellula, Diplodia laelio-cattleyae, Diplodia manihoti, Diplodia paraphysaria, Diplodia seriata, Diplodia theae-sinensis,
Monilia, Monilinia azaleae, Monilinia fructicola, Monilinia fructigena, Monilinia laxa, Monilinia oxycocci,
Pezzicula, Pezzicula alba, Pezzicula malicorticis,
Zymoseptoria, Zymoseptoria tritici Phytophthora, Phytophthora infestons
Guignardia, Guignardia bidwelli, Guignardia camelliae, Guignardia fulvida, Guignardia mangiferae, Guignardia musae, Guignardia philoprina,
Plasmopara, Plasmopara viticola,
Puccinia, Puccinia angustata, Puccinia arachidis, Puccinia aristidae, Puccinia asparagi, Puccinia cacabata, Puccinia campanulae, Puccinia carthami, Puccinia coronata, Puccinia dioicae, Puccinia erianthi, Puccinia extensicola, Puccinia helianthi, Puccinia hordei, Puccinia jaceae, Puccinia kuehnii, Puccinia malvacearum, Puccinia mariae-wilsoniae, Puccinia melanocephala, Puccinia menthae, Puccinia oxalidis, Puccinia pelargonii-zonalis, Puccinia pittieriana, Puccinia poarum, Puccinia purpurea, Puccinia recondita, Puccinia schedonnardii, Puccinia sessilis, Puccinia striiformis, Puccinia striiformis, Puccinia subnitens, Puccinia substriata, Puccinia verruca, Puccinia xanthii, Rhizoctonia, Rhizoctonia solani, Rhizoctonia oryzae, Rhizoctonia cerealis, Rhizoctonia leguminicola, Rhizoctonia rubi,
Sclerotinia, Sclerotinia borealis, Sclerotinia bulborum, Sclerotinia minor, Sclerotinia ricini, Sclerotinia sclerotiorum, Sclerotinia spermophila, Sclerotinia trifoliorum,
Septoria, Septoria ampelina, Septoria azaleae, Septoria bataticola, Septoria campanulae, Septoria cannabis, Septoria cucurbitacearum, Septoria darrowii, Septoria dianthi, Septoria eumusae, Septoria glycines, Septoria helianthi, Septoria humuli, Septoria hydrangeae, Septoria lactucae, Septoria lycopersici, Septoria lycopersici, Septoria menthae, Septoria passerinii, Septoria pisi, Septoria rhododendri, Septoria secalis, Septoria selenophomoides,
Venturia, Venturia inaequalis. Venturia carpophila, Acrodontium, Acrodontium simplex,
Acrophialophora, ^ crophialoph or a fusispora,
Acrosporium, Acrosporium tingitaninum,
Aecidium, Aecidium aechmantherae, Aecidium amaryllidis, Aecidium breyniae, Aecidium campanulastri, Aecidium cannabis, Aecidium cantensis, Aecidium caspicum, Aecidium foeniculi, Aecidium narcissi,
Ahmadiago,
Albonectria, Albonectria rigidiuscula, Allodus, Allodus podophylli, Amphobotrys, Amphobotrys ricini, Anguillosporella, Anguillosporella vermiformis, Anthostomella, Anthostomella pullulons,
Antrodia, Antrodia albida, Antrodia serialiformis, Antrodia serialis,
Apiospora, Apiospora montagne!,
Appendiculella, Armillaria Armillaria heimii, Armillaria sinapina, Armillaria socialis, Armillaria tabescens, Arthrocladiella,
Arthuriomyces, Arthuriomyces peckianus,
Ascochyta, Ascochyta asparagina, Ascochyta bohemica, Ascochyta caricae, Ascochyta doronici, Ascochyta fabae f.sp. lentis, Ascochyta graminea, Ascochyta hordei, Ascochyta humuli, Ascochyta pisi, Ascochyta prasadii, Ascochyta sorghi, Ascochyta spinaciae, Ascochyta tarda, Ascochyta tritici,
Ascospora, Ascospora ruborum,
Aspergillus, Aspergillus aculeatus, Aspergillus fischerianus, Aspergillus niger,
Asperisporium, Asperisporium caricae, Asteridiella,
Asteroma, Asteroma caryae,
Athelia, Athelia arachnoidea, Athelia rolfsii,
Aurantiporus, Aurantiporus fissilis,
Aureobasidium, Aureobasidium pullulons, Bambusiomyces,
Banana freckle,
Bayoud disease,
Beniowskia, Beniowskia sphaeroidea,
Bionectria, Bionectria ochroleuca, Bipolaris, Bipolaris cactivora, Bipolaris cookei, Bipolaris incurvata, Bipolaris sacchari,
Biscogniauxia, Biscogniauxia capnodes, Biscogniauxia marginata,
Bjerkandera, Bjerkandera adusta,
Black sigatoka,
Blakeslea, Blakeslea trispora, Botryodiplodia, Botryodiplodia oncidii, Botryodiplodia ulmicola,
Botryosphaeria, Botryosphaeria cocogena, Botryosphaeria dothidea, Botryosphaeria marconii, Botryosphaeria obtusa, Botryosphaeria rhodina, Botryosphaeria ribis, Botryosphaeria stevensii, Botryosporium, Botryosporium pulchrum, Botryotinia, Botryotinia fuckeliana, Botryotinia polyblastis, Boxwood blight, Brachybasidiaceae, Brasiliomyces, Brasiliomyces malachrae, Briosia, Briosia ampelophaga, Brown ring patch, Buckeye rot of tomato, Bulbomicrosphaera, Cadophora, Cadophora malorum, Caespitotheca,
Calonectria, Calonectria ilicicola, Calonectria indusiata, Calonectria kyotensis, Calonectria pyrochroa, Calonectria quinqueseptata,
Camarotella, Camarotella acrocomiae, Camarotella costaricensis, Canna rust,
Capitorostrum, Capitorostrum cocoes,
Capnodium, Capnodium footii, Capnodium mangiferum, Capnodium ramosum, Capnodium theae, Cephalosporium, Cephalosporium gramineum,
Ceratobasidium, Ceratobasidium céréale, Ceratobasidium cornigerum, Ceratobasidium noxium, Ceratobasidium ramicola, Ceratobasidium setariae, Ceratobasidium stevensii,
Ceratocystis, Ceratocystis adiposa, Ceratocystis coerulescens, Ceratocystis fimbriata, Ceratocystis moniliformis, Ceratocystis oblonga, Ceratocystis obpyriformis, Ceratocystis paradoxa, Ceratocystis pilifera, Ceratocystis pluriannulata, Ceratocystis polyconidia, Ceratocystis tanganyicensis, Ceratocystis zombamontana, Ceratorhiza, Ceratorhiza hydrophila,
Ceratospermopsis,
Cercoseptoria, Cercoseptoria ocellata, Cercosporella, Cercosporella rubi, Ceriporia, Ceriporia spissa, Ceriporia xylostromatoides, Cerrena, Cerrena unicolor, Ceuthospora, Ceuthospora lauri,
Choanephora, Choanephora cucurbitarum, Choanephora infundibulifera, Chrysanthemum, Chrysanthemum white rust, Chrysomyxa, Chrysomyxa cassandrae,
Chrysomyxa, Chrysomyxa himalensis, Chrysomyxa ledi, Chrysomyxa ledi var. rhododendri, Chrysomyxa ledicola, Chrysomyxa nagodhii, Chrysomyxa neoglandulosi, Chrysomyxa piperiana, Chrysomyxa pirolata, Chrysomyxa pyrolae, Chrysomyxa reticulata, Chrysomyxa roanensis, Chrysomyxa succinea, Cladosporium, Cladosporium arthropodii, Cladosporium cladosporioides, Cladosporium cladosporioides f.sp. pisicola, Cladosporium cucumerinum, Cladosporium herbarum, Cladosporium musae, Cladosporium oncobae,
Climacodon, Climacodon pulcherrimus, Climacodon septentrionalis, Clitocybe, Clitocybe parasitica, Clonostachys rosea f. rosea,
Clypeoporthe, Clypeoporthe iliau,
Coleosporium, Coleosporium helianthi, Coleosporium ipomoeae, Coleosporium madiae, Coleosporium pacificum, Coleosporium tussilaginis,
Conidiosporomyces, Coniella, Coniella castaneicola, Coniella diplodiella, Coniella fragariae,
Coniothecium, Coniothecium chomatosporum,
Coniothyrium, Coniothyrium celtidis-australis, Coniothyrium henriquesii, Coniothyrium rosarum, Coniothyrium wernsdorffiae,
Coprinopsis, Coprinopsis psychromorbida, Cordana, Cordana johnstonii, Cordana musae, Coriolopsis floccosa,
Corn grey leafspot,
Corticium, Corticium invisum, Corticium penicillatum, Corticium theae, Coryneopsis, Coryneopsis rubi, Coryneum, Coryneum rhododendri, Covered smut,
Crinipellis, Crinipellis sarmentosa, Cronartium, Cronartium ribicola, Cryphonectriaceae, Cryptobasidiaceae, Cryptocline, Cryptocline cyclaminis, Cryptomeliola,
Cryptosporella, Cryptosporella umbrina, Cryptosporiopsis, Cryptosporiopsis tarraconensis, Cryptosporium, Cryptosporium minimum,
Curvularia, Curvularia lunata, Curvularia caricae-papayae, Curvularia penniseti, Curvularia senegalensis, Curvularia trifolii,
Cyclaneusma needle cast, Cylindrocarpon, Cylindrocarpon ianthothele var. ianthothele, Cylindrocarpon magnusianum, Cylindrocarpon musae,
Cylindrocladiella, Cylindrocladiella camelliae, Cylindrocladiella parva,
Cylindrocladium, Cylindrocladium clavatum, Cylindrocladium lanceolatum, Cylindrocladium peruvianum, Cylindrocladium pteridis, Cylindrosporium, Cylindrosporium cannabinum, Cylindrosporium juglandis, Cylindrosporium rubi,
Cymadothea, Cymadothea trifolii,
Cytospora, Cytospora palmarum, Cytospora personata, Cytospora sacchari, Cytospora sacculus, Cytospora terebinthi,
Cytosporina, Cytosporina ludibunda, Dactuliophora, Dactuliophora elongata,
Davidiella, Davidiella dianthi, Davidiella tassiana,
Deightoniella, Deightoniella papuana, Deightoniella torulosa,
Dendrophora, Dendrophora marconii, Dendrophora erumpens, Denticularia, Denticularia mangiferae, Dermea pseudotsugae, Diaporthaceae,
Diaporthe, Diaporthe arctii, Diaporthe dulcamarae, Diaporthe eres, Diaporthe helianthi, Diaporthe lagunensis, Diaporthe lokoyae, Diaporthe melonis, Diaporthe orthoceras, Diaporthe perniciosa, Diaporthe phaseolorum, Diaporthe phaseolorum var. caulivora, Diaporthe phaseolorum var. phaseolorum, Diaporthe phaseolorum var. soja, Diaporthe rudis, Diaporthe tanakae, Diaporthe toxica,
Dicarpella, Dicarpella dryina,
Didymella, Didymella applanata, Didymella bryoniae, Didymella fabae, Didymella lycopersici Didymosphaeria, Didymosphaeria arachidicola, Didymosphaeria taiwanensis,
Dilophospora, Dilophospora alopecuri,
Dimeriella, Dimeriella sacchari,
Diplocarpon, Diplocarpon mespili, Diplocarpon rosae,
Discosia, Discosia artocreas, Discostroma, Discostroma corticola,
Distocercospora, Distocercospora livistonae,
Dothiorella, Dothiorella brevicollis, Dothiorella dominicana, Dothiorella dulcispinae, Dothiorella gregaria,
Drechslera, Drechslera avenacea, Drechslera campanulata, Drechslera dematioidea, Drechslera gigantea, Drechslera glycines, Drechslera musae-sapientium, Drechslera teresf. maculata, Drechslera wirreganensis,
Eballistra, Eballistra lineata, Eballistra oryzae, Eballistraceae,
Echinodontium, Echinodontium ryvardenii, Echinodontium tinctorium, Ectendomeliola,
Elsinoë, Elsinoë ampelina, Elsinoë batatas, Elsinoë brasiliensis, Elsinoë leucospila, Elsinoë randii, Elsinoë rosarum, Elsinoë sacchari, Elsinoë theae, Elsinoë veneta,
Endomeliola, Endothia, Endothia radicalis, Endothiella, Endothiella gyrosa, Entorrhizomycetes,
Entyloma, Entyloma ageratinae, Entyloma dahliae, Entyloma ellisii, Epicoccum, Epicoccum nigrum,
Eremothecium, Eremothecium coryli, Eremothecium gossypii, Erysiphales,
Exobasidiaceae, Exobasidium burtii, Exobasidium reticulatum, Exobasidium vaccinii var. japonicum, Exobasidium vaccinii-uliginosi, Exobasidium vexans,xxophiala alcalophila, Exophiala, Exophiala angulospora, Exophiala attenuata, Exophiala calicioides, Exophiala castellanii, Exophiala dermatitidis, Exophiala dopicola, Exophiala exophialae, Exophiala heteromorpha, Exophiala hongkongensis, Exophiala jeanselmei, Exophiala lecanii-corni, Exophiala mansonii, Exophiala mesophila, Exophiala moniliae, Exophiala negronii, Exophiala phaeomuriformis, Exophiala pisciphila, Exophiala psychrophila, Exophiala salmonis, Exophiala spinifera, Fomes, Fomes lamaënsis,
Fomitopsis, Fomitopsis rosea,
Fusicladium Fusicladium pisicola,
Fusicoccum, Fusicoccum aesculi, Fusicoccum amygdali, Fusicoccum quercus,
Galactomyces, Galactomyces candidum, Ganoderma, Ganoderma brownii, Ganoderma lobatum, Ganoderma megaloma, Ganoderma meredithiae, Ganoderma orbiforme, Ganoderma philippii, Ganoderma sessile, Ganoderma tornatum, Ganoderma zonatum,
Geastrumia, Geastrumia polystigmatis,
Georgefischeriaceae, Georgefischeriales,
Geosmithia, Geosmithia pallida,
Geotrichum, Geotrichum candidum, Geotrichum klebahnii, Gibberella, Gibberella acuminata, Gibberella avenacea, Gibberella baccata, Gibberella cyanogena, Gibberella fujikuroi, Gibberella intricans, Gibberella pulicaris, Gibberella stilboides, Gibberella tricincta, Gibberella xylarioides, Gibberella zeae,
Gibellina, Gibellina cerealis, Gilbertella, Gilbertella persicaria,
Gjaerumiaceae,
Gliocladiopsis, Gliocladiopsis tenuis, Gliocladium, Gliocladium vermoeseni, Gloeocercospora, Gloeocercospora sorghi, Gloeocystidiellum, Gloeocystidiellum porosum,
Gloeophyllum, Gloeophyllum mexicanum, Gloeophyllum trabeum, Gloeoporus, Gloeoporus dichrous,
Gloeosporium, Gloeosporium cattleyae, Gloeosporium theae-sinensis, Glomerella, Glomerella cingulata, Glomerella graminicola, Glomerella tucumanensis, Gnomonia, Gnomonia caryae, Gnomonia comari, Gnomonia dispora, Gnomonia iliau, Gnomonia rubi, Golovinomyces, Golovinomyces cichoracearum, Graphiola phoenicis, Graphiolaceae,
Graphium, Graphium rigidum, Graphium rubrum, Graphyllium, Graphyllium pentamerum, Grovesinia, Grovesinia pyramidalis, Gymnoconia, Gymnoconia nitens, Gymnopus, Gymnopus dryophilus,
Gymnosporangium, Gymnosporangium kernianum, Gymnosporangium libocedri, Gymnosporangium nelsonii, Gymnosporangium yamadae,
Haematonectria, Haematonectria haematococca,
Hansenula, Hansenula subpelliculosa, Hapalosphaeria, Hapalosphaeria déformons, Haplobasidion, Haplobasidion musae,
Helicobasidium, Helicobasidium compactum, Helicobasidium longisporum, Helicobasidium purpureum, Helicoma, Helicoma muelleri, Helminthosporium, Helminthosporium cookei, Helminthosporium solani, Hendersonia, Hendersonia creberrima, Hendersonia theicola, Hericium, Hericium coralloides,
Heterobasidion, Heterobasidion irregulare, Heterobasidion occidentale, Hexagonia, Hexagonia hydnoides, Hymenula, Hymenula affinis,
Hyphodermella, Hyphodermella corrugata, Hyphodontia, Hyphodontia aspera, Hyphodontia sambuci, Hypoxylon, Hypoxylon tinctor,
Inonotus, Inonotus arizonicus, Inonotus cuticularis, Inonotus dryophilus, Inonotus hispidus, Inonotus ludovicianus,
Irpex, Irpex destruens, Irpex lacteus,
Kabatiella, Kabatiella caulivora,
Karnal bunt,
Koa wilt, Kretzschmaria, Kretzschmaria zonata, Kuehneola, Kuehneola uredinis, Kutilakesa, Kutilakesa pironii,
Laetiporus, Laetiporus ailaoshanensis, Laetiporus baudonii, Laetiporus caribensis, Laetiporus conifericola, Laetiporus cremeiporus, Laetiporus gilbertsonii, Laetiporus huroniensis, Laetiporus montanus, Laetiporus portentosus, Laetiporus zonatus,
Laxitextum, Laxitextum bicolor,
Leandria, Leandria momordicae, Lentinus, Lentinus tigrinus,
Lenzites, Lenzites betulina, Lenzites elegans,
Leohumicola, Leohumicola atra, Leohumicola incrustata, Leohumicola levissima,
Leptodontidium, Leptodontidium elatius, Leptographium, Leptographium microsporum,
Leptosphaerulina, Leptosphaerulina crassiasca, Leptosphaerulina trifolii,
Leptothyrium, Leptothyrium nervisedum,
Leptotrochila, Leptotrochila medicaginis,
Leucocytospora, Leucocytospora leucostoma, Leucostoma, Leucostoma auerswaldii, Leucostoma canker, Leucostoma kunzei, Leucostoma persoonii,
Leveillula, Leveillula compositarum, Leveillula leguminosarum, Leveillula taurica,
Limacinula, Limacinula tenuis,
Linochora, Linochora graminis,
Loose smut, Lopharia, Lopharia crassa,
Lophodermium, Lophodermium aucupariae, Lophodermium schweinitzii,
Macrophoma, Macrophoma mangiferae, Macrophoma theicola,
Macrosporium, Macrosporium cocos,
Magnaporthe, Magnaporthe grisea, Magnaporthe salvinii, Magnaporthiopsis,
Mamianiella, Mamianiella coryli,
Marasmiellus, Marasmiellus cocophilus, Marasmiellus stenophyllus,
Marasmius, Marasmius crinis-equi, Marasmius sacchari, Marasmius semiustus, Marasmius stenophyllus, Marasmius tenuissimus, Massarina, Massarina walkeri,
Mauginiella, Mauginiella scaettae,
Melampsora, Melampsora Uni, Melampsora occidentalis, Melanconis, Melanconis carthusiana, Melanconium, Melanconium juglandinum, Meliola, Meliola mangiferae, Meliola zangii, Meruliopsis, Meruliopsis ambigua, Microascus, Microascus brevicaulis,
Microbotryum, Microbotryum silenes-dioicae, Microbotryum violaceum,
Microsphaera, Microsphaera coryli, Microsphaera diffusa, Microsphaera ellisii, Microsphaera euphorbiae, Microsphaera hommae, Microsphaera penicillata, Microsphaera vaccinii, Microsphaera verruculosa, Microstroma, Microstroma juglandis,
Moesziomyces, Moesziomyces bullatus,
Moniliophthora, Moniliophthora roreri,
Monilochaetes, Monilochaetes infuscans,
Monochaetia, Monochaetia coryli, Monochaetia mali, Monographella, Monographella albescens, Monographella cucumerina, Monographella nivalis,
Monosporascus, Monosporascus cannonballus, Monosporascus eutypoides,
Monostichella, Monostichella coryli,
Mucor, Mucor circinelloides, Mucor hiemalis, Mucor mucedo, Mucor paronychius, Mucor piriformis, Mucor racemosus, Mycena, Mycena citricolor,
Mycocentrospora, Mycocentrospora acerina,
Mycoleptodiscus, Mycoleptodiscus terrestris,
Didymella, Didymella rabiei,
Mycosphaerella, Mycosphaerella recutita, Mycosphaerella rosicola, Mycosphaerella rubi, Mycosphaerella stigmina-platani, Mycosphaerella striatiformans,
Mycovellosiella, Mycovellosiella concors,
Passalora, Passalora fulva,
Mycovellosiella, Mycovellosiella koepkei, Mycovellosiella vaginae, Myriogenospora, Myriogenospora aciculispora,
Myrothecium, Myrothecium roridum, Myrothecium verrucaria,
Naevala, Naevala perexigua,
Naohidemyces, Naohidemyces vaccinii, Nectria, Nectria cinnabarina, Nectria ditissima, Nectria foliicola, Nectria mammoidea, Nectria mauritiicola, Nectria peziza, Nectria pseudotrichia, Nectria radicicola, Nectria ramulariae,
Nectriella, Nectriella pironii,
Nemania, Nemania diffusa, Nemania serpens,
Neocosmospora, Neocosmospora vasinfecta, Neodeightonia, Neodeightonia phoenicum,
Neoerysiphe, Neoerysiphe galeopsidis,
Neofabraea, Neofabraea perennans,
Neofusicoccum, Neofusicoccum mangiferae,
Oidiopsis, Oidiopsis gossypii, Oidium, Oidium arachidis, Oidium caricae-papayae, Oidium indicum, Oidium mangiferae, Oidium manihotis,
Olpidium, Olpidium brassicae, Omphalia, Omphalia tralucida,
Ophiobolus, Ophiobolus anguillides, Ophiobolus cannabinus, Ophioirenina,
Ovulinia, Ovulinia azaleae,
Oxyporus, Oxyporus corticola,
Ozonium, Ozonium texanum,
Peltaster, Peltasterfructicola, Pénicillium, Pénicillium expansum, Pénicillium funiculosum,
Peniophora,
Periconia, Periconia circinata, Periconiella, Periconiella cocoes,
Peridermium, Peridermium californicum,
Pestalosphaeria, Pestalosphaeria concentrica,
Pestalotia, Pestalotia longiseta, Pestalotia rhododendri, Pestalotiopsis, Pestalotiopsis adusta, Pestalotiopsis arachidis, Pestalotiopsis disseminata, Pestalotiopsis guepini, Pestalotiopsis leprogena, Pestalotiopsis longiseta, Pestalotiopsis mangiferae, Pestalotiopsis palmarum, Pestalotiopsis sydowiana, Pestalotiopsis theae,
Peyronellaea, Peyronellaea curtisii,
Phacidiopycnis, Phacidiopycnis padwickii, Phaeochoropsis, Phaeochoropsis mucosa,
Phaeocytostroma, Phaeocytostroma iliau, Phaeocytostroma sacchari,
Phaeoisariopsis, Phaeoisariopsis bataticola,
Phaeoramularia, Phaeoramularia heterospora, Phaeoramularia indica, Phaeoramularia manihotis,
Phaeoseptoria, Phaeoseptoria musae, Phaeosphaerella, Phaeosphaerella mangiferae, Phaeosphaerella theae,
Phaeosphaeria, Phaeosphaeria avenaria, Phaeosphaeria herpotrichoides, Phaeosphaeria microscopica, Phaeosphaeria nodorum,
Phaeosphaeriopsis, Phaeosphaeriopsis obtusispora,
Phaeotrichoconis, Phaeotrichoconis crotalariae, Phialophora, Phialophora asteris, Phialophora cinerescens, Phialophora gregata, Phialophora tracheiphila,
Phoma, Phoma clematidina, Phoma costaricensis, Phoma cucurbitacearum, Phoma destructiva, Phoma draconis, Phoma exigua, Phoma exigua, Phoma exigua var. foveata, Phoma exigua, Phoma glomerata, Phoma glycinicola, Phoma herbarum, Phoma insidiosa, Phoma medicaginis, Phoma microspora, Phoma narcissi, Phoma nebulosa, Phoma oncidii-sphacelati, Phoma pinodella, Phoma sclerotioides, Phoma strasseri,
Phomopsis, Phomopsis asparagi, Phomopsis asparagicola, Phomopsis cannabina, Phomopsis coffeae, Phomopsis ganjae, Phomopsis javanica, Phomopsis longicolla, Phomopsis mangiferae, Phomopsis prunorum, Phomopsis sclerotioides, Phomopsis theae, Phragmidium, Phragmidium mucronatum, Phragmidium rosae-pimpinellifoliae, Phragmidium rubi- idaei, Phragmidium violaceum,
Phyllachora, Phyllachora banksiae, Phyllachora cannabis, Phyllachora graminis, Phyllachora gratissima, Phyllachora musicola, Phyllachora pomigena, Phyllachora sacchari,
Phyllactinia,
Phyllosticta, Phyllosticta alliariaefoliae Phyllosticta arachidis-hypogaeae, Phyllosticta batatas, Phyllosticta capitalensis, Phyllosticta carpogena, Phyllosticta coffeicola, Phyllosticta concentrica, Phyllosticta coryli, Phyllosticta cucurbitacearum, Phyllosticta cyclaminella, Phyllosticta erratica, Phyllosticta hawaiiensis, Phyllosticta lentisci, Phyllosticta manihotis, Phyllosticta micropuncta, Phyllosticta mortonii, Phyllosticta nicotianae, Phyllosticta palmetto, Phyllosticta penicillariae, Phyllosticta perseae, Phyllosticta pseudocapsici, Phyllosticta sojaecola, Phyllosticta theae, Phyllosticta theicola,
Phymatotrichopsis, Phymatotrichopsis omnivora,
Physalospora, Physalospora disrupta, Physalospora perseae,
Physoderma, Physoderma alfalfae, Physoderma leproides, Physoderma trifolii,
Physopella, Physopella ampelopsidis,
Pileolaria, Pileolaria terebinthi,
Piricaudiopsis, Piricaudiopsis punicae, Piricaudiopsis rhaphidophorae, Piricaudiopsis rosae, Plenodomus, Plenodomus destruens, Plenodomus meliloti, Pleosphaerulina, Pleosphaerulina sojicola,
Pleospora, Pleospora alfalfae, Pleospora betae, Pleospora herbarum, Pleospora lycopersici, Pleospora tarda, Pleospora theae,
Pleuroceras,
Podosphaera, Podosphaera fuliginea, Podosphaera fusca, Podosphaera leucotricha, Podosphaera macularis, Podosphaera pannosa,
Polyscytalum, Polyscytalum pustulans,
Poria, Porta hypobrunnea,
Postia, Postia tephroleuca,
Powdery mildew, Pseudocercospora, Pseudocercospora arecacearum, Pseudocercospora cannabina, Pseudocercospora fuligena, Pseudocercosporella herpotrichoides, Pseudocercospora gunnerae, Pseudocercospora pandoreae, Pseudocercospora puderi, Pseudocercospora rhapisicola, Pseudocercospora theae, Pseudocercospora vitis, Pseudocercosporella capsellae, Pseudocochliobolus, Pseudocochliobolus eragrostidis,
Pseudoepicoccum, Pseudoepicoccum cocos,
Pseudopeziza, Pseudopeziza jonesii, Pseudopeziza medicaginis, Pseudopeziza trifolii,
Pseudoseptoria, Pseudoseptoria donacis,
Pucciniaceae, Pucciniastrum, Pucciniastrum americanum, Pucciniastrum arcticum, Pucciniastrum epilobii, Pucciniastrum hydrangeae,
Pycnostysanus, Pycnostysanus azaleae,
Pyrenochaeta, Pyrenochaeta lycopersici, Pyrenochaeta terrestris, Pyrenopeziza, Pyrenopeziza brassicae, Ramichloridium, Ramichloridium musae,
Ramulispora, Ramulispora sorghi, Ramulispora sorghicola, Rhinocladium, Rhinocladium corticola, Rhizophydium, Rhizophydium graminis,
Rhizopus, Rhizopus arrhizus, Rhizopus circinans, Rhizopus microsporus, Rhizopus oryzae, Rhytisma, Rhytisma punctatum, Rhytisma vitis, Rigidoporus, Rigidoporus vinctus,
Rosellinia, Rosellinia arcuata, Rosellinia bunodes, Rosellinia necatrix, Rosellinia pepo, Saccharicola, Saccharicola taiwanensis, Schiffnerula, Schiffnerula cannabis, Schizophyllum, Schizophyllum commune, Schizopora, Schizopora flavipora, Schizothyrium, Schizothyrium pomi, Sclerophthora, Sclerophthora macrospora, Sclerotium, Sclerotium cinnamomi, Sclerotium delphinii, Scytinostroma, Scytinostroma galactinum,
Seimatosporium, Seimatosporium mariae, Seimatosporium rhododendri,
Selenophoma, Selenophoma linicola, Septobasidium, Septobasidium bogoriense, Septobasidium euryae-groffii, Septobasidium gaoligongense, Septobasidium pilosum, Septobasidium polygoni, Septobasidium pseudopedicellatum, Septobasidium theae,
Septocyta, Septocyta ruborum,
Serpula, Serpula lacrymans, Setosphaeria, Setosphaeria rostrata, Setosphaeria turcica,
Spencermartinsia, Spencermartinsia pretoriensis,
Sphaceloma, Sphaceloma arachidis, Sphaceloma menthae, Sphaceloma perseae, Sphaceloma poinsettiae, Sphaceloma sacchari, Sphaceloma theae,
Sphacelotheca, Sphacelotheca reiliana, Sphaerotheca castagnei, Sphaerulina, Sphaerulina oryzina, Sphaerulina rehmiana, Sphaerulina rubi,
Sphenospora, Sphenospora kevorkianii,
Spilocaea, Spilocaea oleaginea,
Sporisorium, Sporisorium cruentum, Sporisorium ehrenbergii, Sporisorium scitamineum, Sporisorium sorghi, Sporonema, Sporonema phacidioides,
Stagonospora, Stagonospora avenae, Stagonospora meliloti, Stagonospora recedens, Stagonospora sacchari, Stagonospora tainanensis,
Stagonosporopsis,
Stegocintractia, Stegocintractia junci, Stemphylium, Stemphylium alfalfae, Stemphylium bolickii, Stemphylium cannabinum, Stemphylium globuliferum, Stemphylium lycopersici, Stemphylium sarciniforme, Stemphylium solani, Stemphylium vesicarium,
Stenella, Stenella anthuriicola, Stigmatomycosis,
Stigmina, Stigmina carpophila, Stigmina palmivora, Stigmina platani-racemosae, Stromatinia, Stromatinia cepivora, Sydowiella, Sydowiella depressula, Sydowiellaceae,
Synchytrium, Synchytrium endobioticum, Tapesia, Tapesia acuformis, Tapesia yallundae, Taphrina, Taphrina coryli, Taphrina potentillae, Thanatephorus, Thanatephorus cucumeris, Thecaphora, Thecaphora solani,
Thielaviopsis, Thielaviopsis basicola, Thielaviopsis ceramica, Thyrostroma, Thyrostroma compactum, Tiarosporella, Tiarosporella urbis-rosarum,
Tilletia, Tilletia barclayana, Tilletia caries, Tilletia controversa, Tilletia laevis, Tilletia tritici, Tilletia walkeri,
Tilletiariaceae,
Togniniaceae,
Tranzschelia, Tranzschelia pruni-spinosae,
Trichoderma, Trichoderma koningii, Trichoderma paucisporum, Trichoderma songyi, Trichoderma theobromicola, Trichoderma viride,
Tubercularia, Tubercularia lateritia,
Tunstallia, Tunstallia aculeata,
Typhula, Typhula blight, Typhula idahoensis, Typhula incarnata, Typhula ishikariensis, Typhula variabilis, Ulocladium, Ulocladium consortiale, Uncinula,
Uredo, Uredo behnickiana, Uredo kriegeriana, Uredo musae, Uredo nigropuncta, Uredo rangelii, Urocystis, Urocystis agropyri, Urocystis brassicae, Urocystis occulta,
Uromyces, Uromyces apiosporus, Uromyces appendiculatus, Uromyces beticola, Uromyces ciceris- arietini, Uromyces dianthi, Uromyces euphorbiae, Uromyces graminis, Uromyces inconspicuus, Uromyces lineolatus, Uromyces musae, Uromyces oblongus, Uromyces pisi-sativi, Uromyces proëminens, Uromyces medicaginis, Uromyces trifolii-repentis, Uromyces viciae-fabae,
Urophlyctis, Urophlyctis leproides, Urophlyctis trifolii,
Ustilaginales,
Ustilago, Ustilago avenae, Ustilago esculenta, Ustilago hordei, Ustilago maydis, Ustilago nigra, Ustilago nuda, Ustilago scitaminea, Ustilago tritici, Vankya, Vankya ornithogali,
Velvet blight,
Veronaea, Veronaea musae,
Verticillium, Verticillium albo-atrum, Verticillium alfalfae, Verticillium dahliae, Verticillium isaacii, Verticillium klebahnii, Verticillium longisporum, Verticillium nonalfalfae, Verticillium theobromae, Verticillium wilt, Verticillium zaregamsianum,
Waitea, Waitea circinata,
Westea,
Wheat leaf rust, Wheat mildew, Wuestneiopsis, Wuestneiopsis georgiana, Xeromphalina, Xeromphalina fraxinophila, Zopfia, Zopfia rhizophila,
Zygosaccharomyces, Zygosaccharomyces bailli, Zygosaccharomyces florentinus, Zythiostroma. De préférence, les couples champignons, oomycètes ou bactéries vs. plantes de culture visés par l'invention sont les suivants :
Blé (Triticum sativum)
Claviceps purpurea, Erysiphe graminis, Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, Fusarium langsethiae, Fusarium poae, Fusarium pseudograminearum, Gaeumannomyces graminis, Leptosphaeria nodorum, Microdochium spp., Mycosphaerella graminicola, Oculimacula acuformis, Oculimacula yallundae, Puccinia recôndita, Puccinia striiformis, Pyrenophora tritici-repentis, Rhizoctonia cerealis, Microdochium et Zymoseptoria tritici
Mais (Zea mays) Fusarium graminearum, Fusarium proliferatum, Fusarium subglutinans, Fusarium verticillioides Orge (Hordeum vulgare)
Blumeria graminis, Fusarium spp, Pyrenophora teres, Ramularia collo-cygni, Rhynchosporium secalis Riz (Oryza sativa)
Cochliobolus miyabeanus, Fusarium fijikuroï, Magnaporthe oryzae, Microdochium oryzae, Pyricularia oryzae, Rhizoctonia oryzae, Rhizoctonia solani, Sarocladium oryzae, Ustilaginoides virens
Pomme de terre (Solarium tuberosum)
Alternia alternata, Alternaria solani, Phytophtora infestons, Rhizoctonia solani Vigne (Vinis vitifera)
Botrytis cinerea, Erysiphe necator, Plasmopara viticola, Guignardia bidwelli, Erisyphe necator, Diplodia seriata
Soja (Glycine max)
Cercopora kikuchii, Colletotrichum dematium, Corynespora cassiicola , Fusarium graminearum, Pythium spp., Rhizoctonia solani, Sclerotinia sclerotiorum , Septoria glycines
Pommier (Malus domestica) Monilia fructigena, Monilia laxa , Pezzicula alba, Pezzicula malicorticis, Venturia inaequalis
Tomate (Lycopersicon esculentum)
Phytophtora infestons
Haricot (Phaseolus vulgaris)
Uromyces appendiculatus Radis (Raphanus sativus)
Alternaria brassicae
Tous les Fruits et légumes
Botrytis cinerea Fraisier (Fragaria sp)
Colletotrichum acutatum Carotte (Daucus carota)
Aternaria alternata, Alternaria dauci, Alternaria radicina Pêche (Prunus persica) et abricot (Prunus armeniaca)
Monilia fructicola, Monilia fructigena, Monilia laxa
De manière particulièrement préférée, les couples champignons ou bactéries vs. plantes de culture visés par l'invention sont les suivants :
Blé : Fusarium graminearum, Microdochium et Zymoseptoria tritici
Vigne: Botrytis cinérea, Erysiphe necator, Plasmopara viticola, Guignardia bidwelli, Erisyphe necator, Diplodia seriata
Pomme de terre : Alternia alternata, Alternaria solani, Phytophtora infestons, Rhizoctonia solani Tomate : Phytophtora infestons
Procédé de lutte
L'invention concerne également un procédé de lutte contre les champignons, les oomycètes et/ou les bactéries pathogènes des plantes et semences de culture comprenant l'application sur les plantes de culture de la molécule de formule (I) :
Figure imgf000040_0001
dans laquelle :
Ri est choisi dans le groupe constitué de :
Figure imgf000040_0002
Figure imgf000041_0001
ou
R3 représente H ou S03Na,
R4 représente H ou OH,
' représente une liaison simple ou une liaison double, n est est égal à 0 ou 1 et
m est égal à 0 ou 1; et
R2 est choisi dans le groupe constitué de
HO
OH
De préférence, RI est :
Figure imgf000041_0002
où R3 représente H ou S03Na.
De préférence, R2 est Cette lutte peut être curative ou préventive, de préférence curative.
L'application sur les plantes de culture peut être réalisée par tout moyen connu de l'homme du métier permettant d'atteindre les parties de plantes touchées par le champignon et/ou la bactérie.
La molécule de formule (I) est appliquée à une dose comprise entre entre 0,1 et 5 mg/mL, de préférence comprise entre 0,5 et 3 mg/mL, de manière particulièrement préférée comprise entre 0,75 et 1 mg/mL.
L'enrobage des semences peut être réalisé par toute technique connue de l'homme du métier qui permet de maintenir l'actif en contact avec la semence.
Par exemple, l'enrobage peut être réalisé par poudrage ou par pulvérisation.
Par exemple, l'enrobage peut comprendre des formulants et des adjuvants.
Les formulants ont pour objectif de rendre possible l'application et la tenue de la ou des substances actives sur le grain, en proportion égale et constante pendant tout le procédé d'application du produit et ceci à des doses très faibles.
Les formulants comprennent : des solvants organiques ou de l'eau, des dispersants, des émulgateurs, des tensioactifs ou des mouillants, des colorants...
Les tensio-actifs et les émulgateurs ont la propriété de réunir et de maintenir ensemble de façon stable deux liquides incompatibles.
Différents adjuvants peuvent être appliqués sur la semence. Les pelliculants correspondent à l'application d'un film microporeux à la surface de la semence. Ils ne modifient ni la forme ni la taille de la semence. Ils améliorent la couverture et l'homogénéité du traitement. Lors de l'utilisation des semences par l'agriculteur, ils améliorent le confort de l'utilisateur au moment du semis en supprimant les poussières et en facilitant l'écoulement des semences dans le semoir. Ils améliorent l'action de la ou des substances actives en condition de culture. Les enrobants modifient la forme, la taille et le poids de la semence. Ils améliorent la précision du semis. Les procédés de lutte contre les champignons et/ou bactéries pathogènes des plantes et semences de culture de traitement selon l'invention sont particulièrement appropriés contre une Fusariose, de préférence une Fusariose citée dans le Tableau 1.
Nom de la maladie Agent pathogène code OEPP fusariose basale de l'asperge Fusarium eu 1 m or u m FUSACU fusariose basale du haricot Fusarium solanif. sp. phaseoli FUSASH Nom de la maladie Agent pathogène code OEPP fusariose basale du pois Fusarium solanif. sp. pisi FUSASI fusariose de la betterave Fusarium oxysporum f. sp. betae FUSABE fusariose de la pomme de
Fusarium coeruleum FUSASC terre fusariose de la reine-
Fusarium oxysporum f. sp. conglutinans FUSACO marguerite fusariose de la tige du mais Gibberella fujikuroi GIBBFU fusariose de la tige du maïs Fusarium eu 1 m or u m FUSACU fusariose de la tige du maïs Gibberella zeae GIBBZE fusariose de la vanille Fusarium oxysporum f. sp. vanillae FUSAVN fusariose de l'ananas Gibberella fujikuroi var. subglutinans GIBBFS fusariose de l'épi du maïs Fusarium poae FUSAPO fusariose de l'épi du maïs Fusarium trie indu m FUSATI fusariose de l'œillet Fusarium oxysporum f. sp. dianthi FUSADI fusariose des broméliacées Fusarium oxysporum f. sp. aechmeae FUSAAE fusariose des bulbes Fusarium oxysporum f. sp. gladioli FUSAGL fusariose des céréales Fusarium eu 1 m or u m FUSACU fusariose des céréales Gibberella rosea FUSA O fusariose des céréales Gibberella avenacea GIBBAV fusariose des céréales Gibberella intricans GIBBIN fusariose des céréales Monographella nivalis MONGNI fusariose des épis Gibberella zeae GIBBZE Nom de la maladie Agent pathogène code OEPP fusariose des racines de
Fusarium oxysporum f. sp. asparagi FUSAAS l'asperge fusariose des racines des
Fusarium oxysporum f. sp. opuntiarum FUSAOP cactées fusariose des racines et du
Fusarium oxysporum f. sp. radicis-lycopersici FUSA L collet de la tomate fusariose des racines et du
Fusarium oxysporum f. sp. cucumerinum FUSACC collet du concombre fusariose du blé Gibberella fujikuroi GIBBFU fusariose du cacaoyer Albonectria rigidiuscula CALORI fusariose du caféier Gibberella stilboides GIBBST fusariose du carthame Fusarium oxysporum f. sp. carthami FUSACA fusariose du cognassier Gibberella baccata GIBBBA fusariose du collet des
Fusarium solanif. sp. cucurbitae FUSASU cucurbitacées fusariose du cotonnier Fusarium oxysporum f. sp. vasinfectum FUSAVA fusariose du gerbéra Fusarium oxysporum f. sp. gerberae FUSAGE fusariose du glaïeul Fusarium oxysporum f. sp. gladioli FUSAGL fusariose du lin Fusarium oxysporum f. sp. Uni FUSALI fusariose du maïs Gibberella acuminata GIBBAC fusariose du maïs Gibberella fujikuroi var. subglutinans GIBBFS fusariose du maïs Gibberella zeae GIBBZE fusariose du palmier à huile Fusarium oxysporum f. sp. elaeidis FUSAEL Nom de la maladie Agent pathogène code OEPP fusariose du soja Fusarium oxysporum f. sp. glycines FUSAGY fusariose du soja Fusarium oxysporum f. sp. tracheiphilum FUSAT fusariose du tubercule de la
Gibberella cyanogena GIBBCN pomme de terre fusariose moniliforme Gibberella fujikuroi GIBBFU fusariose nivale Monographella nivalis MONGNI fusariose roseum Gibberella rosea FUSARO fusariose vasculaire Fusarium oxysporum FUSAOX fusariose vasculaire de la
Fusarium oxysporum f. sp. lentis FUSALE lentille fusariose vasculaire de la
Fusarium oxysporum f. sp. niveum FUSANV pastèque fusariose vasculaire de la
Fusarium oxysporum f. sp. lycopersici FUSALY tomate fusariose vasculaire de la
Fusarium oxysporum f. sp. tulipae FUSATU tulipe fusariose vasculaire des
Fusarium oxysporum f. sp. conglutinans FUSACO crucifères fusariose vasculaire du caféier Gibberella xylarioides GIBBXY fusariose vasculaire du chou Fusarium oxysporum f. sp. conglutinans FUSACO fusariose vasculaire du
Fusarium oxysporum f. sp. chrysanthemi FUSACH chrysanthème fusariose vasculaire du
Fusarium oxysporum f. sp. cucumerinum FUSACC concombre Nom de la maladie Agent pathogène code OEPP fusariose vasculaire du
Fusarium oxysporum var. aurantiacum FUSAAU
cyclamen fusariose vasculaire du fraisier Fusarium oxysporum f. sp. fragariae FUSAF fusariose vasculaire du haricot Fusarium oxysporum f. sp. phaseoli FUSAPH fusariose vasculaire du melon Fusarium oxysporum f. sp. melonis FUSAME fusariose vasculaire du pois Fusarium oxysporum f. sp. pisi FUSAPI fusariose vasculaire du pois
Gibberella baccata GIBBBA
chiche fusariose vasculaire du pois-
Fusarium oxysporum f. sp. ciceris FUSACI
chiche fusariose vasculaire du radis Fusarium oxysporum f. sp. raphani FUSARA
Tableau 1 : récapitulatif des fusarioses
Les procédés de lutte contre les champignons, les oomycètes et/ou les bactéries pathogènes des plantes et semences de culture de traitement selon l'invention sont particulièrement appropriés pour les couples champignons ou bactéries vs. plantes de culture suivants :
Blé : Fusarium graminearum, Microdochium nivale et Zymoseptoria tritici
Vigne : Botrytis cinerea, Plasmopara viticola, Guignardia bidwelli, Erisyphe necator, Diplodia seriata
Pommier : Venturia inaequalis
Bananier : Fusarium oxysporum et Mycosphaerella fijiensis EXEMPLES
MATERIEL & METHODES
Exemple 1 : Culture des micro-algues
La micro-algue Amphidinium carterae, souche AC208, provient de Algobank (Caen) et les micro-algues Prymnesium parvum, souche RCC 1436, et Phaeodactylum tricornutum, souche CCMP 632, proviennent de la banque de micro-organismes marins de Roscoff (RCC : Roscoff Culture Collection). Ces micro-algues sont cultivées dans de l'eau de mer artificielle Ll (https://ncma.bigelow.org/algal-recipes) à 19 °C avec un cycle jour/nuit de 12H/12H. L'intensité lumineuse utilisée est de 100 μΕ. La biomasse est récupérée en fin de phase exponentielle de croissance par centrifugation (15 min à 3000 RPM). Le culot cellulaire obtenu est congelé puis soumis à la lyophilisation en utilisant un lyophilisateur de laboratoire (Alpha 1-2 LDplus, labconco) afin de conserver de manière stable la matière active sur une longue durée. Après lyophilisation, la matière sèche est pesée.
Exemple 2 : Préparation de l'extrait
Afin d'extraire la matière active de la matière sèche de l'exemple 1, 20 mg de matière sèche sont resuspendus dans 1 mL d'eau distillée à 100 °C. Après incubation pendant 2 minutes à température ambiante (20-25 °C) l'extrait est conservé dans la glace puis centrifugé 5 min à 10 000 RPM à température ambiante. Le surnageant contenant la matière active est congelé dans de l'azote liquide afin de conserver ses propriétés anti-fongiques sur longue durée. Exemple 3 : Test de germination de Fusarium graminearum
Les spores de Fusarium graminearum sont cultivées dans le milieu appauvri « Mung bean ». Les spores sont séparées du mycélium par filtration sur du miracloth (Calbiochem), centrifugées puis resuspendues à 1,6.106 spores/mL. Environ 16 000 spores sont incubées en présence de la solution contrôle ou de l'extrait d'A. carterae à différentes concentrations. Après une incubation de 10 min à température ambiante, les spores sont disposées sur une lamelle pour un dénombrement de la germination après 6H ou sur une boite de pétri pour une observation de la croissance du mycélium après 72H. ESSAIS
Exemple 4 : Fractionnement de l'extrait D par HPLC et test d'activité anti-fongique des différentes fractions obtenues.
Afin de tenter de caractériser quelles sont les molécules présentes dans l'extrait d'A carterae qui sont responsables de l'activité antifongique, la stratégie de fractionnement par bioguidage a été retenue : l'extrait d'A. carterae est fractionné sur une colonne HPLC et des tests d'activité biocide contre les spores de F. graminearum sont effectués pour chaque fraction afin de déterminer quelle fraction contient la ou les molécule(s) responsable(s) de l'activité anti-fongique.
200 mg de cellules lyophilisées sont solubilisés dans lmL de méthanol. Après centrifugation de 10 min à 4400 rpm, le surnageant est récupéré puis la phase liquide alcoolique totale récupérée est filtrée sur papier, la solution est ensuite évaporée à l'évaporateur rotatif à froid pour collecter 48,5 mg de produit extrait. Un test d'activité est réalisé sur les spores de F. graminearum afin de confirmer l'activité de l'extrait d'A. carterae (Figure 1A).
L'extrait étant actif, les expériences de fractionnement en mode semi-préparatif ont été réalisées sur une colonne C18 en phase inversée par un chromatographe en phase liquide haute performance Thermo Scientific Ultimate 3000 selon le protocole suivant :
L'extrait d'A. carterae a été dissous à 5 g/L dans le méthanol. Les conditions suivantes ont été appliquées pour l'extrait :
Débit : 2,5mL/min.
Colonne : Cis en phase inverse : L = 250 mm ; D.l. = 10mm ; D.P. = 5μιτι.
Volume injecté : 150 μί.
Température d'injection : 24 °C.
Longueur d'onde de détection : 280 nm.
Programme de gradient décrit dans le Tableau 7 ci-dessous. Tableau 2. Programme du gradient de solvant optimal en mode semi-préparatif.
Solvant A : Eau milliQ + 0,1 % acide formique ; Solvant B : Méthanol.
Temps (min) Solvant A (%) Solvant B (%)
0 50 50
25 0 100
40 0 100
43 50 50
48 50 50
Le chromatogramme obtenu dans ces conditions est présenté dans la figure 1B. Cinq fractions, Fl à F5, ont été constituées, tel que décrit dans la figure 1B, afin que chaque pic majoritaire corresponde à une fraction. Des tests d'activités sur la croissance de F. graminearum ont été effectués avec 5 mg/ml de chaque fraction. Les résultats indiquent que seule la fraction Fl possède encore l'activité biocide (figure 1C), une CMI de 0,75 mg/ml a pu être déterminée pour cette fraction (figure 1D).
La fraction Fl a été soumise à un nouveau fractionnement selon le protocole suivant :
L'extrait Fl a été dissous à 5 g/L dans le méthanol. Les conditions suivantes ont été appliquées pour l'extrait D :
Débit : 2,5mL/min.
Colonne : Cis en phase inverse : L = 250mm ; D.l. = 10mm ; D.P. = 5 μιτι.
Volume injecté : 150 μί.
Température d'injection : 24 °C.
Longueur d'onde de détection : 280 nm.
Programme de gradient décrit dans le Tableau 8 ci-dessous Tableau 3. Programme du gradient de solvant optimal en mode semi-préparatif. Solvant A : Eau milliQ + 0,1% acide formique ; Solvant B : Méthanol.
Temps (min) Solvant A (%) Solvant B (%)
0 30 70
10 15 85
15 15 85
25 0 100
30 0 100
32 30 70
35 30 70
Le chromatogramme obtenu dans ces conditions est présenté dans la figure 2A. Cinq fractions, Fl-1 à Fl-5, ont été constituées, tel que décrit dans la figure 2A, le pic majoritaire correspondant à la fraction Fl-2. Des tests d'activités sur la croissance de F. graminearum ont été effectués avec 5 mg/ml de chaque fraction. Les résultats indiquent que seule les fractions Fl-2 et Fl-3 possèdent l'activité biocide (figure 2B), une CMI de 0,75 mg/ml a pu être déterminée pour la fraction Fl-2 (figure 2C).
Exemple 5 : Analyse de la fraction Fl-2 par spectrométrie de masse.
Afin de mieux caractériser la molécule présente dans la fraction Fl-2, une analyse par spectrométrie de masse a été effectuée selon les conditions suivantes :
Les expériences ont été réalisées en mode infusion sur un spectromètre QStar Elite (Applied Biosystems).
Mode d'ionisation : Electrospray (ESI) en mode positif
Tension de l'aiguille electrospray : 4500 V à température ambiante
Conditions d'injection : 20 μί d'échantillon dissous dans le méthanol, sous un débit de méthanol de 400 μί/ιτιϊη
Gamme balayée : 100 à 2000 Daltons La Figure 3A montre le spectre de masse acquis en ionisation electrospray en mode positif sur la molécule d'intérêt collectée Fl-2.
La masse exacte déterminée est de 1381,8276 Daltons. Il correspond à un adduit sodium formé lors de l'ionisation ([M+Na]+). Après avoir retranché la masse du sodium de 23 Daltons, la masse du pic moléculaire du composé est de 1358,8 Da.
Une analyse approfondie de la masse exacte permet de déterminer une ou plusieurs formules brutes liées à cette masse, avec une erreur de 5ppm. Après avoir écarté les propositions irréalistes, la formule brute retenue est C71H122O24.
Une analyse approfondie par Spectrométrie de masse en tandem a été réalisée sur ce pic à 1381,8276 Da. Le spectre de masse est présenté sur la Figure 3B. Plusieurs pics (pics entourés - Figure 3B) sont similaires aux pics issus de la fragmentation de l'amphidinol 18 (7).
Exemple 6 : Analyse de la fraction Fl-2 par Résonance Magnétique Nucléaire (RMN)
Afin de déterminer la structure de la molécule ayant un poids moléculaire de 1358,8 Da, une analyse par RMN a été effectuée selon le mode opératoire suivant : Les échantillons correspondant au pic Fl-2 ont été collectés puis ont été entièrement dissous dans environ 350 μί de méthanol deutéré (MeOD4).
Les expériences ont été réalisées sur un spectromètre Bruker Avance 14,1T équipé d'une sonde multinoyaux. Des spectres proton et carbone à une et deux dimensions ont été acquis en utilisant des séquences d'impulsion disponibles depuis la bibliothèque de séquences Bruker. Les conditions d'acquisition sont les suivantes :
ΧΗ : Nombre de scans : 512 ; Impulsion : 8μ≤ ; Acquisition : 5,0s ; Relaxation : 1,0s
13C DEPT135 : Nombre de scans : 44666 ; Impulsion : 12μ≤ ; Acquisition : 1,0s ; Relaxation : 3,0s
HSQC : Nombre de scans : 64 ; 512 incréments
HMBC : Nombre de scans : 48 ; 512 incréments - COSY : Nombre de scans : 56 ; 256 incréments
TOCSY : Nombre de scans : 48 ; 256 incréments La séquence 13C DEPT135 est une expérience qui permet de trier les carbones en fonction du nombre de protons directement liés : CH3 et CH>0 et CH2<0.
La séquence COSY (Corrélation SpectroscopY) est une expérience 2D homonucléaire qui permet d'identifier des protons en interaction scalaire espacés de 2 ou 3 liaisons. La séquence TOCSY (TOtal Corrélation SpectroscopY) est une expérience 2D homonucléaire qui permet d'identifier des protons en interaction scalaire espacés de 3 liaisons et plus.
La séquence HSQC (Heteronuclear Single Quantum Corrélation) est une expérience 2D hétéronucléaire qui met en évidence les interactions directes entre un carbone et le ou les proton(s) directement lié(s). La séquence HMBC (Heteronuclear Multiple Bond Corrélation) est une expérience 2D hétéronucléaire qui met en évidence les corrélations entre protons et carbones séparés par 2 ou 3 liaisons de distance.
Les spectres 1D ont été traités par une transformée de Fourier. Les spectres ont été traités par une transformée de Fourier dans les deux dimensions. D'après les résultats obtenus, le spectre 1H acquis, représenté dans la Figure 4A, met en évidence une série de pics répartie sur une large fenêtre spectrale comprise entre 1 et 6ppm. Cela confirme que le composé recherché contient des protons aliphatiques et oléfiniques. Ces déplacements suggèrent également la présence d'hétéroatomes tels que l'oxygène.
Le spectre 13C DEPT135 (Figure 4B) met en évidence une série de pics sur la fenêtre spectrale comprise entre 13 et 211ppm. Les séquences 2D HMBC et HSQC permettent de mettre en évidence l'enchaînement des carbones entre eux. Les séquences 2D COSY et TOCSY permettent de confirmer l'enchaînement de la structure à partir des déplacements des protons et de leurs corrélations.
Le nombre d'insaturations et de cycles observé est cohérent avec celui calculé pour la molécule sur la base de sa formule brute (=11) : Ni = (2nc + 2 - nH + nN - nx)/2
Avec : ne : le nombre d'atomes de carbone, nH : le nombre d'atomes d'hydrogène, nN : le nombre d'atomes d'azote, nx : le nombre d'atomes d'halogène. Les 11 insaturations sont réparties selon : - 1 fonction cétone
- 8 doubles liaisons dont 2 en bouts de chaîne
- 2 cycles
Les séquences COSY et TOCSY ont permis de reconstruire tout le squelette carboné de la structure. Ces corrélations sont indiquées par des liaisons en gras sur la Figure 5. Ces résultats démontrent que la structure secondaire de la molécule correspond à celle de l'Amphidinol 18. L'ensemble de l'interprétation a pu être confirmée en confrontant les résultats obtenus lors de cette étude à ceux relevés dans la littérature (7).
En conclusion, l'ensemble des résultats obtenus par Résonance Magnétique Nucléaire et Spectrométrie de Masse confirme que la molécule présente dans la fraction Fl-2, obtenue après fractionnement de l'extrait D, et qui présente l'activité antifongique contre F. graminearum est la molécule d'Amphidinol 18 dont les données chimiques spécifiques sont les suivantes :
Formule brute : C71H122O24
REFERENCES BIBLIOGRAPHIQUES
(1) Arseniuk, E., Foremska, E., Goral, T., Chelkowski, J. 1999. Fusarium head blight reactions and accumulation ofdeoxynivalenol (DON) and some of its derivatives in kernels of wheat, triticale and rye. Journal of Phytopathology 147, 577-590 (2) Devi P, Wahidulla S, Kamat T and D'Souza L (2011). Screening marine organisms for antimicrobial activity against clinical pathogens. Indian J.Geomar.Sci. (40) 338-346.
(3) Mayer AM, odriguez AD, Taglialatela-Scafati O, Fusetani N (2013). Marine pharmacology in 2009- 2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous Systems, and other miscellaneous mechanisms of action. Mar Drugs. ll(7):2510-73
(4) Bowler, C, Vardi, A., & Allen, A. E. (2010). Océanographie and biogeochemical insights from diatom génomes. Annual Review of Marine Science, 2, 333-65. doi:10.1146/annurev-marine-120308-081051
(5) Murray S, Garby T, Hoppenrath M, Neilan BA (2012). Genetic diversity, morphological uniformity and polyketide production in dinoflagellates (Amphidinium, Dinoflagellata). PLoS One. 7(6) (6) Morsy N, Houdai T, Matsuoka S, Matsumori N, Adachi S, et al. (2006). Structures of new amphidinols with truncated polyhydroxyl chain and their membrane-permeabilizing activities. Bioorganic and Médicinal Chemistry 14: 6548-6554.
(7) Nuzzo G, Cutignano A, Sardo A, Fontana A, 2014 Jun 27, J Nat Prod, Antifungal amphidinol 18 and its 7-sulfate derivative from the marine dinoflagellate Amphidinium carterae.

Claims

REVENDICATIONS
1. Utilisation de la molécule de formule (I) suivante :
Figure imgf000055_0001
où :
3 représente H ou SOsNa,
R4 représente H ou OH, ' représente une liaison simple ou une liaison double,
n est est égal à 0 ou 1 et
m est égal à 0 ou 1; et 2 est choisi dans le groupe constitué de :
HO
P ett OH pour son activité fongicide et/ou bactéricide sur les champignons, les oomycètes et/ou bactéries pathogènes des plantes et semences de culture.
2. Utilisation selon la revendication 1 dans laquelle RI est
Figure imgf000056_0001
où 3 représente H ou SOsNa.
3. Utilisation selon la revendication 1 ou 2, dans laquelle R2 est :
4. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la molécule de formule (I) est l'amphidinol 18 :
Figure imgf000056_0002
5. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle la molécule de formule (I) est extraite de cellules d'une ou plusieurs microalgues du genre Amphidinium.
6. Utilisation selon la revendication 5 dans laquelle la molécule de formule (I) est extraite de cellules de Amphidinium carterae.
7. Utilisation selon l'une quelconque des revendications précédentes, dans laquelle lesdits champignons pathogènes des plantes et semences de culture sont des champignons pathogènes des plantes et semences de culture des genres Fusarium, Colletotrichum, Mycosphaerella, Phytophthora et Alternaria, de préférence les couples champignons vs. plantes de culture Triticum sativum/Mycosphaerella graminicola - Triticum sativum/Fusarium graminearum - Solanum tuberosum/Phytophtora infestons - Vinis vitifera/Plasmospora viticola - Vinis vitifera/Erysiphe necator - Lycopersicon esculentum/Phytophtora infestons.
8. Utilisation selon la revendication 7 dans laquelle lesdits champignons pathogènes des plantes et semences de culture des genres Fusarium, Colletotrichum, Mycosphaerella, Phytophthora et Alternaria sont choisis dans le groupe constitué de Fusarium oxysporum, Fusarium solani, Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, Fusarium moniliforme, Fusarium poae, Fusarium proliferatum, Fusarium sporotrichioides, Fusarium subglutinans, Fusarium tricinctum, Colletotrichum acutatum, Colletotrichum graminicola, Colletotrichum coffeanum, Colletotrichum gloeosporioides, Mycosphaerella graminicola, Phytophthora infestons, Alternaria solani et Alternaria brassisicola.
9. Utilisation de la molécule de formule (I) selon l'une quelconque des revendications précédentes en une quantité comprise entre 0,1 et 5 mg/mL, de préférence comprise entre 0,5 et 3 mg/mL, de manière particulièrement préférée comprise entre 0,75 et 1 mg/mL.
10. Procédé de lutte contre les champignons, les oomycètes et/ou les bactéries pathogènes des plantes et semences de culture comprenant l'application sur les plantes de culture et/ou l'enrobage desdites semences de :
Figure imgf000057_0001
dans laquelle :
i est choisi dans le groupe constitué de :
Figure imgf000058_0001
ou :
R3 représente H ou SOsNa,
R4 représente H ou OH,
' représente une liaison simple ou une liaison double, n est est égal à 0 ou 1 et
m est égal à 0 ou 1; et
R2 est choisi dans le groupe constitué de :
HO
et OH
Procédé de lutte selon la revendication 10, curatif ou préventif.
12. Procédé de lutte selon la revendication 10 ou 11, la molécule de formule (I) étant appliquée à une dose comprise entre entre 0,1 et 5 mg/mL, de préférence comprise entre 0,5 et 3 mg/mL, de manière particulièrement préférée comprise entre 0,75 et 1 mg/mL.
PCT/EP2018/065224 2017-06-08 2018-06-08 Utilisation d'un amphidinol pour son activite fongicide et/ou bactericide sur les champignons, les oomycetes et/ou bacteries pathogenes des plantes et semences de culture WO2018224675A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201880052003.6A CN111315216B (zh) 2017-06-08 2018-06-08 前沟藻醇对作物和种子的致病真菌、卵菌和/或细菌的杀真菌和/或杀细菌活性的用途
BR112019025727-6A BR112019025727B1 (pt) 2017-06-08 2018-06-08 Processo para controlar fungos, oomicetos e/ou bactérias patogênicas de plantas e sementes de cultura
RU2019144319A RU2790051C2 (ru) 2017-06-08 2018-06-08 Применение амфидинола с фунгицидной и(или) бактерицидной активностью в отношении грибов, оомицетов и(или) патогенных бактерий растений и семян
EP18728908.7A EP3634129A1 (fr) 2017-06-08 2018-06-08 Utilisation d'un amphidinol pour son activite fongicide et/ou bactericide sur les champignons, les oomycetes et/ou bacteries pathogenes des plantes et semences de culture
JP2020518570A JP7248663B2 (ja) 2017-06-08 2018-06-08 作物植物及び種子の真菌、卵菌、及び/又は病原性細菌に対するその殺真菌活性及び/又は殺細菌活性のためのアンフィジノールの使用
US16/620,047 US11278027B2 (en) 2017-06-08 2018-06-08 Use of an amphidinol for its fungicidal and/or bactericidal activity on fungi, oomycetes and/or pathogenic bacteria of plants and crop seeds
CA3066485A CA3066485A1 (fr) 2017-06-08 2018-06-08 Utilisation d'un amphidinol pour son activite fongicide et/ou bactericide sur les champignons, les oomycetes et/ou bacteries pathogenes des plantes et semences de culture
US17/666,943 US11793197B2 (en) 2017-06-08 2022-02-08 Use of an amphidinol for its fungicidal and/or bactericidal activity on fungi, oomycetes and/or pathogenic bacteria of plants and crop seeds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1755115 2017-06-08
FR1755115A FR3067221B1 (fr) 2017-06-08 2017-06-08 Utilisation d'un amphidinol pour son activite fongicide et/ou bactericide sur les champignons, les oomycetes et/ou bacteries pathogenes des plantes et semences de culture

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/620,047 A-371-Of-International US11278027B2 (en) 2017-06-08 2018-06-08 Use of an amphidinol for its fungicidal and/or bactericidal activity on fungi, oomycetes and/or pathogenic bacteria of plants and crop seeds
US17/666,943 Continuation US11793197B2 (en) 2017-06-08 2022-02-08 Use of an amphidinol for its fungicidal and/or bactericidal activity on fungi, oomycetes and/or pathogenic bacteria of plants and crop seeds

Publications (1)

Publication Number Publication Date
WO2018224675A1 true WO2018224675A1 (fr) 2018-12-13

Family

ID=59649885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/065224 WO2018224675A1 (fr) 2017-06-08 2018-06-08 Utilisation d'un amphidinol pour son activite fongicide et/ou bactericide sur les champignons, les oomycetes et/ou bacteries pathogenes des plantes et semences de culture

Country Status (7)

Country Link
US (2) US11278027B2 (fr)
EP (1) EP3634129A1 (fr)
JP (1) JP7248663B2 (fr)
CN (1) CN111315216B (fr)
CA (1) CA3066485A1 (fr)
FR (1) FR3067221B1 (fr)
WO (1) WO2018224675A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996232A (zh) * 2020-08-21 2020-11-27 中国农业科学院郑州果树研究所 基于病原分离鉴定及微孔板法筛选桃软腐病药剂的方法
CN112741114A (zh) * 2021-02-23 2021-05-04 广西壮族自治区农业科学院 一种防治甜瓜根腐病的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110468057B (zh) * 2019-09-02 2021-09-24 昆明理工大学 一株植物内生盘双端毛孢属真菌m7sb 41及其应用
ES2933630A1 (es) * 2021-06-22 2023-02-10 Univ Almeria Formulacion fitosanitaria

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017211998A1 (fr) * 2016-06-08 2017-12-14 Immunrise Utilisation d'un extrait cellulaire d'une ou plusieurs micro-algues du genre amphidinium pour son activité fongicide et/ou bactéricide sur les champignons, les oomycètes et/ou bactéries pathogènes des plantes et semences de culture

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988017B1 (ko) * 2009-12-08 2010-10-18 주식회사셀세이프 마이코플라즈마 오염이 방지된 세포의 배양방법 및 세포의 마이코플라즈마 오염의 제거방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017211998A1 (fr) * 2016-06-08 2017-12-14 Immunrise Utilisation d'un extrait cellulaire d'une ou plusieurs micro-algues du genre amphidinium pour son activité fongicide et/ou bactéricide sur les champignons, les oomycètes et/ou bactéries pathogènes des plantes et semences de culture

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
ARSENIUK, E.; FOREMSKA, E.; GORAL, T.; CHELKOWSKI, J.: "Fusarium head blight reactions and accumulation ofdeoxynivalenol (DON) and some of its derivatives in kernels of wheat, triticale and rye", JOURNAL OF PHYTOPATHOLOGY, vol. 147, 1999, pages 577 - 590
BOWLER, C.; VARDI, A.; ALLEN, A. E.: "Océanographie and biogeochemical insights from diatom genomes", ANNUAL REVIEW OF MARINE SCIENCE, vol. 2, 2010, pages 333 - 65
DEVI P; WAHIDULLA S; KAMAT T; D'SOUZA L: "Screening marine organisms for antimicrobial activity against clinical pathogens", INDIAN J.GEOMAR.SCI., vol. 40, 2011, pages 338 - 346
ECHIGOYA R ET AL: "The structures of five new antifungal and hemolytic amphidinol analogs from Amphidinium carterae collected in New Zealand", HARMFUL ALGAE, ELSEVIER, AMSTERDAM, NL, vol. 4, no. 2, 1 February 2005 (2005-02-01), pages 383 - 389, XP027686712, ISSN: 1568-9883, [retrieved on 20050201] *
GENOVEFFA NUZZO ET AL: "Antifungal Amphidinol 18 and Its 7-Sulfate Derivative from the Marine Dinoflagellate Amphidinium carterae", JOURNAL OF NATURAL PRODUCTS., vol. 77, no. 6, 27 June 2014 (2014-06-27), US, pages 1524 - 1527, XP055400101, ISSN: 0163-3864, DOI: 10.1021/np500275x *
MAYER AM; RODRIGUEZ AD; TAGLIALATELA-SCAFATI O; FUSETANI N: "Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action", MAR DRUGS., vol. 11, no. 7, 2013, pages 2510 - 73
MORSY N; HOUDAI T; MATSUOKA S; MATSUMORI N; ADACHI S ET AL.: "Structures of new amphidinols with truncated polyhydroxyl chain and their membrane-permeabilizing activities", BIOORGANIC AND MEDICINAL CHEMISTRY, vol. 14, 2006, pages 6548 - 6554, XP025133563, DOI: doi:10.1016/j.bmc.2006.06.012
MURRAY S; GARBY T; HOPPENRATH M; NEILAN BA: "Genetic diversity, morphological uniformity and polyketide production in dinoflagellates (Amphidinium, Dinoflagellata", PLOS ONE, vol. 7, no. 6, 2012
NUZZO G; CUTIGNANO A; SARDO A; FONTANA A: "Antifungal amphidinol 18 and its 7-sulfate derivative from the marine dinoflagellate Amphidinium carterae", J NAT PROD, 27 June 2014 (2014-06-27)
WASHIDA K ET AL: "Karatungiols A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp", TETRAHEDRON LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 47, no. 15, 10 April 2006 (2006-04-10), pages 2521 - 2525, XP025003878, ISSN: 0040-4039, [retrieved on 20060410], DOI: 10.1016/J.TETLET.2006.02.045 *
YANHUI MENG ET AL: "Structure and Biosynthesis of Amphidinol 17, a Hemolytic Compound from Amphidinium carterae [bottom]", JOURNAL OF NATURAL PRODUCTS., vol. 73, no. 3, 26 March 2010 (2010-03-26), US, pages 409 - 415, XP055415810, ISSN: 0163-3864, DOI: 10.1021/np900616q *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111996232A (zh) * 2020-08-21 2020-11-27 中国农业科学院郑州果树研究所 基于病原分离鉴定及微孔板法筛选桃软腐病药剂的方法
CN112741114A (zh) * 2021-02-23 2021-05-04 广西壮族自治区农业科学院 一种防治甜瓜根腐病的方法
CN112741114B (zh) * 2021-02-23 2022-07-01 广西壮族自治区农业科学院 一种防治甜瓜根腐病的方法

Also Published As

Publication number Publication date
BR112019025727A2 (pt) 2020-06-23
CA3066485A1 (fr) 2018-12-13
JP2020522581A (ja) 2020-07-30
US20220192194A1 (en) 2022-06-23
FR3067221B1 (fr) 2020-08-14
RU2019144319A (ru) 2021-07-09
US20200100499A1 (en) 2020-04-02
US11793197B2 (en) 2023-10-24
RU2019144319A3 (fr) 2021-09-23
JP7248663B2 (ja) 2023-03-29
FR3067221A1 (fr) 2018-12-14
CN111315216B (zh) 2022-11-04
US11278027B2 (en) 2022-03-22
EP3634129A1 (fr) 2020-04-15
CN111315216A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
WO2017211998A1 (fr) Utilisation d&#39;un extrait cellulaire d&#39;une ou plusieurs micro-algues du genre amphidinium pour son activité fongicide et/ou bactéricide sur les champignons, les oomycètes et/ou bactéries pathogènes des plantes et semences de culture
US11793197B2 (en) Use of an amphidinol for its fungicidal and/or bactericidal activity on fungi, oomycetes and/or pathogenic bacteria of plants and crop seeds
Nguyen et al. Nematicidal activity of verrucarin A and roridin A isolated from Myrothecium verrucaria against Meloidogyne incognita
EP2964017B1 (fr) Endophytes fongiques
Arias et al. Fumonisins: probable role as effectors in the complex interaction of susceptible and resistant maize hybrids and Fusarium verticillioides
Hummel et al. The panicle rice mite, Steneotarsonemus spinki Smiley, a re-discovered pest of rice in the United States
Tran et al. Phyllosticta capitalensis and P. paracapitalensis are endophytic fungi that show potential to inhibit pathogenic P. citricarpa on citrus
Pfirter et al. The potential of Stagonospora sp. as a mycoherbicide for field bindweed
Adair et al. Fungal associations in Asphondylia (Diptera: Cecidomyiidae) galls from Australia and South Africa: implications for biological control of invasive acacias
Akello et al. Insect antagonistic bio-inoculants for natural control of leaf-mining insect pests of French beans
CN111918549A (zh) 内生菌筛选
RU2790051C2 (ru) Применение амфидинола с фунгицидной и(или) бактерицидной активностью в отношении грибов, оомицетов и(или) патогенных бактерий растений и семян
Ketta The role of down-regulation of antioxidant enzyme activities and reactive oxygen species accumulation in playing an essential act in soybean susceptibility to Fusarium virguliforme infection
WO1998039973A1 (fr) Bionematicide a action ovicide efficace contre les nematodes phytoparasites
BR112019025727B1 (pt) Processo para controlar fungos, oomicetos e/ou bactérias patogênicas de plantas e sementes de cultura
Danish et al. Reduction of root-knot nematode infection with compost and nematode-trapping fungus in greenhouse setting
BR112018075354B1 (pt) Processo para preparar um extrato celular de uma ou mais microalgas do gênero amphidinium e processo para o controle de fungos e/ou oomicetos patogênicos de plantas e sementes de cultura
CN111918551A (zh) 香柱菌属内生菌
Motlagh et al. Evaluation of the reaction of major weeds and some rice cultivars to Colletotrichum graminicola
Safavi et al. Effects of the entomopathogenic fungus, Lecanicillium longisporum on survival and population growth parameters of the cabbage aphid, Brevicoryne brassicae (Hemiptera: Aphididae) under laboratory conditions
Persaud et al. Improving Profitability and Livelihood of Rice Farmers by Adopting an Integrated Disease Management (IDM) Approach for Blast and Sheath Blight Disease in Guyana
Stricker Improving Integrated Pest Management of Stemphylium Leaf Blight of Onion
Zhang Assessment of dry bean (Phaseolus vulgaris L.) tolerance to soybean cyst nematode (Heterodera glycines Ichinohe) and the effects of biological and chemical controls in the field
Pawlowski Soybean aphid intra-biotype variability based on colonization of specific soybean genotypes, resistance responses of soybean genotypes to pathogen infection after the application of chemical elicitors, and resistance to charcoal rot identified in ancestral soybean germplasm
Bhatt PLANT DISEASES AND THEIR MANAGEMENT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18728908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3066485

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020518570

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019025727

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018728908

Country of ref document: EP

Effective date: 20200108

ENP Entry into the national phase

Ref document number: 112019025727

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191205