WO2021204855A1 - Microbiocidal quinoline dihydropyrrolopyrazine derivatives - Google Patents

Microbiocidal quinoline dihydropyrrolopyrazine derivatives Download PDF

Info

Publication number
WO2021204855A1
WO2021204855A1 PCT/EP2021/059031 EP2021059031W WO2021204855A1 WO 2021204855 A1 WO2021204855 A1 WO 2021204855A1 EP 2021059031 W EP2021059031 W EP 2021059031W WO 2021204855 A1 WO2021204855 A1 WO 2021204855A1
Authority
WO
WIPO (PCT)
Prior art keywords
methyl
phenyl
compounds
hydrogen
formula
Prior art date
Application number
PCT/EP2021/059031
Other languages
French (fr)
Inventor
Matthias Weiss
Simon Williams
Original Assignee
Syngenta Crop Protection Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Crop Protection Ag filed Critical Syngenta Crop Protection Ag
Publication of WO2021204855A1 publication Critical patent/WO2021204855A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system

Definitions

  • the present invention relates to microbiocidal quinoline dihydropyrrolopyrazine derivatives, e.g. as active ingredients, which have microbiocidal activity, in particular fungicidal activity.
  • the invention also relates to the preparation of these quinoline dihydropyrrolopyrazine derivatives, to intermediates useful in the preparation of these quinoline dihydropyrrolopyrazine derivatives, to the preparation of these intermediates, to agrochemical compositions which comprise at least one of the quinoline dihydropyrrolopyrazine derivatives, to preparation of these compositions and to the use of the quinoline dihydropyrrolopyrazine derivatives or compositions in agriculture or horticulture for controlling or preventing infestation of plants, harvested food crops, seeds or non-living materials by phytopathogenic microorganisms, in particular fungi.
  • Certain fungicidal quinoline compounds are described in WO 2005/070917, WO 2011/077514, WO 2016/156129 and WO 2018/073110.
  • R 1 is independently selected from halogen, cyano, hydroxy or methyl; n is 0, 1 or 2;
  • R 2 and R 3 are independently selected from hydrogen, halogen, methoxy, difluoromethyl, trifluoromethyl or methyl;
  • R 4 is cyano, Ci-Csalkyl, C2-Csalkenyl, C2-Csalkynyl, Ci-C 4 alkoxy, Ci-C 4 haloalkoxy, C3- C5alkenyloxy, C3-Csalkynyloxy, Ci-C3alkoxyCi-C3alkyl, Ci-C 4 haloalkoxyCi-C5alkyl, Ci-C 4 haloalkoxyCi- C 4 alkoxy, C 2 -C 4 haloalkenyl, Ci-C 4 alkoxyC 2 -C5alkenyl, cyanoCi-Csalkyl, cyanoCi-C 4 alkoxy, cyanoC2- C5alkenyl, C3-C6cycloalkyl, phenyl, phenylCi-C2alkyl, heteroaryl or heteroarylCi-C2alkyl, wherein the heteroaryl moiety is a
  • R 5 is hydrogen, Ci-Csalkyl or Ci-C 4 haloalkyl; or R 4 and R 5 together with the connecting carbon atom form a 3- to 6-membered carbocyclic group;
  • R 6 and R 7 are independently selected from hydrogen, fluoro or methyl
  • R 8 is hydrogen, cyano, nitro, halogen, Ci-Csalkyl, C3-C6cycloalkyl, Ci-C 4 alkoxycarbonyl, Ci- C 4 haloalkyl, C3-C6halocycloalkyl, Ci-C 4 alkylsulfonyl, Ci-C 4 haloalkylsulfonyl, Ci-C 4 alkoxyCi- C 4 alkylsulfonyl, Ci-C 4 haloalkoxy, Ci-C 4 alkylsulfonyl, cyanoCi-C 4 alkylsulfonyl, C3-C6cycloalkylsulfonyl, phenylsulfonyl, benzylsulfonyl, phenyl and heteroaryl wherein the heteroaryl moiety is a 5- or 6- membered aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S,
  • R 9 is hydrogen, halogen, cyano or nitro; or an agronomically acceptable salt, an N-oxide or stereoisomer thereof.
  • novel compounds of Formula (I) have, for practical purposes, a very advantageous level of biological activity for protecting plants against diseases that are caused by fungi.
  • an agrochemical composition comprising a fungicidally effective amount of a compound of Formula (I).
  • Such an agricultural composition may further comprise at least one additional active ingredient and/or an agrochemically- acceptable diluent or carrier.
  • a method of controlling or preventing infestation of useful plants by phytopathogenic microorganisms wherein a fungicidally effective amount of a compound of Formula (I), ora composition comprising this compound as active ingredient, is applied to the plants, to parts thereof or the locus thereof.
  • a compound of Formula (I) as a fungicide.
  • the use may exclude methods for the treatment of the human or animal body by surgery or therapy.
  • substituents are indicated as being optionally substituted, this means that they may or may not carry one or more identical or different substituents, e.g. one to four substituents. Normally not more than three such optional substituents are present at the same time. Preferably not more than two such optional substituents are present at the same time (i.e. the group may be optionally substituted by one or two of the substituents indicated as “optional”). Where the “optional substituent” group is a larger group, such as cycloalkyl or phenyl, it is most preferred that only one such optional substituent is present. Where a group is indicated as being substituted, e.g. alkyl, this includes those groups that are part of other groups, e.g.
  • halogen refers to fluorine (fluoro), chlorine (chloro), bromine (bromo) or iodine (iodo), preferably fluorine, chlorine or bromine.
  • cyano means a -CN group.
  • hydroxyl or “hydroxy” means an -OH group.
  • nitro means an -NO2 group.
  • Ci-Csalkyl refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to five carbon atoms, and which is attached to the rest of the molecule by a single bond.
  • Ci-3alkyl and Ci-2alkyl are to be construed accordingly.
  • Examples of Ci-Csalkyl include, but are not limited to, methyl, ethyl, n- propyl, 1-methylethyl (iso-propyl), n-butyl, and 1 ,1-dimethylethyl (f-butyl).
  • Ci-C2alkylene refers to the corresponding definition of Ci-C2alkyl, except that such radical is attached to the rest of the molecule by two single bonds.
  • C 2 -C5alkenyl refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one double bond that can be of either the (E)- or ( ⁇ -configuration, having from two to five carbon atoms, which is attached to the rest of the molecule by a single bond.
  • C3-C 4 alkenyl is to be construed accordingly.
  • Examples of C2-Csalkenyl include, but are not limited to, vinyl (ethenyl), prop-1 -enyl, allyl (prop-2-enyl), and but-1-enyl.
  • C 2 -C5alkynyl refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one triple bond, having from two to five carbon atoms, and which is attached to the rest of the molecule by a single bond.
  • C3-C 4 alkynyl is to be construed accordingly.
  • Examples of C2-Csalkynyl include, but are not limited to, ethynyl, prop-1 -ynyl, propargyl (prop-2-ynyl), and but-1-ynyl.
  • Ci-C 4 alkoxy refers to a radical of the formula R a O- where R a is a Ci- C 4 alkyl radical as generally defined above.
  • the terms Ci-C3alkoxy and Ci-C2alkoxy are to be construed accordingly.
  • Examples of Ci-C 4 alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, and f-butoxy.
  • Ci-C 4 haloalkoxy refers to a Ci-C 4 alkoxy radical as generally defined above substituted by one or more of the same or different halogen atoms.
  • Cs-Csalkenyloxy refers to a radical of the formula R a O-, where R a is a C3-C5alkenyl radical as generally defined above.
  • Cs-Csalkynyloxy refers to a radical of the formula R a O-, where R a is a C3-C5alkynyl radical as generally defined above.
  • Ci-C 4 haloalkyl refers to a Ci-C 4 alkyl radical as generally defined above substituted by one or more of the same or different halogen atoms. Ci-C2haloalkyl is to be construed accordingly. Examples of Ci-C 4 haloalkyl include, but are not limited to fluoromethyl, fluoroethyl, difluoromethyl, trifluoromethyl, and 2,2,2-trifluoroethyl.
  • Ci-C3alkoxyCi-C3alkyl refers to a radical of the formula Rb-0-R a - where Rb is a Ci-C3alkyl radical as generally defined above, and R a is a Ci-C3alkylene radical as generally defined above.
  • Ci-C 4 haloalkoxyCi-C5alkyl refers to a Ci-Csalkyl radical as generally defined above substituted by a Ci-C 4 haloalkoxy radical as generally defined above.
  • C 2 -C 4 haloalkenyl refers to a C 2 -C 4 alkenyl radical as generally defined above substituted by one or more of the same or different halogen atoms.
  • Ci-C 4 alkoxyC 2 -C5alkenyl refers to a C2-Csalkenyl radical as generally defined above substituted by a Ci-C 4 alkoxy radical as generally defined above.
  • cyanoCi-Csalkyl refers to a Ci-Csalkyl radical as generally defined above substituted by one or more cyano groups.
  • cyanoCi-Csalkyl include, but are not limited to cyanomethyl.
  • cyanoCi-C 4 alkoxy refers to a Ci-C 4 alkoxy radical as generally defined above substituted by one or more cyano groups.
  • cyanoC 2 -C5alkenyl refers to a C2-Csalkenyl radical as generally defined above substituted by one or more cyano groups.
  • C3-C6cycloalkyl refers to a stable, monocyclic ring radical which is saturated or partially unsaturated and contains 3 to 6 carbon atoms.
  • C3-C 4 cycloalkyl is to be construed accordingly.
  • Examples of C3-C6cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • carbocyclic group refers to a saturated or partially unsaturated ring radical in which all of the atoms composing the ring are carbon atoms.
  • C3-C6halocycloalkyl refers to a C3-C6cycloalkyl radical as generally defined above substituted by one or more of the same or different halogen atoms.
  • phenylCi-C2alkyl refers to a phenyl ring attached to the rest of the molecule by a Ci-C2alkylene radical as defined above.
  • phenylCi-C2alkyl include, but are not limited to, benzyl.
  • heteroaryl refers to a 5- or 6-membered monocyclic aromatic ring radical which comprises 1 , 2, 3 or 4 heteroatoms individually selected from nitrogen, oxygen and sulfur.
  • the heteroaryl radical may be bonded to the rest of the molecule via a carbon atom or heteroatom.
  • heteroaryl include, but are not limited to, furanyl, pyrrolyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazinyl, pyridazinyl, pyrimidyl and pyridyl.
  • heteroarylCi-C2alkyl refers to a heteroaryl ring attached to the rest of the molecule by a Ci-C2alkylene radical as defined above.
  • Ci-C 4 alkoxycarbonyl refers to a radical of the formula RaOC(O)-, where R a is a Ci-C 4 alkyl radical as generally defined above.
  • Ci-C 4 alkylsulfonyl refers to a radical of the formula R a S(0) 2 -, where R a is a Ci-C 4 alkyl radical as generally defined above.
  • Examples of Ci-C 4 alkylsulfonyl include, but are not limited to methylsulfonyl.
  • Ci-C 4 haloalkylsulfonyl refers to a Ci-C 4 alkylsulfonyl radical as generally defined above substituted by one or more of the same or different halogen atoms.
  • Ci-C 4 alkoxyCi-C 4 alkylsulfonyl refers to to a Ci-C 4 alkylsulfonyl radical as generally defined above substituted by a Ci-C 4 alkoxy radical as defined above.
  • Ci-C 4 haloalkoxyCi-C 4 alkylsulfonyl refers to to a Ci-C 4 alkylsulfonyl radical as generally defined above substituted by a Ci-C 4 haloalkoxy radical as defined above.
  • cyanoCi-C 4 alkylsulfonyl refers to refers to to a Ci-C 4 alkylsulfonyl radical as generally defined above substituted by one or more cyano groups.
  • asymmetric carbon atoms in a compound of formula (I) means that the compounds may occur in optically isomeric forms, i.e. enantiomeric or diastereomeric forms. Also atropisomers may occur as a result of restricted rotation about a single bond.
  • Formula (I) is intended to include all those possible isomeric forms and mixtures thereof.
  • the present invention includes all those possible isomeric forms and mixtures thereof for a compound of formula (I).
  • formula (I) is intended to include all possible tautomers.
  • the present invention includes all possible tautomeric forms for a compound of formula (I).
  • the compounds of formula (I) according to the invention are in free form, in oxidized form as a N-oxide, in covalently hydrated form, or in salt form, e.g., an agronomically usable or agrochemically acceptable salt form.
  • N-oxides are oxidized forms of tertiary amines or oxidized forms of nitrogen containing heteroaromatic compounds. They are described for instance in the book “Heterocyclic N-oxides” by A. Albini and S. Pietra, CRC Press, Boca Raton 1991.
  • R 1 is independently selected from halogen, cyano, hydroxy or methyl, and n is 0, 1 or 2.
  • R 1 is halogen, in particular fluoro.
  • n is 1 or 2. More preferably, n is 1. More preferably, when n is 1 , R 1 is 7-fluoro or 8-fluoro, and when n is 2, R 1 is 7-fluoro and 8-fluoro.
  • R 2 and R 3 are independently selected from hydrogen, halogen, methoxy or methyl.
  • R 2 and R 3 are independently selected from hydrogen and methyl. More preferably, R 2 and R 3 are hydrogen, R 2 is methyl and R 3 is hydrogen or R 2 is hydrogen and R 3 is methyl. Most preferably, R 2 and R 3 are hydrogen.
  • R 4 is cyano, Ci-Csalkyl, C2-Csalkenyl, C2-Csalkynyl, Ci-C 4 alkoxy, Ci-C 4 haloalkoxy, C3- C5alkenyloxy, C3-Csalkynyloxy, Ci-C3alkoxyCi-C3alkyl, Ci-C 4 haloalkoxyCi-C5alkyl, Ci-C 4 haloalkoxyCi- C 4 alkoxy, C 2 -C 4 haloalkenyl, Ci-C 4 alkoxyC 2 -C5alkenyl, cyanoCi-Csalkyl, cyanoCi-C 4 alkoxy, cyanoC2- C5alkenyl, C3-C6cycloalkyl, phenyl, phenylCi-C2alkyl, heteroaryl or heteroarylCi-C2alkyl, wherein the heteroaryl moiety is a
  • R 4 is Ci-Csalkyl, C2-Csalkenyl, C 2 -C 4 haloalkenyl, C2-Csalkynyl, C3-C6cycloalkyl, phenyl or phenylCi-C2alkyl. More preferably, R 4 is Ci-Csalkyl, C 2 -C 4 alkenyl, C 2 -C 4 fluoroalkenyl, C2- C 4 Chloroalkenyl, C3-C6cycloalkyl, phenyl or phenylCi-C2alkyl.
  • R 5 is hydrogen, Ci-Csalkyl or Ci-C 4 haloalkyl.
  • R 5 is hydrogen, Ci-C3alkyl or Ci- C3haloalkyl. More preferably, R 5 is hydrogen or methyl, and in particular, methyl.
  • R 4 and R 5 together with the connecting carbon atom form a 3- to 6-membered carbocyclic group, in particular, a saturated carbocyclic group.
  • Such carbocycles in addition to the connecting carbon atom of the rest of the molecule, may be a divalent -(Chfejx- radical, wherein x is an integer from 2 to 5.
  • R 6 and R 7 are independently selected from hydrogen, fluoro or methyl. Preferably, at least one of R 6 and R 7 is hydrogen. More preferably, R 6 and R 7 are hydrogen.
  • R 8 is hydrogen, cyano, nitro, halogen, Ci-Csalkyl, C3-C6cycloalkyl, Ci-C 4 alkoxycarbonyl, Ci- C 4 haloalkyl, C3-C6halocycloalkyl, Ci-C 4 alkylsulfonyl, Ci-C 4 haloalkylsulfonyl, Ci-C 4 alkoxyCi- C 4 alkylsulfonyl, Ci-C 4 haloalkoxy, Ci-C 4 alkylsulfonyl, cyanoCi-C 4 alkylsulfonyl, C3-C6cycloalkylsulfonyl, phenylsulfonyl, benzylsulfonyl, phenyl and heteroaryl wherein the heteroaryl moiety is a 5- or 6- membered aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S,
  • R 8 is hydrogen, cyano, nitro, halogen, Ci-Csalkyl, C3-C6cycloalkyl, Ci-C 4 haloalkyl, C3-C6halocycloalkyl, Ci-C 4 alkylsulfonyl, Ci-C 4 haloalkoxy, Ci-C 4 haloalkylsulfonyl, C3- C 4 cycloalkylsulfonyl, phenylsulfonyl, benzylsulfonyl, phenyl or heteroaryl wherein the heteroaryl moiety is a 5- or 6-membered aromatic ring which comprises 1 or 2 nitrogen atoms, and wherein the phenyl and heteroaryl are optionally substituted by 1 or 2 substituents independently selected from halogen, methyl, ethyl, methoxy, trifluoromethyl, trifluoromethoxy and cyano.
  • R 8 is hydrogen, cyano, nitro, halogen (in particular, chloro or bromo), Ci- C 4 alkyl, Ci-C2fluoroalkyl, Ci-C 4 alkylsulfonyl, Ci-C2fluoroalkylsulfonyl, C 4 -C 4 cycloalkylsulfonyl, phenylsulfonyl, benzylsulfonyl, phenyl or pyrdinyl (in particular, pyrdin-2-yl or pyrdin-3-yl), wherein the phenyl and pyrdinyl are optionally substituted by a single substituent selected from halogen, methyl, ethyl, methoxy, trifluoromethyl, trifluoromethoxy or cyano.
  • halogen in particular, chloro or bromo
  • R 8 is hydrogen, cyano, nitro, chloro, bromo, methyl, ethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, -CF2CF3, -CF2CH3, -SO2CH3, -SO2CH2CH3, -SC>2CH(CH3)2, -SO2CF3, -SC>2cyclopropyl, -SC>2phenyl, -SC ⁇ CFhphenyl, phenyl, 2-methylphenyl, pyrdin-2-yl, pyrdin-3-yl or pyrdin-4-yl.
  • R 9 is hydrogen, halogen, cyano or nitro.
  • R 9 is hydrogen, chloro, bromo or iodo.
  • the compound of formula (I) is a compound selected from one of E.01 to E.058 in Table E (below).
  • the compound of formula (I) is represented as: Specific examples of compounds of formula (I) are illustrated in the Tables A1 to A8 below: Table A1 : This table discloses 133 compounds of formula (I): wherein n is 0, R 2 and R 3 are H, R 9 is H, and wherein the values of R 4 , R 5 , R 6 , R 7 and R 8 are as defined in Table Z below:
  • Table A2 This table discloses 133 compounds of formula (I), wherein n is 1 , R 1 is 8-fluoro, R 2 and R 3 are H, R 9 is H, and wherein the values of R 4 , R 5 , R 6 , R 7 and R 8 are as defined in Table Z above.
  • Table A3 This table discloses 133 compounds of formula (I), wherein n is 2, R 1 is 7-fluoro and 8-fluoro, R 2 and R 3 are H, R 9 is H, and wherein the values of R 4 , R 5 , R 6 , R 7 and R 8 are as defined in Table Z above.
  • Table A4 This table discloses 133 compounds of formula (I), wherein n is 1 , R 1 is 8-fluoro, R 2 is CH 3 , R 3 is H, R 9 is H, and wherein the values of R 4 , R 5 , R 6 , R 7 and R 8 are as defined in Table Z above.
  • Table A5 This table discloses 133 compounds of formula (I), wherein n is 1 , R 1 is 8-fluoro, R 2 is H, R 3 is Chh, R 9 is H, and wherein the values of R 4 , R 5 , R 6 , R 7 and R 8 are as defined in Table Z above.
  • Table A6 This table discloses 133 compounds of formula (I), wherein n is 1 , R 1 is 8-fluoro, R 2 and R 3 are H, R 9 is chloro, and wherein the values of R 4 , R 5 , R 6 , R 7 and R 8 are as defined in Table Z above.
  • Table A7 discloses 133 compounds of formula (I), wherein n is 1 , R 1 is 8-chloro, R 2 and R 3 are H, R 9 is H, and wherein the values of R 4 , R 5 , R 6 , R 7 and R 8 are as defined in Table Z above.
  • Table A8 This table discloses 133 compounds of formula (I), wherein n is 1 , R 1 is 8-cyano, R 2 and R 3 are H, R 9 is H, and wherein the values of R 4 , R 5 , R 6 , R 7 and R 8 are as defined in Table Z above.
  • compounds of general formula (I) can be prepared from compounds of formula (II) and (III), wherein R 12 and R 22 are defined as shown in Scheme 1 , in the presence of a transition metal salt such as palladium acetate and supporting phosphine ligand such as 2-dicyclohexylphosphino- 2',4',6'-triisopropylbiphenyl or di(1-adamantyl)-n-butylphosphine, a base such as potassium phosphate in an inert solvent such as N,N-dimethylformamide.
  • a transition metal salt such as palladium acetate and supporting phosphine ligand
  • a base such as potassium phosphate
  • an inert solvent such as N,N-dimethylformamide.
  • Compounds of formula (II) can be prepared from compounds of formula (ll-a) by treatment with an activating agent such as (chloromethylene)dimethyliminium chloride or trifluoromethane sulfonic anhydride in an inert solvent such as dichloromethane.
  • an activating agent such as (chloromethylene)dimethyliminium chloride or trifluoromethane sulfonic anhydride in an inert solvent such as dichloromethane.
  • Compounds of formula (ll-a) can be prepared from compounds of formula (ll-b), wherein R 13 is Ci-C6alkyl or benzyl, by heating in an organic solvent such as ethanol.
  • Compounds of formula (III), wherein R 12 is as defined in scheme 1 can be prepared from compounds of formula (lll-a), wherein R 11 is chloro, bromo or iodo, by treatment with a transition metal salt such as palladium(ll)acetate, a phosphine ligand such as 2-dicyclohexylphosphino-2',4',6'- triisopropylbiphenyl, a boron source such as bis(pinacolato)diboron and a base such as potassium acetate in a solvent such as 1 ,4-dioxane.
  • a transition metal salt such as palladium(ll)acetate
  • a phosphine ligand such as 2-dicyclohexylphosphino-2',4',6'- triisopropylbiphenyl
  • a boron source such as bis(pinacolato)diboron
  • a base such as potassium a
  • compounds of formula (III), wherein R 12 is as defined in scheme 1 can be prepared from compounds of formula (lll-c) by diazotization with NaNC>2 in the presence of a Bronsted acid such as HCI, followed by bis-boronic acid as described in Chem. Eur. J. 2014, 20, 6608 - 6612.
  • Compounds of formula (lll-a), wherein R 11 is chloro, bromo or iodo can be prepared from compounds of formula (lll-b), by treatment with a halogenating agent such as bromine and a base such as pyridine in an inert solvent such as trifluorotoluene.
  • compounds of formula (lll-a), wherein R 11 is chloro, bromo or iodo can be prepared from compounds of formula (lll-c) by diazotization with NaNC>2 and a Bronsted acid in the presence of a halide source such as CuBr2 or Kl. This is shown in scheme 3. (lll-c) Scheme 3
  • Compounds of formula (V) can be prepared from compounds of formula (V-a) and compounds of formula (Vl-a) in the presence of a dehydrating agent such as propylphosphonic anhydride or phosgene and a base such as triethyl amine in an inert solvent such as toluene.
  • a dehydrating agent such as propylphosphonic anhydride or phosgene
  • a base such as triethyl amine
  • an inert solvent such as toluene.
  • compounds of formula (V) can be prepared from compounds of formula (lll-a), wherein R 11 is chloro, bromo or iodo, and (Vl-a) in the presence of a transition metal salt such as palladium(ll)acetate, a phosphine ligand such as 1 ,1'- bis(diphenylphosphino)-ferrocene and a base such as triethyl amine in a solvent such as toluene under carbon monoxide atmosphere.
  • a transition metal salt such as palladium(ll)acetate
  • a phosphine ligand such as 1 ,1'- bis(diphenylphosphino)-ferrocene
  • a base such as triethyl amine
  • Compounds of formula (V-a) can be prepared from compounds of formula (lll-a) in the presence of a transition metal salt such as palladium(ll)acetate, a phosphine ligand such as bis[(2- diphenylphosphino)phenyl] ether and a base such as triethyl amine in a solvent such as toluene under carbon monoxide atmosphere followed by alkaline saponification.
  • a transition metal salt such as palladium(ll)acetate
  • a phosphine ligand such as bis[(2- diphenylphosphino)phenyl] ether
  • a base such as triethyl amine
  • Compounds of general formula (Vl-a) can be prepared from compounds of formula (IV-a) wherein R 14 is Ci-C6alkyl, benzyl, allyl, 2-trimethylsilylethyl or 2,2,2-trichloroethyl and compounds of formula (VII) in the presence of a base such as caesium carbonate in an inert solvent such as acetonitrile to afford intermediates of general formula (Vll-a).
  • the intermediates of general formula (Vll-a) can then be converted to compounds of formula (Vl-a) by removal of the carbamate under conditions described in Greene's Protective Groups in Organic Synthesis, Wiley, 2014. This is shown in scheme 7.
  • compounds of general formula (I) can be prepared from compounds of formula (VIII- a) by heating or in the presence of an appropriate reagent for carbamate cleavage such as HCI.
  • Compounds of formula (Vlll-a) can be prepared from compounds of formula (Vlll-b), wherein R 14 is as described above, by treatment with compounds of formula (IV-a), wherein R 14 is as described above, in presence of a base such as caesium carbonate.
  • compounds of formula (Vlll-b) can be obtained from compounds of formula (lll-e), wherein Z is Ci-C 4 alkoxy, (MeO)MeN, fluoro or chloro, and compounds of formula (Vll-b), wherein R 15 is Ci-C6alkyl, in the presence of a base such as lithium 2,2,6,6-tetramethylpiperidide in an inert solvent such as tetrahydrofuran. This is shown in scheme 8.
  • compounds of formula (I) can be obtained from compounds of formula (l-c) by one or several consecutive group transfer reactions using standard synthesis techniques known to a person skilled in the art.
  • Non-exhaustive examples include chlorination, bromination, iodination, electrophilic cyanation, nitration, formylation, acetylation and trifluoromethylation. This is shown in scheme 9.
  • compounds of formula (I) can be obtained by transformation of another, closely related, compound of formula (I) (or analogue thereof) using standard synthesis techniques known to the person skilled in the art.
  • Non-exhaustive examples include oxidation reactions, oxygenation reactions, reduction reactions, hydrogenation reactions, hydrolysis reactions, coupling reactions, aromatic nucleophilic or electrophilic substitution reactions, nucleophilic substitution reactions, deoxyfluorination reactions, alkylation reactions, radical additions, nucleophilic addition reactions, condensation and halogenation reactions.
  • the compounds of formula (I) can be used in the agricultural sector and related fields of use e.g. as active ingredients for controlling plant pests or on non-living materials for control of spoilage microorganisms or organisms potentially harmful to man.
  • the novel compounds are distinguished by excellent activity at low rates of application, by being well tolerated by plants and by being environmentally safe. They have very useful curative, preventive and systemic properties and may be used for protecting numerous cultivated plants.
  • the compounds of formula (I) can be used to inhibit or destroy the pests that occur on plants or parts of plants (fruit, blossoms, leaves, stems, tubers, roots) of different crops of useful plants, while at the same time protecting also those parts of the plants that grow later e.g. from phytopathogenic microorganisms.
  • fungicide as used herein means a compound that controls, modifies, or prevents the growth of fungi.
  • fungicidally effective amount means the quantity of such a compound or combination of such compounds that is capable of producing an effect on the growth of fungi. Controlling or modifying effects include all deviation from natural development, such as killing, retardation and the like, and prevention includes barrier or other defensive formation in or on a plant to prevent fungal infection.
  • compounds of formula (I) as dressing agents for the treatment of plant propagation material, e.g., seed, such as fruits, tubers or grains, or plant cuttings (for example rice), for the protection against fungal infections as well as against phytopathogenic fungi occurring in the soil.
  • the propagation material can be treated with a composition comprising a compound of formula (I) before planting: seed, for example, can be dressed before being sown.
  • the compounds of formula (I) can also be applied to grains (coating), either by impregnating the seeds in a liquid formulation or by coating them with a solid formulation.
  • the composition can also be applied to the planting site when the propagation material is being planted, for example, to the seed furrow during sowing.
  • the invention relates also to such methods of treating plant propagation material and to the plant propagation material so treated.
  • the compounds according to present invention can be used for controlling fungi in related areas, for example in the protection of technical materials, including wood and wood related technical products, in food storage, in hygiene management.
  • the invention could be used to protect non-living materials from fungal attack, e.g. lumber, wall boards and paint.
  • Compounds of formula (I) and fungicidal compositions containing them may be used to control plant diseases caused by a broad spectrum of fungal plant pathogens. They are effective in controlling a broad spectrum of plant diseases, such as foliar pathogens of ornamental, turf, vegetable, field, cereal, and fruit crops.
  • fungi and fungal vectors of disease as well as phytopathogenic bacteria and viruses, which may be controlled are for example:
  • Absidia corymbifera Alternaria spp, Aphanomyces spp, Ascochyta spp, Aspergillus spp. including A. flavus, A. fumigatus, A. nidulans, A. niger, A. terms, Aureobasidium spp. including A. pullulans, Blastomyces dermatitidis, Blumeria graminis, Bremia lactucae, Botryosphaeria spp. including B. dothidea, B. obtusa, Botrytis spp. comprising B. cinerea, Candida spp. including C. albicans, C. glabrata, C. krusei, C.
  • Coccidioides immitis Coccidioides immitis, Cochliobolus spp, Colletotrichum spp. including C. musae,
  • Cryptococcus neoformans Diaporthe spp, Didymella spp, Drechslera spp, Elsinoe spp, Epidermophyton spp, Erwinia amylovora, Erysiphe spp. including E. cichoracearum,
  • capsulatum Laetisaria fuciformis, Leptographium lindbergi, Leveillula taurica, Lophodermium seditiosum, Microdochium nivale, Microsporum spp, Monilinia spp, Mucor spp, Mycosphaerella spp. including M. graminicola, M. pomi, Oncobasidium theobromaeon, Ophiostoma piceae, Paracoccidioides spp, Penicillium spp. including P. digitatum, P. italicum, Petriellidium spp, Peronosclerospora spp. Including P. maydis, P.
  • leucotricha Polymyxa graminis, Polymyxa betae, Pseudocercosporella herpotrichoides, Pseudomonas spp, Pseudoperonospora spp. including P. cubensis, P. humuli, Pseudopeziza tracheiphila, Puccinia Spp. including P. hordei, P. recondita, P. striiformis, P. triticina, Pyrenopeziza spp, Pyrenophora spp, Pyricularia spp. including P. oryzae, Pythium spp. including P.
  • Sclerotinia spp Sclerotium spp, Septoria spp, including S. nodorum, S. tritici, Sphaerotheca macularis, Sphaerotheca fusca (Sphaerotheca fuliginea), Sporothorix spp, Stagonospora nodorum, Stemphylium spp,. Stereum hirsutum, Thanatephorus cucumeris, Thielaviopsis basicola, Tilletia spp, Trichoderma spp. including T. harzianum, T. pseudokoningii, T. viride,
  • Trichophyton spp Trichophyton spp, Typhula spp, Uncinula necator, Urocystis spp, Ustilago spp, Venturia spp. including V. inaequalis, Verticillium spp, and Xanthomonas spp.
  • compounds of formula (I) and fungicidal compositions containing them may be used to control plant diseases caused by a broad spectrum of fungal plant pathogens in the Basidiomycete, Ascomycete, Oomycete and/or Deuteromycete, Blasocladiomycete, Chrytidiomycete, Glomeromycete and/or Mucoromycete classes.
  • pathogens may include:
  • Oomycetes including Phytophthora diseases such as those caused by Phytophthora capsici, Phytophthora infestans, Phytophthora sojae, Phytophthora fraga ae, Phytophthora nicotianae, Phytophthora cinnamomi, Phytophthora cit cola, Phytophthora citrophthora and Phytophthora erythroseptica ; Pythium diseases such as those caused by Pythium aphanidermatum, Pythium arrhenomanes, Pythium graminicola, Pythium irregulare and Pythium ultimum ; diseases caused by Peronosporales such as Peronospora destructor, Peronospora parasitica, Plasmopara viticola, Plasmopara halstedii, Pseudoperonospora cubensis, Albugo Candida, Sclerophthora macrospor
  • Ascomycetes including blotch, spot, blast or blight diseases and/or rots for example those caused by Pleosporales such as Stemphylium solani, Stagonospora tainanensis, Spilocaea oleaginea, Setosphaeria turcica, Pyrenochaeta lycoperisici, Pleospora herbarum, Phoma destructive, Phaeosphaeria herpotrichoides, Phaeocryptocus gaeumannii, Ophiosphaerella graminicola, Ophiobolus graminis, Leptosphaeria maculans, Hendersonia creberrima, Helminthosporium triticirepentis, Setosphaeria turcica, Drechslera glycines, Didymella bryoniae, Cycloconium oleagineum, Corynespora cassiicola, Cochliobolus sativus, Bipolaris
  • Gerlachia nivale Gibberella fujikuroi
  • Gibberella zeae Gibberella zeae
  • Gliocladium spp. Myrothecium verrucaria
  • Nectria ramulariae Trichoderma viride
  • Trichothecium roseum Trichothecium roseum
  • Verticillium theobromae Myrothecium verrucaria
  • Basidiomycetes including smuts for example those caused by Ustilaginales such as Ustilaginoidea virens, Ustilago nuda, Ustilago tritici, Ustilago zeae, rusts for example those caused by Pucciniales such as Cerotelium fici, Chrysomyxa arctostaphyli, Coleosporium ipomoeae, Hemileia vastatrix, Puccinia arachidis, Puccinia cacabata, Puccinia graminis, Puccinia recondita, Puccinia sorghi, Puccinia hordei, Puccinia striiformis f.sp.
  • Ustilaginales such as Ustilaginoidea virens, Ustilago nuda, Ustilago tritici, Ustilago zeae
  • rusts for example those caused by Pucciniales such as Cerotelium fici, Chr
  • Puccinia striiformis f.sp. Secalis Pucciniastrum coryii, or Uredinales such as Cronartium ribicola, Gymnosporangium juniperi-viginianae, Melampsora medusae, Phakopsora pachyrhizi, Phragmidium mucronatum, Physopella ampelosidis, Tranzschelia discolor and Uromyces viciae-fabae and other rots and diseases such as those caused by Cryptococcus spp., Exobasidium vexans, Marasmiellus inoderma, Mycena spp., Sphacelotheca reiliana, Typhula ishikariensis, Urocystis agropyri, Itersonilia perplexans, Corticium invisum, Laetisaria fuciformis, Waitea circinata, Rhizoctonia solani, Tha
  • Blastocladiomycetes such as Physoderma maydis.
  • Mucoromycetes such as Choanephora cucurbitarum. ⁇ , Mucor spp.; Rhizopus arrhizus,
  • the compounds and compositions comprising them may also have activity against bacteria such as Erwinia amylovora, Erwinia caratovora, Xanthomonas campestris, Pseudomonas syringae, Strptomyces scabies and other related species as well as certain protozoa.
  • target crops and/or useful plants to be protected typically comprise perennial and annual crops, such as berry plants for example blackberries, blueberries, cranberries, raspberries and strawberries; cereals for example barley, maize (corn), millet, oats, rice, rye, sorghum triticale and wheat; fibre plants for example cotton, flax, hemp, jute and sisal; field crops for example sugar and fodder beet, coffee, hops, mustard, oilseed rape (canola), poppy, sugar cane, sunflower, tea and tobacco; fruit trees for example apple, apricot, avocado, banana, cherry, citrus, nectarine, peach, pear and plum; grasses for example Bermuda grass, bluegrass, bentgrass, centipede grass, fescue, ryegrass, St.
  • perennial and annual crops such as berry plants for example blackberries, blueberries, cranberries, raspberries and strawberries
  • cereals for example barley, maize (corn), millet, oats
  • Augustine grass and Zoysia grass herbs such as basil, borage, chives, coriander, lavender, lovage, mint, oregano, parsley, rosemary, sage and thyme; legumes for example beans, lentils, peas and soya beans; nuts for example almond, cashew, ground nut, hazelnut, peanut, pecan, pistachio and walnut; palms for example oil palm; ornamentals for example flowers, shrubs and trees; other trees, for example cacao, coconut, olive and rubber; vegetables for example asparagus, aubergine, broccoli, cabbage, carrot, cucumber, garlic, lettuce, marrow, melon, okra, onion, pepper, potato, pumpkin, rhubarb, spinach and tomato; and vines for example grapes.
  • herbs such as basil, borage, chives, coriander, lavender, lovage, mint, oregano, parsley, rosemary, sage and thyme
  • legumes for example beans, lentils, peas and soya beans
  • the useful plants and / or target crops in accordance with the invention include conventional as well as genetically enhanced or engineered varieties such as, for example, insect resistant (e.g. Bt. and VIP varieties) as well as disease resistant, herbicide tolerant (e.g. glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® and LibertyLink®) and nematode tolerant varieties.
  • suitable genetically enhanced or engineered crop varieties include the Stoneville 5599BR cotton and Stoneville 4892BR cotton varieties.
  • useful plants and/or “target crops” is to be understood as including also useful plants that have been rendered tolerant to herbicides like bromoxynil or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, for example primisulfuron, prosulfuron and trifloxysulfuron, EPSPS (5-enol-pyrovyl-shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors or PPO (protoporphyrinogen-oxidase) inhibitors) as a result of conventional methods of breeding or genetic engineering.
  • herbicides like bromoxynil or classes of herbicides
  • EPSPS (5-enol-pyrovyl-shikimate-3-phosphate-synthase) inhibitors
  • GS glutamine synthetase
  • PPO protoporphyrinogen-oxidase
  • imazamox by conventional methods of breeding (mutagenesis) is Clearfield® summer rape (Canola).
  • crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® , Herculex I® and LibertyLink®.
  • useful plants and/or “target crops” is to be understood as including those which naturally are or have been rendered resistant to harmful insects. This includes plants transformed by the use of recombinant DNA techniques, for example, to be capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria. Examples of toxins which can be expressed include d-endotoxins, vegetative insecticidal proteins (Vip), insecticidal proteins of bacteria colonising nematodes, and toxins produced by scorpions, arachnids, wasps and fungi.
  • Vip vegetative insecticidal proteins
  • insecticidal proteins of bacteria colonising nematodes and toxins produced by scorpions, arachnids, wasps and fungi.
  • An example of a crop that has been modified to express the Bacillus thuringiensis toxin is the Bt maize KnockOut® (Syngenta Seeds).
  • An example of a crop comprising more than one gene that codes for insecticidal resistance and thus expresses more than one toxin is VipCot® (Syngenta Seeds).
  • Crops or seed material thereof can also be resistant to multiple types of pests (so-called stacked transgenic events when created by genetic modification).
  • a plant can have the ability to express an insecticidal protein while at the same time being herbicide tolerant, for example Herculex I® (Dow AgroSciences, Pioneer Hi-Bred International).
  • useful plants and/or “target crops” is to be understood as including also useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called "pathogenesis-related proteins" (PRPs, see e.g. EP-A-0 392 225).
  • PRPs pathogenesis-related proteins
  • Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392225, WO 95/33818, and EP-A-0 353 191 .
  • the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Toxins that can be expressed by transgenic plants include, for example, insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as 5- endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1 , Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp.
  • insecticidal proteins from Bacillus cereus or Bacillus popilliae or insecticidal proteins from Bacillus thuringiensis, such as 5- endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or
  • orXenorhabdus spp. such as Photorhabdus luminescens, Xenorhabdus nematophilus
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins
  • toxins produced by fungi such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins
  • agglutinins proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors
  • ribosomeinactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdy
  • d-endotoxins for example CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1 , Vip2, Vip3 or Vip3A, expressly also hybrid toxins, truncated toxins and modified toxins.
  • Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701).
  • Truncated toxins for example a truncated CrylAb, are known.
  • modified toxins one or more amino acids of the naturally occurring toxin are replaced.
  • amino acid replacements preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G-recognition sequence is inserted into a Cry3A toxin (see W003/018810).
  • Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.
  • the toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects.
  • insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).
  • Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylAb toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a CrylAb and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylAc toxin); Bollgard I® (cotton variety that expresses a
  • transgenic crops are:
  • MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G-protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
  • MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.
  • NK603 x MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810.
  • NK603 c MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a CrylAb toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.
  • locus means fields in or on which plants are growing, or where seeds of cultivated plants are sown, or where seed will be placed into the soil. It includes soil, seeds, and seedlings, as well as established vegetation.
  • plants refers to all physical parts of a plant, including seeds, seedlings, saplings, roots, tubers, stems, stalks, foliage, and fruits.
  • plant propagation material is understood to denote generative parts of the plant, such as seeds, which can be used for the multiplication of the latter, and vegetative material, such as cuttings or tubers, for example potatoes. There may be mentioned for example seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes and parts of plants. Germinated plants and young plants which are to be transplanted after germination or after emergence from the soil, may also be mentioned. These young plants may be protected before transplantation by a total or partial treatment by immersion.
  • plant propagation material is understood to denote seeds.
  • Pesticidal agents referred to herein using their common name are known, for example, from “The Pesticide Manual”, 15th Ed., British Crop Protection Council 2009.
  • the compounds of formula (I) may be used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation. To this end they may be conveniently formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions or suspensions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances. As with the type of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances. The compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders or tackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.
  • Suitable carriers and adjuvants can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers.
  • Such carriers are for example described in WO 97/33890.
  • Suspension concentrates are aqueous formulations in which finely divided solid particles of the active compound are suspended. Such formulations include anti-settling agents and dispersing agents and may further include a wetting agent to enhance activity as well an anti-foam and a crystal growth inhibitor. In use, these concentrates are diluted in water and normally applied as a spray to the area to be treated. The amount of active ingredient may range from 0.5% to 95% of the concentrate.
  • Wettable powders are in the form of finely divided particles which disperse readily in water or other liquid carriers.
  • the particles contain the active ingredient retained in a solid matrix.
  • Typical solid matrices include fuller’s earth, kaolin clays, silicas and other readily wet organic or inorganic solids. Wettable powders normally contain from 5% to 95% of the active ingredient plus a small amount of wetting, dispersing or emulsifying agent.
  • Emulsifiable concentrates are homogeneous liquid compositions dispersible in water or other liquid and may consist entirely of the active compound with a liquid or solid emulsifying agent, or may also contain a liquid carrier, such as xylene, heavy aromatic naphthas, isophorone and other non-volatile organic solvents. In use, these concentrates are dispersed in water or other liquid and normally applied as a spray to the area to be treated. The amount of active ingredient may range from 0.5% to 95% of the concentrate.
  • Granular formulations include both extrudates and relatively coarse particles and are usually applied without dilution to the area in which treatment is required.
  • Typical carriers for granular formulations include sand, fuller’s earth, attapulgite clay, bentonite clays, montmorillonite clay, vermiculite, perlite, calcium carbonate, brick, pumice, pyrophyllite, kaolin, dolomite, plaster, wood flour, ground corn cobs, ground peanut hulls, sugars, sodium chloride, sodium sulphate, sodium silicate, sodium borate, magnesia, mica, iron oxide, zinc oxide, titanium oxide, antimony oxide, cryolite, gypsum, diatomaceous earth, calcium sulphate and other organic or inorganic materials which absorb or which can be coated with the active compound.
  • Granular formulations normally contain 5% to 25% of active ingredients which may include surface-active agents such as heavy aromatic naphthas, kerosene and other petroleum fractions, or vegetable oils
  • Dusts are free-flowing admixtures of the active ingredient with finely divided solids such as talc, clays, flours and other organic and inorganic solids which act as dispersants and carriers.
  • Microcapsules are typically droplets or granules of the active ingredient enclosed in an inert porous shell which allows escape of the enclosed material to the surroundings at controlled rates.
  • Encapsulated droplets are typically 1 to 50 microns in diameter.
  • the enclosed liquid typically constitutes 50 to 95% of the weight of the capsule and may include solvent in addition to the active compound.
  • Encapsulated granules are generally porous granules with porous membranes sealing the granule pore openings, retaining the active species in liquid form inside the granule pores.
  • Granules typically range from 1 millimetre to 1 centimetre and preferably 1 to 2 millimetres in diameter. Granules are formed by extrusion, agglomeration or prilling, or are naturally occurring.
  • Shell or membrane materials include natural and synthetic rubbers, cellulosic materials, styrene-butadiene copolymers, polyacrylonitriles, polyacrylates, polyesters, polyamides, polyureas, polyurethanes and starch xanthates.
  • compositions for agrochemical applications include simple solutions of the active ingredient in a solvent in which it is completely soluble at the desired concentration, such as acetone, alkylated naphthalenes, xylene and other organic solvents.
  • Pressurised sprayers wherein the active ingredient is dispersed in finely-divided form as a result of vaporisation of a low boiling dispersant solvent carrier, may also be used.
  • Suitable agricultural adjuvants and carriers that are useful in formulating the compositions of the invention in the formulation types described above are well known to those skilled in the art.
  • Liquid carriers that can be employed include, for example, water, toluene, xylene, petroleum naphtha, crop oil, acetone, methyl ethyl ketone, cyclohexanone, acetic anhydride, acetonitrile, acetophenone, amyl acetate, 2-butanone, chlorobenzene, cyclohexane, cyclohexanol, alkyl acetates, diacetonalcohol, 1 ,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N-dimethyl formamide, dimethyl sulfoxide, 1 ,4-dioxane, dipropylene glycol, dipropylene glycol methyl ether, dipropylene glycol
  • Suitable solid carriers include, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, chalk, diatomaxeous earth, lime, calcium carbonate, bentonite clay, fuller’s earth, cotton seed hulls, wheat flour, soybean flour, pumice, wood flour, walnut shell flour and lignin.
  • a broad range of surface-active agents are advantageously employed in both said liquid and solid compositions, especially those designed to be diluted with carrier before application. These agents, when used, normally comprise from 0.1% to 15% by weight of the formulation. They can be anionic, cationic, non-ionic or polymeric in character and can be employed as emulsifying agents, wetting agents, suspending agents or for other purposes.
  • Typical surface active agents include salts of alkyl sulfates, such as diethanolammonium lauryl sulphate; alkylarylsulfonate salts, such as calcium dodecylbenzenesulfonate; alkylphenol-alkylene oxide addition products, such as nonylphenol-C.sub.
  • alcohol-alkylene oxide addition products such as tridecyl alcohol-C.sub. 16 ethoxylate
  • soaps such as sodium stearate
  • alkylnaphthalenesulfonate salts such as sodium dibutylnaphthalenesulfonate
  • dialkyl esters of sulfosuccinate salts such as sodium di(2-ethylhexyl) sulfosuccinate
  • sorbitol esters such as sorbitol oleate
  • quaternary amines such as lauryl trimethylammonium chloride
  • polyethylene glycol esters of fatty acids such as polyethylene glycol stearate
  • salts of mono and dialkyl phosphate esters such as mono and dialkyl phosphate esters.
  • adjuvants commonly utilized in agricultural compositions include crystallisation inhibitors, viscosity modifiers, suspending agents, spray droplet modifiers, pigments, antioxidants, foaming agents, anti-foaming agents, light-blocking agents, compatibilizing agents, antifoam agents, sequestering agents, neutralising agents and buffers, corrosion inhibitors, dyes, odorants, spreading agents, penetration aids, micronutrients, emollients, lubricants and sticking agents.
  • biocidally active ingredients or compositions may be combined with the compositions of the invention and used in the methods of the invention and applied simultaneously or sequentially with the compositions of the invention. When applied simultaneously, these further active ingredients may be formulated together with the compositions of the invention or mixed in, for example, the spray tank. These further biocidally active ingredients may be fungicides, herbicides, insecticides, bactericides, acaricides, nematicides and/or plant growth regulators.
  • compositions of the invention may also be applied with one or more systemically acquired resistance inducers (“SAR” inducer).
  • SAR inducers are known and described in, for example, United States Patent No. US 6,919,298 and include, for example, salicylates and the commercial SAR inducer acibenzolar-S-methyl.
  • the compounds of formula (I) are normally used in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession with further compounds.
  • further compounds can be e.g. fertilizers or micronutrient donors or other preparations, which influence the growth of plants. They can also be selective herbicides or non-selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.
  • the compounds of formula (I) may be used in the form of (fungicidal) compositions for controlling or protecting against phytopathogenic microorganisms, comprising as active ingredient at least one compound of formula (I) or of at least one preferred individual compound as above-defined, in free form or in agrochemically usable salt form, and at least one of the above-mentioned adjuvants.
  • the invention therefore provides a composition, preferably a fungicidal composition, comprising at least one compound formula (I) an agriculturally acceptable carrier and optionally an adjuvant.
  • An agricultural acceptable carrier is for example a carrier that is suitable for agricultural use.
  • Agricultural carriers are well known in the art.
  • said composition may comprise at least one or more pesticidally active compounds, for example an additional fungicidal active ingredient in addition to the compound of formula (I).
  • the compound of formula (I) may be the sole active ingredient of a composition or it may be admixed with one or more additional active ingredients such as a pesticide, fungicide, synergist, herbicide or plant growth regulator where appropriate.
  • An additional active ingredient may, in some cases, result in unexpected synergistic activities.
  • Suitable additional active ingredients include the following: 1 ,2,4-thiadiazoles, 2,6- dinitroanilines, acylalanines, aliphatic nitrogenous compounds, amidines, aminopyrimidinols, anilides, anilino-pyrimidines, anthraquinones, antibiotics, aryl-phenylketones, benzamides, benzene- sulfonamides, benzimidazoles, benzothiazoles, benzothiodiazoles, benzothiophenes, benzoylpyridines, benzthiadiazoles, benzylcarbamates, butylamines, carbamates, carboxamides, carpropamids, chloronitriles, cinnamic acid amides, copper containing compounds, cyanoacetamideoximes, cyanoacrylates, cyanoimidazoles, cyanomethylene-thiazolidines, dicarbonitriles, dicarboxamides, dicarboximi
  • suitable additional active ingredients also include the following: a compound selected from the group of substances consisting of petroleum oils, 1 ,1-bis(4-chlorophenyl)-2- ethoxyethanol, 2,4-dichlorophenyl benzenesulfonate, 2-fluoro-N-methyl-N-1-naphthylacetamide, 4- chlorophenyl phenyl sulfone, acetoprole, aldoxycarb, amidithion, amidothioate, amiton, amiton hydrogen oxalate, amitraz, aramite, arsenous oxide, azobenzene, azothoate, benomyl, benoxafos, benzyl benzoate, bixafen, brofenvalerate, bromo- cyclen, bromophos, bromopropylate, buprofezin, butocarboxim, butoxycarboxim, butylpyridaben, calcium poly
  • FMC 1137 formetanate, formetanate hydrochloride, formparanate, gamma-HCH, glyodin, halfenprox, hexadecyl cyclopropanecarboxylate, isocarbophos, jasmolin I, jasmolin II, jodfenphos, lindane, malonoben, mecarbam, mephosfolan, mesulfen, methacrifos, methyl bromide, metolcarb, mexacarbate, milbemycin oxime, mipafox, monocrotophos, morphothion, moxidectin, naled, 4-chloro-2-(2-chloro-2-methyl-propyl)-5-[(6-iodo-3-pyridyl)methoxy]pyridazin-3- one, nifluridide, nikkomycins, nitrilacarb, n
  • Agrobacterium radiobacter Amblyseius spp., Anagrapha falcifera NPV, Anagrus atomus, Aphelinus a bdominalis, Aphidius colemani, Aphidoletes aphidimyza, Autographa californica NPV,
  • Cryptolaemus montrouzieri Cydia pomonella GV, Dacnusa sibirica, Diglyphus isaea, Encarsia formos a, Eretmocerus eremicus, Heterorhabditis bacteriophora and H. megidis,
  • Hippodamia convergens, Leptomastix dactylopii, Macrolophus caliginosus, Mamestra brassicae NPV, Metaphycus helvolus, Metarhizium anisopliae var. acridum, Metarhizium anisopliae var. anisopliae, Ne odiprion sertifer NPV and N. lecontei NPV, Orius spp., Paecilomyces fumosoroseus,
  • XMC zetamethrin, zinc phosphide, zolaprofos, and meperfluthrin, tetramethylfluthrin, bis(tributyltin) oxide, bromoacetamide, ferric phosphate, niclosamide-olamine, tributyltin oxide, pyrimorph, trifenmorph, 1 ,2-dibromo-3-chloropropane, 1 ,3-dichloropropene, 3,4- dichlorotetrahydrothiophene 1 ,1 -dioxide, 3-(4-chlorophenyl)-5-methylrhodanine, 5-methyl-6-thioxo- 1 ,3,5-thiadiazinan-3-ylacetic acid, 6-isopentenylaminopurine, 2-fluoro-N-(3-methoxyphenyl)-9H-purin- 6-amine, benclothiaz, cytokinins, DCIP, fur
  • the compounds of the invention may also be used in combination with anthelmintic agents.
  • anthelmintic agents include, compounds selected from the macrocyclic lactone class of compounds such as ivermectin, avermectin, abamectin, emamectin, eprinomectin, doramectin, selamectin, moxidectin, nemadectin and milbemycin derivatives as described in EP- 357460, EP- 444964 and EP-594291 .
  • Additional anthelmintic agents include semisynthetic and biosynthetic avermectin/milbemycin derivatives such as those described in US-5015630, WO-9415944 and WO- 9522552. Additional anthelmintic agents include the benzimidazoles such as albendazole, cambendazole, fenbendazole, flubendazole, mebendazole, oxfendazole, oxibendazole, parbendazole, and other members of the class. Additional anthelmintic agents include imidazothiazoles and tetrahydropyrimidines such as tetramisole, levamisole, pyrantel pamoate, oxantel or morantel. Additional anthelmintic agents include flukicides, such as triclabendazole and clorsulon and the cestocides, such as praziquantel and epsiprantel.
  • the compounds of the invention may be used in combination with derivatives and analogues of the paraherquamide/marcfortine class of anthelmintic agents, as well as the antiparasitic oxazolines such as those disclosed in US-5478855, US- 4639771 and DE-19520936.
  • the compounds of the invention may be used in combination with derivatives and analogues of the general class of dioxomorpholine antiparasitic agents as described in WO 96/15121 and also with anthelmintic active cyclic depsipeptides such as those described in WO 96/11945, WO 93/19053, WO 93/25543, EP 0 626 375, EP 0 382 173, WO 94/19334, EP 0 382 173, and EP 0 503 538.
  • the compounds of the invention may be used in combination with other ectoparasiticides; for example, fipronil; pyrethroids; organophosphates; insect growth regulators such as lufenuron; ecdysone agonists such as tebufenozide and the like; neonicotinoids such as imidacloprid and the like.
  • ectoparasiticides for example, fipronil; pyrethroids; organophosphates; insect growth regulators such as lufenuron; ecdysone agonists such as tebufenozide and the like; neonicotinoids such as imidacloprid and the like.
  • the compounds of the invention may be used in combination with terpene alkaloids, for example those described in International Patent Application Publication Numbers WO 95/19363 or WO 04/72086, particularly the compounds disclosed therein.
  • Organophosphates acephate, azamethiphos, azinphos-ethyl, azinphos- methyl, bromophos, bromophos-ethyl, cadusafos, chlorethoxyphos, chlorpyrifos, chlorfenvinphos, chlormephos, demeton, demeton-S-methyl, demeton-S-methyl sulphone, dialifos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitrothion, fensulfothion, fenthion, flupyrazofos, fonofos, formothion, fosthiazate, heptenophos, isazophos, isothioate, isoxathion, malathion, me
  • Carbamates alanycarb, aldicarb, 2-sec-butylphenyl methylcarbamate, benfuracarb, carbaryl, carbofuran, carbosulfan, cloethocarb, ethiofencarb, fenoxycarb, fenthiocarb, furathiocarb, HCN-801 , isoprocarb, indoxacarb, methiocarb, methomyl, 5-methyl-m-cumenylbutyryl(methyl)carbamate, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, UC-51717.
  • Pyrethroids acrinathin, allethrin, alphametrin, 5-benzyl-3-furylmethyl (E)-(1 R)-cis-2,2-dimethyl- 3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, bifenthrin, beta-cyfluthrin, cyfluthrin, a- cypermethrin, beta-cypermethrin, bioallethrin, bioallethrin((S)-cyclopentylisomer), bioresmethrin, bifenthrin, NCI-85193, cycloprothrin, cyhalothrin, cythithrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, ethofenprox, fenfluthrin, fenpropathrin, fenvaler
  • Arthropod growth regulators a) chitin synthesis inhibitors: benzoylureas: chlorfluazuron, diflubenzuron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron, buprofezin, diofenolan, hexythiazox, etoxazole, chlorfentazine; b) ecdysone antagonists: halofenozide, methoxyfenozide, tebufenozide; c) juvenoids: pyriproxyfen, methoprene (including S-methoprene), fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen.
  • antiparasitics acequinocyl, amitraz, AKD-1022, ANS-118, azadirachtin, Bacillus thuringiensis, bensultap, bifenazate, binapacryl, bromopropylate, BTG-504, BTG-505, camphechlor, cartap, chlorobenzilate, chlordimeform, chlorfenapyr, chromafenozide, clothianidine, cyromazine, diacloden, diafenthiuron, DBI-3204, dinactin, dihydroxymethyldihydroxypyrrolidine, dinobuton, dinocap, endosulfan, ethiprole, ethofenprox, fenazaquin, flumite, MTI- 800, fenpyroximate, fluacrypyrim, flubenzimine, flubrocythrinate, flufenzine, flufenprox, fluproxyfen, halofenprox, hydr
  • Biological agents Bacillus thuringiensis ssp aizawai, kurstaki, Bacillus thuringiensis delta endotoxin, baculovirus, entomopathogenic bacteria, virus and fungi.
  • Bactericides chlortetracycline, oxytetracycline, streptomycin.
  • TX means one compound selected from the group consisting of the compounds as represented in Tables A1 to A8 (above) or Table E (compounds E.01 to E.058) (below): a compound selected from the group of substances consisting of petroleum oils + TX, 1 ,1-bis(4- chlorophenyl)-2-ethoxyethanol + TX, 2,4-dichlorophenyl benzenesulfonate + TX, 2-fluoro-N-methyl-N- 1-naphthylacetamide + TX, 4-chlorophenyl phenyl sulfone + TX, acetoprole + TX, aldoxycarb + TX, amidithion + TX, amidothioate + TX, amiton + TX, amiton hydrogen oxalate + TX, amitraz + TX, aramite + TX, ar
  • TX Paecilomyces fumosoroseus + TX, Phytoseiulus persimilis + TX, Steinernema bibionis + TX, Steinernema carpocapsae + TX, Steinernema feltiae + TX, Steinernema glaseri + TX, Steinernema riobrave + TX, Steinernema riobravis + TX, Steinernema scapterisci + TX, Steinernema spp. + TX, Trichogramma spp.
  • TX (these compounds may be prepared from the methods described in WO2015/155075); N'-[5-bromo- 2-methyl-6-(2-propoxypropoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine + TX (this compound may be prepared from the methods described in IPCOM000249876D); N-isopropyl-N’-[5-methoxy-2-methyl-4- (2, 2, 2-trifluoro-1 -hydroxy-1 -phenyl-ethyl)phenyl]-N-methyl-formamidine+ TX, N’-[4-(1 -cyclopropyl- 2, 2, 2-trifluoro-1-hydroxy-ethyl)-5-methoxy-2-methyl-phenyl]-N-isopropyl-N-methyl-formamidine +
  • TX (these compounds may be prepared from the methods described in WO2018/228896); N-ethyl-N’- [5-methoxy-2-methyl-4-[2-trifluoromethyl)oxetan-2-yl]phenyl]-N-methyl-formamidine + TX, N-ethyl-N’- [5-methoxy-2-methyl-4-[2-trifuoromethyl)tetrahydrofuran-2-yl]phenyl]-N-methyl-formamidine +
  • TX (these compounds may be prepared from the methods described in WO2019/110427); N-[(1 R)-1- benzyl-3-chloro-1 -methyl-but-3-enyl]-8-fluoro-quinoline-3-carboxamide + TX, N-[(1 S)-1 -benzyl-3- chloro-1-methyl-but-3-enyl]-8-fluoro-quinoline-3-carboxamide + TX, N-[(1 R)-1 -benzyl-3, 3, 3-trifluoro-1- methyl-propyl]-8-fluoro-quinoline-3-carboxamide + TX, N-[(1 S)-1 -benzyl-3, 3, 3-trifluoro-1 -methyl- propyl]-8-fluoro-quinoline-3-carboxamide + TX, N-[(1 R)-1 -benzyl-1 ,3-dimethyl-butyl]-7,8-difluoro- quinoline-3-carboxamide + TX,
  • the compounds in this paragraph may be prepared from the methods described in WO 2017/055473, WO 2017/055469, WO 2017/093348 and WO 2017/118689; 2-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol + TX (this compound may be prepared from the methods described in WO 2017/029179); 2-[6-(4- bromophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol + TX (this compound may be prepared from the methods described in WO 2017/029179); 3-[2-(1-chlorocyclopropyl)-3-(2- fluorophenyl)-2-hydroxy-propyl]imidazole-4-carbonitrile + TX (this compound may be prepared from the methods described in WO 2016
  • the active ingredient mixture of the compounds of formula (I) selected from one compound as represented in Tables A1 to A8 (above) or Table E (below) is preferably in a mixing ratio of from 100:1 to 1 :6000, especially from 50:1 to 1 :50, more especially in a ratio of from 20:1 to 1 :20, even more especially from 10:1 to 1 :10, very especially from 5:1 and 1 :5, special preference being given to a ratio of from 2:1 to 1 :2, and a ratio of from 4:1 to 2:1 being likewise preferred, above all in a ratio of 1 :1 , or 5:1 , or 5:2, or 5:3, or 5:4, or 4:1 , or 4:2, or 4:3, or 3:1 , or 3:2, or 2:1 , or 1 :5, or 2:5, or 3:5, or 4:5, or 1 :4, or 2:4, or 3:4, or 1 :3, or 2:3, or 1 :2, or 1 :600, or 1 :300, or 1 :150
  • the mixtures as described above can be used in a method for controlling pests, which comprises applying a composition comprising a mixture as described above to the pests or their environment, with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.
  • the mixtures comprising a compound as represented in Tables A1 to A8 (above) or Table E (below), and one or more active ingredients as described above can be applied, for example, in a single “ready-mix” form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a “tank-mix”, and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days.
  • the order of applying a compound as represented in Tables A1 to A8 (above) or Table E (below) and the active ingredient(s) as described above, is not essential for working the present invention.
  • compositions according to the invention can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.
  • auxiliaries such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides
  • compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • Another aspect of the invention is related to the use of a compound of Formula (I) or of a preferred individual compound as defined herein, of a composition comprising at least one compound of Formula (I) or at least one preferred individual compound as above-defined, or of a fungicidal or insecticidal mixture comprising at least one compound of Formula (I) or at least one preferred individual compound as above-defined, in admixture with other fungicides or insecticides as described above, for controlling or preventing infestation of plants, e.g. useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or non-living materials by insects or by phytopathogenic microorganisms, preferably fungal organisms..
  • useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or non-living materials by insects or by phytopathogenic microorganisms, preferably fungal organisms.
  • a further aspect of invention is related to a method of controlling or preventing an infestation of plants, e.g. useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or of non-living materials by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, which comprises the application of a compound of formula (I) or of a preferred individual compound as above-defined as active ingredient to the plants, to parts of the plants or to the locus thereof, to the propagation material thereof, or to any part of the non-living materials.
  • plants e.g. useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or of non-living materials by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms
  • a compound of formula (I) or of a preferred individual compound as above-defined as active ingredient to the plants, to parts of the plants or
  • Controlling or preventing means reducing infestation by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, to such a level that an improvement is demonstrated.
  • a preferred method of controlling or preventing an infestation of crop plants by phytopathogenic microorganisms, especially fungal organisms, or insects which comprises the application of a compound of formula (I), or an agrochemical composition which contains at least one of said compounds, is foliar application.
  • the frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen or insect.
  • the compounds of formula (I) can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying the compounds in solid form to the soil, e.g. in granularform (soil application). In crops of water rice such granulates can be applied to the flooded rice field.
  • the compounds of formula (I) may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation.
  • a formulation e.g. a composition containing the compound of formula (I), and, if desired, a solid or liquid adjuvant or monomers for encapsulating the compound of formula (I), may be prepared in a known manner, typically by intimately mixing and/or grinding the compound with extenders, for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
  • compositions that is the methods of controlling pests of the abovementioned type, such as spraying, atomizing, dusting, brushing on, dressing, scattering or pouring - which are to be selected to suit the intended aims of the prevailing circumstances - and the use of the compositions for controlling pests of the abovementioned type are other subjects of the invention.
  • Typical rates of concentration are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm, of active ingredient.
  • the rate of application per hectare is preferably 1g to 2000 g of active ingredient per hectare, more preferably 10 to 1000 g/ha, most preferably 10 to 600 g/ha.
  • convenient dosages are from 10mg to 1g of active substance per kg of seeds.
  • rates of 0.001 to 50 g of a compound of formula (I) per kg of seed preferably from 0.01 to 10g per kg of seed are generally sufficient.
  • composition comprising a compound of formula (I) according to the present invention is applied either preventative, meaning prior to disease development or curative, meaning after disease development.
  • compositions of the invention may be employed in any conventional form, for example in the form of a twin pack, a powder for dry seed treatment (DS), an emulsion for seed treatment (ES), a flowable concentrate for seed treatment (FS), a solution for seed treatment (LS), a water dispersible powder for seed treatment (WS), a capsule suspension for seed treatment (CF), a gel for seed treatment (GF), an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK
  • compositions may be produced in conventional manner, e.g. by mixing the active ingredients with appropriate formulation inerts (diluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects).
  • appropriate formulation inerts diiluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects.
  • conventional slow release formulations may be employed where long lasting efficacy is intended.
  • Particularly formulations to be applied in spraying forms such as water dispersible concentrates (e.g. EC, SC, DC, OD, SE, EW, EO and the like), wettable powders and granules, may contain surfactants such as wetting and dispersing agents and other compounds that provide adjuvancy effects, e.g.
  • a seed dressing formulation is applied in a manner known per se to the seeds employing the combination ofthe invention and a diluent in suitable seed dressing formulation form, e.g. as an aqueous suspension or in a dry powder form having good adherence to the seeds.
  • suitable seed dressing formulation form e.g. as an aqueous suspension or in a dry powder form having good adherence to the seeds.
  • seed dressing formulations are known in the art.
  • Seed dressing formulations may contain the single active ingredients or the combination of active ingredients in encapsulated form, e.g. as slow release capsules or microcapsules.
  • the formulations include from 0.01 to 90% by weight of active agent, from 0 to 20% agriculturally acceptable surfactant and 10 to 99.99% solid or liquid formulation inerts and adjuvant(s), the active agent consisting of at least the compound of formula (I) together with component (B) and (C), and optionally other active agents, particularly microbiocides or conservatives or the like.
  • Concentrated forms of compositions generally contain in between about 2 and 80%, preferably between about 5 and 70% by weight of active agent.
  • Application forms of formulation may for example contain from 0.01 to 20% by weight, preferably from 0.01 to 5% by weight of active agent. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ diluted formulations.
  • Certain compounds of the invention can be distinguished from known compounds by virtue of greater efficacy at low application rates, which can be verified by the person skilled in the art using the experimental procedures outlined in the Examples, using lower application rates if necessary, for example 50 ppm, 12.5 ppm, 6 ppm, 3 ppm, 1 .5 ppm, 0.8 ppm or 0.2 ppm.
  • Compounds of Formula (I) may possess any number of benefits including, inter alia, advantageous levels of biological activity for protecting plants against diseases that are caused by fungi or superior properties for use as agrochemical active ingredients (for example, greater biological activity, an advantageous spectrum of activity, an increased safety profile (including improved crop tolerance), improved physico-chemical properties, or increased biodegradability).
  • LC/MS Liquid Chromatography Mass Spectroscopy and the description of the apparatus and the methods are described below.
  • Wettable powders a) b) c) active ingredient [compound of formula (I)] 25 % 50 % 75 % sodium lignosulfonate 5 % 5 % sodium lauryl sulfate 3 % - 5 % sodium diisobutylnaphthalenesulfonate 6 % 10 % phenol polyethylene glycol ether 2 %
  • the active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with water to give suspensions of the desired concentration.
  • Powders for dry seed treatment a) b) c) active ingredient [compound of formula (I)] 25 % 50 % 75 % light mineral oil 5 % 5 % 5 % highly dispersed silicic acid 5 % 5 %
  • the active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
  • Emulsifiable concentrate active ingredient [compound of formula (I)] 10 % octylphenol polyethylene glycol ether 3 %
  • Emulsions of any required dilution which can be used in plant protection, can be obtained from this concentrate by dilution with water.
  • Active ingredient [compound of formula (I)] 5 % 6 % 4 % talcum 95 %
  • Ready-for-use dusts are obtained by mixing the active ingredient with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
  • Active ingredient 15 % sodium lignosulfonate 2 % carboxymethylcellulose 1 %
  • the active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water.
  • the mixture is extruded and then dried in a stream of air.
  • Active ingredient 8 % polyethylene glycol (mol. wt. 200) 3 %
  • the finely ground active ingredient is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.
  • Suspension concentrate active ingredient [compound of formula (I)] 40 % propylene glycol 10 % nonylphenol polyethylene glycol ether (15 mol of ethylene oxide) 6 %
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • Flowable concentrate for seed treatment active ingredient [compound of formula (I)] 40 % propylene glycol 5 % copolymer butanol PO/EO 2 % tristyrenephenole with 10-20 moles EO 2 %
  • Silicone oil (in the form of a 75 % emulsion in water) 0.2 %
  • the finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • 28 parts of a combination of the compound of formula (I) are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8:1).
  • This mixture is emulsified in a mixture of 1.2 parts of polyvinylalcohol, 0.05 parts of a defoamer and 51.6 parts of water until the desired particle size is achieved.
  • a mixture of 2.8 parts 1 ,6- diaminohexane in 5.3 parts of water is added. The mixture is agitated until the polymerization reaction is completed.
  • the obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent.
  • the capsule suspension formulation contains 28% of the active ingredients.
  • the medium capsule diameter is 8-15 microns.
  • the resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
  • LC/MS Liquid Chromatography Mass Spectrometry (description of the apparatus and the methods used for LC/MS analysis are given above)
  • Example A1 3-(6-bromo-3,3-dimethyl-4H-pyrrolo[1 ,2-a]pyrazin-1-yl)-8-fluoro-quinoline (compound E.037).
  • Step 1
  • reaction mixture was stirred at -78°C for 1 h before a solution of 8- fluoro-N-methoxy-N-methyl-quinoline-3-carboxamide (3.43 g, 14.65 mmol, 1 equiv.) in THF (15 mL) was added dropwise over 10 min. The reaction mixture was allowed to come back at 0°C and stirred at this temperature for 20 min.
  • Example A2 1-(8-fluoro-3-quinolyl)-6-(trifluoromethyl)spiro[4H-pyrrolo[1 ,2-a]pyrazine-3,T- cyclopentane] (compound E.08).
  • Step 1
  • Step 3 A suspension of (8-fluoro-3-quinolyl)-(1 H-pyrrol-2-yl)methanone (0.183 g, 0.69 mmol), te/ -butyl 2,2-dioxo-3-oxa-thia-1-azaspiro[4.4]nonane-1-carboxylate (0.19 g, 0.69 mmol) and caesium carbonate (0.45 g, 1 .37 mmol) in acetonitrile (5 ml_) was warmed to 80°C and stirred at this temperature for 18 h. The reaction mixture was cooled to RT and partitioned between water and ethyl acetate.
  • Step 1
  • Example A4 8-fluoro-3-[(3S or 3R)-3-methyl-3-propyl-6-(trifluoromethyl)-4H-pyrrolo[1 ,2-a]pyrazin-1- yljquinoline, enantiomer 1 of 2 and enantiomer 2 of 2. (compounds E.56 and E.57).
  • Spectra were recorded on a Mass Spectrometer from Waters (SQD, SQDII Single quadrupole mass spectrometer) equipped with an electrospray source (Polarity: positive and negative ions), Capillary: 3.00 kV, Cone range: 30 V, Extractor: 2.00 V, Source Temperature: 150°C, Desolvation Temperature: 350°C, Cone Gas Flow: 50 l/h, Desolvation Gas Flow: 650 l/h, Mass range: 100 to 900 Da) and an Acquity UPLC from Waters: Binary pump, heated column compartment , diode-array detector and ELSD detector.
  • Botryotinia fuckeliana Botryotinia fuckeliana (Botrvtis cinerea) / liquid culture (Gray mould)
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (Vogels broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 3-4 days after application.
  • DMSO fetal sulfate
  • Glomerella lagenarium (Colletotrichum laqenarium) / liquid culture (Anthracnose)
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is measured photometrically 3-4 days after application.
  • nutrient broth PDB potato dextrose broth
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 3-4 days after application.
  • nutrient broth PDB potato dextrose broth
  • Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 4-5 days after application.
  • nutrient broth PDB potato dextrose broth
  • 2-week old wheat plants cv. Riband are sprayed in a spray chamber with the formulated test compound diluted in water.
  • the test plants are inoculated by spraying a spore suspension on them one day after application and then kept at 22°C/21 °C (day/night) in a greenhouse. Disease damage is assessed directly when an appropriate level of disease appears on untreated check plants and efficacy was calculated compare to untreated controls (16 - 19 days after application).

Abstract

Compounds of the formula (I): Formula (I) wherein the substituents are as defined in claim 1, useful as pesticides, especially as fungicides.

Description

MICROBIOCIDAL QUINOLINE DIHYDROPYRROLOPYRAZINE DERIVATIVES
The present invention relates to microbiocidal quinoline dihydropyrrolopyrazine derivatives, e.g. as active ingredients, which have microbiocidal activity, in particular fungicidal activity. The invention also relates to the preparation of these quinoline dihydropyrrolopyrazine derivatives, to intermediates useful in the preparation of these quinoline dihydropyrrolopyrazine derivatives, to the preparation of these intermediates, to agrochemical compositions which comprise at least one of the quinoline dihydropyrrolopyrazine derivatives, to preparation of these compositions and to the use of the quinoline dihydropyrrolopyrazine derivatives or compositions in agriculture or horticulture for controlling or preventing infestation of plants, harvested food crops, seeds or non-living materials by phytopathogenic microorganisms, in particular fungi.
Certain fungicidal quinoline compounds are described in WO 2005/070917, WO 2011/077514, WO 2016/156129 and WO 2018/073110.
According to the present invention, there is provided a compound of formula (I):
Figure imgf000002_0001
wherein:
R1 is independently selected from halogen, cyano, hydroxy or methyl; n is 0, 1 or 2;
R2 and R3 are independently selected from hydrogen, halogen, methoxy, difluoromethyl, trifluoromethyl or methyl;
R4 is cyano, Ci-Csalkyl, C2-Csalkenyl, C2-Csalkynyl, Ci-C4alkoxy, Ci-C4haloalkoxy, C3- C5alkenyloxy, C3-Csalkynyloxy, Ci-C3alkoxyCi-C3alkyl, Ci-C4haloalkoxyCi-C5alkyl, Ci-C4haloalkoxyCi- C4alkoxy, C2-C4haloalkenyl, Ci-C4alkoxyC2-C5alkenyl, cyanoCi-Csalkyl, cyanoCi-C4alkoxy, cyanoC2- C5alkenyl, C3-C6cycloalkyl, phenyl, phenylCi-C2alkyl, heteroaryl or heteroarylCi-C2alkyl, wherein the heteroaryl moiety is a 5- or 6-membered aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and wherein the cycloalkyl, phenyl or heteroaryl groups are optionally substituted by 1 , 2 or 3 substituents independently selected from halogen, cyano, Ci-C3alkyl, Ci-C2haloalkyl, Ci-C4alkoxy and Ci-C4haloalkoxy; and
R5 is hydrogen, Ci-Csalkyl or Ci-C4haloalkyl; or R4 and R5 together with the connecting carbon atom form a 3- to 6-membered carbocyclic group;
R6 and R7 are independently selected from hydrogen, fluoro or methyl;
R8 is hydrogen, cyano, nitro, halogen, Ci-Csalkyl, C3-C6cycloalkyl, Ci-C4alkoxycarbonyl, Ci- C4haloalkyl, C3-C6halocycloalkyl, Ci-C4alkylsulfonyl, Ci-C4haloalkylsulfonyl, Ci-C4alkoxyCi- C4alkylsulfonyl, Ci-C4haloalkoxy, Ci-C4alkylsulfonyl, cyanoCi-C4alkylsulfonyl, C3-C6cycloalkylsulfonyl, phenylsulfonyl, benzylsulfonyl, phenyl and heteroaryl wherein the heteroaryl moiety is a 5- or 6- membered aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and wherein the phenyl and heteroaryl are optionally substituted by 1 , 2 or 3 substituents independently selected from halogen, Ci-C3alkyl, Ci-C4alkoxy, Ci-C4haloalkoxy, cyano, Ci-C2haloalkyl; and
R9 is hydrogen, halogen, cyano or nitro; or an agronomically acceptable salt, an N-oxide or stereoisomer thereof.
Surprisingly, it has been found that the novel compounds of Formula (I) have, for practical purposes, a very advantageous level of biological activity for protecting plants against diseases that are caused by fungi.
According to a second aspect of the invention, there is provided an agrochemical composition comprising a fungicidally effective amount of a compound of Formula (I). Such an agricultural composition may further comprise at least one additional active ingredient and/or an agrochemically- acceptable diluent or carrier.
According to a third aspect of the invention, there is provided a method of controlling or preventing infestation of useful plants by phytopathogenic microorganisms, wherein a fungicidally effective amount of a compound of Formula (I), ora composition comprising this compound as active ingredient, is applied to the plants, to parts thereof or the locus thereof.
According to a fourth aspect of the invention, there is provided the use of a compound of Formula (I) as a fungicide. According to this particular aspect of the invention, the use may exclude methods for the treatment of the human or animal body by surgery or therapy.
Where substituents are indicated as being optionally substituted, this means that they may or may not carry one or more identical or different substituents, e.g. one to four substituents. Normally not more than three such optional substituents are present at the same time. Preferably not more than two such optional substituents are present at the same time (i.e. the group may be optionally substituted by one or two of the substituents indicated as “optional”). Where the “optional substituent” group is a larger group, such as cycloalkyl or phenyl, it is most preferred that only one such optional substituent is present. Where a group is indicated as being substituted, e.g. alkyl, this includes those groups that are part of other groups, e.g. the alkyl in alkylthio. As used herein, the term "halogen" or “halo” refers to fluorine (fluoro), chlorine (chloro), bromine (bromo) or iodine (iodo), preferably fluorine, chlorine or bromine.
As used herein, cyano means a -CN group.
As used herein, the term “hydroxyl” or “hydroxy” means an -OH group.
As used herein, nitro means an -NO2 group.
As used herein, the term "Ci-Csalkyl" refers to a straight or branched hydrocarbon chain radical consisting solely of carbon and hydrogen atoms, containing no unsaturation, having from one to five carbon atoms, and which is attached to the rest of the molecule by a single bond. Ci-3alkyl and Ci-2alkyl are to be construed accordingly. Examples of Ci-Csalkyl include, but are not limited to, methyl, ethyl, n- propyl, 1-methylethyl (iso-propyl), n-butyl, and 1 ,1-dimethylethyl (f-butyl). A “Ci-C2alkylene” group refers to the corresponding definition of Ci-C2alkyl, except that such radical is attached to the rest of the molecule by two single bonds. Examples of Ci-C2alkylene, are -CH2- and -CH2CH2-.
As used herein, the term "C2-C5alkenyl" refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one double bond that can be of either the (E)- or (^-configuration, having from two to five carbon atoms, which is attached to the rest of the molecule by a single bond. C3-C4alkenyl is to be construed accordingly. Examples of C2-Csalkenyl include, but are not limited to, vinyl (ethenyl), prop-1 -enyl, allyl (prop-2-enyl), and but-1-enyl.
As used herein, the term "C2-C5alkynyl" refers to a straight or branched hydrocarbon chain radical group consisting solely of carbon and hydrogen atoms, containing at least one triple bond, having from two to five carbon atoms, and which is attached to the rest of the molecule by a single bond. The term "C3-C4alkynyl" is to be construed accordingly. Examples of C2-Csalkynyl include, but are not limited to, ethynyl, prop-1 -ynyl, propargyl (prop-2-ynyl), and but-1-ynyl.
As used herein, the term "Ci-C4alkoxy" refers to a radical of the formula RaO- where Ra is a Ci- C4alkyl radical as generally defined above. The terms Ci-C3alkoxy and Ci-C2alkoxy are to be construed accordingly. Examples of Ci-C4alkoxy include, but are not limited to, methoxy, ethoxy, propoxy, isopropoxy, and f-butoxy.
As used herein, the term Ci-C4haloalkoxy refers to a Ci-C4alkoxy radical as generally defined above substituted by one or more of the same or different halogen atoms.
As used herein, the term "Cs-Csalkenyloxy" refers to a radical of the formula RaO-, where Ra is a C3-C5alkenyl radical as generally defined above.
As used herein, the term "Cs-Csalkynyloxy" refers to a radical of the formula RaO-, where Ra is a C3-C5alkynyl radical as generally defined above.
As used herein, the term "Ci-C4haloalkyl" refers to a Ci-C4alkyl radical as generally defined above substituted by one or more of the same or different halogen atoms. Ci-C2haloalkyl is to be construed accordingly. Examples of Ci-C4haloalkyl include, but are not limited to fluoromethyl, fluoroethyl, difluoromethyl, trifluoromethyl, and 2,2,2-trifluoroethyl.
As used herein, the term "Ci-C3alkoxyCi-C3alkyl" refers to a radical of the formula Rb-0-Ra- where Rb is a Ci-C3alkyl radical as generally defined above, and Ra is a Ci-C3alkylene radical as generally defined above. As used herein, the term Ci-C4haloalkoxyCi-C5alkyl refers to a Ci-Csalkyl radical as generally defined above substituted by a Ci-C4haloalkoxy radical as generally defined above.
As used herein, the term "C2-C4haloalkenyl" refers to a C2-C4alkenyl radical as generally defined above substituted by one or more of the same or different halogen atoms.
As used herein, the term Ci-C4alkoxyC2-C5alkenyl refers to a C2-Csalkenyl radical as generally defined above substituted by a Ci-C4alkoxy radical as generally defined above.
As used herein, the term “cyanoCi-Csalkyl” refers to a Ci-Csalkyl radical as generally defined above substituted by one or more cyano groups. Examples of cyanoCi-Csalkyl include, but are not limited to cyanomethyl.
As used herein, the term cyanoCi-C4alkoxy refers to a Ci-C4alkoxy radical as generally defined above substituted by one or more cyano groups.
As used herein, the term cyanoC2-C5alkenyl refers to a C2-Csalkenyl radical as generally defined above substituted by one or more cyano groups.
As used herein, the term "C3-C6cycloalkyl" refers to a stable, monocyclic ring radical which is saturated or partially unsaturated and contains 3 to 6 carbon atoms. C3-C4cycloalkyl is to be construed accordingly. Examples of C3-C6cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
As used herein, the term “carbocyclic group” refers to a saturated or partially unsaturated ring radical in which all of the atoms composing the ring are carbon atoms.
As used herein, the term C3-C6halocycloalkyl refers to a C3-C6cycloalkyl radical as generally defined above substituted by one or more of the same or different halogen atoms.
As used herein, the term "phenylCi-C2alkyl" refers to a phenyl ring attached to the rest of the molecule by a Ci-C2alkylene radical as defined above. Examples of phenylCi-C2alkyl include, but are not limited to, benzyl.
As used herein, the term "heteroaryl" refers to a 5- or 6-membered monocyclic aromatic ring radical which comprises 1 , 2, 3 or 4 heteroatoms individually selected from nitrogen, oxygen and sulfur. The heteroaryl radical may be bonded to the rest of the molecule via a carbon atom or heteroatom. Examples of heteroaryl include, but are not limited to, furanyl, pyrrolyl, thienyl, pyrazolyl, imidazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, tetrazolyl, pyrazinyl, pyridazinyl, pyrimidyl and pyridyl.
As used herein, the term "heteroarylCi-C2alkyl" refers to a heteroaryl ring attached to the rest of the molecule by a Ci-C2alkylene radical as defined above.
As used herein, the term “Ci-C4alkoxycarbonyl” refers to a radical of the formula RaOC(O)-, where Ra is a Ci-C4alkyl radical as generally defined above.
As used herein, the term “Ci-C4alkylsulfonyl” refers to a radical of the formula RaS(0)2-, where Ra is a Ci-C4alkyl radical as generally defined above. Examples of Ci-C4alkylsulfonyl include, but are not limited to methylsulfonyl.
As used herein, the term Ci-C4haloalkylsulfonyl refers to a Ci-C4alkylsulfonyl radical as generally defined above substituted by one or more of the same or different halogen atoms.
As used herein, the term Ci-C4alkoxyCi-C4alkylsulfonyl refers to to a Ci-C4alkylsulfonyl radical as generally defined above substituted by a Ci-C4alkoxy radical as defined above. As used herein, the term Ci-C4haloalkoxyCi-C4alkylsulfonyl refers to to a Ci-C4alkylsulfonyl radical as generally defined above substituted by a Ci-C4haloalkoxy radical as defined above.
As used herein, the term cyanoCi-C4alkylsulfonyl refers to refers to to a Ci-C4alkylsulfonyl radical as generally defined above substituted by one or more cyano groups.
The presence of one or more possible asymmetric carbon atoms in a compound of formula (I) means that the compounds may occur in optically isomeric forms, i.e. enantiomeric or diastereomeric forms. Also atropisomers may occur as a result of restricted rotation about a single bond. Formula (I) is intended to include all those possible isomeric forms and mixtures thereof. The present invention includes all those possible isomeric forms and mixtures thereof for a compound of formula (I). Likewise, formula (I) is intended to include all possible tautomers. The present invention includes all possible tautomeric forms for a compound of formula (I).
In each case, the compounds of formula (I) according to the invention are in free form, in oxidized form as a N-oxide, in covalently hydrated form, or in salt form, e.g., an agronomically usable or agrochemically acceptable salt form.
N-oxides are oxidized forms of tertiary amines or oxidized forms of nitrogen containing heteroaromatic compounds. They are described for instance in the book “Heterocyclic N-oxides” by A. Albini and S. Pietra, CRC Press, Boca Raton 1991.
The following list provides definitions, including preferred definitions, for substituents n, R1, R2, R3, R4, R5, R6, R7, R8and R9 with reference to the compounds of Formula (I) according to the invention. For any one of these substituents, any of the definitions given below may be combined with any definition of any other substituent given below or elsewhere in this document.
R1 is independently selected from halogen, cyano, hydroxy or methyl, and n is 0, 1 or 2.
Prererably, R1 is halogen, in particular fluoro. Preferably, n is 1 or 2. More preferably, n is 1. More preferably, when n is 1 , R1 is 7-fluoro or 8-fluoro, and when n is 2, R1 is 7-fluoro and 8-fluoro.
R2 and R3 are independently selected from hydrogen, halogen, methoxy or methyl. Preferably, R2 and R3 are independently selected from hydrogen and methyl. More preferably, R2 and R3 are hydrogen, R2 is methyl and R3 is hydrogen or R2 is hydrogen and R3 is methyl. Most preferably, R2 and R3 are hydrogen.
R4 is cyano, Ci-Csalkyl, C2-Csalkenyl, C2-Csalkynyl, Ci-C4alkoxy, Ci-C4haloalkoxy, C3- C5alkenyloxy, C3-Csalkynyloxy, Ci-C3alkoxyCi-C3alkyl, Ci-C4haloalkoxyCi-C5alkyl, Ci-C4haloalkoxyCi- C4alkoxy, C2-C4haloalkenyl, Ci-C4alkoxyC2-C5alkenyl, cyanoCi-Csalkyl, cyanoCi-C4alkoxy, cyanoC2- C5alkenyl, C3-C6cycloalkyl, phenyl, phenylCi-C2alkyl, heteroaryl or heteroarylCi-C2alkyl, wherein the heteroaryl moiety is a 5- or 6-membered aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and wherein the cycloalkyl, phenyl or heteroaryl groups are optionally substituted by 1 , 2 or 3 substituents independently selected from halogen, cyano, Ci-C3alkyl, Ci-C2haloalkyl, Ci-C4alkoxy and Ci-C4haloalkoxy.
Preferably, R4 is Ci-Csalkyl, C2-Csalkenyl, C2-C4haloalkenyl, C2-Csalkynyl, C3-C6cycloalkyl, phenyl or phenylCi-C2alkyl. More preferably, R4 is Ci-Csalkyl, C2-C4alkenyl, C2-C4fluoroalkenyl, C2- C4Chloroalkenyl, C3-C6cycloalkyl, phenyl or phenylCi-C2alkyl. Still more preferably, R4 is methyl, ethyl, n-propyl, /so-propyl, n-butyl, sec-butyl, /so-butyl, fe/ -butyl, 3,3-dichloroallyl (-CH2CHC=Cl2), cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl or benzyl.
R5 is hydrogen, Ci-Csalkyl or Ci-C4haloalkyl. Preferably, R5 is hydrogen, Ci-C3alkyl or Ci- C3haloalkyl. More preferably, R5 is hydrogen or methyl, and in particular, methyl.
Alternatively, R4 and R5 together with the connecting carbon atom form a 3- to 6-membered carbocyclic group, in particular, a saturated carbocyclic group. Such carbocycles, in addition to the connecting carbon atom of the rest of the molecule, may be a divalent -(Chfejx- radical, wherein x is an integer from 2 to 5.
R6 and R7 are independently selected from hydrogen, fluoro or methyl. Preferably, at least one of R6 and R7 is hydrogen. More preferably, R6 and R7 are hydrogen.
R8 is hydrogen, cyano, nitro, halogen, Ci-Csalkyl, C3-C6cycloalkyl, Ci-C4alkoxycarbonyl, Ci- C4haloalkyl, C3-C6halocycloalkyl, Ci-C4alkylsulfonyl, Ci-C4haloalkylsulfonyl, Ci-C4alkoxyCi- C4alkylsulfonyl, Ci-C4haloalkoxy, Ci-C4alkylsulfonyl, cyanoCi-C4alkylsulfonyl, C3-C6cycloalkylsulfonyl, phenylsulfonyl, benzylsulfonyl, phenyl and heteroaryl wherein the heteroaryl moiety is a 5- or 6- membered aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and wherein the phenyl and heteroaryl are optionally substituted by 1 , 2 or 3 substituents independently selected from halogen, Ci-C3alkyl, Ci-C4alkoxy, Ci-C4haloalkoxy, cyano, Ci-C2haloalkyl.
Preferably, R8 is hydrogen, cyano, nitro, halogen, Ci-Csalkyl, C3-C6cycloalkyl, Ci-C4haloalkyl, C3-C6halocycloalkyl, Ci-C4alkylsulfonyl, Ci-C4haloalkoxy, Ci-C4haloalkylsulfonyl, C3- C4cycloalkylsulfonyl, phenylsulfonyl, benzylsulfonyl, phenyl or heteroaryl wherein the heteroaryl moiety is a 5- or 6-membered aromatic ring which comprises 1 or 2 nitrogen atoms, and wherein the phenyl and heteroaryl are optionally substituted by 1 or 2 substituents independently selected from halogen, methyl, ethyl, methoxy, trifluoromethyl, trifluoromethoxy and cyano.
More preferably, R8 is hydrogen, cyano, nitro, halogen (in particular, chloro or bromo), Ci- C4alkyl, Ci-C2fluoroalkyl, Ci-C4alkylsulfonyl, Ci-C2fluoroalkylsulfonyl, C4-C4cycloalkylsulfonyl, phenylsulfonyl, benzylsulfonyl, phenyl or pyrdinyl (in particular, pyrdin-2-yl or pyrdin-3-yl), wherein the phenyl and pyrdinyl are optionally substituted by a single substituent selected from halogen, methyl, ethyl, methoxy, trifluoromethyl, trifluoromethoxy or cyano. Even more preferably, R8 is hydrogen, cyano, nitro, chloro, bromo, methyl, ethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, -CF2CF3, -CF2CH3, -SO2CH3, -SO2CH2CH3, -SC>2CH(CH3)2, -SO2CF3, -SC>2cyclopropyl, -SC>2phenyl, -SC^CFhphenyl, phenyl, 2-methylphenyl, pyrdin-2-yl, pyrdin-3-yl or pyrdin-4-yl.
R9 is hydrogen, halogen, cyano or nitro. Preferably, R9 is hydrogen, chloro, bromo or iodo.
Preferably, the compound of formula (I) is a compound selected from one of E.01 to E.058 in Table E (below).
In selected embodiments of the present invention, the compound of formula (I) is represented as:
Figure imgf000008_0001
Specific examples of compounds of formula (I) are illustrated in the Tables A1 to A8 below: Table A1 : This table discloses 133 compounds of formula (I):
Figure imgf000009_0001
wherein n is 0, R2 and R3 are H, R9 is H, and wherein the values of R4, R5, R6, R7 and R8 are as defined in Table Z below:
Table Z
Figure imgf000009_0002
Figure imgf000010_0001
Figure imgf000011_0001
Figure imgf000012_0001
Table A2: This table discloses 133 compounds of formula (I), wherein n is 1 , R1 is 8-fluoro, R2 and R3 are H, R9 is H, and wherein the values of R4, R5, R6, R7 and R8 are as defined in Table Z above. Table A3: This table discloses 133 compounds of formula (I), wherein n is 2, R1 is 7-fluoro and 8-fluoro, R2 and R3 are H, R9 is H, and wherein the values of R4, R5, R6, R7 and R8 are as defined in Table Z above.
Table A4: This table discloses 133 compounds of formula (I), wherein n is 1 , R1 is 8-fluoro, R2 is CH3, R3 is H, R9 is H, and wherein the values of R4, R5, R6, R7 and R8 are as defined in Table Z above. Table A5: This table discloses 133 compounds of formula (I), wherein n is 1 , R1 is 8-fluoro, R2 is H, R3 is Chh, R9 is H, and wherein the values of R4, R5, R6, R7 and R8 are as defined in Table Z above.
Table A6: This table discloses 133 compounds of formula (I), wherein n is 1 , R1 is 8-fluoro, R2 and R3 are H, R9 is chloro, and wherein the values of R4, R5, R6, R7 and R8 are as defined in Table Z above.
Table A7: This table discloses 133 compounds of formula (I), wherein n is 1 , R1 is 8-chloro, R2 and R3 are H, R9 is H, and wherein the values of R4, R5, R6, R7 and R8 are as defined in Table Z above.
Table A8: This table discloses 133 compounds of formula (I), wherein n is 1 , R1 is 8-cyano, R2 and R3 are H, R9 is H, and wherein the values of R4, R5, R6, R7 and R8 are as defined in Table Z above.
Compounds of the present invention can be made as shown in the following schemes 1 to 9, in which, unless otherwise stated, the definition of each variable is as defined above for a compound of formula (I).
As shown in Scheme 1 , compounds of general formula (I) can be prepared from compounds of formula (II) and (III), wherein R12and R22are defined as shown in Scheme 1 , in the presence of a transition metal salt such as palladium acetate and supporting phosphine ligand such as 2-dicyclohexylphosphino- 2',4',6'-triisopropylbiphenyl or di(1-adamantyl)-n-butylphosphine, a base such as potassium phosphate in an inert solvent such as N,N-dimethylformamide.
Figure imgf000013_0001
Scheme 1
Compounds of formula (II) can be prepared from compounds of formula (ll-a) by treatment with an activating agent such as (chloromethylene)dimethyliminium chloride or trifluoromethane sulfonic anhydride in an inert solvent such as dichloromethane. Compounds of formula (ll-a) can be prepared from compounds of formula (ll-b), wherein R13 is Ci-C6alkyl or benzyl, by heating in an organic solvent such as ethanol. Compounds of formula (ll-b), wherein R13 is as defined above, can be prepared from compounds of formula (ll-c), wherein R13 is as defined above and compounds of formula (IV-a), wherein R14 is Ci- Cealkyl, benzyl, allyl, 2-trimethylsilylethyl or 2,2,2-trichloroethyl, in the presence of a base such as caesium carbonate in an inert solvent such as acetonitrile, followed by treatment with a deblocking reagent selected from reported methods described in Greene's Protective Groups in Organic Synthesis, Wiley, 2014. This is shown in scheme 2.
Figure imgf000014_0001
Compounds of formula (III), wherein R12 is as defined in scheme 1 , can be prepared from compounds of formula (lll-a), wherein R11 is chloro, bromo or iodo, by treatment with a transition metal salt such as palladium(ll)acetate, a phosphine ligand such as 2-dicyclohexylphosphino-2',4',6'- triisopropylbiphenyl, a boron source such as bis(pinacolato)diboron and a base such as potassium acetate in a solvent such as 1 ,4-dioxane. Alternatively, compounds of formula (III), wherein R12 is as defined in scheme 1 , can be prepared from compounds of formula (lll-c) by diazotization with NaNC>2 in the presence of a Bronsted acid such as HCI, followed by bis-boronic acid as described in Chem. Eur. J. 2014, 20, 6608 - 6612. Compounds of formula (lll-a), wherein R11 is chloro, bromo or iodo, can be prepared from compounds of formula (lll-b), by treatment with a halogenating agent such as bromine and a base such as pyridine in an inert solvent such as trifluorotoluene. Alternatively, compounds of formula (lll-a), wherein R11 is chloro, bromo or iodo, can be prepared from compounds of formula (lll-c) by diazotization with NaNC>2 and a Bronsted acid in the presence of a halide source such as CuBr2 or Kl. This is shown in scheme 3. (lll-c) Scheme 3
The synthesis of compounds of formula (ll-c), (lll-b) and (lll-c) from commercially available compounds by methods well known to a person skilled in the art is described in the chemical literature.
Compounds of formula (IV-a), wherein R14 is Ci-C6alkyl, benzyl, allyl, 2-trimethylsilylethyl or 2,2,2- trichloroethyl, can be prepared from compounds of formula (IV-d) through the sequence shown in scheme 4 (IV-d - IV-c - IV-b - IV-a) and detailed in Synthesis 2010, 2361-2366. Alternatively, compounds of formula (IV-a), wherein R14 is as described above, can be prepared from compounds of formula (IV-e) as described in J. Org. Chem. 2002, 67, 5164-5169. This is shown in scheme 4.
Figure imgf000015_0001
The synthesis of compounds of formula (IV-d) and (IV-e) from commercially available compounds by methods well known to a person skilled in the art is described in the chemical literature. Alternatively, compounds of general formula (I) can be prepared from compounds of formula (V) by treatment with a dehydrating agent such as trifluoromethanesulfonic anhydride or phosgene and a base such as 2,6-lutidine in an inert solvent such as chlorobenzene. This is shown in scheme 5.
Figure imgf000016_0001
Compounds of formula (V) can be prepared from compounds of formula (V-a) and compounds of formula (Vl-a) in the presence of a dehydrating agent such as propylphosphonic anhydride or phosgene and a base such as triethyl amine in an inert solvent such as toluene. Alternatively, compounds of formula (V) can be prepared from compounds of formula (lll-a), wherein R11 is chloro, bromo or iodo, and (Vl-a) in the presence of a transition metal salt such as palladium(ll)acetate, a phosphine ligand such as 1 ,1'- bis(diphenylphosphino)-ferrocene and a base such as triethyl amine in a solvent such as toluene under carbon monoxide atmosphere. This is shown in Scheme 6.
Figure imgf000016_0002
Scheme 6
Compounds of formula (V-a) can be prepared from compounds of formula (lll-a) in the presence of a transition metal salt such as palladium(ll)acetate, a phosphine ligand such as bis[(2- diphenylphosphino)phenyl] ether and a base such as triethyl amine in a solvent such as toluene under carbon monoxide atmosphere followed by alkaline saponification. Compounds of general formula (Vl-a) can be prepared from compounds of formula (IV-a) wherein R14 is Ci-C6alkyl, benzyl, allyl, 2-trimethylsilylethyl or 2,2,2-trichloroethyl and compounds of formula (VII) in the presence of a base such as caesium carbonate in an inert solvent such as acetonitrile to afford intermediates of general formula (Vll-a). The intermediates of general formula (Vll-a) can then be converted to compounds of formula (Vl-a) by removal of the carbamate under conditions described in Greene's Protective Groups in Organic Synthesis, Wiley, 2014. This is shown in scheme 7.
Figure imgf000017_0001
Scheme 7 Alternatively, compounds of general formula (I) can be prepared from compounds of formula (VIII- a) by heating or in the presence of an appropriate reagent for carbamate cleavage such as HCI. Compounds of formula (Vlll-a) can be prepared from compounds of formula (Vlll-b), wherein R14 is as described above, by treatment with compounds of formula (IV-a), wherein R14 is as described above, in presence of a base such as caesium carbonate. Compounds of formula (Vlll-b), can be obtained from compounds of formula (lll-d), wherein X is fluoro, chloro, bromo, iodo, triazolo[4,5-b]pyridin-3-oxy or phthalimido-N-oxy and compounds of formula (VII) in the presence or absence of a base such as ethyl magnesium bromide. Alternatively, compounds of formula (Vlll-b), can be obtained from compounds of formula (lll-e), wherein Z is Ci-C4alkoxy, (MeO)MeN, fluoro or chloro, and compounds of formula (Vll-b), wherein R15 is Ci-C6alkyl, in the presence of a base such as lithium 2,2,6,6-tetramethylpiperidide in an inert solvent such as tetrahydrofuran. This is shown in scheme 8.
Scheme 8
Alternatively, compounds of formula (I) can be obtained from compounds of formula (l-c) by one or several consecutive group transfer reactions using standard synthesis techniques known to a person skilled in the art. Non-exhaustive examples include chlorination, bromination, iodination, electrophilic cyanation, nitration, formylation, acetylation and trifluoromethylation. This is shown in scheme 9.
Figure imgf000018_0001
Scheme 9
Alternatively, compounds of formula (I) can be obtained by transformation of another, closely related, compound of formula (I) (or analogue thereof) using standard synthesis techniques known to the person skilled in the art. Non-exhaustive examples include oxidation reactions, oxygenation reactions, reduction reactions, hydrogenation reactions, hydrolysis reactions, coupling reactions, aromatic nucleophilic or electrophilic substitution reactions, nucleophilic substitution reactions, deoxyfluorination reactions, alkylation reactions, radical additions, nucleophilic addition reactions, condensation and halogenation reactions.
Certain intermediates described in the above schemes are novel and as such form a further aspect of the invention. The compounds of formula (I) can be used in the agricultural sector and related fields of use e.g. as active ingredients for controlling plant pests or on non-living materials for control of spoilage microorganisms or organisms potentially harmful to man. The novel compounds are distinguished by excellent activity at low rates of application, by being well tolerated by plants and by being environmentally safe. They have very useful curative, preventive and systemic properties and may be used for protecting numerous cultivated plants. The compounds of formula (I) can be used to inhibit or destroy the pests that occur on plants or parts of plants (fruit, blossoms, leaves, stems, tubers, roots) of different crops of useful plants, while at the same time protecting also those parts of the plants that grow later e.g. from phytopathogenic microorganisms.
It is also possible to use compounds of formula (I) as fungicide. The term “fungicide” as used herein means a compound that controls, modifies, or prevents the growth of fungi. The term “fungicidally effective amount” means the quantity of such a compound or combination of such compounds that is capable of producing an effect on the growth of fungi. Controlling or modifying effects include all deviation from natural development, such as killing, retardation and the like, and prevention includes barrier or other defensive formation in or on a plant to prevent fungal infection.
It is also possible to use compounds of formula (I) as dressing agents for the treatment of plant propagation material, e.g., seed, such as fruits, tubers or grains, or plant cuttings (for example rice), for the protection against fungal infections as well as against phytopathogenic fungi occurring in the soil. The propagation material can be treated with a composition comprising a compound of formula (I) before planting: seed, for example, can be dressed before being sown. The compounds of formula (I) can also be applied to grains (coating), either by impregnating the seeds in a liquid formulation or by coating them with a solid formulation. The composition can also be applied to the planting site when the propagation material is being planted, for example, to the seed furrow during sowing. The invention relates also to such methods of treating plant propagation material and to the plant propagation material so treated.
Furthermore the compounds according to present invention can be used for controlling fungi in related areas, for example in the protection of technical materials, including wood and wood related technical products, in food storage, in hygiene management.
In addition, the invention could be used to protect non-living materials from fungal attack, e.g. lumber, wall boards and paint.
Compounds of formula (I) and fungicidal compositions containing them may be used to control plant diseases caused by a broad spectrum of fungal plant pathogens. They are effective in controlling a broad spectrum of plant diseases, such as foliar pathogens of ornamental, turf, vegetable, field, cereal, and fruit crops.
These fungi and fungal vectors of disease, as well as phytopathogenic bacteria and viruses, which may be controlled are for example:
Absidia corymbifera, Alternaria spp, Aphanomyces spp, Ascochyta spp, Aspergillus spp. including A. flavus, A. fumigatus, A. nidulans, A. niger, A. terms, Aureobasidium spp. including A. pullulans, Blastomyces dermatitidis, Blumeria graminis, Bremia lactucae, Botryosphaeria spp. including B. dothidea, B. obtusa, Botrytis spp. inclusing B. cinerea, Candida spp. including C. albicans, C. glabrata, C. krusei, C. lusitaniae, C. parapsilosis, C. tropicalis, Cephaloascus fragrans, Ceratocystis spp, Cercospora spp. including C. arachidicola, Cercosporidium personatum, Cladosporium spp, Claviceps purpurea,
Coccidioides immitis, Cochliobolus spp, Colletotrichum spp. including C. musae,
Cryptococcus neoformans, Diaporthe spp, Didymella spp, Drechslera spp, Elsinoe spp, Epidermophyton spp, Erwinia amylovora, Erysiphe spp. including E. cichoracearum,
Eutypa lata, Fusarium spp. including F. culmorum, F. graminearum, F. langsethiae, F. moniliforme, F. oxysporum, F. proliferatum, F. subglutinans, F. solani, Gaeumannomyces graminis, Gibberella fujikuroi, Gloeodes pomigena, Gloeosporium musarum, Glomerella cingulate, Guignardia bidwellii, Gymnosporangium juniperi-virginianae, Helminthosporium spp, Hemileia spp, Histoplasma spp. including H. capsulatum, Laetisaria fuciformis, Leptographium lindbergi, Leveillula taurica, Lophodermium seditiosum, Microdochium nivale, Microsporum spp, Monilinia spp, Mucor spp, Mycosphaerella spp. including M. graminicola, M. pomi, Oncobasidium theobromaeon, Ophiostoma piceae, Paracoccidioides spp, Penicillium spp. including P. digitatum, P. italicum, Petriellidium spp, Peronosclerospora spp. Including P. maydis, P. philippinensis and P. sorghi, Peronospora spp, Phaeosphaeria nodorum, Phakopsora pachyrhizi, Phellinus igniarus, Phialophora spp, Phoma spp, Phomopsis viticola, Phytophthora spp. including P. infestans, Plasmopara spp. including P. halstedii, P. viticola, Pleospora spp., Podosphaera spp. including P. leucotricha, Polymyxa graminis, Polymyxa betae, Pseudocercosporella herpotrichoides, Pseudomonas spp, Pseudoperonospora spp. including P. cubensis, P. humuli, Pseudopeziza tracheiphila, Puccinia Spp. including P. hordei, P. recondita, P. striiformis, P. triticina, Pyrenopeziza spp, Pyrenophora spp, Pyricularia spp. including P. oryzae, Pythium spp. including P. ultimum, Ramularia spp, Rhizoctonia spp, Rhizomucor pusillus, Rhizopus arrhizus, Rhynchosporium spp, Scedosporium spp. including S. apiospermum and S. prolificans, Schizothyrium pomi,
Sclerotinia spp, Sclerotium spp, Septoria spp, including S. nodorum, S. tritici, Sphaerotheca macularis, Sphaerotheca fusca (Sphaerotheca fuliginea), Sporothorix spp, Stagonospora nodorum, Stemphylium spp,. Stereum hirsutum, Thanatephorus cucumeris, Thielaviopsis basicola, Tilletia spp, Trichoderma spp. including T. harzianum, T. pseudokoningii, T. viride,
Trichophyton spp, Typhula spp, Uncinula necator, Urocystis spp, Ustilago spp, Venturia spp. including V. inaequalis, Verticillium spp, and Xanthomonas spp.
In particular, compounds of formula (I) and fungicidal compositions containing them may be used to control plant diseases caused by a broad spectrum of fungal plant pathogens in the Basidiomycete, Ascomycete, Oomycete and/or Deuteromycete, Blasocladiomycete, Chrytidiomycete, Glomeromycete and/or Mucoromycete classes.
These pathogens may include:
Oomycetes, including Phytophthora diseases such as those caused by Phytophthora capsici, Phytophthora infestans, Phytophthora sojae, Phytophthora fraga ae, Phytophthora nicotianae, Phytophthora cinnamomi, Phytophthora cit cola, Phytophthora citrophthora and Phytophthora erythroseptica ; Pythium diseases such as those caused by Pythium aphanidermatum, Pythium arrhenomanes, Pythium graminicola, Pythium irregulare and Pythium ultimum ; diseases caused by Peronosporales such as Peronospora destructor, Peronospora parasitica, Plasmopara viticola, Plasmopara halstedii, Pseudoperonospora cubensis, Albugo Candida, Sclerophthora macrospora and Bremia iactucae\ and others such as Aphanomyces cochlioides, Labyrinthula zosterae, Peronosclerospora sorghi and Sclerospora graminicola.
Ascomycetes, including blotch, spot, blast or blight diseases and/or rots for example those caused by Pleosporales such as Stemphylium solani, Stagonospora tainanensis, Spilocaea oleaginea, Setosphaeria turcica, Pyrenochaeta lycoperisici, Pleospora herbarum, Phoma destructive, Phaeosphaeria herpotrichoides, Phaeocryptocus gaeumannii, Ophiosphaerella graminicola, Ophiobolus graminis, Leptosphaeria maculans, Hendersonia creberrima, Helminthosporium triticirepentis, Setosphaeria turcica, Drechslera glycines, Didymella bryoniae, Cycloconium oleagineum, Corynespora cassiicola, Cochliobolus sativus, Bipolaris cactivora, Venturia inaequalis, Pyrenophora teres, Pyrenophora tritici-repentis, Aiternaria alternata, Aiternaria brassicicola, Aiternaria solani and Alternaria tomatophila, Capnodiales such as Septoria tritici, Septoria nodorum, Septoria glycines, Cercospora arachidicola, Cercospora sojina, Cercospora zeae-maydis, Cercosporella capsellae and Cercosporella herpotrichoides, Cladosporium carpophilum, Cladosporium effusum, Passalora fulva, Cladosporium oxysporum, Dothistroma septosporum, Isariopsis clavispora, Mycosphaerella fijiensis, Mycosphaerella graminicola, Mycovellosiella koepkeii, Phaeoisariopsis bataticola, Pseudocercospora vitis, Pseudocercosporella herpotrichoides, Ramularia beticola, Ramularia collo-cygni, Magnaporthales such as Gaeumannomyces graminis, Magnaporthe grisea, Pyricularia oryzae, Diaporthales such as Anisogramma anomala, Apiognomonia errabunda, Cytospora platani, Diaporthe phaseolorum, Discula destructiva, Gnomonia fructicola, Greeneria uvicola, Melanconium juglandinum, Phomopsis viticola, Sirococcus clavigignenti-juglandacearum, Tubakia dryina, Dicarpella spp., Valsa ceratosperma, and others such as Actinothyrium graminis, Ascochyta pisi, Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Asperisporium caricae, Blumeriella jaapii, Candida spp., Capnodium ramosum, Cephaloascus spp., Cephalosporium gramineum, Ceratocystis paradoxa, Chaetomium spp., Hymenoscyphus pseudoalbidus, Coccidioides spp., Cylindrosporium padi, Diplocarpon malae, Drepanopeziza campestris, Elsinoe ampelina, Epicoccum nigrum, Epidermophyton spp., Eutypa lata, Geotrichum candidum, Gibellina cerealis, Gloeocercospora sorghi, Gloeodes pomigena, Gloeosporium perennans ; Gloeotinia temulenta, Griphospaeria corticola, Kabatiella lini, Leptographium microsporum, Leptosphaerulinia crassiasca, Lophodermium seditiosum, Marssonina graminicola, Microdochium nivale, Monilinia fructicola, Monographella albescens, Monosporascus cannonballus, Naemacyclus spp., Ophiostoma novo-ulmi, Paracoccidioides brasiliensis, Penicillium expansum, Pestalotia rhododendri, Petriellidium spp., Pezicula spp., Phialophora gregata, Phyllachora pomigena, Phymatotrichum omnivora, Physalospora abdita, Plectosporium tabacinum, Polyscytalum pustulans, Pseudopeziza medicaginis, Pyrenopeziza brassicae, Ramulispora sorghi, Rhabdocline pseudotsugae, Rhynchosporium secalis, Sacrocladium oryzae, Scedosporium spp., Schizothyrium pomi, Sclerotinia sclerotiorum, Sclerotinia minor, Sclerotium spp., Typhula ishikariensis, Seimatosporium mariae, Lepteutypa cupressi, Septocyta ruborum, Sphaceloma perseae, Sporonema phacidioides, Stigmina palmivora, Tapesia yallundae, Taphrina bullata, Thielviopsis basicola, Trichoseptoria fructigena, Zygophiala jamaicensis powdery mildew diseases for example those caused by Erysiphales such as Blumeria graminis, Erysiphe polygoni, Uncinula necator, Sphaerotheca fuligena, Podosphaera leucotricha, Podospaera macularis Golovinomyces cichoracearum, Leveillula taurica, Microsphaera diffusa, Oidiopsis gossypii, Phyllactinia guttata and Oidium arachidis ; molds for example those caused by Botryosphaeriales such as Dothiorella aromatica, Diplodia seriata, Guignardia bidwellii, Botrytis cinerea, Botryotinia allii, Botryotinia fabae, Fusicoccum amygdali, Lasiodiplodia theobromae, Macrophoma theicola, Macrophomina phaseolina, Phyllosticta cucurbitacearunr, anthracnoses for example those caused by Glommerelales such as Colletotrichum gloeosporioides, Colletotrichum lagenarium, Colletotrichum gossypii, Glomerella cingulata, and Colletotrichum graminicola ; and wilts or blights for example those caused by Hypocreales such as Acremonium strictum, Claviceps purpurea, Fusarium culmorum, Fusarium graminearum, Fusarium virguliforme, Fusarium oxysporum, Fusarium subglutinans, Fusarium oxysporum f.sp. cubense, Gerlachia nivale, Gibberella fujikuroi, Gibberella zeae, Gliocladium spp., Myrothecium verrucaria, Nectria ramulariae, Trichoderma viride, Trichothecium roseum, and Verticillium theobromae.
Basidiomycetes, including smuts for example those caused by Ustilaginales such as Ustilaginoidea virens, Ustilago nuda, Ustilago tritici, Ustilago zeae, rusts for example those caused by Pucciniales such as Cerotelium fici, Chrysomyxa arctostaphyli, Coleosporium ipomoeae, Hemileia vastatrix, Puccinia arachidis, Puccinia cacabata, Puccinia graminis, Puccinia recondita, Puccinia sorghi, Puccinia hordei, Puccinia striiformis f.sp. Hordei, Puccinia striiformis f.sp. Secalis, Pucciniastrum coryii, or Uredinales such as Cronartium ribicola, Gymnosporangium juniperi-viginianae, Melampsora medusae, Phakopsora pachyrhizi, Phragmidium mucronatum, Physopella ampelosidis, Tranzschelia discolor and Uromyces viciae-fabae and other rots and diseases such as those caused by Cryptococcus spp., Exobasidium vexans, Marasmiellus inoderma, Mycena spp., Sphacelotheca reiliana, Typhula ishikariensis, Urocystis agropyri, Itersonilia perplexans, Corticium invisum, Laetisaria fuciformis, Waitea circinata, Rhizoctonia solani, Thanetephorus cucurmeris, Entyloma dahliae, Entylomella microspora, Neovossia moliniae and Tilletia caries.
Blastocladiomycetes, such as Physoderma maydis.
Mucoromycetes, such as Choanephora cucurbitarum.·, Mucor spp.; Rhizopus arrhizus,
As well as diseases caused by other species and genera closely related to those listed above.
In addition to their fungicidal activity, the compounds and compositions comprising them may also have activity against bacteria such as Erwinia amylovora, Erwinia caratovora, Xanthomonas campestris, Pseudomonas syringae, Strptomyces scabies and other related species as well as certain protozoa.
Within the scope of present invention, target crops and/or useful plants to be protected typically comprise perennial and annual crops, such as berry plants for example blackberries, blueberries, cranberries, raspberries and strawberries; cereals for example barley, maize (corn), millet, oats, rice, rye, sorghum triticale and wheat; fibre plants for example cotton, flax, hemp, jute and sisal; field crops for example sugar and fodder beet, coffee, hops, mustard, oilseed rape (canola), poppy, sugar cane, sunflower, tea and tobacco; fruit trees for example apple, apricot, avocado, banana, cherry, citrus, nectarine, peach, pear and plum; grasses for example Bermuda grass, bluegrass, bentgrass, centipede grass, fescue, ryegrass, St. Augustine grass and Zoysia grass; herbs such as basil, borage, chives, coriander, lavender, lovage, mint, oregano, parsley, rosemary, sage and thyme; legumes for example beans, lentils, peas and soya beans; nuts for example almond, cashew, ground nut, hazelnut, peanut, pecan, pistachio and walnut; palms for example oil palm; ornamentals for example flowers, shrubs and trees; other trees, for example cacao, coconut, olive and rubber; vegetables for example asparagus, aubergine, broccoli, cabbage, carrot, cucumber, garlic, lettuce, marrow, melon, okra, onion, pepper, potato, pumpkin, rhubarb, spinach and tomato; and vines for example grapes.
The useful plants and / or target crops in accordance with the invention include conventional as well as genetically enhanced or engineered varieties such as, for example, insect resistant (e.g. Bt. and VIP varieties) as well as disease resistant, herbicide tolerant (e.g. glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® and LibertyLink®) and nematode tolerant varieties. By way of example, suitable genetically enhanced or engineered crop varieties include the Stoneville 5599BR cotton and Stoneville 4892BR cotton varieties.
The term "useful plants" and/or “target crops” is to be understood as including also useful plants that have been rendered tolerant to herbicides like bromoxynil or classes of herbicides (such as, for example, HPPD inhibitors, ALS inhibitors, for example primisulfuron, prosulfuron and trifloxysulfuron, EPSPS (5-enol-pyrovyl-shikimate-3-phosphate-synthase) inhibitors, GS (glutamine synthetase) inhibitors or PPO (protoporphyrinogen-oxidase) inhibitors) as a result of conventional methods of breeding or genetic engineering. An example of a crop that has been rendered tolerant to imidazolinones, e.g. imazamox, by conventional methods of breeding (mutagenesis) is Clearfield® summer rape (Canola). Examples of crops that have been rendered tolerant to herbicides or classes of herbicides by genetic engineering methods include glyphosate- and glufosinate-resistant maize varieties commercially available under the trade names RoundupReady® , Herculex I® and LibertyLink®.
The term "useful plants" and/or “target crops” is to be understood as including those which naturally are or have been rendered resistant to harmful insects. This includes plants transformed by the use of recombinant DNA techniques, for example, to be capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria. Examples of toxins which can be expressed include d-endotoxins, vegetative insecticidal proteins (Vip), insecticidal proteins of bacteria colonising nematodes, and toxins produced by scorpions, arachnids, wasps and fungi. An example of a crop that has been modified to express the Bacillus thuringiensis toxin is the Bt maize KnockOut® (Syngenta Seeds). An example of a crop comprising more than one gene that codes for insecticidal resistance and thus expresses more than one toxin is VipCot® (Syngenta Seeds). Crops or seed material thereof can also be resistant to multiple types of pests (so-called stacked transgenic events when created by genetic modification). For example, a plant can have the ability to express an insecticidal protein while at the same time being herbicide tolerant, for example Herculex I® (Dow AgroSciences, Pioneer Hi-Bred International).
The term "useful plants" and/or “target crops” is to be understood as including also useful plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called "pathogenesis-related proteins" (PRPs, see e.g. EP-A-0 392 225). Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392225, WO 95/33818, and EP-A-0 353 191 . The methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
Toxins that can be expressed by transgenic plants include, for example, insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as 5- endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1 , Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp. orXenorhabdus spp., such as Photorhabdus luminescens, Xenorhabdus nematophilus; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins produced by fungi, such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosomeinactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COA-reductase, ion channel blockers, such as blockers of sodium or calcium channels, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.
Further, in the context of the present invention there are to be understood by d-endotoxins, for example CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1 , Vip2, Vip3 or Vip3A, expressly also hybrid toxins, truncated toxins and modified toxins. Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701). Truncated toxins, for example a truncated CrylAb, are known. In the case of modified toxins, one or more amino acids of the naturally occurring toxin are replaced. In such amino acid replacements, preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G-recognition sequence is inserted into a Cry3A toxin (see W003/018810).
More examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO93/07278, W095/34656, EP-A-0 427 529, EP-A-451 878 and W003/052073.
The processes for the preparation of such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.
The toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects. Such insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).
Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylAb toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a CrylAb and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylAc toxin); Bollgard I® (cotton variety that expresses a CrylAc toxin); Bollgard II® (cotton variety that expresses a CrylAc and a Cry2Ab toxin); VipCot® (cotton variety that expresses a Vip3A and a CrylAb toxin); NewLeaf® (potato variety that expresses a Cry3A toxin); NatureGard®, Agrisure® GT Advantage (GA21 glyphosate-tolerant trait), Agrisure® CB Advantage (Bt11 corn borer (CB) trait) and Protecta®.
Further examples of such transgenic crops are:
1. Bt11 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer ( Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a truncated CrylAb toxin. Bt11 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
2. Bt176 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer ( Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a CrylAb toxin. Bt176 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.
3. MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G-protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
4. MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.
5. IPC 531 Cotton from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/ES/96/02.
6. 1507 Maize from Pioneer Overseas Corporation, Avenue Tedesco, 7 B-1160 Brussels, Belgium, registration number C/NL/00/10. Genetically modified maize for the expression of the protein Cry1F for achieving resistance to certain Lepidoptera insects and of the PAT protein for achieving tolerance to the herbicide glufosinate ammonium.
7. NK603 x MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810. NK603 c MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a CrylAb toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.
The term “locus” as used herein means fields in or on which plants are growing, or where seeds of cultivated plants are sown, or where seed will be placed into the soil. It includes soil, seeds, and seedlings, as well as established vegetation.
The term “plants” refers to all physical parts of a plant, including seeds, seedlings, saplings, roots, tubers, stems, stalks, foliage, and fruits. The term “plant propagation material” is understood to denote generative parts of the plant, such as seeds, which can be used for the multiplication of the latter, and vegetative material, such as cuttings or tubers, for example potatoes. There may be mentioned for example seeds (in the strict sense), roots, fruits, tubers, bulbs, rhizomes and parts of plants. Germinated plants and young plants which are to be transplanted after germination or after emergence from the soil, may also be mentioned. These young plants may be protected before transplantation by a total or partial treatment by immersion. Preferably “plant propagation material” is understood to denote seeds.
Pesticidal agents referred to herein using their common name are known, for example, from "The Pesticide Manual", 15th Ed., British Crop Protection Council 2009.
The compounds of formula (I) may be used in unmodified form or, preferably, together with the adjuvants conventionally employed in the art of formulation. To this end they may be conveniently formulated in known manner to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions or suspensions, dilute emulsions, wettable powders, soluble powders, dusts, granulates, and also encapsulations e.g. in polymeric substances. As with the type of the compositions, the methods of application, such as spraying, atomising, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances. The compositions may also contain further adjuvants such as stabilizers, antifoams, viscosity regulators, binders or tackifiers as well as fertilizers, micronutrient donors or other formulations for obtaining special effects.
Suitable carriers and adjuvants, e.g. for agricultural use, can be solid or liquid and are substances useful in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers. Such carriers are for example described in WO 97/33890.
Suspension concentrates are aqueous formulations in which finely divided solid particles of the active compound are suspended. Such formulations include anti-settling agents and dispersing agents and may further include a wetting agent to enhance activity as well an anti-foam and a crystal growth inhibitor. In use, these concentrates are diluted in water and normally applied as a spray to the area to be treated. The amount of active ingredient may range from 0.5% to 95% of the concentrate.
Wettable powders are in the form of finely divided particles which disperse readily in water or other liquid carriers. The particles contain the active ingredient retained in a solid matrix. Typical solid matrices include fuller’s earth, kaolin clays, silicas and other readily wet organic or inorganic solids. Wettable powders normally contain from 5% to 95% of the active ingredient plus a small amount of wetting, dispersing or emulsifying agent.
Emulsifiable concentrates are homogeneous liquid compositions dispersible in water or other liquid and may consist entirely of the active compound with a liquid or solid emulsifying agent, or may also contain a liquid carrier, such as xylene, heavy aromatic naphthas, isophorone and other non-volatile organic solvents. In use, these concentrates are dispersed in water or other liquid and normally applied as a spray to the area to be treated. The amount of active ingredient may range from 0.5% to 95% of the concentrate.
Granular formulations include both extrudates and relatively coarse particles and are usually applied without dilution to the area in which treatment is required. Typical carriers for granular formulations include sand, fuller’s earth, attapulgite clay, bentonite clays, montmorillonite clay, vermiculite, perlite, calcium carbonate, brick, pumice, pyrophyllite, kaolin, dolomite, plaster, wood flour, ground corn cobs, ground peanut hulls, sugars, sodium chloride, sodium sulphate, sodium silicate, sodium borate, magnesia, mica, iron oxide, zinc oxide, titanium oxide, antimony oxide, cryolite, gypsum, diatomaceous earth, calcium sulphate and other organic or inorganic materials which absorb or which can be coated with the active compound. Granular formulations normally contain 5% to 25% of active ingredients which may include surface-active agents such as heavy aromatic naphthas, kerosene and other petroleum fractions, or vegetable oils; and/or stickers such as dextrins, glue or synthetic resins.
Dusts are free-flowing admixtures of the active ingredient with finely divided solids such as talc, clays, flours and other organic and inorganic solids which act as dispersants and carriers.
Microcapsules are typically droplets or granules of the active ingredient enclosed in an inert porous shell which allows escape of the enclosed material to the surroundings at controlled rates. Encapsulated droplets are typically 1 to 50 microns in diameter. The enclosed liquid typically constitutes 50 to 95% of the weight of the capsule and may include solvent in addition to the active compound. Encapsulated granules are generally porous granules with porous membranes sealing the granule pore openings, retaining the active species in liquid form inside the granule pores. Granules typically range from 1 millimetre to 1 centimetre and preferably 1 to 2 millimetres in diameter. Granules are formed by extrusion, agglomeration or prilling, or are naturally occurring. Examples of such materials are vermiculite, sintered clay, kaolin, attapulgite clay, sawdust and granular carbon. Shell or membrane materials include natural and synthetic rubbers, cellulosic materials, styrene-butadiene copolymers, polyacrylonitriles, polyacrylates, polyesters, polyamides, polyureas, polyurethanes and starch xanthates.
Other useful formulations for agrochemical applications include simple solutions of the active ingredient in a solvent in which it is completely soluble at the desired concentration, such as acetone, alkylated naphthalenes, xylene and other organic solvents. Pressurised sprayers, wherein the active ingredient is dispersed in finely-divided form as a result of vaporisation of a low boiling dispersant solvent carrier, may also be used.
Suitable agricultural adjuvants and carriers that are useful in formulating the compositions of the invention in the formulation types described above are well known to those skilled in the art.
Liquid carriers that can be employed include, for example, water, toluene, xylene, petroleum naphtha, crop oil, acetone, methyl ethyl ketone, cyclohexanone, acetic anhydride, acetonitrile, acetophenone, amyl acetate, 2-butanone, chlorobenzene, cyclohexane, cyclohexanol, alkyl acetates, diacetonalcohol, 1 ,2-dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N-dimethyl formamide, dimethyl sulfoxide, 1 ,4-dioxane, dipropylene glycol, dipropylene glycol methyl ether, dipropylene glycol dibenzoate, diproxitol, alkyl pyrrolidinone, ethyl acetate, 2-ethyl hexanol, ethylene carbonate, 1 ,1 ,1-trichloroethane, 2-heptanone, alpha pinene, d-limonene, ethylene glycol, ethylene glycol butyl ether, ethylene glycol methyl ether, gamma-butyrolactone, glycerol, glycerol diacetate, glycerol monoacetate, glycerol triacetate, hexadecane, hexylene glycol, isoamyl acetate, isobornyl acetate, isooctane, isophorone, isopropyl benzene, isopropyl myristate, lactic acid, laurylamine, mesityl oxide, methoxy-propanol, methyl isoamyl ketone, methyl isobutyl ketone, methyl laurate, methyl octanoate, methyl oleate, methylene chloride, m-xylene, n-hexane, n-octylamine, octadecanoic acid, octyl amine acetate, oleic acid, oleylamine, o-xylene, phenol, polyethylene glycol (PEG400), propionic acid, propylene glycol, propylene glycol monomethyl ether, p-xylene, toluene, triethyl phosphate, triethylene glycol, xylene sulfonic acid, paraffin, mineral oil, trichloroethylene, perchloroethylene, ethyl acetate, amyl acetate, butyl acetate, methanol, ethanol, isopropanol, and higher molecular weight alcohols such as amyl alcohol, tetrahydrofurfuryl alcohol, hexanol, octanol, etc., ethylene glycol, propylene glycol, glycerine and N-methyl-2-pyrrolidinone. Water is generally the carrier of choice for the dilution of concentrates.
Suitable solid carriers include, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, chalk, diatomaxeous earth, lime, calcium carbonate, bentonite clay, fuller’s earth, cotton seed hulls, wheat flour, soybean flour, pumice, wood flour, walnut shell flour and lignin.
A broad range of surface-active agents are advantageously employed in both said liquid and solid compositions, especially those designed to be diluted with carrier before application. These agents, when used, normally comprise from 0.1% to 15% by weight of the formulation. They can be anionic, cationic, non-ionic or polymeric in character and can be employed as emulsifying agents, wetting agents, suspending agents or for other purposes. Typical surface active agents include salts of alkyl sulfates, such as diethanolammonium lauryl sulphate; alkylarylsulfonate salts, such as calcium dodecylbenzenesulfonate; alkylphenol-alkylene oxide addition products, such as nonylphenol-C.sub. 18 ethoxylate; alcohol-alkylene oxide addition products, such as tridecyl alcohol-C.sub. 16 ethoxylate; soaps, such as sodium stearate; alkylnaphthalenesulfonate salts, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2-ethylhexyl) sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryl trimethylammonium chloride; polyethylene glycol esters of fatty acids, such as polyethylene glycol stearate; block copolymers of ethylene oxide and propylene oxide; and salts of mono and dialkyl phosphate esters.
Other adjuvants commonly utilized in agricultural compositions include crystallisation inhibitors, viscosity modifiers, suspending agents, spray droplet modifiers, pigments, antioxidants, foaming agents, anti-foaming agents, light-blocking agents, compatibilizing agents, antifoam agents, sequestering agents, neutralising agents and buffers, corrosion inhibitors, dyes, odorants, spreading agents, penetration aids, micronutrients, emollients, lubricants and sticking agents.
In addition, further, other biocidally active ingredients or compositions may be combined with the compositions of the invention and used in the methods of the invention and applied simultaneously or sequentially with the compositions of the invention. When applied simultaneously, these further active ingredients may be formulated together with the compositions of the invention or mixed in, for example, the spray tank. These further biocidally active ingredients may be fungicides, herbicides, insecticides, bactericides, acaricides, nematicides and/or plant growth regulators.
In addition, the compositions of the invention may also be applied with one or more systemically acquired resistance inducers (“SAR” inducer). SAR inducers are known and described in, for example, United States Patent No. US 6,919,298 and include, for example, salicylates and the commercial SAR inducer acibenzolar-S-methyl.
The compounds of formula (I) are normally used in the form of compositions and can be applied to the crop area or plant to be treated, simultaneously or in succession with further compounds. These further compounds can be e.g. fertilizers or micronutrient donors or other preparations, which influence the growth of plants. They can also be selective herbicides or non-selective herbicides as well as insecticides, fungicides, bactericides, nematicides, molluscicides or mixtures of several of these preparations, if desired together with further carriers, surfactants or application promoting adjuvants customarily employed in the art of formulation.
The compounds of formula (I) may be used in the form of (fungicidal) compositions for controlling or protecting against phytopathogenic microorganisms, comprising as active ingredient at least one compound of formula (I) or of at least one preferred individual compound as above-defined, in free form or in agrochemically usable salt form, and at least one of the above-mentioned adjuvants.
The invention therefore provides a composition, preferably a fungicidal composition, comprising at least one compound formula (I) an agriculturally acceptable carrier and optionally an adjuvant. An agricultural acceptable carrier is for example a carrier that is suitable for agricultural use. Agricultural carriers are well known in the art. Preferably said composition may comprise at least one or more pesticidally active compounds, for example an additional fungicidal active ingredient in addition to the compound of formula (I).
The compound of formula (I) may be the sole active ingredient of a composition or it may be admixed with one or more additional active ingredients such as a pesticide, fungicide, synergist, herbicide or plant growth regulator where appropriate. An additional active ingredient may, in some cases, result in unexpected synergistic activities.
Examples of suitable additional active ingredients include the following: 1 ,2,4-thiadiazoles, 2,6- dinitroanilines, acylalanines, aliphatic nitrogenous compounds, amidines, aminopyrimidinols, anilides, anilino-pyrimidines, anthraquinones, antibiotics, aryl-phenylketones, benzamides, benzene- sulfonamides, benzimidazoles, benzothiazoles, benzothiodiazoles, benzothiophenes, benzoylpyridines, benzthiadiazoles, benzylcarbamates, butylamines, carbamates, carboxamides, carpropamids, chloronitriles, cinnamic acid amides, copper containing compounds, cyanoacetamideoximes, cyanoacrylates, cyanoimidazoles, cyanomethylene-thiazolidines, dicarbonitriles, dicarboxamides, dicarboximides, dimethylsulphamates, dinitrophenol carbonates, dinitrophenysl, dinitrophenyl crotonates, diphenyl phosphates, dithiino compounds, dithiocarbamates, dithioethers, dithiolanes, ethyl- amino-thiazole carboxamides, ethyl-phosphonates, furan carboxamides, glucopyranosyls, glucopyranoxyls, glutaronitriles, guanidines, herbicides/plant growth regulatosr, hexopyranosyl antibiotics, hydroxy(2-amino)pyrimidines, hydroxyanilides, hydroxyisoxazoles, imidazoles, imidazolinones, insecticides/plant growth regulators, isobenzofuranones, isoxazolidinyl-pyridines, isoxazolines, maleimides, mandelic acid amides, mectin derivatives, morpholines, norpholines, n-phenyl carbamates, organotin compounds, oxathiin carboxamides, oxazoles, oxazolidine-diones, phenols, phenoxy quinolines, phenyl-acetamides, phenylamides, phenylbenzamides, phenyl-oxo-ethyl- thiophenes amides, phenylpyrroles, phenylureas, phosphorothiolates, phosphorus acids, phthalamic acids, phthalimides, picolinamides, piperazines, piperidines, plant extracts, polyoxins, propionamides, pthalimides, pyrazole-4-carboxamides, pyrazolinones, pyridazinones, pyridines, pyridine carboxamides, pyridinyl-ethyl benzamides, pyrimdinamines, pyrimidines, pyrimidine-amines, pyrimidione-hydrazone, pyrrolidines, pyrrolquinoliones, quinazolinones, quinolines, quinoline derivatives, quinoline-7-carboxylic acids, quinoxalines, spiroketalamines, strobilurins, sulfamoyl triazoles, sulphamides, tetrazolyloximes, thiadiazines, thiadiazole carboxamides, thiazole carboxanides, thiocyanates, thiophene carboxamides, toluamides, triazines, triazobenthiazoles, triazoles, triazole-thiones, triazolo-pyrimidylamine, valinamide carbamates, ammonium methyl phosphonates, arsenic-containing compounds, benyimidazolylcarbamates, carbonitriles, carboxanilides, carboximidamides, carboxylic phenylamides, diphenyl pyridines, furanilides, hydrazine carboxamides, imidazoline acetates, isophthalates, isoxazolones, mercury salts, organomercury compounds, organophosphates, oxazolidinediones, pentylsulfonyl benzenes, phenyl benzamides, phosphonothionates, phosphorothioates, pyridyl carboxamides, pyridyl furfuryl ethers, pyridyl methyl ethers, SDHIs, thiadiazinanethiones, thiazolidines..
Examples of suitable additional active ingredients also include the following: a compound selected from the group of substances consisting of petroleum oils, 1 ,1-bis(4-chlorophenyl)-2- ethoxyethanol, 2,4-dichlorophenyl benzenesulfonate, 2-fluoro-N-methyl-N-1-naphthylacetamide, 4- chlorophenyl phenyl sulfone, acetoprole, aldoxycarb, amidithion, amidothioate, amiton, amiton hydrogen oxalate, amitraz, aramite, arsenous oxide, azobenzene, azothoate, benomyl, benoxafos, benzyl benzoate, bixafen, brofenvalerate, bromo- cyclen, bromophos, bromopropylate, buprofezin, butocarboxim, butoxycarboxim, butylpyridaben, calcium polysulfide, camphechlor, carbanolate, carbophenothion, cymiazole, chino- methionat, chlorbenside, chlordimeform, chlordimeform hydrochloride, chlorfenethol, chlorfenson, chlorfensulfide, chlorobenzilate, chloromebuform, chloromet hiuron, chloropropylate, chlorthiophos, cinerin I, cinerin II, cinerins, closantel, coumaphos, crotamiton, crotoxyphos, cufraneb, cyanthoate, DCPM, DDT, demephion, demephion-O, demephion-S, demeton-methyl, demeton-O, demeton-O-methyl, demeton-S, demeton-S-methyl, demeton-S- methylsulfon, dichlofluanid, dichlorvos, dicliphos, dienochlor, dimefox, dinex, dinex-diclexine, dinocap- 4, dinocap-6, dinocton, dinopenton, dinosulfon, dinoterbon, dioxathion, diphenyl sulfone, disulfiram, DNOC, dofenapyn, doramectin, endothion, eprinomectin, ethoate- methyl, etrimfos, fenazaflor, fenbutatin oxide, fenothiocarb, fenpyrad, fen- pyroximate, fenpyrazamine, fenson, fentrifanil, flubenzimine, flucycloxuron, fluenetil, fluorbenside,
FMC 1137, formetanate, formetanate hydrochloride, formparanate, gamma-HCH, glyodin, halfenprox, hexadecyl cyclopropanecarboxylate, isocarbophos, jasmolin I, jasmolin II, jodfenphos, lindane, malonoben, mecarbam, mephosfolan, mesulfen, methacrifos, methyl bromide, metolcarb, mexacarbate, milbemycin oxime, mipafox, monocrotophos, morphothion, moxidectin, naled, 4-chloro-2-(2-chloro-2-methyl-propyl)-5-[(6-iodo-3-pyridyl)methoxy]pyridazin-3- one, nifluridide, nikkomycins, nitrilacarb, nitrilacarb 1 :1 zinc chloride complex, omethoate, oxydeprofos, oxydisulfoton, pp'-DDT, parathion, permethrin, phenkapton, phosalone, phosfolan, phosphamidon, polychloroterpenes, polynactins, proclonol, promacyl, propoxur, prothidathion, prothoate, pyrethrin I, pyrethrin II, pyrethrins, pyridaphenthion, pyrimitate, quinalphos, quintiofos, R-1492, phosglycin, rotenone, schradan, sebufos, selamectin, sophamide, SSI-121 , sulfiram, sulfluramid, sulfotep, sulfur, diflovidazin, tau-fluvalinate, TEPP, terbam, tetradifon, tetrasul, thiafenox, thiocarboxime, thiofanox, thiometon, thioquinox, thuringiensin, triamiphos, triarathene, triazophos, triazuron, trifenofos, trinactin, vamidothion, vaniliprole, bethoxazin, copper dioctanoate, copper sulfate, cybutryne, dichlone, dichlorophen, endothal, fentin, hydrated lime, nabam, quinoclamine, quinonamid, simazine, triphenyltin acetate, triphenyltin hydroxide, crufomate, piperazine, thiophanate, chloralose, fenthion, pyridin-4-amine, strychnine, 1-hydroxy-1 H- pyridine-2-thione, 4-(quinoxalin-2-ylamino)benzenesulfonamide, 8-hydroxyquinoline sulfate, bronopol, copper hydroxide, cresol, dipyrithione, dodicin, fenaminosulf, formaldehyde, hydrargaphen, kasugamycin, kasugamycin hydrochloride hydrate, nickel bis(dimethyldithiocarbamate), nitrapyrin, octhilinone, oxolinic acid, oxytetracycline, potassium hydroxyquinoline sulfate, probenazole, streptomycin, streptomycin sesquisulfate, tecloftalam, thiomersal, Adoxophyes orana GV,
Agrobacterium radiobacter, Amblyseius spp., Anagrapha falcifera NPV, Anagrus atomus, Aphelinus a bdominalis, Aphidius colemani, Aphidoletes aphidimyza, Autographa californica NPV,
Bacillus sphaericus Neide, Beauveria brongniartii, Chrysoperla carnea,
Cryptolaemus montrouzieri, Cydia pomonella GV, Dacnusa sibirica, Diglyphus isaea, Encarsia formos a, Eretmocerus eremicus, Heterorhabditis bacteriophora and H. megidis,
Hippodamia convergens, Leptomastix dactylopii, Macrolophus caliginosus, Mamestra brassicae NPV, Metaphycus helvolus, Metarhizium anisopliae var. acridum, Metarhizium anisopliae var. anisopliae, Ne odiprion sertifer NPV and N. lecontei NPV, Orius spp., Paecilomyces fumosoroseus,
Phytoseiulus persimilis, Steinernema bibionis, Steinernema carpocapsae, Steinernema feltiae, Steiner nema glaseri, Steinernema riobrave, Steinernema riobravis, Steinernema scapterisci, Steinernema sp p., Trichogramma spp., Typhlodromus occidentalis, Verticillium lecanii, apholate, bisazir, busulfan, dimatif, hemel, hempa, metepa, methiotepa, methyl apholate, morzid, penfluron, tepa, thiohempa, thiotepa, tretamine, uredepa, (E)-dec-5-en-1-yl acetate with (E)-dec-5-en-1-ol, (E)- tridec-4-en-1-yl acetate, (E)-6-methylhept-2-en-4-ol, (E,Z)-tetradeca-4,10-dien-1-yl acetate, (Z)-dodec- 7-en-1-yl acetate, (Z)-hexadec-l 1-enal, (Z)-hexadec-l 1 -en-1 -yl acetate, (Z)-hexadec-13-en-11 -yn-1 -yl acetate, (Z)-icos-13-en-10-one, (Z)-tetradec-7-en-1-al, (Z)-tetradec-9-en-1-ol, (Z)-tetradec-9-en-1-yl acetate, (7E,9Z)-dodeca-7,9-dien-1-yl acetate, (9Z,11 E)-tetradeca-9,11-dien-1-yl acetate, (9Z,12E)- tetradeca-9,12-dien-1-yl acetate, 14-methyloctadec-1-ene, 4-methylnonan-5-ol with 4-methylnonan-5- one, alpha-multistriatin, brevicomin, codlelure, codlemone, cuelure, disparlure, dodec-8-en-1-yl acetate, dodec-9-en-1-yl acetate, dodeca-8, 10-dien-1 -yl acetate, dominicalure, ethyl 4- methyloctanoate, eugenol, frontalin, grandlure, grandlure I, grandlure II, grandlure III, grandlure IV, hexalure, ipsdienol, i psenol, japonilure, lineatin, litlure, looplure, medlure, megatomoic acid, methyl eugenol, muscalure, octadeca-2,13-dien-1-yl acetate, octadeca-3,13-dien-1-yl acetate, orfralure, oryctalure, ostramone, siglure, sordidin, sulcatol, tetradec-11 -en-1 -yl acetate, trimedlure, trimedlure A, trimedlure Bi, trimedlure B2, trimedlure C, trunc-call, 2-(octylthio)- ethanol, butopyronoxyl, butoxy(polypropylene glycol), dibutyl adipate, dibutyl phthalate, dibutyl succinate, diethyltoluamide, dimethyl carbate, dimethyl phthalate, ethyl hexanediol, hexamide, methoquin-butyl, methylneodecanamide, oxamate, picaridin, 1 -dichloro-1 - nitroethane, 1 ,1-dichloro-2,2-bis(4-ethylphenyl)ethane, 1 ,2-dichloropropane with 1 ,3-dichloropropene, 1-bromo-2-chloroethane, 2,2,2-trichloro-1-(3,4-dichlorophenyl)ethyl acetate, 2,2-dichlorovinyl 2- ethylsulfinylethyl methyl phosphate, 2-(1 ,3-dithiolan-2-yl)phenyl dimethylcarbamate, 2-(2- butoxyethoxy)ethyl thiocyanate, 2-(4,5-dimethyl-1 ,3-dioxolan-2-yl)phenyl methylcarbamate, 2-(4-chloro- 3,5-xylyloxy)ethanol, 2-chlorovinyl diethyl phosphate, 2-imidazolidone, 2-isovalerylindan-1 ,3-dione, 2- methyl(prop-2-ynyl)aminophenyl methylcarbamate, 2-thiocyanatoethyl laurate, 3-bromo-1-chloroprop- 1-ene, 3-methyl-1-phenylpyrazol-5-yl dimethylcarbamate, 4-methyl(prop-2-ynyl)amino-3,5-xylyl methylcarbamate, 5,5-dimethyl-3-oxocyclohex-1-enyl dimethylcarbamate, acethion, acrylonitrile, aldrin, allosamidin, allyxycarb, alpha-ecdysone, aluminium phosphide, aminocarb, anabasine, athidathion, azamethiphos, Bacillus thuringiensis delta endotoxins, barium hexafluorosilicate, barium polysulfide, barthrin, Bayer 22/190, Bayer 22408, beta-cyfluthrin, beta-cypermethrin, bioethanomethrin, biopermethrin, bis(2-chloroethyl) ether, borax, bromfenvinfos, bromo-DDT, bufencarb, butacarb, butathiofos, butonate, calcium arsenate, calcium cyanide, carbon disulfide, carbon tetrachloride, cartap hydrochloride, cevadine, chlorbicyclen, chlordane, chlordecone, chloroform, chloropicrin, chlorphoxim, chlorprazophos, cis- resmethrin, cismethrin, clocythrin, copper acetoarsenite, copper arsenate, copper oleate, coumithoate, cryolite, CS 708, cyanofenphos, cyanophos, cyclethrin, cythioate, d-tetramethrin, DAEP, dazomet, decarbofuran, diamidafos, dicapthon, dichlofenthion, dicresyl, dicyclanil, dieldrin, diethyl 5- methylpyrazol-3-yl phosphate, dilor, dimefluthrin, dimetan, dimethrin, dimethylvinphos, dimetilan, dinoprop, dinosam, dino seb, diofenolan, dioxabenzofos, dithicrofos, DSP, ecdysterone, El 1642, EMPC, EPBP, etaphos, ethiofencarb, ethyl formate, ethylene dibromide, ethylene dichloride, ethylene oxide, EXD, fenchlorphos, fenethacarb, fenitrothion, fenoxacrim, fenpirithrin, fensulfothion, fenthion- ethyl, flucofuron, fosmethilan, fospirate, fosthietan, furathiocarb, furethrin, guazatine, guazatine acetates, sodium tetrathiocarbonate, halfenprox, HCH, HEOD, heptachlor, heterophos, HHDN, hydrogen cyanide, hyquincarb, IPSP, isazofos, isobenzan, isodrin, isofenphos, isolane, isoprothiolane, isoxathion, juvenile hormone I, juvenile hormone II, juvenile hormone III, kelevan, kinoprene, lead arsenate, leptophos, lirimfos, lythidathion, m-cumenyl methylcarbamate, magnesium phosphide, mazidox, mecarphon, menazon, mercurous chloride, mesulfenfos, metam, metam-potassium, metam-sodium, methanesulfonyl fluoride, methocrotophos, methoprene, methothrin, methoxychlor, methyl isothiocyanate, methylchloroform, methylene chloride, metoxadiazone, mirex, naftalofos, naphthalene, NC-170, nicotine, nicotine sulfate, nithiazine, nornicotine, 0-5-dichloro-4-iodophenyl O- ethyl ethylphosphonothioate, O,O-diethyl 0-4-methyl-2-oxo-2H-chromen-7-yl phosphorothioate, O.O- diethyl 0-6-methyl-2-propylpyrimidin-4-yl phosphorothioate, O,O,O',O'- tetrapropyl dithiopyrophosphate, oleic acid, para-dichlorobenzene, parathion-methyl, pentachlorophenol, pentachlorophenyl laurate, PH 60-38, phenkapton, phosnichlor, phosphine, phoxim-methyl, pirimetaphos, polychlorodicyclopentadiene isomers, potassium arsenite, potassium thiocyanate, precocene I, precocene II, precocene III, primidophos, profluthrin, promecarb, prothiofos, pyrazophos, pyresmethrin, quassia, quinalphos-methyl, quinothion, rafoxanide, resmethrin, rotenone, kadethrin, ryania, ryanodine, sabadilla), schradan, sebufos, SI-0009, thiapronil, sodium arsenite, sodium cyanide, sodium fluoride, sodium hexafluorosilicate, sodium pentachlorophenoxide, sodium selenate, sodium thiocyanate, sulcofuron, sulcofuron-sodium, sulfuryl fluoride, sulprofos, tar oils, tazimcarb, TDE, tebupirimfos, temephos, terallethrin, tetrachloroethane, thicrofos, thiocyclam, thiocyclam hydrogen oxalate, thionazin, thiosultap, thiosultap- sodium, tralomethrin, transpermethrin, triazamate, trichlormetaphos-
3, trichloronat, trimethacarb, tolprocarb, triclopyricarb, triprene, veratridine, veratrine,
XMC, zetamethrin, zinc phosphide, zolaprofos, and meperfluthrin, tetramethylfluthrin, bis(tributyltin) oxide, bromoacetamide, ferric phosphate, niclosamide-olamine, tributyltin oxide, pyrimorph, trifenmorph, 1 ,2-dibromo-3-chloropropane, 1 ,3-dichloropropene, 3,4- dichlorotetrahydrothiophene 1 ,1 -dioxide, 3-(4-chlorophenyl)-5-methylrhodanine, 5-methyl-6-thioxo- 1 ,3,5-thiadiazinan-3-ylacetic acid, 6-isopentenylaminopurine, 2-fluoro-N-(3-methoxyphenyl)-9H-purin- 6-amine, benclothiaz, cytokinins, DCIP, furfural, isamidofos, kinetin, Myrothecium verrucaria composition, tetrachlorothiophene, xylenols, zeatin, potassium ethylxanthate, acibenzolar, acibenzolar- S-methyl, Reynoutria sachalinensis extract, alpha-chlorohydrin, antu, barium carbonate, bisthiosemi, brodifacoum, bromadiolone, bromethalin, chlorophacinone, cholecalciferol, coumachlor, coumafuryl, coumatetralyl, crimidine, difenacoum, difethialone, diphacinone, ergocalciferol, flocoumafen, fluoroacetamide, flupropadine, flupropadine hydrochloride, norbormide, phosacetim, phosphorus, pindone, pyrinuron, scilliroside, sodium fluoroacetate, thallium sulfate, warfarin, 2-(2-butoxyethoxy)- ethyl piperonylate, 5-(1 ,3-benzodioxol-5-yl)-3-hexylcyclohex-2-enone, farnesol with nerolidol, verbutin, MGK 264, piperonyl butoxide, piprotal, propyl isomer, S421 , sesamex, sesasmolin, sulfoxide, anthraquinone, copper naphthenate, copper oxychloride, dicyclopentadiene, thiram, zinc naphthenate, ziram, imanin, ribavirin, mercuric oxide, thiophanate-methyl, azaconazole, bitertanol, bromuconazole, cyproconazole, difenoconazole, diniconazole, epoxiconazole, fenbuconazole, fluquinconazole, flusilazole, flutriafol, furametpyr, hexaconazole, imazalil, imibenconazole, ipconazole, metconazole, myclobutanil, paclobutrazole, pefurazoate, penconazole, prothioconazole, pyrifenox, prochloraz, propiconazole, pyrisoxazole, simeconazole, tebuconazole, tetraconazole, triadimefon, triadimenol, triflumizole, triticonazole, ancymidol, fenarimol, nuarimol, bupirimate, dimethirimol, ethirimol, dodemorph, fenpropidin, fenpropimorph, spiroxamine, tridemorph, cyprodinil, mepanipyrim, pyrimethanil, fenpiclonil, fludioxonil, benalaxyl, furalaxyl, metalaxyl, R-metalaxyl, ofurace, oxadixyl, carbendazim, debacarb, fuberidazole, thiabendazole, chlozolinate, dichlozoline, myclozoline, procymi- done, vinclozoline, boscalid, carboxin, fenfuram, flutolanil, mepronil, oxycarboxin, penthiopyrad, thifluzamide, dodine, iminoctadine, azoxystrobin, dimoxystrobin, enestroburin, fenaminstrobin, flufenoxystrobin, fluoxastrobin, kresoxim- methyl, metominostrobin, trifloxystrobin, orysastrobin, picoxystrobin, pyraclostrobin, pyrametostrobin, pyraoxystrobin, ferbam, mancozeb, maneb, metiram, propineb, zineb, captafol, captan, fluoroimide, folpet, tolylfluanid, bordeaux mixture, copper oxide, mancopper, oxine- copper, nitrothal-isopropyl, edifenphos, iprobenphos, phosdiphen, tolclofos-methyl, anilazine, benthiavalicarb, blasticidin-S, chloroneb, chlorothalonil, chloroinconazide, cyflufenamid, cymoxanil, cyclobutrifluram, diclocymet, diclomezine, dicloran, diethofencarb, dimethomorph, flumorph, dithianon, ethaboxam, etridiazole, famoxadone, fenamidone, fenoxanil, ferimzone, fluazinam, fluopicolide, flusulfamide, fluxapyroxad, fenhexamid, fosetyl-aluminium, hymexazol, iprovalicarb, cyazofamid, methasulfocarb, metrafenone, pencycuron, phthalide, polyoxins, propamocarb, pyribencarb, proquinazid, pyroquilon, pyriofenone, quinoxyfen, quintozene, tiadinil, triazoxide, tricyclazole, triforine, validamycin, valifenalate, zoxamide, mandipropamid, flubeneteram, isopyrazam, sedaxane, benzovindiflupyr, pydiflumetofen, 3-difluoromethyl-1 -methyl-1 H-pyrazole-4- carboxylic acid (3',4',5'-trifluoro-biphenyl-2-yl)-amide, isoflucypram, isotianil, dipymetitrone, 6-ethyl-5,7- dioxo-pyrrolo[4,5][1 ,4]dithiino[1 ,2-c]isothiazole-3-carbonitrile, 2-(difluoromethyl)-N-[3-ethyl-1 ,1- dimethyl-indan-4-yl]pyridine-3-carboxamide, 4-(2,6-difluorophenyl)-6-methyl-5-phenyl-pyridazine-3- carbonitrile, (R)-3-(difluoromethyl)-1-methyl-N-[1 ,1 ,3-trimethylindan-4-yl]pyrazole-4-carboxamide, 4-(2- bromo-4-fluoro-phenyl)-N-(2-chloro-6-fluoro-phenyl)-2,5-dimethyl-pyrazol-3-amine, 4- (2- bromo- 4- fluorophenyl) - N- (2- chloro- 6- fluorophenyl) - 1 , 3- dimethyl- 1 H- pyrazol- 5- amine, fluindapyr, coumethoxystrobin (jiaxiangjunzhi), Ivbenmixianan, dichlobentiazox, mandestrobin, 3-(4,4- difluoro-3,4-dihydro-3,3-dimethylisoquinolin-1-yl)quinolone, 2-[2-fluoro-6-[(8-fluoro-2-methyl-3- quinolyl)oxy]phenyl]propan-2-ol, oxathiapiprolin, tert-butyl N-[6-[[[(1-methyltetrazol-5-yl)-phenyl- methylene]amino]oxymethyl]-2-pyridyl]carbamate, pyraziflumid, inpyrfluxam, trolprocarb, mefentrifluconazole, ipfentrifluconazole, 2-(difluoromethyl)-N-[(3R)-3-ethyl-1 ,1-dimethyl-indan-4- yl]pyridine-3-carboxamide, N'-(2,5-dimethyl-4-phenoxy-phenyl)-N-ethyl-N-methyl-formamidine, N'-[4- (4,5-dichlorothiazol-2-yl)oxy-2,5-dimethyl-phenyl]-N-ethyl-N-methyl-formamidine, [2-[3-[2-[1-[2-[3,5- bis(difluoromethyl)pyrazol-1-yl]acetyl]-4-piperidyl]thiazol-4-yl]-4,5-dihydroisoxazol-5-yl]-3-chloro- phenyl] methanesulfonate, but-3-ynyl N-[6-[[(Z)-[(1-methyltetrazol-5-yl)-phenyl- methylene]amino]oxymethyl]-2-pyridyl]carbamate, methyl N-[[5-[4-(2,4-dimethylphenyl)triazol-2-yl]-2- methyl-phenyl]methyl]carbamate, 3-chloro-6-methyl-5-phenyl-4-(2,4,6-trifluorophenyl)pyridazine, pyridachlometyl, 3-(difluoromethyl)-1-methyl-N-[1 ,1 ,3-trimethylindan-4-yl]pyrazole-4-carboxamide, 1-[2- [[1-(4-chlorophenyl)pyrazol-3-yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one, 1-methyl-4-[3- methyl-2-[[2-methyl-4-(3,4,5-trimethylpyrazol-1-yl)phenoxy]methyl]phenyl]tetrazol-5- one, aminopyrifen, ametoctradin, amisulbrom, penflufen, (Z,2E)-5-[1-(4-chlorophenyl)pyrazol-3-yl]oxy-
2-methoxyimino-N,3-dimethyl-pent-3-enamide, florylpicoxamid, fenpicoxamid, tebufloquin, ipflufenoquin, quinofumelin, isofetamid, N-[2-[2,4-dichloro-phenoxy]phenyl]-3-(difluoromethyl)-1- methyl-pyrazole-4-carboxamide, N-[2-[2-chloro-4-(trifluoromethyl)phenoxy]phenyl]-3-(difluoromethyl)- 1-methyl-pyrazole-4-carboxamide, benzothiostrobin, phenamacril, 5-amino-1 ,3,4-thiadiazole-2-thiol zinc salt (2:1), fluopyram, flutianil, fluopimomide, pyrapropoyne, picarbutrazox, 2-(difluoromethyl)-N-(3- ethyl-1 ,1-dimethyl-indan-4-yl)pyridine-3-carboxamide, 2- (difluoromethyl) - N- ((3R) - 1 , 1 ,
3- trimethylindan- 4- yl) pyridine- 3- carboxamide, 4-[[6-[2-(2,4-difluorophenyl)-1 ,1-difluoro-2-hydroxy-3- (1 ,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy]benzonitrile, metyltetraprole, 2- (difluoromethyl) - N- ((3R) - 1 , 1 ,
3- trimethylindan- 4- yl) pyridine- 3- carboxamide, a- (1 , 1- dimethylethyl) - a- [4'- (trifluoromethoxy) [1 , 1'- biphenyl] - 4- yl] -5- pyrimidinemethanol, fluoxapiprolin, enoxastrobin, 4-[[6-[2-(2,4-difluorophenyl)- 1 ,1-difluoro-2-hydroxy-3-(1 ,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy] benzonitrile, 4-[[6-[2-(2,4- difluorophenyl)-1 ,1-difluoro-2-hydroxy-3-(5-sulfanyl-1 ,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy] benzonitrile,
4-[[6-[2-(2,4-difluorophenyl)-1 ,1-difluoro-2-hydroxy-3-(5-thioxo-4H-1 ,2,4-triazol-1-yl)propyl]-3- pyridyl]oxy]benzonitrile, trinexapac, coumoxystrobin, zhongshengmycin, thiodiazole copper, zinc thiazole, amectotractin, iprodione, N-octyl-N'-[2-(octylamino)ethyl]ethane-1 ,2-diamine, N'-[5-bromo-2- methyl-6-[(1S)-1-methyl-2-propoxy-ethoxy]-3-pyridyl]-N-ethyl-N-methyl-formamidine, N'-[5-bromo-2- methyl-6-[(1 R)-1-methyl-2-propoxy-ethoxy]-3-pyridyl]-N-ethyl-N-methyl-formamidine, N'-[5-bromo-2- methyl-6-(1-methyl-2-propoxy-ethoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine, N'-[5-chloro-2-methyl- 6-(1-methyl-2-propoxy-ethoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine, N'-[5-bromo-2-methyl-6-(1- methyl-2-propoxy-ethoxy)-3-pyridyl]-N-isopropyl-N-methyl-formamidine (these compounds may be prepared from the methods described in WO2015/155075); N'-[5-bromo-2-methyl-6-(2- propoxypropoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine (this compound may be prepared from the methods described in IPCOM000249876D); N-isopropyl-N’-[5-methoxy-2-methyl-4-(2,2,2-trifluoro-1- hydroxy-1 -phenyl-ethyl)phenyl]-N-methyl-formamidine, N’-[4-(1 -cyclopropyl-2, 2, 2-trifluoro-1 -hydroxy- ethyl)-5-methoxy-2-methyl-phenyl]-N-isopropyl-N-methyl-formamidine (these compounds may be prepared from the methods described in WO2018/228896); N-ethyl-N’-[5-methoxy-2-methyl-4-[2- trifluoromethyl)oxetan-2-yl]phenyl]-N-methyl-formamidine, N-ethyl-N’-[5-methoxy-2-methyl-4-[2- trifuoromethyl)tetrahydrofuran-2-yl]phenyl]-N-methyl-formamidine (these compounds may be prepared from the methods described in WO2019/110427); N-[(1 R)-1-benzyl-3-chloro-1-methyl-but-3-enyl]-8- fluoro-quinoline-3-carboxamide, N-[(1 S)-1 -benzyl-3-chloro-1 -methyl-but-3-enyl]-8-fluoro-quinoline-3- carboxamide, N-[(1 R)-1 -benzyl-3, 3, 3-trifluoro-1 -methyl-propyl]-8-fluoro-quinoline-3-carboxamide, N- [(1 S)-1 -benzyl-3, 3, 3-trifluoro-1 -methyl-propyl]-8-fluoro-quinoline-3-carboxamide, N-[(1 R)-1 -benzyl-1 ,3- dimethyl-butyl]-7,8-difluoro-quinoline-3-carboxamide,
N-[(1 S)-1 -benzyl-1 ,3-dimethyl-butyl]-7,8-difluoro-quinoline-3-carboxamide, 8-fluoro-N-[(1 R)-1 -[(3- fluorophenyl)methyl]-1 ,3-dimethyl-butyl]quinoline-3-carboxamide, 8-fluoro-N-[(1 S)-1 -[(3- fluorophenyl)methyl]-1 ,3-dimethyl-butyl]quinoline-3-carboxamide, N-[(1 R)-1 -benzyl-1 ,3-dimethyl-butyl]- 8-fluoro-quinoline-3-carboxamide, N-[(1 S)-1 -benzyl-1 ,3-dimethyl-butyl]-8-fluoro-quinoline-3- carboxamide,
N-((1 R)-1-benzyl-3-chloro-1-methyl-but-3-enyl)-8-fluoro-quinoline-3-carboxamide, N-((1S)-1-benzyl-3- chloro-1-methyl-but-3-enyl)-8-fluoro-quinoline-3-carboxamide (these compounds may be prepared from the methods described in WO2017/153380); 1-(6,7-dimethylpyrazolo[1 ,5-a]pyridin-3-yl)-4,4,5-trifluoro-
3.3-dimethyl-isoquinoline, 1-(6,7-dimethylpyrazolo[1 ,5-a]pyridin-3-yl)-4, 4, 6-trifluoro-3, 3-dimethyl- isoquinoline, 4,4-difluoro-3,3-dimethyl-1 -(6-methylpyrazolo[1 ,5-a]pyridin-3-yl)isoquinoline, 4,4-difluoro-
3.3-dimethyl-1 -(7-methylpyrazolo[1 ,5-a]pyridin-3-yl)isoquinoline, 1 -(6-chloro-7-methyl-pyrazolo[1 ,5- a]pyridin-3-yl)-4,4-difluoro-3, 3-dimethyl-isoquinoline (these compounds may be prepared from the methods described in WO2017/025510); 1 -(4, 5-dimethylbenzimidazol-1-yl)-4, 4, 5-trifluoro-3, 3-dimethyl- isoquinoline, 1 -(4, 5-dimethylbenzimidazol-1 -yl)-4,4-difluoro-3, 3-dimethyl-isoquinoline, 6-chloro-4,4- difluoro-3,3-dimethyl-1-(4-methylbenzimidazol-1-yl)isoquinoline, 4,4-difluoro-1-(5-fluoro-4-methyl- benzimidazol-1-yl)-3, 3-dimethyl-isoquinoline, 3-(4,4-difluoro-3,3-dimethyl-1-isoquinolyl)-7,8-dihydro- 6H-cyclopenta[e]benzimidazole (these compounds may be prepared from the methods described in WO2016/156085); N-methoxy-N-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]cyclopropanecarboxamide, N,2-dimethoxy-N-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]propanamide, N-ethyl-2-methyl-N-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]propanamide, 1 -methoxy-3-methyl-1 -[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]urea, 1 ,3-dimethoxy-1 -[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]urea, 3-ethyl-1 -methoxy-1 -[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methyl]urea, N-[[4-[5-
(trifluoromethyl)-l ,2,4-oxadiazol-3-yl]phenyl]methyl]propanamide, 4,4-dimethyl-2-[[4-[5-
(trifluoromethyl)-l ,2,4-oxadiazol-3-yl]phenyl]methyl]isoxazolidin-3-one, 5,5-dimethyl-2-[[4-[5-
(trifluoromethyl)-l ,2,4-oxadiazol-3-yl]phenyl]methyl]isoxazolidin-3-one, ethyl 1 -[[4-[5-(trifluoromethyl)- 1 ,2,4-oxadiazol-3-yl]phenyl]methyl]pyrazole-4-carboxylate, N,N-dimethyl-1-[[4-[5-(trifluoromethyl)- 1 ,2,4-oxadiazol-3-yl]phenyl]methyl]-1 ,2,4-triazol-3-amine (these compounds may be prepared from the methods described in WO 2017/055473, WO 2017/055469, WO 2017/093348 and WO 2017/118689); 2-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1 -(1 ,2,4-triazol-1 -yl)propan-2-ol (this compound may be prepared from the methods described in WO 2017/029179); 2-[6-(4- bromophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol (this compound may be prepared from the methods described in WO 2017/029179); 3-[2-(1-chlorocyclopropyl)-3-(2- fluorophenyl)-2-hydroxy-propyl]imidazole-4-carbonitrile (this compound may be prepared from the methods described in WO 2016/156290); 3-[2-(1-chlorocyclopropyl)-3-(3-chloro-2-fluoro-phenyl)-2- hydroxy-propyl]imidazole-4-carbonitrile (this compound may be prepared from the methods described in WO 2016/156290); (4-phenoxyphenyl)methyl 2-amino-6-methyl-pyridine-3- carboxylate (this compound may be prepared from the methods described in WO 2014/006945); 2,6- Dimethyl-1H,5H-[1 ,4]dithiino[2,3-c:5,6-c']dipyrrole-1 ,3,5,7(2H,6H)-tetrone (this compound may be prepared from the methods described in WO 2011/138281) N-methyl-4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]benzenecarbothioamide; N-methyl-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yljbenzamide; (Z,2E)-5-[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxy-2-methoxyimino-N,3-dimethyl-pent-3- enamide (this compound may be prepared from the methods described in WO 2018/153707); N'-(2- chloro-5-methyl-4-phenoxy-phenyl)-N-ethyl-N-methyl-formamidine; N'-[2-chloro-4-(2-fluorophenoxy)-5- methyl-phenyl]-N-ethyl-N-methyl-formamidine (this compound may be prepared from the methods described in WO 2016/202742); 2-(difluoromethyl)-N-[(3S)-3-ethyl-1 , 1 -dimethyl-indan-4-yl]pyrid ine-3- carboxamide (this compound may be prepared from the methods described in WO 2014/095675); (5- methyl-2-pyridyl)-[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methanone, (3-methylisoxazol-5- yl)-[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methanone (these compounds may be prepared from the methods described in WO 2017/220485); 2-oxo-N-propyl-2-[4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]phenyl]acetamide (this compound may be prepared from the methods described in WO 2018/065414); ethyl 1-[[5-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]-2-thienyl]methyl]pyrazole-4- carboxylate (this compound may be prepared from the methods described in WO 2018/158365); 2,2- difluoro-N-methyl-2-[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]acetamide, N-[(E)- methoxyiminomethyl]-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide, N-[(Z)- methoxyiminomethyl]-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide, N-[N-methoxy-C-methyl- carbonimidoyl]-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide (these compounds may be prepared from the methods described in WO 2018/202428).
The compounds of the invention may also be used in combination with anthelmintic agents. Such anthelmintic agents include, compounds selected from the macrocyclic lactone class of compounds such as ivermectin, avermectin, abamectin, emamectin, eprinomectin, doramectin, selamectin, moxidectin, nemadectin and milbemycin derivatives as described in EP- 357460, EP- 444964 and EP-594291 . Additional anthelmintic agents include semisynthetic and biosynthetic avermectin/milbemycin derivatives such as those described in US-5015630, WO-9415944 and WO- 9522552. Additional anthelmintic agents include the benzimidazoles such as albendazole, cambendazole, fenbendazole, flubendazole, mebendazole, oxfendazole, oxibendazole, parbendazole, and other members of the class. Additional anthelmintic agents include imidazothiazoles and tetrahydropyrimidines such as tetramisole, levamisole, pyrantel pamoate, oxantel or morantel. Additional anthelmintic agents include flukicides, such as triclabendazole and clorsulon and the cestocides, such as praziquantel and epsiprantel.
The compounds of the invention may be used in combination with derivatives and analogues of the paraherquamide/marcfortine class of anthelmintic agents, as well as the antiparasitic oxazolines such as those disclosed in US-5478855, US- 4639771 and DE-19520936.
The compounds of the invention may be used in combination with derivatives and analogues of the general class of dioxomorpholine antiparasitic agents as described in WO 96/15121 and also with anthelmintic active cyclic depsipeptides such as those described in WO 96/11945, WO 93/19053, WO 93/25543, EP 0 626 375, EP 0 382 173, WO 94/19334, EP 0 382 173, and EP 0 503 538.
The compounds of the invention may be used in combination with other ectoparasiticides; for example, fipronil; pyrethroids; organophosphates; insect growth regulators such as lufenuron; ecdysone agonists such as tebufenozide and the like; neonicotinoids such as imidacloprid and the like.
The compounds of the invention may be used in combination with terpene alkaloids, for example those described in International Patent Application Publication Numbers WO 95/19363 or WO 04/72086, particularly the compounds disclosed therein.
Other examples of such biologically active compounds that the compounds of the invention may be used in combination with include but are not restricted to the following:
Organophosphates: acephate, azamethiphos, azinphos-ethyl, azinphos- methyl, bromophos, bromophos-ethyl, cadusafos, chlorethoxyphos, chlorpyrifos, chlorfenvinphos, chlormephos, demeton, demeton-S-methyl, demeton-S-methyl sulphone, dialifos, diazinon, dichlorvos, dicrotophos, dimethoate, disulfoton, ethion, ethoprophos, etrimfos, famphur, fenamiphos, fenitrothion, fensulfothion, fenthion, flupyrazofos, fonofos, formothion, fosthiazate, heptenophos, isazophos, isothioate, isoxathion, malathion, methacriphos, methamidophos, methidathion, methyl-parathion, mevinphos, monocrotophos, naled, omethoate, oxydemeton-methyl, paraoxon, parathion, parathion-methyl, phenthoate, phosalone, phosfolan, phosphocarb, phosmet, phosphamidon, phorate, phoxim, pirimiphos, pirimiphos-methyl, profenofos, propaphos, proetamphos, prothiofos, pyraclofos, pyridapenthion, quinalphos, sulprophos, temephos, terbufos, tebupirimfos, tetrachlorvinphos, thimeton, triazophos, trichlorfon, vamidothion.
Carbamates: alanycarb, aldicarb, 2-sec-butylphenyl methylcarbamate, benfuracarb, carbaryl, carbofuran, carbosulfan, cloethocarb, ethiofencarb, fenoxycarb, fenthiocarb, furathiocarb, HCN-801 , isoprocarb, indoxacarb, methiocarb, methomyl, 5-methyl-m-cumenylbutyryl(methyl)carbamate, oxamyl, pirimicarb, propoxur, thiodicarb, thiofanox, triazamate, UC-51717.
Pyrethroids: acrinathin, allethrin, alphametrin, 5-benzyl-3-furylmethyl (E)-(1 R)-cis-2,2-dimethyl- 3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, bifenthrin, beta-cyfluthrin, cyfluthrin, a- cypermethrin, beta-cypermethrin, bioallethrin, bioallethrin((S)-cyclopentylisomer), bioresmethrin, bifenthrin, NCI-85193, cycloprothrin, cyhalothrin, cythithrin, cyphenothrin, deltamethrin, empenthrin, esfenvalerate, ethofenprox, fenfluthrin, fenpropathrin, fenvalerate, flucythrinate, flumethrin, fluvalinate (D isomer), imiprothrin, cyhalothrin, lambda-cyhalothrin, permethrin, phenothrin, prallethrin, pyrethrins (natural products), resmethrin, tetramethrin, transfluthrin, theta-cypermethrin, silafluofen, t-fluvalinate, tefluthrin, tralomethrin, Zeta-cypermethrin. Arthropod growth regulators: a) chitin synthesis inhibitors: benzoylureas: chlorfluazuron, diflubenzuron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, novaluron, teflubenzuron, triflumuron, buprofezin, diofenolan, hexythiazox, etoxazole, chlorfentazine; b) ecdysone antagonists: halofenozide, methoxyfenozide, tebufenozide; c) juvenoids: pyriproxyfen, methoprene (including S-methoprene), fenoxycarb; d) lipid biosynthesis inhibitors: spirodiclofen.
Other antiparasitics: acequinocyl, amitraz, AKD-1022, ANS-118, azadirachtin, Bacillus thuringiensis, bensultap, bifenazate, binapacryl, bromopropylate, BTG-504, BTG-505, camphechlor, cartap, chlorobenzilate, chlordimeform, chlorfenapyr, chromafenozide, clothianidine, cyromazine, diacloden, diafenthiuron, DBI-3204, dinactin, dihydroxymethyldihydroxypyrrolidine, dinobuton, dinocap, endosulfan, ethiprole, ethofenprox, fenazaquin, flumite, MTI- 800, fenpyroximate, fluacrypyrim, flubenzimine, flubrocythrinate, flufenzine, flufenprox, fluproxyfen, halofenprox, hydramethylnon, IKI-220, kanemite, NC-196, neem guard, nidinorterfuran, nitenpyram, SD-35651 , WL-108477, pirydaryl, propargite, protrifenbute, pymethrozine, pyridaben, pyrimidifen, NC-1111 , R-195,RH-0345, RH-2485, RYI-210, S-1283, S-1833, SI-8601 , silafluofen, silomadine, spinosad, tebufenpyrad, tetradifon, tetranactin, thiacloprid, thiocyclam, thiamethoxam, tolfenpyrad, triazamate, triethoxyspinosyn, trinactin, verbutin, vertalec, YI-5301 .
Biological agents: Bacillus thuringiensis ssp aizawai, kurstaki, Bacillus thuringiensis delta endotoxin, baculovirus, entomopathogenic bacteria, virus and fungi.
Bactericides: chlortetracycline, oxytetracycline, streptomycin.
Other biological agents: enrofloxacin, febantel, penethamate, moloxicam, cefalexin, kanamycin, pimobendan, clenbuterol, omeprazole, tiamulin, benazepril, pyriprole, cefquinome, florfenicol, buserelin, cefovecin, tulathromycin, ceftiour, carprofen, metaflumizone, praziquarantel, triclabendazole.
The following mixtures of the compounds of Formula (I) with active ingredients are preferred. The abbreviation “TX” means one compound selected from the group consisting of the compounds as represented in Tables A1 to A8 (above) or Table E (compounds E.01 to E.058) (below): a compound selected from the group of substances consisting of petroleum oils + TX, 1 ,1-bis(4- chlorophenyl)-2-ethoxyethanol + TX, 2,4-dichlorophenyl benzenesulfonate + TX, 2-fluoro-N-methyl-N- 1-naphthylacetamide + TX, 4-chlorophenyl phenyl sulfone + TX, acetoprole + TX, aldoxycarb + TX, amidithion + TX, amidothioate + TX, amiton + TX, amiton hydrogen oxalate + TX, amitraz + TX, aramite + TX, arsenous oxide + TX, azobenzene + TX, azothoate + TX, benomyl + TX, benoxafos + TX, benzyl benzoate + TX, bixafen + TX, brofenvalerate + TX, bromocyclen + TX, bromophos + TX, bromopropylate + TX, buprofezin + TX, butocarboxim + TX, butoxycarboxim + TX, butylpyridaben + TX, calcium polysulfide + TX, camphechlor + TX, carbanolate + TX, carbophenothion + TX, cymiazole + TX, chino- methionat + TX, chlorbenside + TX, chlordimeform + TX, chlordimeform hydrochloride + TX, chlorfenethol + TX, chlorfenson + TX, chlorfensulfide + TX, chlorobenzilate + TX, chloromebuform + TX, chloromethiuron + TX, chloropropylate + TX, chlorthiophos + TX, cinerin I + TX, cinerin II + TX, cinerins + TX, closantel + TX, coumaphos + TX, crotamiton + TX, crotoxyphos + TX, cufraneb + TX, cyanthoate + TX, DCPM + TX, DDT + TX, demephion + TX, demephion-O + TX, demephion-S + TX, demeton- methyl + TX, demeton-O + TX, demeton-O-methyl + TX, demeton-S + TX, demeton-S-methyl + TX, demeton-S-methylsulfon + TX, dichlofluanid + TX, dichlorvos + TX, dicliphos + TX, dienochlor + TX, dimefox + TX, dinex + TX, dinex-diclexine + TX, dinocap-4 + TX, dinocap-6 + TX, dinocton + TX, dino- penton + TX, dinosulfon + TX, dinoterbon + TX, dioxathion + TX, diphenyl sulfone + TX, disulfiram + TX, DNOC + TX, dofenapyn + TX, doramectin + TX, endothion + TX, eprinomectin + TX, ethoate-methyl + TX, etrimfos + TX, fenazaflor + TX, fenbutatin oxide + TX, fenothiocarb + TX, fenpyrad + TX, fen- pyroximate + TX, fenpyrazamine + TX, fenson + TX, fentrifanil + TX, flubenzimine + TX, flucycloxuron + TX, fluenetil + TX, fluorbenside + TX, FMC 1137 + TX, formetanate + TX, formetanate hydrochloride + TX, formparanate + TX, gamma-HCH + TX, glyodin + TX, halfenprox + TX, hexadecyl cyclopropanecarboxylate + TX, isocarbophos + TX, jasmolin I + TX, jasmolin II + TX, jodfenphos + TX, lindane + TX, malonoben + TX, mecarbam + TX, mephosfolan + TX, mesulfen + TX, methacrifos + TX, methyl bromide + TX, metolcarb + TX, mexacarbate + TX, milbemycin oxime + TX, mipafox + TX, monocrotophos + TX, morphothion + TX, moxidectin + TX, naled + TX, 4-chloro-2-(2-chloro-2-methyl- propyl)-5-[(6-iodo-3-pyridyl)methoxy]pyridazin-3-one + TX, nifluridide + TX, nikkomycins + TX, nitrilacarb + TX, nitrilacarb 1 :1 zinc chloride complex + TX, omethoate + TX, oxydeprofos + TX, oxydisulfoton + TX, pp'-DDT + TX, parathion + TX, permethrin + TX, phenkapton + TX, phosalone + TX, phosfolan + TX, phosphamidon + TX, polychloroterpenes + TX, polynactins + TX, proclonol + TX, promacyl + TX, propoxur + TX, prothidathion + TX, prothoate + TX, pyrethrin I + TX, pyrethrin II + TX, pyrethrins + TX, pyridaphenthion + TX, pyrimitate + TX, quinalphos + TX, quintiofos + TX, R-1492 + TX, phosglycin + TX, rotenone + TX, schradan + TX, sebufos + TX, selamectin + TX, sophamide + TX, SSI- 121 + TX, sulfiram + TX, sulfluramid + TX, sulfotep + TX, sulfur + TX, diflovidazin + TX, tau-fluvalinate + TX, TEPP + TX, terbam + TX, tetradifon + TX, tetrasul + TX, thiafenox + TX, thiocarboxime + TX, thiofanox + TX, thiometon + TX, thioquinox + TX, thuringiensin + TX, triamiphos + TX, triarathene + TX, triazophos + TX, triazuron + TX, trifenofos + TX, trinactin + TX, vamidothion + TX, vaniliprole + TX, bethoxazin + TX, copper dioctanoate + TX, copper sulfate + TX, cybutryne + TX, dichlone + TX, dichlorophen + TX, endothal + TX, fentin + TX, hydrated lime + TX, nabam + TX, quinoclamine + TX, quinonamid + TX, simazine + TX, triphenyltin acetate + TX, triphenyltin hydroxide + TX, crufomate + TX, piperazine + TX, thiophanate + TX, chloralose + TX, fenthion + TX, pyridin-4-amine + TX, strychnine + TX, 1 -hydroxy-1 H-pyridine-2-thione + TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide + TX, 8- hydroxyquinoline sulfate + TX, bronopol + TX, copper hydroxide + TX, cresol + TX, dipyrithione + TX, dodicin + TX, fenaminosulf + TX, formaldehyde + TX, hydrargaphen + TX, kasugamycin + TX, kasugamycin hydrochloride hydrate + TX, nickel bis(dimethyldithiocarbamate) + TX, nitrapyrin + TX, octhilinone + TX, oxolinic acid + TX, oxytetracycline + TX, potassium hydroxyquinoline sulfate + TX, probenazole + TX, streptomycin + TX, streptomycin sesquisulfate + TX, tecloftalam + TX, thiomersal + TX, Adoxophyes orana GV + TX, Agrobacterium radiobacter + TX, Amblyseius spp. + TX, Anagrapha falcifera NPV + TX, Anagrus atomus + TX, Aphelinus abdominalis + TX, Aphidius colemani + TX, Aphidoletes aphidimyza + TX, Autographa californica NPV + TX, Bacillus sphaericus Neide + TX, Beauveria brongniartii + TX, Chrysoperla carnea + TX, Cryptolaemus montrouzieri + TX, Cydia pomonella GV + TX, Dacnusa sibirica + TX, Diglyphus isaea + TX, Encarsia formosa + TX, Eretmocerus eremicus + TX, Heterorhabditis bacteriophora and H. megidis + TX, Hippodamia convergens + TX, Leptomastix dactylopii + TX, Macrolophus caliginosus + TX, Mamestra brassicae NPV + TX, Metaphycus helvolus + TX, Metarhizium anisopliae var. acridum + TX, Metarhizium anisopliae var. anisopliae + TX, Neodiprion sertifer NPV and N. lecontei NPV + TX, Orius spp. + TX, Paecilomyces fumosoroseus + TX, Phytoseiulus persimilis + TX, Steinernema bibionis + TX, Steinernema carpocapsae + TX, Steinernema feltiae + TX, Steinernema glaseri + TX, Steinernema riobrave + TX, Steinernema riobravis + TX, Steinernema scapterisci + TX, Steinernema spp. + TX, Trichogramma spp. + TX, Typhlodromus occidentalis + TX , Verticillium lecanii + TX, apholate + TX, bisazir + TX, busulfan + TX, dimatif + TX, hemel + TX, hempa + TX, metepa + TX, methiotepa + TX, methyl apholate + TX, morzid + TX, penfluron + TX, tepa + TX, thiohempa + TX, thiotepa + TX, tretamine + TX, uredepa + TX, (E)-dec-5-en-1-yl acetate with (E)-dec-5-en-1-ol + TX, (E)-tridec-4-en-1-yl acetate + TX, (E)-6- methylhept-2-en-4-ol + TX, (E,Z)-tetradeca-4,10-dien-1-yl acetate + TX, (Z)-dodec-7-en-1-yl acetate + TX, (Z)-hexadec-11-enal + TX, (Z)-hexadec-l 1 -en-1 -yl acetate + TX, (Z)-hexadec-13-en-11 -yn-1 -yl acetate + TX, (Z)-icos-13-en-10-one + TX, (Z)-tetradec-7-en-1-al + TX, (Z)-tetradec-9-en-1-ol + TX, (Z)- tetradec-9-en-1-yl acetate + TX, (7E,9Z)-dodeca-7,9-dien-1-yl acetate + TX, (9Z,11 E)-tetradeca-9,11- dien-1-yl acetate + TX, (9Z,12E)-tetradeca-9,12-dien-1-yl acetate + TX, 14-methyloctadec-1-ene + TX, 4-methylnonan-5-ol with 4-methylnonan-5-one + TX, alpha-multistriatin + TX, brevicomin + TX, codlelure + TX, codlemone + TX, cuelure + TX, disparlure + TX, dodec-8-en-1-yl acetate + TX, dodec-9-en-1-yl acetate + TX, dodeca-8 + TX, 10-dien-1 -yl acetate + TX, dominicalure + TX, ethyl 4-methyloctanoate + TX, eugenol + TX, frontalin + TX, grandlure + TX, grandlure I + TX, grandlure II + TX, grandlure III + TX, grandlure IV + TX, hexalure + TX, ipsdienol + TX, ipsenol + TX, japonilure + TX, lineatin + TX, litlure + TX, looplure + TX, medlure + TX, megatomoic acid + TX, methyl eugenol + TX, muscalure + TX, octadeca-2,13-dien-1-yl acetate + TX, octadeca-3,13-dien-1-yl acetate + TX, orfralure + TX, oryctalure + TX, ostramone + TX, siglure + TX, sordidin + TX, sulcatol + TX, tetradec-11 -en-1 -yl acetate + TX, trimedlure + TX, trimedlure A + TX, trimedlure Bi + TX, trimedlure B2 + TX, trimedlure C + TX, trunc-call + TX, 2-(octylthio)ethanol + TX, butopyronoxyl + TX, butoxy(polypropylene glycol) + TX, dibutyl adipate + TX, dibutyl phthalate + TX, dibutyl succinate + TX, diethyltoluamide + TX, dimethyl carbate + TX, dimethyl phthalate + TX, ethyl hexanediol + TX, hexamide + TX, methoquin-butyl + TX, methylneodecanamide + TX, oxamate + TX, picaridin + TX, 1-dichloro-1-nitroethane + TX, 1 ,1-dichloro- 2,2-bis(4-ethylphenyl)ethane + TX, 1 ,2-dichloropropane with 1 ,3-dichloropropene + TX, 1-bromo-2- chloroethane + TX, 2,2,2-trichloro-1-(3,4-dichlorophenyl)ethyl acetate + TX, 2,2-dichlorovinyl 2- ethylsulfinylethyl methyl phosphate + TX, 2-(1 ,3-dithiolan-2-yl)phenyl dimethylcarbamate + TX, 2-(2- butoxyethoxy)ethyl thiocyanate + TX, 2-(4,5-dimethyl-1 ,3-dioxolan-2-yl)phenyl methylcarbamate + TX, 2-(4-chloro-3,5-xylyloxy)ethanol + TX, 2-chlorovinyl diethyl phosphate + TX, 2-imidazolidone + TX, 2- isovalerylindan-1 ,3-dione + TX, 2-methyl(prop-2-ynyl)aminophenyl methylcarbamate + TX, 2- thiocyanatoethyl laurate + TX, 3-bromo-1-chloroprop-1-ene + TX, 3-methyl-1-phenylpyrazol-5-yl dimethylcarbamate + TX, 4-methyl(prop-2-ynyl)amino-3,5-xylyl methylcarbamate + TX, 5,5-dimethyl-3- oxocyclohex-1-enyl dimethylcarbamate + TX, acethion + TX, acrylonitrile + TX, aldrin + TX, allosamidin + TX, allyxycarb + TX, alpha-ecdysone + TX, aluminium phosphide + TX, aminocarb + TX, anabasine + TX, athidathion + TX, azamethiphos + TX, Bacillus thuringiensis delta endotoxins + TX, barium hexafluorosilicate + TX, barium polysulfide + TX, barthrin + TX, Bayer 22/190 + TX, Bayer 22408 + TX, beta-cyfluthrin + TX, beta-cypermethrin + TX, bioethanomethrin + TX, biopermethrin + TX, bis(2- chloroethyl) ether + TX, borax + TX, bromfenvinfos + TX, bromo-DDT + TX, bufencarb + TX, butacarb + TX, butathiofos + TX, butonate + TX, calcium arsenate + TX, calcium cyanide + TX, carbon disulfide + TX, carbon tetrachloride + TX, cartap hydrochloride + TX, cevadine + TX, chlorbicyclen + TX, chlordane + TX, chlordecone + TX, chloroform + TX, chloropicrin + TX, chlorphoxim + TX, chlorprazophos + TX, cis-resmethrin + TX, cismethrin + TX, clocythrin + TX, copper acetoarsenite + TX, copper arsenate + TX, copper oleate + TX, coumithoate + TX, cryolite + TX, CS 708 + TX, cyanofenphos + TX, cyanophos + TX, cyclethrin + TX, cythioate + TX, d-tetramethrin + TX, DAEP + TX, dazomet + TX, decarbofuran + TX, diamidafos + TX, dicapthon + TX, dichlofenthion + TX, dicresyl + TX, dicyclanil + TX, dieldrin + TX, diethyl 5-methylpyrazol-3-yl phosphate + TX, dilor + TX, dimefluthrin + TX, dimetan + TX, dimethrin + TX, dimethylvinphos + TX, dimetilan + TX, dinoprop + TX, dinosam + TX, dinoseb + TX, diofenolan + TX, dioxabenzofos + TX, dithicrofos + TX, DSP + TX, ecdysterone + TX, El 1642 + TX, EMPC + TX, EPBP + TX, etaphos + TX, ethiofencarb + TX, ethyl formate + TX, ethylene dibromide + TX, ethylene dichloride + TX, ethylene oxide + TX, EXD + TX, fenchlorphos + TX, fenethacarb + TX, fenitrothion + TX, fenoxacrim + TX, fenpirithrin + TX, fensulfothion + TX, fenthion-ethyl + TX, flucofuron + TX, fosmethilan + TX, fospirate + TX, fosthietan + TX, furathiocarb + TX, furethrin + TX, guazatine + TX, guazatine acetates + TX, sodium tetrathiocarbonate + TX, halfenprox + TX, HCH + TX, HEOD + TX, heptachlor + TX, heterophos + TX, HHDN + TX, hydrogen cyanide + TX, hyquincarb + TX, IPSP + TX, isazofos + TX, isobenzan + TX, isodrin + TX, isofenphos + TX, isolane + TX, isoprothiolane + TX, isoxathion + TX, juvenile hormone I + TX, juvenile hormone II + TX, juvenile hormone III + TX, kelevan + TX, kinoprene + TX, lead arsenate + TX, leptophos + TX, lirimfos + TX, lythidathion + TX, m-cumenyl methylcarbamate + TX, magnesium phosphide + TX, mazidox + TX, mecarphon + TX, menazon + TX, mercurous chloride + TX, mesulfenfos + TX, metam + TX, metam-potassium + TX, metam-sodium + TX, methanesulfonyl fluoride + TX, methocrotophos + TX, methoprene + TX, methothrin + TX, methoxychlor + TX, methyl isothiocyanate + TX, methylchloroform + TX, methylene chloride + TX, metoxadiazone + TX, mirex + TX, naftalofos + TX, naphthalene + TX, NC-170 + TX, nicotine + TX, nicotine sulfate + TX, nithiazine + TX, nornicotine + TX, 0-5-dichloro-4-iodophenyl O-ethyl ethylphosphonothioate + TX, O,O-diethyl 0-4-methyl-2-oxo-2H-chromen-7-yl phosphorothioate + TX, O,O-diethyl 0-6-methyl-2-propylpyrimidin-4-yl phosphorothioate + TX, O,O,O',O'-tetrapropyl dithiopyrophosphate + TX, oleic acid + TX, para-dichlorobenzene + TX, parathion-methyl + TX, pentachlorophenol + TX, pentachlorophenyl laurate + TX, PH 60-38 + TX, phenkapton + TX, phosnichlor + TX, phosphine + TX, phoxim-methyl + TX, pirimetaphos + TX, polychlorodicyclopentadiene isomers + TX, potassium arsenite + TX, potassium thiocyanate + TX, precocene I + TX, precocene II + TX, precocene III + TX, primidophos + TX, profluthrin + TX, promecarb + TX, prothiofos + TX, pyrazophos + TX, pyresmethrin + TX, quassia + TX, quinalphos-methyl + TX, quinothion + TX, rafoxanide + TX, resmethrin + TX, rotenone + TX, kadethrin + TX, ryania + TX, ryanodine + TX, sabadilla) + TX, schradan + TX, sebufos + TX, SI-0009 + TX, thiapronil + TX, sodium arsenite + TX, sodium cyanide + TX, sodium fluoride + TX, sodium hexafluorosilicate + TX, sodium pentachlorophenoxide + TX, sodium selenate + TX, sodium thiocyanate + TX, sulcofuron + TX, sulcofuron-sodium + TX, sulfuryl fluoride + TX, sulprofos + TX, tar oils + TX, tazimcarb + TX, TDE + TX, tebupirimfos + TX, temephos + TX, terallethrin + TX, tetrachloroethane + TX, thicrofos + TX, thiocyclam + TX, thiocyclam hydrogen oxalate + TX, thionazin + TX, thiosultap + TX, thiosultap-sodium + TX, tralomethrin + TX, transpermethrin + TX, triazamate + TX, trichlormetaphos-3 + TX, trichloronat + TX, trimethacarb + TX, tolprocarb + TX, triclopyricarb + TX, triprene + TX, veratridine + TX, veratrine + TX, XMC + TX, zetamethrin + TX, zinc phosphide + TX, zolaprofos + TX, and meperfluthrin + TX, tetramethylfluthrin + TX, bis(tributyltin) oxide + TX, bromoacetamide + TX, ferric phosphate + TX, niclosamide-olamine + TX, tributyltin oxide + TX, pyrimorph + TX, trifenmorph + TX, 1 ,2-dibromo-3-chloropropane + TX, 1 ,3-dichloropropene + TX, 3,4- dichlorotetrahydrothiophene 1 ,1-dioxide + TX, 3-(4-chlorophenyl)-5-methylrhodanine + TX, 5-methyl-6- thioxo-1 ,3,5-thiadiazinan-3-ylacetic acid + TX, 6-isopentenylaminopurine + TX, 2-fluoro-N-(3- methoxyphenyl)-9H-purin-6-amine + TX, benclothiaz + TX, cytokinins + TX, DCIP + TX, furfural + TX, isamidofos + TX, kinetin + TX, Myrothecium verrucaria composition + TX, tetrachlorothiophene + TX, xylenols + TX, zeatin + TX, potassium ethylxanthate + TX .acibenzolar + TX, acibenzolar-S-methyl + TX, Reynoutria sachalinensis extract + TX, alpha-chlorohydrin + TX, antu + TX, barium carbonate + TX, bisthiosemi + TX, brodifacoum + TX, bromadiolone + TX, bromethalin + TX, chlorophacinone + TX, cholecalciferol + TX, coumachlor + TX, coumafuryl + TX, coumatetralyl + TX, crimidine + TX, difenacoum + TX, difethialone + TX, diphacinone + TX, ergocalciferol + TX, flocoumafen + TX, fluoroacetamide + TX, flupropadine + TX, flupropadine hydrochloride + TX, norbormide + TX, phosacetim + TX, phosphorus + TX, pindone + TX, pyrinuron + TX, scilliroside + TX, sodium fluoroacetate + TX, thallium sulfate + TX, warfarin + TX, 2-(2-butoxyethoxy)ethyl piperonylate + TX, 5-(1 ,3-benzodioxol-5-yl)-3- hexylcyclohex-2-enone + TX, farnesol with nerolidol + TX, verbutin + TX, MGK 264 + TX, piperonyl butoxide + TX, piprotal + TX, propyl isomer + TX, S421 + TX, sesamex+ TX, sesasmolin + TX, sulfoxide + TX, anthraquinone + TX, copper naphthenate + TX, copper oxychloride + TX, dicyclopentadiene + TX, thiram + TX, zinc naphthenate + TX, ziram + TX, imanin + TX, ribavirin + TX, mercuric oxide + TX, thiophanate-methyl + TX, azaconazole + TX, bitertanol + TX, bromuconazole + TX, cyproconazole + TX, difenoconazole + TX, diniconazole + TX, epoxiconazole + TX, fenbuconazole + TX, fluquinconazole + TX, flusilazole + TX, flutriafol + TX, furametpyr + TX, hexaconazole + TX, imazalil + TX, imiben- conazole + TX, ipconazole + TX, metconazole + TX, myclobutanil + TX, paclobutrazole + TX, pefurazoate + TX, penconazole + TX, prothioconazole + TX, pyrifenox + TX, prochloraz + TX, propiconazole + TX, pyrisoxazole + TX, simeconazole + TX, tebuconazole + TX, tetraconazole + TX, triadimefon + TX, triadimenol + TX, triflumizole + TX, triticonazole + TX, ancymidol + TX, fenarimol + TX, nuarimol + TX, bupirimate + TX, dimethirimol + TX, ethirimol + TX, dodemorph + TX, fenpropidin + TX, fenpropimorph + TX, spiroxamine + TX, tridemorph + TX, cyprodinil + TX, mepanipyrim + TX, pyrimethanil + TX, fenpiclonil + TX, fludioxonil + TX, benalaxyl + TX, furalaxyl + TX, metalaxyl -+ TX, Rmetalaxyl + TX, ofurace + TX, oxadixyl + TX, carbendazim + TX, debacarb + TX, fuberidazole + TX, thiabendazole + TX, chlozolinate + TX, dichlozoline + TX, myclozoline + TX, procymidone + TX, vinclozoline + TX, boscalid + TX, carboxin + TX, fenfuram + TX, flutolanil + TX, mepronil + TX, oxycarboxin + TX, penthiopyrad + TX, thifluzamide + TX, dodine + TX, iminoctadine + TX, azoxystrobin + TX, dimoxystrobin + TX, enestroburin + TX, fenaminstrobin + TX, flufenoxystrobin + TX, fluoxastrobin + TX, kresoxim-methyl + TX, metominostrobin + TX, trifloxystrobin + TX, orysastrobin + TX, picoxystrobin + TX, pyraclostrobin + TX, pyrametostrobin + TX, pyraoxystrobin + TX, ferbam + TX, mancozeb + TX, maneb + TX, metiram + TX, propineb + TX, zineb + TX, captafol + TX, captan + TX, fluoroimide + TX, folpet + TX, tolylfluanid + TX, bordeaux mixture + TX, copper oxide + TX, mancopper + TX, oxine-copper + TX, nitrothal-isopropyl + TX, edifenphos + TX, iprobenphos + TX, phosdiphen + TX, tolclofos-methyl + TX, anilazine + TX, benthiavalicarb + TX, blasticidin-S + TX, chloroneb + TX, chlorothalonil + TX, cyflufenamid + TX, cymoxanil + TX, cyclobutrifluram + TX, diclocymet + TX, diclomezine + TX, dicloran + TX, diethofencarb + TX, dimethomorph + TX, flumorph + TX, dithianon + TX, ethaboxam + TX, etridiazole + TX, famoxadone + TX, fenamidone + TX, fenoxanil + TX, ferimzone + TX, fluazinam + TX, fluopicolide + TX, flusulfamide + TX, fluxapyroxad + TX, fenhexamid + TX, fosetyl- aluminium + TX, hymexazol + TX, iprovalicarb + TX, cyazofamid + TX, methasulfocarb + TX, metrafenone + TX, pencycuron + TX, phthalide + TX, polyoxins + TX, propamocarb + TX, pyribencarb + TX, proquinazid + TX, pyroquilon + TX, pyriofenone + TX, quinoxyfen + TX, quintozene + TX, tiadinil + TX, triazoxide + TX, tricyclazole + TX, triforine + TX, validamycin + TX, valifenalate + TX, zoxamide + TX, mandipropamid + TX, flubeneteram + TX, isopyrazam + TX, sedaxane + TX, benzovindiflupyr + TX, pydiflumetofen + TX, 3-difluoromethyl-1 -methyl-1 H-pyrazole-4-carboxylic acid (3',4',5'-trifluoro- biphenyl-2-yl)-amide + TX, isoflucypram + TX, isotianil + TX, dipymetitrone + TX, 6-ethyl-5,7-dioxo- pyrrolo[4,5][1 ,4]dithiino[1 ,2-c]isothiazole-3-carbonitrile + TX, 2-(difluoromethyl)-N-[3-ethyl-1 ,1-dimethyl- indan-4-yl]pyridine-3-carboxamide + TX, 4-(2,6-difluorophenyl)-6-methyl-5-phenyl-pyridazine-3- carbonitrile + TX, (R)-3-(difluoromethyl)-1-methyl-N-[1 ,1 ,3-trimethylindan-4-yl]pyrazole-4-carboxamide + TX, 4-(2-bromo-4-fluoro-phenyl)-N-(2-chloro-6-fluoro-phenyl)-2,5-dimethyl-pyrazol-3-amine + TX, 4- (2- bromo- 4- fluorophenyl) - N- (2- chloro- 6- fluorophenyl) - 1 , 3- dimethyl- 1 H- pyrazol- 5- amine + TX, fluindapyr + TX, coumethoxystrobin (jiaxiangjunzhi) + TX, Ivbenmixianan + TX, dichlobentiazox + TX, mandestrobin + TX, 3-(4,4-difluoro-3,4-dihydro-3,3-dimethylisoquinolin-1-yl)quinolone + TX, 2-[2-fluoro- 6-[(8-fluoro-2-methyl-3-quinolyl)oxy]phenyl]propan-2-ol + TX, oxathiapiprolin + TX, tert-butyl N-[6-[[[(1- methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate + TX, pyraziflumid + TX, inpyrfluxam + TX, trolprocarb + TX, mefentrifluconazole + TX, ipfentrifluconazole+ TX, 2- (difluoromethyl)-N-[(3R)-3-ethyl-1 ,1-dimethyl-indan-4-yl]pyridine-3-carboxamide + TX, N'-(2,5-dimethyl- 4-phenoxy-phenyl)-N-ethyl-N-methyl-formamidine + TX, N'-[4-(4,5-dichlorothiazol-2-yl)oxy-2,5- dimethyl-phenyl]-N-ethyl-N-methyl-formamidine + TX, [2-[3-[2-[1-[2-[3,5-bis(difluoromethyl)pyrazol-1- yl]acetyl]-4-piperidyl]thiazol-4-yl]-4,5-dihydroisoxazol-5-yl]-3-chloro-phenyl] methanesulfonate + TX, but-3-ynyl N-[6-[[(Z)-[(1-methyltetrazol-5-yl)-phenyl-methylene]amino]oxymethyl]-2-pyridyl]carbamate + TX, methyl N-[[5-[4-(2,4-dimethylphenyl)triazol-2-yl]-2-methyl-phenyl]methyl]carbamate + TX, 3-chloro- 6-methyl-5-phenyl-4-(2,4,6-trifluorophenyl)pyridazine + TX, pyridachlometyl + TX, 3-(difluoromethyl)-1- methyl-N-[1 ,1 ,3-trimethylindan-4-yl]pyrazole-4-carboxamide + TX, 1-[2-[[1-(4-chlorophenyl)pyrazol-3- yl]oxymethyl]-3-methyl-phenyl]-4-methyl-tetrazol-5-one + TX, 1 -methyl-4-[3-methyl-2-[[2-methyl-4- (3,4,5-trimethylpyrazol-1-yl)phenoxy]methyl]phenyl]tetrazol-5-one + TX, aminopyrifen + TX, ametoctradin + TX, amisulbrom + TX, penflufen + TX, (Z,2E)-5-[1-(4-chlorophenyl)pyrazol-3-yl]oxy-2- methoxyimino-N,3-dimethyl-pent-3-enamide + TX, florylpicoxamid + TX, fenpicoxamid + TX, tebufloquin + TX, ipflufenoquin + TX, quinofumelin + TX, isofetamid + TX, N-[2-[2,4-dichloro-phenoxy]phenyl]-3- (difluoromethyl)-1-methyl-pyrazole-4-carboxamide + TX, N-[2-[2-chloro-4-
(trifluoromethyl)phenoxy]phenyl]-3-(difluoromethyl)-1 -methyl-pyrazole-4-carboxamide + TX, benzothiostrobin + TX, phenamacril + TX, 5-amino-1 ,3,4-thiadiazole-2-thiol zinc salt (2:1) + TX, fluopyram + TX, flutianil + TX, fluopimomide + TX, pyrapropoyne + TX, picarbutrazox + TX, 2- (difluoromethyl)-N-(3-ethyl-1 ,1-dimethyl-indan-4-yl)pyridine-3-carboxamide + TX, 2- (difluoromethyl) - N- ((3R) - 1 , 1 , 3- trimethylindan- 4- yl) pyridine- 3- carboxamide + TX, 4-[[6-[2-(2,4-difluorophenyl)-1 ,1- difluoro-2-hydroxy-3-(1 ,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy]benzonitrile + TX, metyltetraprole + TX, 2- (difluoromethyl) - N- ((3R) - 1 , 1 , 3- trimethylindan- 4- yl) pyridine- 3- carboxamide + TX, a- (1 , 1- dimethylethyl) - a- [4'- (trifluoromethoxy) [1 , 1'- biphenyl] - 4- yl] -5- pyrimidinemethanol + TX, fluoxapiprolin + TX, enoxastrobin + TX, 4-[[6-[2-(2,4-difluorophenyl)-1 ,1-difluoro-2-hydroxy-3-(1 ,2,4- triazol-1 -yl)propyl]-3-pyridyl]oxy] benzonitrile + TX, 4-[[6-[2-(2,4-difluorophenyl)-1 ,1-difluoro-2-hydroxy- 3-(5-sulfanyl-1 ,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy] benzonitrile + TX, 4-[[6-[2-(2,4-difluorophenyl)-1 ,1- difluoro-2-hydroxy-3-(5-thioxo-4H-1 ,2,4-triazol-1-yl)propyl]-3-pyridyl]oxy]benzonitrile + TX, trinexapac + TX, coumoxystrobin + TX, zhongshengmycin + TX, thiodiazole copper + TX, zinc thiazole + TX, amectotractin + TX, iprodione + TX, N-octyl-N'-[2-(octylamino)ethyl]ethane-1 ,2-diamine + TX; N'-[5- bromo-2-methyl-6-[(1 S)-1 -methyl-2-propoxy-ethoxy]-3-pyridyl]-N-ethyl-N-methyl-formamidine + TX, N'- [5-bromo-2-methyl-6-[(1 R)-1 -methyl-2-propoxy-ethoxy]-3-pyridyl]-N-ethyl-N-methyl-formamidine + TX, N'-[5-bromo-2-methyl-6-(1 -methyl-2-propoxy-ethoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine + TX, N'- [5-chloro-2-methyl-6-(1 -methyl-2-propoxy-ethoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine + TX, N'-[5- bromo-2-methyl-6-(1-methyl-2-propoxy-ethoxy)-3-pyridyl]-N-isopropyl-N-methyl-formamidine +
TX (these compounds may be prepared from the methods described in WO2015/155075); N'-[5-bromo- 2-methyl-6-(2-propoxypropoxy)-3-pyridyl]-N-ethyl-N-methyl-formamidine + TX (this compound may be prepared from the methods described in IPCOM000249876D); N-isopropyl-N’-[5-methoxy-2-methyl-4- (2, 2, 2-trifluoro-1 -hydroxy-1 -phenyl-ethyl)phenyl]-N-methyl-formamidine+ TX, N’-[4-(1 -cyclopropyl- 2, 2, 2-trifluoro-1-hydroxy-ethyl)-5-methoxy-2-methyl-phenyl]-N-isopropyl-N-methyl-formamidine +
TX (these compounds may be prepared from the methods described in WO2018/228896); N-ethyl-N’- [5-methoxy-2-methyl-4-[2-trifluoromethyl)oxetan-2-yl]phenyl]-N-methyl-formamidine + TX, N-ethyl-N’- [5-methoxy-2-methyl-4-[2-trifuoromethyl)tetrahydrofuran-2-yl]phenyl]-N-methyl-formamidine +
TX (these compounds may be prepared from the methods described in WO2019/110427); N-[(1 R)-1- benzyl-3-chloro-1 -methyl-but-3-enyl]-8-fluoro-quinoline-3-carboxamide + TX, N-[(1 S)-1 -benzyl-3- chloro-1-methyl-but-3-enyl]-8-fluoro-quinoline-3-carboxamide + TX, N-[(1 R)-1 -benzyl-3, 3, 3-trifluoro-1- methyl-propyl]-8-fluoro-quinoline-3-carboxamide + TX, N-[(1 S)-1 -benzyl-3, 3, 3-trifluoro-1 -methyl- propyl]-8-fluoro-quinoline-3-carboxamide + TX, N-[(1 R)-1 -benzyl-1 ,3-dimethyl-butyl]-7,8-difluoro- quinoline-3-carboxamide + TX, N-[(1 S)-1 -benzyl-1 ,3-dimethyl-butyl]-7,8-difluoro-quinoline-3- carboxamide + TX, 8-fluoro-N-[(1 R)-1-[(3-fluorophenyl)methyl]-1 ,3-dimethyl-butyl]quinoline-3- carboxamide + TX, 8-fluoro-N-[(1S)-1-[(3-fluorophenyl)methyl]-1 ,3-dimethyl-butyl]quinoline-3- carboxamide + TX, N-[(1 R)-1 -benzyl-1 ,3-dimethyl-butyl]-8-fluoro-quinoline-3-carboxamide + TX, N- [(1 S)-1 -benzyl-1 ,3-dimethyl-butyl]-8-fluoro-quinoline-3-carboxamide + TX, N-((1 R)-1 -benzyl-3-chloro-1 - methyl-but-3-enyl)-8-fluoro-quinoline-3-carboxamide + TX, N-((1 S)-1 -benzyl-3-chloro-1 -methyl-but-3- enyl)-8-fluoro-quinoline-3-carboxamide + TX (these compounds may be prepared from the methods described in WO2017/153380);
1-(6,7-dimethylpyrazolo[1 ,5-a]pyridin-3-yl)-4, 4, 5-trifluoro-3, 3-dimethyl-isoquinoline + TX, 1 -(6,7- dimethylpyrazolo[1 ,5-a]pyridin-3-yl)-4, 4, 6-trifluoro-3, 3-dimethyl-isoquinoline + TX, 4,4-difluoro-3,3- dimethyl-1-(6-methylpyrazolo[1 ,5-a]pyridin-3-yl)isoquinoline + TX, 4,4-difluoro-3,3-dimethyl-1-(7- methylpyrazolo[1 ,5-a]pyridin-3-yl)isoquinoline + TX, 1-(6-chloro-7-methyl-pyrazolo[1 ,5-a]pyridin-3-yl)- 4, 4-difluoro-3, 3-dimethyl-isoquinoline + TX (these compounds may be prepared from the methods described in WO2017/025510); 1 -(4, 5-dimethylbenzimidazol-1-yl)-4, 4, 5-trifluoro-3, 3-dimethyl- isoquinoline + TX, 1 -(4, 5-dimethylbenzimidazol-1-yl)-4,4-difluoro-3, 3-dimethyl-isoquinoline + TX, 6- chloro-4,4-difluoro-3,3-dimethyl-1 -(4-methylbenzimidazol-1 -yl)isoquinoline + TX, 4,4-difluoro-1 -(5- fluoro-4-methyl-benzimidazol-1 -yl)-3, 3-dimethyl-isoquinoline + TX, 3-(4,4-difluoro-3,3-dimethyl-1 - isoquinolyl)-7,8-dihydro-6H-cyclopenta[e]benzimidazole + TX (these compounds may be prepared from the methods described in WO2016/156085); N-methoxy-N-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]cyclopropanecarboxamide + TX, N,2-dimethoxy-N-[[4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]phenyl]methyl]propanamide + TX, N-ethyl-2-methyl-N-[[4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]phenyl]methyl]propanamide + TX, 1-methoxy-3-methyl-1-[[4-[5-(trifluoromethyl)-1 ,2,4- oxadiazol-3-yl]phenyl]methyl]urea + TX, 1 ,3-dimethoxy-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]urea + TX, 3-ethyl-1-methoxy-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]urea + TX, N-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]propanamide + TX, 4,4-dimethyl-2-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]isoxazolidin-3-one + TX, 5,5-dimethyl-2-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]isoxazolidin-3-one + TX, ethyl 1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]methyl]pyrazole-4-carboxylate + TX, N,N-dimethyl-1-[[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol- 3-yl]phenyl]methyl]-1 ,2,4-triazol-3-amine + TX. The compounds in this paragraph may be prepared from the methods described in WO 2017/055473, WO 2017/055469, WO 2017/093348 and WO 2017/118689; 2-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol + TX (this compound may be prepared from the methods described in WO 2017/029179); 2-[6-(4- bromophenoxy)-2-(trifluoromethyl)-3-pyridyl]-1-(1 ,2,4-triazol-1-yl)propan-2-ol + TX (this compound may be prepared from the methods described in WO 2017/029179); 3-[2-(1-chlorocyclopropyl)-3-(2- fluorophenyl)-2-hydroxy-propyl]imidazole-4-carbonitrile + TX (this compound may be prepared from the methods described in WO 2016/156290); 3-[2-(1-chlorocyclopropyl)-3-(3-chloro-2-fluoro-phenyl)-2- hydroxy-propyl]imidazole-4-carbonitrile + TX (this compound may be prepared from the methods described in WO 2016/156290); (4-phenoxyphenyl)methyl 2-amino-6-methyl-pyridine-3-carboxylate + TX (this compound may be prepared from the methods described in WO 2014/006945); 2,6-Dimethyl- 1 H,5H-[1 ,4]dithiino[2,3-c:5,6-c']dipyrrole-1 ,3,5,7(2H,6H)-tetrone + TX (this compound may be prepared from the methods described in WO 2011/138281); N-methyl-4-[5-(trifluoromethyl)-1 ,2, 4-oxadiazol-3- yljbenzenecarbothioamide + TX; N-methyl-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide + TX; (Z,2E)-5-[1-(2,4-dichlorophenyl)pyrazol-3-yl]oxy-2-methoxyimino-N,3-dimethyl-pent-3-enamide + TX (this compound may be prepared from the methods described in WO 2018/153707); N'-(2-chloro-5- methyl-4-phenoxy-phenyl)-N-ethyl-N-methyl-formamidine + TX; N'-[2-chloro-4-(2-fluorophenoxy)-5- methyl-phenyl]-N-ethyl-N-methyl-formamidine + TX (this compound may be prepared from the methods described in WO 2016/202742); 2-(difluoromethyl)-N-[(3S)-3-ethyl-1 , 1 -dimethyl-indan-4-yl]pyrid ine-3- carboxamide + TX (this compound may be prepared from the methods described in WO 2014/095675); (5-methyl-2-pyridyl)-[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methanone + TX, (3- methylisoxazol-5-yl)-[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]methanone + TX (these compounds may be prepared from the methods described in WO 2017/220485); 2-oxo-N-propyl-2-[4- [5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]phenyl]acetamide + TX (this compound may be prepared from the methods described in WO 2018/065414); ethyl 1-[[5-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]-2- thienyl]methyl]pyrazole-4-carboxylate + TX (this compound may be prepared from the methods described in WO 2018/158365) ; 2,2-difluoro-N-methyl-2-[4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]phenyl]acetamide + TX, N-[(E)-methoxyiminomethyl]-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3- yl]benzamide + TX, N-[(Z)-methoxyiminomethyl]-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide + TX, N-[N-methoxy-C-methyl-carbonimidoyl]-4-[5-(trifluoromethyl)-1 ,2,4-oxadiazol-3-yl]benzamide + TX (these compounds may be prepared from the methods described in WO 2018/202428), chloroinconazide + TX.
The references in brackets behind the active ingredients, e.g. [3878-19-1] refer to the Chemical Abstracts Registry number. The above described mixing partners are known. Where the active ingredients are included in "The Pesticide Manual" [The Pesticide Manual - A World Compendium; Thirteenth Edition; Editor: C. D. S. TomLin; The British Crop Protection Council], they are described therein under the entry number given in round brackets hereinabove for the particular compound; for example, the compound "abamectin" is described under entry number (1). Where "[CCN]" is added hereinabove to the particular compound, the compound in question is included in the "Compendium of Pesticide Common Names", which is accessible on the internet [A. Wood; Compendium of Pesticide Common Names. Copyright © 1995-2004]; for example, the compound "acetoprole" is described under the internet address http://www.alanwood.net/pesticides/acetoprole.html.
Most of the active ingredients described above are referred to hereinabove by a so-called "common name", the relevant "ISO common name" or another "common name" being used in individual cases. If the designation is not a "common name", the nature of the designation used instead is given in round brackets for the particular compound; in that case, the lUPAC name, the lUPAC/Chemical Abstracts name, a "chemical name", a "traditional name", a "compound name" or a "develoment code" is used or, if neither one of those designations nor a "common name" is used, an "alternative name" is employed. “CAS Reg. No” means the Chemical Abstracts Registry Number.
The active ingredient mixture of the compounds of formula (I) selected from one compound as represented in Tables A1 to A8 (above) or Table E (below) is preferably in a mixing ratio of from 100:1 to 1 :6000, especially from 50:1 to 1 :50, more especially in a ratio of from 20:1 to 1 :20, even more especially from 10:1 to 1 :10, very especially from 5:1 and 1 :5, special preference being given to a ratio of from 2:1 to 1 :2, and a ratio of from 4:1 to 2:1 being likewise preferred, above all in a ratio of 1 :1 , or 5:1 , or 5:2, or 5:3, or 5:4, or 4:1 , or 4:2, or 4:3, or 3:1 , or 3:2, or 2:1 , or 1 :5, or 2:5, or 3:5, or 4:5, or 1 :4, or 2:4, or 3:4, or 1 :3, or 2:3, or 1 :2, or 1 :600, or 1 :300, or 1 :150, or 1 :35, or 2:35, or 4:35, or 1 :75, or 2:75, or 4:75, or 1 :6000, or 1 :3000, or 1 :1500, or 1 :350, or 2:350, or 4:350, or 1 :750, or 2:750, or 4:750. Those mixing ratios are by weight.
The mixtures as described above can be used in a method for controlling pests, which comprises applying a composition comprising a mixture as described above to the pests or their environment, with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.
The mixtures comprising a compound as represented in Tables A1 to A8 (above) or Table E (below), and one or more active ingredients as described above can be applied, for example, in a single “ready-mix” form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a “tank-mix”, and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days. The order of applying a compound as represented in Tables A1 to A8 (above) or Table E (below) and the active ingredient(s) as described above, is not essential for working the present invention.
The compositions according to the invention can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.
The compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries). These processes for the preparation of the compositions and the use of the compounds (I) forthe preparation ofthese compositions are also a subject ofthe invention.
Another aspect of the invention is related to the use of a compound of Formula (I) or of a preferred individual compound as defined herein, of a composition comprising at least one compound of Formula (I) or at least one preferred individual compound as above-defined, or of a fungicidal or insecticidal mixture comprising at least one compound of Formula (I) or at least one preferred individual compound as above-defined, in admixture with other fungicides or insecticides as described above, for controlling or preventing infestation of plants, e.g. useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or non-living materials by insects or by phytopathogenic microorganisms, preferably fungal organisms..
A further aspect of invention is related to a method of controlling or preventing an infestation of plants, e.g. useful plants such as crop plants, propagation material thereof, e.g. seeds, harvested crops, e.g. harvested food crops, or of non-living materials by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, which comprises the application of a compound of formula (I) or of a preferred individual compound as above-defined as active ingredient to the plants, to parts of the plants or to the locus thereof, to the propagation material thereof, or to any part of the non-living materials.
Controlling or preventing means reducing infestation by insects or by phytopathogenic or spoilage microorganisms or organisms potentially harmful to man, especially fungal organisms, to such a level that an improvement is demonstrated.
A preferred method of controlling or preventing an infestation of crop plants by phytopathogenic microorganisms, especially fungal organisms, or insects which comprises the application of a compound of formula (I), or an agrochemical composition which contains at least one of said compounds, is foliar application. The frequency of application and the rate of application will depend on the risk of infestation by the corresponding pathogen or insect. However, the compounds of formula (I) can also penetrate the plant through the roots via the soil (systemic action) by drenching the locus of the plant with a liquid formulation, or by applying the compounds in solid form to the soil, e.g. in granularform (soil application). In crops of water rice such granulates can be applied to the flooded rice field. The compounds of formula (I) may also be applied to seeds (coating) by impregnating the seeds or tubers either with a liquid formulation of the fungicide or coating them with a solid formulation. A formulation, e.g. a composition containing the compound of formula (I), and, if desired, a solid or liquid adjuvant or monomers for encapsulating the compound of formula (I), may be prepared in a known manner, typically by intimately mixing and/or grinding the compound with extenders, for example solvents, solid carriers and, optionally, surface active compounds (surfactants).
The application methods for the compositions, that is the methods of controlling pests of the abovementioned type, such as spraying, atomizing, dusting, brushing on, dressing, scattering or pouring - which are to be selected to suit the intended aims of the prevailing circumstances - and the use of the compositions for controlling pests of the abovementioned type are other subjects of the invention. Typical rates of concentration are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm, of active ingredient. The rate of application per hectare is preferably 1g to 2000 g of active ingredient per hectare, more preferably 10 to 1000 g/ha, most preferably 10 to 600 g/ha. When used as seed drenching agent, convenient dosages are from 10mg to 1g of active substance per kg of seeds.
When the combinations of the present invention are used for treating seed, rates of 0.001 to 50 g of a compound of formula (I) per kg of seed, preferably from 0.01 to 10g per kg of seed are generally sufficient.
Suitably, a composition comprising a compound of formula (I) according to the present invention is applied either preventative, meaning prior to disease development or curative, meaning after disease development.
The compositions of the invention may be employed in any conventional form, for example in the form of a twin pack, a powder for dry seed treatment (DS), an emulsion for seed treatment (ES), a flowable concentrate for seed treatment (FS), a solution for seed treatment (LS), a water dispersible powder for seed treatment (WS), a capsule suspension for seed treatment (CF), a gel for seed treatment (GF), an emulsion concentrate (EC), a suspension concentrate (SC), a suspo-emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK), a dispersible concentrate (DC), a wettable powder (WP) or any technically feasible formulation in combination with agriculturally acceptable adjuvants.
Such compositions may be produced in conventional manner, e.g. by mixing the active ingredients with appropriate formulation inerts (diluents, solvents, fillers and optionally other formulating ingredients such as surfactants, biocides, anti-freeze, stickers, thickeners and compounds that provide adjuvancy effects). Also conventional slow release formulations may be employed where long lasting efficacy is intended. Particularly formulations to be applied in spraying forms, such as water dispersible concentrates (e.g. EC, SC, DC, OD, SE, EW, EO and the like), wettable powders and granules, may contain surfactants such as wetting and dispersing agents and other compounds that provide adjuvancy effects, e.g. the ondensation product of formaldehyde with naphthalene sulphonate, an alkylarylsulphonate, a lignin sulphonate, a fatty alkyl sulphate, and ethoxylated alkylphenol and an ethoxylated fatty alcohol.
A seed dressing formulation is applied in a manner known per se to the seeds employing the combination ofthe invention and a diluent in suitable seed dressing formulation form, e.g. as an aqueous suspension or in a dry powder form having good adherence to the seeds. Such seed dressing formulations are known in the art. Seed dressing formulations may contain the single active ingredients or the combination of active ingredients in encapsulated form, e.g. as slow release capsules or microcapsules.
In general, the formulations include from 0.01 to 90% by weight of active agent, from 0 to 20% agriculturally acceptable surfactant and 10 to 99.99% solid or liquid formulation inerts and adjuvant(s), the active agent consisting of at least the compound of formula (I) together with component (B) and (C), and optionally other active agents, particularly microbiocides or conservatives or the like. Concentrated forms of compositions generally contain in between about 2 and 80%, preferably between about 5 and 70% by weight of active agent. Application forms of formulation may for example contain from 0.01 to 20% by weight, preferably from 0.01 to 5% by weight of active agent. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ diluted formulations.
Whereas it is preferred to formulate commercial products as concentrates, the end user will normally use dilute formulations.
EXAMPLES
The Examples which follow serve to illustrate the invention.
Certain compounds of the invention can be distinguished from known compounds by virtue of greater efficacy at low application rates, which can be verified by the person skilled in the art using the experimental procedures outlined in the Examples, using lower application rates if necessary, for example 50 ppm, 12.5 ppm, 6 ppm, 3 ppm, 1 .5 ppm, 0.8 ppm or 0.2 ppm.
Compounds of Formula (I) may possess any number of benefits including, inter alia, advantageous levels of biological activity for protecting plants against diseases that are caused by fungi or superior properties for use as agrochemical active ingredients (for example, greater biological activity, an advantageous spectrum of activity, an increased safety profile (including improved crop tolerance), improved physico-chemical properties, or increased biodegradability).
Throughout this description, temperatures are given in degrees Celsius and “m.p.” means melting point. LC/MS means Liquid Chromatography Mass Spectroscopy and the description of the apparatus and the methods are described below.
Formulation Examples
Wettable powders a) b) c) active ingredient [compound of formula (I)] 25 % 50 % 75 % sodium lignosulfonate 5 % 5 % sodium lauryl sulfate 3 % - 5 % sodium diisobutylnaphthalenesulfonate 6 % 10 % phenol polyethylene glycol ether 2 %
(7-8 mol of ethylene oxide) highly dispersed silicic acid 5 % 10 % 10 % Kaolin 62 % 27 %
The active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with water to give suspensions of the desired concentration.
Powders for dry seed treatment a) b) c) active ingredient [compound of formula (I)] 25 % 50 % 75 % light mineral oil 5 % 5 % 5 % highly dispersed silicic acid 5 % 5 %
Kaolin 65 % 40 %
Talcum 20
The active ingredient is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
Emulsifiable concentrate active ingredient [compound of formula (I)] 10 % octylphenol polyethylene glycol ether 3 %
(4-5 mol of ethylene oxide) calcium dodecylbenzenesulfonate 3 % castor oil polyglycol ether (35 mol of ethylene oxide) 4 %
Cyclohexanone 30 % xylene mixture 50 %
Emulsions of any required dilution, which can be used in plant protection, can be obtained from this concentrate by dilution with water.
Dusts a) b) c)
Active ingredient [compound of formula (I)] 5 % 6 % 4 % talcum 95 %
Kaolin 94 % mineral filler 96 %
Ready-for-use dusts are obtained by mixing the active ingredient with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
Extruder granules
Active ingredient [compound of formula (I)] 15 % sodium lignosulfonate 2 % carboxymethylcellulose 1 %
Kaolin 82 %
The active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water. The mixture is extruded and then dried in a stream of air.
Coated granules
Active ingredient [compound of formula (I)] 8 % polyethylene glycol (mol. wt. 200) 3 %
Kaolin 89 %
The finely ground active ingredient is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.
Suspension concentrate active ingredient [compound of formula (I)] 40 % propylene glycol 10 % nonylphenol polyethylene glycol ether (15 mol of ethylene oxide) 6 %
Sodium lignosulfonate 10 % carboxymethylcellulose 1 % silicone oil (in the form of a 75 % emulsion in water) 1 %
Water 32 %
The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Using such dilutions, living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
Flowable concentrate for seed treatment active ingredient [compound of formula (I)] 40 % propylene glycol 5 % copolymer butanol PO/EO 2 % tristyrenephenole with 10-20 moles EO 2 %
1 ,2-benzisothiazolin-3-one (in the form of a 20% solution in water) 0.5 % monoazo-pigment calcium salt 5 %
Silicone oil (in the form of a 75 % emulsion in water) 0.2 %
Water 45.3 %
The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Using such dilutions, living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
Slow Release Capsule Suspension
28 parts of a combination of the compound of formula (I) are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8:1). This mixture is emulsified in a mixture of 1.2 parts of polyvinylalcohol, 0.05 parts of a defoamer and 51.6 parts of water until the desired particle size is achieved. To this emulsion a mixture of 2.8 parts 1 ,6- diaminohexane in 5.3 parts of water is added. The mixture is agitated until the polymerization reaction is completed.
The obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent. The capsule suspension formulation contains 28% of the active ingredients. The medium capsule diameter is 8-15 microns.
The resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
Preparation examples
List of Abbreviations: aq : aqueous brs broad singlet
DCM dichloromethane dd doublet of doublet
DMF dimethylformamide d doublet
Et20 diethyl ether
EtOAc = ethyl acetate equiv. = equivalent h = hour(s)
M molar m multiplet min = minutes
MHz = mega hertz m.p. melting point ppm parts per million
RT room temperature
Rt retention time s singlet t triplet
TBME fe/ -butyl methyl ether THF = tetrahydrofuran
LC/MS = Liquid Chromatography Mass Spectrometry (description of the apparatus and the methods used for LC/MS analysis are given above)
Preparation examples:
Example A1 : 3-(6-bromo-3,3-dimethyl-4H-pyrrolo[1 ,2-a]pyrazin-1-yl)-8-fluoro-quinoline (compound E.037).
Step 1 :
To a suspension of 8-fluoroquinoline-3-carboxylic acid (10 g, 52.3 mmol) in DCM (100 mL) were added 2-3 drops of DMF, followed by oxalyl chloride (8.72 g, 5.99 mL, 68 mmol, 1 .3 equiv.) via dropping funnel over 25 min. The mixture was stirred at RT until gas evolution ceased and aged for additional 20 min at 30 °C. The reaction mixture was concentrated in vacuo to remove excess of oxalyl chloride.
Under argon, a suspension of L/,O-dimethylhydroxylamine HCI (6.27 g, 62.4 mmol, 1.2 equiv.) in DCM (200 mL) was treated with triethylamine (26.4 g, 36.4 mL, 260 mmol, 5 equiv.) and the acid chloride prepared above (10.9 g, 52 mmol) was added in portions over 20 min. The reaction mixture was stirred for 16 h at RT. The reaction mixture was diluted with additional DCM and washed with aq.NaHCC>3 solution (twice), water and brine, dried over MgSC , filtered and concentrated in vacuo. The residue was purified by flash chromatography (silica gel, cyclohexane:EtOAc) to give 8-fluoro-N- methoxy-N-methyl-quinoline-3-carboxamide as a light yellow solid.
LC-MS (Method G), Rt = 0.71 min, MS: (M+H) = 235.
Ή NMR (400 MHz, CDCh) d ppm: 9.27 (d, 1 H), 8.60 (m, 1 H), 7.71 (d, 1 H), 7.47-7.59 (m, 2H), 3.59 (s, 3H), 3.46 (s, 3H).
Step 2:
Under argon, a solution of 2,2,6, 6-tetramethylpiperidine (2.2 g, 2.6 mL, 15.38 mmol, 1.05 equiv.) in THF (40 mL) was cooled at-78°C then n-butyllithium 2.5 M in hexane (6.4 mL, 16.12 mmol, 1 .1 equiv.) was added dropwise over 13 min. The reaction mixture was stirred at -78°C for 5 min, warmed to -10°C for 5 min and cooled again at -78°C. Te/ -butyl pyrrole-1 -carboxylate (2.5 g, 2.5 mL, 14.65 mmol) was added dropwise over 10 min. The reaction mixture was stirred at -78°C for 1 h before a solution of 8- fluoro-N-methoxy-N-methyl-quinoline-3-carboxamide (3.43 g, 14.65 mmol, 1 equiv.) in THF (15 mL) was added dropwise over 10 min. The reaction mixture was allowed to come back at 0°C and stirred at this temperature for 20 min.
At 0°C, a mixture of acetonitrile/H20 (35 mL, 4:1) was added, the resulting mixture was then poured onto water (150 mL) and extracted with EtOAc. The organic phase was washed with brine, dried over MgSC>4, filtered and concentrated under vacuo. The residue was purified by flash chromatography (silica gel, cyclohexane:EtOAc) to give (8-fluoro-3-quinolyl)-(1 H-pyrrol-2-yl)methanone as a brown powder. LC-MS (Method G), Rt = 0.82 min, MS: (M+H) = 241 .
Ή NMR (400 MHz, CDCh) d ppm: 9.89 (br s, 1 H), 9.46 (d, 1 H), 8.73 (s, 1 H), 7.78 (d, 1 H), 7.51- 7.64 (m, 2H), 7.26-7.28 (m, 1 H), 7.00 (d, 1 H), 6.42-6.47 (m, 1 H).
Step 3:
To a suspension of (8-fluoro-3-quinolyl)-(1 H-pyrrol-2-yl)methanone (1.2 g, 5mmol) and tert- butyl 4,4-dimethyl-2,2-dioxo-oxathiazolidine-3-carboxylate (1.38g, 5.50 mmol, 1.1 equiv.) in acetonitrile (30 mL) was added cesium carbonate (3.29 g, 9.99 mmol, 2 equiv.). The reaction mixture was warmed to 80 °C stirred at this temperature for 23 h. After cooling to RT, the mixture was poured onto water and extracted with EtOAc. The organic phase was washed with brine, dried over MgS04, filtered and concentrated under vacuo. The residue was purified by flash chromatography (silica gel: cyclohexane:EtOAc) to give tert-butyl N-[2-[2-(8-fluoroquinoline-3-carbonyl)pyrrol-1-yl]-1 ,1-dimethyl- ethyljcarbamate as orange oil.
LC-MS (Method G), Rt = 1 .14 min, MS: (M+H) = 412.
Ή NMR (400 MHz, CDCh) d ppm : 9.32 (d, 1 H), 8.57 (m, 1 H), 7.74 (d, 1 H), 7.45-7.62 (m, 2H), 7.03-7.09 (m, 1 H), 6.76-6.84 (m, 1 H), 6.24-6.29 (m, 1 H), 4.92 (s, 2H), 4.65 (s, 1 H), 1.45-1.53 (m, 9H), 1.30-1.35 (m, 6H).
Step 4:
To a solution of fe/ -butyl N-[2-[2-(8-fluoroquinoline-3-carbonyl)pyrrol-1-yl]-1 ,1-dimethyl- ethyljcarbamate (1 .7 g, 3.72 mmol) in EtOAc (9 mL) was added HCI 4N in dioxane (4.6 ml_, 18.59 mmol, 5 equiv) and the reaction mixture was stirred for 16 h at 50°C. The reaction mixture was the cooled to RT and poured onto water. The pH was adjusted to 9 by addition of aq. 4N NaOH and the emulsion was then extracted with EtOAc. The organic phase was washed with brine, dried over MgS04, filtered and concentrated under vacuo. The residue was purified by flash chromatography (silica gel, cyclohexane:EtOAc) to give 3-(3,3-dimethyl-4H-pyrrolo[1 ,2-a]pyrazin-1-yl)-8-fluoro-quinoline as a brown oil.
LC-MS (Method G), Rt = 0.61 min, MS: (M+H) = 294.
Ή NMR (400 MHz, CDCh) d ppm : 9.36 (d, 1 H), 8.59 (m, 1 H), 7.71 (d, 1 H), 7.43-7.57 (m, 2H), 6.85-6.91 (m, 1 H), 6.37-6.42 (m, 1 H), 6.24-6.31 (m, 1 H), 3.88 (s, 2H), 1.38 (s, 6H).
Step 5:
To a solution of 3-(3,3-dimethyl-4H-pyrrolo[1 ,2-a]pyrazin-1-yl)-8-fluoro-quinoline (130 mg, 0.44 mmol) in acetonitrile (1 .5 mL) was added a solution of N-bromo succinimide (0.080 g, 0.44 mmol, 1 equiv.) in acetonitrile (0.7 mL) over 20 min. The reaction mixture was aged for additional 5 min at RT, diluted with EtOAc and washed with aq. Na2S203. The organic phase was washed with aq. NaHC03 and brine, dried over MgS04, filtered and concentrated under vacuo. The residue was purified by flash chromatography (silica gel, cyclohexane:EtOAc) then by reverse phase HPLC (C18 modified silica, acetonitrile:water) to give 3-(6-bromo-3,3-dimethyl-4H-pyrrolo[1 ,2-a]pyrazin-1-yl)-8-fluoro-quinoline as a yellow oil. LC-MS (Method G), Rt = 0.72 min, MS: (M+H) = 372.
Ή NMR (400 MHz, CDCb) d ppm: 9.31 (d, 1 H), 8.60 (br s, 1 H), 7.72 (d, 1 H), 7.53-7.59 (m, 1 H), 7.44-7.53 (m, 1 H), 6.42 (d, 1 H), 6.33 (d, 1 H), 3.87 (s, 2H), 1.42 (s, 6H).
Example A2: 1-(8-fluoro-3-quinolyl)-6-(trifluoromethyl)spiro[4H-pyrrolo[1 ,2-a]pyrazine-3,T- cyclopentane] (compound E.08).
Step 1 :
To a solution of (l-aminocyclopentyl)methanol (0.43 g, 3.4 mmol) in DCM (4 ml_) at 5°C was added triethylamine (0.52 ml_, 3.7 mmol) and di-fe/ -butyl dicarbonate (0.75 g, 3.4 mmol). The resulting solution was gradually warmed to RT and aged for 60 min at this temperature. Water was then added and the mixture was extracted with DCM. The organic layer was washed with brine, dried over MgSCb, filtated and concentrated in vacuo. The residue was purified by flash chromatography (silica gel, cyclohexane:EtOAc) to afford tert-butyl N-[1-(hydroxymethyl)cyclopentyl]carbamate as white solid.
Ή NMR (400 MHz, CDCb) d ppm 4.74 (br s, 1 H) 3.95 (br s, 1 H) 3.66 (d, 2 H) 1 .52 - 1 .94 (m, 8 H) 1.26 - 1.52 (m, 9 H).
Step 2:
A solution of fe/ -butyl N-[1-(hydroxymethyl)cyclopentyl]carbamate (0.45 g, 2.09 mmol) in acetonitrile (2 ml_) was added to thionyl chloride (0.62 g, 5.23 mmol) in acetonitrile (3 ml_) at -40°C. The resulting colorless solution was stirred for 10 min, pyridine (0.84 g, 10.5 mmol) was added and the reaction mixture aged for additional 60 min at RT. Most volatiles were removed in vacuo at 40°C, the residue was taken up in ethyl acetate and the precipitated solids removed by filtration. The filtrate was concentrated in vacuo to afford crude te/ -butyl 2-oxo-3-oxa-thia-1-azaspiro[4.4]nonane-1-carboxylate as light yellow gum which was used as such for the next step. An aliquot was purified by flash chromatography (silica gel, cyclohexane:EtOAc) to obtain an analytically pure sample:
Ή NMR (400 MHz CDCb) d ppm 4.78 (d, 1 H) 4.38 (d, 1 H) 2.47 - 2.62 (m, 1 H) 1 .74 - 2.04 (m, 3 H) 1 .58 - 1 .72 (m, 2 H) 1 .54 (s, 9 H) 1 .38-1 ,47 (m, 2 H).
A solution of fe/ -butyl 2-oxo-3-oxa-thia-1-azaspiro[4.4]nonane-1-carboxylate (0.19 g, 0.73 mmol) in acetonitrile (1 ml_) / water (1 mL) was cooled to 5°C and treated with RuCb (0.015 g, 0.073 mmol) and NalCb (0.24 g, 1 .09 mmol). The resulting dark mixture was gradually warmed to RT and aged for 2 h at this temperature. Water was then added, and the mixture was extracted with TBME. The organic phase was washed with brine, dried over MgSCb, filtered and concentrated under vacuo. The residue was purified by flash chromatography (silica gel, cyclohexane :EtOAc) to afford tert-butyl 2,2- dioxo-3-oxa-thia-1-azaspiro[4.4]nonane-1-carboxylate as off white solid.
Ή NMR (400 MHz, CDCb) d ppm 4.25 (s, 2 H) 2.34 (dt, 2 H) 1.88 - 2.00 (m, 2 H) 1.75 - 1.86 (m, 2 H) 1.51-1.60 (m, 11 H).
Step 3: A suspension of (8-fluoro-3-quinolyl)-(1 H-pyrrol-2-yl)methanone (0.183 g, 0.69 mmol), te/ -butyl 2,2-dioxo-3-oxa-thia-1-azaspiro[4.4]nonane-1-carboxylate (0.19 g, 0.69 mmol) and caesium carbonate (0.45 g, 1 .37 mmol) in acetonitrile (5 ml_) was warmed to 80°C and stirred at this temperature for 18 h. The reaction mixture was cooled to RT and partitioned between water and ethyl acetate. The organic phase was washed with brine, dried over MgSC , filtered and concentrated under vacuo. The residue was purified by flash chromatography (silica gel, cyclohexane:EtOAc) to afford tert-butyl N-[1-[[2-(8- fluoroquinoline-3-carbonyl)pyrrol-1-yl]methyl]cyclopentyl]-carbamate as yellow gum.
LC-MS (Method G), Rt= 1.18 min, MS: (M+H) = 438.
Ή NMR (400 MHz, CDCh) d ppm 9.32 (d, 1 H) 8.58 (t, 1 H) 7.74 (d, 1 H) 7.50 - 7.62 (m, 2 H) 7.06 (dd, 1 H) 6.77 (dd, 1 H) 6.24 (dd, 1 H) 5.01 (s, 2 H) 4.16 - 4.52 (m, 1 H) 1 .65 - 1 .88 (m, 8 H) 1 .49 (s, 9 H).
Step 4:
To a solution of fe/ -butyl N-[1-[[2-(8-fluoroquinoline-3-carbonyl)pyrrol-1-yl]methyl]cyclopentyl]- carbamate (0.14 g, 0.32 mmol) in ethyl acetate (1 mL) was added HCI (4 N in 1 ,4-dioxane, 0.4 mL, 1.6 mmol) at RT. The resulting solution was warmed to 55°C and aged for 18 h at this temperature. The reaction mixture was cooled to RT, diluted with water and the pH adjusted to pH9 by addition of 4N NaOH solution. The resulting emulsion was extracted with ethyl acetate, the organic phase was washed with brine, dried over MgS04, filtered and concentrated under vacuo. The residue was purified by flash chromatography (silica gel, cyclohexane:EtOAc) to afford 1-(8-fluoro-3-quinolyl)spiro[4H-pyrrolo[1 ,2- a]pyrazine-3,T-cyclopentane] as colourless gum.
LC-MS (Method G), Rt = 0.65 min, MS: (M+H) = 320.
Ή NMR (400 MHz, CDCh) d ppm 9.36 (d, 1 H) 8.57 (t, 1 H) 7.69 (d, 1 H) 7.38 - 7.58 (m, 2 H) 7.27 (s, 1 H) 6.87 (dd, 1 H) 6.37 (dd, 1 H) 6.25 (dd, 1 H) 3.90 (s, 2 H) 1 .90 - 2.06 (m, 4 H) 1 .68 - 1 .88 (m, 4 H).
Step 5:
To a solution of 1-(8-fluoro-3-quinolyl)spiro[4H-pyrrolo[1 ,2-a]pyrazine-3,T-cyclopentane] (0.06 g, 0.19 mmol) in DCM (1 ml_) / water (0.5 ml_) cooled to 0°C was added zinc trifluoromethanesulfinate (0.13 g, 0.38 mmol) and tertbutyl hydroperoxide (5M in nonanes, 0.10 ml_, 0.53 mmol). The resulting solution was gradually warmed to 35°C and was rapidly stirred at this temperature for 3 h. The reaction mixture was cooled to RT and partitioned between water and ethyl acetate. The organic phase was washed with brine, dried over MgSC , filtered and concentrated under vacuo. The residue was purified by flash chromatography (silica gel, cyclohexane :EtOAc) to afford 1-(8-fluoro-3-quinolyl)-6- (trifluoromethyl)spiro-[4H-pyrrolo[1 ,2-a]pyrazine-3,T-cyclopentane] as yellow gum.
LC-MS (Method G), Rt = 1.19 min, MS: (M+H) = 388.
Ή NMR (400 MHz, CDCh) d ppm 9.33 (d, 1 H) 8.56 (t, 1 H) 7.71 (d, 1 H) 7.45 - 7.58 (m, 2 H) 7.26 (s, 1 H) 6.53 - 6.80 (m, 1 H) 6.35 (d, 1 H) 4.01 (s, 2 H) 1 .93 - 2.09 (m, 4 H) 1 .68 - 1 .93 (m, 4 H). Example A3: 8-fluoro-3-[3-methyl-3-propyl-6-(trifluoromethyl)-4H-pyrrolo[1 ,2-a]pyrazin-1 -yl]quinoline (compound E.14).
Step 1 :
A solution of hydroxyacetone (7.6 g, 92 mmol) in DCM (180 mL) and pyridine (11 g, 140 mmol) was cooled to -5°C and sulfamoyl chloride (15.9 g, 138 mmol) was added portionwise over 25 min, keeping the internal temperature below 0°C. Upon completed addition, the reaction mixture was gradually warmed to room temperature over 60 min and stirred for additional 60 min at 20°C. The solvent was removed in vacuo and the residue purified by filtration through a large plug of silica gel (eluent: EtOAc) to afford 4-methyl-5H-oxathiazole 2,2-dioxide as beige solid.
Ή NMR (400 MHz, CDCb) d ppm 5.10 (s, 2 H), 2.41 (s, 3H).
Step 2:
To an ice-cooled solution of 4-methyl-5H-oxathiazole 2,2-dioxide (2.0 g, 14.1 mmol) in TBME (100 mL) was added n-propylmagnesium chloride (2 M in diethyl ether, 8.4 mL, 16.8 mmol) over 20 min. The resulting suspension was gradually warmed to room temperature and stirred at this temperature for 15 h. The reaction mixture was poured into aqueous NH4CI solution and extracted with EtOAc. The organic layer was washed with brine, dried over Na2S04, filtrated and concentrated in vacuo. The residual oil was dissolved in DCM (50 mL), cooled to 5°C and 4-dimethylaminopyridine (0.98 g, 8.0 mmol) and di-tert-butyl dicarbonate (2.7 g, 12 mmol) was added sequentially. The resulting solution was warmed to room temperature and stirred for 16 h at this temperature. The reaction mixture was then partitioned between DCM and water. The organic layer was washed with brine, dried over Na2S04, filtrated and concentrated in vacuo. Purification by flash chromatography (silica:cyclohexane:EtOAc) afforded fe/ -butyl 4-methyl-2,2-dioxo-4-propyl-oxathiazolidine-3-carboxylate as light yellow oil.
Ή NMR (400 MHz, CDCb) d ppm 4.38 (d, 1 H) 4.17 (d, 1 H) 2.06 (td, 1 H) 1.75 (td, 1 H) 1.58 (s, 3H) 1.57 (s, 9 H) 1 .22 - 1 .46 (m, 2 H) 0.98 (t, 3 H).
Step 3:
A suspension of (8-fluoro-3-quinolyl)-(1 H-pyrrol-2-yl)methanone (see example A1 , 0.62 g, 2.3 mmol), fe/ -butyl 4-methyl-2,2-dioxo-4-propyl-oxathiazolidine-3-carboxylate (0.66 g, 2.3 mmol) and CS2CO3 (1 .52 g, 4.63 mmol) was warmed to 80°C and stirred for 20 h at this temperature. The mixture was cooled to room temperature and partitioned between water and EtOAc. The organic layer was washed with brine, dried over Na2S04, filtrated and concentrated under reduced pressure. The residue was purified by flash chromatography (silica, cyclohexane: EtOAc) to afford tert-butyl N-[1-[[2-(8- fluoroquinoline-3-carbonyl)pyrrol-1-yl]methyl]-1-methyl-butyl]carbamate as yellow foam.
LC-MS (Method G), Rt = 1 .23 min, MS: (M+H) = 440.
Ή NMR (400 MHz, CDCb) d ppm 9.31 (d, 1 H) 8.57 (s, 1 H) 7.74 (d, 1 H) 7.48 - 7.64 (m, 2 H) 7.07 (t, 1 H) 6.79 (dd, 1 H) 6.26 (dd, 1 H) 4.93 - 5.02 (m, 1 H) 4.81 - 4.92 (m, 1 H) 4.54 (br s, 1 H) 1.82 - 1 .95 (m, 1 H) 1 .60 (td, 1 H) 1 .49 (s, 9 H) 1 .21 - 1 .43 (m, 2 H) 1 .14 (s, 3 H) 0.94 (t, 3 H). Step 4:
A solution of fe/ -butyl N-[1 -[[2-(8-fluoroquinoline-3-carbonyl)pyrrol-1 -yl]methyl]-1 -methyl-butylj- carbamate (0.57 g, 1.30 mmol) in EtOAc (3 ml_) was treated with aqueous HCI (4 M, 1.6 mL) at room temperature. The resulting solution was warmed to 50°C and stirred for 4 h at this temperature. The resulting solution was cooled to room temperature, water was added and aqueous NaOH (1 M) was added to adjust the solution to pH 8-9. The resulting mixture was extracted with EtOAc, the organic layer was dried over MgS04, filtrated and concentrated in vacuo. The residue was purified by flash chromatography (silica, cyclohexane:EtOAc) to afford 8-fluoro-3-(3-methyl-3-propyl-4H-pyrrolo[1 ,2- a]pyrazin-1-yl)quinoline as viscous oil.
LC-MS (Method G), Rt = 0.71 min, MS: (M+H) = 322.
Ή NMR (400 MHz, CDCh) d ppm 9.37 (s, 1 H) 8.60 (s, 1 H) 7.71 (d, 1 H) 7.38 - 7.59 (m, 2 H) 6.86 (s, 1 H) 6.39 (s, 1 H) 6.28 (br s, 1 H) 3.77 - 4.02 (m, 2 H) 1 .38 - 1 .83 (m, 4 H) 1 .32 (s, 3 H) 0.87 - 1.12 (m, 3 H).
Step 5:
A solution of 8-fluoro-3-(3-methyl-3-propyl-4H-pyrrolo[1 ,2-a]pyrazin-1-yl)quinoline (0.1 g, 0.29 mmol) and sodium trifluoromethane sulfinate (0.19 g, 1.2 mmol) in toluene (1 mL) / water (0.7 mL) was warmed to 60°C and fe/ -butyl hydroperoxide (70% in water, 0.19 mL, 1 .2 mmol) was added slowly. The resulting orange emulsion was rapidly stirred at 60°C for 2 h, cooled to room temperature and diluted with EtOAc. This mixture was washed with aqueous NaOH (0.1 M), dried over MgS04, filtrated and concentrated in vacuo. The residue was purified by flash chromatography (silica, cyclohexane: EtOAc) to afford 8-fluoro-3-[3-methyl-3-propyl-6-(trifluoromethyl)-4H-pyrrolo[1 ,2-a]pyrazin-1 -yljquinoline as viscou oil.
LC-MS (Method G), Rt = 1 .22 min, MS: (M+H) = 390.
Ή NMR (400 MHz, CDCh) d ppm 9.34 (d, 1 H) 8.57 (t, 1 H) 7.72 (d, 1 H) 7.41 - 7.61 (m, 2 H) 6.66 (d, 1 H) 6.37 (d, 1 H) 4.04 (d, 1 H) 3.93 (d, 1 H) 1 .42 - 1 .76 (m, 4 H) 1 .35 (s, 3 H) 0.97 (t, 3 H).
19F NMR (377 MHz, CDCh) d ppm -58.8 (s, 3F) -125.1 (s, 1 F).
Example A4: 8-fluoro-3-[(3S or 3R)-3-methyl-3-propyl-6-(trifluoromethyl)-4H-pyrrolo[1 ,2-a]pyrazin-1- yljquinoline, enantiomer 1 of 2 and enantiomer 2 of 2. (compounds E.56 and E.57).
The enantiomers of 8-fluoro-3-[3-methyl-3-propyl-6-(trifluoromethyl)-4H-pyrrolo[1 ,2-a]pyrazin-1 - yljquinoline were separated by preparative SFC (Sepiatec Prep SFC 100) over a chiral stationary phase (Daicel CHIRALPAK® IG, 5mhi, 2.0 cm x 25cm). Mobile phase: A: CO2 B: EtOH, isocratic: 7% B in 10 min, backpressure: 150 bar, flow rate: 60 ml/min , GLS pump: 4ml/min MeOH, detection: UV 245 nm, sample concentration: 50 mg/mL in MeOH, Injection: 300mI. Compound E.56 (enantiomer 1 of 2) was obtained as first eluting isomer, compound E.57 (enantiomer 2 of 2) was obtained as second eluting isomer. Analytical Methods
Method G:
Spectra were recorded on a Mass Spectrometer from Waters (SQD, SQDII Single quadrupole mass spectrometer) equipped with an electrospray source (Polarity: positive and negative ions), Capillary: 3.00 kV, Cone range: 30 V, Extractor: 2.00 V, Source Temperature: 150°C, Desolvation Temperature: 350°C, Cone Gas Flow: 50 l/h, Desolvation Gas Flow: 650 l/h, Mass range: 100 to 900 Da) and an Acquity UPLC from Waters: Binary pump, heated column compartment , diode-array detector and ELSD detector. Column: Waters UPLC HSS T3 , 1.8 pm, 30 x2.1 mm, Temp: 60 °C, DAD Wavelength range (nm): 210 to 500, Solvent Gradient: A = water + 5% MeOH + 0.05 % HCOOH, B= Acetonitrile + 0.05 % HCOOH, gradient: 10-100% B in 1 .2 min; Flow (ml/min) 0.85.
Method H1 :
Spectra were recorded on a SFC Waters Acquity UPC2/QDa with detection on a PDA Detector Waters Acquity UPC2. Column: Daicel SFC CHIRALPAK® IG, 3um, 0.46cm x 10cm, 40°C, Mobile phase: A: C02 B: EtOH isocratic: 10% B in 4.8 min, ABPR: 1800 psi, Flow rate: 2.0 ml/min, Detection: 245 nm, Sample concentration: 1 mg/ml_ in MeOH, Injection: 1 uL Table E: Melting point (mp) and/or LC/MS data (retention time (Rt)) for compounds of Formula (I):
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Figure imgf000068_0001
Figure imgf000069_0001
Biological Examples/Test Methods:
Botryotinia fuckeliana (Botrvtis cinerea) / liquid culture (Gray mould)
Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (Vogels broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 3-4 days after application.
The following compounds gave at least 80% control of Botryotinia fuckeliana at 20 ppm when compared to untreated control under the same conditions, which showed extensive disease development:
E.01 , E.02, E.03, E.04, E.05, E.06, E.07, E.08, E.09, E.11 , E.13, E.14, E.15, E.16, E.17, E.18, E.19, E.20,
E.21 , E.22, E.23, E.24, E.25, E.26, E.27, E.28, E.29, E.30, E.31 , E.32, E.35, E.36, E.37, E.38, E.39, E.40,
E.41 , E.42, E.43, E.45, E.47, E.50, E.53, E.55, E.56, E.57.
Glomerella lagenarium (Colletotrichum laqenarium) / liquid culture (Anthracnose)
Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is measured photometrically 3-4 days after application.
The following compounds gave at least 80% control of Glomerella lagenarium at 20 ppm when compared to untreated control under the same conditions, which showed extensive disease development:
E.04, E.08, E.09, E.14, E.19, E.20, E.21 , E.22, E.29, E.40, E.41 , E.43, E.50, E.56, E.57.
Fusarium culmorum / liquid culture (Head blight)
Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 3-4 days after application.
The following compounds gave at least 80% control of Fusarium culmorum at 20 ppm when compared to untreated control under the same conditions, which showed extensive disease development:
E.04, E.08, E.09, E.11 , E.14, E.20, E.25, E.43, E.50, E.56, E.57.
Monograohella nivalis (Microdochium nivale) / liquid culture (foot rot cereals')
Conidia of the fungus from cryogenic storage are directly mixed into nutrient broth (PDB potato dextrose broth). After placing a (DMSO) solution of test compound into a microtiter plate (96-well format), the nutrient broth containing the fungal spores is added. The test plates are incubated at 24 °C and the inhibition of growth is determined photometrically 4-5 days after application.
The following compounds gave at least 80% control of Monographella nivalis at 20 ppm when compared to untreated control under the same conditions, which showed extensive disease development:
E.01 , E.02, E.03, E.04, E.06, E.07, E.08, E.09, E.011 , E.012, E.013, E.014, E.016, E.017, E.018, E.019, E.020, E.021 , E.022, E.023, E.024, E.025, E.026, E.027, E.028, E.029, E.030, E.031 , E.032, E.034, E.035, E.036, E.037, E.038, E.039, E.040, E.041 , E.42, E.43, E.45, E.47, E.50, E.53, E.55, E.56, E.57.
Seotoria tritici leaf spot on wheat / preventative
2-week old wheat plants cv. Riband are sprayed in a spray chamber with the formulated test compound diluted in water. The test plants are inoculated by spraying a spore suspension on them one day after application and then kept at 22°C/21 °C (day/night) in a greenhouse. Disease damage is assessed directly when an appropriate level of disease appears on untreated check plants and efficacy was calculated compare to untreated controls (16 - 19 days after application).
The following compounds gave at least 80% control of Septoria tritici at 60 ppm when compared to untreated control under the same conditions, which showed extensive disease development:
E.08, E.13, E.14, E.25, E.55.

Claims

CLAIMS:
1 . A compound of formula (I):
Figure imgf000071_0001
wherein:
R1 is independently selected from halogen, cyano, hydroxy or methyl; n is 0, 1 or 2;
R2 and R3 are independently selected from hydrogen, halogen, methoxy, difluoromethyl, trifluoromethyl or methyl;
R4 is cyano, Ci-Csalkyl, C2-Csalkenyl, C2-Csalkynyl, Ci-C4alkoxy, Ci-C4haloalkoxy, C3- Csalkenyloxy, C3-Csalkynyloxy, Ci-C3alkoxyCi-C3alkyl, Ci-C4haloalkoxyCi-C5alkyl, Ci-C4haloalkoxyCi- C4alkoxy, C2-C4haloalkenyl, Ci-C4alkoxyC2-Csalkenyl, cyanoCi-Csalkyl, cyanoCi-C4alkoxy, cyanoC2- Csalkenyl, C3-C6cycloalkyl, phenyl, phenylCi-C2alkyl, heteroaryl or heteroarylCi-C2alkyl, wherein the heteroaryl moiety is a 5- or 6-membered aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and wherein the cycloalkyl, phenyl or heteroaryl groups are optionally substituted by 1 , 2 or 3 substituents independently selected from halogen, cyano, Ci-C3alkyl, Ci-C2haloalkyl, Ci-C4alkoxy and Ci-C4haloalkoxy; and
R5 is hydrogen, Ci-Csalkyl or Ci-C4haloalkyl; or
R4 and R5 together with the connecting carbon atom form a 3- to 6-membered carbocyclic group;
R6 and R7 are independently selected from hydrogen, fluoro or methyl;
R8 is hydrogen, cyano, nitro, halogen, Ci-Csalkyl, C3-C6cycloalkyl, Ci-C4alkoxycarbonyl, Ci- C4haloalkyl, C3-C6halocycloalkyl, Ci-C4alkylsulfonyl, Ci-C4haloalkylsulfonyl, Ci-C4alkoxyCi- C4alkylsulfonyl, Ci-C4haloalkoxy, Ci-C4alkylsulfonyl, cyanoCi-C4alkylsulfonyl, C3-C6cycloalkylsulfonyl, phenylsulfonyl, benzylsulfonyl, phenyl and heteroaryl wherein the heteroaryl moiety is a 5- or 6- membered aromatic ring which comprises 1 , 2, 3 or 4 heteroatoms individually selected from N, O and S, and wherein the phenyl and heteroaryl are optionally substituted by 1 , 2 or 3 substituents independently selected from halogen, Ci-C3alkyl, Ci-C4alkoxy, Ci-C4haloalkoxy, cyano, Ci-C2haloalkyl; and R9 is hydrogen, halogen, cyano or nitro; or an agronomically acceptable salt, an N-oxide or stereoisomer thereof.
2. The compound according to claim 1 , wherein R1 is halogen and n is 1 or 2.
3. The compound according to claim 1 or claim 2, wherein R2 and R3 are hydrogen, R2 is methyl and R3 is hydrogen, or R2 is hydrogen and R3 is methyl.
4. The compound according to any one of claims 1 to 3, wherein R4 is Ci-Csalkyl, C2-Csalkenyl, C2-C4haloalkenyl, C2-Csalkynyl, C3-C6cycloalkyl, phenyl or phenylCi-C2alkyl.
5. The compound according to any one of claims 1 to 4, wherein R4 is methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, /so-butyl, fe/ -butyl, 3,3-dichloroallyl (-CH2CHC=Cl2), cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, phenyl or benzyl.
6. The compound according to any one of claims 1 to 5, wherein R5 is hydrogen or methyl, and preferably, methyl.
7. The compound according to any one of claims 1 to 3, wherein R4 and R5 together with the connecting carbon atom form a saturated 3- to 6-membered carbocyclic group.
8. The compound according to any one of claims 1 to 7, wherein R6 and R7 are hydrogen.
9. The compound according to any one of claims 1 to 8, wherein R8 is hydrogen, cyano, nitro, halogen, Ci-Csalkyl, C3-C6cycloalkyl, Ci-C4haloalkyl, Ci-C4haloalkoxy, C3-C6halocycloalkyl, Ci- C4alkylsulfonyl, Ci-C4haloalkylsulfonyl, C3-C6cycloalkylsulfonyl, phenylsulfonyl, benzylsulfonyl, phenyl or heteroaryl wherein the heteroaryl moiety is a 5- or 6-membered aromatic ring which comprises 1 or 2 nitrogen atoms, and wherein the phenyl and heteroaryl are optionally substituted by 1 or 2 substituents independently selected from halogen, methyl, ethyl, methoxy, trifluoromethyl, trifluoromethoxy and cyano.
10. The compound according to any one of claims 1 to 9, wherein R8 is hydrogen, cyano, nitro, chloro, bromo, methyl, ethyl, difluoromethyl, trifluoromethyl, trifluoromethoxy, -CF2CF3, -CF2CH3, - SO2CH3, -SO2CH2CH3, -S02CH(CH3)2, -SO2CF3, -SC>2cyclopropyl, -SC>2phenyl, -SC^CFhphenyl, phenyl, 2-methylphenyl, pyrdin-2-yl, pyrdin-3-yl or pyrdin-4-yl.
11. The compound according to any one of claims 1 to 10, wherein R9 is hydrogen, chloro, bromo, iodo or nitro.
12. An agrochemical composition comprising a fungicidally effective amount of a compound according to any one of claims 1 to 11.
13. The composition according to claim 12, further comprising at least one additional active ingredient and/or an agrochemically-acceptable diluent or carrier.
14. A method of controlling or preventing infestation of useful plants by phytopathogenic microorganisms, wherein a fungicidally effective amount of a compound according to any of claims 1 to 11 , or a composition comprising this compound as active ingredient, is applied to the plants, to parts thereof or the locus thereof.
15. Use of a compound according to any one of claims 1 to 11 as a fungicide.
PCT/EP2021/059031 2020-04-08 2021-04-07 Microbiocidal quinoline dihydropyrrolopyrazine derivatives WO2021204855A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20168756 2020-04-08
EP20168756.3 2020-04-08

Publications (1)

Publication Number Publication Date
WO2021204855A1 true WO2021204855A1 (en) 2021-10-14

Family

ID=70277211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/059031 WO2021204855A1 (en) 2020-04-08 2021-04-07 Microbiocidal quinoline dihydropyrrolopyrazine derivatives

Country Status (4)

Country Link
AR (1) AR121734A1 (en)
TW (1) TW202200587A (en)
UY (1) UY39162A (en)
WO (1) WO2021204855A1 (en)

Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639771A (en) 1984-10-31 1987-01-27 Kabushiki Kaisha Toshiba Image processing system
EP0353191A2 (en) 1988-07-29 1990-01-31 Ciba-Geigy Ag DNA sequences encoding polypeptides having beta-1,3-glucanase activity
EP0357460A2 (en) 1988-09-02 1990-03-07 Sankyo Company Limited 13-Substituted milbemycin derivatives, their preparation and use
EP0367474A1 (en) 1988-11-01 1990-05-09 Mycogen Corporation Novel bacillus thuringiensis isolate denoted b.t. ps81gg, active against lepidopteran pests, and a gene encoding a lepidopteran-active toxin
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
EP0382173A2 (en) 1989-02-07 1990-08-16 Meiji Seika Kaisha Ltd. PF 1022 substance, method of producing same and anthelmintic composition containing same
EP0392225A2 (en) 1989-03-24 1990-10-17 Ciba-Geigy Ag Disease-resistant transgenic plants
WO1990013651A1 (en) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Bacterial genes
EP0401979A2 (en) 1989-05-18 1990-12-12 Mycogen Corporation Novel bacillus thuringiensis isolates active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
US5015630A (en) 1989-01-19 1991-05-14 Merck & Co., Inc. 5-oxime avermectin derivatives
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
EP0444964A1 (en) 1990-03-01 1991-09-04 Sankyo Company Limited Milbemycin ether derivatives, their preparation and their anthelmintic uses
EP0451878A1 (en) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modifying plants by genetic engineering to combat or control insects
EP0503538A1 (en) 1991-03-08 1992-09-16 Meiji Seika Kaisha Ltd. Medicinal composition containing an anthelmintic cyclic depsipeptide
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
WO1993019053A1 (en) 1992-03-17 1993-09-30 Fujisawa Pharmaceutical Co., Ltd. Depsipeptide derivative, production thereof and use thereof
WO1993025543A2 (en) 1992-06-11 1993-12-23 Bayer Aktiengesellschaft Enniatines and enniatine derivates used to control endoparasites
EP0594291A1 (en) 1992-09-01 1994-04-27 Sankyo Company Limited Novel processes for the production of 13-ether derivatives of milbemycins, and novel intermediates therefor
WO1994015944A1 (en) 1993-01-18 1994-07-21 Pfizer Limited New antiparasitic agents related to the milbemycins and avermectins
WO1994019334A1 (en) 1993-02-19 1994-09-01 Meiji Seika Kaisha, Ltd. Pf1022 derivative, cyclic depsipeptide
EP0626375A1 (en) 1993-05-26 1994-11-30 Bayer Ag Octacyclodepsipeptides having endoparasiticidal activity
WO1995019363A1 (en) 1994-01-14 1995-07-20 Pfizer Inc. Antiparasitic pyrrolobenzoxazine compounds
WO1995022552A1 (en) 1994-02-16 1995-08-24 Pfizer Limited Antiparasitic agents
WO1995033818A2 (en) 1994-06-08 1995-12-14 Ciba-Geigy Ag Genes for the synthesis of antipathogenic substances
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
US5478855A (en) 1992-04-28 1995-12-26 Yashima Chemical Industry Co., Ltd. 2-(2,6-difluorophenyl)-4-(2-ethoxy-4-tert-butylphenyl)-2-oxazoline
WO1996011945A2 (en) 1994-10-18 1996-04-25 Bayer Aktiengesellschaft Cyclic depsipeptide sulfonylation, sulfenylation and phosphorylation process
WO1996015121A1 (en) 1994-11-10 1996-05-23 Bayer Aktiengesellschaft Use of dioxomorpholines to combat endoparasites, novel dioxomorpholines and process for their production
DE19520936A1 (en) 1995-06-08 1996-12-12 Bayer Ag Ectoparasiticides means
WO1997033890A1 (en) 1996-03-11 1997-09-18 Novartis Ag Pyrimidin-4-one derivatives as pesticide
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
WO2004072086A2 (en) 2003-02-14 2004-08-26 Pfizer Limited Antiparasitic terpene alkaloids
US6919298B2 (en) 2002-04-04 2005-07-19 Valent Biosciences Corporation Enhanced herbicide composition
WO2005070917A1 (en) 2004-01-23 2005-08-04 Sankyo Agro Company, Limited 3-(dihydro(tetrahydro)isoquinolin-1-yl)quinolines
WO2011077514A1 (en) 2009-12-22 2011-06-30 三井化学アグロ株式会社 Plant disease control composition and method for controlling plant diseases by applying the composition
WO2011138281A2 (en) 2010-05-06 2011-11-10 Bayer Cropscience Ag Process for the preparation of dithiine tetracarboxydiimides
WO2014006945A1 (en) 2012-07-04 2014-01-09 アグロカネショウ株式会社 2-aminonicotinic acid ester derivative and bactericide containing same as active ingredient
WO2014095675A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic-indanyl carboxamides as fungicides
WO2015155075A1 (en) 2014-04-11 2015-10-15 Syngenta Participations Ag Fungicidal n'-[2-methyl-6-[2-alkoxy-ethoxy]-3-pyridyl]-n-alkyl-formamidine derivatives for use in agriculture
WO2016156129A1 (en) 2015-04-02 2016-10-06 Basf Se Quinoline compounds
WO2016156290A1 (en) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazole derivatives
WO2016156085A1 (en) 2015-03-27 2016-10-06 Syngenta Participations Ag Microbiocidal heterobicyclic derivatives
WO2016202742A1 (en) 2015-06-15 2016-12-22 Bayer Cropscience Aktiengesellschaft Halogen-substituted phenoxyphenylamidines and the use thereof as fungicides
WO2017025510A1 (en) 2015-08-12 2017-02-16 Syngenta Participations Ag Microbiocidal heterobicyclic derivatives
WO2017029179A1 (en) 2015-08-14 2017-02-23 Bayer Cropscience Aktiengesellschaft Triazole derivatives, intermediates thereof and their use as fungicides
WO2017055469A1 (en) 2015-10-02 2017-04-06 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017055473A1 (en) 2015-10-02 2017-04-06 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017093348A1 (en) 2015-12-02 2017-06-08 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017118689A1 (en) 2016-01-08 2017-07-13 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017153380A1 (en) 2016-03-10 2017-09-14 Syngenta Participations Ag Microbiocidal quinoline (thio)carboxamide derivatives
WO2017220485A1 (en) 2016-06-21 2017-12-28 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018065414A1 (en) 2016-10-06 2018-04-12 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018073110A1 (en) 2016-10-20 2018-04-26 Basf Se Quinoline compounds as fungicides
WO2018153707A1 (en) 2017-02-22 2018-08-30 Basf Se Crystalline forms of a strobilurin type compound for combating phytopathogenic fungi
WO2018158365A1 (en) 2017-03-03 2018-09-07 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018202428A1 (en) 2017-05-02 2018-11-08 Basf Se Fungicidal mixture comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
WO2018228896A1 (en) 2017-06-14 2018-12-20 Syngenta Participations Ag Fungicidal compositions
WO2019110427A1 (en) 2017-12-04 2019-06-13 Syngenta Participations Ag Microbiocidal phenylamidine derivatives

Patent Citations (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4639771A (en) 1984-10-31 1987-01-27 Kabushiki Kaisha Toshiba Image processing system
EP0451878A1 (en) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modifying plants by genetic engineering to combat or control insects
EP0353191A2 (en) 1988-07-29 1990-01-31 Ciba-Geigy Ag DNA sequences encoding polypeptides having beta-1,3-glucanase activity
EP0357460A2 (en) 1988-09-02 1990-03-07 Sankyo Company Limited 13-Substituted milbemycin derivatives, their preparation and use
EP0367474A1 (en) 1988-11-01 1990-05-09 Mycogen Corporation Novel bacillus thuringiensis isolate denoted b.t. ps81gg, active against lepidopteran pests, and a gene encoding a lepidopteran-active toxin
EP0374753A2 (en) 1988-12-19 1990-06-27 American Cyanamid Company Insecticidal toxines, genes coding therefor, antibodies binding them, transgenic plant cells and plants expressing these toxines
US5015630A (en) 1989-01-19 1991-05-14 Merck & Co., Inc. 5-oxime avermectin derivatives
EP0382173A2 (en) 1989-02-07 1990-08-16 Meiji Seika Kaisha Ltd. PF 1022 substance, method of producing same and anthelmintic composition containing same
EP0392225A2 (en) 1989-03-24 1990-10-17 Ciba-Geigy Ag Disease-resistant transgenic plants
WO1990013651A1 (en) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Bacterial genes
EP0401979A2 (en) 1989-05-18 1990-12-12 Mycogen Corporation Novel bacillus thuringiensis isolates active against lepidopteran pests, and genes encoding novel lepidopteran-active toxins
EP0427529A1 (en) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Larvicidal lectins and plant insect resistance based thereon
EP0444964A1 (en) 1990-03-01 1991-09-04 Sankyo Company Limited Milbemycin ether derivatives, their preparation and their anthelmintic uses
EP0503538A1 (en) 1991-03-08 1992-09-16 Meiji Seika Kaisha Ltd. Medicinal composition containing an anthelmintic cyclic depsipeptide
WO1993007278A1 (en) 1991-10-04 1993-04-15 Ciba-Geigy Ag Synthetic dna sequence having enhanced insecticidal activity in maize
WO1993019053A1 (en) 1992-03-17 1993-09-30 Fujisawa Pharmaceutical Co., Ltd. Depsipeptide derivative, production thereof and use thereof
US5478855A (en) 1992-04-28 1995-12-26 Yashima Chemical Industry Co., Ltd. 2-(2,6-difluorophenyl)-4-(2-ethoxy-4-tert-butylphenyl)-2-oxazoline
WO1993025543A2 (en) 1992-06-11 1993-12-23 Bayer Aktiengesellschaft Enniatines and enniatine derivates used to control endoparasites
EP0594291A1 (en) 1992-09-01 1994-04-27 Sankyo Company Limited Novel processes for the production of 13-ether derivatives of milbemycins, and novel intermediates therefor
WO1994015944A1 (en) 1993-01-18 1994-07-21 Pfizer Limited New antiparasitic agents related to the milbemycins and avermectins
WO1994019334A1 (en) 1993-02-19 1994-09-01 Meiji Seika Kaisha, Ltd. Pf1022 derivative, cyclic depsipeptide
EP0626375A1 (en) 1993-05-26 1994-11-30 Bayer Ag Octacyclodepsipeptides having endoparasiticidal activity
WO1995019363A1 (en) 1994-01-14 1995-07-20 Pfizer Inc. Antiparasitic pyrrolobenzoxazine compounds
WO1995022552A1 (en) 1994-02-16 1995-08-24 Pfizer Limited Antiparasitic agents
WO1995033818A2 (en) 1994-06-08 1995-12-14 Ciba-Geigy Ag Genes for the synthesis of antipathogenic substances
WO1995034656A1 (en) 1994-06-10 1995-12-21 Ciba-Geigy Ag Novel bacillus thuringiensis genes coding toxins active against lepidopteran pests
WO1996011945A2 (en) 1994-10-18 1996-04-25 Bayer Aktiengesellschaft Cyclic depsipeptide sulfonylation, sulfenylation and phosphorylation process
WO1996015121A1 (en) 1994-11-10 1996-05-23 Bayer Aktiengesellschaft Use of dioxomorpholines to combat endoparasites, novel dioxomorpholines and process for their production
DE19520936A1 (en) 1995-06-08 1996-12-12 Bayer Ag Ectoparasiticides means
WO1997033890A1 (en) 1996-03-11 1997-09-18 Novartis Ag Pyrimidin-4-one derivatives as pesticide
WO2002015701A2 (en) 2000-08-25 2002-02-28 Syngenta Participations Ag Bacillus thuringiensis crystal protein hybrids
WO2003018810A2 (en) 2001-08-31 2003-03-06 Syngenta Participations Ag Modified cry3a toxins and nucleic acid sequences coding therefor
WO2003052073A2 (en) 2001-12-17 2003-06-26 Syngenta Participations Ag Novel corn event
US6919298B2 (en) 2002-04-04 2005-07-19 Valent Biosciences Corporation Enhanced herbicide composition
WO2004072086A2 (en) 2003-02-14 2004-08-26 Pfizer Limited Antiparasitic terpene alkaloids
WO2005070917A1 (en) 2004-01-23 2005-08-04 Sankyo Agro Company, Limited 3-(dihydro(tetrahydro)isoquinolin-1-yl)quinolines
EP1736471A1 (en) * 2004-01-23 2006-12-27 Sankyo Agro Company, Limited 3-(dihydro(tetrahydro)isoquinolin-1-yl)quinolines
WO2011077514A1 (en) 2009-12-22 2011-06-30 三井化学アグロ株式会社 Plant disease control composition and method for controlling plant diseases by applying the composition
EP2517562A1 (en) * 2009-12-22 2012-10-31 Mitsui Chemicals Agro, Inc. Plant disease control composition and method for controlling plant diseases by applying the composition
WO2011138281A2 (en) 2010-05-06 2011-11-10 Bayer Cropscience Ag Process for the preparation of dithiine tetracarboxydiimides
WO2014006945A1 (en) 2012-07-04 2014-01-09 アグロカネショウ株式会社 2-aminonicotinic acid ester derivative and bactericide containing same as active ingredient
WO2014095675A1 (en) 2012-12-19 2014-06-26 Bayer Cropscience Ag Difluoromethyl-nicotinic-indanyl carboxamides as fungicides
WO2015155075A1 (en) 2014-04-11 2015-10-15 Syngenta Participations Ag Fungicidal n'-[2-methyl-6-[2-alkoxy-ethoxy]-3-pyridyl]-n-alkyl-formamidine derivatives for use in agriculture
WO2016156085A1 (en) 2015-03-27 2016-10-06 Syngenta Participations Ag Microbiocidal heterobicyclic derivatives
WO2016156290A1 (en) 2015-04-02 2016-10-06 Bayer Cropscience Aktiengesellschaft Novel 5-substituted imidazole derivatives
WO2016156129A1 (en) 2015-04-02 2016-10-06 Basf Se Quinoline compounds
WO2016202742A1 (en) 2015-06-15 2016-12-22 Bayer Cropscience Aktiengesellschaft Halogen-substituted phenoxyphenylamidines and the use thereof as fungicides
WO2017025510A1 (en) 2015-08-12 2017-02-16 Syngenta Participations Ag Microbiocidal heterobicyclic derivatives
WO2017029179A1 (en) 2015-08-14 2017-02-23 Bayer Cropscience Aktiengesellschaft Triazole derivatives, intermediates thereof and their use as fungicides
WO2017055469A1 (en) 2015-10-02 2017-04-06 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017055473A1 (en) 2015-10-02 2017-04-06 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017093348A1 (en) 2015-12-02 2017-06-08 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017118689A1 (en) 2016-01-08 2017-07-13 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2017153380A1 (en) 2016-03-10 2017-09-14 Syngenta Participations Ag Microbiocidal quinoline (thio)carboxamide derivatives
WO2017220485A1 (en) 2016-06-21 2017-12-28 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018065414A1 (en) 2016-10-06 2018-04-12 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018073110A1 (en) 2016-10-20 2018-04-26 Basf Se Quinoline compounds as fungicides
WO2018153707A1 (en) 2017-02-22 2018-08-30 Basf Se Crystalline forms of a strobilurin type compound for combating phytopathogenic fungi
WO2018158365A1 (en) 2017-03-03 2018-09-07 Syngenta Participations Ag Microbiocidal oxadiazole derivatives
WO2018202428A1 (en) 2017-05-02 2018-11-08 Basf Se Fungicidal mixture comprising substituted 3-phenyl-5-(trifluoromethyl)-1,2,4-oxadiazoles
WO2018228896A1 (en) 2017-06-14 2018-12-20 Syngenta Participations Ag Fungicidal compositions
WO2019110427A1 (en) 2017-12-04 2019-06-13 Syngenta Participations Ag Microbiocidal phenylamidine derivatives

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"The Pesticide Manual", 2009, BRITISH CROP PROTECTION COUNCIL
A. WOOD, COMPENDIUM OF PESTICIDE COMMON NAMES, 1995
CHEM. EUR. J., vol. 20, 2014, pages 6608 - 6612
J. ORG. CHEM., vol. 67, 2002, pages 5164 - 5169
SYNTHESIS, 2010, pages 2361 - 2366

Also Published As

Publication number Publication date
TW202200587A (en) 2022-01-01
UY39162A (en) 2021-11-30
AR121734A1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
AU2019389778B2 (en) Microbiocidal thiazole derivatives
WO2020109511A1 (en) Microbiocidal 2-acylamino-thiazole-4-carboxamide derivatives
EP3947371B1 (en) Microbiocidal thiazole derivatives
EP4132924B1 (en) Microbiocidal quinoline dihydro-(thiazine)oxazine derivatives
WO2022207665A1 (en) Microbiocidal quinoline/quinoxaline benzothiazine derivatives
AU2022260028A1 (en) Microbiocidal quinoline/quinoxaline isoquinoline derivatives
WO2021074309A1 (en) 1-(3-quinolyl)-3,4-dihydroisoquinoline derivatives as fungicides for combating specific phytopathogens
WO2021074311A1 (en) 1-(3-quinolyl)-1,2,3,4-tetrahydroisoquinoline derivatives as fungicides for combating specific phytopathogens
WO2021004968A1 (en) Microbiocidal picolinamide derivatives
EP4132926B1 (en) Microbiocidal quinoline dihydro-(thiazine)oxazine derivatives
EP3976622B1 (en) Microbiocidal derivatives
WO2021204855A1 (en) Microbiocidal quinoline dihydropyrrolopyrazine derivatives
WO2023111215A1 (en) Microbiocidal pyridine-substituted benzothiazine derivatives
WO2023148206A1 (en) Microbiocidal n-amide derivatives
WO2022207479A1 (en) Microbiocidal isonicotinic amide derivatives
WO2023094303A1 (en) Microbiocidal heterobiaryl amide derivatives
WO2023166067A1 (en) Microbiocidal pyridazinone amide derivatives
WO2023094304A1 (en) Microbiocidal heterobiaryl amide derivatives
WO2024018016A1 (en) Crystalline forms of 1,2,4-oxadiazole fungicides
WO2023089049A2 (en) Microbiocidal isonicotinic amide derivatives
WO2023110871A1 (en) Microbiocidal pyrazole derivatives
WO2023118011A1 (en) Microbiocidal aza-heterobiaryl derivatives
WO2020239855A1 (en) Microbiocidal derivatives
EP3976601A1 (en) Microbiocidal derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21716222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21716222

Country of ref document: EP

Kind code of ref document: A1