	AGENCY POR INTERNA RADINGTON BIBLIOGRAPHIC							
1. SUBJECT Food production and nutrition								
FICATION	B. BECONDARY Wood techn	Wood technology and industries-Tropics						
2. TITLE AND Some 1 2. AUTHORISI Laund	subvirte potential processin rie, J.F.	g prob.ems with m	ixed tropica	l hardwoods				
4. DOCUMENT 1977	DATE	S. HUMBER OF PAGES 18 p.	4. ARC NUME					
7. REFERENC	e orgânizătion năme ând 5	ADORESS						

8. SUPPLEMENTARY HOTES (Spannaring Organization, Publishers, Availability)

(In AID rpt. no. 16)

9. ABSTRACT

Identifies wood chipping, air classification, and silica problems that need to be considered in the design of facilities for the processing of mixed tropical hardwoods. All of the tropical hardwood logs used in this project had the back removed prior to chipping. The chips were screened to remove the over- and undersized materials. Table 1 shows the amounts of oversize and fines obtained from each species. With both the Philippine and the Colombian species, the largest amounts of total rejects were found with the highest density woods. Those rejects were mostly in the form of fines. The most difficult species to chip was the Colombian wood "Caimo," which had a specific gravity of 0.859 and gave about 55% rejects. Air classification proved impossible with chips made from freshly harvested wood because the wet weight, wet volume specific gravity of all the woods fell into a very narrow range. Some of the lightest woods contain enough moisture to make them as heavy as the truly denser woods when freshly cut. With drying, the efficiency of air classification could be increased considerably. In the kraft pulping of these woods, most of the silica will be dissolved into the cooking liquor. Regardless of the original amount of silica in the wood, the levels of silica in the black liquors appeared to reach maximums after only two to three cycles. With 1.5 silica in the black liquors, severe problems, such as reducing evaporator capacity by forming a scale of sodium silicate or other insoluble silicate compounds on the evaporator tubes, could occur. With an accumulation of silica in the causticizer, the sedimentation rate of lime sludge is greatly reduced. These problems need to be considered in designing a kraft pulpmill for utilizing tropical hardwoods containing silica.

10. CONTROL HUMBER		11. PRICE OF DOCUMENT
12. CESCRIPTORS	Product development	13. PROJECT NUMBER
Facilities Silicates		14. CONTRACT HUNDER PASA TA (AG) 03-75 Res.
Paper industry	Ilopano	TA TYPE OF DOCUMENT

AID \$00-1 (4-74)

AID PASA NO. TA(AG) 03-75

SOME POTENTIAL PROCESSING PROBLEMS

WITH HINED THOPICAL HARDWOODS

By

JAMES F. LAUNDRIE, Chemical Engineer

November 1977

.

LINITED DISTRIBUTION

·

AID Report No. 16

PASA -1A(A6)03-75-Ros USDA/FS PN-AAF-037

In Cooperation with the University of Wisconsin-

SOME POTENTIAL PROCESSING PROBLEMS

WITH MIXED TROPICAL HARDWOODS

By

JAMES F. LAUNDRIE, Chemical Engineer

Forest Products Laboratory, 1/ Forest Service U.S. Department of Agriculture

Summary

Some wood chipping, air classification, and silica problems are identified and need to be considered in the design of facilties for the processing of mixed tropical hardwoods.

Chipping

All of the tropical hardwood logs used in this project had the bark removed prior to chipping in a 47-inch-diameter, four-knife, Carthage chipper. The chips were screened to remove the over- and undersized materials using a gyrating screen having 1-1/4- and 1/4-inch squareholed screens. Shown in table 1 are the amounts of oversize and fines obtained from each species. Unfortunately, with the Philippine species, the reject materials were combined prior to weighing and the relative amounts of each are unknown. However, with the Colombian and the Ghanaian species the oversize and fines were weighed separately. With both the Philippine and the Colombian species, the largest amounts of total

l/ Maintained at Madison, Wis., in cooperation with the University of Wisconsin.

rejects were found with the highest density woods. This is contrary to the results found with the Ghanaian species where woods in the same high density range produced very few rejects. Some of the lowest density woods also produced large amounts of rejects, but these were mostly of oversize materials which could be rechipped. Wherever there were larger amounts of rejects from the higher density woods, those rejects were mostly in the form of fines. This is also evident from the results of screen classifying the accepted chips as shown in table 2. The most difficult species to chip was the Colombian wood "Caimo," which had a specific gravity of 0.859 and gave about 55 percent rejects. The main problem with this species was that the chipper knives became dull very rapidly even though this species contained only 0.55 percent silica. With the Philippine species "Antipolo," which contained 4.55 percent silica and had a specific gravity of 0.469, no chipper knife dulling problems occurred.

Other types of chippers and knives were not evaluated because that was beyond the scope of this project. However, these results do indicate potential chipping problems from a variety of causes including wood structure, the amount of silica, wood specific gravity, chipper and knife design, and knife metallurgy.

Air Classification

A major premise of this project was that the higher specific gravity species could be separated from the mixtures to provide fuel with an expected improvement in quality of the pulp produced from the remaining

-2-

chips. The feasibility of doing this via air classification was demonstrated and reported in AID Report No. 1, "Exploratory Kraft and NSSC Pulping of Mixtures of 50 Philippine Hardwoods," and in AID Report No. 7, "Ghanaian Hardwood Mixtures for Pulp and Paper." However, air classification was successful only because both the Philippine and the Ghanaian woods lost some moisture between harvesting and the time when they were converted into chips at the Forest Products Laboratory. Shown in table 3 is the variation of wood specific gravity with moisture content of the Philippine woods. From these data it is evident that it would have been impossible to air classify chips made from freshly harvested wood because the wet weight, wet volume specific gravity of all the woods fell into a very narrow range. Some of the lightest woods, on the basis of dry weight, wet volume when freshly cut, contain enough moisture to make them as heavy as the truly denser woods.

The 80 percent efficiency obtained in air classifying the partially dried chips was surprisingly high considering again the wet weight, wet volume of these woods. With further drying, this efficiency could, no doubt, be increased considerably.

Should air classification of chips be necessary to provide either fuel or improved pulp quality, then consideration must be given to determining the best method of drying the wood. Because of the high humidity and frequency of rainfall in most of the tropical forests being considered for implementation of these findings, drying of the chips, with perhaps waste heat in the flue gasses, would appear to be the most reasonable approach.

-3-

Silica

The problem of silica in the wood as it affects the chipping operation has already been mentioned. However, in the kraft pulping of these woods, most of the silica will be dissolved into the cooking liquor. Shown in table 4 are the effects of black liquor recycling on the distribution of silica. Four cycles were made on woods with three levels of silica--0.3, 1.0, and 4.6 percent. In each of these cycles one-half of the total water to wood ratio was undiluted black liquor from the previous digestion. Recycling of the black liquor did not increase the amount of silica remaining with the pulps. While the pulps made from the wood containing 0.3 percent silica had about 0.08 percent silica, the amount of silica in the pulps made from the wood containing 1.0 percent silica increased to about 0.3 percent. Unexpectedly, the pulps made from the wood with 4.6 percent silica also contained about 0.3 percent silica.

Regardless of the original amount in the wood, the levels of silica in the black liquors appeared to reach maximums after only two to three cycles. These maximums, however, increased with increasing amounts of silica in the wood reaching 0.08, 0.14, and 1.5 percent, respectively.

With 1.5 percent silica in the black liquors, severe problems, such as reducing evaporator capacity by forming a scale of sodium silicate or other insoluble silicate compounds on the evaporator tubes, could occur. In the recovery furnace silicate compounds are known to gradually form a beehive-like deposit on the walls and between boiler tubes. When there is an accumulation of silica in the causticizer, the sedimentation rate of lime sludge is greatly reduced. These problems need to be considered

-4-

in designing a kraft pulpmill for utilizing tropical hardwoods containing silica.

.

,

No		Species	Specific	Chipping rejects		
	Common name	Botanical name	(dry weight, green volume)	Total	Oversize (+1-1/4 in.)	Fines (-1/4 in.)
				Pct	<u>Pct</u>	Pct
		PHILIPPINE	SPECIES			
1	Tangisang-bayauak	Ficus variegata	0.236	6.1		
2	Binuang	Octomeles sumatrana	.242	7.6		
3	Kapok	Ceiba pentandra	.244	13.2		
4	Balilang-uak	Meliosma macrophylla	.260	6.7		
5	Rarang	Erythrina subumbrans	.264	11.4		
6	Kaitana	Zanthoxylum rhetsa	.296	4.4		
7	Ilang-ilang	Cananga odorata	.308	8.2		
8	Gubas	Endospermum pletatum	.316	4.0		
9	Dita	Alstonia scholaris	.316			
10	Anabiong	Trema orientalis	.319	12.6		
11	Hamindang	Macaranga bicolor	. 324	5.2		
12	Balanti	Homalanthus populneus	.356	7.6		
13	Mayapis	Shorea squamata	.366	4.1		
14	Matang-arau	Melicope triphylla	.381	6.7		
15	Malasantol	Sandoricum vidalii	. 394	8.3		
16	White lauan	Pentacme contorta	.401	4.8		
17	Tulo	Alphitonia philippinensis	. 422	12.6		
18	Tangile	Shorea polysperma	. 429	5.3		
19	Pahutan	Mangifera altissima	. 435	4.8		
20	Apanit	Mastixia philippinensis	.447	5.6		

Table 1.--Chipping rejects from various tropical hardwoods

(Page 1 of 5)

		Species	Specific		Chipping reje	cts
No.	o. Common name	Botanical name	gravity (dry weight, green volume)	Total	Oversize (+1-1/4 in.)	Fines (-1/4 in.)
				Pct	Pct	Pet
		PHILIPPINE SPECIE	EScontinued			
	_		0.451	16.9		
21	Lago	Antegorpus blancoi	.469	16.1		
22	Antipolo	Antocarpus Diancoi	.478	9.5		
23	Bagtikan	Terminalia pitens	.485	8.4		
24	Sakat Pod lavan	Shorea negrosensis	.510	3.7		
23	Keu lauan					
26	Ttanean	Weinmannia luzoniensis	.526	4.3		
20	Piline-liitan	Canarium luzonicum	.549	5.8		
28	Palosanis	Anisoptera thurifera	.554	3.4		
20	Lonarall	Swintonia foxworthyi	.559	4./		
30	Malabetis	Madhuca oblongifolia	.560	3.1		
		o l l llum chliquinorwing	568	5.1		
31	Dangkalan	Calophyllum obligamervia	.576	3.3		
32	Panau	Dipterocarpus graciiis	.592	9.0		
33	Katmon	Dillenia philippinensis	.597	3.1		
34	Batitinan	Lagerstroemia pilitormis	.608	5.5		
35	Katong-lakihan	Amoora macrophyrra				
		Watica mangachanoi	.618	2.5		
36	Narig	Vallea mangachapor	.623	3.5		
37	Miau	Distorocarpus grandifloru	s .623	2.8		
38	Apitong	Verthenhullum excelsim	.639	3.3		
39	BOK-DOK	Renthrophloeum densifloru	m650	6.6		
40	Kamatog	ELACTION CONTINUED				

Table 1.--Chipping rejects from various tropical hardwoods--continued

(Page 2 of 5)

N.		Species		Chipping rejects		
NO.	Common name	Botanical name	gravity (dry weight, green volume)	Total	Oversize (+1-1/4 in.)	Fines (-1/4 in.)
				Pct	Pct	Pct
		PHILIPPINE SPEC	IEScontinued			
41	Dalingdingan	Hopea foxworthvi	0.667	3.0		
42	Katilma	Diospyros nitida	.679	7.1		
43	Yakal	Shorea astylosa	.718	3.8		
44	Kamagong	Diospyros philippinensis	.720	6.0		
45	Katong-matsin	Chisocheton pentandrus	.725	13.2		
46	Manaring	Lithocarpus soleriana	.736	5.2		
47	Ipil-ipil	Leucaena leucocephala	.737	10.9		
48	Bolong-eta	Diospyros pilosanthera	.743	12.5		
49	Makaasim	Syzygium nitidum	.778	9.8		
50	Alupag-amo	Litchi philippinensis	.793	23.3		
		GHANAIAN	SPECIES			
1	Otu	Cleistopholis patens	.241	4.8	1.2	3.6
2	Effeu	Hannoa kleineana	.283	6.0	5.1	.9
3	African corkwood	Musanga cecropioides	.301	10.4	9.1	1.3
4	Obeche	Triplochiton scleroxylon	.302	5.6	4.4	1.2
5	Antiaris	Antiaris africana	.312	12.7	11.1	1.6
6	Canarium	Canarium schweinfurthii	.337	2.3	1.4	.9
7	Akoret	Discoglypremna caloneura	.370	2.6	1.3	1.3
8	African mahogany	Khaya ivorensis	.413	8.4	7.8	.6
9	Dahoma	Piptadeniastrum africanum	.442	2.1	.6	1.5
10	Gedu nohor	Entandrophragma angolense	.450	28.2	.5	27.7

Table 1.--Chipping rejects from various tropical hardwoods--continued

(Page 3 of 5)

		Species		Chipping rejects		
No.	Common name	Botanical name	gravity (dry weight, green volume)	Total	Oversize (+1-1/4 in.)	Fines (-1/4 in.)
				Pct	Pct	Pct
		GHANAIAN SPEC	IEScontinued			
11 12 13 14 15 16 17 18 19 20	Niangon Scented guarea Makore Tallow tree Lokonfi Brown sterculia Eyong Adjouba Afina Kane	Tarrietia utilis Guarea cedrata Tieghemella heckelii Allanblackia floribunda Celtis adolphi-friderici Sterculia rhinopetala Sterculia oblonga Dacryodes klaineana Strombosia glaucescens Anogeissus leiocarpus	0.460 .485 .499 .540 .549 .552 .589 .692 .697 .708	11.0 1.6 2.4 8.2 4.8 3.1 2.6 2.0 2.6 2.2	10.3 .3 1.0 1.6 4.0 1.9 1.1 .2 .6 1.1	0.7 1.3 1.4 6.6 .8 1.1 1.5 1.8 2.0 1.1 2.4
21 22	Kokoti Ekki	Anaopyxis kleineana Lophira alata	.721 .808	3.2 4.4	.8 .9	3.5
		COLOMBI	AN SPECIES			
1 2 3 4 5	Peine mono Ceiba Yarumo Cirpo Chingale	Apeiba apera Ceiba pentandre Cecropia sp. Pourouma sp. Jacaranda copaia	.141 .225 .250 .369 .372	10.4 9.3 16.6 5.9 5.5	5.0 3.9 13.3 3.8 4.2	5.4 5.4 3.3 2.1 1.3

Table 1.--Chipping rejects from various tropical hardwoods--continued

(Page 4 of 5)

• ..

		Species	Specific	Chipping rejects		
No.	Common name	Common name Botanical name		Total	Oversize (+1-1/4 in.)	Fines (-1/4 in.)
				Pct	<u>Pct</u>	<u>Pct</u>
		COLONBIAN SPECI	EScontinued			
6	Dormilon	Vochysia ferruginea	0.447	3.6	1.6	2.0
7	Sande	Brosimum utile	. 494	3.8	1.8	2.0
8	Sangretoro	Viroula sebifera	.511	4.9	1.9	3.0
9	Arenillo	Catostemma alstonii	.536	4.5	2.0	2.5
10	Canelo	Nectandra sp.	.546	3.6	1.4	2.2
11	Perillo negro	Couma macrocarpa	.547	4.9	1.1	3.8
12	Casaco	Hieronyma sp.	.603	6.2	1.4	4.8
13	Carbonero	Enterolobium schomburgkii	.634	4.5	1.4	3.1
14	Chocho	Ormosia paraensis	.671	6.7	2.1	4.6
15	Carreto	Aspidosperma sp.	.692	3.4	.9	2.5
16	Lecheperra	Helicostylis tomentosa	. 785	4.4	1.1	3.3
17	Tamarindo	Dialium guianense	.823	15.0	5.5	9.5
18	Caimo	Pouteria sp.	.859	55.4	17.4	38.0

Table 1.--Chipping rejects from various tropical hardwoods--continued

(Page 5 of 5)

	Specific	Amounts					
Species ^{1/}	gravity (dry weight, green volume)	+1-1/8 inches	+7/8 inch	+5/8 inch	+3/8 inch	+3/16 inch	-3/16 inch
		<u>Pct</u>	Pct	<u>Pct</u>	Pct	Pct	Pct
	0.226	6	24	31	30	8	1
L	0.230	6	30	31	27	5	1
2	.242	0	20	31	25	5	1
3	.244	9	29	36	26	6	1
4	. 260	4	40	26	15	2	1
5	. 264	10	47	20	23	-	
		,	64	30	19	3	0
6	. 296	4	44 25	37	25	6	1
7	. 308	5	25	40	26	5	1
8	316	1	21		17	3	1
9	. 316	8	42	30	13	2	0
10	. 319	7	49	29	15	-	-
		2	24	37	29	7	1
11	.324	3	<u> </u>	30	18	3	0
12	. 356	1	46	27	30	6	1
13	. 366	2	25	27	22	6	0
14	. 381	4	35	32	20	<u> </u>	0
15	. 394	5	39	31	20	•	-
	(0)	c	33	31	25	5	0
16	.401	2	55	26	11	2	0
17	. 422	10	29	32	21	5	0
18	. 429	4	30	3L 3L	29	9	1
19	. 435	2	20	24	28	5	1
20	. 447	6	29	52	40		

Table 2.--Classification of screened chips from Philippine hardwoods

(Page 1 of 3)

	Specific	Amounts					
Species ^{1/}	gravity (dry weight, green volume)	+1-1/8 inches	+7/8 inch	+5/8 inch	+3/8 inch	+3/16 inch	-3/16 inch
		Pct	<u>řct</u>	Pct	Pct	Pct	Pct
21	0.451	11	40	28	18	3	0
• 22	. 469	7	32	32	24	6	1
23	.478	8	35	30	22	5	0
24	. 485	5	30	31	26	7	1
25	.510	0	24	32	33	10	1
26	.526	7	36	33	20	4	0
27	.549	3	46	30	17	3	0
28	.554	1	23	34	33	8	1
29	.559	4	41	33	18	4	0
30	. 560	2	30	37	25	5	1
31	. 568	1	26	36	29	8	0
32	.576	2	25	34	31	8	1
33	.592	1	17	27	33	19	2
34	.597	2	30	38	24	5	1
35	.608	ī	10	25	38	23	1
36	.618	2	21	37	33	7	0
37	.623	2	17	34	34	11	1
38	.623	ī	25	36	30	8	1
39	.639	2	15	30	39	13	1
40	.650	3	18	29	35	13	1

Table 2.--Classification of screened chips from Philippine hardwoods--continued

.

(Page 2 of 3)

	Specific	Amounts					
Species ^{1/}	gravity (dry weight, green volume)	+1-1/8 inches	+7/8 inch	+5/8 inch	+3/8 inch	+3/16 inch	-3/16 inch
		Pct	Pct	Pct	Pct	Pct	Pct
41 42 43 44 45	0.667 .679 .718 .720 .725	1 1 5 6	22 26 15 24 24	36 28 31 34 29	32 31 37 27 31	8 13 15 10 10	0 1 1 1 1
46 47 48 49 50	.736 .737 .743 .778 .793	1 10 6 2 2	17 28 25 13 9	32 30 28 25 18	36 24 26 38 36	13 8 14 21 32	1 1 2 3

Table 2.--Classification of screened chips from Philippine hardwoods--continued

 $\underline{1}$ / See table 1 for common and botanical names of species.

(Page 3 of 3)

	Moisture	content	Specific gravity			
Species ^{1/}	Fresh-cut	As received	Dry-weight,	Wet-weight,	wet-volume	
	(literature)	al ff4		Fresh-cut		
	Pct	Pct				
1	274	171	0.236	0.883	0.640	
2		116	.242		.523	
2	345	201	.244	1.086	.978	
5	0 1 0 017	83	260	.824	.476	
4 5	341	154	.264	1.164	.671	
	0.0					
6	173	83	.296	.808	.542	
7	223	102	.308	1.026	.622	
0	200	90	.316		.600	
0	127	90	316	. 749	.616	
9	137	90 05	310	1.075	.622	
TO	251	74	• 4.2.2	21010		
11	101	79	. 324	.943	.580	
12	168	61	.356	.954	.573	
14	100	67	366	.820	.611	
1.)	144	65	381	1.025	.629	
14	109	70	304	779	.670	
12	90	70	• • • • •			
16	110 .	£ 1	. 401	.842	.726	
10	120	56	402	1.009	.658	
17	133	.)U 50	424	.811	.652	
18	89	74 00	.427	.011	.783	
19		80	•435	065	.854	
20	110	Å T	. 44 /	.702	1004	
21	01	64	. 451	.861	.740	
21	71	04	469		.919	
24	100	50 50	478	.966	.717	
23	102		.470	960	.936	
24	98	9.) FF	.40.J 510	1 035	790	
25	103	22	.910	T.032	• 1 9 4	
26	132	74	.526	1.220	.915	
20	20	45	.549	1.093	.796	
21	77	45 62	.554		.931	
29	07	60 61	550	1.045	.900	
29	10/	U1 (7	5.007 5.00	1.254	.935	
30	124	0/	.300	エ・ムウマ	• • • • •	

.

.

Table	3Variation o	f specific	gravity with m	oisture content of
	Philippin	e hardwoods	3	

(Page 1 of 2)

Species ^{1/}	Moisture	content	Specific gravity				
	Fresh-cut	As received	Dry-weight,	Wet-weight, wet-volume			
	(literature)	at FPL	Wet-volume	Fresh-cut	As received		
 	Pct	Pct					
31	79	75	0.568	1.017	0.994		
32	80	73	.576	1.037	.996		
22		59	.592		.941		
	121	74	.597	1.319	1.039		
35	99	83	.608	1.210	1.113		
26		45	.618		.896		
.,U 7 C	76	60	.623	1.096	.997		
	23	70	.623	1.140	1.059		
20	03	70	.639	1.233	1.086		
.59 40	75	65	.650		1.073		
()		50	. 667		1.000		
41	47 ·	.,0	.679	1.134	1.012		
42	07	52	.718		1.091		
43		.,2	720		1.058		
44 45	127	60	.725	1.646	1.160		
	01	50	736	1.332	1.119		
46	20	74 FE	. 1 30	1 312	1.142		
47	78	90 40	./3/	L : 74%	1.062		
48		43	./43		1.105		
49		42	.//0		1 150		
50		45	. 793		T 1 TAA		

Table	3Variation	of	specific	gravity	with	moisture	content	01
	Philippi	ne	hardwoods	sconti	nued			

÷

÷

 $\underline{1}$ / See table 1 for common and botanical names of species.

(Page 2 of 2)

Cycle No.1/		Pulp						
	Total solids ^{2/}	Ash ^{2/}	Silica ^{2/}	Heating value	Total yield ^{3/}	Kappa No.	Ash4/	Silica ^{4/}
	Pct	Pct	Pct	<u>Btu/lb</u> of solids	Pct		Pct	Pct
		PHIL	PPINE MIX	TURE C0.3	PERCENT S	SILICA		
1 2 3 4	14.7 23.2 23.0	6.2 9.2 9.4	0.05 .07 .08	 6,562	47.2 46.3 47.4 47.3	23.1 21.0 22.4 22.4	1.1 1.3 1.3 1.4	0.08 .08 .09 .07
·	PHII	LIPPINE	MIXTURE C SPECIES-	ENRICHED WI -1.0 PERCENI	TH TWO H	[GH-SIL]	[CA	
1 2 3 4	14.7 19.9 21.9 22.9	6.2 8.2 9.0 9.4	.08 .15 .13 .14	 6,832	46.7 48.0 47.2 47.6	21.6 22.5 21.2 22.0	1.3 1.5 1.3 1.4	.30 .32 .29 .31
P	HILIPPINE V	100DA	NTIPOLO (A	RTOCARPUS BI	LANCOI)	4.6 PER	CENT SI	LICA
1 2 3 4	15.0 19.8 22.0 21.5	6.7 8.8 9.3 9.4	1.1 1.4 1.3 1.5	 6,797	48.4 48.9 48.7 49.5	31.6 32.2 28.9 32.3	1.4 1.3 1.2 1.2	.30 .29 .30 .26

Table 4.--Effect of kraft black liquor recycling on the distribution of silica

1/ One-half of the 4 to 1 water to wood ratio was undiluted black liquor from the previous digestion.

2/ Based on weight of black liquor.
3/ Based on moisture-free weight of wood.
4/ Based on moisture-free weight of screened pulp.