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Abstract: Ammonia is an essential biomarker for noninvasive diagnosis of liver malfunction.
Therefore, selective detection of ammonia is essential for medical application. Here, we demonstrate a
portable device to selectively detect sub-ppm ammonia gas. The presented gas sensor is composed of
a Pt coating on top of an ultrathin Indium nitrite (InN) epilayer with a lower detection limit of 0.2 ppm,
at operating temperature of 200 ◦C, and detection time of 1 min. The sensor connected with the
external filter of nonpolar 500 CS silicone oil to diagnose liver malfunction. The absorption of 0.7 ppm
acetone and 0.4 ppm ammonia gas in 10 cc silicone oil is 80% (0.56 ppm) and 21.11% (0.084 ppm),
respectively, with a flow rate of 10 cc/min at 25◦C. The absorption of acetone gas is 6.66-fold higher as
compared to ammonia gas. The percentage variation in response for 0.7 ppm ammonia and 0.7 ppm
acetone with and without silicone oil on InN sensor is 17.5% and 4%, and 22.5%, and 14% respectively.
Furthermore, the percentage variation in response for 0.7 ppm ammonia gas with silicone oil on InN
sensor is 4.3-fold higher than that of 0.7 ppm acetone. The results show that the InN sensor is suitable
for diagnosis of liver malfunction.

Keywords: InN; selectivity; silicone oil; external filter; liver malfunction; exhaled-breath volatile
organic compound (VOCs)

1. Introduction

Significant research efforts have been dedicated to developing ammonia gas sensors for different
applications, such as environmental monitoring and medical applications [1–6]. Ammonia gas
has a large impact on the environment and human health. There are approximately 1840 volatile
organic compounds (VOCs) generated by different parts of the body in healthy humans, and most
VOCs are found in exhaled breath [3,7,8]. The concentration profile of exhaled-breath VOCs directly
correlates with specific disease biomarkers such as ammonia for liver malfunction [9–14], acetone for
diabetes [15–19], dimethyl sulfide (DMS) for liver malfunction [20,21], and isoprene for cholesterol [22].
Clinical data shows that the ammonia concentration in the breath is less than 0.278 part per million
(ppm) for healthy people, while increases from 0.278 to 5 ppm for liver malfunction [13]. The dimethyl
sulfide concentration in exhaled breath increases from 10 to 60 part per billion (ppb) for liver
disease [20]. The acetone concentration in the breath varies from 0.3–0.9 ppm for healthy people
while for diabetic patients it exceeds to 1.8 ppm [16–18,23]. The isoprene concentration in exhaled
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breath is 20–234 ppb [22], which is lower in the case of children [24]. The percentage of carbon dioxide
(CO2) in the breath is about 4–5%. Therefore, the selective sensing of (<100 ppb) ammonia gas remains
a key challenge in medical diagnostics, combined with a complex matrix of exhaled-breath interferents
to indicate liver malfunction.

Recently, semiconductor gas sensors have been in high demand for the noninvasive detection
of biomarkers because they have high sensitivity, provide a stable response and have low detection
limits [25–34]. Much research has been focused on metal oxide semiconductor (MOS)-based ammonia
gas sensor [35–40]. However, metal oxide semiconductor gas sensors have poor selectivity because
a wide range of operation temperature leads to a wide range of sensitivity to the VOCs [41]. Owing
to recent advances in epitaxial growth of InN crystalline films, high-quality ultrathin InN epilayers
have been obtained. Ultrathin InN has exceptional electronic properties, such as a narrow band gap
(0.6−0.7 eV), excellent electron transport characteristics (mobility > 1000 cm2/V·s), and high electron
density (typically in excess of 1 × 1018 cm−3) for nominally undoped InN films [42]. In addition,
the sheet carrier density linearly increases with thickness of the InN epilayer. Therefore, residual
sheet charge is found to be 4.3× 1013 cm−2 with an unusual electron accumulation layer within a few
nanometers of the InN surface [43–47]. Therefore, an ultrathin InN epilayer has high sensitivity for
ammonia gas in exhaled breath. However, the InN gas sensor has a lack of selectivity. To improve
the selectivity, there are various techniques available such as synthesizing unique, highly sensitive
materials for the target gas but with a negligible cross sensitivity for interfering gases, as well as
temperature modulation techniques [48–54] and gas sensor arrays. [8,55–58] using filters combined
with a sensing layer can reduce the sensitivity for interfering gases and enhance the selectivity of the
gas sensor. However, combining a sensing layer with filters may lead to decreased sensitivity of the
gas sensor and the detection limit. Previously, our group also reported an InN-based gas sensor and its
numerous applications in medical diagnosis [59–61].

In this study, we report chemically inert and nonpolar 500 centistokes (CS) O-ring silicone oil as an
external filter to enhance the selectivity of the InN gas sensor. The filter is separate from the ultrathin
InN epilayer and it is used to filter out the major interferents—acetone gas—in exhaled breath, thus
enhancing the selectivity of the InN gas sensor for ammonia gas in liver malfunction applications.
Silicone oil is a nonpolar solvent that can absorb acetone gas [62]. Acetone gas possesses two different
kinds of chemical groups, a carbon monoxide (–CO) polar group and a methyl (–CH3) nonpolar group.
Therefore, acetone has polar and nonpolar characteristics. In addition, ammonia is a strongly polar
gas that forms hydrogen bonds. Therefore, when the ammonia and acetone gas pass through 10 cubic
centimeter (cc) silicone oil into the impinger tube, the major interferent acetone gas is absorbed into
the silicone oil, while the target ammonia gas has negligible absorption into the silicone oil, as shown
in Figure 1. Furthermore, the polarity of ammonia is not matched with the polarity of silicone oil.
However, polarity of acetone gas is matched by the polarity of silicone oil. Therefore, acetone has much
greater absorption than ammonia gas in 10 cc silicone oil. There are other interferents in the exhaled
breath beside acetone gas, such as isoprene, CO2, and dimethyl sulfide (DMS). The concentration of
these VOCs is much smaller than the major interferent acetone gas. In addition, nonpolar isoprene will
be absorbed into the silicone oil. The nonpolar carbon dioxide (CO2) is also absorbed into the silicone
oil [63]. Dimethyl sulfide has a negligible response on the InN sensor, because the concentration of
DMS in the breath is very low. Therefore, these interferents have a negligible effect on the target
ammonia detected by the InN sensor. Thus, selectivity for ammonia gas is improved. Furthermore,
the absorption of acetone gas also depends on the gas flow rate at which the acetone gas passes through
the silicone oil. In addition, exhaled-breath flow rate for healthy people changes from 5–10 L/min [64].
However, the concentration of exhaled-breath VOCs is inversely proportional to the breath flow rate
50–400 cc/min [65]. Furthermore, low gas flow rates lead to increased absorption because the number
of the smaller-sized bubbles in the silicone oil increases, leading to increased contact time between the
gas bubbles and the silicone oil. When the gas flow rate is high, fewer larger-sized bubbles are created.
Therefore, the contact time of the gas bubbles with the silicone oil decreases, leading to decreased
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absorption [66,67]. The amount of acetone and ammonia gas absorbed inside the silicone oil is given
by Equation (1).

m(t)√
t

= 2cs

√
D
π
(1 +

kt
4
) (1)

where t is the contact time of the gas bubbles with the silicone oil, k is the first-order reaction velocity
constant, m(t) is the amount of gas absorbed into the liquid, D is the diffusion coefficient, and Cs is
the gas-liquid interface concentration. The value

[
Cs
√

D
]
× 10−5kgm−2s−

1
2 = 0.79, 0.73, or 0.7 and

the reaction velocity constant [k] s−1 = 0.56, 0.8, or 1.4 and the temperatures of 293 K, 298 K, or 303 K,
respectively [66].

Sensors 2018, 18, x  3 of 17 

 

𝒎(𝒕)

√𝒕
 =  2𝑐𝑠√

𝐷

𝜋
(1 + 

𝑘𝑡

4
)   (1) 

where 𝑡 is the contact time of the gas bubbles with the silicone oil, 𝑘  is the first-order reaction 

velocity constant, 𝑚 (𝑡) is the amount of gas absorbed into the liquid, 𝐷 is the diffusion coefficient, 

and 𝐶𝑠 is the gas-liquid interface concentration. The value [𝐶𝑠√𝐷] × 10−5𝑘𝑔𝑚−2𝑠−
1

2 = 0.79, 0.73, or 

0.7 and the reaction velocity constant [k] 𝑠−1 = 0.56, 0.8, or 1.4 and the temperatures of 293 K, 298 K, 

or 303 K, respectively [66]. 

 

Figure 1. Absorption of ammonia and acetone gas in 10 cc silicone oil into the impinger tube. 

2. Method and Setup 

2.1. Sampling Process 

A gas chamber unit is used to prepare the 0.7 ppm acetone gas sample in nitrogen background. 

The gas chamber unit consists of a gas supply unit, a chamber unit, a temperature control unit, and a 

current measurement unit. The gas supply unit is comprised of a one-way valve, a mass flow control 

(MFC) unit and a gas mixture unit.  

A vacuum pump connected to a gas chamber is used to clean the chamber. Before the 

preparation of 0.7 ppm acetone gas sample, the chamber is cleaned for 5 min then a 1-Liter Bag1 is 

connected to the gas chamber for 20 min, as shown in Figure S1. After collection of the gas sample, 

the bag is disconnected from the chamber. When the same method is used for the preparation of sub-

ppm ammonia gas sample, collected into the tedlar bag using MFC unit, the analytical instrument 

shows an unstable response, which makes the accurate quantification of the sub-ppm ammonia gas 

difficult using the analytical instrument. Hence, to avert this, the sampling method for ammonia gas 

sample preparation is changed to a flow meter from an MFC unit.  

Therefore, to sample 0.4 ppm ammonia gas, a 10-ppm standard ammonia cylinder is connected 

to a flow meter with a maximum flow rate of 100 cc/min. In addition, a nitrogen cylinder is connected 

to the air flow meter with a maximum flow rate of 5 liters/min. To sample 0.4 ppm ammonia gas, a 

10-Liter Tedlar Bag1 is connected to the 10-ppm ammonia cylinder with a gas flow rate of 100 cc/min 

for 4 min, as shown in Figure S2a then 400 cc of ammonia gas was diluted with 10 liters of N2 gas 

with a flow rate of 5 liters/min for 2 min, as shown in Figure S2b. 

2.2. Absorption Setup of Acetone 

The absorption of 0.7 ppm acetone gas in 10 cc silicone oil is measured by using selected ion flow 

tube mass spectrometry SIFT-MS (VOICE 200 Ultra Syft, Syft Technologies Ltd. Christchurch, New 

Zealand). The 1-Liter Bag1 is connected to the inlet of the SIFT-MS to measure the concentration of 

Figure 1. Absorption of ammonia and acetone gas in 10 cc silicone oil into the impinger tube.

2. Method and Setup

2.1. Sampling Process

A gas chamber unit is used to prepare the 0.7 ppm acetone gas sample in nitrogen background.
The gas chamber unit consists of a gas supply unit, a chamber unit, a temperature control unit, and a
current measurement unit. The gas supply unit is comprised of a one-way valve, a mass flow control
(MFC) unit and a gas mixture unit.

A vacuum pump connected to a gas chamber is used to clean the chamber. Before the preparation
of 0.7 ppm acetone gas sample, the chamber is cleaned for 5 min then a 1-Liter Bag1 is connected
to the gas chamber for 20 min, as shown in Figure S1. After collection of the gas sample, the bag
is disconnected from the chamber. When the same method is used for the preparation of sub-ppm
ammonia gas sample, collected into the tedlar bag using MFC unit, the analytical instrument shows
an unstable response, which makes the accurate quantification of the sub-ppm ammonia gas difficult
using the analytical instrument. Hence, to avert this, the sampling method for ammonia gas sample
preparation is changed to a flow meter from an MFC unit.

Therefore, to sample 0.4 ppm ammonia gas, a 10-ppm standard ammonia cylinder is connected to
a flow meter with a maximum flow rate of 100 cc/min. In addition, a nitrogen cylinder is connected
to the air flow meter with a maximum flow rate of 5 liters/min. To sample 0.4 ppm ammonia gas,
a 10-Liter Tedlar Bag1 is connected to the 10-ppm ammonia cylinder with a gas flow rate of 100 cc/min
for 4 min, as shown in Figure S2a then 400 cc of ammonia gas was diluted with 10 liters of N2 gas with
a flow rate of 5 liters/min for 2 min, as shown in Figure S2b.

2.2. Absorption Setup of Acetone

The absorption of 0.7 ppm acetone gas in 10 cc silicone oil is measured by using selected ion
flow tube mass spectrometry SIFT-MS (VOICE 200 Ultra Syft, Syft Technologies Ltd. Christchurch,
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New Zealand). The 1-Liter Bag1 is connected to the inlet of the SIFT-MS to measure the concentration
of 0.7 ppm standard acetone gas, as shown in Figure 2a. Furthermore, the 1-Liter Bag1 is connected to
the inlet of the impinger tube through the flow meter, and the 1-Liter Bag2 is connected to the outlet
of the impinger tube. Thereafter, 0.7 ppm acetone gas flows through the 10 cc silicone oil inside the
impinger tube at a controlled flow rate, such as 10 cc/min or 20 cc/min. After absorption in 10 cc
silicone oil, the acetone gas is collected in 1-Liter Bag 2 as shown in Figure 2b. Furthermore, the 1-Liter
Bag 2 is connected to the inlet of the SIFT-MS to measure the absorption of 0.7 ppm acetone gas in 10 cc
silicone oil.
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Figure 2. (a) To quantify the concentration of the 0.7 ppm standard acetone gas by SIFT-MS. (b) Absorption
measurement of 0.7 ppm acetone gas through 10 cc silicone oil by using SIFT-MS.

2.3. Absorption Setup of Ammonia

The absorption of ammonia gas in 10 cc silicone oil is measured by using T201 NH3 Analyzer.
The 10-Liter Tedlar Bag1 is connected to the inlet of the T201 chemiluminescence-based NH3 analyzer
(Teledyne-API) to measure the concentration of 0.4 ppm standard ammonia gas, as shown in Figure 3a.
Furthermore, the 10-Liter Tedlar Bag1 is connected to the inlet of the impinger tube, and the outlet of
the impinger tube is connected to the inlet of the T201 NH3 Analyzer to measure the absorption of
0.4 ppm ammonia gas in 10 cc silicone oil with gas flow rates of 10 cc/min, 20 cc/min, 500 cc/min,
as shown in Figure 3b.
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2.4. Sensitivity of InN Gas Sensor

The gas sensor sensitivity is defined in terms of the current variation ratio, the relative current
change upon exposure to the analyte gas to the current in the ambient gas, which can be expressed as
per Equation (2).

Sensitivity
(

∆I
Io

)
=

IAnalyte gas − IAmbient gas

IAmbient gas
(2)

Current in presence of the analyte gas given by Equation (3)

IAnalyte gas = µ
(

no + ∆nAnalyte gas

)
eEA (3)

Current in presence of the ambient gas given by Equation (4)

IAmbient gas = µnoeEA (4)

Gas sensor sensitivity changes with electron density given by Equation (5)

Sensitivity
(

∆I
Io

)
=

∆nAnalyte gas

no
(5)

The name of the symbols used in Equation (2) to Equation (5) are given in Table 1.
In presence of the analyte gas, the sensitivity of gas sensor varies linearly with the number of the

electron density.

Table 1. The name of symbols used in Equations (2)–(5).

Symbols Name

µ Mobility
no Electron density in ambient gas
e Electronics charge
E Electric field
A Cross sectional area

∆nAnalyte gas Electron density in presence of analyte gas

3. Ultrathin InN Gas Sensor

3.1. Fabrication Process

The flow process of the single crystalline InN film on sapphire substrates is briefly described
as follows. The plasma-assisted molecular beam epitaxy is used to accomplish the process with a
radio frequency generated by nitrogen plasma source. The indium source is produced by thermal
evaporation of the pure source materials. During deposition, the base pressure of the MBE system is
kept at an ultrahigh vacuum of 1× 10−9 Torr. The nitrogen plasma has high reactivity with evaporated
indium atom flux on the substrate, allowing InN growth at low temperature. Two-inch sapphire
Al2O3 (0001) wafers are used as starting substrates. A buffer layer, aluminum nitrite (AlN) 500 nm,
is deposited prior to the growth of InN to minimize the large lattice mismatch between InN (0001) and
Al2O3 (0001). For the growth of InN, a low-temperature buffer layer AlN is grown at 350 ◦C, followed
by high-temperature InN growth at 520 ◦C. The heater in the serpentine structure is composed of an
aluminum film with a thickness of 200 nm on the glass substrate. The fabrication processes of the
heater and InN epilayer are shown in Figure S3a,b, respectively.

3.2. Gas Sensor Device

The gas sensor device is contained in an ultrathin (~10 nm) InN epilayer with a pair of electrodes
composed of an Ti/Al/Au (50 nm/200 nm/50 nm) composite grown on the sapphire substrate along
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with an AlN buffer layer. The deposition of the electrodes on the InN epilayer is conducted in an
electron-beam evaporation system. The Ti/Al/Au composite electrode forms an ohmic contact with
InN epilayer, due to low resistivity between electrodes and InN [68,69]. Which is used to measure the
current of the InN conductive channel between the electrodes. A very thin platinum (Pt) film (~10 nm)
is deposited between the two electrodes on the InN surface. Because platinum has been used in many
catalytic applications than other catalytic metals such as gold and silver because Pt has the capability
to interact with poisons such as sulfur compounds that are limited to the metal surface. Pt has a high
melting point; Pt has efficiently been recycled [70]. On the other hand, the cost of the Pt is very high,
due to the limited supply of the Pt. In addition, the major issue with Pt is one of a singular geology [71].
The advantage and disadvantage of the Pt shown in Table 2.

Table 2. The advantage and disadvantage of the Pt catalyst.

Pt Catalyst Advantage [70] Disadvantage [71]

High melting point Cost is very high
Has ability to interact with poisons and Sulfur compound Limited supply

Efficiently recycled Geological singularity

The deposition of Pt film is conducted in an electron-beam evaporation system. Furthermore,
for higher operating temperatures, an aluminum heater is included, which is connected to the back side
of the ultrathin InN epilayer by thermally conductive silicone adhesive that allows heat conduction.
In addition, heater along with platinum coating on the InN epilayer is inserted into the hole in printed
circuit board (PCB) substrate along with four bonding pads in Figure 4a. The dimension of the InN
sensing layer along with platinum layer between two electrodes Ti/Al/Au in Figure 4b. Due to the Pt
layer on the InN epilayer, sensitivity and response time are improved. When acetone and ammonia
gas is exposed on Pt coating on the InN sensor. They are adsorbed on the adsorption sites and further
dissociated into hydrogen atom at platinum catalytic film [72–76]. In addition, part of the dissociated
hydrogen atom diffuses and are trapped at the interface of Pt–InN epilayer to form the dipole layer at
the interface [77]. Therefore, dipole layer creates an additional electric field at the interface, leads to
modulate the conductivity of the InN epilayer. Thus, the sensitivity of the InN sensor will be improved.
The operating temperature of the heater can be enhanced up to 200 ◦C. The temperature of the InN
sensing layer increases as the heater temperature increases. Therefore, the gas sensing response is
enhanced at 200 ◦C.
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Sensing Mechanism

In air background, and at operating temperature of 200 ◦C, oxygen molecules are adsorbed onto
the surface of the InN epilayer to form the O−2 ions by attracting the electron from the conduction
band of the InN epilayer. Furthermore, when ammonia gas reacts with oxygen ion on the InN surface,
ammonia transfer their lone pair electron into the conduction band of the InN epilayer. Therefore,
conductivity of the InN epilayer increases. Consequently, InN gas sensor has high sensitivity for the
ammonia gas in Figure 5.
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3.3. Function of Valves and Pump System

A portable gas sensor system is used to measure the sub-ppm ammonia and acetone gas responses
with and without silicone oil. The volume of the portable gas chamber is 9.8 mL. A valve and pump
system are used to reduce the detection time of the portable gas sensor to approximately 1 min
for real-time applications in exhaled-breath analysis for liver malfunction applications. Here, three
electromagnetic valves and one pump are used, and they are named as Valve1, Valve2, Valve3,
and Pump1, respectively. In this system, a three-way T-connector tube is used. Inlet port 1 of the
T-connector tube is connected to the gas mixing unit, port 2 of the connector is connected to the inlet
of Valve1, and the outlet of Valve1 is connected to the inlet of the portable gas chamber unit. In the
same way, port 3 of the connector is connected to the inlet of Valve3, and the outlet of Valve3 is open
as a bypass to release the gas. The inlet of Valve2 is connected to the exhaust port of the portable gas
chamber unit, and the outlet of Valve2 is connected to the inlet of Pump1 to improve the response
and recovery times, as shown in Figure 6a. The valve and pump system operation is controlled by an
RS-232 circuit board. To measure the selectivity of the ultrathin InN portable gas sensor for measuring
sub-ppm ammonia gas over acetone gas, 10 cc silicone oil is used in the impinger tube as an external
filter to filter out the undesired acetone gas. Therefore, the gas mixing unit is connected to the impinger
tube through the three-way T-connector tube with the three valve and pump system. Inlet port 1 of
the T-connector tube is connected to the gas mixing unit, port 2 of the connector is connected to the
inlet of the impinger tube, the outlet of the impinger tube is connected to the inlet of Valve1, and the
outlet of Valve1 is connected to the inlet of the portable gas chamber unit. In the same way, port 3 of
the T-connector tube is connected to the inlet of Valve3, and the outlet of Valve3 is open as a bypass to
release the gas. The inlet of Valve2 is connected to the exhaust port of the portable gas chamber unit,
and the outlet of Valve2 is connected to the inlet of Pump1 to improve the response and recovery times,
as shown in Figure 6b.
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Figure 6. (a) Portable gas sensor system comprised three valves and pump system. (b) Portable
gas sensor system connected with gas supply unit through the impinger tube consists of the 10 cc
silicone oil.

4. Results and Discussion

The absorption of 0.7 ppm acetone and 0.4 ppm ammonia gas is measured through 10 cc silicone
oil in an impinger tube by using the (200 VOICE Ultra Syft) SIFT-MS system with a 10 ppb resolution
and a T201 chemiluminescence-based NH3 Analyzer with a detection limit of (1 ppb), respectively.
The absorption setup of acetone and ammonia gas is discussed in Sections 2.2 and 2.3, respectively.

The concentration of 0.7 ppm acetone gas in the 1-Liter bag1 is measured by SIFT-MS, also,
the absorption of 0.7 ppm acetone gas through 10 cc silicone oil is measured at different flow rate
by SIFT-MS. The absorption response of 0.7 ppm acetone gas is higher at a flow rate 10 cc/min
(Figure 7a) in comparison to the absorption at a flow rate 20 cc/min (Figure 7b). As the acetone gas
flow rate increases, the absorption of 0.7 ppm acetone gas into 10 cc silicone oil decreases. Furthermore,
the absorption of 0.7 ppm acetone gas in 15 cc silicone oil with a gas flow rate 10 cc/min is measured,
as shown in Figure 7c. When the amount of silicone oil increases, the absorption of acetone gas also
increases at a flow rate of 10 cc/min.



Sensors 2018, 18, 3887 9 of 17
Sensors 2018, 18, x  9 of 17 

 

  

  

Figure 7. (a) Absorption measurement of 0.7 ppm acetone in 10 cc silicone oil with gas flow rate  

10 cc/min (b) Absorption measurement of 0.7 ppm acetone in 10 cc silicone oil with gas flow rate  

20 cc/min (c) Absorption measurement of 0.7 ppm acetone in 15 cc silicone oil with gas flow rate  

10 cc/min. (d) Absorption of 0.7 ppm acetone gas in 10 cc and 15 cc silicone oil at the flow rate of  

10 cc/min, 20 cc/min and 50 cc/min. 

The responses of 0.4 ppm ammonia with and without 10 cc silicone oil are measured by using 

the T201 NH3 Analyzer as shown in Figure 8a. Approximately 6.13 to 16.42% ammonia gas is 

absorbed in 10 cc silicone oil at a flow rate of 500 cc/min, as shown in Figure 8b. As the flow rate of 

0.4 ppm ammonia gas through 10 cc silicone oil is decreased to 20 cc/min and 10 cc/min as shown in 

Figure 8c, its absorption increases to 18.4% and 21.11%, respectively, as shown in Figure 8d. This 

result reflects a negligible amount of ammonia absorption in 10 cc silicone oil as compared to acetone 

gas. 

 

Figure 8. Cont. 

Figure 7. (a) Absorption measurement of 0.7 ppm acetone in 10 cc silicone oil with gas flow rate
10 cc/min (b) Absorption measurement of 0.7 ppm acetone in 10 cc silicone oil with gas flow rate
20 cc/min (c) Absorption measurement of 0.7 ppm acetone in 15 cc silicone oil with gas flow rate
10 cc/min. (d) Absorption of 0.7 ppm acetone gas in 10 cc and 15 cc silicone oil at the flow rate of
10 cc/min, 20 cc/min and 50 cc/min.

The maximum absorption of acetone gas reaches approximately 88% in 15 cc silicone oil and 80%
in 10 cc silicone oil at a gas flow rate 10 cc/min, respectively. The absorption of acetone gas is reduced
to 75% and 40% at gas flow rate of 20 cc/min and 50 cc/min, respectively, as shown in Figure 7d.

The responses of 0.4 ppm ammonia with and without 10 cc silicone oil are measured by using the
T201 NH3 Analyzer as shown in Figure 8a. Approximately 6.13 to 16.42% ammonia gas is absorbed
in 10 cc silicone oil at a flow rate of 500 cc/min, as shown in Figure 8b. As the flow rate of 0.4 ppm
ammonia gas through 10 cc silicone oil is decreased to 20 cc/min and 10 cc/min as shown in Figure 8c,
its absorption increases to 18.4% and 21.11%, respectively, as shown in Figure 8d. This result reflects a
negligible amount of ammonia absorption in 10 cc silicone oil as compared to acetone gas.
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Figure 8. (a) Concentration of ammonia detected in 10 cc silicone oil and without silicone oil at
500 cc/min (b) Absorption of ammonia gas in 10 cc silicone oil at 500 cc/min. (c) The concentration
of ammonia detected with 10 cc silicone oil and without silicone oil at 10 cc/min and 20 cc/min
(d) Absorption of ammonia gas in 10 cc silicone oil at 10 cc/min and at 20 cc/min.

To measure the current response on the Pt-coating on top of InN gas sensor, the valve and pump
system is used for improving the detection time. The detailed operation of the valve and pump system
is discussed in Section 3.3. When sub-ppm ammonia gas concentrations, such as 0.2 ppm and 5 ppm,
are exposed on the Pt coating on top of the ultrathin InN epilayer at 200 ◦C with a gas flow rate of
500 sccm as shown in Figure 9a. The current variation response for the 0.2 ppm and 5 ppm ammonia is
0.8% and 1.3%, respectively, with a detection time of 1 min, as shown in Figure 9b.
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To enhance the selectivity of the ultrathin InN gas sensor, nonpolar silicone oil is used as an
absorbent to absorb interfering acetone gas, consequently enhancing the signal-to-noise ratio of the
target ammonia gas. Furthermore, 0.7 ppm ammonia gas and 0.7 ppm acetone gas are used to measure
the variation in the current response on the ultrathin InN gas sensor with and without 10 cc silicone
oil. The portable gas chamber system is used to expose 0.7 ppm ammonia gas and 0.7 ppm acetone
gas on the ultrathin InN epilayer as shown in Figure 6a. In addition, 0.7 ppm ammonia gas and
0.7 ppm acetone gas flow through the impinger tube containing 10 cc silicone oil on the ultrathin InN
epilayer via the portable gas chamber system as shown in Figure 6b. The current responses for 0.7 ppm
ammonia without and with silicone oil are shown in Figure 10a,b, respectively, while the current
responses for 0.7 ppm acetone without and with silicone oil are shown in Figure 10c,d, respectively.

The current variation response of 0.7 ppm ammonia gas with 10 cc silicone oil
(

∆I
Io

% = 17.5
)

and

without silicone oil
(

∆I
Io

% = 22.5
)

, and the current variation response of 0.7 ppm acetone gas with 10 cc

silicone oil
(

∆I
Io

% = 4
)

and without silicone oil
(

∆I
Io

% = 14
)

are shown in Figure 11a,b, respectively.
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Figure 10. (a) The current response of 0.7 ppm ammonia gas. (b) The current response of 0.7 ppm
ammonia gas with 10 cc silicone oil. (c) The current response of 0.7 ppm acetone gas. (d) The current
response of 0.7 ppm acetone gas with 10 cc silicone oil.
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Therefore, the current variation response for 0.7 ppm ammonia gas in 10 cc silicone oil is 4.3-fold
higher than the current variation response for 0.7 ppm acetone at 200 ◦C as shown in Figure 12.
In addition, the current variation for the 0.7 ppm ammonia without silicone oil is only 1.6-fold higher
than the current variation response for the 0.7 ppm acetone on the InN gas sensor.
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5. Detection Limit of Portable System

The detection limit of potable gas sensor system for ammonia and acetone gas with the external
filter of silicone oil in Table 3.

Table 3. Detection limit of portable gas sensor system with external filter of silicone oil.

Parameter Before Absorption After Absorption Silicone Oil Flow Rate

Detection limit NH3 0.2 ppm 0.242 ppm 10 cc 10 cc/min
Detection limit of Acetone 0.2 ppm 0.36 ppm 10 cc 10 cc/min

6. Conclusions

Silicone oil is an effective absorbent for improving the selectivity of ultrathin InN gas sensors
to detect ammonia gas for liver malfunction applications. In an exhaled breath, ammonia gas is a
biomarker for liver malfunction, and the major interfering gas is acetone gas. When acetone and
ammonia gas are passed through silicone oil, the absorption of 0.7 ppm acetone gas is 6.66-fold higher
than the absorption of 0.4 ppm ammonia gas at a flow rate of 10 cc/min, because acetone is nonpolar,
whereas ammonia is polar. After measuring the absorption through the silicone oil, a chip test was
performed for 0.7 ppm acetone gas and 0.7 ppm ammonia gas through 10 cc silicone oil at a gas
flow rate of 500 sccm on the ultrathin InN gas sensor at 200 ◦C. The current variation response for
0.7 ppm ammonia gas in 10 cc silicone oil is 4.3-fold higher than the current variation response for
0.7 ppm acetone. The lower detection limit of the portable InN gas sensor system with external filter
of silicone oil for ammonia and acetone gas is as low as 0.242 ppm and 0.36 ppm respectively with a
detection time of 1 min at 200 ◦C, which allows the system to be used for the noninvasive and selective
detection of sub-ppm ammonia gas in exhaled-breath VOCs for medical applications in diagnosing
liver malfunction.
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Figure S1: Acetone gas sampling in 1-liter bag1 by using gas chamber system, Figure S2: (a) Sampling of 0.4 ppm
ammonia gas in 10-liter of Tedlar bag1 (b) N2 dilution system, Figure S3: (a) Fabrication process of heater
(b) Fabrication process of InN Epilayer.
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