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Abstract: Exosomes exhibit a wide range of biological properties and functions in the living organisms.
They are nanometric vehicles and used for delivering drugs, as they are biocompatible and minimally
immunogenic. Exosomal secretions derived from cancer cells contribute to metastasis, immortality,
angiogenesis, tissue invasion, stemness and chemo/radio-resistance. Exosome-derived microRNAs
(miRNAs) and long non-coding RNAs (lnc RNAs) are involved in the pathophysiology of cancers
and neurodegenerative diseases. For instance, exosomes derived from mesenchymal stromal cells,
astrocytes, macrophages, and acute myeloid leukemia (AML) cells are involved in the cancer
progression and stemness as they induce chemotherapeutic drug resistance in several cancer cells.
This review covered the recent research advances in understanding the role of exosomes in cancer
progression, metastasis, angiogenesis, stemness and drug resistance by illustrating the modulatory
effects of exosomal cargo (ex. miRNA, lncRNAs, etc.) on cell signaling pathways involved in cancer
progression and cancer stem cell growth and development. Recent reports have implicated exosomes
even in the treatment of several cancers. For instance, exosomes-loaded with novel anti-cancer drugs
such as phytochemicals, tumor-targeting proteins, anticancer peptides, nucleic acids are known to
interfere with drug resistance pathways in several cancer cell lines. In addition, this review depicted
the need to develop exosome-based novel diagnostic biomarkers for early detection of cancers and
neurodegenerative disease. Furthermore, the role of exosomes in stroke and oxidative stress-mediated
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neurodegenerative diseases including Alzheimer’s disease (AD), and Parkinson’s disease (PD) is also
discussed in this article.

Keywords: exosomes; cancers; miRNAs; lncRNAs; stemness; chemo-/radio-resistance; angiogenesis;
metastasis; neurodegeneration; phytochemicals

1. Introduction

Extracellular Vesicles

The research work on extracellular vesicles (EVs) is experiencing an unprecedented spurt in a
decade in the field of cancer and neurodegenerative diseases [1,2]. EVs are a heterogeneous population
of secreted submicron-size microparticles and the nanometer-size exosomes involved in cell-to-cell
communication. For instance, the delivery of cargo such as multi-drug resistance (MDR)-associated
proteins and miRNAs through exosomes to the bystander cancer cells induces drug resistance during
chemotherapy [1,3,4]. EVs based on their origin, size and mode of release are categorized into exosomes
(30–100 nm), microvesicles (50–1000 nm), and apoptotic bodies (50–5000 nm) [5].

Exosomes are tiny vesicles epitomized by the presence of a stable membranous covering, enclosing
several molecules that include immune components, hormones, sugars, steroids, RNAs, microRNAs,
lipids, and nucleic acid polymers, etc. [6–8]. Exosomes are generated from both normal and cancerous
cells inside the tissues [1]. The exosomal constituents vary significantly depending on the specific
traits of parent cells from which they are originated [9]. In addition, the content of an exosome is an
indicative of metabolic status of their originating cells, and, hence, can be considered as a fingerprint
of the originating cells. Furthermore, the significance of exosomes can lay a pavement for cancer
biologists and neurobiologists to efficiently understand underlying complexities in cancers [1] and
detrimental oxidative-stress related neurodegenerative disorders [2].

Exosomes are reported to be involved in mediating the uncontrolled proliferation of cancer cells,
invasion, metastasis, chemoresistance, stemness [10,11], tumor aggressiveness [12], and exhibit an
impact in modulating the tumor microenvironment [13]. Composition of exosomes secreted from
cancer cells denotes the state of tumor as well as tumor microenvironment [14]. The versatility, stability,
and ubiquitous nature of exosomes make them ideal carriers of cargo [7]. Hence, exosomes can
be efficiently explored for developing novel therapeutic interventions against cancer and oxidative
stress-related neurodegenerative diseases [7,15]. The inner cargo of exosomes confer several cellular
and physiological functions as these components are involved in cell signaling to regulate phenotypic
alterations through the reprogramming of genes, metabolic processes, and cell signaling pathways in
recipient cells [16,17].

Exosomes production inside the cells occurs through exosome biogenesis; however, the content
sorting into exosomes is predominantly regulated by cellular and molecular mechanisms [7].
The generation of exosomes is a complex process, which involves the invagination of endosomal
membrane into early endosomes followed by the formation of multivesicular bodies (MVBs)
(Figure 1) [18]. Exosomes are developed, in general, from pre-exosomes that contain DNA, RNA,
and proteins [7]. Pre-exosomes undergo specific sorting mechanisms including segregation of different
cargo to form a mature exosome [7]. The specific sorting of cargo into the exosomes is significantly
controlled by several cell signaling mechanisms viz., endosomal sorting complexes required for
transport (ESCRT-0, -I, -II, and -III), tetraspanins, [19,20], light-dependent signaling, etc. [21,22].
Content sorting into exosomes is also regulated by the zipcode of 3′-UTR in exosomal mRNAs [21].
Specific GGAG motifs foster the explicit sorting of miRNA cargo into exosomes by interacting with
specific chaperone proteins [23].
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Several cellular model systems are reported to be involved in regulating transportation of
MVBs to the plasma membrane [24–27]. For instance, the docking of MVBs to the plasma membrane
and secretions of exosomes into outer-cellular milieu could be predominantly influenced by the
activity of Rab-GTPases, neutral sphyngomyelinase-2, and SNARE complexes [13,18,28–30]. Thus,
the selectivity of cargo into exosomes and their modulation could be used to develop exosome-based
targeted therapeutics.
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Figure 1. Schematic representation of cancer cell exosomes generation with cargo mediated through
endosomal sorting complexes: The exosome-enriched miRNAs confer the chemoresistance (stemness)
within the tumor microenvironment in multiple cancers viz., gastric cancer, epithelial ovarian cancer,
pancreatic carcinoma, and lung carcinomas.

Moreover, the uptake of exosomes by recipient cells elicits specific exosomal functions for cell-to-cell
communication [7,8]. The process of exosomal uptake is initiated by the activity of specific recipient
cell surface receptors [31,32]; where the exosomes undergo internalization either by endocytosis or
by direct fusion, followed by releasing its internal cargo into the recipient cell. A recent study [33]
described the blockade of exosomal uptake by the recipient cells if the cancer cells are subjected to
proteinase-K treatment [33]. Hence, the development of novel therapeutic interventions to target this
binding process between exosomes and recipient cells could be a promising approach against cancer.

Exosomes are involved in immune regulation in newborns since they can be found in human
breast milk [7,15]. In addition, exosomes confer intestinal epithelial growth and prevent the incidence
of necrotizing enterocolitis [34–37]. Exosomes are involved in maintaining the functional aspects of
male/female reproductive urogenital tracts and simultaneously maintain placental and fetal health to
enhance the healthy pregnancy [38]. Breast milk exosomes foster the efficient passage of microRNAs
from mother to infant and actuate immunogenic health [38]. Tolerising exosomes, also referred
to as “tolerosomes”, which are present in human breast milk, are reported to suppress allergic
responses [16,39–42]. Biomolecular profiling of exosomes enabled the development of “Exocarta”,
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the largest exosome content database [http://www.exocarta.org], which describes the total number
of proteins (41,860), lipids (1116), RNAs including miRNAs, noncoding RNAs (7540) identified in
exosomes of several multicellular organisms [43–51]. Specifically, EV-linked short noncoding RNAs,
miRNAs, and lncRNAs isolated from either blood or urine of cancer patients may be considered as
early diagnostic and prognostic markers for specific cancer types. For instance, miR-21 is referred as
one of the significant serum or plasma cancer diagnostic markers for various cancers [52]. EV-ncRNAs
may serve as bonafide signatures for tumor recurrence and overall survival, as these signatures
have significant prognostic implications against chemotherapy, and radiotherapy against multiple
cancers [52].

Exosome secretions from cellular sources offer potential therapeutic tools against both cancers
and neurodegenerative diseases, as they exhibit transport capacity of therapeutic entities against
brain tumors, and neurodegenerative diseases. Furthermore, exosomes can facilitate the delivery of
phytochemicals and other drugs to even cross the blood brain barrier [53]. Unique and sequestered cargos
in exosomes represent the physiological health or pathophysiological state of originating cell source
in cancers (for ex. stemness), and neurodegenerative diseases. The targeted delivery of therapeutic
proteins loaded into EVs in preclinical models proved their efficacy against neurodegenerative diseases
(Parkinson’s disease), Schwannomas, and gliomas [53]. For instance, packaging of suitable mRNA into
EVs to code prodrug activating enzymes (i.e., suicide proteins) could induce Schwannomas regression.
Suicide gene is composed of cDNA coding for two enzymes viz., cytosine deaminase (CD) and uracil
phosphoribosyltransferase (UPRT) to mediate the conversion of prodrug of 5-fluorocytosine (5-FC) in
a synergistic manner into 5-FU, subsequently into 5-fluoro-deoxyuridine monophosphate (5-FdUMP),
which ultimately released across the tumor microenvironment [53–55]. https://www.ncbi.nlm.nih.gov/

pmc/articles/PMC4860146/---R48 This active chemotherapeutic molecule can block DNA synthesis
and initiate cell death. Therefore, therapeutic modalities similar to this can be designed using EVs to
mitigate the activity of factors causing neuropathology in gliomas, and neurodegenerative diseases.

In addition, exosomes are known to play a significant role in aiding novel biosensing systems to
ascertain the targeted delivery of therapeutic entities across the tumor microenvironment, and affected
brain regions during neurodegeneration. EV-enriched with survivin has been implicated in situ
applications as a novel biosensing system to equip/evaluate nanocarriers of controlled drug delivery
systems against chemoresistant cancers. Hence, the analysis of survivin biomarkers in exosomes
and tumor cells can be used as non-invasive liquid biopsy [56]. The present review is a promising
platform for developing diagnostic and prognostic biomarkers for early detection of cancer and
neurodegeneration based on the cargo inside the EVs. Moreover, this review also provides an overview
of repurposing EVs as carriers of therapeutics to target various chemoresistant cancers including
brain tumors, and neurodegenerative diseases. Furthermore, the global profiling of EV-RNAs against
cancer mutations, stemness, disease prognosis, tumor recurrence and overall survival is a significant
strategy to predict cancer specific signatures and offer a platform to develop novel RNA-based EVs as
disease biomarkers.

2. Exosomes and Stemness

Exosomes are characterized by the presence of specific receptors distributed in the outer lipid
layer [16,57–59]. Exosomes are composed of cellular cargo inside and are usually differentiated
by size and specific surface markers viz., “TSG101, Alix, Flotillin-1 CD63, and CD9” [23,60–63].
Exosomes stimulate a variety of target cells by releasing their inner cargo [64,65]. Several reports have
demonstrated that extracellular vesicles and exosomes play a significant role in cancer progression,
and tumorigenesis [66–68]. For instance, the exosomes generated from mesenchymal stromal
cells (MSCs) or fibroblasts impart cancer cells to acquire uncontrolled proliferative ability and
chemoresistance as observed in multiple myeloma, colon cancer, and gastric cancers. These exosomes
deliver several microRNAs and soluble factors into adjacent tumor cells [11,69–72]. EV-linked lncRNAs
can foster differential patterns of epigenetic regulation, cellular reprogramming, and genomic

http://www.exocarta.org
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instability in recipient cells, which are ultimately conducive to the cancer initiating signatures,
and chemo-/radio-resistance [52].

Astrocyte-derived exosomes are involved in the transfer of miR-17~92 clusters in order to
block the activity of PTEN genes in brain tumors [72]. In addition, the malignant cancer cells could
generate a vast amount of exosomes to mediate uncontrolled proliferation of endothelial cells and
angiogenesis, which further fosters tumor progression through metastasis [73,74]. Exosomes released
from the cancer cells mediate immunosuppression by modulating the activity of TAMs in the tumor
microenvironment; which further promotes tumor survival, growth, and chemoresistance as this
exosomal cargo could foster the chemoresistance signaling in cancer cell [74–77]. AML cell-derived
exosomes can release miR-155 into the human “normal hematopoietic stem and progenitor cells
(HSPCs)” consequently blocking the expression of c-Myb, alleviating hematopoiesis and provoking
leukemia cell proliferation [78]. Exosomes not only contribute to the development of cancerous cells
from normal epithelial cells, but also to invade extracellular matrix and distal metastasis [79–81].
The protein content of exosome-derived cargo in the tumor cells has a significant influence on the
organotropism and non-random patterns of metastasis [69]. Exosomes are reported to be involved in
conferring epithelial-to-mesenchymal transition (EMT) in benign/malignant breast cancer via TGF-β2
upregulation [82]. A recent report by Qadir et al. (2018) showed the transcriptome reprogramming
of exosomes in HNOK oral cancer cell lines [83]. The cancer-derived exosomes could modulate
(a) the matrix remodelling factors MMP-9, EFEMP1, DKK3, SPARC; (b) cytoskeletal proteins viz.,
“TUBB6, FEZ1, CCT6A”, (c) deubiquitin factors, (d) membrane trafficking factors, (e) apoptosis,
(f) cell cycle, and (g) transcription/translation factors that contribute to the angiogenesis, metastasis,
and immune evasion in cancers [83]. Exosome-mediated transcriptome reprogramming requires
extensive preclinical and clinical evaluation to develop novel liquid-biopsy based diagnostics and
immunotherapies against chemoresistant cancers. However, it is imperative to know whether cancer
cells exploit exosomes in modulating these factors that are responsible for chemoresistance using
transcriptome reprogramming [83].

Radiation therapy (RT) is one of the frequently used options for treating tumors, especially
against breast cancers. RT involves irradiation of high-energy rays to inhibit tumor cell growth.
The radiated tumor cells secrete exosomal cargo to mediate cell-to-cell communication during
radiation therapy, and consequently acquire therapeutic resistance to IR irradiation [84]. In addition,
the exosomes from stressed and radiated cells could modify adjacent cell function and enhance
the bystander effect, i.e., stemness on the adjacent cells to become more radioresistant and
foster tumor aggressiveness [4,85]. For instance, the irradiation of MCF-7 cells in vitro with
X-rays significantly conferred exosome biogenesis and radioresistance in a dose-dependent
manner [84]. The exosomes-mediated chemo-/radio-resistance have been extensively discussed in the
following sections.

3. Exosomes and Neurodegeneration

Exosome secretions can be observed in neurons, astrocytes, oligodendrocytes, microglia, and neural
stem cells, and is reported to play a vital role in several neurological diseases [86,87]. Exosomes are
involved in health and diseases, since they play a prominent role in several cellular functions
including immune modulation, cell-to-cell signaling, stem cell proliferation (in particular during
chemoresistant gliomas), neuronal function, and viral replication [88,89]. Exosome biochemistry
has a significant influence on the neurodegeneration while disease-derived exosomes propagate
to healthy cells including neuronal cells simultaneously infecting both distant and neighbouring
cells [90]. Bellingham et al. (2015) have described the involvement of exosomes in metal homeostasis
including neurodegeneration [2]. Moreover, exosomes can be used as vehicles for the nanodrug
delivery to deliver drug molecules across the blood-brain barrier (BBB) against neurodegenerative
diseases [91]. A recent review by Tarasov et al. (2019) described the efficiency of exosomes for the
selective nanodrug delivery of drug molecules/gene-therapeutics/immunotherapeutics across BBB [20].
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However, the drawbacks of using exosomes for nanodrug delivery to promote effective neuronal
delivery for treating neurodegneration include (a) difficulties associated with isolation and purification;
(b) limited quantity; (c) and expensive, especially if intended to test in vivo models.

4. Role of Exosomes in the Invasion and Metastasis

Invasion and metastasis are progressive pathogenic features of cancers [92]. The biological and
genetic changes of dividing cancer cells are transferred to the exosomes after several proliferation
cycles, finally leading to the sharing of biological characteristics among cancer cells [92]. Metastasis is
a process of cancer cell invasion via blood/lymph flow and undergoes colonization in distant organs
to develop tumor growth. Several cell-signaling events inside the tumor microenvironment induce
invasion and metastasis. Tumor exosomes are involved in influencing several cell-signaling cascades
responsible for both invasion and metastasis of cancer cells. For instance, exosomes are considered
to be significant signal transfer vehicles and vectors for carrying genetic information, concluding
that targeting exosomes can be an effective approach against cancers. A report by Al-Nedawi et al.
(2008) has described the ability of exosomes for intercellular transfer of the mutated-oncogenic EGFR
VIII from glioma cells [93]. One more report elucidated the exosomal transport of mutant oncogenic
DKO-1 (mutant KRAS), and wild type DKs-8 (KRAS allele) sequentially enhanced the invasion,
metastasis, and growth of colon tumors in a three-dimensional manner as mutant KRAS colon cells
composed of several tumor-promoting proteins, viz., KRAS, EGFR, SRC, and integrins [94,95]. Small
GTPases RAB27A/B and SMPD3/NSMASE2 are the proteins which can regulate the formation of MVBs
into exosomes and exosomal miRNA secretion [96]. Rab27a/b or nSMase2 involved in the cancer
cell metastasis via miRNA-mediated exosomal pathways [28,96]. Hence, the strategies to block the
exosomal release of miRNAs by the knockdown of Rab27a/b or nSMase2 genes could inhibit cancer cell
metastasis and tumor invasion [14]. In addition, the exosomes are transferred from malignant cancer
cells to benign and less aggressive tumor cells and aid in uncontrolled proliferation, invasion and
metastasis [97]. The miR-200-containing exosomes significantly aid in breast cancer cell metastasis and
mediate colonization at distant sites [98]. It was reported that the uptake of the extracellular vesicles as
exosomes could be attributed to the transfer of metastatic ability in breast cancer cells [98].

A plethora of research reports describe the role of TAMs in the tumor microenvironment to
promote the cancer cell invasion and metastasis via exosome-dependent pathways. For instance,
TAMs can release the exosomes loaded with functional ApoE (Apolipoprotein E) to the cancer cells
in tumor microenvironment and enhance the metastatic spread of gastric cancer cells [99]. Another
report by Jingqin Lan et al. (2019), described the role of TAMs-derived miRNA-loaded exosomes
in modulating metastasis and invasion of CRC cells [92]. Exosomes containing several miroRNAs
could modulate the polarization of TAMs into M2 phenotype, which further enhance the uncontrolled
proliferation, invasion, and metastasis of ovarian cancer cells [100–103]. Thus, exosomes, TAMs,
and tumor microenvironments have a significant close relation in mediating invasion and metastasis.
Cancer cells also have the ability in modulating microenvironment of the distant organs using exosome
signaling pathways to facilitate metastasis [104]. Nanovesicles could influence the T cell immune
functions and skew the innate immune cells to polarize towards the protumorigenic phenotype [105].
These functions contribute to the delivery of molecular signals for promoting neovascularization and
metastasis through exosomes [105].

Exosomes loaded with integrins can play a significant role in the organotropic metastasis
of cancer cells to specific distant target organs [76]. Exosomes involved in modulating the
microenvironment of recipient cells via Src phosphorylation enhances the expression of S100 to
promote metastasis [72,106,107]. Astrocytoma metastasis is mediated by the exosomal miRNA as it
could promote microenvironment-induced loss of PTEN expression in brain tissues [72]. A plethora of
scientific evidence elucidated the tumor cell-derived exosomes in influencing “stromal cells, VECs,
and fibroblasts’ to aid uncontrolled tumor growth. For instance, a few reports by Annette Becker et al.
(2016) described the role of exosomes in enhancing metastasis of cancer by modulating vascular



Int. J. Mol. Sci. 2020, 21, 6818 7 of 32

permeability [108]. Exosomes loaded with miR-105 derived from metastatic breast cancer cells could
impair the endotheliocyte expression of ZO-1 protein consequently resulted in the enhanced sensitivity
to cancer [109]. This kind of exosomal activity can be observed even in hepatic metastasis of breast
cancer [109,110]. PDAC-derived exosomes are characterized by the higher expression of MIF to promote
suitable microenvironment formation by modulating to TGF-β and fibronectin levels for enhancing
the metastasis and growth of premetastatic niche [111,112]. Tumor-derived exosomes (TDEs) regulate
lymph node metastasis and melanoma tumor growth. In addition, TDEs also release Rab3D, TGF-β1,
and LMP1 factors to enhance EMT and consequently promote the invasion of tumor cells [113–115].

5. Exosomes and Cancer Stem Cells (CSCs) in Invasion and Metastasis

Stem cell-derived exosomes (SDEs) play a significant role in the progression of cancer through
invasion and metastasis. SDEs can aid paracrine action via exchange of genetic components, thereby
playing a significant role in tumor cell metastasis [116,117]. CSCs-derived exosomes are characterized
by the presence of immunogenic function due to Rab GTPases, several signal transduction components,
and annexins, whereas the MSCs-derived exosomes are characterized by their non-immunogenic
nature [118]. However, both stem cell-derived exosomes could influence the induction of tumor
pre-metastatic niche, tumor metastasis, and tumor growth. Several other scientific evidences also
described the significance of MSCs in conferring stem cell signatures and EMT to augment the cancer
cell survival [119]. A scientific report by Wang M, Zhao C et al. (2014) elucidated the role of MSC-derived
exosomes by demonstrating that they could deliver miR-221 to “metastatic lymph node of GC cell
line” HGC-27 and confer an uncontrolled proliferation property followed by the metastasis in gastric
cancers [120]. In the case of MCF-7 breast cancer cells, the MSC-derived exosomes foster the modulation
of Wnt-signaling to confer metastasis and continuous cancer cell division [121]. miRNA-140 has a vital
role in regulating tumor growth and metastasis [122]. Downregulation of miRNA-140 levels confer a
substantial rise in CSCs and metastasis of breast cancer cells via blockade of the tumor suppressive
pathways [122]. On the contrary, the exosomes released from ductal carcinoma in situ (DCIS) were
composed of lower levels of miRNA-140 than the whole DCIS cell population, which consequently
resulted in the tumor metastasis [122]. Other DCIS exosomal-miRNAs, viz. miRNA-29a and miRNA-21,
could mediate the metastasis of cancers [123].

Several reports elucidated the efficacy of exosomes in inducing metabolic reprogramming via
the restoration of cancer cell respiration [112]. In the case of lung cancer, the exosomes are reported
to promote EMT followed by the metastasis and invasion to colonize distant organs [124]. Another
report by Ono M, Kosaka N et al. (2014) described the role of exo-miR derived from bone marrow
(BM)-MSCs for inducing dormancy in metastatic breast cancer cell niche by impairing the MARCKS
gene [125]. MSC-derived exo-miR-143 could mitigate the metastasis of osteosarcoma cells, and all
these reports conclude that this area of research could be a promising approach to target the cancer
stem cells involved in metastasis [126,127]. Yuanyuan Che et al. (2019) have recently reported the role
of exo-miR-143 derived from human BM-derived MSCs in mediating prostate cancer invasion and
metastasis by modulating TFF3 [128]. Another report by Dong-Mei Wu et al. (2019) elucidated the role
of exo-miR-126-3p derived from BM-MSCs in developing pancreatic carcinoma via the modulation of
“disintegrin and a metalloproteinase-9 (ADAM9)” [129].

Exosomes derived from MSCs express “CD63, CD9 and CD81” to elicit TRAIL-mediated
apoptosis in cancer cells in a dose-dependent fashion without cytotoxicity to human bronchial
epithelial cells [130,131]. Another report by Lou G et al. (2015) showed that “exo-miR-122 from
adipose tissue-derived MSCs” can confer HCC cell sensitization to sorafenib by modulating gene
expression [132]. Exosomal siRNA derived from MSCs acts against the sorafenib-resistant CSCs of
HCC by impairing GRP78 [133]. Exo-miRNA-119a derived from MSCs could impair the invasion
and metastasis of glioma cells by reducing the expression of ankyrin repeat and PH domain 2 [134].
A report by Lang FM et al. (2018) demonstrated the natural ability of MSCs in producing exosomes
with miRNA-124a to act against glioma stem cell lines [135]. MSCs can also generate the miR-16-5p
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loaded in exosomes to impair the proliferation, invasion, and metastasis of colon cancer cells [136].
MSCs derived exo-miR-101-3p could inhibit the proliferation, invasion, and migration of oral cancer
cells by targeting the collagen type-Xα1 chain [137].

6. Exosomes and Cancer Cell Survival

Cancer cells generate copious levels of exosomes; the Munc13-4 is a Ca2+-dependent regulator
of Rab-dependent signaling, which confers increased CD63+, CD9+, and ALIX+ exosomal release in
cancer cells, which enhances their survival [138]. Exosomes derived from cancer cells are characterized
by the expression of RTKs, EGFR, and HER-2. Knockout of EGFR or/and HER-1 can impair the
exosomes-mediated MAPK cell survival signaling in “tumor-associated monocytes” as they promote
cancer cell survival [139]. The results of this study demonstrated that cancer cell-derived exosomes
activate MAPK signaling in tumor-associated monocytes via the transport of active RTKs to block
the activities of caspases [139]. Hence, targeting cancer cell-derived exosomes is a novel strategy to
develop novel anticancer therapeutic interventions for blocking cancer cell survival.

7. Exosomes in the Process of Angiogenesis

Exosomes derived from malignant mesothelioma possess oncogenic cargo and are reported to be
involved in angiogenesis of cancer cells by enhancing the blood vessel regeneration, movement of
VECs and fibroblasts [140]. A report by Cui H et al. (2015) has described the role of exosomes derived
from lung adenocarcinoma to mediate angiogenesis by modulating the expression of Ephrin α3 via
miR-210-dependent fashion [141]. The authors of this study demonstrated that overexpression of TIMP-1
in tumor cells enhanced the accumulation of exo-miR-210 in a “CD63/PI3K/AKT/HIF-1-dependent
signaling” and aid in the tube formation ability in HUVECs, which consequently augmented
neovascularization in “A549L-derived tumor xenografts” [141]. Exosomes are composed of angiogenic
factors for efficient vascular endothelial migration, proliferation, and formation of basement membranes,
which promotes the synthesis of neovascularization networks towards tumor cells during nutrient
and oxygen deprivation. For instance, MSC-derived exosomes enhance angiogenesis towards tumor
cells by promoting the activation of ERK1/2 and p38-MAP Kinase signaling [142]. Prior reports have
demonstrated the extensive activity of HIF-1α during hypoxia to release high exo-miR-210 from
metastatic cancer cells for angiogenesis [28,143,144].

Another report by Salomon C et al. (2013) reported the role of exosomes derived from placental
MSCs in vasculogenesis and angiogenesis based on the oxygen tension [144]. Tatiana Lopatina et al.
(2014) described the role of EVs derived from adipose mesenchymal stem cells (AD-MSCs)
in angiogenesis. PDGF is another factor which could enhance the release of EVs to mediate
angiogenesis [145]. Exosomes derived from “MSC marker CD105-positive cells” of human renal carcinoma
can aid angiogenesis by stimulating endothelial growth and vascular networks, and foster the formation
of premetastatic niche [117]. This was confirmed by the in vivo implantation of CD105-positive cancer
stem cells into SCID mice [117]. However, certain conflicting reports raised queries pertaining to the
role and mechanism of exosomes in angiogenesis. For instance, a study reported that the exosomes
derived from MSCs could impair angiogenesis by downregulating VEGF expression in breast cancer
cells [146,147]. In addition, the MSC-derived “exo-miR-16” was reported to mitigate VEGF expression
in 4T1 cells and modulate angiogenesis [148–150]. Hence, the prospective anti-cancer therapeutic
modalities should focus on targeting the above exosomal signaling to mitigate angiogenesis.

8. Exosomes and Radio- and Chemo-Resistance

8.1. Mesenchymal Stem Cells-Derived Exosomes and Chemoresistance

Development of drug resistance occurs when CSCs are exposed to the repeated administration
of drugs/radiation [133]. Since exosomes can carry small molecules such as siRNAs, miRNAs,
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lncRNAs, and genetic materials, they can be used as specific vehicles to target signaling pathways, viz.
“Wnt, Notch, Hippo, and Hedgehog”, responsible for CSCs signatures [151].

Exosomes derived from tumor microenvironment also modulate EMT, and chemoresistance [152,153].
Chemotherapy can elevate exosomal secretions in cancer cells, resulting in the transfer of
chemoresistance-related miRNA (miR-100, miR-222, miR-30a, miR-17) and mRNA to the adjacent cancer
cells to induce susceptibility to chemotherapy. On the other hand, the MSC-exosomes could also mediate
the drug efflux and transfer of chemoresistance property to neighboring cells through “MRP2, ATP7A,
and ATP7B” [3,154,155]. For instance, the exosomes derived from MSCs mediate the chemoresistance
in gastric cancer cells to 5-FU by enhancing the expression of multidrug resistant proteins, viz. MDR,
MRP, and LRP, as well as by activating CaM-Ks/Raf/MEK/ERK signaling [11]. The exosomes derived
from MSCs were shown to impair the sensitivity of BM2 cells to docetaxel [125]. MSC-exosomes loaded
with synthetic “anti-miR-9” can reverse the temozolomide-induced chemoresistance in GBM cells [125].
Another report by Lou, G et al. (2015) elucidated the efficacy of ADMSC-exosomes loaded with
miR-122 for inducing susceptibility of HCC cells to chemotherapeutic agents, 5-FU or sorafenib; this is
a novel approach to enhance the sensitivity of HCC cells to chemotherapy [132]. In a separate study,
it was reported that MSC-exosomes obtained from AML patient samples had high levels of “miR155
and miR375”, which could confer chemoresistance upon the repeated administration of cytarabine and
AC220 (an FLT3 inhibitor) [156,157]. Another report by Yu Zhou et al. (2019) demonstrated the role
of BM-MSC-derived exosomes in delivering gemcitabine and paclitaxel into chemoresistant PADC
cells [158]. Exosomes derived from gemcitabine (GEM)-resistant CSCs of pancreatic carcinoma enhance
the chemoresistant traits in GEM-sensitive pancreatic cells through the delivery of miR-210 [159]
(Table 1).

Table 1. List of exosomal miRNA enhancing the chemoresistance or stemness in cancers: Upward
arrow indicates “upregulation”; downward arrow indicates “downregulation”.

Exosomal miRNA Chemoresistant Cancer Chemotherapeutic Drug Expression Profile Target Pathways Ref.

miR-122 Hepatocellular
carcinoma 5-FU or sorafenib - - [132]

miR155 and miR375 Acute Myeloid
Leukemia Cytarabine - - [156,157]

miR-210 Pancreatic carcinoma Gemcitabine
and Paclitaxel
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8.2. Astrocyte-Derived Exosomes and Radioresistance

Astroctye-derived exosomes (ADEs) are the key exosomes involved in sending/receiving signal
communication inside the nervous system [165]. However, to date, there are no reports highlighting the
role of ADEs in mediating chemoresistance in brain cancer. Certain research reports described the role
of miRNA-26a in ADEs to regulate several neurological diseases, including gliomas, in tumor
microenvironments, by enhancing de novo tumor formation and radio-sensitivity through the
“suppressor of PTEN and ATM” [165–167]. ADEs with miR-19a can induce the downregulation
of cancer cell PTEN-expression consequently enhance the CCL2 secretion and myeloid cell recruitment
to facilitate metastasis of brain cancer cells [72]. Normal astrocytes inside the tumor microenvironment
can mediate tumor cell proliferation and growth by transferring exosomes containing alpha-crystallin
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B chain (CRYAB). The ADEs derived from astrocytoma cells could transfer CRYAB to promote the
chemoresistance of tumor cells [168].

8.3. Macrophage-Derived Exosomes and Chemoresistance

Tumor-derived exosomes are significantly involved in mediating chemoresistance of cancer
cells to several chemotherapeutic agents and enhance stem cell signatures by modulating several
cell signaling pathways and the expression of genes [169–171]. TAMs-derived miR-223 has a
significant role in the acquisition of drug resistance, since these exosomes possess a substantially
higher level of miR-223 [172,173]. A report by Xiaolan Zhu et al. (2019) elucidated the role of
TAMs-derived exosomes during hypoxia to promote chemoresistance of EOCs (epithelial ovarian
cancer cell) to chemotherapeutic agents by transferring miR-223. Mechanistically, hypoxic EOC cells
conferred the M2-polarization of macrophages and enhanced the expression of exo-miR-223 in TAMs,
which modulated the “PTEN/PI3K/AKT” proteins that are involved in the chemoresistance of EOC
cells [160–162]. The understanding of TAMs-derived exosomal responses to chemotherapy drugs is a
novel approach to develop chemoresistant CSCs. TAMs-derived exosomes foster cisplatin resistance in
gastric tumor cells by transferring miR-21 to regulate PTEN/PI3K/AKT cascade. Stromal cell derived
exo-miRNA-21 could be transferred to EOCs in omental tumor microenvironments and facilitate the
chemoresistance against chemotherapy [163] (Table 1).

8.4. Myeloid Leukemia Cell-Derived Exosomes and Chemoresistance

AML (acute myeloid leukemia)-derived exosomes foster the chemoresistance of AML cells to
cytarabine, as they secrete VEGF/VEGFR factors to promote glycolysis in human umbilical vein
endothelial cells (HUVECs) [174]. Several reports described the EV-mediated resistance transfer from
resistant AMLs to sensitive AMLs by miRNAs for modulating expression of apoptotic proteins [175–177].
AML-exosomes can actuate bone marrow stromal cells to secrete IL-8, that can further provoke AML
cells to acquire chemoresistance to etoposide [178–180]. EVs derived from promyelocytic leukemia
cells are reported to be involved in the transfer of chemoresistance properties from resistant strains to
sensitive strains due to the direct transfer of multidrug resistance protein 1 (MRP-1) and miRNAs [177].
The transfer of Exo-miR-365 derived from drug-resistant Chronic Myeloid Leukemia (CML) cells
to the CML-sensitive cells resulted in the acquisition of imatinib chemoresistance in sensitive cells
(Table 1) [181,182].

8.5. Cancer-Associated Fibroblast-Derived Exosomes and Chemoresistance

Cancer-associated fibroblasts (CAFs) play a vital role in inducing chemoresistance to tumor
cells [183]. For example, the chemoresistance is acquired upon repeated treatment of gemcitabine to
pancreatic cancer cells via pancreatic CAFs-derived exo-miR-146a and Snail [129,184,185]. In addition,
the transfer of “CAFs-derived exo-miR-21” to cancer cells via exosomes is reported to promote
chemoresistance, as these nucleic acids activate PI3K/AKT signaling and APAF-1 pathway [186,187].
CAFs can also promote the chemoresistance and expression of stem cell signatures in colorectal cancer
cells by enhancing the activity of CAFs-derived exosomal Wnts [188] (Table 1).

9. Exosomes and Chemoresistant-Cancer Therapeutics

Exosomes can carry information by delivering their components to the adjacent cells and
modulate the bio-functional reprogramming of neighboring cells [151]. Exosomes play a prominent
role in mediating intercellular communication to enhance chemoresistance in several tumors,
including glioblastoma [189], acute/chronic leukemia [190], lung cancer [191], breast cancer [192],
PDAC [193], EOC [187], and prostate cancer [194]. Exosomes confer chemoresistance and stemness by
delivering drug resistant MDR-1, P-gP [195], survivin [196], and UCTH-L1 (ubiquitin carboxyl terminal
hydrolase-L1) [192] to the neighboring cells [197].
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Chemoresistance induces cancer stemness through exosomal secretions like peptides, nucleic
acids, and other small molecules in several cancers and consequently makes the drug-sensitive cells
into CSCs [197]. The exosomes derived from CSCs further transfer their molecular components
to non-CSCs to maintain CSCs dynamic equilibrium within the tumor microenvironment [198].
In addition, various factors derived from MSC-exosomes enhance stemness to chemotherapy by
modulating several signaling pathways in cancer cells [11,199]. Hence, targeting exosomes might be
an effective approach to develop chemoresistant-cancer therapeutics against both CSCs and non-CSCs
to break this dynamic equilibrium [199]. Exosomes derived from prostate cancer cells can induce
fibroblast proliferation, angiogenesis, and tumor growth [200]. Exo-miR-155 derived from PDACs
can convert normal fibroblasts into CAFs [201]. A report by Donnarumma et al. (2017) described
the efficacy of exo-miRNAs (miR-21, miR-378e and miR-143) derived from CAFs for enhancing the
stemness signatures and EMT of breast cancer cells [198]. Another report by Boelens MC et al. (2014)
elucidated the role of stromal cell-derived exosomes to enhance the chemoresistance by activating
STAT-1 signaling and Notch-3 signaling in breast cancer cells [202]. In addition, the exosomes derived
from CRC-initiating cells can mediate the transfer of claudin-7 to neighboring cancer cells and further
enhance the invasion and metastasis [203]. Exosomal HIF-1α derived from nasopharyngeal cancer
cells can enhance the metastasis and invasion [204]. CLIC1 was highly expressed in exosomes derived
from CSCs to enhance the GBM cell division and growth [205].

The stemness of GBM cells is promoted by the exo-miR21 [204,206]. Exo-miR-200 derived
from breast cancer cells significantly enhances the stemness, EMT of adjacent cells [98]. Exo-miR-21
and Exo-miR-155 exert a significant role in the cross-talk between neuroblastoma cells and human
monocytes to actuate chemoresistance via “exo-miR-21/TLR8-NF-κB/exo-miR-155/TERF” signaling
cascade [207]. Exo-long non-coding RNA (lncRNA) derived from cancer cells involved in the cancer
cell proliferation, progression, and angiogenesis. Furthermore, the blockade of nSMase activity using
RNA interference methods could mitigate exosome production and prion delivery to reduce metastatic
colony formation. Knockdown of the underlying factors for ESCRT machinery is a beneficial strategy to
regulate exosomes biogenesis in cancer cells [208,209]. Furthermore, the exosomes encapsulated with
therapeutic molecules can effectively target chemoresistant CSCs by modulating the signaling pathways
responsible for stemness, viz., “Wnt, Notch, Hippo, Hedgehog, NF-κB, and TGF-β pathways” [210–213].

Exosomes are efficient nanometric vehicles to carry small molecules as therapeutic interventions
against several diseases including cancers [20]. They have theranostic applications since they are
nonimmunogenic and possess robust nano-delivery capability and can be engineered to carry small
molecule therapeutics like nucleic acids, peptides, antibodies, and proteins against CSCs, and multiple
diseases [7,20]. For instance, tumor antigens, apoptosis-promoting proteins [53,213], mutant proteins
related to apoptosis are transferred through exosomes as nanobodies into the cancer cells [214].
In addition, transferrins, immuno-proteosomes, and lactoferrins can be delivered as small molecule
therapeutics against several cancer cells [215–217]. Dendritic cells (DCs) are engineered to possess
the enhanced expression of fusion proteins like “αv integrin-specific iRGD peptide and Lamp2b”.
Exosomes derived from these cells exhibit a higher surface expression of iRDG [217]. The engineered
DCs with the above exosomes conferred a significant chemotherapeutic drug delivery and produced
anti-breast cancer efficacy [217]. A report by Luketic et al. 2007 described the efficacy of exosomes
derived from peptide-pulsed DCs for enhancing the T-cell immune activity by presenting antigens [218].
Aspe et al. (2010) elucidated the role of exosomes loaded with survivin-T34A for promoting apoptosis
in PDACs and induce cancer cell susceptibility to gemcitabine [214,219].

Exosomes enriched with several miRNAs can modulate cancer cell/CSCs survival, invasion,
and metastasis; and the development of therapeutic molecules to intervene with these exosomes can
enhance the sensitivity of several cancer cells/CSCs to chemotherapeutic drugs [199,220]. Exosomes that
can deliver siRNAs to silence the genes in cancer cells have been explored by several research reports.
For instance, the exosomal delivery of siRNA blocked RAD51 consequently impaired breast cancer
cell proliferation [221]. Likewise, siRNA delivery through exosomes silences PLK-1 and mitigates
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proliferation of bladder cancer [222]. Similarly, siRNA transfer through exosomes could silence c-Myc
and promote pro-apoptotic protein activation in lymphoma cells [223].

10. Combination Strategies Testing Phytochemicals with Exosomes for the Treatment of Cancers

Several phytochemical therapeutic cargos can be loaded into exosomes for cancer therapy.
For example, the anticancer drug paclitaxel (PTX), which is derived from Taxus brevifolia and
exosomes-loaded PTX could inhibit drug-resistant CSCs with much higher efficacy (>50-fold)
compared to free drugs [224]. Exosomes-loaded PTX exert its efficacy in mitigating lung carcinoma by
declining pulmonary metastasis [224,225]. In addition, the “exosomes-encapsulated PTX” induces
cell death to autologous cancer cells. Interestingly, the exosomal PTX-pretreated donor cells could
produce PTX-encapsulated exosomes to enhance cytotoxicity [226]. Munagala et al. 2016 have
described the efficacy of “exosomes-encapsulated Withaferin A” to mitigate cancer cell proliferation
and angiogenesis in human lung cancers [227]. Celatrol is a triterpenoid isolated from plant,
Tripterygium wilfordii. “Exosomes-encapsulated celastrol” could mitigate the tumor cell progression in
human lung cancer xenograft models than free celastrol groups [228,229]. Curcumin, a widely used
anti-cancer and anti-inflammatory agent, has solubility limitations due to its hydrophobic nature [230].
“Exosomes-encapsulated curcumin” could easily incorporate curcumin to cross lipid layers of cancer
cell membrane to promote anti-tumor effect [230]. A report by Zhang HG et al. (2007) reported the
efficacy of “exosomes encapsulated with curcumin” in inducing the impairment of NK cells and
reversed the susceptibility of breast cancer cells to several chemotherapeutic drugs [231].

11. Dietary Exosomes and Cancers

Several reports have described the dietary molecules such as long-chain polyunsaturated fatty
acids (PUFAs), polyphenols, flavanoids, Nelumbo alkaloids, carotenoids, resveratrol, EGCG, vitamins,
folates, and curcumin as chemopreventive agents, as they could modulate several “exosomal-miRNAs”
involved in mediating several cancers [232–235]. Recent scientific evidence reported the efficacy of
dietary exosomes in mitigating cancer growth. For instance, the “grape exosome like nanobodies”
could mitigate DSS-induced colitis by inducing proliferation of intestinal stem cells [236]. In addition,
milk-derived exosomes can be significantly employed for loading the curcumin in order to augment
the transport of curcumin through the lipid bilayers of tumor cells [237]. However, there are reports
describing the progression of HCC upon the consumption of cow’s milk due to the presence of Exosomal
miR-21, which can effectively induce IL-6-mediated STAT-3-dependent miR-21 transcription [238,
239]. Milk derived exo-miR-155 can enhance STAT-3-dependent tumor growth [240]. A report by
Zhuang X et al. (2011) demonstrated the efficacy of “exo-cur” to attenuate brain inflammatory diseases,
and its efficacy was proven in an LPS-induced brain inflammation model, autoimmune encephalitis
models, and a GL26 brain tumor model when administered with the “exo-cur” intranasally [241].
This formulation induced the rapid delivery of curcumin into the brain and promoted the apoptosis of
microglial cells to mitigate inflammation [241].

12. Exosomes and Oxidative Stress-Mediated AD, PD, and Stroke

Oxidative stress can enhance the release of exosomes from multivesicular bodies (MVBs)
in several neurodegenerative and demyelinating diseases (multiple sclerosis) [242,243], cerebral
ischemia [244,245], and brain tumors [246]. A plethora of research reports elucidated that the oxidative
stress is associated with pathogenesis of neurodegenerative diseases, viz., AD, PD, etc. A significant
characteristic of AD is the continuous occurrence of chronic neuroinflammation, oxidative stress
followed by the production of Aβ plaques and neurofibrillary tangles [247–249]. These events actuate
the irreversible dysfunction of neurons. Furthermore, the oxidative stress could confer the enhanced
production of Aβ in AD through the high exosomal release of β- and γ-secretase as a result of the
substantial rise in amyloid precursor protein (APP) metabolism further leading to generation of
β-carboxyl-terminal fragments (CTFs) [250–252]. Exosomes also induce the aggregation of Aβ and
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plaque formation. A recent review by Zhi-You Cai et al. (2018) elucidated the role of oxidative stress in
enhancing both beta-amyloid pathogenesis and the hyperphosphorylation of tau proteins. In addition,
they reported the ability of exosomes in clearing beta-amyloid [242] (Figure 2). Hence, the therapeutic
modalities targeting exosomes could deliver promising clinical outcomes for AD.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 14 of 33 
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Exosomes-mediated pathophysiology of PD is accompanied by the accumulated toxic misfolded α-syn
in between dopaminergic neurons and foster apoptotic events. Exosomal cargo with different secreted
miRNAs is associated with ischemic stroke and could be used as a novel diagnostic and prognostic
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Miranda et al. (2018) described the impairment of autophagy and lysosomal activity with neuronal
Vps34 disruption, which simultaneously resulted in the release of unique exosomes with beta-amyloid,
APP, and β- and γ-secretases [253,254]. The propagation of oxidative stress-related AD also pertains to
the delivery of ubiquitin ligases, APP-CTFs, amyloid proteins, and secretases through exosomes derived
from damaged neurons [255–257]. Exosomes enriched with Alix, flotilin-1, hyperphosphorylated tau
extensively observed in the plaques obtained from AD patients; indicating that exosomes are considered
as the nucleation centers for Aβ formation [258,259]. Exosomes composed of PrPc could mediate the
beta-amyloid fibrillation followed by synaptotoxicity [260]. Furthermore, astrocyte-derived exosomes
of AD patients were composed of neurotoxic cargo, i.e., “β-secretase/γ-secretase” and “sAPPβ”, upto
20 times higher than neuron-derived exosomes [261]. MSC-derived exosomes encapsulating with
small molecule therapeutics can effectively target beta-amyloid, since AD-MSC-derived exosomal
neprilysin can degrade beta-amyloid [262].

Mitochondria-mediated oxidative stress has significant implications in the underlying mechanisms
of α-syn aggregation during PD [263,264]. In addition, the miRNAs in CSF-derived exosomes can
induce significant alterations in the KEGG pathway, as well as in dopaminergic and cholinergic
synapses in PD patients [265]. Exosomes deliver toxic misfolded α-syn in between dopaminergic
neurons and induce apoptosis, consequently causing PD pathogenesis. Exo-miR-137 derived from
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serum could affect oxidative stress inside the neurons through OXR1 during PD [266] (Figure 2).
However, there are certain reports where exosomes also possess neuroprotective effects in PD [267].

Exosomes exert significant implications during ischemic and hemorrhagic strokes (Figure 2).
For instance, the BM-MSC-derived exo-miRNA-138-5p fosters a neuroprotective effect to astrocytes
during ischemic stroke by modulating the role of LCN2 [268]. MSC-derived exosomes also promote
the recovery of neurogenesis and angiogenesis during stroke [269]. In addition, the miRNA-19
and miRNA-124 derived from exosomes are significant diagnostic markers of stroke, and could be
considered as direct alternatives to therapy [270]. Exosomes derived from ischemic astrocytes treated
with ‘semaphorin 3A Inhibitor’ potentially augment the stroke recovery by enhancing the axonal
outgrowth and the expression of prostaglandin D2 synthase [271]. Furthermore, the levels of exosomal
miR-223, miR-21-5p, miR-9, miR-124, miR-30-5p, and miR-134 are reported to exhibit a potential role
in stroke pathophysiology and post-stroke complications [272]. Hence, these exosomal cargos can be
implicated as diagnostic/prognostic markers in stroke pathophysiology [272].

13. Exosomes and Targeted Drug Delivery

Although exosomes contain DNA and RNAs to deliver into the target cells for genetic modifications
during biological/pathogenic processes, the exosomes can also be used as the delivery vehicles for
nucleic acids [273]. These are the significant features of exosomes which are beneficial aspects for gene
therapy in treating cancers and oxidative stress-related neurodegenerative diseases [273]. Exosomes can
be used as therapeutic vehicles to carry exogenous genetic components, such as miRNAs, and siRNA
to damage/knockdown genes of interest in gene therapy against cancers, neurological diseases, etc. [91].
Exosomes could exhibit CSC-specific antigen proteins for T cell activation as well as for anti-CSC
immunization [60]. In addition, these are natural nanovesicles used for carrying exogenous genetic
components to target several CSC-specific cell signaling pathways, viz. Wnt pathway, Notch, Hippo,
Hedgehog, etc. [151]. Hence, it is recommended to carry out further research investigations for
developing exosomes to target CSC-specific signaling pathways.

The modification of the exosomes is suggested by using surface display technology to display
candidate proteins or particular surface receptors for efficient cell recognition, as well as for specific
targeting [274]. For instance, the exosomes with Tspan8 could efficiently bind to CD11b and CD54
positive cells [32]. Engineering of the exosomes with donor cells was performed by several researchers
to express cell specific proteins or peptides fused with exosomal membrane proteins such as
“Lamp2b, CD-9 and tetraspanins CD-63”, which further place the candidate proteins on the surface of
exosomes [274]. Another report by Alvarez-Erviti et al. 2011 described the role of exosomes in carrying
“neuron-specific rabies viral glycoprotein (RVG) peptide”, which is able to knockdown certain genes in
neurons and glial cells by the selective delivery of siRNA; this peptide can also bind to the Ach receptors
on neuronal cells. Hence, engineered exosomes are selective tools in treating neuronal cancer [91].
Recent research reports described the role of engineered magnetic exosomes in combating tumor
growth [275]. Engineered anti-EGFR nanobodies with GPI exosomal fusion proteins are transfected
into donor cells to target (+) EGFR-tumor cells [276]. Another report by Watson et al. 2016 described
the substantial rise in the accumulation of drug-loaded exosomes in tumor cells by the blockade of a
monocyte/macrophage uptake receptor, which normally mediates drug scavenging in liver cells [277].

Furthermore, exosomes are preferred nanometric vehicles for establishing nanodrug delivery
systems (NDDS) [278]. Due to their long lasting half-life, and ability in targeting tissues, biocompatibility,
and limited toxicity, exosomes are the preferred choice materials to carry and deliver chemotherapeutic
drugs, antimicrobial agents, analgesics, neurological drugs, etc. [279,280]. For instance, exosomes have
been tested to deliver phytochemicals such as curcumin (a polyphenolic compound) [281]. Curcumin is
a potent anti-oxidant, chemopreventive, and anti-inflammatory agent [281–283], but suffers from poor
solubility and cellular uptake [281]. The efficacy of curcumin has been increased by preparing a nano
structured “Exo-cur”—an exosomal curcumin [284,285]. Exo-cur induced a significant decline in the
inflammatory cytokines, viz. IL-6, and TNF-α, compared to the macrophages treated with curcumin
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alone [286]. Thus, the ability of exosomes in carrying hydrophobic molecules such as curcumin has
been explored to enhance the anti-inflammatory activity [282]. The intricacy of the exosomes can be
determined by labeling exosomal protein markers—viz. TSG101 and CD81—on the exosome-curcumin
complex [286]. Celastrol, taxol derivatives, and doxorubicin are small molecules characterized by a low
solubility and short half-life which are leading to the poor therapeutic efficacy of drugs in targeting
cancers [287,288]. Recent research reports on zebrafish models demonstrated that the encapsulation of
chemotherapeutic drugs such as paclitaxel and doxorubicin into exosomal complexes isolated from
various cell lines (“gliobastoma astrocytoma U-87 MG, endothelial bEND.3, neuroectodermal tumor
PFSK-1, and glioblastoma A-172”) could effectively deliver these small molecules into the brain and
blood–brain barrier to treat brain cancers [273,289,290]. In conclusion, the efficacy of otherwise poorly
soluble drugs can be improved by exosomes.

Exosomes can target cancer cells with ten-fold higher efficacy than liposomes due to better
ligand–receptor interactions at the cancer cells [287,288]. Several reports have demonstrated that
the engineering of exosomes in vitro with specific ligands to target cancer cells is a potentially
viable strategy to improve selectivity and reduce the systemic toxicity of drugs [288]. Tian et al.
(2014) described the efficacy of exosomes with “αv integrin-specific iRGD peptide” for enhancing
the anti-cancer effects of doxorubicin in vivo than the free drug group [289]. Exosomes are suitable
vehicles to carry chemotherapeutic molecules to target chemoresistant CSCs [291]. Hence, it is
essential to determine the efficacy of exosomes with novel chemotherapeutic molecules to circumvent
tumor MDR, angiogenesis, and metastasis through targeted delivery. Another study described the
efficacy of paclitaxel encapsulated into macrophage-released exosomes in targeting tumor MDR and
pulmonary metastasis, which could be attributed to the specific proteins located on the surface of
exosomes [224]. The ability of exosomes in overcoming MDR could be due to their endocytosis to
bypass the P-gP excretion.

Exosomes can also act as the drug delivery systems for proteins such as catalase [273]. For instance,
Parkinson’s disease (PD) is characterized by ROS-mediated oxidative stress, inflammation across the
brain, poor antioxidant defense, and microglia activation [291–293]. Patients with PD exhibit poor
antioxidant enzymes, such as catalase and superoxide dismutase, since these enzymes could mitigate
oxidative-related neurodegeneration during PD [294–296]. Catalase delivery across BBB is associated
with several obstacles, but the exosome-loaded delivery can be an effective strategy for PD therapy [273].
Catalase-loaded exosomes follow a sustained delivery with prolonged circulation time for treating
Parkinson’s disease [297]. Another study described the role of exosomes loaded with dopamine
to release into the nigrostraital system (substantia nigra) for Parkinson’s disease treatment [297].
Exosomal dopamine enhanced the efficacy 15-fold in relation to the free drug group [297]. In addition,
the blood exosomes exhibit “transferrin receptor” (TfR) to enhance the drug accumulation, which may
be attributed to the natural ability of blood exosomes in targeting neurological diseases without any
modifications [297].

Since the blood–brain barrier and brain cells such as astrocytes and pericytes can induce
P-gP-mediated drug efflux out of the target cells, thereby enhancing the pathogenesis of brain
diseases, the use of exosomes assists in facilitating the excellent penetration of CNS drugs towards
target cells and overcome the problem of drug efflux [254,298–300]. Macrophage-derived exosomes
(MDEs) were reported to interact with “ICAM-1 & the carbohydrate-binding C-type lectin receptors
(CBCLR)” on the brain microvessel endothelial cells and attribute to the uptake of MDEs to target
inflammatory cells [300]. Similarly, the macrophage-derived exosomes loaded with BDNF can be
conducive to the alleviation of neuroinflammation during neuroinflammatory diseases [300]. Thus,
exosomes are the preferred choice of vehicles to treat neurodegenerative diseases, cerebrovascular
diseases, and brain tumors [297].

14. Conclusions

Exosomes play a major role in modulating cancer cell growth, invasion, metastasis, and the
development of stemness signatures on chemoresistant cancer cells. Several phytochemicals and small
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molecule therapeutics encapsulated into exosomes can effectively reach target cells and deliver effective
therapeutic outcomes in patients suffering from multiple diseases, such as neurological diseases,
cancers etc. Furthermore, better understanding of the involvement of specific exosomal cargo in
chemoresistance and CNS neurodegenerative diseases is a significant aspect enabling enhanced designs
of novel molecular therapies, biomarker discovery for early diagnosis, and treatment optimization.
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Abbreviations

exo-miR exosomal microRNA
EVs extracellular vesicles
Lamp2b lysosome-associated membrane glycoprotein 2b
GPI glycosylphosphatidylinositol
nSMase2 Neutral Sphingomyelinase 2
Rab27A/B Rab27A and Rab27B (Rab subfamily of GTPases often expressed in the same secretory cells)
PDACs Pancreatic ductal adenocarcinomas
MIF macrophage migration inhibitory factor
DCIS ductal carcinoma in situ
TFF3 trefoil factor 3
BMSC bone marrow mesenchymal stem cell
VECs vascular endothelial cells
TIMP-1 Tissue inhibitor of metalloproteinases-1
GBM glioblastoma multiforme
AD-MSCs Adipose mesenchymal stem cells
PTEN phosphatase and tensin homolog
ATM ataxia-telangiectasia mutated
BMSCs bone marrow stromal cells
PLK-1 polo-like kinase 1
TERF1 an inhibitor of telomerase
HNOK human normal oral keratinocytes (HNOK)
EGFR epidermal growth factor receptor
SMPD3 sphingomyelin phosphodiesterase 3
NSMASE2 Neutral sphingomyelinase 2
EFEMP1 EGF-containing fibulin-like extracellular matrix protein 1
DKK3 Dickkopf WNT signaling pathway inhibitor 3
SPARC secreted protein acidic and rich in cysteine
TUBB6 Tubulin beta-6 chain
FEZ1 Fasciculation and elongation zeta-1
CCT6A Chaperonin Containing TCP1 Subunit 6A
MIF migration inhibitory factor
EMT epithelial-mesenchymal transition
HER-2 human epidermal growth factor receptor 2
SCID Severe Combined Immunodeficiency
bEND.3 brain-derived Endothelial cells.3.neuroectodermal tumor
SNARE Soluble N–ethylmaleimide sensitive factor (NSF) attachment protein receptor
MDR multidrug resistance
iRGD integrin-binding peptide RGD
ESCRT endosomal complexes required for transport
TSG Tumor susceptibility gene
PTEN potent tumor-suppressor protein
SRC sarcoma proto-oncogene
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KRAS Kirsten rat sarcoma
LMP latent membrane protein
MARCKS myristoylated alanine rich protein kinase C substrate
GRP Gla-Rich. Protein
HIF hypoxia-inducible factor
PDGF platelet-derived growth factor
GBM Gliomas including glioblastoma
RAD51 DNA repair protein RAD51 homolog 1
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