

Article

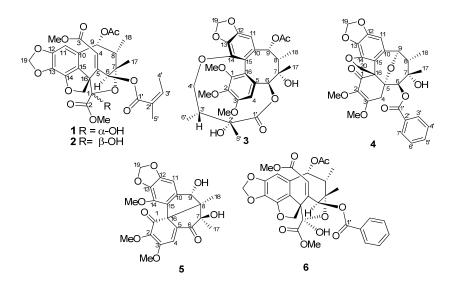
New Lignans from the Leaves and Stems of *Kadsura philippinensis*

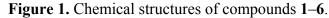
Yu-Chi Lin^{1,2}, Yuan-Bin Cheng^{1,3}, Chia-Ching Liaw¹, I-Wen Lo¹, Yao-Haur Kuo⁴, Michael Y. Chiang⁵, Chang-Hung Chou⁶ and Ya-Ching Shen^{1,*}

- ¹ School of Pharmacy, College of Medicine, National Taiwan University, 1, Sec. 1, Jen-Ai Rd., Taipei 100, Taiwan; E-Mail: z10108042@email.ncku.edu.tw (Y.-C.L.);
- jmb@kmu.edu.tw (Y.-B.C.); biogodas@hotmail.com (C.-C.L.); d96423006@ntu.edu.tw (I.-W.L.)
 ² Department of Life Sciences, National Cheng Kung University, No. 1 University Road, Tainan 701, Taiwan
- ³ Graduate Institute of Natural Products, School of Pharmacy, Kaohsiung Medical University, Shih-Chuan 1st Road, Kaohsiung 807, Taiwan
- ⁴ National Research Institute of Chinese Medicine, Taipei 112, Taiwan; E-Mail: kuoyh@nricm.edu.tw
- ⁵ Department of Chemistry, National Sun Yat-sen University, 70, Lien-hai Road, Kaohsiung 804, Taiwan; E-Mail: michael@mail.nsysu.edu.tw
- ⁶ Graduate Institute of Ecology and Evolutionary Biology, China Medical University, Taichung 40402, Taiwan; E-Mail: choumasa@mail.cmu.edu.tw
- * Author to whom correspondence should be addressed; E-Mail: ycshen@ntu.edu.tw; Tel.: +886-2-23123456 (ext.62226); Fax: +886-2-23919098.

Received: 13 May 2013; in revised form: 29 May 2013 / Accepted: 30 May 2013 / Published: 4 June 2013

Abstract: Three novel C19 homolignans, taiwankadsurins D (1), E (2) and F (4), and two new C18 lignans kadsuphilins N (3) and O (5) were isolated from the aerial parts of Taiwanese medicinal plant *Kadsura philippinensis*. The structures of compounds 1–5 were determined by spectroscopic analyses, especially 2D NMR techniques. The structure of compound 5 was further confirmed by X-ray crystallographic analysis. Compounds 1 and 2 have a 3,4-{1'-[(Z)-2"-methoxy-2"-oxoethylidene]}-pentano(2,3-dihydrobenzo[b]furano)-3-(2""-methoxycarbonyl-2"'-hydroxy-2"',3'-epoxide) skeleton.

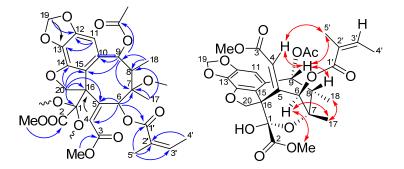

Keywords: Kadsura philippinensis; taiwankadsurins; lignans


1. Introduction

Kadsura belongs to the family Schisandraceae and it is only distributed in eastern and southern Asia [1]. Species of *Kadsura* were used in Chinese folk medicine for the treatment of cold, rheumatoid arthritis and gastroenteritis and as an anodyne to relieve pain [2]. The major constituents of *Kadsura* plants were reported to be bioactive lignans, which possess antitumor, antiviral and anti-hepatitic activities [3–8]. *K. philippinensis* Elm. is an evergreen vine, mainly distributed at low altitude onremote islands of Taiwan such as Green Island [9]. Our previous phytochemical studies on the EtOAc extracts of *K. philippinensis* resulted in the isolation of two novel triterpene dilactones and many lignans [10–17]. In this paper, we report the isolation and structure elucidation of three new C19 homolignans, named taiwankadsurins D-F, and two new C18 lignans, designated kadsuphilins N and O.

2. Results and Discussion

The leaves and stems of *K. philippinensis* were extracted with mixture of CH_2Cl_2 and acetone, then suspended in H_2O and extracted with EtOAc. The EtOAc-soluble part was subjected to extensive chromatography including flash column, normal and reversed-phase HPLC, furnishing compounds 1–5 (Figure 1).



Taiwankadsurin D (1), $([\alpha]_D^{25} +57^\circ, CH_2Cl_2)$ had a molecular formula $C_{29}H_{32}O_{13}$, as derived from its HREIMS at *m/z* 611.1735 ([M+Na]⁺, calcd 611.1741) indicating 14 degrees of unsaturation. The UV absorption (273, 225 nm) and IR bands (1,731, 1,721 and 1,628 cm⁻¹) indicated a benzyl and α,β , unsaturated ester functionalities. The ¹H-NMR of **1** exhibited two methoxyl singlets (δ 3.93, 3.59), an acetyl singlet (δ 2.13), two methyl singlets (δ 1.31, 1.99), two methyl doublets (δ 1.36, *J* = 6.9 Hz; δ 2.05, *J* = 7.2 Hz), two oxymethylene protons (δ 5.00, 4.53, each d, *J* = 10.2 Hz) and two dioxymethylene protons (δ 5.97, 5.98, each s-like). According to ¹³C-NMR and DEPT spectra, compound **1** had total 29 signals including seven methyl, two methylene, six methine and fourteen quaternary carbons. Moreover, ¹H-NMR spectroscopic data of **1** showed characteristic signals of H-4 (δ 5.99), H-6 (δ 6.28) and H-9 (δ 6.55), and ¹³C-NMR data of C-1 (δ 97.5 s), C-2 (δ 171.0 s) and C-3

(δ 165.4 s) similar to those of taiwankadsurin A (6), suggesting that compound 1 is an analogue of the latter [10]. However, a benzoyl group in 6 was missing and replaced with an angeloyl group at C-6 in 1. Further HMBC correlations (Figure 2) of H-11/C-12, C-13, C-15 and H-20/C-14, C-15, C-16, confirmed that compound 1 possessed a dihydrobenzofuran system. The ethylidene-octane ring was also deduced from the HMBC correlations of H-9/C-7,C-10,C-11,C-15; Me-18/C-7,C-8,C-9; Me-17/C-6,C-7,C-8 and H-6/C-4,C-5, C-7, C-8. The acetyl and angeloyl groups attaching at C-9 and C-6 respectively, were resulted from the HMBC correlations of H-9 (δ 6.55) with the acetyl carbonyl, and H-6 (δ 6.28) with the angeloyl carbonyl. Furthermore, methoxyl groups (δ_H 3.93, δ_H 3.59) attaching at carbonyls C-2 (δ_C 171.0) and C-3 (δ_C 165.4) were deduced from their mutual HMBC correlations.

It was noted that the dioxygenated tertiary carbon C-1 connected to C-7 through an ether bridge to account for the last degree of unsaturation. The relative configuration of **1** was determined by the NOESY experiment and by comparing the NMR data of **1** with those of taiwankadsurin A (Figure 2). Assuming that H-9 was β -oriented due to quite similar NMR spectra of **1** and taiwankadsurin A [10], thus, cross peaks between H-4, H-9 and Me-5', and correlation between H-9 and H-8, rather than Me-18 suggested that H-8 and 6-*O*-angeloyl group should be positioned on the β -face of the molecule. On the other hand, correlation between Me-18(eq) and Me-17(eq) accounted for the α -disposition of the ether ring between C-1 and C-7. In addition, NOESY correlation between H-6 and the methoxyl protons at C-2 indicated that H-6 and the hydroxyl group attached at C-1 are α -oriented. On the basis of above findings, the relative configuration of **1** was assigned as 1R*, 6S*, 7S*, 8S*, 9R*, 16S*.

Figure 2. Selected HMBC (arrow) and NOESY (double headed arrow) correlations of 1.

Taiwankadsurin E (2) is an isomer of 1 as inferred from the identical molecular weight in HRMS, similar UV and IR absorptions and NMR data. The ¹H-NMR spectrum (Table 1) of 2 had the same characteristic peaks with 1 except that H-6 was downfield shifted to $\delta_{\rm H}$ 6.91, while the methoxyl protons at C-2 was upfield shifted to $\delta_{\rm H}$ 3.61. Detail analysis of HMBC correlations of 2 revealed that the locations of angeloyl, acetyl and methoxyl groups were the same as 1. The configuration of 2 was established from NOESY experiment, in which most of the cross peaks were identical to those of 1. However, the correlation between H-6 and the methoxy at C-2 was missing in 2. Therefore, the structure of 2 was established, being an 1-epimer of 1.

Position 1^{a} 2^{b} 3^{a} 4^{b} 5^{a}								
Position	1 ^{<i>a</i>}	2 °	3 "		5 ^{<i>a</i>}			
4	5.99, brs	6.06, d (2.4)	6.84, s	3.08, d (18.4) 3.17, d (18.4)	/ 3/4 5			
6	6.28, d (2.7)	6.69, d (2.4)	5.76, s	5.42, s				
8	2.23, m	2.23, m	1.97, m	2.00, m				
9	6.55, d (2.7)	6.63, d (2.8)	5.48, s	4.82, brs	4.87, d (12.9)			
11	6.45, s	6.44, s	6.47, s	6.28, s	6.71, s			
17	1.31, s	1.34, s	1.37, s	0.97, s	1.31, s			
18	1.04, d (6.9)	1.02, d (6.8)	1.30, d (6.9)	1.36, d (7.6)	0.98, s			
19	5.97, s	5.93, s	5.94, s	5.83, s	5.90, d (1.5)			
	5.98, s	5.94, s	6.03, s	5.98, s	5.91, d (1.5)			
20	4.53, d (10.2)	4.59, d (10.0))	4.30, d (9.6)				
	5.00, d (10.2)	4.98, d (10.0))	4.43, d (9.6)				
OMe-1			3.46, s					
OMe-2	3.93, s	3.57, s	3.84, s	3.66, s	3.77, s			
OMe-3	3.59, s	3.58, s	3.92, s	4.07, s	4.11, s			
OMe-14					3.81, s			
OAc	2.13, s	2.13, s	1.49, s					
1'								
2'								
3'	6.28, overlap	6.23, q (7.2)	1.92, m	7.32, m				
4'	2.05, d (7.2)	2.06, d (7.2)	3.63, dd (5.0, 8.0) 4.16, dd (5.0, 8.0)	/ 15 m				
5'	1.99, s	2.00, s	1.23, s	7.55, d (7.2)				
6'			0.96,d (7.2)	7.35, m				
7'				7.32, m				
OH-9					4.28, d (12.9)			

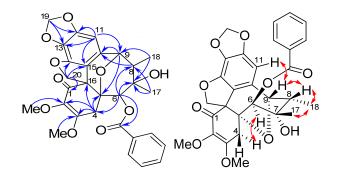
Table 1. ¹H-NMR data (CDCl₃) of compounds $1-5^{a,b}$.

^{*a*} recorded at 300 MHz. ^{*b*} recorded at 400 MHz.

Kadsuphilin N (**3**), $([\alpha]_D^{26} -2.4, CH_2Cl_2)$, had a molecular formula of $C_{30}H_{36}O_{12}$ as deduced from a *pseudo*-molecular ion $[M+Na]^+$ at *m/z* 611.2107 in the HRESIMS. The UV absorption bands at 212, 259 and 292 nm suggested that **1** possessed a biphenyl chromophore. The IR absorption indicated the presence of hydroxyl (3,479 cm⁻¹) and carbonyl (1,738 cm⁻¹) groups. The ¹³C-NMR spectroscopic data and DEPT analysis revealed that compound **3** contains 30 carbons, including ten quaternary sp² carbons (δ_C 121.2, 121.7, 130.8, 132.8, 137.5, 139.0, 141.8, 148.6, 151.5 and 152.3), two ester carbons (δ_C 168.7 and 172.4), two quaternary sp³ oxygen-bearing carbons (δ_C 102.5 and 111.0), two sp³ methine carbons (δ_C 42.4 and 44.1), two oxygen-bearing sp³ methine carbons (δ_C 83.9 and 86.6), and eight methyl groups (δ_C 12.8, 17.8, 20.3, 21.4, 28.4, 56.2, 60.5 and 60.7). The HMBC correlations of H-11/C-9, C-10, C-12, C-13, C-15; H-9/C-10, C-15; H-4/C-2, C-3, C-5, C-6, C-16; H-6/C-5, C-16; Me-17/C-6, C-7, C-8; Me-18/C-7, C-8, C-9 implied that compound **3** indeed possessed a schizandrin type dibenzocyclooctadiene system [16]. Moreover, HMBC correlations of H₂-19/C-12, C-13; OMe-1/C-1; OMe-2/C-2; OMe-3/C-3 and H-9/ acetyl carbonyl assigned the methylenedioxy group and three methoxyl groups attached to the aromatic ring and an acetyl group at C-9. In addition,

the ester linkage could be proved by correlations of H-6/C-1'; Me-5'/C-1', C-2', C-3'; Me-6'/C-2', C-3', C-4' and H-4'/C-14. From the above interpretation, the structure of **3** could be established as 9-acetylgomisin D. The configuration was determined by CD spectrum and NOESY experiment. The strong positive Cotton effect at 229 nm and the negative Cotton effect at 245 nm assigned the *S*-configuration of the biphenyl system [18]. The NOESY correlations of H-9/H-8, H-11, H-8/Me-17 and H-6/H-4, Me-17(eq) revealed that the cyclooctadiene ring had a twist-boat-chair form and H-8, H-9 and Me-17 were β -oriented while H-6 and Me-18 were α -configuration (Figure 3). The correlations of H-3'/Me-5' and the NMR data were in good agreement with the configuration of ester linkage that was also present in gomisin D [19].

Figure 3. Selected HMBC (arrow) and NOESY (double headed arrow) correlations of 3.


Taiwankadsurin F (4) was isolated as a pale yellow amorphous solid. The molecular formula $C_{29}H_{28}O_{10}$ was deduced from a *pseudo*-molecular ion at m/z 559.1580 [M+Na]⁺ in HRESIMS. The UV spectrum showed absorptions at λ_{max} 255, 220 nm and IR bands at v_{max} 3,510, 1,735, 1,725 cm⁻¹ suggested that compound 4 contained phenyl, benzoyl, α , β -unsaturated ketone and hydroxyl functionalities. The ¹H and ¹³C-NMR spectroscopic data (Tables 1 and 2) revealed that 4 possessed a substituted cyclohex-2-enone moiety and a spirodihydrobenzofuran ring in a homolignan skeleton similar to kadsuphilol G [14]. The difference could be the angeloyloxy side chain, which was substituted with a benzoyloxy group. This scaffold was supported from HMBC correlations of H-19/ C-12, C-13; H-11/ C-9, C-12, C-13, C-15; Me-18/C-7, C-8, C-9; Me-17/C-6, C-7, C-8; H-4/C-2, C-3, C-5, C-16 and H-20/C-1, C-14, C-15. Moreover, the key HMBC correlations of H-6/ benzoyl carbonyl $(\delta_{\rm C} 165.4)$ and H-9/C-5 assigned the benzovl group at C-6. It was found that an ether linkage appeared between C-5 and C-9 due to calculation of double bond equivalence. The relative configuration of 4 was determined by comparing the coupling constants of 4 with those of kadsuphilol G and NOESY experiments. Thus a twist-boat-chair configuration was elucidated on the basis of CD observation, in which a positive Cotton effect was found at 216 nm and a negative one at 249 nm. The NOESY correlations of H-11/H-8 /H-9 and H-8/ Me-17 suggested that H-8, H-9 Me-17 were all in β-face while Me-18 was α -oriented (Figure 4). Because compound 4 had a TBC-S configuration, the oxygen bridge could be assigned as α -disposed. On the basis of the above interpretation, the structure of compound 4 was established and the name taiwankadsurin F was given.

Position	1 <i>a</i>	2 ^{<i>b</i>}	3 ^{<i>a</i>}	4 ^b	5 ^{<i>a</i>}				
1	97.5, C	97.6, C	151.5,C	193.0, C	196.3, C				
2	171.0, C	170.1, C	141.8,C	132.5, C	140.6, C				
3	165.4, C	165.5, C	152.3, C	157.4, C	159.0, C				
4	117.2, CH	118.3, CH	111.0, CH	40.7, CH ₂	123.4, CH				
5	150.5, C	149.8, C	130.8, C	77.6, C	143.7, C				
6	72.5, CH	72.5, CH	86.6 , CH	77.3, CH	200.7, C				
7	79.2, C	78.4, C	73.8, C	72.5, C	80.7, C				
8	45.4, CH	45.5, CH	44.1, CH	43.7, CH	60.4, C				
9	70.3, CH	70.2, CH	83.9, CH	77.3, CH	75.7, CH				
10	127.9, C	127.8, C	132.8,C	127.9, C	144.5, C				
11	98.7, CH	99.9, CH	102.5, CH	95.9, CH	100.4, CH				
12	150.4, C	149.8, C	148.6, C	151.3, C	151.2, C				
13	129.1, C	128.9, C	137.5, C	129.5, C	136.4, C				
14	144.9, C	142.6, C	139.0, C	140.9, C	139.5, C				
15	118.0, C	120.5, C	121.2, C	121.3, C	125.7, C				
16	57.0, C	58.6, C	121.7, C	56.9, C	69.5, C				
17	28.2, CH ₃	28.5, CH ₃	28.4, CH ₃	23.1, CH ₃	19.9, CH ₃				
18	8.9, CH ₃	8.5, CH ₃	17.8, CH ₃	15.3, CH ₃	15.1, CH ₃				
19	101.8, CH ₂	101.5, CH ₂	101.5, CH ₂	101.3, CH ₂	101.7, CH ₂				
20	$80.4, CH_2$	78.5, CH ₂		78.2, CH ₂					
OMe-1			60.5, CH ₃						
OMe-2	53.6, CH ₃	54.0, CH ₃	60.7, CH ₃	60.7, CH ₃	60.2, CH ₃				
OMe-3	51.8, CH ₃	51.7, CH ₃	56.2, CH ₃	58.9, CH ₃	58.3, CH ₃				
OMe-14					59.4, CH ₃				
OAc	168.9, C	168.9, C	168.7, C						
OAC	21.0, CH ₃	20.3, CH ₃	20.3, CH ₃						
1'	166.0, C	166.1, C	172.4, C	165.4, C					
2'	126.3, C	126.5, C	76.6, C	129.5, C					
3'	142.3, CH	141.7, CH	42.4, CH	128.3, CH					
4'	16.0, CH ₃	15.9, CH ₃	72.4, CH ₂	129.7, CH					
5'	20.4, CH ₃	21.0, CH ₃	21.4, CH ₃	133.9, CH					
6'			12.8, CH ₃	129.7, CH					
7'				128.3, CH					

Table 2. ¹³C-NMR data (CDCl₃) of compounds $1-5^{a,b}$.

^{*a*} recorded at 75 MHz. ^{*b*} recorded at 100 MHz.

Figure 4. Selected HMBC (arrow) and NOESY (double headed arrow) correlations of 4.

Kadsuphilin O (5) was obtained as pale vellow crystals, with molecular formula $C_{22}H_{22}O_9$ as determined by HRESIMS (12 degrees of unsaturation). IR absorption bands at 3,420, 1,716 and 1,620 cm⁻¹ indicated the presence of hydroxyl, carbonyl and aromatic moieties. The ¹H-NMR data (Table 1) and HMQC spectrum showed characteristic signals for two aromatic ($\delta_{\rm H}$ 6.71, 7.34), one methoxyene-dioxy ($\delta_{\rm H}$ 5.90, 5.91 as an AB quartet), one oxygen-bearing methine ($\delta_{\rm H}$ 4.87), two *tert*-methyl ($\delta_{\rm H}$ 0.98, 1.31) and three methoxyl ($\delta_{\rm H}$ 3.77, 3.81 and 4.11) protons. A methine doublet at $\delta_{\rm H}$ 4.28 (J = 12.9 Hz) revealed the presence of a hydroxy due to no correlation was found in HMQC. ¹³C-NMR data and DEPT spectra revealed that compound 5 contained five pairs of double bonds ($\delta_{\rm C}$ 100.4, 123.4, 125.7, 136.4, 139.5, 140.6, 143.7, 144.5, 151.2, 159.0), two ketone carbonyl carbons ($\delta_{\rm C}$ 196.3 and 200.7) and three quaternary carbons ($\delta_{\rm C}$ 60.4, 69.5, 80.7), one oxygenated methine carbon ($\delta_{\rm C}$ 75.7), a methylenedioxy carbon ($\delta_{\rm C}$ 101.7), two methyl carbons ($\delta_{\rm C}$ 15.1 and 19.9) and three methoxyl carbons ($\delta_{\rm C}$ 58.3, 59.4, 60.2). Thus compound 5 possessed five ring systems after deduction of seven double bonds. In the HMBC spectrum, correlations of H-11/C-9, C-12, C-13, C-14, C-15; H-19/C-12, C-13; H-4/C-2, C-3, C-5, C-6, C-16; Me-17/C-6, C-7, C-8; Me-18/C-7, C-8; H-9/C-7, C-15 and C-9-OH/C-9 suggested a dibenzocyclo-octadiene framework with a ketone substituted at the C-6 position. Furthermore, the linkage between C-8 and C-16 was deduced by the correlations of H-9 and Me-18 with C-16, and the remaining ketone group could be assigned to the C-1 position. This finding was further confirmed by comparing the NMR data with those of heteroclitin G [20]. The relative configuration of 5 was determined by NOESY correlation and CD. The CD spectrum of 5 was similar to that of kadsutherin C [21]. The negative Cotton effect at 240 nm and the positive Cotton effect at 218 nm accounted for S-configuration for the biphenyl skeleton. Assuming that the H-9 of 5 was in a β-orientation similar to heteroclitin G, the NOESY correlations of HO-9/Me-18 and Me-18/Me-17 indicated that they were on the α -face and OH-7 was β -oriented. Therefore, the configuration of the bipentacyclic ring was established. The structure of 5 was finally confirmed by a single-crystal X-ray diffraction analysis, from which a perspective drawing of 5 is provided in Figure 5.

Figure 5. Selected HMBC correlations and X-ray perspective drawing of 5.

3. Experimental

3.1. General

Melting points were measured on a Büchi melting point B-540 apparatus and are uncorrected. Optical rotations were recorded on a JASCO DIP-1000 polarimeter. IR and UV spectra were measured on HORIBA FT-720 and U-3210 spectrophotometers, respectively. The ¹H- and ¹³C-NMR, COSY,

HMQC, HMBC, and NOESY spectra were recorded respectively on a Bruker FT-300 spectrometer (300 MHz for ¹H and 75 MHz for ¹³C) or on a Bruker AVANCE 400 (400 MHz for ¹H and 100 MHz for ¹³C) using TMS as an internal standard. The chemical shifts were given in δ values (ppm) and coupling constants in Hz. Low-resolution FABMS were recorded on a VG Quattro 5022 mass spectrometer, and HREIMS were measured on a JEOL JMS-SX 102 spectrometer. Silica gel 60 (Merck) was used for column chromatography (CC), and precoated silica gel plates (Merck, Kieselgel 60 F-254, 1 mm) were used for preparative TLC.

3.2. Plant Material

The leaves and stems of *K. philippinensis* were collected at Green Island, Taiwan, in November, 2002. A voucher sample (specimen code: TP 93-2) was deposited at the School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.

3.3. Extraction and Isolation

K. philippinensis was extracted with mixture of CH_2Cl_2 and acetone and partitioned between EtOAc and H_2O (1:1). The EtOAc-soluble part was subjected to Si gel column chromatography (*n*-hexane/EtOAc, 1:0 to 0:1), and after monitoring by ¹H-NMR, the middle fraction (fr. 21) was further eluted on LH-20 (MeOH) to give five subfractions (fr.21-1~5). Fr.21-5 was chromatographed on a flash column (Si gel, *n*-hexane/EtOAc, 15:1-0:1) and further separated by normal phase HPLC (*n*-hexane/CH₂Cl₂/MeOH, 35:65:1) to furnish taiwankadsurins D (1, 13 mg) and E (2, 2 mg). Kadsuphilin N (3, 14 mg) was isolated from fr.21-2, which was chromatographed on a flash column (*n*-hexane/EtOAc, 15:1:1 to 1:1:1) and further purified with normal phase HPLC (*n*-hexane/CH₂Cl₂/ MeOH, 30:70:1) and reverse phase HPLC (MeOH/H₂O, 65:35) alternatively. Fraction fr.21-4 was separated on a Si gel column (*n*-hexane/EtOAc, 25:1 to 0:1) and a reverse phase HPLC (MeOH/H₂O, 65:35) column to yield taiwankadsurin F (4, 4 mg) and kadsuphilin O (5, 7 mg).

3.4. Spectroscopic Data

Taiwankadsurin D (1). $[\alpha]_D^{26}$ +57 ° (*c* 0.5, CH₂Cl₂); UV λ_{max} (MeOH) 225, 273 nm; CD (MeOH, *c* = 0.2) nm (ϵ) 222 (-1.30), 254 (+1.27); IR (neat) v_{max} 3,450, 2,938, 1,731, 1,721, 1,628 cm⁻¹; ¹H-NMR and ¹³C-NMR (CDCl₃, 300/75 MHz) see Tables 1 and 2, respectively; HRESIMS *m/z* 611.1735 (calcd for C₂₉H₃₂O₁₃Na, 611.1741).

Taiwankadsurin E (**2**). $[\alpha]_{D}^{26}$ -11° (*c* 0.2, CH₂Cl₂); UV λ_{max} (MeOH) 233, 276 nm; CD (MeOH, c = 0.2) nm (ϵ) 228 (-0.78), 247 (+0.27); IR (neat) v_{max} 3,457, 1,728, 1,717 cm⁻¹; ¹H-NMR and ¹³C-NMR (CDCl₃, 400/100 MHz) see Tables 1 and 2, respectively; HRESIMS *m/z* 611.1737 (calcd for C₂₉H₃₂O₁₃Na, 611.1741).

Kadsuphilin N (**3**). $[\alpha]_D^{25}$ -2.4° (*c* 1.3, CH₂Cl₂); UV λ_{max} (MeOH) 212, 259, 292 nm; CD (MeOH, c = 0.16) nm (ϵ) 229 (+33.56), 245 (-2.97), 293 (-5.54); IR (neat) v_{max} 3,479, 1,738, 1,624, 1,594 cm⁻¹; ¹H-NMR and ¹³C-NMR (CDCl₃, 300/75 MHz) see Tables 1 and 2, respectively; HRESIMS *m*/*z* 611.2107 (calcd for C₃₀H₃₆O₁₂Na, 611.2104).

Taiwankadsurin F (4). $[\alpha]_D^{25}$ -13.2° (*c* 0.6, CH₂Cl₂); UV λ_{max} (MeOH) 220, 255 nm; CD (MeOH, c = 0.3) nm (ϵ) 216 (+17.34), 249 (-8.77), 290 (-1.53); IR (neat) ν_{max} 3,510, 1,735, 1,725, 1,660, 1,580 cm⁻¹; ¹H-NMR and ¹³C-NMR (CDCl₃, 400/100 MHz), see Tables 1 and 2, respectively; HRESIMS *m*/*z* 559.1573 (calcd for C₂₉H₂₈O₁₀Na, 559.1580).

Kadsuphilin O (5). $[\alpha]_{D}^{25} = 8.0^{\circ}$ (*c* 0.6, CH₂Cl₂); MP 167 °C; UV λ_{max} (MeOH) 215, 246, 283 nm; CD (MeOH, *c* = 0.22) nm (ε) 218 (+7.66), 240 (-28.11), 282 (-6.75); IR (neat) v_{max} 3,420, 1,716, 1,620 cm⁻¹; ¹H-NMR (CDCl₃, 300 MHz) and ¹³C-NMR (CDCl₃, 75 MHz), see Tables 1 and 2, respectively; HRESIMS *m/z* 453.1158 (calcd for C₂₂H₂₂O₉Na, 453.1161). Crystal data: C₂₂H₂₂O₉, *M* = 430.40, trigonal system, space group *P*2₁, *a* = 10.706(2), *b* = 8.218(2), *c* = 10.9345(9) Å, *V* = 960.1(3) Å³, *Z* = 2, *d* = 1.489 Mg/cm³. A crystal of dimensions 0.60 × 0.60 × 0.20 mm was used for measurements on a RIGAKU AFC7S diffractometer with a graphite monochromator (ω-2θscans, 2 θ_{max} = 52.0°), Mo Kα radiation. The total number of independent reflections measured was 2,134, of which 2026 were observed ($|F|^2 \ge 2\sigma|F|^2$). The crystal structure was solved by the direct method SHELX-86 [22] and expanded using difference Fourier techniques, refined by the program SHEXTL-97 [23] and full-matrix least-squares calculations. Final indices: $R_f = 0.030$, $R_w = 0.0784$, $w = 1/[\sigma^2 (F_o^2) + (0.070P)^2 + 0.1457P]$, where $P = (F_o^2 + 2 F_c^2)/3$). Copies of the deposited crystal data (CCDC 829589) can be obtained, free of charge, from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 (0) 1223 336033 or E-Mail: deposit@ccdc.cam.ac.uk.

4. Conclusions

Phytochemical investigation of the aerial part of Taiwanese *Kadsura philippinensis* has resulted in isolation of five new lignans 1–5, including three novel C19 homolignans, designated taiwankadsurins D, E and F. Their structures have been established by spectroscopic analyses, especially 2D NMR techniques. In addition, the structure of compound 5 was further confirmed by X-ray crystallographic analysis.

Acknowledgments

This work was supported from the National Science Council of the Republic of China (Grant NSC-98-2320-B-002-027-MY3).

Conflict of Interest

The authors declare no conflict of interest.

References

- Ookawa, N.; Ikeya, Y.; Taguchi, H.; Yosioka. The Constituents of *Kadsura Japonica* DUNAL. I. The Structures of Three New Lignans, Acetyl-, Angeloyl- and Caproyl-binankadsurin A. *Chem. Pharm. Bull.* 1981, 29, 123–127.
- Hu, X.; Zhang, W.K.; Zhu, Q.S. *Zhong Hua Ben Cao* (in Chinese); Shanghai Scientific & Techincal Publishers: Shanghai, China, 1999; Volume 2, pp. 912–913.

- 3. Charlton, J.L. Antiviral Activity of Lignans. J. Nat. Prod. 1998, 61, 1447–1451.
- 4. Chang, J.B.; Reiner, J.; Xie, J.G. Progress on the chemistry of dibenzocyclooctadiene lignans. *Chem. Rev.* **2005**, *105*, 4581–4609.
- Wu, M.D.; Huang, R.L.; KuoYang, L.M.; Hung, C.C.; Ong, C.W.; Kuo, Y.H. The Anti-HBsAg (human type B hepatitis, surface antigen) and anti-hbeag (human type B hepatitis, e antigen) C₁₈ dibenzocyclooctadiene lignans from *Kadsura matsudai* and *Schizandra arisanensis*. *Chem. Pharm. Bull.* 2003, *51*, 1233–1236.
- Li, L.N. Biologically active components from traditional Chinese medicines. *Pure Appl. Chem.* 1998, 70, 547–554.
- Chen, D.F.; Zhang, S.X.; Kozuka, M.; Sun, Q.Z.; Feng, J.; Wang, Q.; Mukainaka, T.; Nobukuni, Y.; Tokuda, H.; Nishino, H.; *et al.* Interiotherins C and D, two new lignans from *Kadsura interior* and antitumor-promoting effects of related neolignans on Epstein–Barr virus activation. *J. Nat. Prod.* 2002, *65*, 1242–1245.
- Chen, D.F.; Zhang, S.X.; Wang, H.K.; Zhang, S.Y.; Sun, Q.Z.; Cosentino, L.M.; Lee, K.H. Novel Anti-HIV Lancilactone C and Related Triterpenes from *Kadsura lancilimba*. J. Nat. Prod. 1999, 62, 94–97.
- 9. Li, H.L.; Chaw, S.M. *Schisandraceae-Flora of Taiwan*; Epoch: Taipei, Taiwan, 1996; Volume 2, p. 425.
- 10. Shen, Y.C.; Lin, Y.C.; Kuo, Y.H.; Cheng, Y.B.; Liaw, C.C. Taiwankadsulins A, B and C, three new C-19 Homolignans from *Kadsura philippinensis*. Org. Lett. **2005**, *7*, 5297–5300.
- 11. Shen, Y.C.; Lin, Y.C.; Chiang, M.Y.; Yeh, S.F.; Cheng, Y.B.; Liaw, C.C. Kadsuphilactones A and B, Two New Triterpene Dilactones from *Kadsura philippinensis*. *Org. Lett.* **2005**, *7*, 3307–3310.
- Shen, Y.C.; Liaw, C.C.; Cheng, Y.B.; Ahmed, A.F.; Lai, M.C.; Liou, S.S.; Wu, T.S.; Kuo, Y.H.; Lin, Y.C.; Khalil, A.T. C-18 Dibenzocyclooctadiene Lignans from *Kadsura philippinensis*. J. Nat. Prod. 2006, 69, 963–966.
- Shen, Y.C.; Lin, Y.C.; Ahmed, A.F.; Cheng, Y.B.; Chen, C.T.; Liaw, C.C.; Kuo, Y.H. Four new nonaoxygenated C₁₈ dibenzocylcooctadiene lignans from *Kadsura philippinensis*. *Chem. Pharm. Bull.* 2007, 55, 280–283.
- 14. Shen, Y.C.; Cheng, Y.B.; Lan, T.W.; Liaw, C.C.; Liou, S.S.; Kuo, Y.H.; Khalil, A.T. Kadsuphilols A-H, new oxygenated lignans from *Kadsura philippinensis*. J. Nat. Prod. **2007**, *70*, 1139–1145.
- Shen, Y.C.; Lin, Y.C.; Cheng, Y.B.; Chang, C.J.; Lan, T.W.; Liou, S.S.; Chien, C.T.; Liaw, C.C.; Khalil, A.T. New Oxygenated Lignans from *Kadsura philippinensis*. *Helv. Chim. Acta.* 2008, *91*, 483–494.
- 16. Shen, Y.C.; Lin, Y.C.; Cheng, Y.B.; Chiang, M.Y.; Liou, S.S.; Khalil. A.T. Dibenzocyclooctadiene lignans from *Kadsura philippinensis*. *Phytochemistry* **2009**, *70*, 114–120.
- 17. Cheng, Y.B.; Lin, Y.C.; Khalil, A.K.; Liou, S.S.; Lee, G.C.; Kuo, Y.H.; Shen, Y.C. Seven new lignan esters from *Kadsura philippinensis*. *Helv. Chim. Acta 2011*, *94*, 148–158.
- 18. Liu, J.S.; Li, L. Schisandrins L–O and acetyl schisandrin L from *Kadsura coccinea Phytochemistry* **1993**, *32*, 1293–1296.
- 19. Ikeya, Y.; Taguchi, H.; Yosioka, I.; Iitaka, Y.; Kobayashi, H. The constituents of *schizandra chinensis* baill. ii. the structure of a new lignan, gomisin d. *Chem. Pharm. Bull.* **1979**, *27*, 1395–1401.

- Yang, X.W.; Miyashiro, H.; Hattori, M.; Namba, T.; Tezuka, Y.; Kikuchi, T.; Chen, D.F.; Xu, G.J.; Hori, T.; Extine, M.; *et al.* Isolation of novel lignans, heteroclitins F and G, from the Stems of *Kadsura heteroclita*, and anti-lipid peroxidative actions of heteroclitins A–G and related compounds in *the in vitro* Rat Liver Homogenate System. *Chem. Pharm. Bull.* 1992, 40, 1510–1516.
- 21. Lu, Y.; Chen, D.F. Kadsutherins A–C: Three new dibenzocyclooctane lignans from the stems of *Kadsura* species *Helv. Chim. Acta* **2006**, *89*, 895–901.
- 22. Sheldrick, G.M. SHELXS-86. Program for the solution of crystal structures. University of Göttingen: Göttingen, Germany, 1985.
- 23. Sheldrick, G.M. SHELXS-97. Program for the solution of crystal structures. University of Göttingen: Göttingen, Germany, 1997.

Sample Availability: Samples of the compounds may not be available from the authors.

 \bigcirc 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).