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Abstract: Shrubs are an important part of the Gobi Desert ecosystem, and their aboveground biomass
(AGB) is an important manifestation of the productivity of the Gobi Desert ecosystem. Characterizing
the biophysical properties of low-stature vegetation such as shrubs in the Gobi Desert via conventional
field surveys and satellite remote sensing images is challenging. The AGB of shrubs had been
estimated from spectral variables taken from high-resolution images obtained by unmanned aerial
vehicle (UAV) in the Gobi Desert, Xinjiang, China, using vegetation feature metrics. The main results
were as follows: (1) Based on the UAV images, several RGB vegetation indices (RGB VIs) were
selected to extract the vegetation coverage, and it was found that the excess green index (EXG) had
the highest accuracy and the overall extraction accuracy of vegetation coverage reached 97.00%.
(2) According to field sample plot surveys, the AGB and shrub crown area of single shrubs in the
Gobi Desert were in line with a power model. From the bottom of the alluvial fan to the top of the
alluvial fan, as the altitude increased, the AGB of the vegetation communities showed an increasing
trend: the AGB of the vegetation communities at the bottom of the alluvial fan was 2–90 g/m2, while
that at the top of the alluvial fan was 60–201 g/m2. (3) Vegetation coverage (based on the UAV
image EXG index) and AGB showed a good correlation. The two conform to the relationship model
(R2 = 0.897) and the expression is Y = 1167.341 x0.946, where Y is the AGB of the sample plots in
units g/m2 and x is the vegetation coverage extracted by the VI. (4) The predicted AGB values
of Gobi Desert shrubs using UAV RGB images based on a power model were closer to the actual
observed AGB values. The study findings provide a more efficient, accurate, and low-cost method
for estimating vegetation coverage and AGB of Gobi Desert shrubs.

Keywords: UAV; vegetation coverage; aboveground biomass; shrub; Gobi Desert

1. Introduction

On the surface of the Earth, over one-fifth of the land surface is covered by mixed woody
and herbaceous ecosystems [1], supporting significant global biodiversity and providing
ecosystem services including climate regulation, disaster reduction, and soil and water conser-
vation [2–4]. Shrub species often dominate the woody vegetation in the ecosystem and play
a critical role in accumulating about one-third of global terrestrial carbon in biomass [2,5,6].
Aboveground biomass (AGB) is an important manifestation of the productivity of the Gobi
Desert ecosystem because of their close relationships [7,8]. The shrub communities in Gobi
Desert are highly resistant to drought, cold, water erosion, wind erosion and infertility,
etc., making them of far-reaching significance to sustainable development and ecological
construction of Gobi Desert ecosystem [9,10]. In desert shrub communities, estimation of
AGB accurately and efficiently is of great scientific importance for monitoring and assessing
vegetation growth and degradation, as well as for ensuring sustainability, conservation
and development [11]. It is important to work out a methodology to find situation and
identify size of shrubs in the Gobi Desert for a Gobi Desert habitat restoration because a
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considerable number of bushes were destroyed by people or by overgrazing animals in
recent years.

However, in shrub-dominated desert ecosystems, modeling estimates of AGB has gained
less attention than in other ecosystems such as forests. The accurate characterization of
low-stature vegetation is challenging [12], especially in the Gobi Desert ecosystem. A large
part of northwest China is covered by the Gobi Desert. The landscapes of the Gobi Desert
consist of mostly open terrain and are covered with gravel in arid to extremely arid climates.
It endures strong wind erosion and physical weathering [13,14]. The Gobi Desert is one
of the harshest natural environments on earth, even among desert ecosystems. The plant
community inhabiting the Gobi Desert is unique as the plants have adapted to the harsh
conditions through natural selection. These plant species are invaluable genetic resources.
There are largely xerotic or extremely xerophytic shrubs and semi-shrubs prevalent in the
Gobi Desert. These plants are mostly withered, rarely green and have small canopies. The
total vegetation cover in most areas is less than 10%. Consequently, an efficient method for
estimating shrub AGB in Gobi Desert ecosystems are relatively poorly developed.

Ground measurements or satellite remote sensing data are the traditional methods for
observing AGB. Even though ground measurement provides accurate AGB estimates [15], it
can damage vegetation and is unreliable in estimating AGB at the regional level [15,16]. Re-
mote sensing methods are also challenging in this environment since the shrub-dominated
vegetation is generally low-stature, indistinct spectrally and spatially heterogeneous at
fine scales [2,5,17]. The vegetation of Gobi Desert shrubs is sparse, and the crown size of
a single shrub is mainly tens of centimeters, and the highest spatial resolution of satellite
images is 1–3 m pixels [18]. Therefore, satellite images are not enough to provide sufficient
spatial resolution to identify the characteristics of Gobi Desert shrubs community. The
introduction of unmanned aerial vehicles (UAVs) has met the need for high spatiotemporal
resolution and centimeter-level spatial resolution during an expansion of satellite remote
sensing data and ground measurements on a landscape scale [19–21]. In addition, UAV is
capable of collecting data at high resolution concerning spectral and structural properties
of low-stature vegetation at fine scales [22–25].

Moreover, UAVs offer a promising solution to sparse vegetation surveys [26,27] as
their images allow us to identify vegetation from soil background characteristics efficiently
with a high spatial resolution [28,29] and can be used to extract vegetation characteristics
accurately within sample plots in the Gobi Desert. Additionally, UAVs offer advantages
such as affordable operation for plot sizes commonly found in such sites, as well as the
ability to plan flight missions in a flexible manner. Furthermore, cloud cover causes little
to no distortion of UAVs images, so UAVs are an invaluable tool for studying ecological
processes [30]. UAVs can be used to detect the AGB of vegetation in two main distinct
ways. The first uses vegetation indices (VI), texture and other image features to identify
the structure [31]. The second utilizes three-dimensional (3D) point clouds to determine
the structural characteristics of the vegetation [32]. With the increased use of UAVs, VIs
derived from low-cost UAV imagery achieved a good estimation of AGB. The VI method
detects farmland, grassland and sandy land biomass well [33,34]. The AGB of desert shrubs
has a good correlation with the canopy [35], and branches from new and old shrubs differ
significantly in color. Thus, the canopy morphology of shrubs can be used as an indicator
to quantify AGB. Indeed, UAVs commonly use the RGB VI method to detect vegetation
coverage because it is the simplest and most reliable [36].

Research on plant resources has increased in the Gobi Desert in recent years. Re-
cently published studies have focused on plant community composition [37,38], flora
characteristics [39–41], diversity, the relationship between biodiversity and external natural
environmental factors [42,43], disturbances, such as grazing and socio-economic activi-
ties, impact on vegetation distribution and protection [44], impact of climate change on
vegetation productivity and coverage [45], and the relationship between desertification
and vegetation growth [44,46]. However, all of these studies use ground surveys data to
estimate AGB, with few studies having estimated AGB of vegetation using UAVs data in the
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Gobi Desert. The vegetation in the Gobi Desert varies with altitude. Investigating the AGB
of vegetation along altitudinal gradients utilizing UAVs technology might help us better
understand the Gobi Desert’s features and functions, as well as guide local biodiversity
conservation and water and soil conservation initiatives. The aim of this research is to
quantify AGB for Gobi Desert shrubs promptly based on RGB images of a UAV.

2. Materials and Methods
2.1. Experimental Field

The field sites is located in the southern foot of the Tianshan Mountains in Bugur
County, Bayingol Mongolian Autonomous Prefecture, Xinjiang Uygur Autonomous Region,
China (41◦05′–42◦32′ N, 83◦38′–85◦25′ E). It is part of the Gobi Desert, has an altitude range
of 1050–1350 m, and a total area of around 172.48 km2 (Figure 1). The average annual
temperature is 11.8 ◦C. The average annual precipitation is 47.4 mm. Due to the arid climate
in the Gobi Desert, only shrubs can survive due to their strong drought resistance ability.
Therefore, the vegetation coverage in the study area is low. The most common shrubs in the
study area are Gymnocarpos przewalskii (G. przewalskii), Ephedra przewalskii (E. przewalskii),
Salsola laricifolia (S. laricifolia) and Reaumuria songarica (R. songarica). Among these shrubs,
G. przewalskii, is a subshrub. The older branches of this shrub are gray, while the young
branches are red ochre, slender and soft, with enlarged nodes. E. przewalskii, a small shrub.
The woody stems of this shrub are obvious, with the upper part being more branched,
forming a pseudo-whirl shape, and the tip of the branchlet often bent or curled. S. laricifolia
is another small shrub. Its young shoots are milky white, while the old shoots are dark
brown or brown. R. songarica is another small shrub in the study area. Its new branches
are pale red, while its old branches are grayish brown or light brown. All these shrubs are
excellent sand-fixing plants. Their strong resistance to drought, wind and water erosion
means they play a significant role in water and soil conservation in the Gobi Desert [47].

2.2. Field Sampling Scheme Design

In this study, three sample lines were designed, and a total of 66 sample plots were
set up with an altitude difference of 50 m on each sample line (Figure 1). The area of each
sample plot was designed to be 30 × 30 m. All plants in the sample plots were investigated,
including plant species, plant heights, and crown widths during the vigorous vegetation
growth season from July to August in 2018–2020. At the same time, the geomorphology
of the sampled land was determined. We also precisely documented the longitude and
latitude of the sample plots’ centers for later images coordinate positioning. The study
area’s elevation varied from 1050 to 1350 m. In order to have a better understanding of the
spatial distribution pattern of plant species in the Gobi Desert, the alluvial fan was split into
three zones according to altitude: the top of the alluvial fan (more than 1250 m), middle of
the alluvial fan (1150–1250 m) and bottom of the alluvial fan (less than 1150 m) [48].

In this study, the DJI Inspire 1 RAW UAV (SZ DJI Technology Co., Shenzhen, China),
which has an anti-shake platform, fitted with a 16-million-pixel camera and a four-rotor
flight system, and can resist a 10 m/s wind speed, was used for RGB image collection under
clear sky conditions. The UAV flew at a height of 60 m above the sample plots and shot
them vertically, and the area was approximately 30 × 30 m. The flight path was configured
with 70% side and 75% forward overlap. This was to ensure the maximum number of
matching loci while reducing data redundancy. An ortho-mosaic image was created using
the imagery and the POS (position and orientation system) data. During the flight, UAV’s
visible-light camera took pictures automatically every two seconds at a speed of 19.8 m/s.
Excessive wind speed affected the imaged shrub assembly and cloud cover impacted the
color consistency of the image mosaic. During each flight, we accurately recorded the
latitude and longitude of the four corners and the center of the sample plot for subsequent
UAV image coordinate positioning.
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Figure 1. Study sites location: (a) map of study area in the Xinjiang Autonomous Region of China;
(b) map of study area in Gobi Desert in the Xinjiang Autonomous Region; (c) map of sampling area in the
Gobi Desert; (d–f) UAV remote sensing images of top, middle and bottom of the alluvial fan, respectively;
(g–i) vegetation landscape pictures of top, middle and bottom of the alluvial fan, respectively.

2.3. Vegetation Coverage Extraction Based on the UAV RGB Image
2.3.1. Image Preprocessing

In this study, Agisoft PhotoScan Professional version 1.3.2 (Agisoft LLC, St. Petersburg,
Russia) software was used for UAV image preprocessing. Using the structure from motion
(SfM) algorithm, this software finds features in multiple images and generates 3D models
and ortho-mosaics by superimposing them on top of one another [49]. The workflow we
used in PhotoScan for processing RGB images to generate photogrammetric point clouds,
as well as georeferenced ortho-mosaics: (1) Filtering out low-quality photographs involved
examining each set of photographs and deleting any photographs which were extremely
blurry or had exceptionally different illumination. (2) By using the Align Photos tool, we
were able to find common points among images and generate a sparse point cloud, which
we then used the Build Dense Cloud tool to produce a dense point cloud. (3) Each point
cloud was georeferenced using the ground-measured GPS coordinates of the five ground
control markers, and then, the optimized alignment tool was used to improve the sparse
point clouds based on the identified coordinates. (4) A 3D mesh surface was generated
using the Build Mesh tool, a texture file was generated using the Build Texture tool, and an

Figure 1. Study sites location: (a) map of study area in the Xinjiang Autonomous Region of China;
(b) map of study area in Gobi Desert in the Xinjiang Autonomous Region; (c) map of sampling area in the
Gobi Desert; (d–f) UAV remote sensing images of top, middle and bottom of the alluvial fan, respectively;
(g–i) vegetation landscape pictures of top, middle and bottom of the alluvial fan, respectively.

2.3. Vegetation Coverage Extraction Based on the UAV RGB Image
2.3.1. Image Preprocessing

In this study, Agisoft PhotoScan Professional version 1.3.2 (Agisoft LLC, St. Petersburg,
Russia) software was used for UAV image preprocessing. Using the structure from motion
(SfM) algorithm, this software finds features in multiple images and generates 3D models
and ortho-mosaics by superimposing them on top of one another [49]. The workflow we
used in PhotoScan for processing RGB images to generate photogrammetric point clouds,
as well as georeferenced ortho-mosaics: (1) Filtering out low-quality photographs involved
examining each set of photographs and deleting any photographs which were extremely
blurry or had exceptionally different illumination. (2) By using the Align Photos tool, we
were able to find common points among images and generate a sparse point cloud, which
we then used the Build Dense Cloud tool to produce a dense point cloud. (3) Each point
cloud was georeferenced using the ground-measured GPS coordinates of the five ground
control markers, and then, the optimized alignment tool was used to improve the sparse
point clouds based on the identified coordinates. (4) A 3D mesh surface was generated
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using the Build Mesh tool, a texture file was generated using the Build Texture tool, and an
ortho-mosaic image was generated using the Build Orthomosaic tool. The image resolution
of DJI Inspire 1 RAW UAV was 1.5 cm/pixel. With this software, an orthophoto image of
high spatial resolution can be created, which is useful for subsequent processing.

2.3.2. Vegetation Coverage Calculation

High-resolution images are appropriate for object-oriented classification [50]. Object-
oriented classification allows us to categorize vegetation, soil, rocks and other background
interferents areas on the Digital Orthophoto Map (DOM, with a resolution of 1.5 cm/pixel)
which is generated from the UAV RGB images. Prior to extracting the spectrum corresponding
to the green canopy, a mask image had to be generated by segmenting the canopy from the soil
background. An object-based classification approach, which involved image segmentation
(multi-scale segmentation) and classification, was achieved using eCognition Developer
software (version 9.0). For the ideal segmentation scale, ESP (estimation of scale parameters)
was employed as a segmentation tool [51]. Object-oriented ortho-mosaic image segmentation
was carried out in this study using the segmentation scale of 10, the shape factor of 0.7, the
compactness factor of 0.5, and the multiresolution segmentation algorithm. Then, classification
indicators were created based on the visible spectral indices (Table 1) for each object, and the
training samples were further categorized into “Vegetation,” and “Bare land”.

Table 1. RGB VIs used in the study.

Vegetation Indices Symbol Formula Theory
Interval References

Excess green index EXG 2 × g − r − b [−1, 2] [52]

Excess green minus excess
red index EXGR EXG − EXR = 3 ×

g − 2.4 × r − b [−2.4, 3] [53]

Green blue ratio index GBRI G/B [0, 255] [54]

Green Leaf Index GLI (2 × G − B −
R)/(−B − R) [−1, 1] [55]

Red, green and blue
vegetation index RGBVI (G2 − R × B)/(G2

+ R × B)
[−1, 1] [56]

Vegetative index VEG G/(R0.667 × B0.333) [0, 255] [57]
R, G and B represent the pixel values of the red, green and blue wave segments, respectively. r = red ratio = R/(R + G + B),
g = green ratio = G/(R + G + B), b = blue ratio = B/(R + G + B).

RGB VIs were used to extract the vegetation coverage of UAV orthophoto images. To
determine which RGB indices have previously been useful in estimation of shrub AGB
from UAV imagery, we reviewed existing studies which have utilized this data source
and have selected six RGB indices that have proven effective in this application (Table 1).
The Kappa coefficient was used to measure the accuracy of extracting vegetation from
six RGB indices. Additionally, we determined that a threshold should be set to separate
vegetation data from other data. In order to determine vegetation coverage using RGB VIs,
it is crucial to choose the appropriate threshold value to differentiate vegetation from bare
land. Following were the threshold values for the six VIs: the threshold value for excess
green index (EXG) was 0.02, for excess green minus excess red index (EXGR) was −0.12,
for green blue ratio index (GBRI) was 1.5, for green leaf Index (GLI) was 0.02, for red, green
and blue vegetation index (RGBVI) was 0.08, and for vegetative index (VEG) was 1.02.
The extraction results of shrub vegetation coverage in the Gobi Desert were tested using
66 field-measured vegetation coverage results.
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2.4. Calculation of Shrub AGB
2.4.1. Method of Obtaining Shrub AGB

The harvest method was used to obtain the AGB of a single shrub. To calculate AGB of
Gobi Desert shrub, a total of 36 plants of S. laricifolia, 33 plants of E. przewalskii, 24 plants of
R. songarica, 23 plants of G. przewalskii, 14 plants of Zygophyllum xanthoxylon and 13 plants of
Anabasis brevifolia were harvested. Moreover, their crown widths were measured directly in
the field. Crown area was considered to be a predictor of AGB of shrub because of accurate
results from previous studies of estimating AGB of shrub [58,59]. The crown area (ca, m2)
is defined as the area of the vertical projection of the crown to a horizontal plane [60] and is
calculated as:

ca (crown area) = cwns (crown width north− south)× cwew (crown width east−west)× π

40, 000

In the formula, cwns is crown width in the north–south direction in units cm, and
cwew is crown width in the east–west direction in units cm. The AGB of single plants
were obtained by constant temperature drying method in the laboratory. The regression
relationship between AGB of a single plant and crown area and statistical analysis of
significance were determined using SPSS version 22 (IBM, Armonk, NY, USA). Linear,
power, exponent, quadratic, cubic and logarithmic regression models were used for the
regression models. 80% of the data were used to establish the regression models of shrubs
and 20% were used to verify the model.

2.4.2. Calculation AGB of Vegetation in Sample Plots

The shrub crown areas in the sample plots were calculated by formula, and then the
AGB of all shrubs were calculated using the crown area-AGB model of a single shrub.

3. Results
3.1. Vegetation Coverage Extraction Results Based on the UAV RGB Image

The classification results of this study using EXG, EXGR, GBRI, GLI, RGBVI and VEG
algorithms for the extraction of shrub crown areas from UAV images are illustrated in
Figure 2. Among them, the EXG algorithm performed best for estimating shrub crown
areas with an overall accuracy of 0.97 and Kappa coefficient of 0.94 (Table 2). The results
after ortho-mosaic image classification are illustrated in Figure 3, where the vegetation
crown areas are white, the non-vegetation areas are black. The results of the MAE and
RMSE using the 66 field-measured vegetation coverage results for testing the extracted
vegetation of the Gobi Desert shrubs are as follows: MAEtop = 0.028, RMSEtop = 0.039,
MAEmiddle = 0.016, RMSEmiddle = 0.019, MAEbottom = 0.011, RMSEbottom = 0.015. The values
of MAE and MSE indicated that vegetation coverage can be extracted using VIs based
on UAV RGB images. Figure 4 shows that the coverage difference at the same position
of the alluvial fan is 0.87–1.44%. As the elevation gradient of alluvial fans decreased, the
vegetation coverage gradually decreased.

Table 2. The accuracy evaluation of spectral indices extraction.

Visible Vegetation Index Overall Accuracy (%) Kappa Coefficient (%)

EXGR 69.00 37.13
GBRI 75.00 48.45
VEG 88.00 75.57

RGBVI 95.00 89.81
GLI 97.00 93.88
EXG 97.00 94.00
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Figure 2. Classification results based on UAV images for different VIs of Gobi Desert: (a) UAV
orthophoto; (b–g) the shrub crown of EXGR, GBRI, VEG, RGBVI, GLI and EXG calculated based on a
fixed threshold, respectively.
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Figure 3. Vegetation coverage calculated based on EXG indices at different positions of the alluvial fan:
(A–C) UAV orthophoto at the top, middle and bottom of the alluvial fan, respectively; (a–c) vegetation
coverage at the top, middle and bottom of the alluvial fan, respectively, where the vegetation crown
areas were white, the non-vegetation areas were black.
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Figure 4. Vegetation coverage of three sample lines at different positions of the alluvial fan.

3.2. The AGB Results and Distribution of Gobi Desert Shrubs Based on Ground Survey Data

The AGB of each plant in the sample plots was obtained based on the model of the
crown area and the AGB of a single plant. The goodness-of-fit measures of several allometric
models were evaluated for trends. Based on the regression models (e.g., power, exponent,
quadratic, cubic, linear and logarithm), the assessment of the relationships among AGB
and crown area models of shrubs is shown in Table 3 and Figure 5. We observed a power
model for the AGB and shrub crown areas (Table 3), because the power model had the
highest R2 value. According to the results of model validation, the total relative error (RE)
was 8.60% and mean relative error absolute value (RMA) was 34.04%. The values of RE and
RMA demonstrated that the regression fitting accuracy of the shrub AGB and the crown
area model met the calculation requirements.

Table 3. The fitting effects and significance of the AGB and shrub crown area model.

Model R2 Adjusted R2 F-Test Sig.

Power 0.760 0.758 360.291 0.000
Exponent 0.649 0.646 210.584 0.000
Quadratic 0.648 0.642 104.058 0.000

Cubic 0.648 0.639 68.779 0.000
Linear 0.642 0.639 204.178 0.000

Logarithm 0.462 0.457 97.876 0.000

The AGBs of the sample plots were calculated and categorized based on their position
at the alluvial fan (Figure 6). As the altitude decreased, AGB decreased from 201 to 2 g/m2.
The AGBs of sample plots at the top of the alluvial fan ranged from 60–201 g/m2, at the
middle of the alluvial fan from 7–145 g/m2, and at the bottom of the alluvial fan from
2–90 g/m2. It was obvious from the maximum and minimum values and distribution
(Figure 6), that with a decrease in altitude, the fluctuation range of AGB tended to decrease.
The fluctuation falls from 141 g/m2 at the top of the alluvial fan to 88 g/m2 at the bottom.
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3.3. The Relationship between Vegetation Coverage and AGB of Gobi Desert Shrubs in Sample Plots

The AGBs of all sample plots were obtained based on the vegetation coverage of
the sample plots and the AGB modeling of single plants. Power, cubic, quadratic, linear,
logarithmic and exponential functions were applied to fit the regression model between
vegetation coverage and AGB. The model fitting degree, F-test, significance, mean absolute
error (MAE) and root mean square error (RMSE) are shown in Table 4. The fitting curves of
each model are shown in Figure 7. Vegetation coverage and AGB had the best regression
fitting relationship with the power function (the fitting equation is Y = 1167.341 x0.946). The
optimal fitting model is indicated by the red line.
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Table 4. Fitting effects of vegetation coverage and AGB.

Model R2 F-Test RMSE (g/m2)
Root Mean Square Error

MAE (g/m2)
Mean Absolute Error

Power 0.897 443.450 ** 20.084 14.985
Cubic 0.765 53.091 ** 10,871.215 9137.626

Quadratic 0.752 75.709 ** 410.309 347.357
Linear 0.738 143.816 ** 20.148 15.883

Logarithm 0.686 111.588 ** 31.148 26.580
Exponent 0.686 111.324 ** 38.007 29.357

p value significance: ** is significant at the 0.01 level (p < 0.01).
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3.4. The AGB Results of Gobi Desert Shrubs Using UAV RGB Images Based on Power Model

The predicted AGBs of shrubs communities were calculated and categorized using
UAV RGB Images based on power model at the Gobi Desert alluvial fan (Figure 8). As
the altitude decreased, AGB decreased gradually. At the top, middle and bottom of the
alluvial fan, the mean AGB values were 115 g/m2, 62 g/m2, and 36 g/m2, respectively.
The comparison between observed and UAV predicted AGB values based on 66 sample
plots with all statistics showed that the observed AGB and predicted AGB were positively
correlated at a highly significant level (p < 0.01) with a coefficient of determination R2 of
0.847 (Figure 9). The predicted AGB values were closer to the actual observed AGB values.
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Figure 8. AGB map of Gobi Desert shrub communities: (a–c) AGB of shrub communities at the top,
middle and bottom of the alluvial fan, respectively.
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4. Discussion

This study extracted vegetation coverage with an accuracy of over 90%, which was
similar to the results of Riihimäki, Zhang and Mao et al. [21,28,61]. In general, as an
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alternative to conventional field surveys, the RGB VIs can be employed for calculating
vegetation coverage. This enables efficient estimation of vegetation coverage at a wider
spatial scale in the Gobi Desert region than ground-based measurements and at a higher
resolution than satellite remote sensing imagery.

We used the biomass equation method to estimate the AGB of the shrub commu-
nity [62]. The biomass equation method uses the allometric growth law of shrubs to
establish the allometric growth equation of the biomass by measuring the relevant factors
(crown width, etc.) and the biomass of the shrubs [63]. For shrubs in the Gobi Desert, plant
crown diameter is the easiest indicator to be determined, and there is a correlation between
crown area and AGB. Therefore, we used the crown areas of single plants to fit the AGB
and to calculate the AGB of the shrub community. The results showed that the AGB of a
single shrub has a power function relationship with the crown area, which is the same as
the results of Guo (2021) [34]. Therefore, a power function model was used to estimate the
AGB of each shrub plant in the shrub community. The sum of the AGBs of all shrub plants
was the AGB of the shrub community.

Accurately estimating AGB at the landscape scale in the Gobi Desert is challenging.
However, the development of UAVs provides the possibility for the rapid estimation of
vegetation AGB. The spatial resolution of the UAV RGB image in this study was 1.5 cm/pixel,
which meant that each individual bush contained many pixels and was rich in spectral
characteristics. RGB VIs may be sensitive to the biophysical characteristics of vegetation [25,64].
When using UAV images to estimate vegetation biomass, some researchers have found that
RGB VIs can be applied to quantify shrub AGB estimation [56,65,66].

We found that there is a good correlation between the AGB of shrubs and vegetation
coverage in the Gobi Desert area dominated by shrubs with a low height (<1 m). The best-
fitting model was the power function model, which is consistent with the research results of
Guo (2021) [34] and Li (2021) [35]. The simple regression model can express the relationship
between the predictor variable (vegetation AGB) and the dependent variable (vegetation
coverage) in a single equation and can reflect some biological and physical meanings. Some
researchers have found that UAV data can be used to estimate vegetation biomass with
the same or higher accuracy through a regression model [54,67]. For large-scale vegetation
monitoring, our power regression model developed based on UAV data represents a direct
and biologically understandable method for AGB modeling. Our research also shows the
regression relationship between vegetation coverage and vegetation AGB extracted from
UAV images in the Gobi Desert to estimate the accuracy of vegetation AGB. The maximum
R2 value obtained by this method is 0.897, while the best interpretation of vegetation AGB
estimated by other related studies using similar methods is lower than this value [33,34,68].
We successfully employed crown area-AGB model to estimate the AGB of shrubs in Gobi
Desert and performed better than PLS, MLR, SVM, RF and ANN [66,69]. The predicted
AGB results of Gobi Desert shrubs using UAV RGB images based on power model were
closer to the actual observed AGB results based on field surveys. These results show that
the simple regression model we constructed can be used to accurately predict the vegetation
biomass in the Gobi Desert. The vegetation AGB detection method constructed is relatively
accurate and inexpensive in this study. It is useful for vegetation AGB surveys in areas
with simple vegetation types, such as the Gobi Desert, and provides an effective method
for the rapid monitoring of large-scale vegetation AGB.

5. Conclusions

With the help of low-cost and high-resolution UAV RGB images, we developed an
approach for estimating the AGB of shrub communities in the Gobi Desert with visible VIs.
The main conclusions are as follows: As the elevation gradient of the alluvial fan decreased,
the vegetation coverage and AGB of shrub gradually decreased. The relationship between
vegetation coverage and AGB conformed to the power model Y = 1167.341 x0.946, where
Y is the AGB of the sample plots scale in units g/m2, and x is the vegetation coverage
obtained from the visible VIs. The predicted AGB values of shrubs using UAV RGB images
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based on power model were closer to the actual observed AGB values. The AGB estimation
results showed that in regions where the composition of the vegetation was simple, a method
that combined the single shrub biomass model with object-based image operations to extract
the crown area of shrubs had good potential for estimating the AGB of shrub communities.
This could provide a basis for restoring habitats in the Gobi Desert. In this study, we only
used vegetation coverage to estimate vegetation AGB without considering the community
types. Therefore, future research could increase the number of study sites and sample plots
of different community types at different positions of the alluvial fan, to further verify the
feasibility of UAV to inverse vegetation coverage and AGB of Gobi Desert at a quadrat scale.
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