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Abstract: Over the last century, endophytic fungi have gained tremendous attention due to their ability
to produce novel bioactive compounds exhibiting varied biological properties and are, therefore,
utilized for medicinal, pharmaceutical, and agricultural applications. Endophytic fungi reside within
the plant tissues without showing any disease symptoms, thus supporting the physiological and
ecological attributes of the host plant. Ground breaking lead compounds, such as paclitaxel and
penicillin, produced by endophytic fungi have paved the way for exploring novel bioactive compounds
for commercial usage. Despite this, limited research has been conducted in this valuable and unique
niche area. These bioactive compounds belong to various structural groups, including alkaloids,
peptides, steroids, terpenoids, phenols, quinones, phenols, and flavonoids. The current review focuses
on the significance of endophytic fungi in producing novel bioactive compounds possessing a variety
of biological properties that include antibacterial, antiviral, antifungal, antiprotozoal, antiparasitic,
antioxidant, immunosuppressant, and anticancer functions. Taking into consideration the portal of
this publication, special emphasis is placed on the antimicrobial and antiviral activities of metabolites
produced by endophytes against human pathogens. It also highlights the importance of utilization
of these compounds as potential treatment agents for serious life-threatening infectious diseases.
This is supported by the fact that several findings have indicated that these bioactive compounds may
significantly contribute towards the fight against resistant human and plant pathogens, thus motivating
the need enhance the search for new, more efficacious and cost-effective antimicrobial drugs.
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1. Introduction

In recent years, there has been a dramatic shift towards a more sustainable, eco-friendly, and natural
way of living. Many researchers are of the opinion that there is an alarming increase in drug resistance
worldwide and the problem is escalating tremendously, thus rendering the current antimicrobial agents
ineffective [1–3]. Approximately two million people worldwide are infected with antibiotic-resistant
pathogens, resulting in at least 23,000 mortalities per annum [4]. According to the World Health
Organization (WHO), antimicrobial resistance (AMR) has emerged as one of the most serious public
health concerns of the 21st century [5]. Moreover, due to the many disadvantages and side effects
associated with current antimicrobial agents, it is not surprising that a large proportion of individuals,
especially those who live in developing countries, are utilizing naturally available bioactive alternatives
for their primary healthcare.
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In developing countries, especially those in Africa, Asia, and Latin America, more than 80% of
the population utilize medicinal plants to address their primary healthcare needs and wellness [6].
With over 400,000 diverse plant species inhabiting the planet, a majority are capable of treating a broad
spectrum of ailments. Due to the fact that they possess a wide variety of biological properties, this has
increased interest in research designed to search for “ideal” bioactive compounds that may be of benefit
to mankind [7–9]. However, over-propagation and excessive usage might lead to endangerment and
extinction of the plants. In-depth studies have shown that endophytic fungi are capable of colonizing
plant tissues, providing protection, and are a rich source of natural bioactive compounds [10].

In addition, the ratio of fungal species to vascular plants is approximately 1:6, which is estimated
at 1.5 million fungal species [11]. Endophytes are microorganisms that colonize internal plant tissues
without causing any apparent harm to the host plant throughout their life cycle. This interaction
is considered as mutualistic symbiosis, whereby both partners benefit from the association [12–14].
The endophytes aid in the physiological and ecological roles of the plants, resulting in protection and
survival mechanisms. Moreover, endophytic fungi promote growth, prevent abiotic and biotic stresses,
such as drought conditions, salinity, extreme temperatures, heavy metal toxicity, and oxidative stress,
and provide protection from insect and herbivores [13,15,16]. Endophytes have the ability to prevent
resistance mechanisms by overcoming pathogenic invasion using secondary metabolites.

Bioactive compounds are primarily responsible for the beneficial characteristics displayed by
endophytic fungi. History has shown that such metabolic compounds might aid in ground-breaking
discoveries, e.g., the discovery of penicillin produced by Penicillium chrysogenum, which was a milestone
in the development of antibiotic drugs, as a “front-line” antibiotic which saved millions of lives; hence,
it was referred to as “wonder drug” [17]. Another “gold” bioactive compound is paclitaxel (taxol),
which is produced by Taxomyces andreanae for chemotherapy purposes [18]. These bioactive metabolites
might be structurally classified into alkaloids, benzopyranones, chinones, peptides, phenols, quinones,
flavonoids, steroids, terpenoids, tetralones, xanthones, and others [19]. They have exhibited numerous
biological properties, including antibacterial, antifungal, immunosuppressants, antiviral, antiparasitic,
antioxidant, anti-inflammatory, and anticancer properties [20].

New biotechnological advances concentrate on the search for and utilization of novel bioactive
compounds extracted from endophytic fungi. Despite all of this, only a tiny portion of endophytic
fungi have been isolated and investigated for their biological activities. In this current review,
we focus in depth on the various biological properties demonstrated by endophytic fungi. We also
identify novel bioactive compounds associated with the activities. Furthermore, we shed light on the
activities against resistant pathogenic microorganisms. Unexplored niche areas such as these will
progress the drug development process tremendously. Endophytic fungi are an abundant source of
natural bioactive compounds which are novel, renewable, and low in toxicity and more efficacious,
more potent, more affordable, safer, and less resistant than conventional antimicrobial agents. Hence,
this will alleviate the massive burden on public healthcare systems and aid in the medical and
pharmaceutical industries.

2. Biological Properties of Novel Bioactive Compounds from Endophytic Fungi

Various biological activities, such as antibacterial, antifungal, immunosuppressant, antiviral,
antiparasitic, antioxidant, anti-inflammatory, and anticancer, were exhibited by endophytic fungi with
a wealth of bioactive metabolites. In this section, we investigate endophytic fungi as a source of
countless bioactive compounds which might be beneficial for human health.

2.1. Bioactive Compounds as An Alternative Antibacterial Agents

Since the golden era of penicillin, antibiotics have become a staple conventional medicine and
have reduced the fatality rate by saving millions of lives, as was proven in World War II [21]. In the
1940s, it was the first prescribed antibiotic utilized in the treatment of life-threatening infections.
Shortly afterward, the development of antibiotic resistance, and particularly the detection of multiple
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antibiotic-resistant (MAR) bacteria, has resulted to downturn reduction of the activity of antibiotics [22].
The dramatic increase in microbial resistance reduces the efficacy of existing antibiotics and, therefore,
negatively affects their applications in human medicine. Over the last century, a number of antibiotics
have emerged in the market, and despite this developmental processes, there is evidence of antibiotic
resistance being developed against all these antibiotics (Figure 1) [23]. According to the World health
Organization (WHO), antibiotic resistance remains one of the leading threats to human health and
poses a severe financial burden on healthcare systems worldwide [24].
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Figure 1. Timeline of events in the development of antibiotic resistance [23].

Aharwal and co-workers [25], recognized the severity of antibiotic resistance and emphasized
the importance of innovative research and development strategies. Several studies have established
that endophytes have resistance mechanisms in place to overcome pathogenic invasion through the
production of secondary compounds [15,19,26]. Bioactive metabolites are low-molecular-weight,
organic natural substances produced by microorganisms that possess activities at low concentrations
against other microorganisms, in respect to bioactive compounds with potential antibiotic
properties. Antibacterial compounds produced by endophytes have been shown to occupy a broad
spectrum of structural classes, such as alkaloids, peptides, steroids, terpenoids, phenols, quinines,
and flavonoids [27].

Recently, numerous scientists have demonstrated that endophytic fungi have a variety of
beneficial, novel, and effective bioactive metabolites possessing antibacterial activity. Endophytic
Alternaria alternate (AE1) was isolated from healthy and mature leaves of Azadirachta indica plants
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located in Santiniketan. The fungal extracts exhibited excellent antimicrobial activities against both
Gram-positive and Gram-negative bacteria (Bacillus subtilis MTCC 121, Listeria monocytogenes MTCC
657, Staphylococcus aureus MTCC 96 and Staphylococcus epidermidis MTCC 2639, Salmonella typhimurium
MTCC 98, Pseudomonas aeruginosa MTCC 741, and Escherichia coli MTCC 1667) with minimum inhibitory
concentration (MIC) values of 300–400 µg/mL. The mode of action was determined as being cidal
and further analysis demonstrated that cell lysis or leakage of cell membrane was occurring. Gas
chromatography–mass spectrometry (GC-MS) analysis confirmed that the fungal extracts consist of
several bioactive compounds [28]. The bioactive compounds produced from endophytic fungal extracts
of Penicillium sp. demonstrated strong effectiveness against Enterococcus faecalis with an MIC value of
62.50 mg/mL [29]. Linoleic acid (9,12-octadecadienoic acid (Z,Z)) and cyclodecasiloxane produced by
endophytic Alternaria sp. were successfully isolated from native South African Pelargonium sidoides,
and this is considered as a first report. These fungal metabolites inhibited several food-borne and food
spoilage bacteria, including Bacillus cereus, Escherichia coli, and Enterococcus faecium, and E. gallinarum
showed a 2–12-mm zone of inhibition [30]. Despite the fact that root-knot nematodes such as
Meloidogyne incognita are persistent parasites in plants and contribute to about 5% of global crop
losses [31], a biocontrol investigation revealed that the endophytic fungus Piriformospora indica was
capable of inhibiting the root-knot nematode parasite and, thus, enhanced plant growth [31].

Kjer et al. (2009) discovered two new secondary metabolites (10-oxo-10H-phenaleno [1,2,3-de]
chromene-2-carboxylic acids and xanalteric acids I and II, Figure 2) which were produced by the
fungus Alternaria sp., isolated from the mangrove (Sonneratia albacollected) plant located in China.
The metabolites exhibited strong antibacterial properties against Enterococcus faecalis, Pseudomonas
aeroginosa, and Staphylococcus epidermidis [32].

Ding and colleagues (2019) also reported compounds 1 and 2 as novel isocoumarin
derivatives (Figure 2) with a distinctive butanetriol group at C-3 using NMR and MS.
Furthermore, the bioactive compounds exhibited some activity against Gram-negative bacteria.
Compounds 1 and 2 showed effectiveness against E. coli, with MIC values of 32 µg/mL [34].
Besides that, other studies also discovered novel ester metabolites isolated from endophytic
fungus from the eastern larch that possess antibacterial efficacy against Vibrio salmonicida,
Pseudomonas aeruginosa, and Staphylococcus aureus. These compounds were identified as
8,1′,5′-trihydroxy-3′,4′dihydro-1′H-[2,4′]binaphthalenyl-1,4,2′-trione, (1), and 2-methyloctanoic acid
6-oxo-2-propenyl-3,6-dihydro-2H-pyran-3-yl ester, (2) [35]. Figure 2 represent some bioactive
compounds are with antibacterial effect.

2.2. Bioactive Compounds as an Alternative to Antifungal Agents

The diversity of fungal species is currently estimated at 2.2 to 3.8 million worldwide, with soil
fungal populations contributing a significant portion, and fungi are regarded as ubiquitous [36].
This suggests that there might be more fungal interaction, whether beneficial or pathogenic. Recently,
fungal diseases were accountable for over a 1.6 million mortality rate per annum, with over one
billion individuals in a state of severe morbidity. In the agricultural sector, fungal pathogens might
lead to damage or loss of crops, economic losses, and, eventually, affect food security and food
production [37]. In addition, there has been a dramatic increase in the resistance of microorganisms to
current antimicrobial agents, including antifungal agents. Despite the inefficacy of antifungal agents,
there is currently a lack of therapeutic agents on the market. Fungal diseases are generally underrated
and overlooked, although they cause secondary infections to hospitalized patients. Pathogenic fungi
are opportunistic and affect immunocompromised individuals, thus posing a serious burden on current
health care systems worldwide [38].
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Research advances in modern antifungal agents rely highly on screening for novel bioactive
compounds that have gained popularity in the drug development process and will aid in the fight
against animal and human fungal pathogens. Peláez and co-workers (2000) established that new
triterpene glycoside exhibited good antifungal inhibitory activities against Candida and Aspergillus sp.
with 19 and 30 mm, respectively. Furthermore, in vivo studies conducted on mouse models
showed moderate efficacy against candidiasis [39]. Recent studies revisited formerly undescribed
bioactive compounds—strobilurin G, favolon, pterulinic acid, and 2,3-dihydro-1-benzoxepin derivative
isolated from Favolaschia calocera—which displayed antifungal effectiveness. The minimum inhibitory
concentration (MIC) displayed by compound 1 was ≤ 9.37 and ≤ 18.75 µg/mL against Candida tenuis
and Mucor plumbeus, respectively [40]. Similar studies showed that endophytic fungi (Penicillium sp.
(C7B) and Trichoderma sp. (B1C, C4E, C4D)) were effective against Escherichia coli, Staphylococcus aereus,
and Vibrio alginolyticus, displaying clear-zone diameters of 17.91 ± 0.84 mm; 17.78 ± 0.83 mm;
17.66 ± 0.83 mm; 16.72 ± 1.15 mm, and 13.65 ± 0.27 mm, respectively [41].

“Pestalachlorides A” (C21H21Cl2NO5) and “B” (C20H18Cl2O5) are chlorinated benzophenone
derivatives that inhibited plant pathogenic fungi, Fusarium culmorum, Gibberella zeae,
and Verticillium albo-atrum, exhibiting MIC activities of 7.2, 144.4, and 114.4 Mm respectively [42].
Well known compounds also include iridoide, glcopyranoside and saponin (Figure 3).
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Endophytic Humicola sp. (JS-0112 strain) proved to be an ideal candidate for the development
of novel fungicides by controlling plant pathogenic Sclerotinia homoeocarpa [43]. Current studies
have discovered two novel polyketides with an unprecedented “C12-C6” carbon skeleton isolated
from endophytic Phomopsis sp. (CFS42). Moreover, the compounds inhibited activities against
Bipolaris sorokinian, Alternaria alternat, Fursarium avenaceum, and Curvularia lunata. Therefore,
this reiterates the untapped wealth of novel bioactive compounds produced by endophytic fungi [44].

2.3. Bioactive Compounds for Treating Cancer Cells (Anticancer Activity)

According to the World Health Organization (WHO), cancer is a group of diseases caused by the
malignant growth of cells or tumor resulting from uncontrolled cell division [45]. Cancer was primarily
responsible for one in six deaths in among humans in annum of 2018, resulting in an overall estimate of
9.6 million deaths worldwide. Cancer was reported to be the second leading cause of deaths worldwide.
Men are often more susceptible to lung, prostate, colorectal, stomach, and liver cancer, while women
often suffer from breast, colorectal, lung, cervical, and thyroid cancer [45]. The majority (70%) of
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deaths caused by cancer occur in low- and middle-income countries in Africa, Asia, and Central and
South America [45]. Currently, therapeutic processes for treating cancer patients present tremendous
challenges to both the physician and the patient, resulting from the lack of precision as well as lack
of bioavailability, since most anticancer agents are naturally lipophilic and have a high first-pass
effect. In addition, these agents are also non-specific towards their targets and, therefore, may interact
with non-cancerous tissues. Moreover, cancer patients most often experience adverse effects after
therapeutic procedures that are also associated with high toxicity [46–48]. Due to these complications,
cancers and their associated diseases are considered to be a serious healthcare burden to patients
globally [49]. This explains the reasons for continuous focused investigations aimed at discovering
new natural bioactive compounds, especially from endophytes, that may serve as alternative agents to
combat cancer [47,48].

The ground-breaking study resulting in the discovery of paclitaxel, also known as the “golden”
compound, produced renewed hope in the search for novel anticancer agents, and the compound
gained significant popularity because of its distinctive mode of action when compared to other
anticancer agents. Paclitaxel obstructs the uncontrolled duplication of cancerous cells, thereby reducing
their growth and spread. Paclitaxel with a chemical formula of C47H51NO14 is formulated from ‘taxol”,
the first anticancer drug to generate billions of dollars. The endophytic fungus (Taxomyces andreanae)
isolated from the Pacific yew bark (Taxus brevifolia) produces the anticancer bioactive compound
paclitaxel. A number of studies have also isolated taxol and its related compounds from a variety of
endophytes, including Grammothele lineata [50], Aspegillus aculeatinus [51], Alternaria brassicicola [52],
and Acremonium, Colletotrichum, and Fusarium spp., from an ecologically altered Taxus baccata [53].
Taxol and its associated compounds were characterized and confirmed using UV absorption, HPLC,
FTIR spectra, and LC–ESI–MS [50–53]. Despite its very effective anticancer properties, taxol is rare,
which amplifies the need to enhance the search for alternative sources to this very important bioactive
metabolite [51]. In addition, plants that produce taxol appear to be “rare”, which, coupled with the
fact that the production of taxol from Taxus plants is a complex process, means that an alternative
will be to constantly assess taxol-producing endophytic fungi due to the ease and practicality of
obtaining these valuable compounds. In order to understand the complexity of the processes
or molecular mechanisms involved in the production of taxol, [51] assessed the transcriptome of
Aspergillus aculeatinus Tax-6, indicating that genes involved in two pathways (mevalonate (MVA) and
nonmevalonate (MEP)) need to be expressed. Despite the fact that the potential of endophytes to
produce taxol varies, with Grammothele lineata producing 382.2µg/L [50], Alternaria brassicicola producing
140.8 µg/L taxol [52], and Acremonium, Colletotrichum, and Fusarium spp., which also produced up to
116.19 µg/L [53], the production of a very high yield (560 µg/L) by the mutant strain A. aculeatinus
BT-2 when compared to the wild-type A. aculeatinus Tax-6 strain [51] indicates the importance of
genetic manipulation in the search for these very important bioactive compounds. In addition to
the previously mentioned studies, other endophytic fungi, such as Pestalotiopsis microspore, Alternaria
alternata, Periconia sp., Pithomyces sp., Chaetomella raphigera, Monochaetia sp., Seimatoantlerium nepalense,
Botryodiplodia theobromae, Phyllosticta spinarum, Pestalotiopsis terminaliae, and Bartalinia robillardoides,
have also been found to produce anticancer bioactive agents that chemically belong to taxols [48,54].
Several taxol-producing endophytes therefore provided a cheaper and more accessible alternative for
anticancer agents [54], and it is on this basis that taxol compounds were approved by the Food and
Drug Administration (FDA) for the treatment of advanced breast cancer, lung cancer, and refractory
ovarian cancer [55].

In addition to paclitaxel, camptothecin (C20H16N2O4), a bioactive alkaloid compound initially
isolated from Camptotheca acuminata wood in China, also exhibited anticancer properties [56,57].
Furthermore, another anticancer compound, “chaetoglobosin U”, was produced by the fungus
Chaetomium globosum, which lives synergistically in the stem of healthy Imperata cylindrica [58].
Other novel bioactive compounds, such as cytoglobosins C17 and D18 alkaloids from the endophytic
fungus Chaetomium globosum, inhibited antitumor activities on the cancer cell line A549 [59].
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Several bioactive compounds have been shown to possess anticancer activities (Figure 4). Li et al.
(2013) [58] also established that the endophyte Chaetomium globosum from the Ginkgo biloba
plant contained three novel compounds that include azaphilone alkaloids, chaetomugilides A–C,
and chaetoviridin E, all of which displayed high cytotoxic activities against the human cancer cell line
HePG2 [58]. Other endophytic fungi belonging to the genera Xylaria, Phoma, Hypoxylon, and Chalara
have also been reported to produce cytochalasins, which possess antitumor activities. In addition,
three novel cytochalasins, namely cytochalasin H, cytochalasin J, and cytochalasin E, were also
extracted from Rhinocladiella sp. isolated from Tripterygium wilfordii [60]. Podophyllotoxin (C22H22O8),
a lignan-type bioactive compound which was originally isolated from Podophyllum peltatum L. in the
1880s, and its derivatives are well-known to possess a variety of biological properties and are used as
cathartic, purgative, antiviral, vesicant, antibacterial, antihelminthic, and antitumor agents. Etoposide
and teniposide are chemotherapeutic medications produced from podophyllotoxin, and they are
currently available in the market. In addition, endophytes Fusarium oxysporum, Aspergillus fumigatus,
Phialocephala fortinii, and Trametes hirsute, as well as some belonging to the genera Trichoderma, Penicillium,
and Phomopsis, have also been reported to produce the compound podophyllotoxin, which exhibits
anticancer activities [61,62].

The discovery of other lead compounds was intensified by the isolation of camptothecin
from the endophytic fungi Fusarium solani housed in Camptotheca acuminata Decaisne (Nyssaceae)
wood located in China. Camptothecin (C20H16N2O4) is an alkaloid topoisomerase compound that
displayed remarkable potent antineoplastic efficacy. Camptothecin and 10-hydroxycamptothecin
were utilized in the development of the drugs topotecan and irinotecan, which are chemotherapeutic.
Since then, precursor 9-methoxycamptothecin and 10-hydroxycamptothecin have been reported to
exhibit powerful anticancer properties [63,64]. In addition to these findings, some reports have revealed
that camptothecin and methoxy camptothecin are capable of enhancing the development of fruits and
seed germination phases, thus assisting in protection against seed-borne pathogens [65].

Another significant group of bioactive compounds are phenylpropanoids, which are naturally
synthesized by plants. However, research has shown that endophytes also produce phenylpropanoids.
These compounds belong to the largest group of secondary metabolites that possess an aromatic
ring with a 3-carbon propene tail, thus resulting in a C6-C3 carbon skeleton. These compounds
are from the amino acids phenylalanine and tyrosine [66]. In cancerous cells, phenylpropanoids
prevent overexpression of histone deacetylase (HDAC), thus inhibiting the cell cycle and inducing
apoptosis [66]. Phenylpropanoid derivatives possessing antimicrobial activities have been extracted
from the endophytic fungus Aspergillus sp. (ZJ-68), associated with mangrove [67]. In another study,
fusarubin and anhydrofusarubin isolated from Cladosporium species inhibited cell growth and induced
apoptosis of human cancer cell lines HL-60, U937, and Jurkat [68]. Although both compounds
significantly increased apoptosis of these cancerous cells with increase in concentrations, fusarubin
significantly decreased the percentage of cells in the S phase while increasing those in the G2/M
phase [68]. On the contrary, anhydrofusarubin increased the percentage of cells in the G0/G1 phase but
decreased those in the S and G2/M phases [68]. These findings provide a valid basis for the need to
focus on investigations aimed at constantly assessing the potential of endophytic fungi to produce
bioactive compounds, given the evidence that they have an array of metabolites, such as alkaloids,
macrolides, terpenoids, flavonoids, glycosides, xanthones, isocoumarins, quinones, phenylpropanoids,
aliphatic metabolites, and lactones, with powerful anticancer properties [69]. Nonetheless, only a small
proportion of endophytes have been investigated so far, thus requiring more research in the niche area.
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2.4. Bioactive Compounds as a Potential Antioxidant Agent

Oxidation is a chemical reaction resulting in the loss of electrons from an atom, and this may
produce free radicals. Naturally occurring free radicals are unstable molecules produced during
chemical reactions such as digestion. These free radicals may participate in chain reactions which
might potentially cause cell damage in the human body [70,71]. This is mainly due to the fact that
after an atom losses an electron, the cell becomes imbalanced, thus resulting in cell damage. Hence,
when exposed to oxidative stress, cells may suffer from a wide range of diseases that may also include
chronic complications in humans [72]. Extensive studies have demonstrated that exposure of cells to
oxidative stress contributes to cellular degeneration, cancer, atherosclerosis, coronary heart ailments,
diabetes, Alzheimer’s disease, and hepatic and kidney damage as well as other neurodegenerative
disorders [73]. Some severe side effects of oxidative stress and their associated diseases in humans are
listed in Table 1.

Table 1. Summarization of diseases and side effects of oxidative stress.

OXIDATIVE STRESS

Neurological Multi-System Effects

Attention-deficit/hyperactivity disorder (ADHD)
Alzheimer’s disease

Anxiety and depression
Asperger syndrome

Autism
Multiple sclerosis

Parkinson’s disease

Diabetes
Cancer

Inflammation
Fibromyalgia
Lyme disease

Chronic fatigue syndrome
Metabolic syndrome

Anxiety
Hyperthyroidism

Sleep apnea

Cardiovascular Joints/Skin
Cardiovascular Disease

Angina Pectoris
Hypertension

Atherosclerosis

Gout
Dermatitis

Rheumatoid arthritis
Carpal tunnel syndrome

Gastrointestinal Disorder Respiratory
Crohn’s Disease

Gastroesophageal reflux disease (GERD)
Gastric ulcers
Celiac disease

Functional dyspepsia

Chronic obstructive pulmonary disease (COPD)
Asthma

Antioxidant agents are utilized to combat, prevent, and treat diseases that are linked with the
presence of reactive oxygen species (ROS), and these agents have displayed very high efficacy against
damage caused by ROS. ROS have been reported to boost the immune system by enabling cell
signaling to occur. Various industries, such as the food, pharmaceutical, and agricultural sectors, use
antioxidant compounds for beneficial purposes. Irrespective of the health concerns associated with
oxidative stress, the search for safer, more efficacious, and cost-effective natural antioxidants is highly
anticipated. Novel natural bioactive compounds have been reported to serve as a shelter against
oxidative damage by preventing or reducing free radicals and reactive oxygen species. Various studies
have demonstrated that molecules, including phenolic acids, phenylpropanoids, and flavonoids,
lignin, melanin, and tannins, exhibited antioxidant activity [74,75]. There is considerable evidence that
endophytic fungi produce several antioxidant compounds that are responsible for the stress tolerance
in host plants. The endophytic fungus Fusarium oxysporum from the leaves of Otoba gracilipes exhibited
antioxidant activity with as much as 51.5% of a scavenging effect on 2,2-diphenyl-1-picrylhydrazyl
(DPPH) after 5 min of reaction [76]. A total of forty-one bioactive compounds from the endophyte
Xylaria sp. were isolated from the medicinal plant Ginkgo biloba, and these compounds displayed
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antibacterial, antioxidant, anti-cardiovascular, anticancer, and antimicrobial properties. Phenolic
and flavonoid compounds, among others, have been shown to possess very effective antioxidant
properties [77]. Recently, studies conducted on the endophytic fungus Alternaria alternata AE1
isolated from Azadirachta indica also revealed that it produced secondary metabolites that possess very
effective antioxidant properties [28]. DPPH free radical and superoxide radical scavenging tests of the
secondary metabolites displayed antioxidant potentials with an IC50 value of 38.0 and 11.38 µg/mL,
respectively [28]. Chemical characterization of methanol extracts of two filamentous fungal strains
revealed the presence of the residues chlorogenic acid, neochlorogenic acid, rutin, and quercetin
3-acetyl-glucoside (Figure 5), and the fungal extracts displayed significant antioxidant activities [78].
In addition, another investigation identified the biomolecules pestacin, isopestacin, and 1,3-dihydro
isobenzofurans from the endophytic fungus Pestalotiopsis microspore housed in Terminalia morobensis,
which also displayed very effective antioxidant activities [79].
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Polysaccharides produced by plants and microorganisms have been widely studied due
to their natural antioxidants properties. Three polysaccharides, namely exopolysaccharide
(EPS), water-extracted mycelial polysaccharide (WPS), and sodium hydroxide-extracted mycelial
polysaccharide (SPS), produced by Fusarium oxysporum Dzf17 from Guazuma tomentosa displayed
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antioxidant properties [80]. In addition, total phenol and flavonoids detected from the
culture filtrate of Phyllosticta sp. displayed significant antioxidant properties. When subjected
to the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and DPPH radical assays,
these compounds exhibited EC50 values of 580.02 and 2030.25 µg/mL, respectively [81].

Novel trichothecene macrolides (Figure 5) produced by the endophytic fungus Nerium oleander L
(Apocynaceae) isolated from Trachelospermum jasminoides also displayed antioxidant potentials [82].
Using chemical analysis, six new macrolides comprising myrothecines D–G (1–4), 16-hydroxymytoxin
B, and 14′-dehydrovertisporin and four 10,13-cyclotrichothecane derivatives were detected in three
endophytes of Myrothecium roridum IFB-E008, IFB-E009, and IFB-E012. In addition, an investigation
into their antimicrobial properties revealed that the compounds exhibited sufficient cytotoxicity based
on their bioactive data [83].

2.5. Bioactive Compounds for Treating Infectious Parasites

Parasitic infections in humans are caused by protozoa, helminths, and ectoparasites that live on or
in a host organism and make use of the host resources for their survival. Disease-causing parasites
are known to contribute significantly to the rate of morbidity and mortality in humans worldwide,
especially in developing countries that have a large proportion of vulnerable populations [84].
This, therefore, presents significant challenges to already overburdened public healthcare systems,
thus resulting in huge economic losses. Approximately 48.4 million cases of parasitic disease resulting
in one million deaths are reported annually [84]. Despite this, there are limited highly effective
antiparasitic drugs current available in the market, especially given the challenges faced with resistance
of parasites to the drugs [85]. Moreover, there is evidence which indicates that parasitic organisms are
rapidly developing resistance against anti-parasitic drugs and the resistant strains are spreading at an
alarming rate. This, therefore, calls for the need to intensify the search for novel, more potent, and less
toxic compounds that may be more effective against these pathogens [86–88]. However, there is also
substantial evidence which indicates that endophytes possess a pool of novel bioactive compounds
that might be very useful in the discovery of anti-parasitic drugs.

Diaporthe phaseolorum-92C (92C), an endophytic fungus that inhabits the roots of
Combretum lanceolatum, displayed significant anti-parasitic activity against Trypanosoma cruzi by reducing
up to 82% of the number of amastigotes and trypomastigotes. The bioactive molecule 18-des-hydroxy
Cytochalasin H exhibited nematocidal activity and reduced the viability of promastigotes of
Leishmania amazonenses with an IC50 of 9.2 µg/mL [89]. Another study demonstrated that oxylipin
(9Z,11E)-13-oxooctadeca-9,11-dienoic acid obtained from fungal extracts of the endophytic fungus
Penicillium herquei strain BRS2A-AR was potent against Plasmodium falciparum 3D7, Trypanosoma brucei,
Leishmani donovani, and Leishmania sp., with IC50 values higher than 100 µM, therefore displaying
very excellent anti-parasitic activities [90]. Alternaria alternata P1210 from the roots of the halophyte
Salicornia sp. produced two new biosynthesized dimeric compounds belonging to the class alternariol,
namely (±)-alternarlactones A and B. Preliminary results revealed that these compounds possessed
anti-parasitic potentials [91].

Mao and colleagues (2019) discovered two novel decalin/tetramic acid hybrid
metabolites—hyalodendrins A and B, isolated from the endophytic fungus Hyalodendriella sp.
Ponipodef12 using spectroscopic chemical analysis. These compounds were capable
of inhibiting the growth of fourth-instar larvae of Aedes aegypti [92]. Bioassay was
carried out using one hundred and fifty-two (n = 152) endophytic fungi to determine
their anti-plasmodial activity using a 96-well microtiter plate. The results showed that
extracts from Fusarium sp. AMst1 (IC50 = 1.16–1.43µg/mL), Trichoderma afroharzianum AMrb7
(IC50 = 1.71–2.31µg/mL), and Penicillium tropicum AMb3 (IC50 = 1.90µg/mL) possess significantly
effective anti-plasmodial activities against Plasmodium falciparum strains [93]. The findings of another
study in Brazil demonstrated that the endophyte Phyllosticta capitalensis from Tibouchina granulosa (Desr.)
Cogn. (Melastomataceae) inhibited Leishmania species and Trypanossoma cruzi. Based on high-resolution
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mass spectrum analysis (UHPLC-HRMS), 18 compounds were identified from P. capitalensis and crude
extracts from the endophyte displayed growth inhibitory activities against Leishmania amazonensis,
L. infantum, and Trypanosoma cruzi with IC50 values of 17.2, 82.0, and 50.13 µg/mL, respectively. Given
that the diseases Leishmaniasis and Chagas are abandoned tropical diseases caused by protozoa and
infect over 12 million individuals globally, these findings present a significant hope for mankind [94].
Citrinin, cochiloquinone A, palmarumycin CP18 and others (Figure 6) are amongst compounds
exhibiting antiparasitic activities.
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2.6. Bioactive Compounds with the Potential of Serving as Immunosuppressive Drugs

Immunosuppressive drugs, also known as antirejection medications, are utilized to suppress,
reduce, or prevent allograft rejection during organ transplant in patients [95]. They therefore play
a significant role in the treatment of autoimmune disorders, such as rheumatoid arthritis, lupus,
psoriasis, and insulin-dependent diabetes [95]. Currently, the effectiveness of immunosuppressive
drugs is affected by a number of side effects, and given that their demand is high, there is a need to
hasten the search for safer but more reliable drugs in order to alleviate these problems. A number
of studies have established that endophytes are capable of producing bioactive molecules with
immunosuppressive potentials [96,97]. Data generated using chemical analysis revealed the presence
of a novel amide derivative (-)mycousnine enamine biomolecule that was produced by the endophyte
Mycosphaerella nawae ZJLQ129, isolated from Smilax china leaves [98]. Furthermore, cyclosporin A and
(-)mycousnine enamine have selectively inhibited T cell proliferation by blocking the expression of the
surface activation antigens CD25 and CD69. These findings confirm that endophytic fungi may serve
as a potential source for potent immunosuppressants that have low toxicity but high selectivity [98].
In addition to these, a total of nine polyketides, consisting of two novel benzophenone derivatives,
peniphenone and methyl peniphenone, and seven known xanthones (Figure 7), were extracted from the
endophytic fungus Penicillium sp. ZJ-SY2, which was associated with mangrove Sonneratia apetala leaves.
These compounds exhibited excellent immunosuppressive properties, with IC50 values ranging from
5.9 to 9.3 µg/mL [97]. Xylaria longipes HFG1018, obtained from the basidiomycete Fomitopsis betulinus,
which is associated with rotting of wood, produced eighteen new nor-isopimarane diterpenes,
xylarinorditerpenes A–R (1–18), some of which possessed immunosuppressive potential [99].
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Viruses are microorganisms that multiply only within living cells and are a leading cause of
mortality and morbidity in humans globally. Current antiviral drugs and vaccines are crucial in
combating life-threatening diseases in humans [100]. In addition, the emergence of resistance of viruses
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to the available antiviral drugs reduces the efficacy of their therapeutic potentials, thus resulting in a
severe public health concern globally. In effect, ideal antiviral drugs should be potent against the target
viral strains but with minimal side effects to the host cells. This therefore affirms that the modes of
action of antiviral drugs are usually directed at preventing or inhibiting the infection by targeting viral
proteins or the host cellular factors that viruses exploit in order to reproduce and gain control of cellular
processes [101,102]. To address this problem, the search for and the discovery and development of new,
cost-effective, and more potent antiviral drugs as well as vaccines is mandatory. Studies have been
carried out to assess the potential of endophytes to produce promising natural bioactive compounds
with antiviral properties [102].

Isoindolones compounds, namely emerimidines A and B, emeriphenolicins A and D,
as well as other compounds, including aspernidines A and B, austin, austinol, dehydroaustin,
and acetoxydehydroaustin, were discovered in the endophytic fungus Emericella sp. (HK-ZJ)
from the mangrove plant Aegiceras corniculatum. A bioassay using the cytopathic effect
(CPE) test revealed that the fungal extracts displayed potency against influenza A viral
(H1N1) [103]. Fungal extracts of Nigrospora sphaerica (No.83-1-1-2), Alternaria alternata (No.58-8-4-1),
and Phialophora sp. (No.96-1-8-1) exhibited some antiviral activity against herpes simplex
virus (HSV). Extraction and identification of compounds revealed two novel heptaketides,
(+)-(2S,3S,4aS)-altenuene (1a) and (−)-(2S,3S,4aR)-isoaltenuene, along with six recognizable compounds,
(−)-(2R,3R,4aR)-altenuene, (+)-(2R,3R,4aS)-isoaltenuene, 5′-methoxy-6-methyl-biphenyl-3,4,3′-triol,
alternariol (4), alternariol-9-methyl ether, and 4-hydroxyalternariol-9-methyl ether [104].

Recently, endophytic fungi were isolated from medicinal plants of Egyptian origin, which displayed
significant antiviral properties against herpes simplex (HSV-2) and vesicular stomatitis viruses
(VSV) [105]. It was identified that the endophyte Pleospora tarda was responsible for the potent
antiviral agents classified as alternariol and alternariol-(9)-methyl compounds [105]. Lui et al. (2019)
identified a new rare 14-nordrimane sesquiterpenoid, extracted from the endophyte Phoma sp.,
isolated from the roots of Aconitum vilmorinianum [106]. The compounds also inhibited the growth of
influenza A virus (A/Puerto Rico/8/34, H1N1). Other bioactive compounds with antifungal activities
included (–)-6-methoxymellein, 7-hydroxy-3, 5-dimethyl-isochromen-1-one, norlichexanthone,
6-methylsalicylic acid, and gentisyl alcohol [106]. In addition, the hydroanthraquinone (Figure 8)
derivative, 6-O-demethyl-4-dehydroxyaltersolanol A, azaphilones, 8,11-didehydrochermesinone B,
and (7S)-7-hydroxy-3,7-dimethyl-isochromene-6,8-dione have recently been identified as compounds
from the culture extract of Nigrospora sp. YE3033 which resides in the plant Aconitum carmichaeli.
A preliminary bioassay indicated that these compounds displayed strong antiviral activity against the
influenza viral strain A/Puerto Rico/8/34 (H1N1) [107].

An investigation of endophytes associated with Penicillium sp. FKI-7127 led to the detection of
the brefeldin A compound (Figure 8), exhibiting potent antiviral properties [108]. Several endophytic
fungal strains, including Fusarium equiseti, Scopulariopsis fusca, and Geotrichum candidum, were obtained
from brown alga Padina pavonica, located in the Red Sea. Out of these fungi, F. equiseti exhibited the
highest antiviral activity against hepatitis C virus (HCV) NS3-NS4A protease, with an IC50 of 27.0µg/mL.
Structural characterization using MS and NMR spectral analysis of the metabolites from this endophyte
showed the presence of two diketopiperazines (Figure 8) (cyclo-L-AlaL-Leu and cyclo(L-Tyr-L-Pro))
and two nucleosides (cordycepin and Ara-A) [109]. To date, more than one hundred endophytic fungi
isolated from desert plants have been established to possess potent antiretroviral activities against
human immunodeficiency virus type 1 (HIV-1). The extracts from these fungi demonstrated less than
30% cytotoxic activities in T lymphocytes [110]. Three unidentified chromanones were extracted from
the fungal strain Phomopsis sp. CGMCC No. 5416, obtained from the stems of Achyranthes bidentata.
These compounds displayed promising antiviral activities against HIV-1 [111]; we therefore suggest
that fungal secondary metabolites may serve as important sources for discovering new antiviral drugs
or lead compounds.
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2.8. Bioactive Compounds as Potential Antitubercular Drugs

Tuberculosis (TB) is a life-threatening disease usually affecting the lungs and is caused by the
bacteria Mycobacterium tuberculosis. The risk of contracting TB is significantly higher among individuals
whose immune system has been compromised and children under the age of 5 years, particularly
in developing countries, such as China, Indonesia, the Philippines, Pakistan, Nigeria, Bangladesh,
and South Africa [112]. Infectious TB is most often associated with high fatality rates in humans
worldwide [112,113]. Given that TB is more common in people with compromised immune systems,
there is evidence of co-infection between TB and HIV in patients, and the World Health Organization
(WHO) reported that of the 1.5 million patients who died from TB in 2018, 251,000 were also infected with
HIV [112]. In addition, the multi-drug resistance of Mycobacterium tuberculosis against available drugs is
increasing at an alarming rate and has eventually become an issue of severe public health concern [113].
Approximately 484,000 new cases of resistance to the first-line antimicrobial drug rifampicin, which was
regarded as the most potent drug, were reported, which is now a severe public health threat [114] and,
thus, requires urgent attention. Nonetheless, tuberculosis is curable and preventable; thus, the constant
search for natural bioactive compounds, especially from endophytes, now paves the way for the
discovery of new, more effective, alternative agents to combat tuberculosis. Gliocladium sp. MR41 was
capable of producing polyols 3 and 4 (Figure 9), compounds that displayed inhibitory activities against
M. tuberculosis at a minimum inhibitory concentration (MIC) of 0.78 µg/mL [115]. Other compounds
with potential antituberculosis activities include phomoenamide, abyssomicin, tenuazonic acid and
phomonitroester (Figure 9).
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These were the first reports of such compounds being produced by a fungus [115].
Glycyrrhiza glabra L. plant cultivated in the Kashmir Himalayas harbored a wide diversity of
endophytic fungi that comprised, but were not limited to, Fusarium oxysporum strain (KT166447)
and Colletotrichum gleosporoides strain (KT166445), which displayed strong inhibitory potentials against
Mycobacterium tuberculosis (M. tb) strain H37Rv, with MIC values of 18.5 and 75µg/mL, respectively [116].
In a recent study involving a review of findings between 2014 and 2015 detailing various biological
activities, including antituberculosis, and that endorses fungal strains as a source of endless bioactive
compounds, it was revealed that endophytes provide a renewed hope for the detection and development
of potential antitubercular drugs [117]. Table 2 listed several endophytic fungi isolated from various
host plants that were capable of producing compounds with several bioactive activities.
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Table 2. List of some bioactive compounds produced by endophytic fungi possessing biological activities.

Endophytic Fungi Host Plant Bioactive Compounds Biological Properties Activity Level Ref.

Penicillium funiculosum Fes1711 and
Trichoderma harzianum Fes1712 Ficus elastica Isocoumarin derivatives Antibacterial activity MIC = 32 µg/mL [34]

Phomopsis sp. CFS42 Cephalotaxus fortunei Polyketides Antifungal activity MIC = 2.5 µg/mL [44]
Chaetomium globosum Ginkgo biloba Azaphilone alkaloids Anticancer activity IC50 = 53.4 µM [58]
Alternaria alternata AE1 Azadirachta indica Phenolics and flavonoids Antioxidant properties IC50 = 38 µg/mL [28]
Mycosphaerella nawae ZJLQ129 Smilax china Amide derivative Immunosuppressant activity 30 and 300 nM [98]
Phomopsis sp. CGMCC No. 5416 Achyranthes bidentata Chromanones Antiviral activity IC50 =32.5µg/ ml [111]
Gliocladium sp. MR41 Culture collection Polyols Antitubercular properties MIC = 3.13 µg/mL [116]
Penicillium roqueforti and
Trichoderma reesei Solanum surattense Ferulic acid, cinnamic acid, quercetin, and rutin Antibacterial activity MBC = 2.5 µg/mL [118]

Lasiodiplodia pseudotheobromae
PAK-7 and L. theobromae TN-R-3 Theobroma cacao L. dl-Mevalonic acid lactone, Methyl

6-O-[1-methylpropyl]-á-d-galactopyranoside Antibacterial activity MIC= 21 mm [119]

Trichoderma asperellum T1 Culture collection 6-pentyl-2H-pyran-2-one (6-PP) Antifungal and plant
promoting properties 61.31% Inhibition [120]

Cladosporium cladosporioides Zygophyllum mandavillei 3-phenylpropionic acid, 5′-hydroxyasperentin Antifungal activity MIC = 15.62 µg/mL [121]
Talaromyces purpureogenus Grateloupia filicina Talaromyolide K Antiviral activity 60.11% Inhibition [122]
Aspergillus sp. SCSIO XWS02F40 Callyspongia sp. Asteltoxins Antiviral activity IC50 = 3.5 µg/mL [123]

Diaporthe schini Solanum americanum 1,4-diaza-2,5-dioxo-3-isobutyl
bicyclo[4.3.0]nonane and benzeneethanol Antioxidant activity DPPH radical = 96.62% [124]

Botryosphaeria dothidea Pampa and Atlantic
Forest Plants

Hexahydropyrrolizin-3-one and
(2-methylpropyl) ester Antioxidant activity IC50 = 0.206 mg/mL [125]

Fusarium solani S-019 Camptotheca acuminate Camptothecin Anticancer activity 50 µg/mL [126]
Alternaria alternata KT380662 Passiflora incarnata L. Flavone chrysin (5,7-dihydroxy flavone) Anticancer activity IC50 = 37.97 µg/mL [127]
Diaporthe phaseolorum 92C Combretum lanceolatum 18-Des-hydroxy Cytochalasin Antiparasitic activity IC50 = 50 µg/mL [124]
Phyllosticta capitalensi Tibouchina granulosa Brefeldin and heptelidic acid Antiparasitic activity IC50 = 50.13 µg/mL, [89]
Fusarium solani Glycyrrhiza glabra Fusarubin, 3-O-methylfusarubin, and javanicin Antitubercular activity MIC = 8 µg/mL [128]
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3. Conclusions

Currently, we are losing the fight against ineffective, toxic, and expensive therapeutic antimicrobial
drugs. However, endophytes provide a suitable alternative since they are a warehouse filled
with novel bioactive compounds with endless possibilities of biological properties. Over the
past few years, endophytic fungi have attracted tremendous attention in the drug development
process as they are ubiquitous and abundantly availability. Numerous studies have reported novel,
beneficial bioactive compounds exhibiting biological properties, such as antibacterial, antidiabetic,
antifungal, anti-inflammatory, antiprotozoal, antituberculosis, insecticidal, immunomodulatory,
antiviral, anticancer activities, anthelmintic, etc., that were successfully isolated from endophytic fungi.
Despite this, limited research has been conducted on the valuable bioactive compounds from endophytic
fungi. Research priorities need to shift towards biotechnological advances to accelerate the screening of
new biomolecules for the treatment of numerous life-threatening diseases, thus safe-guarding human
health. All things considered, an untapped wealth of novel bioactive compounds resides within
endophytes, thus ensuring the discovery of new bioactive compounds for potential applications in the
agricultural, food, medical, and pharmaceutical industries.
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