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Abstract

The secondary structure prediction (SSP) of proteins has long been an essential structural

biology technique with various applications. Despite its vital role in many research and

industrial fields, in recent years, as the accuracy of state-of-the-art secondary structure pre-

dictors approaches the theoretical upper limit, SSP has been considered no longer challeng-

ing or too challenging to make advances. With the belief that the substantial improvement of

SSP will move forward many fields depending on it, we conducted this study, which focused

on three issues that have not been noticed or thoroughly examined yet but may have

affected the reliability of the evaluation of previous SSP algorithms. These issues are all

about the sequence homology between or within the developmental and evaluation data-

sets. We thus designed many different homology layouts of datasets to train and evaluate

SSP prediction models. Multiple repeats were performed in each experiment by random

sampling. The conclusions obtained with small experimental datasets were verified with

large-scale datasets using state-of-the-art SSP algorithms. Very different from the long-

established assumption, we discover that the sequence homology between query datasets

for training, testing, and independent tests exerts little influence on SSP accuracy. Besides,

the sequence homology redundancy between or within most datasets would make the accu-

racy of an SSP algorithm overestimated, while the redundancy within the reference dataset

for extracting predictive features would make the accuracy underestimated. Since the over-

estimating effects are more significant than the underestimating effect, the accuracy of

some SSP methods might have been overestimated. Based on the discoveries, we propose

a rigorous procedure for developing SSP algorithms and making reliable evaluations, hoping

to bring substantial improvements to future SSP methods and benefit all research and appli-

cation fields relying on accurate prediction of protein secondary structures.
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Introduction

The secondary structure prediction (SSP) of proteins is a technique to predict the backbone

conformation of proteins based only on amino acid sequences. Although SSP has many appli-

cations, in our latest research, we found some potential problems in the development and eval-

uation process of previous SSP algorithms that might have made the accuracy misestimated.

We suppose that if there can be a proper standard procedure for producing the experimental

datasets and an accuracy verification scheme more precise than the currently used, they may

help develop truly accurate SSP algorithms and move forward all related fields. By investigat-

ing the influence of the sequence redundancy of developmental datasets on SSP accuracy, this

work aims to program a sophisticated SSP dataset preparation procedure and a rigorous evalu-

ation strategy to prevent over/underestimating an SSP method during development.

SSP is an important basis for the prediction of protein tertiary structure [1–3] and is a cru-

cial step in many fields, inclusive of functional prediction of proteins [4, 5], epitope prediction

for antibodies [6–8], identification of disease-causing mutations or genetic variations [9–11],

prediction of local properties of residues [12–14], discrimination of structured from intrinsi-

cally disordered protein regions [15–18], improvement of protein sequence alignment [19,

20], and template search or model refinement for protein structure modelling [21–23].

According to the secondary structure alphabet applied, SSP can be classified into three-state

(Q3) and eight-state (Q8) predictions. Three-state predictors describe a protein conformation

as helixes, strands, and coils/loops. Eight-state predictors use the 8 secondary structure ele-

ments (SSE) described by DSSP [24]. Therefore, the accuracy of SSP is also measured in two

ways, the Q3 and Q8 accuracy. In the 1970s, the Q3 accuracy reached ~60% by analyzing

amino acid propensities or the physicochemical properties of adjacent residues [25]. Subse-

quently, machine learning became the dominant SSP approach and raised the Q3 accuracy to

~65% in the late 1980s [26]. In 1999, PSIPRED [27], a neural network machine-learning

method, first utilized the position-specific scoring matrices (PSSM) generated by PSI-BLAST

[28] to be the main feature set and made Q3 achieve a new high, 76.5%. SSpro8 then pushed

the Q8 accuracy to 62.6% also based on the PSSM [29]. After that, using the PSSM feature set

became the mainstream in SSP. Nowadays, state-of-the-art algorithms, such as RaptorX, Spi-

neX, Scorpion, Spider2/3, DeepCNF, MUFOLD-SS, NetSurfP-2, and Porter 5 [30–38], all used

PSSM, and their Q3 and Q8 accuracy approximately fell in 81–85% and 71–75%, respectively.

To use PSSM as the feature set to construct an SSP model, the general scheme applied by

current methods requires a “reference dataset” for homology search (usually the UniRef90

[39]), a query dataset for training, and another query dataset for testing. The reference dataset

is also termed a “target dataset” in the field of sequence similarity search [40, 41]. For develop-

ing a robust algorithm, additional query dataset(s) for independent tests like the CASP sets

[42] are often utilized. Rigorous development and evaluation procedures must make the com-

position of training, testing, and independent sets very different or non-redundant, which may

avoid overestimation caused by information leakage. Hence, accurate algorithms mostly

emphasized that the homology between those query sets was low during development.

Although this general scheme has been rigorous, to our knowledge, there are still problems

not deeply examined yet. (1) Will using the same reference dataset to construct the PSSMs for

training, testing, and independent tests cause information leakage and overestimate the accu-

racy? (2) In addition to the requirement of low homology between query sets for training, test-

ing, and independent tests, will the homology between query sets and the reference dataset

influence the quality of evaluation? (3) Will sequence redundancy of the PSSM reference data-

set affect accuracy? The widely used UniRef90, for instance, is highly redundant because the

identity between its sequences can be up to 90%.
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In this study, we discovered that the general SSP development scheme might overestimate

the accuracy in some steps while making underestimation in others. This situation might have

made the actual accuracy of current SSP methods questionable when predicting new, novel, or

machine-unlearned proteins. Consequently, we designed a strategy for the dataset preparation

and evaluation of SSP methods that helps avoid the over/underestimation of accuracy and

guaranteeing the performance in the face of novel proteins. We are looking forward that this

strategy can be adopted by outstanding SSP algorithms nowadays. By doing so, the updated

predictors will accomplish reliably high accuracy and advance all research and applications

depending on accurate prediction of protein secondary structures.

Results

Effects of the sequence homology between training and testing query

datasets on the accuracy of secondary structure prediction

In the development and evaluation of machine-learning-based SSP methods, it has long been

generally assumed that the homology between query datasets for training and test will affect

the reliability of predictions. Overfitting may occur if the inter-dataset homology between

query sets is high. Therefore, most SSP studies highlighted low sequence identity between the

query dataset for training and that for testing or independent test. According to our prelimi-

nary tests (see Materials and Methods), as the homology of query proteins decreased, the

degree of overfitting in SSP lowered. Nevertheless, in that experiment, both the inner- and

inter-dataset sequence identities of the training and testing sets were decreased, and which

dominated the results was not sure. To verify this long-established assumption, we first tested

the effect of homology between query datasets on SSP accuracy.

The experimental design is shown in Fig 1A. We adopted the dataset layout commonly

applied in SSP research nowadays. Most studies use one PSSM reference dataset, and its inner-

dataset sequence identity is <90% (i.e., UniRef90). In this study, we used the NrPdb90-2015 as

the source of reference sequences. Besides, we set up two query sets, one for training and the

other for testing, in which all proteins were taken from the 2015 PDB (Protein Data Bank

[43]). Finally, there were independent test datasets TS115 [44] and CASP12 [42], which com-

prised protein structures that were solved after January 2016 and shared�30% sequence iden-

tities with proteins of the 2015 PDB. Based on this arrangement, we gradually reduced the

inter-dataset sequence identity between training and testing query sets using (PSI-)CD-HIT-

2D [45]. With this homology reduction, the composition of the two query sets ranged from

allowing duplicates (All), no duplicates (NR100), to non-redundant at a series of identity cut-

offs (NR90 to NR20). Besides, in this experiment, we made ten repeats by random sampling

for each homology level to calculate the average and standard deviation of accuracy. Surpris-

ingly, as shown in Fig 1B, the homology between the query sets for training and testing did

NOT influence SSP accuracy. No matter what the inter-dataset identity was, the accuracy of

training, testing, and independent tests remained at their respective levels. In this test, the

inner-dataset identities of the training and testing datasets were both 90%. We had also tested

40% and 20% identities and observed the same phenomenon–the inter-dataset sequence iden-

tity exerted little influence on the accuracy of SSP (Fig 1C and 1D). In this figure, accuracy was

represented by the Q3 measure. We had also computed the SOV. Despite that the SOV value

was generally lower than Q, the results shown in S1 Fig reached the same conclusion.

In this report, three types of SSP accuracy are exhibited. (1) Accuracy of training obtained

with the query set used to train the machine learning model. (2) Accuracy of testing obtained

with another set of query sequences to verify the feasibility of the model. (3) Accuracy of inde-

pendent tests obtained with independent query sets sharing very low homology with other
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datasets used in the same test. As the final evaluation, the purpose of independent tests is to

challenge the machine learning model with cases very different from those it has learned. Typi-

cally, the accuracy of training is higher than testing because the model is built from the training

set. However, a significant difference between them is the sign of overfitting. Similarly, the

accuracy of training/testing is usually higher than independent tests because independent tests

are meant to be difficult challenges, but a big difference between them implies serious overfit-

ting. We consider that for an SSP strategy, only the accuracy obtained with rigorous indepen-

dent tests is its “true accuracy” (or the practical accuracy), while that of training or testing is

just the “apparent accuracy” and is suspicious of overfitting. In other words, using any strategy,

Fig 1. Effects of the homology between training and testing query datasets on the accuracy of secondary structure prediction. (A) The layout of datasets. The NRx
indicates the non-redundancy of sequences in one or between two datasets, where x is the sequence identity cutoff. For example, the NR90 labeled on the reference

dataset (RefSet) indicates that any two sequences’ identity in the dataset was<90%. In this layout, the homology between training and testing query sets decreased while

the individual query set’s homology was fixed at 90%, 40%, or 20% identity cutoffs. All proteins in the reference and training/testing sets were obtained from the 2015

PDB. Dataset size: reference 10,000, training 250, testing 250. The independent test datasets, TS115 [44] and CASP12 [42], consisted of PDB proteins from 2016 or later

with low homology with the 2015 PDB. (B) Results of decreasing inter-dataset homology with fixed inner dataset homology (<90%). (C) Results of decreasing inter-

dataset homology with fixed inner dataset homology (<40%). (D) Results of decreasing inter-dataset homology with fixed inner dataset homology (<20%). Unlike the

assumption of previous studies, the homology between training and testing query sets exhibited little influence on SSP accuracy, no matter in training, testing, or

independent tests. Repeating this experiment at three inner-dataset homology levels reached the same conclusion. These independent test accuracies were lower than

previous reports (Materials and Methods) because the reference set was much smaller than the conventional UniRef90 dataset. For reasons why the accuracy of CASP12

is lower than TS115, see Materials and Methods as well.

https://doi.org/10.1371/journal.pone.0254555.g001
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only if the accuracy of independent tests is increased, the SSP is genuinely improved. Impor-

tantly, provided that the independent test accuracy is not lowered, a decrease in training or

testing accuracy does not necessarily indicate a flawed strategy but maybe an improvement

that suppresses overfitting.

Based on this knowledge, the results illustrated in the latter part of Materials and Methods

and Fig 1 revealed that the dual reduction of the inner- and inter-dataset homology of the

training and testing sets suppressed the overfitting of SSP but reducing just the inter-dataset

homology was not the case. A reasonable explanation was that between the “inner” and “inter”

dataset homology, it was the “inner” that mattered in reducing overfitting. To test this hypoth-

esis, we applied another experimental design that fixed the homology between training and

testing datasets and gradually reduced the sequence homology within each of them (Fig 2A).

As expected, the overfitting of SSP was reduced as the inner-dataset homology of query sets

decreased (Fig 2B). In addition to the Q index, we had computed the SOV score as well (see S2

Fig) and achieved the same conclusion–decreasing the inner-dataset sequence identity of the

training/testing query sets can significantly reduce the overfitting of SSP.

Effects of isolation of the reference proteins for training, testing, and

independent test on the accuracy

This experiment aimed to answer the first question of this work: whether using the same refer-

ence dataset to generate PSSM for training, testing, and independent tests might lead to over-

estimation of accuracy. The experimental design is shown in Fig 3A. We still applied the

typical setting of current SSP works, in which the reference set was composed of proteins shar-

ing <90% sequence identities (source: NrPdb90-2015). The difference was that the number of

reference sets ranged from one to three, according to the illustrated layouts. In each layout, we

adjusted the query sets for training and testing to perform the same test at three homology

Fig 2. Effects of the homology within the training/testing query dataset on the accuracy of secondary structure prediction. (A) The layout of datasets. The homology

between training and testing query datasets was fixed, while the homology within each query dataset decreased. Dataset size: reference 10,000, training 250, testing 250;

independent test dataset TS115: 115, CASP12: 46. (B) Results of fixed inter-dataset homology (<20% identity) with decreasing inner-dataset homology. The accuracy of

independent tests remained steady as training and testing query sets’ inner-dataset homology decreased; meanwhile, the accuracy of training and testing was remarkably

decreased. Since the accuracy of independent test represents the practical accuracy when an SSP method faces query proteins very different from those it had learned, the

fact that the accuracy of training/testing approached the accuracy of independent test indicated a reduction of overfitting. This experiment revealed that although the

homology within training and testing query sets has little influence on the practical accuracy of SSP, lowering it can greatly reduce overfitting. See S2 Fig for the same

trend in SOV.

https://doi.org/10.1371/journal.pone.0254555.g002
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levels, high: <90%, medium: <40%, and low:<20% sequence identities. Before this experi-

ment, we supposed that using the same PSSM reference dataset for training and evaluations

might cause information leakage such that the accuracy in training would be higher than that

in evaluations, a sign of overfitting. Unexpectedly, the results shown in Fig 3 revealed that the

isolation of reference sequences did not affect SSP accuracy. Hence, we concluded that using

the same PSSM reference dataset for training and evaluations would not cause overfitting in

SSP. However, it is noteworthy that in this experiment, overfitting was still observed, for the

accuracies of training and testing were higher than those of independent tests. In this part, the

conclusion of no overfitting only applied to the isolation of reference sequences. There must

be other reasons for the overfitting observed in Fig 3.

Effects of the homology between the reference dataset and the training or

testing query datasets on accuracy

To figure out what other factors might influence the accuracy or overfitting, we proceeded to

the second question: whether the sequence identity between the query and reference datasets

would affect SSP evaluation. Nowadays, the main machine-learning feature set of state-of-the-

art SSP methods is PSSM, which is generated based on alignments between the query protein

and its homologs identified from the reference dataset by PSI-BLAST or HHBlits [46]. This

fact implies that modern SSP methods work, at least indirectly, based on sequence homology

between the query protein and the reference dataset. Therefore, we expected that the homology

between training/testing query sets and the PSSM reference set would significantly affect the

Fig 3. Effects of the isolation of PSSM reference sequences for training and evaluations on secondary structure prediction accuracy. (A) The layout of datasets. The

PSSM reference sequences were used as a single dataset or divided into two or three different datasets. Regardless of the number, the size of each reference dataset was

10,000 sequences. The sequence identity cutoff between training and testing query sets (250 sequences for each) was fixed at 20%. Each layout was tested at three levels of

inner-dataset homology of training and testing query sets. (B) Results obtained with training/testing sets having inner-dataset sequence identities<90%. (C) Results

obtained with training/testing sets having inner-dataset sequence identities<40%. (D) Results obtained with training/testing sets having inner-dataset sequence identities

<20%. The isolation of reference sequences did not reduce overfitting. Regardless of whether one or multiple reference sets were used, with a given homology cutoff for

sequences within the training and testing sets, the accuracy of each training, testing, and independent test group remained unchanged (see S3 Fig for results of SOV). To

conclude, using only one reference set for both training and evaluations, as most previous SSP studies did, would not cause increased overfitting.

https://doi.org/10.1371/journal.pone.0254555.g003
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reliability of the evaluation of SSP methods. Specifically, the higher their homology, the severer

the overfitting would be. As illustrated in Fig 4A, in this experiment, the homology between

training/testing query sets and the reference dataset was gradually reduced from allowing

duplicates (All), no duplicates (NR100) to non-redundant at a series of sequence identity cut-

offs (NR90 to NR20). As expected, shown in Fig 4B, while the practical accuracy (accuracy of

independent tests) remained steady, training and testing accuracy declined rapidly as the

sequence homology between query and reference datasets decreased. In addition to revealing

the importance of homology reduction between the training/testing query set and the PSSM

reference dataset in developing SSP methods, these results also explained why the accuracy of

independent tests performed with the TS115 and CASP12 independent datasets had remained

almost unchanged in all experimental conditions applied by now. The homology between

these independent query sets and the source dataset of the reference sequences, the Pdb-2015,

was very low (see Materials and Methods). If the query-reference sequence homology is

indeed a critical factor in determining the accuracy of PSSM-based SSP methods, then the low

homology between TS115/CASP12 and the PSSM reference datasets used in our experiments

would naturally result in the stably low accuracies.

Effects of the sequence homology within the PSSM reference dataset on

accuracy

According to our computational protein science experiences, the sequence redundancy of

experimental datasets usually influences the quality of results and the reliability of developed

algorithms a lot. However, most modern SSP algorithms were developed and evaluated using

UniRef90, a highly redundant dataset, for generating PSSM. We wondered whether the PSSM

reference dataset’s sequence redundancy would interfere with the precise evaluation of SSP

algorithms. The experimental design is shown in Fig 5A, where the homology of the reference

set was reduced from allowing duplicates to allowing only sequences sharing <30% identities.

Fig 4. Effects of the homology between query and PSSM reference datasets on the accuracy of secondary structure prediction. (A) The layout of datasets. Only one

reference dataset containing 10,000 proteins with<90% sequence identities was used. To ensure that there would be sufficient proteins to sustain the size of training and

testing query sets used in this study, i.e., 250 for each, the sequence identity cutoff between and within these query sets was fixed at 90%. (B) Accuracy of SSP obtained

with training/testing query sets sharing decreasing sequence identities with the PSSM reference dataset. As expected, the homology between the query sets for training/

testing and the PSSM reference dataset greatly influenced the extent of overfitting. The same influence was observed with the SOV measure (S4 Fig). To our knowledge,

most SSP studies had not yet paid attention to the homology reduction between query and reference datasets, which might have led to overestimated accuracies. See

Discussion for more information.

https://doi.org/10.1371/journal.pone.0254555.g004
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We expected that when the reference dataset’s homology was high, the degree of overfitting

would be high. Although it turned out challenging to determine whether the overfitting was

affected by the homology of the reference set, it was surprisingly discovered that the homology

reduction of the reference set increased SSP accuracy in either training, testing, or indepen-

dent tests. As shown in Fig 5B, all these accuracies rose as the homology of the reference set

decreased. Since this phenomenon had not been reported and (1) the utilized reference dataset

was tiny when compared with UniRef90, and (2) the predictor used here was our in-house

implementation, we repeated this test using UniRef90 as the source of reference sequences and

state-of-the-art SSP algorithms as the predictor (see the next subsection).

The accuracy of state-of-the-art SSP methods tested with PSSM reference

datasets of decreasing sequence homology

Several highly accurate SSP methods were utilized in this large-scale experiment, including

four 3-state and three 8-state algorithms. Because the independent test datasets applied in this

study were composed of structures solved after Jan. 2016, the PSSM reference dataset used

here was the UniRef-2015, a collection of proteins sequenced by Dec. 2015. The dataset layout

of Fig 5A was still applied, except that the training and testing procedures were not applicable

because the prediction model and program of these state-of-the-art SSP methods had all been

pre-trained and compiled (source code for training not available). The UniRef100-2015 and

UniRef90-2015 non-redundant sets, where 100 and 90 indicate their identity cutoffs, were

obtained from the UniRef server, and they comprised 70.5 and 38.2 million sequences, respec-

tively. Homology reduction was performed on the UniRef90-2015 to generate reference data-

sets with identity cutoffs lower than 90%. The lowest sequence identity reference dataset was

the UniRef30-2015 because when applying an identity cutoff lower than 30%, the remaining

sequences were insufficient to meet the large-scale requirement of this experiment. The size of

the reference datasets was fixed at one million sequences. Similar to the result of our in-house

Fig 5. Effects of the homology reduction of the PSSM reference dataset on the accuracy of secondary structure prediction. (A) The layout of datasets. The homology

of the PSSM reference dataset was reduced with a series of sequence identity cutoffs; the lowest was 30% because when 25% or 20% were applied, the remaining sequences

would be insufficient to sustain the required dataset sizes (Fig 1A). The homology between training/testing query sets and the reference dataset was manipulated to be

<20% sequence identities. The inter- and inner-dataset identity cutoff of training and testing query datasets were both 90%, set high for preserving sufficient sequences.

(B) The SSP accuracy obtained at different homology levels of the reference dataset. The overfitting of prediction in training and testing was much suppressed because of

the fixed low query-reference dataset homology. More importantly, the accuracy increased as the homology of reference sequences lowered. The same conclusion applied

to SOV (see S5 Fig). This phenomenon had not been clearly reported before our study. See Fig 6 for advanced tests.

https://doi.org/10.1371/journal.pone.0254555.g005
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predictor evaluated with small PDB-based datasets, the independent test accuracy of these

well-developed SSP methods evaluated with large UniRef reference datasets also increased as

the homology of reference dataset was reduced, no matter quantified with the residue-based

Q3 and Q8 (Fig 6) or the segment-based SOV3 and SOV8 measures (S6 Fig).

The proposed development and evaluation strategy for SSP methods

We have discovered that reducing the internal homology of training/testing query datasets

and the query-reference inter-dataset homology can suppress SSP overfitting. Besides, reduc-

ing the homology of reference sequences helps improve the practical accuracy. Although the

inter-dataset homology between training and testing query sets showed no significant influ-

ence on SSP, it might still be appropriate to keep it low because the overfitting seemed slightly

decreased at low homology (see Fig 1 and Discussion). Based on these discoveries, here we

propose a standard strategy for the development and evaluation of SSP methods, that is, the

sequence homology between and within all experimental datasets should be rigorously

reduced, the homology between independent test dataset and PSSM reference dataset

included, as illustrated in Fig 7A. In practice, current homology reduction algorithms cannot

adequately support or are not recommended for sequence identity cutoffs below 50–30% [45,

47, 48]; therefore, the operating cutoff we recommend is 30%.

To test the proposed strategy, we performed a large-scale experiment. The source of refer-

ence sequences was UniRef-2015, the training and testing query sets were sampled from Pdb-

2015, and the independent test datasets were TS115, TS416, and the CASPs. The sequence

identity between and within the developmental datasets (training, testing, independent test,

Fig 6. Accuracy of seven state-of-the-art secondary structure prediction methods evaluated using homology reduced PSSM reference datasets. (A) The average

three-state SSP accuracy of state-of-the-art methods. (B) The average eight-state SSP accuracy of state-of-the-art methods. Advanced SSP methods including three-state

algorithms PSIPRED [27], Scorpion [32], Spider2 [33] and SpineX [31], as well as eight-state DeepCNF [35], RaptorX [30], and SSpro8 [29] were utilized. The three-state

test (A) was performed using all methods, and the eight-state test (B) was performed using eight-state algorithms. The query sets were independent test datasets TS115

and CASP12. The source of reference sequences was the UniRef of 2015. In addition to homology reduction, the reference dataset’s size was fixed at one million

sequences by random sampling in each test group. With random sampling, for each SSP method, the experiment was repeated five times to obtain the average and

standard deviation of its accuracy at all homology levels. Finally, the statistics of the tested methods were averaged. The results reveal that the homology reduction of

PSSM reference sequences can raise the practical accuracy of SSP methods.

https://doi.org/10.1371/journal.pone.0254555.g006
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and reference datasets) was gradually reduced from 100% to the recommended 30%. The

results plotted in Fig 7B (see S7 Fig for SOV) indicated that at the recommended 30% homol-

ogy level, the degree of overfitting of the established prediction model was the lowest among

all tested levels because the gap between the accuracy of training/testing and the accuracy of

independent tests was the smallest. It is noteworthy that the accuracy of independent tests rose

and dropped as the identity of developmental datasets decreased. Among the key factors: (1)

the sequence identity within/between query datasets, (2) the query-reference dataset identity,

and (3) the internal identity of the reference dataset, because (1) might exert little influence on

the practical accuracy of SSP (Figs 1 and 2) and the decrease of (3) was capable of increasing

the accuracy (Fig 5), we conjectured that it was the decrease of (2) that counteracted the accu-

racy-improving effect of the decrease of (3). Before examining this conjecture in detail (see

Discussion), we first verified whether this phenomenon was universal. After repeating this

experiment using state-of-the-art SSP methods published either before 2015 [27, 29–33, 35]

(PSSM generator: PSI-BLAST) or after 2016 [34, 36–38] (PSSM generators: PSI-BLAST and

HHBlits), similar fluctuations were observed, no matter the accuracy was measured in three-

or eight-state (Figs 7C, 7D and S7). The algorithms published in different years or using differ-

ent types of PSSM exhibited slightly different behaviors, but the general trend was that assess-

ing SSP methods with developmental datasets sharing 80–90% sequence identities would

produce higher accuracies than with datasets sharing�50% identities. These results imply that

developing or evaluating an SSP algorithm without strict homology reduction between the

query and PSSM reference datasets will likely lead to accuracy overestimation.

Discussion

The influence of homology of experimental datasets on the accuracy and

evaluation of secondary structure prediction

Sequence homology between the query datasets for training and testing. Perhaps differ-

ent from most SSP researchers’ expectations, Fig 1 shows that the homology between training

and testing query sets has little effect on SSP accuracy. The idea of the necessity of low

sequence identity between training and evaluation query sets applied in most SSP studies may

not be entirely correct. However, it must be noted that before the formal experiments, we had

selected the ANN, which exhibited low overfitting in SSP, as the machine learning algorithm

(Materials and Methods). If the selected algorithm had a high degree of overfitting, the

homology between the training and testing sets might still affect the performance of SSP. For

example, we also tested the decision tree and SVM using the same procedure of Fig 1. As

shown in Fig 8, their training accuracy was higher than testing, which was then significantly

Fig 7. The proposed development and evaluation strategy for SSP methods and its feasibility tests. (A) The layout of datasets. We propose the homology between and

within all developmental datasets, meaning the training and testing query sets and the PSSM reference dataset, should be as low as possible. Besides, the homology

between the independent test dataset and the developmental datasets should also be low. A 30% sequence identity cutoff for the homology reduction of datasets is

recommended. (B) Feasibility test of the proposed strategy performed with decreasing homology of developmental datasets. Although the 30% identity cutoff is

recommended, we still performed this test with a series of cutoffs. It is clear that at the 30% identity cutoff, our in-house SSP implementation had the lowest degree of

overfitting. Interestingly, the accuracy of independent tests went up and then dropped. (C) The accuracy of state-of-the-art SSP methods (PSSM generator: PSI-BLAST)

assessed with query and reference datasets of decreasing homology. All the tested methods were trained with proteins deposited in PDB before 2016, and the applied

independent test datasets were all composed of proteins deposited after Jan. 2016. Every identity level was tested ten times. The Q3 was averaged over all tested methods,

including DeepCNF, Psipred3, RaptorX, Scorpion, Spider2, SpineX, and SSpro8. The Q8 was averaged over eight-state methods DeepCNF, RaptorX, and SSpro8. (D) The

accuracy of state-of-the-art SSP methods (PSSM generators: PSI-BLAST and HHBlits) assessed with query and reference datasets of decreasing homology. Algorithms

tested in (D) were MUFOLD-SS, NetSurfP-2, Porter 5, and Spider3 (3 repeats). Since they were released after 2017, the TS115 and CASP12 were not applicable as

independent test sets. The TS416 and CASP13 independent datasets, which comprised proteins deposited in PDB mostly after 2018 and were very different from Pdb-

2018 (<25% sequence identities), were applied. Regardless of whether the SSP algorithms utilized only one or both of the PSI-BLAST and HHBlits PSSMs to make

predictions, in general, the observed accuracy went to the highest point when the sequence identity of evaluation datasets fell between 80% and 90% and then dropped

with fluctuations.

https://doi.org/10.1371/journal.pone.0254555.g007
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higher than the accuracy of independent tests, indicating severe overfitting. Nevertheless, as

the homology between the two query sets decreased, the gap between training/testing and

independent test accuracies became slightly smaller. Similar trends were observed with SOV

measures (S8 Fig). Therefore, it is still recommended that the homology between the training

and testing sets should be low.

Sequence homology within the query dataset. We discovered that the internal homol-

ogy of the training and testing query sets played a major role in decreasing the overfitting of

SSP (Fig 2). Interestingly, the declining trends of overfitting in training and testing were the

same. In that experiment, the inter-dataset sequence identity between training and testing

query sets was <20%. The two query sets were so different, but the overfitting associated with

them decreased in the same trend as their internal homologies were reduced independently,

implying that some common factor influenced the overfitting. We speculated that the most

likely factor was the homology between the query sets and the PSSM reference dataset. As we

kept reducing the internal homology of training and testing sets, more and more sequences

sharing high identities with other sequences were also eliminated, perhaps leading to a side

effect, that is, the homology between the sequences remaining in these query sets and the refer-

ence dataset was “passively” reduced.

Sequence homology between the query and reference datasets. Fig 4 revealed that

reducing the homology between query and reference datasets remarkably decreased overfit-

ting. The query-reference dataset homology has not been explored before our study, but it is

now demonstrated very important, for it greatly affects the reliability of the evaluation of an

SSP method. To further test the importance of this homology, we did an interesting experi-

ment. The homology between the query sets was fixed at a 20% sequence identity cutoff. On

purpose, the identity cutoff between the training query set and the reference dataset was

manipulated to be 20%, while that between the testing query set and the reference dataset was

very high: 90%. As a result, the accuracy of testing was much higher than that of training (see

S9 Fig). Future SSP researches should attach great importance to this query-reference dataset

homology.

Fig 8. Effects of the homology between training and testing query datasets on SSP accuracy obtained with decision tree or support vector machine. (A) Results of

the decision tree. (B) Results of the support vector machine. This test’s procedure was the same as the experiment of Fig 1, but the inner-dataset sequence identity cutoff

of the training and testing query sets was fixed at 40%, and the machine learning algorithms were the decision tree and SVM. Even when an algorithm prone to overfitting

was applied, the inter-dataset homology between the training and testing query sets had little influence on SSP accuracy, consistent with ANN results. Although the

influence was minor, the homology reduction between these query sets still contributed to the decrease of overfitting. At very low sequence identity, either the gap

between the accuracy of training and testing reduced or the accuracy of independent tests increased slightly.

https://doi.org/10.1371/journal.pone.0254555.g008
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Sequence homology within the reference dataset. It had been noticed that using Uni-

Ref50 as the PSSM reference set would make SSP more accurate than UniRef90 [30], but the

impact of homology reduction of the reference dataset on SSP has not been thoroughly exam-

ined. According to our findings (Figs 5 and 6), some previous SSP methods’ accuracy might be

underestimated because of the inadequate homology reduction of the PSSM reference dataset.

However, since this underestimation is far weaker than the overestimation effect of the query-

reference homology (Fig 4), it is more likely that the accuracy of a previous method was over-

estimated if the independent test was not delicately designed. See the next subsection for

detailed discussions about the reference dataset.

On the role of the reference dataset in SSP and the accuracy improvement

which it may bring about

Isolation of the reference sequences and the information leakage. The reference data-

set’s fundamental role in the current general SSP methodology is to provide homologous

sequences for producing the PSSM. To our knowledge, all SSP algorithms developed after

PSIPRED used only one reference dataset during development and evaluations. As we raised

the three major problems of SSP at first (see Introduction), we speculated that using the same

reference dataset for development (training and testing) and evaluation (independent test)

might cause information leakage and overestimate the accuracy. However, we observed at last

that no matter the reference sequences were used as a single set or divided into different sets

for training, testing, and independent tests, the accuracy was not affected. Our explanation for

this unexpected result refers to the nature of the PSSM.

The PSSM is a substitution matrix in logarithm scores [49] for each residue of the query

sequence [28]. For a query protein, the PSSM is generated based on the sequence alignments

between the query and its homologs identified using a sequence similarity search algorithm, e.
g., PSI-BLAST and HHBlits. In other words, the PSSM encodes the overall homology between

the query and reference sequences. A hidden message behind this methodology is that the

accuracy of a query protein is correlated with its homology with reference sequences. There-

fore, no matter in development or evaluation, as long as the overall homology between a given

query set and the reference dataset(s) was the same, the accuracy would not be affected by

whether the reference sequences were isolated. Hence, using one reference dataset both to

develop and evaluate will not overestimate SSP accuracy because of information leakage. To

further examine this putative conclusion, we repeated the experiment of Fig 3 by changing the

machine learning algorithm from ANN to decision tree or SVM (S10 Fig). Again, the accuracy

was not affected by whether the reference sequences were isolated.

Effects of the size of PSSM reference dataset on SSP accuracy. Recently we have discov-

ered that the size of the PSSM reference set has a sigmoid relationship with SSP accuracy [50].

In that study, which only used UniRef datasets, we observed that the Shannon information

entropy of the PSSM generated by a small reference set was lower than that generated by a

large one, and, between reference sets of different sizes, the PSSM entropy was highly corre-

lated with the accuracy. The average entropy of PSSMs generated with the TS115 and a refer-

ence set containing 9,327 or 1.2 million UniRef90 proteins was 0.60 or 2.47, respectively, and

the Q3 obtained with the 1.2-million-protein reference set was 8.1% higher than the small set

(see the Fig 7 of [50]). In the present work, to delicately control the homology of datasets, we

used the non-redundant dataset prepared by PDB in most experiments, which greatly limited

the size of reference datasets. The average entropy of the PSSMs generated with TS115 based

on a reference set of 10,000 NrPdb90-2015 proteins was 0.52 (the result of Fig 5), and that

based on a 1.0-million-protein UniRef90-2015 reference set was 2.34 (the result of Fig 6). The
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Q3 of TS115 obtained with the 1.0-million-protein reference set was 9.5% higher than the

small set. Consistent with [50], the information entropy and accuracy increased as the refer-

ence dataset expanded.

In addition to providing supporting data to our earlier work, we find it NOT true that

using a larger reference dataset will lead to a more reliable prediction. If homology reduction

of the developmental datasets is not performed carefully, a larger reference set will cause

severer overfitting (see the last part of Materials and Methods), meaning the constructed pre-

dictor performs well for proteins similar to the learned ones but performs poorly for the

unlearned. There is no need to use a massive reference set to improve accuracy, especially

when many SSP methods’ accuracy has been shown to reach saturation if the reference dataset

exceeds 5 million proteins [50].

Effects of homology reduction of the PSSM reference dataset on SSP accuracy. Using

large datasets, recently we have also found that, for identity cutoffs�90%, homology reduction

of the PSSM reference dataset can improve SSP accuracy [50]. In the present study, when the

cutoff was expanded to 100% or even canceled, the same conclusion was reached (Figs 5 and

6). Regarding why the homology reduction of the PSSM reference set could improve SSP, we

have hypothesized that the reference set’s homology level would affect the quality of the PSSM,

which ultimately influenced SSP accuracy [50]. Previously, we quantified the quality of PSSM

by information entropy and found it highly correlated with SSP accuracy. Now we have a sup-

position based on several facts. First, a diverse set of sequences would produce a PSSM with

lower information entropy than a conserved set [50]. Second, a higher information entropy

means more information is encoded in the probability distribution of a variable, and the

PSSM is not only a probability distribution but also the main machine-learning feature set in

SSP. Third, the size of the hit list PSI-BLAST uses to generate a PSSM is limited (default: 500

hits). Our supposition is that the diversity of the limited amount of homologs retrieved by

PSI-BLAST would determine the quality/entropy of the PSSM, which would then affect the

performance of machine learning and the SSP accuracy. The first support of this supposition is

the high correlation between SSP accuracy and the entropy of PSSMs generated either by PDB

or UniRef reference datasets (Table 1). Furthermore, given a fixed size of the hit list, the diver-

sity of the homologs retrieved from a small reference dataset should be higher than that from a

large dataset. If so, as the homology of the reference set reduces, it can be expected that the cor-

relation between PSSM entropy and SSP accuracy calculated from a small reference set will be

higher than that calculated from a large set. Indeed, as shown in Table 1, the correlation coeffi-

cient between these two variables computed from 10,000-protein homology-reduced reference

Table 1. Correlation between the information entropy of PSSM and SSP accuracy as the sequence homology of the reference dataset decreases.

Source and size of the reference dataset Measure Homology level of the reference dataset Corrd.

All NR100 NR90 NR80 NR70 NR60 NR50 NR40 NR30

Pdb-2015, 10Ka Entropy 0.326 0.398 0.515 0.513 0.531 0.525 0.573 0.564 0.582 0.987

Q3 0.567 0.589 0.643 0.644 0.649 0.650 0.656 0.656 0.657

UnrRef-2015, 1Ma Entropy N/Ac 2.264 2.340 2.382 2.426 2.453 2.489 2.492 2.510 0.968

Q3 N/Ac 0.734 0.738 0.741 0.742 0.742 0.743 0.743 0.744

UnrRef-2015, 5Mb Entropy N/Ac N/Ab 2.623 2.660 2.708 2.739 2.788 2.811 2.845 0.949

Q3 N/Ac N/Ab 0.800 0.803 0.803 0.804 0.805 0.805 0.806

aResults of the TS115 independent test of Fig 5 (10,000 proteins) and Fig 6 (1 million proteins).
bResults of the TS115 independent test of the Fig 6 of [50] (5 million proteins). The NR100 identity level was not tested.
cNot available because the UniRef database only provided non-redundant sets.
dPearson’s correlation coefficient.

https://doi.org/10.1371/journal.pone.0254555.t001
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sets was higher than those computed from 1-million-protein and 5-million-protein homology-

reduced reference sets.

The contradicting effects of reducing the query-reference dataset homology

and the internal homology of the PSSM reference dataset

In most SSP works, the homology reduction between query and reference datasets and the

homology reduction of the reference dataset were not performed. Now we find that the former

will decrease the apparent accuracy (Fig 4), whereas the latter can improve both the apparent

and practical accuracy of SSP (Figs 5 and 6). In Fig 7, a rise-and-drop trend of accuracy was

observed. We conjectured that the contradicting effects of these two homology reductions

caused this particular trend. Importantly, this trend implied that the accuracy of some SSP

methods might have been overestimated.

Firstly, the main difference between Figs 6A, 6B and 7C experiments is the homology level

between the independent test query sets and the PSSM reference dataset. In Fig 6A, the query-

reference homology was not manipulated, and the accuracy increased along with the homol-

ogy reduction of the PSSM reference dataset. In Fig 7C, the query-reference homology and the

homology within the reference dataset decreased together, and the accuracy fluctuated. These

results revealed that the homology between the query set (independent test set included) and

the PSSM reference dataset greatly influences the reliability of the evaluation of SSP methods.

Secondly, based on the results of Fig 7C, when the sequence identity between and within

the evaluation datasets is 80–90%, the observed SSP accuracy will reach the highest point, while

the lowest point will occur at sequence identities�50%. Most SSP methods were developed and

evaluated based on the UniRef90 PSSM reference dataset, and the query-reference dataset

homology was not manipulated, meaning that the sequence identity between and within some

developmental datasets was high. For example, using CD-HIT-2D to eliminate homologs of

TS115 and CASP12 from the UniRef90-2015 with a 40% identity cutoff would remove 131

thousand sequences. The high homology of datasets, especially between independent test query

set(s) and the PSSM reference dataset, might cause overestimated SSP accuracy.

Finally, to verify whether the homology between the independent test query set and the ref-

erence dataset will truly affect the reliability of SSP evaluation, we took the UniRef-2017 and

UniRef-2019 datasets, which had increasingly more homologs of TS115 and CASP12 than the

UniRef-2015 did, to repeat the experiment of Fig 7C and 7D. As shown in Fig 9, the accuracies

of TS115 and CASP12 tests at a 90% query-reference sequence identity cutoff raised year by

year. It was because the amount of closely-related homologs of the independent test sets in the

PSSM reference dataset increased over time. Differently, at a 30% cutoff, the accuracy

remained stable because most homologs of the independent test sets had been eliminated from

the reference dataset. Since the tested SSP methods were all trained with proteins far-related

from the TS115 and CASP12, this result also revealed that even if the homology between the

query sets for training and the independent test is ultimately low, an overestimate of the accu-

racy will still occur if the homology between the independent test query set and the PSSM ref-

erence dataset was not adequately reduced.

Details of the proposed strategy for future SSP methods

The core concept of the proposed strategy for developing and evaluating an SSP method is to

make all datasets highly non-redundant in sequence homology, whether within or in between,

including the query sets for training, testing, and independent tests, as well as the reference

dataset for generating PSSMs (Fig 7A). In particular, the homology between the independent

query set and all other datasets must be low. The recommended homology cutoff within and
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between datasets is 30% sequence identity. It is not necessary to use a massive reference set for

generating PSSMs, especially when the low homology of datasets is not established. A reference

dataset of 5 million sequences is sufficient to saturate an SSP method’s accuracy and can signif-

icantly cut down the time cost (refer to [50]). During the evaluation, using the same PSSM ref-

erence dataset used to train the predictor will not make the accuracy overrated. Multiply

repeating an experiment by random sampling is urged, for it helps prevent arbitrary conclu-

sions based on just one particular combination of sequences. In addition, to avoid overweight-

ing small proteins or underweighting large ones when calculating the average accuracy over a

set of query proteins, the length-weighted average and the residue-based micro average (Mate-

rials and Methods) are promising alternative algorithms to the conventional arithmetic mean.

Materials and methods

Experimental datasets

The original protein sequence and structural data were obtained from the PDB [51] and Uni-

Ref [39]. Well-prepared independent test sets from the third parties were also applied.

Fig 9. Advanced feasibility tests for the proposed development and evaluation strategy for SSP methods. In these two homology reduction test groups, the layout of

Fig 7A and the seven advanced SSP methods developed before 2016 were applied (4 repeats). The PSSM reference dataset used in each test was fixed by random sampling

to be 5 million proteins, the SSP accuracy saturating dataset size reported in [50]. The TS115 and CASP12 were composed of novel protein structures determined after

Jan. 2016; hence, they had few homologs in either the UniRef90-2015 or UniRef30-2015. As time went by, they had more and more homologs deposited in the UniRef,

and their overall homology with UniRef-2017 and UniRef-2019 gradually increased. When the reference dataset was adequately homology-reduced against the query

sets, e.g., the NR30 group, the accuracy was stable no matter the UniRef of which year was used. Contrarily, if the homology reduction were insufficient, the observed

accuracy was not reliable, even if the query set was advertised as an “independent dataset”.

https://doi.org/10.1371/journal.pone.0254555.g009
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According to the experiments’ requirements, two or more sequence datasets might be pre-

pared to have a certain non-redundancy level of homology from each other. In such a case, our

primary strategy was to sample subsets from a non-redundant dataset of the required homol-

ogy level. The sequence identity non-redundancy of the source dataset would define the inter-

dataset sequence identity of the subsets sampled from it. For instance, because any two pro-

teins in an x% identity non-redundant source dataset shared<x% sequence identity, if A and

B were different subsets sampled from it, then any two sequences from A and B would have

<x% identity. Another way was to utilize inter-dataset homology reduction software like the

CD-HIT-2D [45], beneficial when the datasets had different origins (PDB versus UniRef) or

when the required inter- and inner-dataset homology levels were different.

Homology reduced subsets of the Protein Data Bank. The non-redundant datasets with

sequence identity cutoffs from 100% to 30% officially released in 2015 by the PDB were

obtained from [43]. These official PDB non-redundant sets were prepared by heuristic

BLAST-based clustering. To ensure the homology of experimental datasets, three homology

reduction methods, including the USEARCH, CD-HIT, and MMseqs2 [45, 47, 48], were itera-

tively applied to these non-redundant sets until no more sequences could be removed by any

method at the given sequence identity cutoffs. According to the sequence identity cutoff, the

produced datasets were named the NrPdb100-2015 (70,789 proteins), NrPdb90-2015 (34,533

proteins) . . ., and NrPdb30-2015 (15,059 proteins). Since the lowest identity non-reduction set

officially prepared by PDB was only 30%, the same three-method iterative homology reduction

procedure was performed on the NrPdb30-2015 dataset to make the NrPdb25-2015 (11,449)

and NrPdb20-2015 (5,092 proteins). The full PDB entity dataset released in 2015 is abbreviated

to Pdb-2015 (273,920 proteins) in this report.

Homology reduced subsets of the UniRef. The non-redundant UniRef datasets with

identity cutoffs 100% and 90% officially released in Dec. 2015, namely the UniRef100-2015

and UniRef90-2015, were obtained from the UniProt [39]. They contained 70.5 and 38.2 mil-

lion proteins, respectively. UniRef datasets with lower homology were required to fulfill our

experimental design, and those with identity cutoffs ranging from 80% to 30%, termed the

UniRef80-2015, UniRef70-2015 . . ., and UniRef30-2015 (7.0 million proteins), were obtained

from [50].

Inter-dataset homology reduction. It is very convenient to use inter-dataset homology

reduction software to remove redundant sequences between two datasets. However, attention

should be paid to whether the redundant sequences are adequately removed. For instance,

after using the (PSI-)CD-HIT-2D [45] to perform inter-dataset homology reduction to remove

from dataset B the proteins sharing identity�40% with any protein in dataset A, a subset of B

(denoted as B’) will be produced. One may expect that the sequence identity between A and B’

is<40%. If it is the case, when A is in turn subjected to inter-dataset homology reduction

using the same program to remove proteins sharing sequence identity�40% with any protein

from B’, none should be eliminated. However, we found that this expectation was not always

accomplished even when the sequence identity was calculated as local identity, at least when

the (PSI-)CD-HIT-2D was applied. For ensuring that the redundant homologous sequences

between two datasets are removed, we would like to suggest a “two-way” inter-dataset homol-

ogy reduction procedure, that is, after performing B–A = B’, the A–B’ = A’ should also be done

such that the produced A’ and B’ will have the required inter-dataset non-redundancy. To

apply this procedure, the CD-HIT-2D is adequate for sequence identity cutoffs�40%, while

the PSI-CD-HIT-2D supports cutoffs <40%.

Independent test datasets. In this study, we have implemented a machine-learning SSP

predictor. In most experiments, the reference dataset and query sets for training and testing

the predictor were proteins from the Pdb-2015. To perform stringent independent tests, we
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utilized independent datasets composed of novel proteins released after Jan. 1st, 2016, includ-

ing the TS115 (115 proteins) established by [44], and the CASP12 (46 proteins) and CASP13

(43 proteins) obtained from the biannual meeting of Critical Assessment of Structure Predic-

tion techniques [42]. The TS115 was claimed to have�30% sequence identities with proteins

deposited in the PDB before 2016 [44]. We used PSI-BLAST to compute homology and found

that TS115 and the CASPs all had a ~25% median sequence identity with Pdb-2015. However,

61% of TS115 proteins had identities�20% with Pdb-2015, and this proportion in CASPs was

only ~50%. Hence, the homology between CASPs and Pdb-2015 was lower than that between

TS115 and Pdb-2015. The CASP12/13 mainly covered novel proteins deposited in the PDB

between 2015 and 2018. Following the data preparation procedure of TS115 [44], we estab-

lished another independent test dataset, TS416 (416 sequences; S1 File), comprising PDB 2019

and 2020 proteins that shared<25% sequence identity from proteins deposited in PDB by

Dec. 2018. The inner-dataset sequence identity of the TS416 was also <25% (homology

reduced by USEARCH, PSI-CD-HIT, and MMseqs2).

Random sampling and multiple repeats of experiments

To be rigorous and to ensure the stability of results, most experiments were repeated sev-

eral times using random sampling techniques. The detailed random sampling procedure

varied from experiment to experiment, but the basic flow was the same. For easy explana-

tion, here we take the case of Fig 1 as an example, in which we needed a non-redundant

set of sequence identity <90% as the reference dataset (10,000 proteins), a query set for

training (250 proteins), and a query set for testing (250 proteins); besides, the two query

datasets must share sequence homology from high to low. The procedure is described as

follows,

1. Randomly select 10,000 proteins without replacement from the NrPdb90-2015 as the refer-

ence dataset.

2. Let x stand for the homology level between the query sets, and the initial x is set to “All”

(see below for meaning).

3. Randomly select 250 proteins from NrPdbx-2015 without replacement as the query set for

training and another 250 proteins as the query set for testing.

4. Use the query set for training to build a predictor and the one for testing to test the predic-

tor. The reference dataset used in this process is the one prepared in Step 1.

5. Independent tests. Use the independent test datasets as query sets to evaluate the predictor.

6. Repeat Steps 1–5 for n times to obtain n versions of accuracy data; each version comprises

the Q3 and SOV3 of the training, testing, and independent tests.

7. Repeat Steps 1–6, and change the x to 100, 90, . . . to 20 (%) in turn to obtain the accuracy

data as the homology between training and testing query sets decreases.

Through these steps, we obtain n versions of accuracy data at each homology level. At any

given level, for each accuracy measure, the mean and sample standard deviation can be calcu-

lated. The number of repeats (n) for all experiments was 20 unless otherwise specified. In this

procedure, the NrPdbAll-2015 is exactly the Pdb-2015, which contains many redundant

sequences. The NrPdb100-2015 is a non-redundant set in which every sequence, perhaps shar-

ing high identities with others, is unique. As for the other NrPdbx-2015 datasets, x represents

the homology cutoff in percentage sequence identity.
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Applied secondary structure prediction methods

Implementation of the modern SSP methodology. An SSP predictor was created for

experiments by implementing the methodology of current SSP algorithms as described previ-

ously [27, 35], that is, utilizing PSSM as the main feature set and amino acid information as

additional features, setting a window for encoding interactions of nearby residues into the

final feature set for every residue, and using machine learning to construct the prediction

model. The PSSM we utilized in most experiments was the conventional PSI-BLAST PSSM

and 8-state SSE codes. In some specific experiments, the HHBlits PSSM was also applied to

make 8-state SSE predictions. The window used in this study was five residues. Previously as

we studied a protein rearrangement phenomenon known as the circular permutation [52, 53]

and examined what combination of machine learning and predictive features performed best

in predicting suitable bioengineering sites for proteins to be circularly-permuted, we had

developed an integrated machine learning system. This system, abbreviated as iMLS, sup-

ported the artificial neural network (ANN), decision tree (DT), and support vector machine

(SVM), and these algorithms could be applied in a conventional way or in combination with

bootstrapping to form random forest(s) [54]. In the present study, the iMLS was utilized to

create our in-house SSP predictor.

Utilized state-of-the-art secondary structure prediction methods. Although the predic-

tor we implemented was based on the general SSP methodology, our machine learning system

was for common use but not optimized for SSP. To test whether our experimental conclusions

applied to various SSP algorithms, we also utilized highly accurate SSP algorithms published

before 2016. The emphasis on “before 2016” is because the independent test datasets we used

were composed of novel protein structures released after Jan. 2016. Developed before 2016,

these algorithms’ prediction models were not trained with proteins similar to the independent

datasets. Although they were very suitable for this study, we could only obtain their compiled

programs with pre-trained prediction models. Without source codes, it was impossible to

retrain models. Therefore, these algorithms could not be applied in all experiments and were

only utilized in the final large-scale ones. In alphabetical order, the applied advanced SSP algo-

rithms are the DeepCNF (v1.02) [35], PSIPRED (v3.3) [27], RaptorX (v1.0) [30], Scorpion

(v1.0) [32], Spider2 [33], SpineX (v2.0) [31], and SSpro8 (v5.2) [29]. Several modern algo-

rithms published after 2016 were also tested, including the MUFOLD-SS (v2.0) [36], Net-

SurfP-2 [37], Porter 5 [38], and Spider3 [34]. Among these recent works, NetSurfP-2 used only

HHBlits, while the other three used both the PSSMs generated by PSI-BLAST and HHBlits as

predictive features.

Usage of PSI-BLAST and HHBlits, the PSSM generation engines

All SSP algorithms applied in this work utilized PSI-BLAST to perform sequence similarity

searches for building PSSM. Because they recruited different versions of PSI-BLAST with dif-

ferent settings, which may influence the quality of experiments, we had to unify the version (i.
e., NCBI PSI-BLAST v2.6.0) and parameter settings. We referred to the common settings of

the applied SSP algorithms and PSI-BLAST default settings to set unified parameters (see S1

Table for the original and unified settings). To verify that the algorithms were applied correctly

and that the unified PSI-BLAST settings did not degrade their performance, we have prelim-

inarily measured their accuracy. As shown in S2 Table, the accuracies calculated using the uni-

fied settings were close to those reported in previous studies when these algorithms were

evaluated with equivalent datasets [35, 44]. Some of the applied state-of-the-art SSP algorithms

also used HHBlits to generate PSSM. The version of HHBlits we used was v3.3.0.
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Computation of secondary structure prediction accuracy

In addition to the widely used Q accuracy, we also calculated SSP accuracy using the SOV (seg-

ment overlap) measure [55, 56]. The conventional Q accuracy is defined as the number of cor-

rectly predicted residues divided by the number of predicted residues. The SOV is not based

on residues but on secondary structure segments to compute SSP accuracy for a given protein.

Compared with the Q accuracy, the SOV measure is considered a more rigorous SSP assess-

ment method because it can evaluate the overall quality of SSP for a protein and reduce the

noise produced by individual residues [55–57]. SSP accuracies can be computed based on the

three- or eight-state secondary structure classifications. Because the experiments of this study

were very time-consuming, we only performed the three-state SSP. Nevertheless, according to

our previous study [50], for each SSP algorithm that supports both three- and eight-state SSPs,

the trend of three-state accuracy (Q3/SOV3) and eight-state accuracy (Q8/SOV8) was the

same under various conditions. The difference was that eight-state accuracies were lower than

three-state ones. The focus of the present report is the quality of the development and evalua-

tion procedure for SSP algorithms rather than the difference among accuracy measures. In

order to reduce the time cost and prevent distracting the readers, the quality of eight-state SSP

was only assessed in the preliminary verifications (e.g., S2 Table) and some final large-scale

experiments.

Statistical analyses

Significance analysis with the p-value. In this work, experiments were repeated several

times by random sampling. When it was necessary to check whether the difference of a mea-

sure observed between two groups was statistically significant, the p-value was calculated.

First, the Shapiro-Wilk test was used to check the normality of the accuracy values of each

group. Next, if the normal distribution was verified, an F-test was performed to determine the

equality of the variances of the two groups. If the groups were verified to come from popula-

tions with equal variance, the Student’s t-test was performed to calculate the p-value, or the

Welch’s t-test was used instead.

The weighted average and micro-average of accuracy measures. When performing SSP

accuracy evaluation, typically, multiple query sequences are used. Hence, the final accuracy

value is an average. In most SSP researches, the average accuracy is calculated using the stan-

dard arithmetic mean, that is, the summation of accuracy from all proteins divided by the

number of proteins. The size of query sequences may be very different, but the arithmetic

mean treats long and short sequences equivalently. Perhaps an ideal way to calculate the accu-

racy for a set of query sequences is the weighted average, where the weight for each sequence is

its length. Alternatively, instead of using protein as the unit, we may use residue as the unit to

calculate the average accuracy for a set of proteins. In this study, SOV values were calculated

using the weighted average (SOV ), while the Q was calculated using residue as the unit (Qres).

The formulas are shown below,

SOV ¼
Pn

q¼1
ðlenq � SOVqÞ
Pn

q¼1
lenq

ð1Þ

Qres
¼

Pn
q¼1

NresaðqÞ
Pn

q¼1
lenq

ð2Þ

where q represents a query protein, n denotes the number of query proteins, lenq and SOVq

stand for the length and SOV of q, respectively, Nresa(q) is the number of residues of q that are
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accurately predicted. The Qresweighs equally all residues and prevents underweighting large

proteins or overweighting smaller proteins. The protein-based Q average and residue-based

Qresare analogous to the macro-average accuracy and micro-average accuracy commonly used

to assess machine-learning-based predictors. The weighted average and micro-average are

both capable of reducing the problem caused by the length imbalance of query proteins and

may better reflect the actual accuracy of SSP than the conventional arithmetic mean.

Information entropy of the PSSM. The Shannon information entropy, also known as the

disorder or uncertainty of a set of data, measures the amount of information in a variable [58].

In the case of a multi-value or multi-state variable, the Shannon entropy (S) is given by,

S ¼ �
P

pslog2
ðpsÞ ð3Þ

where s denotes a specific state or value of the variable, and ps is the observed probability of s
in the probability distribution of the variable. A traditional PSSM for a residue position in a

query protein contains 20 values, each meaning the observed probability (based on the query-

reference alignments) of this position to be occupied by a specific amino acid. The PSI-BLAST

generates a PSSM in two formats, one in bit score and the other in probability. Since PSSM is

the probability distribution of a 20-state variable by nature, we supposed that the Shannon

entropy could quantify the information abundance of a PSSM, and we had applied this idea in

our previous study on the speed improvement in SSP [50]. In the present work, the Pearson’s

correlation coefficient between the entropy of PSSMs and the accuracy of SSP was computed

based on their respective weighted average values, where the weight for each protein was its

sequence length (see Table 1).

Determination of the most applicable machine learning for this study

The iMLS system supported several machine learning algorithms [52, 53]. To choose suitable

ones for implementing SSP, we challenged several machine learning algorithms with training/

testing query datasets sharing decreasing homology. This preliminary test’s layout is illustrated

in Fig 10, which involved a non-redundant PSSM reference dataset, a query dataset for train-

ing the prediction model, a query dataset for testing the model, and query datasets for per-

forming independent tests. The source dataset for the PSSM reference sequences was

NrPdb90-2015. The training and testing query sets (source: Pdb-2015) were prepared to have

inner- and inter-dataset identities both smaller than the given cutoffs. The query sets for inde-

pendent tests were TS115, CASP12/13, and TS416. This experiment was repeated ten times by

random sampling. In each repeat, some proteins were randomly selected from the NrPdb90-

2015 to be the PSSM reference set, and some others randomly from the NrPdbx-2015 dataset

(x stands for the sequence identity cutoff) to be the training/testing query sets. The sizes of the

reference dataset, the query set for training, and the query set for testing were 10,000, 250, and

250 proteins, respectively.

Fig 11 showed that no matter for ANN, DT, or SVM, SSP accuracies on the independent

test datasets were similar and steady (see S11 Fig SOV data). The accuracy of TS115, CASP12,

TS416, and CASP13 was approximately 65%, 60%, 58%, and 57%, respectively. These values

were lower than those of the TS115 and CASP12 tests listed in S2 Table because of the much

smaller reference set size used here (10,000 versus 3.82 million proteins). The homology

between CASPs/TS416 and Pdb-2015 was lower than between TS115 and Pdb-2015; mean-

while, the accuracy on CASPs/TS416 was lower than that on TS115, implying the influence of

datasets’ homology on SSP. Among these algorithms, ANN showed the smallest extent of over-

fitting because its training and testing performances were very similar (Fig 11A). Contrarily,

overfitting was a severe problem for the SVM (Fig 11E). Combined with the bootstrapping
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technique, the overfitting of these machine learning algorithms could be significantly reduced

(compare Fig 11A, 11C, 11E and Fig 11B, 11D, 11F). For all algorithms, the accuracy of testing

decreased as the identity of query sequences lowered, and the accuracy approached the level of

independent tests when the identity cutoff was lower than 30%. We supposed that the decrease

in the accuracy of testing was not an indicator of declining performances but was, in reality, an

improvement because the approaching between the accuracies of testing and independent

tests stood for the reduction of overfitting. On the premise of low overfitting, ANN was the

most accurate among the three algorithms. We also tested whether combining these algo-

rithms would increase performance. As demonstrated in Fig 12, such combination exerted

minimal improving effects on the accuracy of independent tests (see S12 Fig for similar results

of SOV). Besides, the extent of overfitting was not reduced but just averaged after the combina-

tion. For instance, combining the low-overfitting ANN and high-overfitting SVM, the overfit-

ting of the final prediction model lies between the two algorithms. According to these results,

in this study, we decided to use ANN with bootstrapping to form a random forest of 60 ANN

“trees” as the final machine learning scheme to implement the modern SSP methodology. The

eight-state SSP accuracy of this combination was also assessed, and its trends in training,

Fig 10. Experimental design for measuring the SSP accuracy of machine learning algorithms as the sequence homology of training and testing datasets

decreases. In this layout, the PSSM reference set was a 90% sequence identity non-redundant dataset. The sequence homology of the source data of query sets was

decreasing such that any sequences either in the same query set or between the training and testing query sets shared homology lower than the given identity cutoffs.

The “All” means that the homology reduction is not applied, or otherwise, the number after “NR” indicates the identity cutoff of the homology reduction. Proteins in

the reference dataset and training/testing query sets were obtained from the Pdb-2015. The query sets for independent tests were TS115, CASP12/13, and TS416.

https://doi.org/10.1371/journal.pone.0254555.g010
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Fig 11. The SSP accuracy of machine learning algorithms obtained with training and testing datasets sharing decreasing levels of sequence homology. (A) Artificial

neural network. (B) Random forest of 60 artificial neural networks. (C) Decision tree. (D) Random forest of 60 decision trees. (E) Support vector machine. (F) Random

forest of 60 support vector machines. By applying bootstrapping, random forests of different machine learning models were established. The data and feature sets were

first randomly sampled into subsets to train small models, which then made the final prediction by vote. Bootstrapping is typically applied with decision trees to form the

traditional random forest. The machine learning system utilized in this study [52, 53] can make random forests of algorithms other than the decision tree. The layout of

this experiment is shown in Fig 10. At each identity cutoff, the Q3 of training, testing, and independent tests were measured (10 repeats). Among these machine learning

algorithms, ANN exhibited the lowest overfitting. SOV was also computed (S11 Fig), and its trends were similar to the trends of Q3 shown here.

https://doi.org/10.1371/journal.pone.0254555.g011
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testing, and independent tests were very similar to those of the three-state accuracy but only

lower (see S13 Fig). The accuracies on CASP12, CASP13, and TS416 datasets were very close,

and their standard deviation bars in the graph overlapping one another. For clarity, the results

of CAPS13 and TS416 were omitted in this report except for the final large-scale tests.

Determination of the type of PSSM for experiments

The HHBlits [46] has been increasingly applied in recent SSP works to generate the PSSM

homology profile [34, 36–38]. Using the selected machine-learning framework (a random for-

est of 60 bootstrapping ANNs), we tested the suitability of HHBlits-PSSM for this study. The

genuine homology profile generated by HHBlits is encoded as a hidden Markov model

(HMM). The formula for transforming the HMM score (h) of a given residue position (saved

Fig 12. The SSP accuracy of combined machine learning algorithms obtained with training and testing datasets sharing decreasing levels of sequence homology.

(A) Random forest of 30 artificial neural networks and 30 decision trees. (B) Random forest of 30 artificial neural networks and 30 support vector machines. (C) Random

forest of 30 decision trees and 30 support vector machines. (D) Random forest of 20 artificial neural networks, 20 decision trees, and 20 support vector machines. The

layout of this experiment was the same as in Fig 10. Using the iMLS system’s bootstrapping function, random forests of several different machine learning algorithms were

constructed. For fair assessments, the number of “trees” in every forest was set to be 60. Although combining different algorithms helped average out the extent of

overfitting (compare the gaps between the blue and green curves shown in Fig 11 and this figure), the improvement in accuracies evaluated by independent tests was

minor.

https://doi.org/10.1371/journal.pone.0254555.g012
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in the _hhm.ffdata file by default) into a PSSM score (p) is,

p ¼ 2� h=1000 ð4Þ

Alternatively, the PSSM of a sequence can be obtained from the.hhr output file of HHBlits

by combining the multiple sequence alignment parser program of Porter 5 (process-psi.sh)

[38] and the traditional substitution scoring matrix algorithm [28, 49]. The results diagramed

in S14 Fig indicated that, based on reference datasets of 10,000 proteins, using HHBlits-PSSM

could improve prediction accuracy by approximately 2.5% when compared with using the

PSSM generated by PSI-BLAST (refer to Fig 11B); meanwhile, the trends of the accuracy

curves of training, testing, and independent tests remained similar to those of PSI-BLAST

PSSM. Before using either PSI-BLAST or HHBlits for homology searches, the reference dataset

must be formatted into a specialized format. The dataset-formatting procedure of PSI-BLAST

is straightforward and rapid, which, using one CPU, typically took less than 0.5 sec for a data-

set of 10,000 proteins (disk space: 3.2MB). However, because of the complicated multiple

alignment analyses conducted by the HHBlits procedures, formatting a 10,000-protein dataset

by HHBlits using its default settings cost 1.3 days on average when 12 Intel Xeon 3.33GHz

Fig 13. Experimental design for measuring SSP accuracy under different reference dataset sizes. The focus of this experiment was to determine the influence of

the reference dataset size on SSP accuracy. The maximum size was 30,000 proteins because the source of the reference sequences, i.e., NrPdb90-2015, contained only

34,533 proteins. The sequence identity of training and testing query sequences was also adjusted to see whether the reference dataset size’s influence would be

affected.

https://doi.org/10.1371/journal.pone.0254555.g013
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CPUs were applied (disk space: 5.1GB). There were many experiments in this study, and most

experiments were repeated more than ten times. For efficiency, we decided to use the conven-

tional PSI-BLAST PSSM in most experiments.

Determination of the appropriate size of the PSSM reference dataset for

this study

The reference dataset size we used was much smaller than that used in most SSP works, result-

ing in lower accuracy than most published recently; therefore, we would like to examine the

influences of reference dataset size on SSP accuracy and choose a suitable size for experiments

in this work. Fig 13 illustrated the layout of this experiment, in which four reference dataset

sizes were tested under three identity levels of training/testing query sequences. As expected,

the accuracy increased as the reference dataset became larger (Figs 14 and S15). Very interest-

ingly, regardless of whether the identity between query datasets was high (90%), medium

(40%), or low (20%), the accuracies of independent tests increased with the same degree as the

reference dataset expanded. In contrast, the increase in training and testing accuracy was

much more significant at higher sequence identity than at lower identity. Thus, the gap

between the accuracy of training/testing and independent tests was much larger for higher

identity, indicating severer overfitting. These results reveal that the overfitting problem will

become increasingly serious as the reference dataset expands, especially when the homology of

training/testing sequences is high. In other words, reducing the homology of the training/test-

ing query sequences is essential for preventing the overfitting of a developing SSP method,

especially when the reference dataset is large. Considering that the NrPdb90-2015 (the source

of reference datasets in most experiments) comprised only ~3,5000 proteins and in one of our

experiments the reference dataset had to be divided into three subsets, we decided to use

10,000 proteins as the standard size of reference dataset in this study.

Supporting information

S1 Table. The version and parameter settings of the PSI-BLAST engine for the utilized SSP

algorithms.

(PDF)

Fig 14. The influence of reference dataset size on the accuracy of SSP. (A) SSP accuracies of different reference dataset sizes under 90% identity of query sequences. (B)

SSP accuracies of different reference dataset sizes under 40% identity of query sequences. (C) SSP accuracies of different reference dataset sizes under 20% identity of

query sequences. The accuracy in training, testing, and independent tests all increased as the reference dataset expanded. Regardless of the homology of training/testing

query sequences, the increasing trends of independent tests were nearly the same; meanwhile, the extent of accuracy increase in training and testing was greatly affected

by the identity of query sequences. The gap of accuracy between training/testing and independent tests stands for over-fitting predictions. The overfitting in SSP will

increase as the reference dataset size grows, especially when the homology of training/testing sequences is high.

https://doi.org/10.1371/journal.pone.0254555.g014
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S2 Table. Performance verification of the applied state-of-the-art SSP algorithms.

(PDF)

S1 Fig. Effects of the homology between the training and testing query datasets on the

SOV3 of secondary structure prediction.

(TIF)

S2 Fig. Effects of the homology within the training/testing query dataset on the SOV3 of

secondary structure prediction.

(TIF)

S3 Fig. Effects of the isolation of PSSM reference sequences for training and evaluations on

the SOV3 of secondary structure prediction.

(TIF)

S4 Fig. Effects of the homology between the query and PSSM reference datasets on the

SOV3 of secondary structure prediction.

(TIF)

S5 Fig. Effects of the homology reduction of the PSSM reference dataset on the SOV3 of

secondary structure prediction.

(TIF)

S6 Fig. The SOV accuracies of seven state-of-the-art secondary structure prediction meth-

ods evaluated using homology-reduced PSSM reference datasets.

(TIF)

S7 Fig. The SOV3 data of the feasibility tests for the proposed development and evaluation

strategy for SSP methods.

(TIF)

S8 Fig. Effects of the homology between training and testing query datasets on the SOV3

of SSP obtained with decision tree or support vector machine.

(TIF)

S9 Fig. Verification of the effect of the homology between the query and PSSM reference

datasets on the Q3 and SOV3 accuracy of SSP.

(TIF)

S10 Fig. Verification of the effect of the isolation of PSSM reference sequences on the

development and evaluation of an SSP method.

(TIF)

S11 Fig. The SOV3 accuracy of machine learning algorithms obtained with training and

testing datasets sharing decreasing levels of sequence homology.

(TIF)

S12 Fig. The SOV3 accuracy of combined machine learning algorithms obtained with

training and testing datasets sharing decreasing levels of sequence homology.

(TIF)

S13 Fig. The Q8 accuracy achieved by a random forest of 60 artificial neural networks

obtained with training and testing sets that share decreasing levels of sequence identities.

(TIF)

PLOS ONE Development and evaluation strategy for protein secondary structure prediction

PLOS ONE | https://doi.org/10.1371/journal.pone.0254555 July 14, 2021 27 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s011
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s012
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s013
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s014
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0254555.s015
https://doi.org/10.1371/journal.pone.0254555


S14 Fig. The accuracy achieved by a random forest of 60 artificial neural networks

obtained with HHBlits-PSSM and training and testing sets that share decreasing levels of

sequence identities.

(TIF)

S15 Fig. The influence of reference dataset size on the SOV3 accuracy of SSP.

(TIF)

S1 File. The TS416 dataset.

(FASTA)
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