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Abstract: Mushrooms have a long history of uses for their medicinal and nutritional properties.
They have been consumed by people for thousands of years. Edible mushrooms are collected in
the wild or cultivated worldwide. Recently, mushroom extracts and their secondary metabolites
have acquired considerable attention due to their biological effects, which include antioxidant,
antimicrobial, anti-cancer, anti-inflammatory, anti-obesity, and immunomodulatory activities. Thus,
in addition to phytochemists, nutritionists and consumers are now deeply interested in the
phytochemical constituents of mushrooms, which provide beneficial effects to humans in terms of
health promotion and reduction of disease-related risks. In recent years, scientific reports on the
nutritional, phytochemical and pharmacological properties of mushroom have been overwhelming.
However, the bioactive compounds and biological properties of wild edible mushrooms growing in
Southeast Asian countries have been rarely described. In this review, the bioactive compounds isolated
from 25 selected wild edible mushrooms growing in Southeast Asia have been reviewed, together with
their biological activities. Phytoconstituents with antioxidant and antimicrobial activities have been
highlighted. Several evidences indicate that mushrooms are good sources for natural antioxidants
and antimicrobial agents

Keywords: wild edible mushrooms; Southeast Asia; phytochemical constituents; antioxidant and
antimicrobial properties; cytotoxic and immunomodulatory effects

1. Introduction

Popularly, the term mushrooms (or higher fungi) is used to identify fungi producing macroscopic
fruiting bodies. This rather inaccurate definition mostly refers to species belonging to the phyla
Basidiomycota and Ascomycota. The total number of species of the kingdom fungi is far from
being exactly known. It was believed to be around 1.5 millions [1], but more recent estimates have
increased the number to a range of 2.2–3.8 millions, worldwide [2]. With 120,000 currently accepted
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species, it appears that at best just 8% and, in the worst case scenario just 3%, are named so far [2].
The species of fungi described so far are about 120,000. About 35,000 fungal species belong to the
phylum Basidiomycota, which comprises the majority of “mushrooms” [3].

Mushrooms have been exploited by humans since prehistoric times, both for food and medicinal
purposes. About 1069 mushroom species have been reported to be eaten [4]. Indeed, collection and
consumption of wild growing mushrooms as a food is a traditional practice in many human cultures.
However, cultivated mushrooms are also marketed, and cultivation of mushrooms is increasing
everywhere in the world [5]. However, it has been reported that wild mushrooms contain a higher
fiber content and more bioactive compounds than cultivated mushrooms [6].

The importance of mushrooms as a food is due not only to their pleasant organoleptic properties
but also to the rich content of substances which must be present in a healthy human diet. In fact,
mushrooms contain amino acids, fatty acids (many of them being unsaturated or poly-unsaturated, such
as oleic, linoleic and linolenic acids), vitamins, sterols, and some essential minerals [7–13]. As concerns
carbohydrates, the most abundant sugar present is trehalose, the α1→ α1 dimer of d-glucose, which is
responsible of several alimentary intolerances in people who digest it with difficulty. More elaborate
polysaccharides comprise chitin, the fungal fiber, which is a homopolymer of N-acetylglucosamine and
other sugars occurring in fungal cell walls. Notwithstanding the edible properties, a word of warning
must be added, about the possibility that toxic metals such as arsenic, mercury, etc. occur in edible
mushrooms collected from polluted soils [14–16].

In addition as a food, there is an increasing interest in developing mushroom bioactive
constituents as control agents of several diseases and to delay aging processes [17–20]. Friedman, et al.
reviewed mushroom polysaccharides which have shown therapeutic properties such as anti-obesity,
anti-diabetes, anticancer and antibiotic properties [21]. Mushrooms endowed with potent antimicrobial
and antioxidant properties, among other important bioactivities, have been reported in several
studies [6,18,22–26].

Little information exists about the phytochemical constituents of edible mushrooms growing in
Southeast Asian countries. This review describes the data reported in Reaxys database until January
2020 for some selected edible mushroom growing in Southeast Asia. One purpose of this work is to
foster systematic studies on the region’s rich mycological flora.

2. Wild Edible Mushroom Species in Southeast Asia

Southeast Asia refers geographically to the corner of Asia east of India, south of China, west of
New Guinea, and north of Australia (Figure 1). It is a region with an outstanding high biodiversity,
encompassing about 20 percent of global plant, animal and marine species [27,28]. Comparing with
the rest of the world, Southeast Asia is more rural as 41.8% of the nearly 590 million people live in
the countryside in 2010 [27]. The climate, sea level fluctuations and biotas of this region seem to have
created a habit favoring the explosive growth of countless new animal and plants species. In the region
surrounding the Mekong river, 2077 new animal and plants species have been described since 1997
and 367 new species were added to the new species record in only two years, 2012–2013 [29]. These
findings clearly indicate that the Mekong region has a higher rate of species discovery than other parts
of the world.
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Figure 1. Map showing Southeast Asian countries. 

About fungal species, 93% of the fungi growing in northern Thailand appeared to be novel [30]. 
Therefore, the biodiversity of Southeast Asia is likely to be a vast reservoir for finding new mushroom 
species, since fungi occurring in Myanmar, Laos, Vietnam, and Cambodia have barely been studied 
so far [30]. Moreover, it is worth noting that numerous ethnic groups living in Southeast Asian 
countries resort to several wild mushrooms for obtaining food and medicines; however, very few 
studies have been carried out on the nutritional value and biological activities of these mushrooms. 
This review has collected the information available in the literature on the phytochemical constituents 
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Ampulloclitocybe clavipes, Butyriboletus roseoflavus, Cantharellus cibarius (Figure 2a), Craterellus 
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amethystea, Lactarius hatsudake, Lepista sordida (Figure 2c), Lycoperdon pyriforme (Figure 2d), Neolentinus 
lepideus (Figure 2e), Phlebopus portentosus, Polyozellus multiplex, Ramaria botrytis, Rugiboletus 
extremiorientalis, Russula virescens (Figure 2f), Sarcodon imbricatus, Termitomyces albuminosus, 
Termitomyces eurhizus, Termitomyces heimii, Termitomyces microcarpus, Thelephora ganbajun, and 
Volvariella bombycina. These species were selected on the basis of their wide use as a food in Southeast 
Asia and difficult cultivation. Moreover, they are among the most common mushrooms growing in 
this part of the world. Likewise all selected macrofungi are a natural resource of economic, ecological, 
scientific and cultural importance among ethnic groups in Southeast Asia.  

The most important biological/pharmacological activities reported for extracts and isolated 
compounds are also described, with special attention to antioxidant, antimicrobial and cytotoxic 
properties. They have been summarized in Table 1. The chemical structures of new compounds or 
compounds that are specific to the collected musroom species are depicted in Figures 3–20. It is worth 
noting that a great number of data reported herein have been collected through investigations 
conducted on mushroom samples collected outside Asia, especially in Europe. Therefore, even if the 
same species is reported to grow in different continents, varieties or sub-varieties may exist for the 
same species. Thus, possible differences may exist for the phytochemical contents of mushrooms 
growing in different ecosystems. 

Figure 1. Map showing Southeast Asian countries.

About fungal species, 93% of the fungi growing in northern Thailand appeared to be novel [30].
Therefore, the biodiversity of Southeast Asia is likely to be a vast reservoir for finding new mushroom
species, since fungi occurring in Myanmar, Laos, Vietnam, and Cambodia have barely been studied so
far [30]. Moreover, it is worth noting that numerous ethnic groups living in Southeast Asian countries
resort to several wild mushrooms for obtaining food and medicines; however, very few studies have
been carried out on the nutritional value and biological activities of these mushrooms. This review has
collected the information available in the literature on the phytochemical constituents of selected wild
edible mushrooms occurring in Southeast Asian countries, namely Agaricus silvaticus, Ampulloclitocybe
clavipes, Butyriboletus roseoflavus, Cantharellus cibarius (Figure 2a), Craterellus cornucopioides, Craterellus
odoratus, Fistulina hepatica, Hydnum repandum (Figure 2b), Laccaria amethystea, Lactarius hatsudake, Lepista
sordida (Figure 2c), Lycoperdon pyriforme (Figure 2d), Neolentinus lepideus (Figure 2e), Phlebopus portentosus,
Polyozellus multiplex, Ramaria botrytis, Rugiboletus extremiorientalis, Russula virescens (Figure 2f), Sarcodon
imbricatus, Termitomyces albuminosus, Termitomyces eurhizus, Termitomyces heimii, Termitomyces microcarpus,
Thelephora ganbajun, and Volvariella bombycina. These species were selected on the basis of their wide
use as a food in Southeast Asia and difficult cultivation. Moreover, they are among the most common
mushrooms growing in this part of the world. Likewise all selected macrofungi are a natural resource
of economic, ecological, scientific and cultural importance among ethnic groups in Southeast Asia.

The most important biological/pharmacological activities reported for extracts and isolated
compounds are also described, with special attention to antioxidant, antimicrobial and cytotoxic
properties. They have been summarized in Table 1. The chemical structures of new compounds
or compounds that are specific to the collected musroom species are depicted in Figures 3–20. It is
worth noting that a great number of data reported herein have been collected through investigations
conducted on mushroom samples collected outside Asia, especially in Europe. Therefore, even if
the same species is reported to grow in different continents, varieties or sub-varieties may exist for
the same species. Thus, possible differences may exist for the phytochemical contents of mushrooms
growing in different ecosystems.
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Figure 2. (a) Cantharellus cibarius; (b) Hydnum repandum; (c) Lepista sordida; (d) Lycoperdon pyriforme; (e) 
Neolentinus lepideus; (f) Russula virescens.  

3. Antioxidant Activity  

Reactive oxygen (ROS) and nitrogen (RNS) species, which are extremely reactive with most 
organic compounds, are products of the normal cellular metabolism [31] and may have either 
harmful or beneficial effects on living systems [32]. Free radicals are atoms or molecular fragments 
containing one or more unpaired electrons in atomic or molecular orbitals [33]. They are formed 
naturally in the body, especially in mitochondria, as necessary intermediates in a variety of normal 
biochemical reactions, thus playing a positive role in many normal cellular processes. However, at 

Figure 2. (a) Cantharellus cibarius; (b) Hydnum repandum; (c) Lepista sordida; (d) Lycoperdon pyriforme;
(e) Neolentinus lepideus; (f) Russula virescens.

3. Antioxidant Activity

Reactive oxygen (ROS) and nitrogen (RNS) species, which are extremely reactive with most organic
compounds, are products of the normal cellular metabolism [31] and may have either harmful or
beneficial effects on living systems [32]. Free radicals are atoms or molecular fragments containing one
or more unpaired electrons in atomic or molecular orbitals [33]. They are formed naturally in the body,
especially in mitochondria, as necessary intermediates in a variety of normal biochemical reactions,
thus playing a positive role in many normal cellular processes. However, at high concentrations, ROS
and RNS are responsible for the oxidative damage to biological macromolecules, including DNA,
proteins, and lipids in cell membranes. The damage to cells caused by free radicals, especially the
damage to DNA, may contribute to the development of many diseases, including cancer [34,35].
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Free-radical scavengers or free-radical quenchers are chemicals that react with free radicals
and neutralize them, thus helping stop or limit damages caused by those reactive species. Most
cells in our body produce antioxidant and repair systems which protect them against oxidative
damage; however, these systems are often insufficient to prevent or repair the damage entirely [36].
Therefore, the introduction in the body of additional antioxidant agents from the diet is believed to
be critical for maintaining cell homeostasis and thus a healthy organism [37]. Although synthetic
antioxidants such as butylhydroxyanisole (BHA), butylhydroxytoluene (BHT), propyl gallate (PG)
and tert-butylhydroquinone (TBHQ) have commonly been used as antioxidant additives in foods for
years, their safety has long been questioned [38]. This finding has led to an increased interest in natural
antioxidants. Antioxidant activities of extracts and isolated compounds from edible mushrooms have
been determined by several research groups that used different tests in vitro to measure the reducing
power ability, the total antioxidant activity, the 1,1-diphenyl-2-picrylhydrazyl radical scavenging
activity, the lipid peroxide inhibitory activity, the ferric reducing antioxidant power, the nitric oxide
(NO) scavenging activity, and the ABTS radical scavenging, superoxide radical, and hydroxyl radical
scavenging properties. Thus, a large number of results in the literature clearly indicates that several
edible mushrooms have significant antioxidant properties due to their bioactive compounds, such as
polyphenols, polysaccharides, vitamins, carotenoids and minerals [18,39–41].

4. Antimicrobial Activity

Infectious diseases produced by organisms such as bacteria, viruses, fungi or parasites, are among
the most serious causes of morbidity and mortality worldwide [42]. Nowadays many infections are often
caused by multi-resistant microorganisms resulting in difficult to treat diseases; as a very well-known
example, coronavirus Covid-19 is killing thousands of people worldwide. Consequently, healthcare
costs are increasing substantially every year, becoming a serious problem in many countries [43–45].
This situation has led to an increasing search for new antimicrobial agents from different sources.
Several researches have been conducted to explore the antimicrobial potential of natural or synthetic
compounds [46,47]. Thus, natural sources, including mushrooms, have been investigated for finding
novel antimicrobial compounds [48–51].

In food industry, contamination of food products by bacteria and fungi may be the result of
exposure to sources of contamination during harvesting, processing and/or packaging process [52].
Therefore, chemical additives have been extensively used in food industries to increase the shelf life
of food and to prevent the proliferation of microorganisms. In this regard, natural antimicrobials,
including those isolated from mushrooms, are gaining an increasing importance as potential alternatives
to synthetic preservatives, whose safety and impact on human health are still questionable [53–55].
Instead, the safety of many natural antimicrobials have been generally recognized in EU and USA [56].

5. Bioactive Phytochemical Constituents of Wild Edible Mushrooms from Southeast
Asian Countries

5.1. Agaricus silvaticus Schaeff.

Agaricus silvaticus Schaeff. is a common edible mushroom belonging to the family Agaricaceae.
It is distributed in China, Thailand and Mongolia [4,57,58]. Boonyanuphap and Hansawasdi studied
the beta-glucan content of A. silvaticus comparing it with other wild edible mushrooms found in
Thailand [59]. β-Nitroaminoalanine, N-nitroethylenediamine and glutamic acid were identified as
secondary metabolites of A. silvaticus [60–62]. Lodonjav et al. [57] investigated the chemical components
of A. silvaticus and identified 5α,6α-epoxy-(22E,24R)-ergosta-8(14),22-diene-3β,7α-diol (1 in Figure 3),
ergosterol, ergosterol peroxide, (22E,24R)-ergosta-7,22-diene-3β,5α,6β,9α-tetraol (2), cerevisterol (3),
(2R,3S,4R,6E)-N-[(R)-2′-hydroxytetracosanoyl]-1,3,4-trihydroxy-2-amino-octadeca-6-ene, benzoic acid,
cinnamic acid and d-mannitol. The antimicrobial activity of A. silvaticus has not been reported, whereas
the antioxidant activity has been determined [63,64].
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5.2. Ampulloclitocybe clavipes (Pers.) Redhead, Lutzoni, Moncalvo and Vilgalys

Ampulloclitocybe clavipes (Pers.) Redhead, Lutzoni, Moncalvo & Vilgalys, formerly known as
Clitocybe clavipes (Pers.) P. Kumm, belongs to the family Hygrophoraceae. It is a wild mushroom
growing in China, Thailand, and Japan [4,58,65]. Clavilactones A–C (4–6, Figure 4) were isolated in an
Italian laboratory from a culture of the fungus and exhibited antifungal and antibacterial activities [66].
The structures of clavilactones D and E (7), were initially inferred by 1- and 2-D NMR data [67]. However,
the subsequent total synthesis of clavilactones A, B, and D led to a revision of the original structure of
clavilactone D which was established to be as formula (8) in Figure 4 [68]. Clavilactone A, B, and D
displayed potent inhibitory activity in kinase assays against the Ret/ptc1 and epidermal growth factor
receptor (EGFR) tyrosine kinases [67,69]. Subsequently, Sun et al. [70] isolated from a fungal strain of
A. clavipes, clavilactone F (12) together with three novel meroterpenoids, named clavipines A–C (9–11),
which exhibit a benzoquinone ring fused to an azepine ring and a ten-membered carbocycle bearing
an α,β-epoxy/unsaturated-γ-lactone. Compound 9 exhibited significant antiproliferative activity
against HepG2 and A549 cells with IC50 values of 4.28 ± 0.26 and 7.49 ± 0.41 µM, respectively [70].
Subsequently, clavipols A–B (13–14) containing a 12-membered ether ring and clavilactones G–I (15–17)
were isolated from the fruiting bodies of A. clavipes collected in China. Compound 16 exhibited
moderate cytotoxic activity against Hela and SGC-7901 cancer cell lines, with IC50 values of 23.5 and
14.5 µM, respectively [71]. Five fatty acid derivatives, isolated from A. clavipes have been reported to
have potent strong inhibitory activity against aldehyde dehydrogenase [65].
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5.3. Butyriboletus roseoflavus (M. Zang and H.B. Li) D. Arora and J.L. Frank

Butyriboletus roseoflavus is an Asian species which was previously named Boletus speciosus Frost.
It belongs to the family Boletaceae and to the genus Butyriboletus, which has recently been created to
accommodate the former section Appendiculati within the large genus Boletus. This edible mushroom
grows abundantly in Southern China (Yunnan) and Thailand, and it is commonly sold in street
markets [4,58]. A group of Chinese researchers reported the isolation, from the fruiting bodies of
a novel heteropolysaccharide, which has a backbone of (1→4)-α-l-mannopyranose residues, which
branched at O-6. The branches are mainly composed of one with→1)-α-d-galactopyranose residue [72].
In addition to a strong antioxidant activity [72], this polysaccharide with a unique structure activates
the secretion of cytokines from immune cells and inhibits the growth of Hep-2 cells. The concentration
of 400 µg/mL has the highest inhibitory rate [73,74]. A new water-soluble polysaccharide, having a
backbone of 1,4-linked β-d-glucose, with branches mainly composed of two 1,6-linked α-d-galactose
residues and bearing a 4-linked β-d-glucose unit at the end of the branches, has been reported to exhibit
unique antitumor and immunoregulatory properties [75]. Sun et al. [76] reported that hemagglutinin
isolated from B. speciosus, showed antiproliferative activity towards hepatoma Hep G2 cells and mouse
lymphocytic leukemia cells (L1210) in vitro, with an IC50 of 4.7 µM and 7.0 µM, respectively. It also
exhibited HIV-1 reverse transcriptase inhibitory activity with an IC50 of 7.1 µM.

5.4. Cantharellus cibarius Fr.

Cantharellus cibarius Fr., belonging to the family Cantharellaceae, is an edible mushroom, which
grows widely in China, India, Thailand, America and several European countries [4,58,77–79].
The polysaccharides isolated from the fruiting bodies of C. cibarius were galactans and
glucans, including a novel linear 3-O-methylated galactan and a new heteropolysaccharide.
These macromolecules showed a wide range of biological activities, such as antioxidant,
antitumor, antiproliferative, immunomodulatory and neuroprotective properties [80–86].
Mittermeier et al. [87] investigated the taste active and taste modulating compounds from
this mushroom by LC–MS and 1D/2D-NMR experiments and identified several C18-acetylenic
acids: 14,15-dehydrocrepenynic acid methyl ester, 14,15-dehydrocrepenynic acid ethyl
ester, 14,15-dehydrocrepenynic acid, (9Z,15E)-14,17,18-trihydroxy-9,15-octadecadien-12-ynoic
acid, (9Z,15E)- 14-oxo-9,15-octadecadien- 12-ynoic acid, (10E,15E)-9-hydroxy-14-oxo-
10,15-octadecadien-12-ynoic acid, (10E,15E)-9-hydroperoxy-14-oxo-10,15-octadecadien-12-ynoic acid,
(10E,15E)-9,14-dioxo-10,15-octadecadien-12-ynoic acid, (9Z,15E)- 14-oxo-9,15-octadecadien-12-ynoic
acid methyl ester, (9Z,15E)-17(18)-epoxy-14-oxo-9,15-octadecadien-12-ynoic acid methyl
ester, (10E,14Z)-9-hydroperoxy-10,14-octadecadien-12-ynoic acid, (10E,14Z)-12-hydroxy-10,14-
octadecadienoic acid, (9Z,11Z)-14,18-dihydroxy-9,11-octadecadienoic acid, (9Z,11Z)-14,17,18-
trihydroxy-9,11-octadecadienoic acid, (10E,14Z)-9-hydroxy-10,14-octadecadien-12-ynoic acid and
(10E,14Z)-9-oxo-10,14-octadecadien-12-ynoic acid. Further studies showed that C. cibarius also contains
(9Z,13Z,15E)-14,18-dihydroxy-12-keto-9,13,15-octadecatrienoic acid, 14,15-dehydrocrepenyic
acid, (10E,14Z)-9-oxooctadeca-10,14-dien-12-ynoic acid and (10E,14Z)-9-hydroxyoctadeca-
10,14-dien-12-ynoic acid and ergocalciferol [88–90]. Crude extracts of C. cibarius showed
antioxidant [91], antimicrobial activity [92] and cytotoxic activities [93].

5.5. Craterellus cornucopioides (L.Fr.) Pers

Craterellus cornucopioides (L.Fr.) Pers. (family-Cantharellaceae) is an edible fungus with
a wide distribution in Europe, North America, Korea, Japan, China, and Thailand [4,58,94,95].
A new triple-helix polysaccharide, a heteroglycan with (1→3)-linked-β-d-Manp-(1→6)-linked
α-d-Galp backbone distributed by (1→4)-linked-α-d-Xylp-t-α-d-Manp and t-β-d-Glup units at
O-6, was isolated from C. cornucopioides. This compound activated RAW264.7 macrophages
in vitro, and enhanced the immunomodulatory activity in immunosuppressive mice models [94–96].
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Yang et al. [97] isolated a novel polysaccharide fraction from the fruiting bodies. The dominant
linkage types were→3,6)-Manp (1→, T-Araf,→4,6)-Manp (1→,→5)-Araf (1→ and→3)-Araf (1→).
The polysaccharide possessed strong scavenging abilities on DPPH and ABTS radicals. Three
illudin sesquiterpenoids, craterellins A–C (structures 18–20 in Figure 5), and one gymnomitrane
sesquiterpenoid, gymnomitr-3-en-10β,15-diol (21), together with illudin F, illudin M, illudin T and
illudalenol were isolated in China from cultures of this mushroom. Compound 20 exhibited moderate
cytotoxicity against A-549 cells with an IC50 value of 21.0 µM [98]. In addition to a new menthane
monoterpene, 4-hydroxy-4-isopropenylcyclohexanemethanol acetate (22), craterellins D (23) and E (24)
were later isolated from fungal cultures after minor modifications of the original cultural conditions.
The cytotoxic activities of these compounds on five tumor cell lines were also reported [99]. Three
new keto esters, 4-oxo-hex-1,6-diyl diacetate, 4-oxo-hex-5-enyl acetate and 6-hydroxy-4-oxo-hexyl
acetate were isolated from a tissue culture of fruiting bodies of C. cornucopioides collected in China [100].
Magnus’s group isolated three tryptophol (indole-3-ethanol) derivatives, namely 2-(indol-3-yl)ethyl
octadeca-(9Z)-enoate (structure 25 in Figure 5), 2-(indol-3-yl)ethyl octadeca-(9Z,12Z)-dienoate and
2-(indol-3-yl)ethyl octadeca-(9Z,14Z)-dien-12-ynoate from the fruiting bodies of this mushroom [101].
Glycerol tri-dehydrocrepenynate, glycerol trioleate and glycerol linoleate dioleate were also isolated by
the same research group [102]. Piceatannol, vitamin B12, ergosterol and ergosteryl derivatives are other
chemical constituents isolated from C. cornucopioides [93,103,104]. Various extracts of C. cornucopioides
showed antioxidant, antimicrobial, anti-inflammatory and cytotoxic activities [91,93,105–108].Molecules 2020, 25, x FOR PEER REVIEW 9 of 42 
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5.6. Craterellus odoratus (Schwein.) Fr.

Craterellus odoratus (Schwein.) Fr. is a tasty mushroom of the family Cantharellaceae,
which is widely collected in China and Thailand [58,109,110]. Three rare merosesquiterpenoids,
named craterellins A–C (26–28 in Figure 6), were isolated from cultures of C. odoratus
together with known massarinolin C. They showed inhibitory activities of 11β-hydroxysteroid
dehydrogenases (11β-HSD1 and 11β-HSD2) [111]. Craterellin A (26) demonstrated significant a
inhibitory activity against human 11β-HSD2 with an IC50 value of 1.5 µg/mL [111]. Craterellin
D (29), 5-hydroxymethyl-2-hydroxy-4-methoxy-phenylethanone, 2-(1,2-dihydroxypropan-2-yl)
benzofuran-5-carboxylic acid, 6α-hydroxy-3-methoxy-4α-methyl-2-cyclohexen-1-one have been
isolated from the cultures of C. odoratus. 5-hydroxymethyl-2-hydroxy-4-methoxy-phenylethanone
exhibited inhibitory activity against human 11β-HSD1 with an IC50 value of 16.4 µg/mL [109].
Guo et al. [112] extensively studied the cultures of C. odoratus and identified five new polyketides,
named craterellones A–E (structures 30–34 in Figure 6), together with the known compounds
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decumbenones A and B, versiol, calbistrin A and calbistrin C. Their cytotoxic activities were
reported [112]. Subsequently, the Chinese research group reported the chemical structures of two rare
4,6-dimethyl-3,4-dihydrochromen-2-one derivatives, cralactones A (35) and B (36), which were isolated
from the culture broth of C. odoratus. The pancreatic lipase inhibitory activity of the compounds were
also described [113]. Recently, the origin of these isolated compounds has been discussed. In fact,
it has been debated if they are true metabolites of C. odoratus or are formed by the associated fungus
Montagnula donacina [114].Molecules 2020, 25, x FOR PEER REVIEW 10 of 42 
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5.7. Fistulina hepatica (Schaeff.)

Fistulina hepatica (Schaeff.), commonly known as beefsteak fungus, is a wild edible fungus belonging
to the family Fistulinaceae [95]. It is distributed in temperate and subtropical hardwood forests of China,
Thailand, Hungary, Portugal [4,58,115,116], and other European countries. Two novel triacetylene
derivatives have been isolated from the fruiting bodies and named cinnatriacetins A (37) and B (38) [117].
Compounds 37 and 38 (see structures in Figure 7) showed antimicrobial activity against gram-positive
bacteria, but no activity towards gram-negative bacteria [117]. Caffeic acid, p-coumaric acid, ellagic acid,
hyperoside, quercetin, oxalic acid, aconitic acid, citric acid, malic acid, ascorbic acid and fumaric acid
were also isolated from F. hepatica, and an aqueous extract showed a significant scavenger activity of
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DPPH• and superoxide radicals [118]. A sample of F. hepatica collected in Portugal contained tocopherols
and showed strong antioxidant activity [115,119]. Ribeiro and his co-workers extensively studied the
free amino acid and fatty acid composition of F. hepatica, comparing their contents with those of other
wild edible mushrooms [120,121]. Wu et al. [122] studied the volatile compounds from the fruiting
bodies and 11 compounds were identified as responsible for the characteristic odor of the fungus. They
were: 1-octen-3-one, 1-octen-3-ol, linalool, phenylacetaldehyde, butanoic acid, (E)-2-methyl-2-butenoic
acid, methyl (E)-cinnamate, (Z)-9-hexadecenoic acid methyl ester, bisabolol oxide B, phenylacetic acid,
and an undetermined mouldy compound. (E)-2-Methyl-2-butenoic acid and bisabolol oxide B have
not been identified as native fungal volatile metabolites. Other studies on the volatiles from F. hepatica
have been performed in Portugal and German laboratories [123,124]. A methanol/water (80:20) extract
of F. hepatica collected in Portugal inhibited the growth of gram-negative (Escherichia coli, Morganella
morganni and Pasteurella multocida) and gram-positive (Staphylococcus aureus, MRSA, Enterococcus faecalis,
Listeria monocytogenes, Streptococcus agalactiae and Streptococcus pyogenes) bacteria [22]. Moreover, the
crude extract showed high synergistic effects in combination with cefuroxime against MRSA [116,125].
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5.8. Hydnum repandum L.

Hydnum repandum L. is a wild edible mushroom belonging to the family Cantharellaceae [95].
This mushroom is distributed in China, Thailand, India and Portugal [58,126–128].
A new cytotoxic diepoxide, namely repandiol (structure 39 in Figure 8), was isolated
from fruiting bodies collected in Japan and displayed potent cytotoxic activity against
various tumor cell lines, especially colon adenocarcinoma cells with an IC50 value of
0.30 µg/mL [129]. Sarcodonin A, scabronine B (40), 3β-hydroxy-5α,8α-epidioxyergosta-6,22-diene,
(22E,24R)-ergosta-7,22-diene-3β,5α,6β-triol, (22E,24R)-ergosta-7,22-diene-3β-ol, benzoic acid,
4-hydroxylbenzaldehyde, 4-monopropanoylbenzenediol, ethyl-β-d-glucopyranoside, thioacetic
anhydride, and (2S,2’R,3S,4R)-2-(2-hydroxytricosanoylamino) hexadecane-1,3,4-triol have also been
isolated [130]. Fatty acids such as pentadecanoic, heptadecanoic, oleic, myristoleic, palmitoleic,
linolenic, palmitic and stearic acids were detected in the fruiting bodies of H. repandum collected in
India [128]. Antioxidant, antiproliferative, cytotoxic, and pro-apoptotic activities of H. repandum were
investigated by Vasdekis and collaborators. A significant cytotoxicity (IC50 = 1.0 mg · mL−1) was
determined against an A549 cell line, and, piceatannol was identified by LC/MS and MS analysis [93].
The influence of H. repandum extract on the growth and sporulation of Penicillium expansum was studied
in vitro. A significant reduction of the mycelial growth and inhibition of the pathogen sporulation
were observed [131]. In vitro antimicrobial and antioxidant susceptibility studies were performed by
many research groups [92,115,126,127,132,133].
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5.9. Laccaria amethystea (Bull.) Murrill

Laccaria amethystea (Bull.) Murrill, belonging to the family Hydnangiaceae, is an edible mushroom
with a wide distribution in China, Thailand and Laos [4,58]. Berg et al. [134] reported the
isolation from a strain of L. amethystea, of new protease inhibitors, called laccaridiones A and
B (structures 41 and 42, respectively, in Figure 9), which inhibited a series of proteases such
as commercial trypsin, papain, thermolysin, collagenase, and zinc-protease from Bacillus subtilis.
In addition, compound 42 showed strong antiproliferative effects on the murine fibroblast-cell
line L-929 (IC50 = 2.4 µg/mL) and the human leukemia cell line K-562 (IC50 = 1.8 µ/mL) [134].
3-(3-Methylbut-2-enyloxy)-4-O-α-d-ribofuranosyl-benzoic acid methyl ester (43), was also isolate from
a culture of this mushroom [135]. L. amethystea showed effective anti-hyperglycemia and anti-oxidative
properties; the highest α-amylase inhibitory activity (EC50 value 4.37 µg/mL) and metal chelating
activity (EC50 value 2.13 mg/mL) were observed for an aqueous extract [106].
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5.10. Lactarius hatsudake Nobuj. Tanaka

Lactarius hatsudake Nobuj. Tanaka, belonging to the genus Lactarius of the family Russulaceae,
is an edible, slightly bitter mushroom, which is widely distributed in China, Thailand and
Bhutan [4,58]. Artificial cultures are obtained with difficulty [136]. A review on the secondary
metabolites isolated from the fruiting bodies of European Lactarius species [137] does not
include this mushrooom, which is a typical Asian species for which a limited number of reports
exists. Miyazawa et al. [138] studied the components of the volatile oil from this mushroom.
cis-Isolongifolanone, α-cedrene epoxide, humulene epoxide III, clovane, linoleic acid and palmitoleic
acid were the main components among the 71 identified compounds. Ergosterol, ergosterol
peroxide, 5α,8α-epidioxy-(24S)-ergosta-6-en-3β-ol and (22E,24R)-ergosta-7,22-dien-3β,5α,6β-triol
were isolated from the fruiting bodies, and their inhibitory activitities against Crotalus
adamenteus venom phospholipase A2 (PLA2) enzyme and HIV in vitro were reported [139,140].
Fang et al. [141] isolated 7-(1-hydroxy-1-methylethyl)-4-methylazulene-1-carbaldehyde
(structure 44 in Figure 10), 4-methyl-7-(1-methylethyl) azulene-1-carboxylic acid (45) and
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4-methyl-7-(1-methylethyl)azulene-1-carbaldehyde from the fruiting bodies. Other new guaiane
sesquiterpenes, called lactariolines A and B (structures 46 and 47, respectively, in Figure 10), together
with known 4-methyl-7-isopropylazulene- 1-carboxylic acid, 1-formyl-4-methyl-7-isopropyl azulene,
lactaroviolin and 1-formyl-4-methyl-7-(1-hydroxy-1-methylethyl) azulene, were isolated by a Korean
research group [142].
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5.11. Lepista sordida (Schumach.) Singer

Lepista sordida (Schumach.) Singer, a basidiomycetous fungus of the family Tricholomataceae, is
an edible and medicinal agaric species which grows in the wild in China, Thailand, Korea [4,58,143].
Moreover, there is a report on the artificial cultivation of a wild strain of L. sordida from Thailand [144].
A water-soluble polysaccharide isolated from the fruiting bodies, which significantly increased the
nitric oxide and NF-α release from macrophages, was established to have a backbone consisting of
(1→6)-linked-α-d-glucopyranosyl and (1→2,6)-linked-α-d-glucopyranosyl residues, terminated with a
terminal (1→)-α-d-galactopyranosyl residue at the O-3 position of a (1→2,6)-linked-α-d-glucopyranosyl
residue along the main chain [145]. Miao and co-worker extracted four water-soluble polysaccharides
from the fruiting bodies which showed potent antiproliferative effects on human laryngocarcinoma
Hep-2 cells in vitro and in vivo [146,147]. Intracellular polysaccharides from mycelium of L.
sordida have demonstrated to possess a significant free radical-scavenging activity in vitro on
hydroxyl, superoxide anion and DPPH radicals [148]. Two new diterpenoids, lepistal and lepistol
(structures 48 and 49, respectively in Figure 11), were isolated from fungal fermentations of L.
sordida collected in France [149]. Aldehyde 48 was more active than alcohol 49 as regards the
cytotoxic, antibacterial and antifungal activities [149]. Compounds 50–52 (see structures in Figure 11),
named lepistamides A–C, were also isolated, in conjunction with diatretol, from samples of L.
sordida collected in China [150]. A group of Japanese researchers isolated plant-growth regulating
compounds, 2-azahypoxanthine (53), 2-aza-8-oxohypoxanthine (54), and imidazole-4-carboxamide
(55) [151–154], whereas compounds 56–59 (see structures in Figure 11), showing inhibitory activity
of the bentgrass root growth, were isolated from a culture broth [155]. The isolation of three new
chlorinated sesquiterpenes from a culture broth of L. sordida, named lepistatins A–C (see structures
60–62 in Figure 11), was reported by a Korean research group along with their antibacterial and
antiproliferative activities [143]. In conclusion, polysaccharides from L. sordida were determined
to possess immunoregulatory [145], antiproliferative [146], anticancer [146,147], and antiradical
activities [148], while different secondary metabolites showed antimicrobial [149], cytotoxic [149], and
plant growth regulatory activities [151–154].
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5.12. Lycoperdon pyriforme Schaeff.

Lycoperdon pyriforme Schaeff., belonging to the family Agaricaceae, is a wild edible mushroom
which grows in China, Thailand, Turkey and Bulgaria [4,58,156,157]. Akatin reported the
isolation and characterization of a new β-glucosidase [157]. Another research group isolated
4-methoxy-benzene-1-azoformamide (63), 4-methoxybenzene-1-ONN-azoxyformamide (64) and
3,5-dichloro-4-methoxybenzene-1-ONN-azoxyformamide (65) [158]. Compounds 63 and 64 (see
structures in Figure 12) were active against the plant parasitic nematode Meloidogyne incognita, and
showed weak antimicrobial effects against Nadsonia fulvescens and Penicillium notatum. Compound
65 (see structure in Figure 12) exhibited weak cytotoxicity against L1210, HL-60, and HeLa
S3 cells [158]. L. pyrifonne has also been reported to contain linoleic, oleic, palmitic, stearic,
9-eicosenoic, 9,12-eicosadienoic, tricosanoic, pentacosanoic, hexacosanoic, and 11-hexacosenoic
acids [156]. Biological studies were conducted on the antioxidant and antimicrobial activities of
L. pyrifonne [159–161].
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5.13. Neolentinus lepideus (Fr.) Redhead and Ginns

Neolentinus lepideus (Fr.) Redhead & Ginns, belonging to the family Polyporaceae, was
previously named Lentinus lepideus. It grows in China, Thailand, Japan and Korea [4,58,162,163].
It is worth noting that while some authors qualify this mushroom as edible, others describe
it as inedible. Hanssen extensively studied the liquid cultures and reported the presence of
(−)-torreyol, (−)-T-muurolol, (+)-T-cadinol, (−)-α-cadinol, cubenol, epicubenol, trans,trans-farnesol,
drimenol, α-copaene, α-elemene, trans-β-farnesene, γ-muurolene, α-muurolene, δ-cadinene,
cadina-1,4-diene and calacorene [164,165]. A new γ-pyrone derivative, named lepidepyrone (see
structure 66 in Figure 13), together with methyl 3-hydroxy-4-methoxycinnamate and ergosterol
were isolated from the cultured mycelium of the mushroom. Compound 66 showed high
inhibitory activity on mammalian HAase with an IC50 = 3.3 mM [162]. Phytochemical
investigations of N. lepideus established the presence in the fruiting bodies of two new secondary
metabolites, 5-methoxyisobenzofuran-4,7(1H,3H)-dione (67) and 1,3-dihydroisobenzofuran-4,6-diol
(68), together with the known compounds 5-methoxy-2,3-dimethylcyclohexa-2,5-diene-1,4-dione,
(E)-3-(3-methoxyphenyl)acrylic acid, 3-(4-methoxyphenyl)propan-1-ol, (E)-3-(4-methoxyphenyl)acrylic
acid, methyl (E)-3-(2-methoxyphenyl)acrylate, methyl (E)-3-(3-hydroxy-4-methoxyphenyl)acrylate,
and methyl (E)-3-(4-methoxyphenyl)acrylate [166]. Compounds 67 and 68 (see structures in Figure 13)
showed nitric oxide inhibitory activity with IC50 values of 6.2 µM and 88.8 µM, respectively.
In addition, compound 68 displayed antioxidant activity with an IC50 value of 68.6 µM [166].
1,3-Dihydroisobenzofuran-4,5,7-triol (69) and 5-methoxy-1,3-dihydroisobenzofuran-4,7-diol (70) were
isolated from an EtOAc extract of a culture filtrate and showed tyrosinase inhibitory activity with
IC50 values of 173 and 263 µg/mL, respectively [167]. Extracts from the fruiting bodies of N. lepideus
have been reported to possess antioxidant [168], antityrosinase [168], antihyperlipidemic [163], and
immunomodulating activities [169,170].
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mushrooms. Three novel pyrrole alkaloids, named phlebopines A–C (structures 71–73 in Figure 14), 
together with four known ones, 2-[2-formyl-5-(methoxymethyl)-1H-pyrrole-1-yl]propanoate, 
inotopyrrole, 1-isopentyl-2-formyl-5-hydroxy-methylpyrrole and inotopyrrole B (74), were isolated 
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displayed remarkable neuroprotective effects against hydrogen peroxide-induced neuronal-cell 
damage in human neuroblastoma SH-SY5Y cells [174].  

Figure 13. Chemical structures of selected compounds isolated from Neolentinus lepideus.

5.14. Phlebopus portentosus (Berk. & Broome) Boedijn

Phlebopus portentosus (Berk. & Broome) Boedijn, belonging to the family Boletinellaceae, is a popular
edible mushroom in China and Thailand [171]. Although this mushroom grows wild in association
with hosts in mixed forests and orchards, nowadays it can be grown in artificial cultures [171,172].
Kaewnarin et al. [173] evaluated the antioxidant, anti-tyrosinase, and antihyperglycaemic activities of
P. portentosus as well as the phenolic content, comparing it with other three wild edible mushrooms.
Three novel pyrrole alkaloids, named phlebopines A–C (structures 71–73 in Figure 14), together
with four known ones, 2-[2-formyl-5-(methoxymethyl)-1H-pyrrole-1-yl]propanoate, inotopyrrole,
1-isopentyl-2-formyl-5-hydroxy-methylpyrrole and inotopyrrole B (74), were isolated from fruiting
bodies collected in China. Among these isolated compounds, inotopyrrole B (74) displayed
remarkable neuroprotective effects against hydrogen peroxide-induced neuronal-cell damage in
human neuroblastoma SH-SY5Y cells [174].
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5.15. Polyozellus multiplex (Underw.) Murrill

Polyozellus multiplex (Underw.) Murrill, belonging to the family Thelephoraceae, grows in the wild
in Japan, Korea, China, and Thailand [4,58,175]. A new inhibitor of prolyl endopeptidase (PEP) with
an IC50 value of 2.72 µM, named polyozellin, was identified from a methanolic extract of fresh fruiting
bodies collected in Korea [176]. The total synthesis of polyozellin by Takahashi and his collaborators
led to a revision of the structure which was determined to be 75 [177]. A Korean research group
investigated the EtOAc soluble fraction of the mushroom and reported the chemical structure of two
active compounds, thelephoric acid (76) and kynapcin-9 (77) with their PEP activities [178]. Another
p-terphenyl derivative, named kynapcin-12, having PEP inhibitory activity with an IC50 value of
1.25 µM, was isolated by Lee and collaborators from a methanolic extract [179]. The correct chemical
structure of kynapcin-12 (78) was later assigned by total synthesis [180]. Polyozellic acid (79), and the
acetone adduct (80), together with thelephoric acid, were isolated from P. multiplex collected in Japan
and showed inhibitory effects on the proliferation, tubule formation, and invasion of human umbilical
vein endothelial cells [181]. Compounds 75, 76, 78, and 79 (see structures in Figure 15) inhibited
BACE1 activity with IC50 values of 3.08, 3.50, 4.78, and 15.79 µM, respectively, and neuroprotective
activities in glutamate-induced HT22 cell death [175]. Kim et al. [182] reported the isolation of two
new benzofurans, named kynapcin-13 (81) and kynapcin-28 (82), from P multiplex, which inhibited
prolyl endopeptidase with IC50 values of 76.80 and 0.98 µM, respectively. Another new benzofuran
dimer, kynapcin-24 (83), was later isolated from P multiplex. It inhibited PEP with an IC50 value of
1.14 µM [183]. Separation of a methanol extract of fruiting bodies of P multiplex collected in Korea
afforded linoleic acid and oleic acid together with thelephoric acid [184]. Extracts of this mushroom
were reported to have inhibitory effects on the proliferation of cancer cell lines [185], inhibitory activities
(IC50 10 µg/mL) against α-glucosidase [186] and DPPH radical scavenging activity [187]. Finally,
it is worthy of note that polyozellin exhibits high important bioactivities, such as antioxidant [187],
anti-carcinogenic [188] and inflammatory activities [189–195].
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5.16. Ramaria botrytis (Pers.) Bourdot

Ramaria botrytis (Pers.) Bourdot, belonging to the family Ramariaceae, is a wild edible mushrooms
which grows in mountains of eastern Asia, China, Thailand, Europe, and North America [4,58,196].
Zhou et al. reported the isolation of a novel ubiquitin-like antitumour protein which significantly
inhibited the growth and induced apoptosis in A549 cells [196]. Bhanja and his collaborators isolated
two water-insoluble glucans from the fruiting bodies of R. botrytis collected in India. One glucan was
composed of (1→3)-linked α-d-glucopyranosyl residues and the other one was a β-d-glucan with a
backbone of four (1→3)-linked β-d-glucopyranosyl units, with one single unit β-d-glucopyranosyl
branch substituted at O-6 position [197]. A glucan consisting of (1→6)-linked-β-d glucopyranosyl
residues as backbone, branched at O-3 position with a (1→3)-linked-β-d-glucopyranosyl unit and
a non-reducing end β-d-glucopyranosyl residue has been purified by the same research group.
This glucan showed immunostimulating activity on RAW 264.7, a murine macrophage cell line, by
nitric oxide production [198]. Moreover, polysaccharides from R. botrytis showed potent antioxidant
activities [199]. Fresh fruiting bodies of the mushroom collected in Japan have been reported to
contain (2S,2′R,3R,4E,8E)-N-2′-hydroxyoctadecanoyl-2-amino-9-methyl-4,8-heptadecadiene-1,3-diol,
5α,6α-epoxy-3β-hydroxy-(22E)-ergosta-8(14),22-dien-7-one, ergosterol peroxide, cerevisterol and
9α-hydroxycerevisterol [200]. The in vitro antioxidant and antimicrobial potentials of extracts of R.
botrytis were investigated by several research groups [26,201–204].

5.17. Rugiboletus extremiorientalis (Lj.N. Vassiljeva) G. Wu and Zhu L. Yang

Rugiboletus extremiorientalis (Lj.N. Vassiljeva) G. Wu & Zhu L. Yang [family Boletaceae, formerly
named Leccinum extremiorientale (Lj.N. Vassiljeva) Singer] is an edible mushroom growing in
northern temperate regions, especially in China, Laos and Thailand [4,58,205]. Leccinine A (84)
and pyrrolezanthine (85) (see structures in Figure 16), were initially isolated from the mature
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fruiting bodies collected in Japan and showed protective activity against endoplasmic reticulum
stress-dependent cell death [205]. Ito et al. isolated (8E,12Z)-10,11-dihydroxyoctadeca-8,12-dienoic
acid and leccinine A, reporting their growth regulatory activity against lettuce [206].
Subsequently, the new pyrrole alkaloid 2-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]acetic
acid (86), together with 4-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl]butanoic acid and
4-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanoic acid were isolated from an ethyl acetate
extract and exhibited poor cytotoxicity against K562, BEL7702, and SGC7901 cell lines with IC50 values
higher than 40 µM [207]. The possible antioxidant and antimicrobial activities of secondary metabolites
from R. extremiorientalis have not been examined so far.
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5.18. Russula virescens (Schaeff.) Fr. 

Russula virescens (Schaeff.) Fr., is a wild mushroom with a delicious taste, belonging to the family 
Russulaceae. It grows in nature on the roots of pine trees throughout China, Thailand, Lao, Nepal, 
and Europe [4,58]. The mushroom has long been used as a folk remedy in the traditional Chinese 
medicine [208]. Zhu et al. purified a novel laccase from R. virescens and then studied its dye 
decolorizing properties [209]. A water-insoluble linear (1→3)-β-D-glucan from the fresh fruiting 
bodies was isolated by the Sun’s group and did not exhibit antitumor activity, however, the sulfation 
of the native (1→3)-β-D-glucan improved the antitumor activity [210]. The extraction and purification 
of two novel water-soluble polysaccharides from fresh fruiting bodies of R. virescens were reported 
by the same research group. They revealed an interesting antioxidant properties [208]. Sun et al. [211] 
also isolated a water-soluble polysaccharide from the fruiting bodies of R. virescens, which had a 
backbone consisting of (1→6)-linked-α-D-galactopyranosyl and (1→2,6)-linked-α-D-
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5.18. Russula virescens (Schaeff.) Fr.

Russula virescens (Schaeff.) Fr., is a wild mushroom with a delicious taste, belonging to the
family Russulaceae. It grows in nature on the roots of pine trees throughout China, Thailand,
Lao, Nepal, and Europe [4,58]. The mushroom has long been used as a folk remedy in the
traditional Chinese medicine [208]. Zhu et al. purified a novel laccase from R. virescens and
then studied its dye decolorizing properties [209]. A water-insoluble linear (1→3)-β-d-glucan
from the fresh fruiting bodies was isolated by the Sun’s group and did not exhibit antitumor
activity, however, the sulfation of the native (1→3)-β-d-glucan improved the antitumor activity [210].
The extraction and purification of two novel water-soluble polysaccharides from fresh fruiting bodies
of R. virescens were reported by the same research group. They revealed an interesting antioxidant
properties [208]. Sun et al. [211] also isolated a water-soluble polysaccharide from the fruiting
bodies of R. virescens, which had a backbone consisting of (1→6)-linked-α-d-galactopyranosyl and
(1→2,6)-linked-α-d-galactopyranosyl residues that terminated in a single non-reducing terminal
(1→)-α-d-mannopyranosyl residue at the O-2 position of each (1→2,6)-linked-α-d-galactopyranosyl
residues along the main chain in the ratio of 1:1:1. The polysaccharide exhibited a significant scavenging
effects of hydroxyl radicals in vitro. Canthin-6-one, 5α,8α-epidioxy-(22E,24R)-ergosta-6,22-dien-3β-ol,
(22E,24R)-ergosta-5,7,22-trien-3β-ol, (22E,24R)-ergosta-7,22-dien-3β,5α,6β-triol, thioacetic anhydride,
maleic acid, d-allitol and ribosidoadenine are secondary metabolites isolated from R. virescens [212].
Studies on the antioxidant activity of R. virescens revealed that this mushroom can be considered as an
accessible source of natural antioxidants [204,206,213,214].

5.19. Sarcodon imbricatus (L.) P. Karst

Sarcodon imbricatus (L.) P. Karst, belonging to the family Bankeraceae, is an edible fungus
occurring in China, Thailand, and Turkey [4,58,215]. It is widely used in Asian medicine [216].
An investigation on a polysaccharide-enriched extract of S. imbricatus revealed that it stimulates
the immune response in CTX-induced immunosuppressed mice via modulation of oxidative
pathways [216]. An extract of S. imbricatus exhibited the growth of gram-negative and gram-positive
bacteria [22,217]. A Portugal research group reported that methanolic extracts of the mushroom
showed potent antioxidant activity and antimicrobial activity against Bacillus cereus and Cryptococcus
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neoformans [218,219]. A new p-terphenyl, 2′,3′-diacetoxy-4,5,5′,6′,4”,5”-hexahydroxy-p-terphenyl (87),
together with p-hydroxybenzoic acid, Bl-V (88), 2′,3′-diacetoxy-3,4,5′,6′,4”-pentahydroxy-p-terphenyl,
cerebroside E (89) (see structures 87−89 in Figure 17), nicotinic acid, 4-allylcatechol, uracil,
ethyl β-d-glucopyranoside, propanetriol, uridine, adenosine and d-allitol were isolated from the
fruiting bodies [220]. In addition to ergosterol and ergosterol peroxide, p-hydroxybenzoic acid,
protocatechuic acid, syringic acid, octanoic acid, decanoic acid, dodecanoic acid, tridecanoic acid,
tetradecanoic acid, pentadecanoic acid, hexadecanoic acid, heptadecanoic acid, octadecanoic acid,
eicosanoic acid, docosanoic acid, 9-tetradecenoic acid, 7-hexadecenoic acid, (E)-9-octadecenoic acid,
(9Z)-octadecenoic acid, (13Z)-docosenoic acid, (9Z,12Z,15Z)-octadecatrienoic acid, 1-eicosenoic acid,
(5Z,8Z,11Z,14Z)-eicosatetraenoic acid, methyl palmitate, methyl oleate, methyl linoleate and linolenic
acid are the phenolic and fatty acids and esters isolated from this mushroom [221,222]. Polysaccharides
isolated from S. imbricatus have demonstrated to possess antibacterial [223], anti-myelosuppressive [224],
and immunomodulatory activities [225,226]. Fruiting bodies and/or mycelial cultures have been
reported to possess antioxidant [203,221], antimicrobial [132], and antifatigue activities [227].
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5.20. Termitomyces albuminosus (Berk.) R. Heim

Termitomyces albuminosus (Berk.) R. Heim, belonging to the family Lyophyllaceae is a very
well-known wild edible mushroom, which is commonly distributed in Asia in China, Indonesia,
Malaysia, and Singapore [4,228]. It cannot be cultivated, because a symbiotic relationship with termites
is necessary [229,230]. The mushroom has been reported to contain water-soluble polysaccharides
with a great variety of biological activities, including antioxidant, anti-inflammatory, hepatoprotective,
hypolipidemic activities [230–234]. In addition, T. albuminosus has been reported to contain many
other bioactive components, such as chitin-glucan complex, alkaline protease, saponins, melanin,
lipids and ergosterol; some of which possess analgesic and anti-inflammatory activities [235–238].
Mau et al. studied a methanolic extract of T. albuminosus mycelia, reporting an interesting reducing
power, scavenging activity and chelating effects of ferrous ions. [239]. Qi, et al. described the chemical
structures of six novel cerebrosides, named termitomycesphins A–F (see structures 90–95 in Figure 18),
together with known cerebroside 96, and reported their neuritogenic activities [240,241]. Other two
new cerebrosides, named termitomycesphins G (97) and H (98) were later isolated from this mushroom
by the same research group [242]. Four new selinane-type sesquiterpenoids, named teucdiol C-F (see
structures 99–102 in Figure 18), together with the known compounds teucdiol B (103) and epi-guaidiol
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A (104) were isolated by from a fermentation broth of T. albuminosus [243]; epi-guaidiol A (104) showed
potent anti-acetylcholinesterase activity in a dose-dependent manner [243].Molecules 2020, 25, x FOR PEER REVIEW 20 of 42 
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5.21. Termitomyces eurhizus (Berk.) R. Heim

Termitomyces eurhizus (Berk.) R. Heim, belonging to the family Lyophyllaceae, is a wild edible
mushroom, which grows in association with termites in China, India, Myanmar, Malaysia, Nepal and
Thailand [4,58,228,244]. Two water-soluble polysaccharides, whose structures were established to
be (1→3)-d-Glcp and (1→6)-d-Glcp, and (1→6)-d-Glcp were isolated from a hot aqueous extract
of fruiting bodies [244]. On the other hand, a water-insoluble (1→3)-β-d-glucan was isolated
from a hot alkaline extract of the mushroom collected in India [245]. The biological activity of
a water-soluble polysaccharide-rich fraction of T. eurrhizus was investigated by an Indian research
group. The fraction revealed healing properties against indomethacin-induced stomach ulceration in
mice [246]. Pharmacological studies on mushroom polysaccharides have highlighted other biological
properties such as anticarcinogenic, antimicrobial, antioxidant and anti-inflammatory activities etc. [21];
therefore, T. eurhizus deserves further in-depth pharmacological investigations.

5.22. Termitomyces heimii Natarajan

Termitomyces heimii Natarajan, (family-Lyophyllaceae) is a wild edible mushroom which grows in
nature in symbiosis with termites in China, Malaysia, Thailand, and India [4,58,228,247]. Manna et al.
reported the structure of a water-soluble β-glucan from this mushroom, together with its antioxidant
activity [248]. The polysaccharide consisted of a backbone chain of two (1→6)-β-d-glucopyranosyl
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residues, one of which was branched at the O-3 position with a side chain consisting of two
(1→3)-β-d-glucopyranosyl units and one terminal β-d-glucopyranosyl residue. The lipid content of T.
heimii was analyzed by Abd Malek’s group who identified ergosterol and linoleic acid as the major
components, and tetracosane, methyl palmitate, ethyl palmitate, methyl linoleate, ethyl linoleate, ethyl
oleate, ethyl eicosanoate, ethyl tetracosanoate, ebericol, lanosterol, palmitic acid, oleic acid, stearic acid,
neoergosterol, ergosta-5,8-dien-3-ol, ergosta-5,8(14)-dien-3-ol, 7-ergostenol, brassicasterol, γ-ergostenol,
myristic acid, linoleic acid, benzaldehyde, 4-hydroxybenzaldehyde, benzeneacetamide, cinnamic acid
and nicotinamide as the minor components [249]. A polyphenol-rich fraction of T. heimii, collected in
West Bengal, showed potent antioxidant activity [247].

5.23. Termitomyces microcarpus (Berk. and Broome) R. Heim

Termitomyces microcarpus (Berk. & Broome) R. Heim (family Lyophyllaceae) is an edible mushroom
which generally grows on termite material in China, Malaysia, Philippines, Thailand, India, and
Nigeria [4,58,228,250,251]. Different α- and β-glucans were isolated from T. microcarpus and the
repeating units of the new polysaccharides were identified by means of NMR studies and chemical
investigations [252–254]. Dimethylincisterol, 5α,8α-epidioxy-(22E,24R)-ergosta-6,9(11),22-trien-3β-ol,
5α,8α-epidioxy-(22E,24R)-ergosta-6,22-dien-3β-ol, 5α,6α-epoxy-(22E,24R)-ergosta-8(14),22-diene-3β,
7α-diol, (22E,24R)-ergosta-7,22-diene-3β,5α,6β-triol, and betulinic acid were isolated by Njue et al.,
who also reported their cytotoxic activities [255]. Nakalembe and Kabasa studied the antimicrobial
activity and the bioactive compounds from T. microcarpus collected in Uganda, using GC-MS [256];
an interesting antimicrobial activity, especially against S. aureus and P. aeruginosa, was determined.
In other studies, a mushroom extract displayed significant antioxidant and free radical scavenging
activities [37,257–259].

5.24. Thelephora ganbajun M. Zang

Thelephora ganbajun M. Zang, belonging to the family Thelephoraceae, is one of the most favorite
edible mushrooms. It widely grows in symbiosis with pine trees in China and the Greater Mekong
region [260], where it is highly prized for its unique taste and flavor [260,261]. A novel ribonuclease,
showing potent inhibitory activity toward HIV-1 reverse transcriptase, was isolated from dried fruiting
bodies of the mushroom by Wang and Ng [262]. Two new polysaccharide fractions isolated from the
fruiting bodies were characterized by Gong’s group [263]. They exhibited strong inhibitory effects
on HeLa cells and moderate inhibitory effect on α-amylase and α-glucosidase. Separation of an
EtOAc-partitioned MeOH extract of T. ganbajun fruiting bodies collected in China afforded, in addition
to 3-O-methylatromentin, five new poly(phenylacetyloxy)-substituted 1,1′:4′,1”-terphenyl derivatives,
called ganbajunins A–E (see structures 105–109 in Figure 19) [264]. Subsequently, ganbajunin F
and G (see structures 110–111 in Figure 19), together with cycloleucomelone were isolated from
fresh fruiting bodies by the same research group [265]. The extracts obtained under optimized
conditions by an ultrasonic-assisted extraction procedure, possessed significant antiproliferative
activities towards human lung and liver cancer cells [266]. Moreover, ganbajunins A–C (105–107) and
3-O-methylatromentin possessed potent lipid peroxidation inhibitory activity, SOD activity in rat liver
homogenate, and DPPH radical scavenging activity [261,267,268].
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5.25. Volvariella Bombycina (Schaeff.) Singer

Volvariella bombycina (Schaeff.) Singer is a wild edible mushroom belonging to the family Pluteaceae
which grows in Asia in China and Thailand [4,58,269]. Das et al. [270] isolated a water-soluble
polysaccharide from the hot aqueous extract of the mushroom collected in India. The repeating
unit was identified as a→6)-β-d-Glcp-(1→6)-α-d-Manp-(1→6)-α-d-Glcp-(1→ backbone to which an
α-d-galactosyl unit was attached. A novel compound, named isodeoxyhelicobasidin (structure
112 in Figure 20), was isolated by a Korean research group from a culture broth of V. bombycine.
Compound 112 was reported to possess human neutrophil elastase (HNE) activity with an IC50

value of 9.0 µm and antibacterial activity against several gram-positive bacteria, including S. aureus
503, methicillin-resistant S. aureus CCARM 3167 (MRSA), quinolone-resistant S. aureus CCARM 3505
(QRSA), Bacillus subtilis 1021, Staphylococcus epidermidis 3958 and Streptococcus mutans 3065, with
MIC values in the range of 3.1–12.4 µg/mL [271]. Ergosta-4,6,8(14),22-tetraene-3-one (113), ergosterol
peroxide, indole-3-carboxaldehyde (114), and indazole (115) were later isolated from a culture broth of
V. bombycine. Compound 113 showed inhibitory activity on melanogenesis with an IC50 = 80.9 µM
and cytotoxic activity with an LD50 value of 50.6 µM [272]. Moreover, a V. bombycina extract showed a
moderate antioxidant activity [269,273].
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Table 1. Biological/pharmacological activities of extracts/compounds isolated from selected wild edible mushrooms growing in Southeast Asia countries.

Mushroom Species Metabolites with Antioxidant
Activity

Metabolites with Antimicrobial
Activity

Metabolites with Cytotoxic
and/or Antiproliferative

Activity
Metabolites with Other Biological Activities

Agaricus silvaticus Schaeff.
(Agaricaceae) Extract [64,65] - - -

Ampulloclitocybe clavipes (Pers.)
Redhead, Lutzoni, Moncalvo &

Vilgalys
(Hygrophoraceae)

- Clavilactone A-C (4−6) [66] Clavipines A (9) [70],
Clavilactone H (16) [71]

Clavilactone B (5) (inhibitory activity of the growth of Lepidum
sativum) [66]).

Clavilactones A, B, D (4,5,8) (tyrosine kinases inhibitory activity
[67,69]).

Fatty acid derivatives (aldehyde dehydrogenase inhibitory
activity [65])

Butyriboletus roseoflavus (M. Zang &
H.B. Li) D. Arora & J.L. Frank

(Boletaceae)
Polysaccharide [72] - Polysaccharide [73–75],

Hemagglutinin [76]

Polysaccharide (immunoregulatory activity [73–75]).
Hemagglutinin (HIV-1 reverse transcriptase inhibitory activity

[76])

Cantharellus cibarius Fr.
(Cantharellaceae) Polysaccharide [85,86] Extract [92] Polysaccharide [80,82] Polysaccharide (immunomodulatory [81,86] and

neuroprotective activities [85])

Craterellus cornucopioides (L.Fr.) Pers.
(Cantharellaceae)

Polysaccharide [97],
Extract [91,93,105,106,108] Extract [105] Craterellin C (20) [98],

Extract [93,105]

Polysaccharide [94,96].
Extract (antimutagenic effects [105], antihyperglycemic [106]

and anti-inflammatory activities [107,108])

Craterellus odoratus (Schwein.) Fr.
(Cantharellaceae) - - Calbistrin C [112]

Craterellin A (26) (inhibitory activities against human
11β-HSD2 [111]).

5-Hydroxymethyl-2-hydroxy-4-methoxy-phenylethanone
(inhibitory activity against human 11β-HSD1 [109])

Fistulina hepatica (Schaeff.)
(Fistulinaceae) Extract [115,118,119]

Cinnatriacetins A (37) and B (38)
[117].

Extract [22,116,125]
- -

Hydnum repandum L.
(Cantharellaceae) Extract [92,115,127,133] Extract [92,126,131,132] Repandiol (39) [129], Extract

[93] -

Laccaria amethystea (Bull.) Murrill
(Hydnangiaceae) Extract [106] Laccaridiones A (41) and B (42)

[134] Laccaridiones B (42) [134] Extract (antihyperglycemic activity [106])

Lactarius hatsudake Nobuj. Tanaka
(Russulaceae) - - - Ergosterol peroxide, 5α,8α-epidioxy-(24S)-ergosta -6-en-3β-ol

(antiphospholipase A2 activity [139] and anti-HIV activity [140])

Lepista sordida (Schumach.) Singer
(Tricholomataceae) Polysaccharides [148] Lepistal (48), lepistol (49) [149] Polysaccharides [146,147],

lepistal (48), lepistol (49) [149]
Polysaccharide (immunoregulatory activity [145]). Compounds

56−59 (plant growth inhibitory activity [155])

Lycoperdon pyriforme Schaeff.
(Agaricaceae) Extract [161] Compounds 63 and 64 [158].

Extract [160] Compound 65 [158] Compounds 63 and 64 (nematicidal activity [158])
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Table 1. Cont.

Mushroom Species Metabolites with Antioxidant
Activity

Metabolites with Antimicrobial
Activity

Metabolites with Cytotoxic
and/or Antiproliferative

Activity
Metabolites with Other Biological Activities

Neolentinus lepideus (Fr.) Redhead &
Ginns

(Polyporaceae)

Compound 68 [166], Extract
[168] - -

Lepidepyrone (66) (inhibitory effects on hyaluronidase [162).
Compounds 67 and 68 (NO inhibitory activity [166])

Compounds 69 and 70 (tyrosinase inhibitory activity [167]).
Polysaccharide (immunomodulating activity [169]). Extract

(antityrosinase [168], antihyperlipidemic [163] and
immunomodulatory activities [170])

Phlebopus portentosus (Berk. &
Broome) Boedijn
(Boletinellaceae)

Extract [173] - - Extract (tyrosinase and hyperglycaemic moderate inhibitory
activities [173]). Compound 74 (neuroprotective activity [174])

Polyozellus multiplex (Underw.)
Murrill

(Thelephoraceae)

Polyozellin (75) and extract
[189] Extract [188] Polyozellin (75) [179,190].

Extract [187,190]

Polyozellin (75) (prolyl endopeptidase (PEP) inhibitory activity
[176,177], β-secretase (BACE1) inhibitory activities [175],

neuroprotective effect [187] and anti-inflammatory activities
[189–195]). Thelephoric acid (76) (PEP inhibitory activity [178],

β-secretase (BACE1) inhibitory activity [175] and
neuroprotective effect [175]). Kynapcin-9 (77) (PEP inhibitory
activity) [178]. Kynapcin-12 (78) (PEP inhibitory [179], prolyl

oligopeptidase (POP) inhibitory [180] and β-secretase (BACE1)
inhibitory activities [175]). Polyozellic acid (79)

(antiangiogenesis [181], β-secretase (BACE1) inhibitory
activities [175] and neuroprotective effects [175]), compound 80
(antiangiogenesis activity [181]). Kynapcin-13 (81) and -28 (82)
(PEP inhibitory activity [182]), Kynapcin-24 (83) (PEP inhibitory

activity [183]).

Ramaria botrytis (Pers.) Bourdot
(Ramariaceae)

Polysaccharide [199], Extract
[202–204] - A novel ubiquitin-like protein

[196] Glucan (immunostimulating activity) [198]

Rugiboletus extremiorientalis (Lj.N.
Vassiljeva) G. Wu & Zhu L. Yang - - - Leccinine A (84) (protective activity against endoplasmic

reticulum stress-dependent cell death [205] and plant growth
regulatory activity [206]).

(8E,12Z)-10,11-dihydroxyoctadeca-8,12-dienoic acid (plant
growth regulatory activity [206]).

Russula virescens (Schaeff.) Fr.
(Russulaceae)

Polysaccharide [208,211],
Extract [203,213,214] - - -

Sarcodon imbricatus (L.) P. Karst
(Bankeraceae) Extract [203,219,221] Extract [22,132,217,218],

Polysaccharide [223] - Extract (immunomodulatory [216] and antifatigue activities
[227]). Polysaccharide (immunoenhancement [225,226] and

anti-myelosuppressive activities [224]).
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Table 1. Cont.

Mushroom Species Metabolites with Antioxidant
Activity

Metabolites with Antimicrobial
Activity

Metabolites with Cytotoxic
and/or Antiproliferative

Activity
Metabolites with Other Biological Activities

Termitomyces albuminosus (Berk.) R.
Heim

(Lyophyllaceae)

Polysaccharide [230,232–234],
Extract [239] - -

Polysaccharide (anti-inflammatory [234] and hepatoprotective
effects [232,234]). Extract (analgesic and anti-inflammatory

activities [236]). Termitomycesphins A-F (90-95) (neuritogenic
activity [240,241]). Termitomycesphins G (97) and H (98)

(neuritogenic activity [242]). epi-Guaidiol A (104)
(anti-acetylcholinesterase activity [243]).

Termitomyces eurhizus (Berk.) R.
Heim

(Lyophyllaceae)
- - - Extract (anti-ulcerogenic activity) [245]

Termitomyces heimii Natarajan
(Lyophyllaceae)

Extract [247] Polysaccharide
[248] - - -

Termitomyces microcarpus (Berk. &
Broome) R. Hein
(Lyophyllaceae)

Extract [36,257–259] Extract [257]
Dimethylincisterol;

5α,8α-epidioxy-(22E,24R)-ergosta-6,22-dien-3β-ol
[255]

-

Thelephora ganbajun M. Zang
(Thelephoraceae)

Ganbajunins A-B (105−106)
[261,267,268]. Ganbajunin C
(107); 3-O-methylatromentin

[267,268]

- Polysaccharide [263],
Extract [266]

Ribonuclease (inhibitory activity toward HIV-1 reverse
transcriptase) [262]. Polysaccharides (antidiabetic activity) [263]

Volvariella bombycina (Schaeff.)
Singer

(Pluteaceae)
Extract [269,273] Isodeoxyhelicobasidin [271] Compound 113 [272]

Isodeoxyhelicobasidin (human neutrophil elastase (NHE)
activity [271]). Compound 113 (inhibitory

effects on melanogenesis [272]).
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6. Conclusions

Southeast Asia is one of the biodiversity hot-spots in the world and has an outstanding rate
of species discovery. In fact, hundreds of new species are described annually. However, regional
biological resources are currently threatened by climatic changes and human activity-related factors
such as the high rate of mining in the tropics, the construction of a great number of hydropower dams,
and an indiscriminate consumption of plants in traditional medicines [274–276]. Therefore, access to
biodiversity resources of Southeast Asia must be done paying great attention to their conservation or
renovation. In this context, mushrooms play important roles in different ecosystems; however, they are
often obtained in artificial cultures, thus avoiding the collection in the wild.

Although the variety of higher mushroom (Basidiomycetes) growing in Southeast Asia is calculated
to be very high, only few scientific mycological investigations have been conducted, and most species
growing in countries such as Myanmar, Laos, and Cambodia, have not been identified so far.

We believe that this review clearly demonstrates that edible mushrooms are a rich source of various
bioactive substances having antimicrobial, antioxidant, anti-inflammatory, anti-proliferative, cytotoxic,
anti-HIV, anti-diabetic properties, among other ones. Therefore, edible mushrooms must be considered
not only culinary delicacies but also functional foods and, in some cases, even therapeutic agents.
Of course, mushroom edibility is a proof of their non-acute toxicity. Therefore, edible mushrooms
containing bioactive compounds can have high potential as sources of medicinal remedies.
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