
Citation: Oladipo, A.; Enwemiwe, V.;

Ejeromedoghene, O.; Adebayo, A.;

Ogunyemi, O.; Fu, F. Production and

Functionalities of Specialized

Metabolites from Different Organic

Sources. Metabolites 2022, 12, 534.

https://doi.org/10.3390/

metabo12060534

Academic Editor: Gilles Comte

Received: 17 May 2022

Accepted: 8 June 2022

Published: 10 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metabolites

H

OH

OH

Review

Production and Functionalities of Specialized Metabolites from
Different Organic Sources
Abiodun Oladipo 1, Victor Enwemiwe 2 , Onome Ejeromedoghene 3 , Ademola Adebayo 4, Olakunle Ogunyemi 5

and Fangfang Fu 1,*

1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University,
Nanjing 210037, China; oladipoabiodun@njfu.edu.cn

2 Department of Animal and Environmental Biology, Delta State University, Abraka 330106, Nigeria;
enwemiwevictor@gmail.com

3 School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing 211189, China;
oejeromedoghene@seu.edu.cn

4 Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia,
Vancouver, BC V6T1Z4, Canada; aadebayo@alumni.ubc.ca

5 Department of Social and Environmental Forestry, University of Ibadan, Ibadan 200005, Oyo State, Nigeria;
olakunle4impact@yahoo.com

* Correspondence: fffu@njfu.edu.cn

Abstract: Medicinal plants are rich sources of specialized metabolites that are of great importance
to plants, animals, and humans. The usefulness of active biological compounds cuts across dif-
ferent fields, such as agriculture, forestry, food processing and packaging, biofuels, biocatalysts,
and environmental remediation. In recent years, research has shifted toward the use of microbes,
especially endophytes (bacteria, fungi, and viruses), and the combination of these organisms with
other alternatives to optimize the production and regulation of these compounds. This review rein-
forces the production of specialized metabolites, especially by plants and microorganisms, and the
effectiveness of microorganisms in increasing the production/concentration of these compounds in
plants. The study also highlights the functions of these compounds in plants and their applications in
various fields. New research areas that should be explored to produce and regulate these compounds,
especially in plants and microbes, have been identified. Methods involving molecular studies are yet
to be fully explored, and next-generation sequencing possesses an interesting and reliable approach.

Keywords: bioactive compounds; medicinal plants; microbial benefits; plant-metabolite relationship

1. Introduction

Most plants exhibit a relationship with different microorganisms that can be beneficial
or detrimental to their growth, development and/or survival. A clear understanding of
these microbes and their ability to influence plant survival is of great importance. This is
because the benefits derived from plants and their associated endophytes are numerous,
and human survival depends largely on this. Endophytes consist of bacteria, fungi, and
viruses that are mutualistic in nature, living inside plants where they spend part or all
of their life cycles without causing harm to the host plant [1,2]. Generally, endophytes
play an important role in suppressing biotic and abiotic stresses and activating defense
mechanisms in plants, thereby contributing to growth and development [2,3]. Due to their
unique nature, endophytes have been isolated from different plant parts, such as leaves [4],
stems [5], roots [5], flowers [6], seeds [7] and fruits [8]. Different metabolites are found in
living organisms, with a greater percentage found in plants; however, microbes are also
a peculiar source of over 20,000 compounds that biologically and actively interfere with
plant’s behavior and the survival of other living organisms [9]. The diversity of specialized
metabolites encompasses groups of organic compounds, and they can be found in plants
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or produced by microorganisms, such as bacteria or fungi. These compounds may not
necessarily contribute directly to the growth of plants, but they have been identified to
improve the general health status of plants [10–13].

Specialized metabolites may therefore be defined as natural products that are not
mandated for vegetative growth of the host (plants) that produce them but could contribute
to certain activities such as protection, molecular signaling, and environmental interaction
of such a host, especially under challenging environmental conditions [14]. They are often
found in small amounts in plant products and act as additional supplements [15]. More
than 2 million specialized metabolites have been identified and grouped based on their
function, structure, and biosynthesis. These compounds have been classified into four major
groups: terpenoids, phenolic compounds, alkaloids, and sulfur-containing compounds [16]
(Figure 1). Although produced in living cells, specialized metabolites contribute less to
plant growth because of their low concentration [17].
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Medicinal plants are known to house endophytes and their associated specialized
metabolites, and due to the health benefits of these compounds, medicinal plants are
largely exploited [18]. This vast diversity of natural resources (plants and associated
endophytes) is a rich source of new biologically active molecules [19]. Several endophytic
bacteria have been isolated from plants; in fact, all plants are known to house a variety of
endophytes. Some of the common genera of endophytic bacteria that have been isolated
from plants include Bacillus [20–24], Pantoea [22,23], Streptomyces [25] and Enterobacter [26].
However, a greater percentage of biologically active compounds isolated from bacteria vary,
with the genus Streptomyces being the most examined for the production of specialized
metabolites [13]. Similarly, a variety of endophytic fungi have been reported; common
genera, among others, include Fusarium, Colletotrichum [27–29] and Phoma [29,30]. This
review aims to provide dynamic information about specialized metabolites from organisms.
In addition, it considers the production of specialized metabolites by (medicinal) plants
and their associated endophytes, as well as the functions of specialized metabolites in
these plants. It further examines the production of specialized metabolites by endophytic
bacteria and fungi, the effect of viruses on their production in plants, and communicates
more prospects in this area for novel findings and its application in different fields.

2. Plants as a Source of Specialized Metabolites and the Effect of Specialized Metabolites
in Plants

Medicinal plants have been exploited for the extraction of bioactive compounds for a
very long time. However, due to the difficulty that exists, especially with certain plants
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from specific biotopes and the challenges associated with field cultivation (susceptibility
to pathogens), etc., researchers have explored other alternatives, such as tissue and organ
culture, and plant cells, to produce these active compounds [10].

Although the major function of specialized metabolites in a plant’s primary metabolism
remains unclear [13], however, by employing molecular techniques, the importance of
specialized metabolites to a plant’s general wellbeing has been identified. The interaction
between plants and specialized metabolites contributes to the fitness of plants needed
to withstand challenging environments. This is because these compounds, which they
produce, perform an array of responsibilities at the cellular level to ensure the survival
of plants. The production of specialized metabolites by plant cells are therefore actions
taken by plants as they respond to challenges arising from biotic and abiotic stresses [10,31].
Basically, their function in physiological processes has been identified in response to stress
and defense signaling, which results in their production. However, to understand the types
and the level of production of specialized metabolites in plants, the consideration of certain
factors such as genotype, species, environmental factors, age (Figure 2) and physiology
cannot be overruled or jettisoned [32]. These factors, among others, present a holistic
approach to better understanding the production of specialized metabolites.
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Ibrahim et al. [33] in an experiment to understand the effect of genotype on the
production of specialized metabolites, examined two different genotypes (salt tolerant and
salt sensitive) of cotton under greenhouse conditions. It was observed that the flavonoid and
phenol contents were significantly enhanced in salt-tolerant plants subjected to drought and
drought plus salinity stress, while the phenol content was greatly reduced in salt-sensitive
plants [33]. As observed by Ramírez-Briones, et al. [34], specialized metabolites produced
in deciduous and perennial Diospyros species also varied, where total phenolic acids were
observed to be higher in the leaves of D. rekoi compared to D. digyna during spring. This
further reveals that variations in climatic and soil conditions, among other factors (genetics
and biotic), could affect the production of bioactive compounds even among certain plants
of the same genus [34].

Plants detect stress (biotic or abiotic) through signal responses and crosstalk, which,
when activated, may trigger the production of specialized metabolites. The production
of specialized metabolites under these conditions is remarkably one of the ways the im-
mune system has evolved, thereby developing the ability to withstand such stress(es) [32].
This regulation pathway employs physiological and biological processes that lead to the
adjustment of osmotic pressure of plant cells, prevent growth and/or infection arising
from pathogenic microbes, and prevent oxidation of cell components [35,36], thereby
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strengthening the plant defense system against any form of stress. Specialized metabo-
lites can be extracted from any plant part; nevertheless, the location where biosynthesis
occurs is confined to certain organs in most instances. It finds its way to other parts of
the plant, where it can be stored (vacuole) using apoplast, symplast, or vascular tissues
(which allows for movement of low molecular weight substances) as a channel of move-
ment [37,38]. These bioactive compounds could be stored in plant tissues, such as roots,
stems, leaves, leaves, somatic embryos, callus, or even flowers [32]. However, in plants,
several biosynthetic pathways, such as the movalonic acid pathway, acetate–malonate
pathway, 2-C-methyl-D-erythritol-4-phosphate pathway, etc., are linked to the production
of these compounds [39].

3. Production of Specialized Metabolites by Plant’s Endophytes

The production of novel biological compounds by endophytes has gained the atten-
tion of researchers because, through careful examination, biologically active specialized
metabolites have been reported to show activity against pathogens [40]. This is because
they possess unique properties, such as antiviral, antibacterial, and anticancer properties;
hence, they may be termed biologically active antimicrobial natural products [41,42]. Endo-
phytes are known to be associated with different plant parts (roots, stems, leaves, and other
tissues), providing an array of support to plants, ranging from nutrient uptake to defense
against biotic stress [42] and tolerance to harsh environmental conditions [43–45]. Apart
from these benefits, endophytes isolated from different plants or specifically different plant
tissues have expressed the ability to produce specialized metabolites; these endophytes
could be bacteria [46] or fungi [47] while viral infection also contributes to the production
of specialized metabolites [48] (Figure 1).

4. Bacteria

In an experiment, four strains of endophytic bacteria belonging to Chitinophaga sp.,
Allorhizobium sp., Duganella sp., and Micromonospora sp. isolated from the roots of the
Alkanna tinctoria were reported to have significantly increased alkannin and shikonin in
the hairy roots of inoculated plants when compared to the uninoculated control. Con-
sidering the results of this experiment, the possibility of combining endophytes with the
potential for plant growth promotion and enhancement of specialized metabolites as a
means to generate increased production of specialized metabolites in selected medicinal
plants cannot be overruled [46]. Bacteria isolated from grassland soil have also expressed
the ability to synthesize specialized metabolites genetically. Crits-Christoph et al. [49]
genetically identified that these organisms encode different polyketide and non-ribosomal
peptide biosynthetic gene clusters, and further revealed that these microorganisms are
members of the Acidobacteria, Verrucomicobia, and Gemmatimonadetes, and the candidate
phylum Rokubacteria [49]. The most abundant bacterial phylum observed in soil biomes
(Acidobacteria) according to Fierer, N. [50] actually expressed large numbers of biosynthetic
genes; it was inferred that these gene clusters could synthesize non-ribosomal peptides
(NRPs), polyketides, terpenes, bacteriocins, lassopeptides, lantipeptides, and metabolites
of uncertain function. In total, 240 non-ribosomal peptide synthases (NRPSs), polyketide
synthases (PKSs), and hybrid (NRPS-PKS) gene clusters were confirmed on the contigs
from the four phyla [50].

In an attempt to identify endophytic bacteria and their biological compounds, 13 iso-
lates from the leaves of Anredera cordifolia were examined [51]. These isolates, which belong
to Pseudomonas sp., particularly Pseudomonas aeruginosa, produced specialized metabolites
that expressed effectiveness against bacteria and showed antioxidant activities. Pseu-
domonas sp. has been identified as a major endophytic bacteria frequently isolated from
medicinal plants [52–54]. The biological compounds produced by P. aeruginosa, as iden-
tified by Nxumalo and colleagues, included xanthoxylin, trans-2-decenoic acid, [1,2,4]
oxadiazole, 5-benzyl-(thiophen-2-yl), dodecenoic acid, 3-nonynoic, pyrrolo [1,2-a] pyrazine-
1,4-dione, hexahydro-3-(2-methylpropyl), pentadecanoic acid, and diisooctyl phthalate,
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which are recognized for antimicrobial activity while cis-9-Octadecenoic acid, 2-dodecenoic
acid and 9-octadecenamide possess antioxidant properties [51]. Other bacteria species
that have been identified as contributing to specialized metabolites in plants are Bacillus
amyloliquefaciens [55] and Bacillus cereus [56] (Table 1).

Table 1. Percentage differences in the production of bioactive compounds as affected by microorgan-
isms in plants.

S/N Plants Microorganisms Bioactive
Compounds

Concentration from
Inoculated Plants (%)

Concentration from
Non-Inoculated

Plants (%)

Differences
(%) References

1 Rumex gmelini Aspergillus sp.
(fungus)

Resveratrol 83.33 16.67 66.66

[57]Chrysophaein 69.57 30.43 39.14
Musizin 0 100 100

Chrysophanol 76.19 23.81 52.38

2 Menth piperita B. amyloliquefaciens
(bacteria) Linalool 82.14 17.86 64.28 [55]

3 Saliva miltiorrhiza B. cereus (bacteria) Tanshinone 85.27 14.27 71.00 [58]

4
Anoectochilus

roxburghii

Chaetomium Isoquercitrin 60.81 39.18 21.63

[59]
globosum Narcissin 35.75 64.24 28.49

Colletotrichum Rutin 63.45 36.55 26.90
gloeosporioides Isoquercitrin 54.23 45.77 8.46

(fungi) narcissin 64.64 35.35 29.29

5 Lycoris radiata

Phyllosticta
ophiopogonis Narciclasine 57.14 42.86 14.28

[60]

Stagonosporopsis
cucurbitacearum

Lycorine 56.10 43.90 19.27
Galanthamine 62.75 37.25 25.50

Phyllosticta
capitalensis Lycoramine 58.54 41.46 17.08

Glomerella magna
(fungi) Tazettine 57.78 42.22 15.56

6
Fragaria x

ananassa var.
Selv

Pseudomonas sp.
(bacteria)

cyanindin
3-glucoside 73.08 26.08 46.16 [61]

7 Passiflora edulis
Telosma mosaic virus Total phenolics 59.55 40.45 19.10

[62,63]Cucumber mosaic
virus (viruses) Total polyphenols 64.35 35.65 28.70

8
Pelargonium
graveolens

Macrophomina
pseudophaseolina

(fungus)

Citronellol 55.50 45.50 11.00
[64]

geraniol 52.00 48.00 4.00

9 Andrographis
paniculata

Macrophomina
pseudophaseolina

(fungus)
Andrographolide 60.50 39.50 21.00 [64]

10 Artemisia pallens
Fusarium redolens
Phialemoniopsis
cornearis (fungi)

Davanone 56.95 43.05 13.90
[64]

Ethyl cinnamate 55.50 45.50 11.00

11
Panax

quinquefolius Fusarium solani
Ginsenoside-Rd 67.50 32.50 35.00

[65]
Ginsenoside-Rc 78.00 22.00 56.00

Whole genome sequencing of microorganisms revealed the possibility of bacteria [66]
to produce biologically active compounds. Whole genome sequencing of Streptomyces
avermitilis ATCC 31267, which produces avermectin, showed 24 gene clusters for specialized
metabolites, siderophores, and spore pigments whose structure and function have yet to be
determined [66].

5. Fungi

The production of specialized metabolites by endophytic fungi and the effect of
these fungi on the concentration of specialized metabolites produced by plants have also
been studied. Four endophytic fungi, Talaromyces sp. and Schizophyllum sp., with the
remaining two belonging to Aspergillus sp. isolated from the fresh root of the medicinal
plant Vernonia anthelmintica, were examined for biological activities by Rustamova and
colleagues [67]. The ethyl acetate extracts of these fungi expressed antimicrobial, cytotoxic,
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and antioxidant, antidiabetic, melanin content, and tyrosinase activity on murine B16 cells.
The ethyl acetate extracts from these fungi have been suggested to contain compounds such
as steroids, terpenes, or terpenoids [67]. The antibacterial activities of 24ξhydroperoxy-
24-vinyllathosterol which is a steroid isolated from V. anthelmintica, were reported to be
antibacterial against B. cereus, S. aureus, B. subtilis, and E. coli, with minimum inhibition
concentrations ranging from 3.15 to 15.5 µg/mL [68].

Cryptotanshinone, which has been used in the treatment of several ailment [69–71],
is the main bioactive compound of Salvia abrotanoides [72] and has been reported to be
a product of endophytic fungi. To understand the discrepancies that may exist in the
endophytic fungi of native S. abrotanoides, S. abrotanoides from three different geographical
locations in Iran were examined. A total of 56 isolates were identified, and Penicillium
canescens, P. murcianum, Paraphoma radicina, and Coniolariella hispanica (isolates) were able
to produce cryptotanshinone independently, as reported by Teimoori-Boghsani et al. [73].
Furthermore, a variety of compounds, such as terpenes, isoflavons, ketons, phenols, lipids,
alkaloids, and polyketides, were said to have been produced by fungi (Table 1) belonging
to Penicillium, Talaromyces, Fusarium, Paraphoma, and Coniolariella genera. However, the
increase in the production of cryptotanshinone in S. abrotanoides was due to the exogenous
gibberellin and endophytic fungi. Also, fungi cultivated under laboratory conditions also
yielded a substantial amount of cryptotanshinone when supplemented with gibberellin [73].

Plants subjected to stress have expressed variations in the composition of endophytic
fungi present in them; such variations were expressed in an experiment conducted by
Mefteh and colleagues [74] by isolating and identifying 52 fungi from healthy and brittle
leaf-diseased date palm trees (Phoenix dactylifera L.). However, 44.7% of the fungi isolated
were specifically from brittle leaf-diseased date palm trees. More interestingly, the ethyl
acetate extract of two isolates, Geotrichum candidum and Thielaviopsis punctulate, exhibited an-
tibacterial activity against pathogenic bacteria Micrococcus luteus and Bacillus subtilis, while
isocumarin and triterpenoids were extracted as biological compounds from Geotrichum
sp. [74]. This confirms that plants affected by stress do not only possess hidden resources
but could actually be key to novel and reliable sources of bioactive compounds.

Single strains or species of fungi exhibit a vast diversity of metabolites. Certain classes
of fungi, such as Basidiomycetes, are underexploited [75], and by thorough examination of
different genera, it is possible to identify several novel species with unique applicability,
especially in the drug and pharmaceutical industries. Some fungi that may have been
neglected as reported by Leman-Loubière et al. [76] could be studied more extensively,
as it appears that they hold a wide array of biological compounds; for example, Daldinia
eschscholtzii, Hypoxylon rickii, and Pestalotiopsis fici have been reported to produce metabo-
lites of great importance [77]. Aspergillus ochraceus DSM 7428, which is known to produce
only aspinonene as a major compound, was found to produce 15 additional compounds
when the mechanism of “one strain many compounds” was explored, resulting from dif-
ferent biosynthetic pathways [78,79]. The production of these additional compounds was
attributed to the variation in culture conditions and the analysis of the culture broth in de-
tails [79]. Additionally, novel polyketides and sordarin derivatives, which were produced
by Xylotumulus gibbosporus belonging to the small genera of Xylariaceae [80,81] further
proves that some fungi have not been fully exploited for specialized metabolites.

Mycorrhizal fungi are known for their symbiotic relationship with plants. These types
of fungi have been reported to significantly influence specialized metabolites in plants. In
an experiment, Pistelli and colleagues [82] investigated how arbuscular mycorrhizal fungi
(AMF) affect phytochemicals in Bituminaria bituminosa. The medicinal plant B. bituminosa
was inoculated with arbuscular mycorrhizal fungi, and the phytochemicals were examined
during the vegetative and flowering stages. It was observed that although plants inoculated
with arbuscular mycorrhizal fungi reduced the production of pterocarpans (bitucarpin A
and erybraidin C) during the flowering stage, plants inoculated with arbuscular mycor-
rhizal fungi exhibited higher amounts of furanocoumarins and pterocarpans during the
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vegetative stage when compared to non-inoculated plants where these compounds were
not detected at all [82].

Arbuscular mycorrhiza fungi belong to a group of soil-dwelling microbes with an
active role in the mediation of secondary metabolism and the production of biologically
active ingredients in medicinal plants [83]. Eight different species of AMF (Glomus for-
mosanum, Glomus tenebrosum, Septoglomus constrictum, Funneliformis geosporum, Rhizophagus
manihotis, Ambispora gerdemanii, Acaulospora laevis and Acaulospora tuberculate) were isolated
from soil samples of Salvia miltiorrhiza and their effect on the growth of S. miltiorrhiza
under greenhouse condition along with the production of specialized metabolites were
examined by Wu and colleagues [83]. Aside from the fact that AMF generally increased
the root biomass of S. miltiorrhiza, it was also observed that inoculation of S. miltiorrhiza
with the abovementioned AMF had great influence on phenolic acids when compared
to tanshinones; in particular, G. formosanum, A. gerdemanii, and A. laevis significantly in-
creased phenolic acid, while inoculation with both F. geosporum and A. laevis significantly
reduced total phenolic acids [83]. Overall, native AMF increased production of specialized
metabolites and plant’s biomass as a result of better nutrition, while the involvement of
genes responsible for plant defense mechanisms increased phenolics in medicinal plants,
as presented by Wu et al. [83].

In different industries, the application of specialized metabolites varies (Figure 3).
For instance, in agriculture, the nutritional value of edible vegetables could be increased,
resulting in health improvement when consumed, although food intake may not necessarily
be increased [84]. In most cases, the nutritional values of such vegetables are associated
with the biological compounds present in them. Mycorrhizal fungi are therefore essential
in the assembling and storage of bioactive compounds and, as such, are valid alternatives
to chemical fertilizer in sustainable agriculture [85]. However, the mechanism employed by
AMF in influencing the production of specialized metabolites is yet to be made clear [86],
though some have attributed it to the vegetative response to colonization [87] and an
increase in the activities of enzymes [88].

Metabolites 2022, 12, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 3. Application of specialized metabolites in different fields. 

6. Effect of Viruses on Plant’s Specialized Metabolites 
Plant viruses are generally believed to be detrimental to the growth, development, 

and survival of plants. There are many reported cases of viral infection, especially in ag-
ricultural crops. For instance, Tobacco mosaic virus, which is in fact the first virus to be 
identified, is responsible for mottled browning of tobacco leaves, and it spreads mechan-
ically by accessing open surfaces or injured plant parts. Notably, this virus does not only 
affects tobacco but has also been reported to affect tomato as well, with the best solution 
being the destruction of infected plants [89]. Other plant viruses that have been identified 
to be detrimental to plants include Tomato spotted wilt virus, which accounts for a loss of 
more than one billion United States dollars in 1994 [90], Potato virus X, Tomato yellow leaf 
curl virus transmitted by whitefly, which also causes tremendous economic loss, Cauli-
flower mosaic virus, and Plum pox virus [91]. 

Although there are few reports relating to viruses and forest tree species, especially 
coniferous trees, some viruses that have been identified are associated with the death of 
tree species. Scots pine mosaic and scots pine bushy stunt virus were identified in Pinus 
sylvestris [92,93] and according to Biddle and Tinsley TW [94] similar virus diseases were 
identified in Pinus monticola in Great Britain. Other viruses associated with damage in tree 
species include Isometric labile ringspot viruses, Alfalfa mosaic virus, Prunus necrotic ringspot 
virus, Prune dwarf virus, Apple mosaic virus, and American plum line pattern virus [95]. How-
ever, some viruses have been reported to be beneficial to plants, especially agricultural 
crops. The beneficial effect of the virus Cucumber mosaic virus (CMV) significantly en-
hanced drought and freezing tolerance in beet plants when compared with uninoculated 
plants [96]. In Arabidopsis thaliana, the 2b protein of CMV increased drought tolerance, 
accounting for 40% difference in water loss between control and transgenic plants [97]. 
Mycoviruses are associated with fungi and, as such, have proved helpful, especially with 
high temperature. An example was reported by Márquez et al. [98], where the Curvularia 
thermal tolerance virus contributed significantly to high temperature (65 °C) tolerance in 
the association between the endophytic fungus Curvularia protuberate and Dichanthelium 
lanuginosum (panic grass). Apart from these, viruses could also influence plant’s nodula-
tion, especially in the presence of nitrogen, thereby affecting the overall growth and de-
velopment of plant [99]. 

Figure 3. Application of specialized metabolites in different fields.

6. Effect of Viruses on Plant’s Specialized Metabolites

Plant viruses are generally believed to be detrimental to the growth, development, and
survival of plants. There are many reported cases of viral infection, especially in agricultural
crops. For instance, Tobacco mosaic virus, which is in fact the first virus to be identified,
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is responsible for mottled browning of tobacco leaves, and it spreads mechanically by
accessing open surfaces or injured plant parts. Notably, this virus does not only affects
tobacco but has also been reported to affect tomato as well, with the best solution being
the destruction of infected plants [89]. Other plant viruses that have been identified to be
detrimental to plants include Tomato spotted wilt virus, which accounts for a loss of more
than one billion United States dollars in 1994 [90], Potato virus X, Tomato yellow leaf curl virus
transmitted by whitefly, which also causes tremendous economic loss, Cauliflower mosaic
virus, and Plum pox virus [91].

Although there are few reports relating to viruses and forest tree species, especially
coniferous trees, some viruses that have been identified are associated with the death
of tree species. Scots pine mosaic and scots pine bushy stunt virus were identified in
Pinus sylvestris [92,93] and according to Biddle and Tinsley TW [94] similar virus diseases
were identified in Pinus monticola in Great Britain. Other viruses associated with damage
in tree species include Isometric labile ringspot viruses, Alfalfa mosaic virus, Prunus necrotic
ringspot virus, Prune dwarf virus, Apple mosaic virus, and American plum line pattern virus [95].
However, some viruses have been reported to be beneficial to plants, especially agricultural
crops. The beneficial effect of the virus Cucumber mosaic virus (CMV) significantly enhanced
drought and freezing tolerance in beet plants when compared with uninoculated plants [96].
In Arabidopsis thaliana, the 2b protein of CMV increased drought tolerance, accounting for
40% difference in water loss between control and transgenic plants [97]. Mycoviruses are
associated with fungi and, as such, have proved helpful, especially with high temperature.
An example was reported by Márquez et al. [98], where the Curvularia thermal tolerance virus
contributed significantly to high temperature (65 ◦C) tolerance in the association between
the endophytic fungus Curvularia protuberate and Dichanthelium lanuginosum (panic grass).
Apart from these, viruses could also influence plant’s nodulation, especially in the presence
of nitrogen, thereby affecting the overall growth and development of plant [99].

Although viruses may appear harmful to plants, it is clear that they can also contribute
to abiotic stress tolerance in plants; hence, there is the possibility of increasing the pro-
duction of specialized metabolites. Lan and colleagues [62] observed that although CMV
adversely affected the physical properties (fruit height, fruit width, and fruit weight) of
Passifolia edulis, the fruit and leaves of infected P. edulis showed increased polyphenolic and
flavonoids. The results reported that CMV accounted for an increase of 28.7% and 26.1%
in the total polyphenol contents of the fruit and leaves of P. edulis, respectively, while the
same virus accounted for an increase of 58.3% and 48.1% in the flavonoid contents of the
same tissue, respectively [62].

Camalexin, a bioactive compound that is essential in the defense of plants against
pathogenic attack, was induced in Arabidopsis thaliana as a result of the virus [100,101].
Likewise, the production of hydroxycinnamic acids and flavonols consisting of kaempferol,
quercetin derivatives, and myricetin was enhanced significantly by an RNA virus, notably
in Grapevine leaf roll-associated virus 3 in the Vitis vinifera white cultivar Malvasía de Banyal-
bufar [102,103]. As reported by many authors, viruses do not have their own metabolism;
therefore, the production of metabolites by virus strains only appears impossible, as this
has not been reported because they are arguably living or non-living entities; however, they
possess genes associated with living cells. They depend solely on the metabolic mechanism
of their host, and through systemic manipulation, they find their way into plants and
replicate, causing infection in such plants [104,105]. Therefore, the possibility that a virus
adversely affecting a particular plant could be beneficial to another plant species cannot
be overruled (Table 1); however, this depends on certain factors, including plant genotype
and environmental conditions. However, exploring forest tree species as they relate to viral
infection has not been critically examined; as a matter of fact, there are still unknown or yet
to resolved margins in plant–virus–environment interaction.
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7. Insects and Specialized Metabolite Production

Insects and plants have a long history of coexistence, as well as endophytes and
plants. As a member of invertebrates, insects occupy more than three-quarters of the
earth, playing significant roles in ecosystem functioning, including predation, herbivory,
parasitism, pollination, detritivory, and so on. Insects, microorganisms, and plants interact
in a complex way, which forms an integral part of the ecosystem and links entomology
to pathology. Studies involving insect association with endophytes, such as bacteria and
fungi, are evolving, predicting their potential in industry, agriculture, medicine, and many
other areas [106,107]. The presence of endophytes, as well as associating insects, act as
foreign bodies to the plant that release hormones, causing changes in the plant’s activities
and thus leading to the biosynthesis of vital pesticidal agents against diseases [108].

In plants, the association of insects and endophytes do not only affect the overall biomass,
nitrogen supplementation, and food supply in the ecosystem, but also acts as a barrier to
plant–herbivorous insect competition. Metabolic products of endophytes and pathogenic fungi,
bacteria, and viruses from insects have been used as biocontrol agents against the pest activities
of insects [109,110]. It has been reported that the adoption of biologically-based control involving
insect pathogenic microbes was successful and effective against a broad spectrum of insect pests
both in storage and field condition [111–113].

Specialized metabolites have also been produced by insects, as well as microbes
isolated from insects [114]. Some of these insects have also been reported to influence
the production of bioactive compounds in plants, with damage ranging from mild to
severe [115]. As experienced in plants, insects also employ specialized metabolites for
defense. For example, the frontal glands of advanced termite soldiers could release terpenes
as counteractions against attackers [116]. Additionally, as a strategy of attraction, monoter-
penes and sesquiterpenes play an important role in communication to attract mates and
track food sources [117,118]. In line with insect infestation, the relationship between plants,
insects, and metabolites was partly examined by Koch et al. [119] and showed that yellow
sugarcane aphids significantly contributed to salicylic acid levels and enriched flavonoids
in Panicum virgatum.

An invasive insect prominent in North America, Hemlock woolly adelgid, has been
reported to increase the attraction of folivorous insects to hemlock [120]. However, in an
experiment to examine the infestation of this insect on the jasmonic acid of Tsuga canadensis,
Rigsby and others [120] observed that Hemlock woolly adelgid contributed to the systemic
response of the plant. Furthermore, when Saad and colleagues [121] investigated the effect
of previous infestation of Capsicum annuum plants by green peach aphid (Myzus persicae)
on the olfactory behavioral response of Bemisia tabaci, they reported that female B. tabaci
preferred non-infested plants to pre-infested plants; this suggests that pre-infested plants
may contain compounds that prevent or reduce infestation by this insect. Additionally,
it was observed that plants infested by green peach aphid significantly increase in the
production of monoterpenes (cymene; 1,8-cineole), sesquiterpenes (β-cadinene, α-copaene),
and methyl salicylate (MeSA) compared to non-infested plants, which further suggests
that plants infested by green peach aphid might be capable of inducing the production of
specialized metabolites that deter B. tabaci from settling on its host plants [121].

8. Application of Specialized Metabolites from Organic Sources

The specialized metabolites isolated from endophytic microbes and plants have been
characterized by numerous bioactive compounds or phytochemicals (Table 1), which
broaden the scope of their application across many fields of scientific research.

9. Agriculture (Agrochemicals)

The agricultural sector is one of the fastest-growing sectors in the world economy
due to the rise in global population and the increase in food production. Endophytes are
known to produce a range of metabolites useful in agriculture for growth regulators and
pesticides (Figure 3) that are applicable to several economically important plants [122].
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In modern-day intensive farming technology, specialized metabolites produced by agri-
culturally important microorganisms have been explored in many ways to improve the
quality of crops [123]. This is achievable owing to the fact that these plant–microbe could
serve as green alternatives toward producing materials for combating biotic and abiotic
stressors, and offer promising sources of new biorational compounds [124]. For example,
Actinobacteria and Bacillus endophytes produce aromatic compounds, lipopeptides, plant
hormones, polysaccharides, and several enzymes linked to phenylpropanoid metabolism,
thus representing a high potential for promoting plant growth and crop disease manage-
ment [44]. Moreover, some endophytes containing antibiotics located in the rhizosphere can
be employed to control the growth of harmful bacteria [125]. Furthermore, the endophytic
microbes can also mediate plant adaptation to environmental stress due to conditions
such as temperature, drought, cold stress, heavy metal accumulation, and high-energy
ultraviolet radiation with a wavelength of around 280–315 nm [126,127].

10. Biomedical Application

Endophytes are known to produce a diverse range of natural products with numer-
ous biomedical functions, such as pharmaceuticals, drug delivery agents, cosmetics, and
food packaging/preservative materials (Figure 3). This is due to the presence of bioactive
compounds, including alkaloids, flavonoids, terpenes, steroids, curcumins, saponins, and
phenolics, all of which can potentially suppress bacteria and fungi pathogens and curb new
emerging infectious diseases [128–130]. The isolation and identification of Methylobacterium
radiotolerans MAMP 4754 from the seeds of Combretum erythrophyllum was investigated
and confirmed with high antimicrobial and antioxidant activity, which is associated with
the production of plant-derived specialized metabolites by this strain [131]. In addition,
mangrove fungal endophytes have been evaluated against a panel of human pathogenic
microbes and cancer cell lines because they can produce an impressive panoply of metabo-
lites with promising biological activities [132]. Moreover, in the field of nanomedicine,
specialized metabolites from microbes have been classified as apt to absorb and accrue
metal ions. They can also serve as nontoxic and ecofriendly reducing agents to control the
topology and morphology of nanomaterials with tunable properties that can be used as
chemotherapeutic, and antibiotic agents [133,134]. For example, Munawer and others [135]
prepared gold nanoparticles (AuNPs) from the aqueous extract of the endophytic Cladospo-
rium sp. (MycoAuNPs) isolated from Commiphora wightii, with promising anti-breast cancer
activity in the MCF-7 cancer cell line. In another study, the endophytic bacterial strain Rothia
endophytica isolated from healthy maize roots was used to synthesize silver nanoparticles
(Ag-NPs). The cubic-shaped Ag-NPs obtained displayed improved anti-candidal activity
with minimum inhibitory concentration (MIC) and minimum bactericidal concentration
(MBC) at 62.5 and 125 µg/mL, respectively [136]. Neethu and colleagues [137] biosynthe-
sized Ag-NPs from the marine endophytic fungus Penicillium polonicum with MIC and
MBC efficacy of 15.62 and 31.24 µg/mL respectively against biofilm forming, multi-drug
resistant Acinetobacter baumanii. The aqueous fungal extract of Periconium sp. was deployed
as a chelating agent for the Zn2+ ions for the biosynthesis of ZnO nanoparticles with highly
improved antibacterial and antioxidant properties [138].

11. Biofuel

Microalgae are very rich lipids and accumulate specific specialized metabolites, which
are high-value products for the production of alternative fuels [139,140]. The lipid content of
microalgae is ~20–50% of the cell dry weight, and <80% under certain conditions [141,142]. For
instance, Rodolfi et al. [143] performed a screening process on 30 microalgal strains for biomass
productivity and lipid content. The authors deduced an increase in both lipid content and
areal lipid productivity attained through nutrient deprivation in an outdoor algal culture. This
implies that the marine eustigmatophyte has the potential for an annual production of 20 tons
of lipid per hectare in the Mediterranean climate and of more than 30 tons of lipid per hectare
in sunny tropical areas. These species of organisms are among the fastest-growing plants and
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can serve as a sustainable energy source for the production of biodiesel (Figure 3) and several
other biofuels by converting sunlight into chemical energy. Biofuels obtained from microalgae
are renewable, nontoxic, biodegradable, and environment friendly [144]. The oil amassed in
most microalgae is mainly triglyceride, which can be utilized for the production of biodiesel
and glycerol via transesterification reaction [145]. Miao and Wu [146] presented an integrated
approach for the production of biodiesel from microalgal oil based on the heterotrophic growth
of Chlorella protothecoides, with an accumulated 55% lipid content in cells. The optimized
transesterification process, which occurred in 4 h, produced 68% biodiesel with a specific
gravity of 0.8637 at a 56:1 molar ratio of methanol to oil at 30 ◦C using sulfuric acid as the
catalyst. However, Xiong and others [147] showed that the high-density fermentation of
microalga C. protothecoides in bioreactors could produce up to 98% biodiesel production catalyzed
by lipase. Moreover, Abou-Shanab and colleagues [148] utilized municipal wastewater for
the culture of Scenedesmus obliquus and Micractinium reisser, with remarkable biomass yields
(0.41 ± 0.01 and 0.26 ± 0.03 g dry wt. L−1) and lipid content (22% and 19%), respectively,
which are desirable properties for biodiesel production. In other studies, Gao et al. [149]
prepared biodiesel from the lipids of C. protothecoides through acid-catalyzed transesterification
with the incorporation of sweet sorghum juice to enhance lipid production. Meanwhile, Lu
et al. [150] used cassava hydrolysate as an alternative carbon source for the growth of microalgae
(C. protothecoides), having about 53% lipid content for the optimized production of biodiesel with
good fuel properties.

12. Biocatalysts

Generally, primary metabolites are enzymes, and they can be obtained from plants and
microbes [151] (Figure 3) with broad bioactivity; however, they are essential in the synthesis
of specialized metabolites [152]. Microbial enzymes have more advantages than enzymes
derived from plants or animals because of the following characteristics: broad biochemical
diversity, large culture quantities, easily manipulated genetically, more catalytic activity,
reduced costs of production, equipment availability, and sustainability [153]. Owing to the
wide production of flavonoids, terpenoids, and polyketide antibiotics, plant endophytes
have emerged as new in vitro and in vivo biocatalytic materials for engineering glycosy-
lation toward producing a large repertoire of versatile glycoprofiles [154]. Endophytic
microbial isolates also find wide application as industrial catalysts toward the production
of biofuels [147] and manifold biotransformation of exobiotic substrates, particularly in
redox reactions [155,156]. For example, the endophytic yeast Candida guillermondi isolated
from castor leaves (Ricinus communis L.) was optimized and characterized with promising
properties as a biocatalyst for the synthesis of esters in the food and biofuel industry [157].
In addition, the immobilization of Candida antarctica enzyme onto a macroporous acrylic
resin displayed intriguing biocatalytic performance toward the preparation of dichloro-
propyl acrylates from dichloropropyl dodecanoates via transesterification reactions [158].
In many industrial processes, these isolates have been utilized severally in the bioreduction
of ketones, e.g., acetophenone [159], propiophenones [160] cocktail of ketones [161], etc. to
alcohol under ambient conditions and increased product yield.

13. Environmental Remediation

The rapid increase in world population and high level of industrialization have engi-
neered the continuous pollution of the environment from different sources and reduced life
expectancy in different parts of the world. Consequently, specialized metabolites produced
by endophytic microbes have been seriously exploited as avenues to promote a green
environment as a potent bioremediation (Figure 3) tool for the adsorption, removal, detoxi-
fication, and degradation of many organic pollutants [162]. For instance, the endophytic
bacterium Methylobacterium extorquens C1 isolated from ryegrass was used for the sorption
and enzymatic degradation of polycyclic aromatic hydrocarbons (PAH), with a removal
rate increased by ~18.3–35.0% [163]. In addition, inter-planting ryegrass with Seduce alfredii
with regular re-inoculation with Microbacterium sp. KL5 and Candida tropicalis C10 in the



Metabolites 2022, 12, 534 12 of 19

co-contaminated soil showed remarkable PAH removal (96.4%), PAH mineralization, and
metal phytoextraction (36.1% Cd and 12.7% Zn) in a greenhouse study [164]. The endo-
phytic fungus Phomopsis liquidambari has been investigated widely for the degradation of the
xenobiotic compound (sinapic acid) in contaminated industrial wastewater and soil [165];
and has been reported as a suitable material for mitigating (biodegradation) the allelopathic
stress caused by cinnamic acid in continuous cropping soils [166]. In another approach,
Fu et al. [167] identified that the combination of P. liquidambari with rice is very potent
in the elimination of phenanthrene accumulated in vivo in rice seedlings, with a 25.68%
increase in the removal rate in an inoculated treatment compared to the uninoculated
treatment after cultivation for 30 days. In addition, slop oil from oil refining was found
to be degraded and removed by endophytic B. cereus EN18 with biotransformation [168].
Furthermore, in the management of toxic metal contaminants, Jeyasundar, and others [169]
studied the use of bacterial consortium and Brassica juncea to improve soil properties and
enhanced phytoextraction of Cd, Cu, Pb, and Zn, heavy metals polluted mining soil. Bilal
and colleagues [170] determined that Glycine max L (soybean) plants inoculated with
Sphingomonas sp. LK11 are capable of reducing oxidative stress and the translocation of
Chromium (IV) to the roots, shoot, and leaves of the plant, and also downregulate the
synthesis of endogenous defense-related phytohormones. The interactive effect of En-
terobacter sp. MN17 and biochar was also projected as an effective remediation strategy
for Cd-contaminated soil for sustainable crop production [171]. Additionally, endophytic
microbes have been identified as rich sources of metabolites that can be employed for the
biogenic synthesis of nanostructured devices that can serve as bioreceptors and promise to
be candidates for the efficient monitoring and treatment of emerging contaminants in the
ecosystem [172].

14. Future Research Directions

Bioactive compounds have various applications (Figure 3) that are not only crucial
to the survival of plants and animals but also to that of humans. Due to their large bio-
logical activities, plant-specialized metabolites have been used for centuries in traditional
medicine. In plants, their functionalities include protection from biotic and abiotic stresses,
enhancement of the symbiotic relationship between plants and other microbes, i.e., bacteria,
fungi, and viruses), participation in hormonal regulation, and acting as agents of metal
degradation and transportation. They are also well noted agents in antibacterial, antifungal,
antiviral, allelopathic, anti-germination, and phytoalexin activities. As important as they
are, certain factors also affect their production as well; hence, there is recent interest in
the study of such factors both under in vitro and in vivo growth conditions. Although the
duration of inoculation may also contribute to the production of specialized metabolites, the
increase or decrease largely depends on the plant species, the interaction between plant and
endophytes, genetic manipulations, and the influence of environmental and/or biotic stress
on the plant. The presence of distinct microbes (bacteria, fungi, and viruses) communities
in different plant species and among compartments of the same plant species could account
for the differences in the medicinal properties of the two plants. It is worth noting that
although an increase in the concentration of specialized metabolites in plants enhances
plant’s defense mechanism, it could also lead to negative effects, such as slower growth
rate or delayed reproduction in plants and in extreme conditions, death. Considering the
changes in climatic conditions that have plagued the global ecosystem, specialized metabo-
lites produced by plants and other organisms present one possible approach that can be
employed by plants, especially to tolerate varying climatic conditions and resist biotic
stresses. Therefore, the mechanisms that support both the production and regulation of
bioactive compounds, particularly in plants and microbes, should be holistically examined.

Considering the broad field of nanomedicine, the preparation of nontoxic and ecofriendly
nanostructured drug delivery agents and nanofertilizers with specialized metabolites from
endophytic microbes is still in their infancy. The multi-biofunctionality of endophytic microbes
can serve as a promising candidate for the slow release and target-specific delivery of bioac-
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tive compounds as well as fertilizer compounds that can promote the uptake of micro- and
macronutrients needed for plant growth and provide defense support for the plant against
environmental contaminants. These metabolites, which are fundamental to plants, animals, and
human health systems, have become the building block employed by researchers to develop
or formulate bioactive compounds into useful substances with a wide range of applicability
in many fields. Exploring molecular biology has paved the way for more advanced research
to further examine the relationship/correlation between phenotype, plant physiology, tissue
culture, and unique genes that can be manipulated for the production and regulation of these
compounds in plants to survive both biotic and abiotic challenges. Therefore, methods such as
bioinformatics, phylogenomics, metabolomics, and transcriptomics should be well examined,
employing next-generation sequencing to develop reliable methods for the production and
regulation of specialized metabolites.
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