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Abstract: Inonotus hispidus mushroom is a traditional medicinal fungus with anti-cancer, antioxidation,
and immunomodulatory activities, and it is used in folk medicine as a treatment for indigestion,
cancer, diabetes, and gastric illnesses. Although I. hispidus is recognized as a rare edible medicinal
macrofungi, its genomic sequence and biosynthesis potential of secondary metabolites have not
been investigated. In this study, using Illumina NovaSeq combined with the PacBio platform, we
sequenced and de novo assembled the whole genome of NPCB_001, a wild I. hispidus isolate from
the Aksu area of Xinjiang Province, China. Comparative genomic and phylogenomic analyses
reveal interspecific differences and evolutionary traits in the genus Inonotus. Bioinformatics analysis
identified candidate genes associated with mating type, polysaccharide synthesis, carbohydrate-active
enzymes, and secondary metabolite biosynthesis. Additionally, molecular networks of metabolites
exhibit differences in chemical composition and content between fruiting bodies and mycelium, as
well as association clusters of related compounds. The deciphering of the genome of I. hispidus will
deepen the understanding of the biosynthesis of bioactive components, open the path for future
biosynthesis research, and promote the application of Inonotus in the fields of drug research and
functional food manufacturing.

Keywords: medicinal macrofungi; chromosomal-level assembly; biosynthetic potential; bioac-
tive metabolite

1. Introduction

Fungi that are edible and therapeutic play an essential part in human food and
traditional medicine. Inonotus hispidus (Bull.) P Karst. (Hymenochaetaceae) is a well-known
edible and medicinal mushroom with a long history as a health food and ancient folk
medicine in Europe [1] and East Asian countries, especially China. Inonotus hispidus is
an annual facultative parasitic fungus with a hairy fruiting body referred to as a shaggy
bracket [2] or shaggy polypore.

Inonotus hispidus parasitizes mostly deciduous trees, preferring to parasitize mulberry,
ash, elm, and oak [3,4], which are extensively spread in the Northeast regions and Xinjiang
province of China. Furthermore, I. hispidus is a characteristic white rot Basidiomycete.

Inonotus hispidus has traditionally been used as a medicinal mushroom [5]. According
to Chinese herbal books Shennong’s Classic of Materia Medica and Compendium of
Materia Medica, the ancient residents of the old Yellow River valley referred to Inonotus
mushrooms as “Sanghuang” [6], which were traditional medicinal mushrooms used to heal
tumors. Inonotus hispidus is an indigenous medicine used by the local people of Xinjiang
to cure stomach ulcers, indigestion, diabetes, and specific cancer, and it is frequently
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used to treat dyspepsia in Northeast China [3]. A large number of phytochemical and
pharmacological investigations have revealed that I. hispidus is rich in metabolites such
as polyphenols [4,5,7–10], triterpenoids [7,8,11], and polysaccharides [12], which have
anti-cancer [6,13,14], antioxidant [5,7,15–17], antimicrobial [16,18–20], immunomodulatory
activities [7,21,22], as well as inhibitory activities against lipase [23,24], α-glycosidase [25],
and GST [18].

Rapidly advancing DNA sequencing technologies are making the genomic informa-
tion of macrofungi more accessible. The genomes of valuable and rare edible medicinal
fungi have been published and analyzed, including Ganoderma lucidum [26,27], Antrodia
cinnamomea [28], Hericium erinaceus [29], Inonotus obliquus [30], and Laetiporus sulphureus [31],
these genomic analyses are improving our understanding of their mating types, nutritional
patterns, active compound mining, biosynthetic pathways, high-yield cultivation, and
population genetics research, as well as furthering their medicinal value and the health
industry.

The traditional Chinese medicinal fungus “Sanghuang” is a collective term for a group
of fungi with similar pharmacological properties and morphological characteristics accord-
ing to ancient medical literature. Despite the fact that fungal taxonomy specialists have
developed a distinct genus of Sanghuangporus and described its members [32], the signifi-
cant morphological similarity makes distinguishing between I. hispidus and Sanghuangporus
species challenging. One effective way to overcome this dilemma is to distinguish them
at the molecular level by genome sequencing. Although I. hispidus has significant medic-
inal and culinary properties, the National Center for Biotechnology Information (NCBI)
database records few available nucleotide sequences on I. hispidus. The existing gene
sequence resources are insufficient for the biological study of I. hispidus at the molecular
level.

Herein, we provide for the first time the whole genome sequence of I. hispidus at
the chromosomal level. On this basis, the evolutionary state of the Inonotus genus, as
well as their genome shrinkage and expansion, were investigated using comparative
genomic analysis. The genes involved in the mating system, carbohydrate metabolism, and
polysaccharide synthesis were screened, and candidate genes for secondary metabolites
biosynthesis were examined. Furthermore, differences in the chemical composition and
content between fruiting bodies and mycelium and specific metabolites were identified
with the help of molecular networks of metabolites. This work fills the gap in the genome of
I. hispidus and advances our understanding of the genome of medicinal, edible macrofungi.

2. Materials and Methods
2.1. Fungal Strain and Strain Culture

Fresh wild fruiting bodies of I. hispidus (Figure 1A) were used for tissue isolation,
and surface sterilized fruiting bodies were cultivated on Potato Dextrose Agar (PDA)
plate for 3–4 days to obtain culturable mycelium (Figure 1B). The artificially cultivated
fruiting body (Figure 1C) of I. hispidus was obtained on a wood chips-based medium. The
identified mycelium of I. hispidus NPCB_001 was deposited in Shaanxi Key Laboratory of
Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F
University.

2.2. Genome Sequencing, De Novo Assembly, and Annotation
2.2.1. Extraction of Genome DNA

Fresh mycelium of I. hispidus NPCB_001 was cultured in PDB medium (200 rpm, 25 ◦C)
for one week to obtain an acceptable quantity of mycelia. In order to acquire fresh and clean
mycelium, mycelium was collected by centrifugation, rinsed twice with sterile water, then
centrifuged to remove water. The genomic DNA was isolated using the sodium dodecyl
sulfate (SDS) technique after the mycelium was ground with liquid nitrogen and tested for
integrity using agarose gel electrophoresis.
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Figure 1. Morphologic photograph of the strain I. hispidus NPCB_001. (A) The morphologic photo-
graph of the wild fruiting body, (B) mycelium growing on PDA for four days, (C) mature, cultivated 
fruiting bodies of the strain I. hispidus NPCB_001. 
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clean mycelium, mycelium was collected by centrifugation, rinsed twice with sterile wa-
ter, then centrifuged to remove water. The genomic DNA was isolated using the sodium 
dodecyl sulfate (SDS) technique after the mycelium was ground with liquid nitrogen and 
tested for integrity using agarose gel electrophoresis. 

2.2.2. De Novo Sequencing 
Genomic DNA was end-repaired, A-tails added, sequencing junctions added, puri-

fied, and PCR amplified. High-quality bulk DNA was gathered and tested for purity, con-
centration, and integrity before being used to generate libraries. Quantification and qual-
ity checks were then performed using Qubit 2.0 to ensure library quality. The genome of 
I. hispidus NPCB_001 was sequenced using the PacBio Sequel long-read sequencing and 
Illumina NovaSeq platforms with the 20-kb and 350-bp insert sizes, respectively. The NE-
CAT (https://github.com/xiaochuanle/NECAT) was used to fix genome errors, and splic-
ing was performed to provide the initial splicing result. The splicing result from third-
generation sequencing data was then subjected to two rounds of error correction using 
Racon v1.4.7 (https://github.com/isovic/racon) (accessed on 1 September 2022), followed 
by two rounds of Pilon. The final assembly result was determined after mistake correction 
and heterozygosity elimination. The final genome assembly results and related data of I. 
hispidus NPCB_001 were submitted to NCBI under the BioProject JANBPQ000000000, Bi-
oSample SAMN29577933, and GenBank GCA_024712875.1, respectively. 

2.2.3. Gene Prediction and Annotation 
The BRAKER v2.1.4 (https://github.com/Gaius-Augustus/BRAKER) (accessed on 1 

September 2022) was primarily used to predict gene sequences. Thereafter, GeneMark-EX 
was used to train the model, and AUGUSTUS (https://github.com/Gaius-Augustus/Au-
gustus) (accessed on 1 September 2022) was used to forecast ORFs. INFERNAL v1.1.2 
(https://github.com/EddyRivasLab/infernal) (accessed on 1 September 2022) was used to 
predict and categorize ncRNA based on the Rfam database. After integrating the rebase 
library, RepeatModeler v1.0.4 (https://github.com/Dfam-consortium/RepeatModeler) (ac-
cessed on 1 September 2022) was used to generate its own repeat library, and Repeat-
Masker v4.0.5 (https://github.com/rmhubley/RepeatMasker) (accessed on 1 September 

Figure 1. Morphologic photograph of the strain I. hispidus NPCB_001. (A) The morphologic photo-
graph of the wild fruiting body, (B) mycelium growing on PDA for four days, (C) mature, cultivated
fruiting bodies of the strain I. hispidus NPCB_001.

2.2.2. De Novo Sequencing

Genomic DNA was end-repaired, A-tails added, sequencing junctions added, pu-
rified, and PCR amplified. High-quality bulk DNA was gathered and tested for purity,
concentration, and integrity before being used to generate libraries. Quantification and
quality checks were then performed using Qubit 2.0 to ensure library quality. The genome
of I. hispidus NPCB_001 was sequenced using the PacBio Sequel long-read sequencing
and Illumina NovaSeq platforms with the 20-kb and 350-bp insert sizes, respectively. The
NECAT (https://github.com/xiaochuanle/NECAT) (accessed on 1 September 2022) was
used to fix genome errors, and splicing was performed to provide the initial splicing result.
The splicing result from third-generation sequencing data was then subjected to two rounds
of error correction using Racon v1.4.7 (https://github.com/isovic/racon) (accessed on
1 September 2022), followed by two rounds of Pilon. The final assembly result was deter-
mined after mistake correction and heterozygosity elimination. The final genome assembly
results and related data of I. hispidus NPCB_001 were submitted to NCBI under the Bio-
Project JANBPQ000000000, BioSample SAMN29577933, and GenBank GCA_024712875.1,
respectively.

2.2.3. Gene Prediction and Annotation

The BRAKER v2.1.4 (https://github.com/Gaius-Augustus/BRAKER) (accessed on
1 September 2022) was primarily used to predict gene sequences. Thereafter, GeneMark-EX
was used to train the model, and AUGUSTUS (https://github.com/Gaius-Augustus/
Augustus) (accessed on 1 September 2022) was used to forecast ORFs. INFERNAL v1.1.2
(https://github.com/EddyRivasLab/infernal) (accessed on 1 September 2022) was used to
predict and categorize ncRNA based on the Rfam database. After integrating the rebase
library, RepeatModeler v1.0.4 (https://github.com/Dfam-consortium/RepeatModeler) (ac-
cessed on 1 September 2022) was used to generate its own repeat library, and RepeatMasker
v4.0.5 (https://github.com/rmhubley/RepeatMasker) (accessed on 1 September 2022) was
used to annotate the repetitive genomic sequence. To annotate the gene products, BLAST
searches of non-redundant protein sequences from the NCBI, Swiss-Prot, COG, and KEGG
databases were performed.

2.3. Comparative Genomics Analysis

McscanX (https://opensourcelibs.com/lib/mcscanx) (accessed on 1 September 2022)
was used to analyze and visualize genome collinearity. Single-copy genes were used to
undertake comparative genomic analysis within Inonotus species, which was visualized
using jVenn (http://jvenn.toulouse.inra.fr/app/index.html) (accessed on 1 September
2022). Ks calculations were carried out on two Inonotus species. ParaAT 2.0 (https://
github.com/wonaya/ParaAT) (accessed on 1 September 2022) was used to convert the

https://github.com/xiaochuanle/NECAT
https://github.com/isovic/racon
https://github.com/Gaius-Augustus/BRAKER
https://github.com/Gaius-Augustus/Augustus
https://github.com/Gaius-Augustus/Augustus
https://github.com/EddyRivasLab/infernal
https://github.com/Dfam-consortium/RepeatModeler
https://github.com/rmhubley/RepeatMasker
https://opensourcelibs.com/lib/mcscanx
http://jvenn.toulouse.inra.fr/app/index.html
https://github.com/wonaya/ParaAT
https://github.com/wonaya/ParaAT


J. Fungi 2022, 8, 1245 4 of 20

homologous protein sequence ID lists to CDS lists. Homologous sequence pairings were
estimated using KaKs Calculator 3.0 (https://ngdc.cncb.ac.cn/biocode/tools/BT000001)
(accessed on 1 September 2022) and displayed using Rstudio v4.20.

2.4. Phylogenomic Analysis

Phylogenetic analysis was performed with the Inonotus strains and 45 other rep-
resentative strains of Basidiomycetes. Single-copy homologous genes were identified
using OrthoFinder v2.5.4 (https://github.com/davidemms/OrthoFinder) (accessed on
1 September 2022) with the parameters “-S diamond -M msa -T raxml-ng”. MCMC tree
(http://abacus.gene.ucl.ac.uk/software/paml.html) (accessed on 1 September 2022) was
utilized to predict divergence time with a total of 520 single-copy orthologue sequences of
24 strains. Several groups of recent ancestor divergence times were queried as calibrated
points in timetree.org (http://www.timetree.org/) (accessed on 1 September 2022), (Heri-
cium alpestre vs. Stereum hirsutum 91.8–195.5 MYA, Marasmius oreades vs. Lentinula edodes
76.9–81.2 MYA, and Ganoderma sinense vs. Laetiporus sulphureus 99–152.5 MYA).

2.5. CAZy Family Analysis and Structural Prediction

The database CAZy (http://bcb.unl.edu/dbCAN2/)(accessed on 7 July 2022) was
used to annotate and class the genes encoding carbohydrate-active enzymes (CAZymes)
from the genomes of I. hispidus NPCB_001 and other white-rot fungi with HMMER 3.2.1
(filter parameter e-value < 1 × 10−5; coverage > 0.35). A bubble plot of CAZyme analysis
for I. hispidus was created via the Complex Heatmap package in Rstudio v4.20.

The protein structures of four CAZy members (g3766.t1, g4459.t1, g6707.t1, and g8693.t1)
with bifunctional domains were predicted using SWISS-MODEL (http://swissmodelexpasy.
org/) (accessed on 15 September 2022) and/or trRosetta (http://yanglab.nankai.edu.cn/
trRosetta/) (accessed on 15 September 2022), and visualized by PyMol 2.4. The overly long
sequence of g8693.t1 (2367 αα) prevented its second GH structural domain from being
predicted.

2.6. Predictive Analysis of Candidate Genes for Secondary Metabolites

The biosynthetic gene clusters (BGCs) for secondary metabolite were predicted using
antiSMASH 6.1(https://antismash.secondarymetabolites.org/) (accessed on 11 July 2022)
with default parameters. The acquired BGCs were manually validated using PSI-BLAST
(https://www.ebi.ac.uk/Tools/sss/psiblast/) (accessed on 1 September 2022) to verify the
expected findings. BIG-SCAPE 1.1.0 (https://github.com/medema-group/BiG-SCAPE)
(accessed on 1 September 2022) was used to create a BGC network between predicted and
confirmed BGCs in the MiBIG1.4 database using cutoffs of 0.75, and the BGC network was
visualized using Cytoscape3.9.1. From the anticipated terpene synthases, sesquiterpene
synthases (STSs) were chosen for further investigation. The phylogenetic tree of STSs
was built using 15 predicted STSs from I. hispidus NPCB_ 001 and identified STSs from
Basidiomycota. Eight STSs on the Clade III cluster were further analyzed for identity
matrix using the online web-tool https://www.ebi.ac.uk/Tools/msa/clustalo/ (accessed
on 1 September 2022).

Five nonribosomal peptide synthase-like enzymes (NRPS-likes) from the strain NPCB_001
were used to construct a phylogenetic tree using the maximum likelihood method for clus-
tering analysis with the identified PKSs from fungi in UniProt (https://www.uniprot.org)
(accessed on 30 September 2022). The same method was used to analyze two polyketide
synthases (PKSs). The PKS used for the clustering analysis was identified as PKS from
Basidiomycota in UniProt (accessed on 12 July 2022).

2.7. Prediction and Analysis of P450s

The package Hmmer was used to predict P450s with Diamond 2.9.0 (e-value > 1 × 10−5)
and annotate the target protein sequence. The reference P450 sequences for cluster analy-
ses were downloaded from the website Fungal cytochrome P450 database (http://p450
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.riceblast.snu.ac.kr/index.php?a=view) (accessed on 15 July 2022). Totals of predicted 127
P450 proteins from I. hispidus NPCB_001 and several other Basidiomycetes selected from
the fungal P450 database were clustered to perform phylogenetic tree analysis with precise
classification. A maximum-likelihood tree was built by IQ-tree 2.2.3 with options as “-m
MFP -bb 1000 -alrt 1000 -abayes -nt AUTO”.

2.8. Metabolites Analysis and Structural Evaluation

Fermentation products of mycelium and metabolites of fruiting bodies were used to
analyze the small bioactive molecules of I. hispidus. Liquid fermentation of mycelium was
performed in PDB at 200 rpm, 25 ◦C for 14 days. The fermentation product was extracted
with ethyl acetate, concentrated, and quantified for high-resolution liquid chromatography-
mass spectrometry (HR-LCMS) detection. Fresh fruit bodies were extracted with ethyl
acetate, concentrated, and quantified for HRMS detection. The HRMS detection was carried
out using AB Sciex TripleTOF 6600 mass spectrometer in both positive-ion and negative-
ion modes. Molecular network analysis of HPLC-HRESIMS data of crude extract was
performed using GNPS (https://gnps.ucsd.edu) (accessed on 17 September 2022) with
default parameters. The network file based on positive-ion mode MS data can be found and
Available online: https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1c6ef68b5679494eb8
017429b5ba9e77 (accessed on 1 September 2022). The molecular network was visualized by
Cytoscape 3.9.1.

3. Results
3.1. Fungal Species Identity and Artificial Cultivation

The wild fruiting bodies of I. hispidus (Figure 1A) were collected from southern regions
of Xinjiang province, China. The culturable mycelium (Figure 1B) was obtained by separat-
ing the fruiting body’s tissue. The sample was identified as I. hispidus by combining the
morphological characteristics of the fruit bodies and the ITS sequence alignment (98.81%
similarity to Inonotus hispidus clone SH2.107, Figure S1) of the mycelium, and was subse-
quently named I. hispidus NPCB_001. Given the economic potential of I. hispidus’ medical
capabilities, we attempted to produce it artificially and successfully obtained the fruiting
body (Figure 1C). We now have the technology and equipment for large-scale artificial
cultivation.

3.2. Genome Sequence, Assembly, and Annotation

The genome size of I. hispidus NPCB_001 was determined to be 33.69 Mb based on
the k-mer of the genome survey study (Table S1). A K-mer curve with two peaks and a
2-fold relationship in peak height revealed that the genome had heterozygosity of 0.992%
(Figure S2), which indicated that I. hispidus NPCB_001 was a dikaryon. The genome of
NPCB_001 was sequenced using a combination of the PacBio Nanopore and Illumina Hiseq
sequencing platforms. A total of 8.12 Gb and 2.70 Gb clean data were generated from PacBio
and Illumina sequencing platforms, respectively. A genome size of 34.02 Mb was built from
totals of 5,729,964,000 bp of clean data, which comprised 11 pseudochromosomal molecules
and six contigs (Figure 2A), with an N50 of 2,340,722 bp and 47.76% GC content (Figure 2A)
(Tables S2 and S3). The illumina coverage ratio of 99.86% (Table S4) demonstrated that the
genome of strain NPCB_001 was assembled with high quality.

There were 12,304 protein-coding genes predicted, with an average gene length of
1816.15 bp and a total of 78,769 exons (average length, 224.07 bp) and 660,465 introns
(average length, 70.65 bp) in these coding genes (Table S5, File S1). Non-coding RNA was
projected to include 14 rRNAs, 16 sRNAs, 105 tRNAs, and one snRNA (Table S6). A total of
7987 repeats with a total length of 1,100,314 bp were predicted, accounting for 3.23% of the
whole genome, with the four scattered repeats SINE, LINE, LTR, and DNA transposons
accounting for 0.00% (2), 0.06% (233), 2.20% (1384), and 1.51% (1024), respectively (Table
S7). Genomic sequencing comparisons, assembly parameters, and quality metrics between

http://p450.riceblast.snu.ac.kr/index.php?a=view
http://p450.riceblast.snu.ac.kr/index.php?a=view
https://gnps.ucsd.edu
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1c6ef68b5679494eb8017429b5ba9e77
https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=1c6ef68b5679494eb8017429b5ba9e77


J. Fungi 2022, 8, 1245 6 of 20

I. hispidus and previously published I. obliquus [30] genomes emphasize the high-quality
genome of the strain NPCB_001 (Table 1).
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Figure 2. Genomic characterization, mating type loci, and comparative genomic analysis. (A) Ge-
nomic collinearity analysis between I. hispidus NPCB_001 and I. obliquus CT5. From the outside to
the inside are I. Chromosome and Contigs; II&III. Gene density and GC density: the intensity of
the color positively correlates with gene density; IV. Whole-genome collinearity analysis based on
protein-coding genes: sequence similarity from low to high is indicated by red to purple. (B) Venn
schematic of comparative genomes within Inonotus species. (C) Ks comparison within Inonotus
species. (D) Structural diagram of the genes on the matA locus and matB locus of I. obliquus.

Table 1. Comparison of sequencing and assembly metrics, and genome quality of I. hispidus
NPCB_001.

Species I. hispidus NPCB_001 I. obliquus CT5

Sequencing technology Illumina NovaSeq 6000 Illumina HiSeq 6000
Sequencing depth 230.0× 200.0×

Number of scaffolds 17 31
Total assembly length 34,017,109 38,061,412

largest length 4,469,123 4,380,421
Scaffold N50(bp) 2,340,722 1,971,511

Scaffold L50 5 7
GC content (%) 48.39 47.60
No. of proteins 12,304 12,525

Genome accession GCA_024712875.1 GCA_023101745.1
Isolate information Mycelium Mycelium

To archive the comprehensive protein-coding genes function annotation, 15,302 genes
were subjected to sequence similarity analysis and motif similarity search based on nine
public databases (Nr, Pfam, eggCOG, Uniprot, KEGG, GO, Pathway, Refseq, Interproscan)
(Table S8). The Nr library annotation results found that 67.59% of the 10,580 annotated
the genome of Sanghuangporus baumii and 22.44% matched the genome of Fomitiporia
mediterranea MF3/22 (Figure S3). The classification of cellular components was the main
group among the 5719 genes annotated by the functional classification of the GO database
(Figure S4). Functional annotation based on the COG database identified 1051 genes,
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with the largest number of genes belonging to group I (lipid transport and metabolism)
(Figure S5). According to the KEGG database, 3900 genes were identified as being involved
in 5 types of pathways, with the largest number of genes involved in metabolic pathways
(Figure S6). Domain-based motif search using the Pfam database identified 9523 genes, and
the top 20 with the largest number are shown in Figure S7. These various perspectives and
levels of annotation demonstrate the functional diversity of protein-coding genes from the
strain NPCB_001.

3.3. Comparative Genomic Analysis within Inonotus Species

NCBI Taxonomy has documented 49 Inonotus species, and our team previously re-
ported the genome of I. obliquus CT5 [30], the first genome of the Inonotus mushrooms.
Collinearity analysis showed that practically all genomic regions of I. hispidus NPCB_001
shared synteny with the I. obliquus CT5 genome, and chr1, 2, 3, 4, and 11 of NPCB_001
exhibited high synteny to specific regions of the I. obliquus CT5 genome (Figure 2A). A to-
tal of 7327 orthologous groups were identified from the two species of Inonotus, and
NPCB_001 contained relatively fewer unique orthologous groups (289) than that of CT5
(550) (Figure 2B). This finding verifies the discrepancy in genome size, with NPCB_001
having 34.02 Mb and CT5 having 38.18 Mb (Table 1).

To further understand the differences in the genomes of the species of Inonotus, a
genome-wide duplication analysis based on synonymous mutation rates was performed.
The consistent trends in the Ks curves of these strains revealed that they are all Inonotus
species (Figure 2C). The obvious peaks in the Ks curves suggested that genome-doubling
events occurred during the genomic evolution of the Inonotus species (Figure 2C). The
higher KS peaks of I. obliquus CT5 indicated that it had undergone a larger-scale genome
doubling event (Figure 2C), resulting in the larger-size genome of I. obliquus CT5 (Table 1).

3.4. Identification of the Mating Genes

Mushrooms, especially those formed by the phylum Basidiomycota fungi, contain a
tetrapolar mating system composed of an A mating (matA) locus and a B mating (matB)
locus. The locus matA mainly contains two homeodomain transcription factor-codon genes
that control clamp-connection formation and nuclear pairing. The locus matB encodes
multiple pheromone receptors (ste3) and pheromone precursors, which mainly regulate
nuclear migration and clamp connection fusion [33,34]. The mating type genes in mush-
rooms are capable of controlling the process of hybridization and sexual reproduction.
A comprehensive and in-depth understanding of the molecular genetic structure of the
mating type system will aid in elucidating the regulation of mating type genes on fruit body
development and solve the breeding-related scientific challenges faced in the development
of the economically valuable mushroom industry [35,36].

For I. hispidus NPCB_001, the matA locus was located on chr2 by homology search
using mitochondrial intermediate peptidase (mip) codon gene and HD1 of I. obliquus CT5,
and the matB locus was located on chr6 by scanning with ste3 from the strain CT5 as a probe.
The matA locus comprises a MIP (g1048), three homeodomain transcription factor-codon
genes (HD1, aαz4, and HD2), an unknown conserved fungal protein-codon gene (βFG,
g9997), and a glycosyltransferase family 8 protein codon gene (glgen, g9996) (Figure 2D).
HD1 (g1045) and HD2 (g1047) in I. hispidus NPCB_001 are two typical homeodomain
transcription factor-codon genes in the matA locus with opposite transcription orientations.
A-alpha Z4 (aαz4, g1046) represents a class of HD1 mating-type protein, which was first
discovered in Schizophyllum commune H4-8 [37]. In contrast, the matB locus contains three
unclustered ste3 (g3868, g3904, and g4149) (Figure 2D) (Table S9). The analysis result, that
the matA locus and the matB locus are not in the same contig, implies that the mating type
of I. hispidus possesses a tetrapolar mating system. Overall, further research is required to
better understand the genomic structure of the mating-type loci in I. hispidus.
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3.5. Phylogenomic and Evolutionary Analysis

The genomes of 47 typical Basidiomycete mushrooms (Table S10) were utilized for
phylogenomic evolutionary research to acquire insights into the evolutionary origins, taxo-
nomic status, genome expansion, and contraction of I. hispidus. With complete bootstrap
support, the phylogenomic tree constructed from an alignment of 67 single-copy orthol-
ogous genes from 91,926 orthogroups delineated evolutionary connections among the
47 species. The species from Agaricomycetes and Non-Agaricomycetes were phyloge-
netically separated at the species level. Hymenochaetales and non-Hymenochaetales of
Agaricomycetes were diverged at a mean crown age of 179.30 Mya, with a 95% highest
posterior density (HPD) of 97.55–256.83 Mya. Inonotus was estimated to emerge in a mean
crown age of 31.58 Mya with a 95% HPD of 16.53–51.71 Mya, which had a closer phyloge-
netic relationship with Sanghuangporus. Of the species in Inonotus, I. hispidus and I. obliquus
occurred in a mean crown age of 17.29 Mya with a 95% HPD of 8.95–28.70 Mya (Figure 3).

J. Fungi 2022, 8, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 3. The evolutionary relationship and expanded and contracted gene families among Inonotus 
species and 45 representative Basidiomycetes. The maximum likelihood method credibility tree was 
inferred from 47 single-copy orthologous genes. All nodes received full bootstrap support. The di-
vergence time is labeled as the mean crown age for each node, while the 95% highest posterior den-
sity is also given within the Inonotus clade. The black numbers at the branches indicate the corre-
sponding divergence times in millions of years (MYA). The numbers of gene family expansion and 
contraction in each species are labeled with green and red symbols, respectively. The proportion of 
expansion and contraction in the genome of each species was displayed before its species name. The 
background color of each species of Agaricus indicates its corresponding order. 

3.6. CAZyme Analysis and Synthesis of Polysaccharides 
White-rot fungi are a group of fungi that effectively degrade lignocellulosic biomass, 

notably those of plant origin [38,39], and account for over 90% of wood-decaying stretcher 
fungi, degrading lignin and polysaccharides while leaving white or yellowish residues 
[39,40]. Although I. hispidus is a typical white-rot fungus, its CAZyme repertoire has not 
been investigated. Annotation of the predicted proteins of I. hispidus using the dbCAN2 
CAZyme database revealed 151 CAZyme functional domains, including 95 glycoside hy-
drolases (GHs), 37 auxiliary activities (AAs), 11 carbohydrate esterases (CEs), three glyco-
syltransferases (GTs), three polysaccharide lyases (PLs), and two carbohydrate-binding 
modules (CBMs) in the strain NPCB_001 genome (Figure 4A, Table S11, File S2). The 151 
functional domains are derived from 147 proteins, four of which, g3766, g4459, g6707, and 
g8693, contain bifunctional domains. Both g3766 and g6707 have a GH domain and a CBM 
domain, whereas g4459 and g8693 contain two AA domains (AA8, AA3-1) and two GH 
domains (GH13_22) (Figure 4B). Among the six classes of genes, the number of GHs is 
much higher than others and are mainly involved in the degradation of hemicellulose 
(GH10 and GH43), xyloglucan (GH16), celluloses (GH5 and GH12), and starch (GH15) 
(File S1). Regarding CAZyme distribution, I. hispidus is more similar to Ceriporiopsis sub-

Figure 3. The evolutionary relationship and expanded and contracted gene families among Inonotus
species and 45 representative Basidiomycetes. The maximum likelihood method credibility tree was
inferred from 47 single-copy orthologous genes. All nodes received full bootstrap support. The
divergence time is labeled as the mean crown age for each node, while the 95% highest posterior
density is also given within the Inonotus clade. The black numbers at the branches indicate the
corresponding divergence times in millions of years (MYA). The numbers of gene family expansion
and contraction in each species are labeled with green and red symbols, respectively. The proportion
of expansion and contraction in the genome of each species was displayed before its species name.
The background color of each species of Agaricus indicates its corresponding order.

The gene family expansion happened more often than the gene family contraction in
the evolutionary process of the 47 samples of Basidiomycota studied. Concerning Inonotus,
658 and 458 gene families had expanded in I. hispidus and I. obliquus, respectively, corre-
sponding to 164 and 267 gene families being contracted. The Inonotus fungi had undergone
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more gene family expansion and less gene family contraction than Sanghuangporus baumii
(Figure 3).

3.6. CAZyme Analysis and Synthesis of Polysaccharides

White-rot fungi are a group of fungi that effectively degrade lignocellulosic biomass,
notably those of plant origin [38,39], and account for over 90% of wood-decaying stretcher
fungi, degrading lignin and polysaccharides while leaving white or yellowish residues [39,40].
Although I. hispidus is a typical white-rot fungus, its CAZyme repertoire has not been in-
vestigated. Annotation of the predicted proteins of I. hispidus using the dbCAN2 CAZyme
database revealed 151 CAZyme functional domains, including 95 glycoside hydrolases
(GHs), 37 auxiliary activities (AAs), 11 carbohydrate esterases (CEs), three glycosyltrans-
ferases (GTs), three polysaccharide lyases (PLs), and two carbohydrate-binding modules
(CBMs) in the strain NPCB_001 genome (Figure 4A, Table S11, File S2). The 151 functional
domains are derived from 147 proteins, four of which, g3766, g4459, g6707, and g8693,
contain bifunctional domains. Both g3766 and g6707 have a GH domain and a CBM domain,
whereas g4459 and g8693 contain two AA domains (AA8, AA3-1) and two GH domains
(GH13_22) (Figure 4B). Among the six classes of genes, the number of GHs is much higher
than others and are mainly involved in the degradation of hemicellulose (GH10 and GH43),
xyloglucan (GH16), celluloses (GH5 and GH12), and starch (GH15) (File S1). Regarding
CAZyme distribution, I. hispidus is more similar to Ceriporiopsis subvermispora and Phane-
rochaete chrysosporium than to I. obliquus. When comparing the 39 analyzed white-rot fungi,
it was found that the number and type of CAZymes of these white-rot fungi were not
species-specific (Figure 4A).
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Inonotus hispidus extracellular exopolysaccharide was discovered to protect the liver
from acute alcoholic liver damage in mice [22]. Approximately 20 different enzymes
involved in mushroom polysaccharide synthesis have been identified [41,42], includ-
ing 1,3-glucan synthase (GLS), glucose phosphomutase (PGM), phosphomannose iso-
merase (PMI), glucokinase (GK), beta-glucan synthesis-associated protein (GSAP), phos-
phoglucose isomerase (PGI), UDP-glucose 4-epimerase (UGE), GDP-mannose dehydratase
(GMD), phosphor-fructokinase (FPK), and UDP-xylose synthase (UXS). Screening relevant
databases, 31 candidates (Table S12) for polysaccharide biosynthesis were identified, in-
cluding 7 GMDs, 7 PGMs, 5 GSAPs, 2 UGEs, 2 GKs, 2 PMIs, and 2 GLSs, and only 1 FPK,
PGI, FBPase, and UXS (Table S13).

3.7. The BGCs for Secondary Metabolite Analysis

The diversity of secondary metabolism in I. obliquus was explored by distinguishing
the types of secondary metabolites based on the core enzymes engaged in the synthetic
pathways. A total of 20 BGCs containing 27 core genes were predicted and distributed on
five chromosomes (Chr1, 2, 4, 6, and 8) and three contigs (ctg13, 14, and 16) (Figure 5A)
(Table 2). The 27 core genes include 18 terpene synthase-encoding genes, five genes for
NRPS-like, two genes for PKS, and one gene each encoding NRPS and PKS-NRPS-like
hybrid (Figure 5A).
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Figure 5. Analysis of genes involved in secondary metabolite biosynthesis. (A) Distribution of
biosynthetic core genes for natural products on the chromosomes and contigs. Phylogenetic tree
analysis sesquiterpene synthases (B), NRPS-likes (D), and PKSs (E) from NPCB _001 and their
respective homologues. (C) The identity matrix of eight STSs.



J. Fungi 2022, 8, 1245 11 of 20

Table 2. Putative BGCs responsible for secondary metabolites in the strain NPCB_001.

Cluster Location Start(bp) Stop(bp) Core Gene IDs Core Gene Type

1 chr1 586,000 604,625 g7183.t1 terpene
terpene2 chr1 1,703,424 1,723,315 g7579.t1

3 chr1 2,757,672 2,797,202 g7927.t1 NRPS-like
4 chr1 3,514,470 3,555,756 g8202.t1 NRPS-like
5 chr1 3,885,519 3,920,464 g8310.t1 NRPS-like
6 chr1 4,003,561 4,021,717 g8354.t1 terpene
7 chr1 4,255,843 4,277,160 g8436.t1 terpene
8 chr1 4,388,087 4,431,254 g8482.t1 NRPS-like

9 chr2 205,256 258,843

g8982.t1

terpene
g8985.t1
g8990.t1
g8991.t1
g8992.t1

10 chr2 999,219 1,027,559
g9225.t1

terpeneg9226.t1
g9227.t1

11 chr4 29,271 50,737 g1390.t1 terpene

12 chr4 213,291 257,392 g1457.t1 T1PKS-
NRPS-like

13 chr4 407,063 453,131
g1509.t1 NRPS-like
g1510.t1 T1PKS

14 chr4 1,576,159 1,624,146 g1955.t1 NRPS
15 chr6 1,395,705 1,411,230 g6286.t1 terpene
16 chr6 1,570,068 1,591,381 g6332.t1 terpene
17 chr8 1,624,840 1,646,078 g2983.t1 terpene
18 ctg13 785,200 806,403 g1139.t1 terpene
19 ctg14 61,058 108,404 g6596.t1 T1PKS
20 ctg16 977,869 999,335 g8866.t1 terpene

There are 15 sesquiterpene synthases (STSs), one squalene synthase (g8354.t1), one ox-
idosqualene cyclase (g7579.t1), and a phytoene synthase (g6286.t1) among the 18 predicted
terpenoid synthases. The evolutionary tree was constructed of the 15 STSs, and the identi-
fied STSs from Basidiomycete mushrooms [43] displayed four clear clades. Clade III had
the most STSs (nine), followed by clade I with four, clade II with two, and clade IV without
STS (Figure 5B, Table S14). Surprisingly, eight STSs in clade III formed a unique subcluster
with high similarity (over 40% identities) (Figure 5C and Table S15). These STSs with high
identities indicated the structural similarities of their catalytic products. Furthermore, six
key genes (g10917, g7854, g1502, g245, g54, and g9473) of the MVP pathway upstream of
terpenoid biosynthesis in I. hispidus were identified using the help of KEGG (Figure S8).

Cluster analysis of five NRPS-likes (Table S16) and identified NRPS-likes from fungi
(Table S17) revealed five objects were clustered into four subclusters (Figure 5D). Both g8028
and g7297 in the same subcluster were predicted to have Adenylate-forming reductase
activity. The protein encoded by g1959 was found to be similar to ATRR, an unusual glycine
betaine reductase for choline biosynthesis in fungi [44]. The genes g8310 and g8482 may
encode an MFS-type transporter [45] and a microperfuranone synthase [46], respectively.
Cluster analysis of two PKSs (g6596.t1 and g1510.t1) (Table S18) and 22 identified PKSs from
Basidiomycetes (Table S19) revealed that g6596.t1 and g1510.t1 were more closely linked to
HispS (Figure 5E), a gene implicated in luciferin biosynthesis [47]. The PKS g9656.t1, on
the other hand, was more closely linked to ArmBs [48], a family of orsellinic acid synthases.
The BGC containing g1955.t1, the only NRPS from I. hispidus, was predicted to be involved
in siderophore biosynthesis and is very similar to a BGC that exists in I. obliquus (Figure S9).
Several key genes, including NRPS in these two BGCs, showed high homology with the
identified BGC for siderophore in Coprinopsis cinerea [49] (Figure S9). The PKS-NRPS-like
g1457.t1 is a rare hybrid enzyme in mushrooms, with its best and only search hit being
HispS, at 38.60% identity [47].
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3.8. Cytochrome P450 Family Analysis and Identification

The Cytochrome P450s (CYP450) family is a superfamily of thiol ferrous hemoglobin
proteins that are widely involved in essential enzymes for fungal primary and secondary
metabolic processes, including detoxification, exogenous degradation, and secondary
product biosynthesis [50–52]. A total of 127 P450 proteins (Table S20) screened in the
genome of the strain NPCB_001 were examined through clustering analysis with the
representative Basidiomycete P450 proteins of the Fungal Cytochrome P450 Database.
The clustering result offered a clear indication of the categorization of the P450s of strain
NPCB_001 (Figure S10). Further cluster analysis classified the 127 P450s of I. hispidus
NPCB_001 into 17 CYP families, five uncertain groups, and one completely unknown group.
Among the 17 identified CYP families, CYP5150 had the most members with 13, followed
by CYP5037 with 11, and the remainder of the families had no more than ten members
(Figure 6). This feature is consistent with a pattern of enrichment of CYP5150 in Polyporale
fungi [53]. The branch between two separate CYP families was defined as the uncertain
group in evolutionary relatedness-based clustering analysis. A total of 51 CYP450s were
clustered into six uncertain groups, accounting for 40.16% of all P450s. Among them, the
uncertain_3 group contained the most members, with 25 CYP450s (Figure 6). The CPY450
members in uncertain groups suggest the existence of multiple new CYP450 types (families)
in I. hispidus.
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3.9. Identification and Difference of Metabolites from Fruiting Bodies and Mycelium

The fruiting body of I. hispidus is a classic folk medicine, containing diverse small
molecule metabolites that endow a wide range of biological activities [10], although the
chemical composition of the mycelium and their bioactivities are seldom described. In
order to explore the variations in chemical composition and content between fruiting bodies
and mycelium, metabolites obtained from fruiting bodies and mycelium fermentation in
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shaking flasks were utilized for quantitative HR-LCMS analysis and compared using GNPS
online workflow.

The visualized molecular network showed that mycelium produces more abundant
chemical constituents, and most components are more closely related. In summary, the
metabolites from mycelium and fruiting bodies differed widely in quantity and content
(Figure 7, Figure S11).
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Furthermore, a total of 34 compounds were identified by comparing their MS and
MS2 data with reported literature values, including phelligridin D (1), phellibaumin A (2),
phelligridin C (3), phelligridin C′ (4), 3′4′-dihydroxy-5-[11- hydroxyphenyl]-6,7-vinyl]-3,5-
dioxafluoren-5-one (5), inoscavin C (6), hypholomine A (7), inoscavin E (8), inonoblin A
(9), inonophenol A (10), inonophenol B (11), hispolon (12), hispinine (13), methyl 5-(3,4-
dihydroxyphenyl)-3-hydroxypenta-2,4-dienoate (14), MBP (15), interfungin C (16), interfun-
gin A (17), inonophenol C (18), inonotusin A (19), inotolactone B (20), eburicoic acid (21),
hispindic acid B (22), 3β-hydroxy-lanosta-8,24-dien-21-al (23), inonotusol F (24), inonotusol
G (25), inonotusane F (26), cerevisterol (27), 4,6,8(14),22(23)-tetraen-3-one-ergostane (28),
7(8),22(23)-dien-3-one-ergostane (29), inonotsutriol E (30), inonotsutriol A (31), inonotusane
E (32), inotolactone A (33), and inonotusol E (34) (Figure 7 and Figure S12, Table 3). The
identified chemicals are structurally divided into two groups, the styrylpyrones-based
polyphenols (1–19) and the lanosterol-type triterpenoids (20–34), which correspond to the
distinct clusters formed in the network (Figure 7, Table 3). Among these, 13 compounds
were found for the first time from I. hispidus, including 7–9, 16–17, 24–26, and 30–34, and the
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majority of these compounds were initially described from the medicinal fungus Phellinus
and other Inonotus species [54].

Table 3. The identified metabolites from the strain NPCB_001.

No Source Putative Metabolite Molecular
Formula Adduct m/z Reference

1 fruiting body phelligridin D C20H12O8 [M + H]+ 381.194 Li, et al. [55]
2 fruiting body phellibaumin A C19H12O7 [M + H]+ 353.199 Li, et al. [55]
3 fruiting body phelligridin C C20H12O7 [M + H]+ 365.199 Li, et al. [55]
4 fruiting body phelligridin C′ C20H12O7 [M + H]+ 365.199 Li, et al. [55]

5 fruiting body
3′4′-dihydroxy-5-[11-
hydroxyphenyl]-6,7-vinyl]-3,5-
dioxafluoren-5-one

C19H12O6 [M + H]+ 337.205 Li, et al. [55]

6 fruiting body inoscavin C C23H16O8 [M + Na]+ 443.268 Zan, et al. [56]
7 * fruiting body hypholomine A C26H18O9 [M + H]+ 475.258 Lee, et al. [54]
8 * fruiting body inoscavin E C21H14O7 [M + H]+ 379.179 Lee, et al. [57]
9 * fruiting body inonoblin A C33H20O13 [M + H]+ 625.382 Lee, et al. [58]
10 both inonophenol A C12H16O4 [M + Na]+ 247.242 Kou, et al. [7]
11 both inonophenol B C12H14O4 [M + Na]+ 245.226 Kou, et al. [7]
12 fruiting body hispolon C12H12O4 [M + H]+ 221.154 Ali, N.A.A., et al. [4]
13 fruiting body hispinine C12H12O4 [M + H]+ 221.154 Ren, et al. [8]

14 fruiting body methyl 5-(3,4-dihydroxyphenyl)-3-
hydroxypenta-2,4-dienoate C12H12O5 [M + H]+ 237.185 Yousfi, et al. [5]

15 fruiting body MBP C27H20O10 [M + H]+ 505.113 Yang, et al. [59]
16 * fruiting body interfungin C C23H18O9 [M + H]+ 439.139 Lee, et al. [60]
17 * fruiting body interfungin A C25H20O9 [M + H]+ 465.118 Lee, et al. [60]
18 fruiting body inonophenol C C16H16O6 [M + H]+ 305.178 Kou, et al. [7]
19 fruiting body inonotusin A C15H14O6 [M + H]+ 291.164 Zan, et al. [56]
20 fruiting body inotolactone B C31H48O3 [M + H]+ 469.330 Ying, et al. [25]
21 fruiting body eburicoic acid C31H50O3 [M + H]+ 471.347 Yang, et al. [61]
22 fruiting body hispindic acid B C31H50O4 [M + H]+ 487.342 Ren, et al. [8]
23 both 3β-hydroxy-lanosta-8,24-dien-21-al C30H48O2 [M + H]+ 441.373 Kou, et al. [7]
24 * both inonotusol F C31H48O3 [M + H]+ 469.368 Liu, et al. [62]
25 * both inonotusol G C30H48O3 [M + H]+ 457.367 Liu, et al. [62]
26 * both inonotusane F C30H46O4 [M + H]+ 471.384 Zhao, et al. [63]
27 fruiting body cerevisterol C28H46O3 [M + H]+ 431.351 Kou, et al. [7]

28 both 4,6,8(14),22(23)-tetraen-3-one-
ergostane C28H40O [M + H]+ 393.314 Zan, et al. [56]

29 fruiting body 7(8),22(23)-dien-3-one-ergostane C28H40O [M + H]+ 397.346 Zan, et al. [56]
30 * mycelium inonotsutriol E C30H50O3 [M + H]+ 459.288 Reiko Tanaka, et al. [64]
31 * mycelium inonotsutriol A C30H50O3 [M + Na]+ 481.310 Sayaka Taji, et al. [65]
32 * mycelium inonotusane E C30H50O3 [M + Na]+ 511.326 Zhao, et al. [63]
33 * mycelium inotolactone A C31H46O3 [M + H]+ 467.301 Ying, et al. [25]
34 * mycelium inonotusol E C30H48O5 [M + H]+ 489.313 Liu, et al. [62]

Both indicate the compound is driven from both the fruiting body and mycelium. An asterisk in the upper
right-hand corner of the number indicates that the compound was first identified from I. hispidu.

4. Discussion
4.1. Inonotus Hispidus and Sanghuang-like Fungi

Sanghuang is a well-known macrofungal medical herb in China, Japan, Korea, and
other Asian countries. It has a long history of medicinal usage and health benefits [66–68],
which is recorded in several Chinese medical classics, including the Compendium of Materia
Medica. Indeed, sanghuang is recorded in various medical documents as a generic term for a
group of medicinal macrofungi with specific biological activity and similar morphology,
which is difficult to reconcile with modern species classification systems, seriously limiting
modern medicinal research on sanghuang. Although the establishment of Sanghuangporus
genus containing 15 species [32,69,70] has alleviated this dilemma to some degree, it has
not been completely solved. Because of their similar morphology and medicinal prop-
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erties to the Sanghuangporus species, several medicinal fungi from the genera Inonotus
and Phellinus, such as I. hispidus [10] and P. gilvus [71], are still referred to as sanghuang in
traditional medicine. Such fungi are more aptly known as sanghuang-like fungi. These
valuable medicinal macrofungi should not be excluded from the Chinese medicinal fungus
sanghuang because of the development of Sanghuangporus genus. The ability of genome
sequencing to reliably correlate morphological traits to the genome enables the differentia-
tion of sanghuang-like fungi from Sanghuangporus species, which is difficult to separate
morphologically.

4.2. The Metabolites and Medicinal Properties of Inonotus Hispidus

The fruiting bodies of I. hispidus have traditionally been used as medicines for the
treatment of indigestion, cancer, diabetes, and gastric diseases by the residents of Xinjiang
province and Northeast China [3], and the biological activity studies based on monomeric
compounds have revealed the mechanism of these pharmacological activities [10]. For
example, the monomers identified in this work, such as phelligridin D (1) [72], phellibaumin
A (2) [73], MBP (15) [59], inonotusin A (19) [15], and inotolactone B (20) [25] (Figure 7) have
previously been proven to possess anti-cancer activity at various levels. A thorough survey
revealed that the monomeric compounds with anti-cancer and antioxidant activity in I.
hispidus are essentially polyphenols [10], which are also one of the distinguishing feature
components of I. hispidus. Indeed, polyphenolic compounds with a styrylpyrone backbone
are abundant in the genera Phellinus and Inonotus [54], as well as the recently established
genus Sanghuangporus [74], reflecting the natural relationship of metabolites between
sanghuang-like fungi and Sanghuangporus species. Furthermore, the molecular network
constructed based on GNPS clearly displays the differences in the chemical composition of
the fruiting bodies and mycelium of I. hispidus. This may serve as a precise guide for the
targeted isolation of specific compounds (Figure 7 and Figure S10). The molecular network
shows similarity clustering of related compounds and could facilitate identification of
unknown molecules in the network (Figure 7 and Figure S10).

4.3. Genome Sequencing Helps Decipher Biosynthesis of Bioactive Ingredients in Medicinal
Macrofungi

Genome sequencing of G. lucidum identified multiple biosynthetic genes necessary
to produce ganoderic acids, which provided vital information to uncover the biosyn-
thetic pathways of these essential medicinal components [27]. The genomic sequence of
A. cinnamomea yielded critical candidate gene information to unravel antrocamphins biosyn-
thesis in phase II clinical trials. Although polyphenols with a styrylpyrone moiety are a
characteristic component of sanghuang-like fungi, the biosynthesis for these chemicals has
received little attention [47,71,75]. Comprehensive analysis of the 20 gene clusters predicted
in I. hispidus indicated that BGC12, with g1457 as a core gene, and BGC13, with g1510 as a
core gene (Figure 5, Table 2), are connected to the biosynthesis of this class of polyphenols.
HispS, which was able to convert Caffeic acid to Hispidin, is the best homologue of g1457.t1
and g1510.t1, with identities of 38.58% and 26.60%, respectively.

Secondary metabolite biosynthesis genes, especially post-modification genes, found
in mushrooms tend to be scattered across chromosomes, similar to plants, rather than
clustered like bacteria. The presence of high oxidation of polyphenolic compounds and
triterpenoids in I. hispidus is thought to be related to the multiple P450s spread throughout
the chromosomes, notably the over 50 P450 members of unidentified gene families (Figure 6,
Table S20).

Basidiomycetes-derived sesquiterpenes are a class of important natural products with
diverse structures and various activities, and sesquiterpene synthases are a class of critical
genes for natural product biosynthesis [75]. According to an analysis of sequenced Basid-
iomycete genomes, each genome had at least ten sesquiterpene synthases. I. obliquus, a
homology of I. hispidus, has more than 20 sesquiterpene synthases [30] and eight sesquiter-
penoids [76], but I. hispidus only has 15 sesquiterpene synthases and one sesquiterpenoid
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xylaritriol [7], suggesting that the majority of the sesquiterpene synthases in the I. hispidus
are inactive.

5. Conclusions

Inonotus hispidus is a well-known medicinal mushroom that exhibits anti-cancer and
immunomodulatory activities, as well as a long history of usage as a medicinal fungal
material with various health benefits. Here, for the first time, we provide the de novo
assembled complete genome of I. hispidus. Chromosome-level assembly and functional
annotation described in this study provide useful clues for subsequent gene functional
research. According to comparative genomic analysis, the genus Inonotus has different
gene compositions. Phylogenomic and evolutionary analysis of the genus Inonotus reveals
evolutionary traits. The investigation of mate locus and CAZyme facilitates artificial
cultivation. A thorough examination of secondary metabolite biosynthesis genes showed a
wide range of biosynthetic potential. Further molecular network-based metabolite analysis
revealed differences in chemical composition and concentration in fruiting bodies and
mycelia. This work not only covers a vacuum in I. hispidus genetic information but also
gives crucial insights into the biological aspects of the medicinal-edible fungus I. hispidus,
such as growth characteristics and biosynthesis routes of bioactive components. A thorough
grasp of I. hispidus’ genome will pave the way for its future application in pharmacological
research and functional food development. In short, the genome sequencing of I. hispidus
sheds light on the biosynthesis and medical applications of its metabolite.
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comparative analysis of the BGCs involved, Figure S10: P450s Cluster analysis of the strain I. hispidus
NPCB_001 and other Basidiomycete, Figure S11: Molecular network analysis of metabolites from the
mycelium and fruiting bodies of the strain I. hispidus NPCB_001, Figure S12: The LC-ESI-HRMS and
LC-ESI-HRMS/MS spectrums of isolates from the strain I. hispidus NPCB_001. Refs [49,77–79] are
cited in supplementary materials.

https://www.mdpi.com/article/10.3390/jof8121245/s1
https://www.mdpi.com/article/10.3390/jof8121245/s1


J. Fungi 2022, 8, 1245 17 of 20

Author Contributions: R.-q.Z. and J.Q. designed the project; R.-q.Z., X.-l.F., Z.-x.W. and T.-c.X.
executed these experiments; R.-q.Z., Z.-x.W. and J.Q. wrote this manuscript; Y.D., C.L. and J.-m.G.
revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China (31800031)
and the Innovation and Development Joint Fund of the Natural Science Foundation of Shandong
Province (Project No. ZR2021LSW022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We acknowledge Fang Yin from Xinjiang Agricultural University for providing
the wild fruiting body of Inonotus hispidus. We acknowledge Sheng nan Tan and Dan Sui from
Analysis and Test Center, Northeast Forestry University, for providing mass spectrometry services.

Conflicts of Interest: The authors declare no conflict of interest.

References
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