

Article Doi 10.5943/mycosphere/8/10/16 Copyright © Guizhou Academy of Agricultural Sciences

Leptosporella (*Leptosporellaceae* fam. nov.) and *Linocarpon* and *Neolinocarpon* (*Linocarpaceae* fam. nov.) are accommodated in Chaetosphaeriales

Konta S^{1,2}, Hongsanan S¹, Liu JK³, Eungwanichayapant PD², Jeewon R⁴, Hyde KD¹, Maharachchikumbura SSN⁵, and Boonmee S¹*

¹Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand

²School of Science, Mae Fah Luang University, Chiang Rai. 57100, Thailand

³Guizhou Institute of Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou 550006, People's Republic of China

⁴Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit 80837, Mauritius

⁵Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 8, 123, Al Khoud, Oman

Konta S, Hongsanan S, Eungwanichayapant PD, Liu JK, Jeewon R, Hyde KD, Maharachchikumbura SSN, Boonmee S 2017 – *Leptosporella (Leptosporellaceae* fam. nov.) and *Linocarpon* and *Neolinocarpon (Linocarpaceae* fam. nov.) are accommodated in Chaetosphaeriales. Mycosphere 8(10), 1943–1974, Doi 10.5943/mycosphere/8/10/16

Abstract

In this paper we introduce the new species *Leptosporella arengae* and *L. cocois*, *Linocarpon arengae* and *L. cocois*, and *Neolinocarpon arengae* and *N. rachidis* from palms in Thailand, based on morphology and combined analyses of ITS and LSU sequence data. The phylogenetic positions all these new taxa are well-supported within the order Chaetosphaeriales (subclass Sordariomycetidae), but in distinct lineages. Therefore, a new family, *Leptosporellaceae* is introduced to accommodate species of *Leptosporella*, while *Linocarpaceae*, which constitutes a well-supported monophyletic clade is also introduced to accommodate *Linocarpon* and *Neolinocarpon* species. Both families are characterised by specific traits, such as the shape of ascomata and filiform, hyaline ascospores, which may be pale brown-yellowish in mass, that demarcate it from other families.

Key words – 2 new families – 6 new species – filiform ascospores – palm fungi – Phylogeny – Taxonomy – Sordariomycetes

Introduction

We have studied the genera of ascomycetes on palms since Hyde (1988). In most previous studies, taxa were introduced based solely on morphology (such as ascomata, asci and ascospores) and referred to different taxonomic ranks within the Ascomycota (Fröhlich & Hyde 2000, Taylor & Hyde 2003). This approach was, however, subjective and many taxa were assigned mostly to Ascomycota genera *incertae sedis*. Given that palms are important hosts with potential novel species, it is essential that these palm micro-fungi are recollected, epitypified where needed, isolated and sequence data obtained so that the palm microfungi can be placed in a natural taxonomic framework (Ariyawansa et al. 2014, Jayasiri et al. 2015).

Penzig & Saccardo (1897) introduced *Leptosporella* Penz. & Sacc. with *L. gregaria* Penz. & Sacc. as the type species. *Leptosporella* was placed in Sordariomycetidae, genera *incertae sedis* by Lumbsch & Huhndorf (2010). The holotype was re-examined and fresh specimens collected and the genus was referred to the Chaetosphaeriales based on phylogenetic analysis of LSU sequence data (Huhndorf & Miller 2011, Dai et al. 2016). *Linocarpon* was introduced by Sydow & Sydow (1917), monographed by Hyde (1992a, 1997) with 23 accepted species. Many researchers have added novel species to this genus and accommodated them in *Xylariaceae* (Xylariales) (Dulymamode et al. 1998, Hyde & Alias 1999, Fröhlich & Hyde 2000, Thongkantha et al. 2003, Cai et al. 2004). Hyde (1992b) introduced *Neolinocarpon* K.D. Hyde as a novel genus which is typified by *N. globosicarpum* K.D. Hyde. The genus *Neolinocarpon* cannot be placed in any family within Xylariales with certainty and thus has been referred as Xylariales genera *incertae sedis* (Jones et al. 2009a, b, Maharachchikumbura et al. 2015).

Our fungal collections from palms have revealed six new species (*Leptosporella arengae*, *L. cocois*, *Linocarpon arengae*, *L. cocois*, *Neolinocarpon arengae*, *N. rachidis*) and these are described herein and their placement is supported with DNA sequence analyses. In this paper, we also accommodate *Linocarpon* and *Neolinocarpon* in *Linocarpaceae* fam. nov. and *Leptosporella* in *Leptosporellaceae* fam. nov. (Chaetosphaeriales). We list 12 species of *Leptosporella*, 41 species of *Linocarpon*, and 10 species of *Neolinocarpon*, however the known taxa need recollecting with molecular data, to establish their natural placements. Although some species have been transferred to other genera based on their morphological characteristics (Höhnel 1909, Arx & Olivier 1952, Petrak 1952, Walker 1980, Cribb & Cribb 1955, Vasilyeva 1993), most species have been introduced using only morphological characteristics, while less than 20 species have sequence data. All genera included in this study are poorly represented with sequence data in GenBank.

Materials & Methods

Collection, isolation and identification

Palm materials were collected from southern and western of Thailand. Specimens were examined with a Motic SMZ 168 series stereomicroscope and photographed with an Axio camera on a Zeiss Discover V8 stereomicroscope. Micromorphological structures were photographed with a Canon 600D camera on a Nikon ECLIPSE 80i microscope and measurement by Image Frame Work program (IFW) version 0.9.7. Photoplates were made with Adobe Photoshop CS5 Extended version 10. Isolations were made from single ascospores following the method of Chomnunti et al. (2014). Colony structures were recorded after seven days and/or until the colony growth nearly filled the Petri-dish when incubated at 25–28°C on MEA media. Holotype specimens are deposited in herbarium of Mae Fah Luang University (MFLU) and Herbarium of Kunming Institute of Botany, Chinese Academy of Sciences (HKAS). Living cultures are deposited in Mae Fah Luang University Culture Collection (MFLUCC) and BIOTEC Culture Collection Laboratory (BCC). Facesoffungi and Index Fungorum numbers are registered as outlined in Jayasiri et al. (2015) and Index Fungorum (2017). New species are established based on recommendations of Jeewon & Hyde (2016).

Fungal DNA extraction and PCR reaction

Genomic DNA was extracted from fresh mycelium grown on MEA for two weeks using the Biospin Fungus Genomic DNA Extraction Kit (BioFlux®). Specific rDNA regions were amplified with different gene primers, i.e. LROR and LR5 to amplify the large subunit rDNA (LSU) (Vilgalys & Hester 1990), NS1 and NS4 to amplify region of nuclear small subunit rDNA (SSU), ITS5 and ITS4 to amplify the internal transcribed spacers (ITS) (White et al. 1990), RPB2-5F and RPB2-7CR to amplify the RNA polymerase subunit II (RPB2) (Liu et al. 1999, Sung et al. 2007),

Species name	Ascomata	Hamathecium	Asci	Ascospores	Host/Substrates/Location	References
Leptosporella ambiens	300–400 μm diameter × 450 μm high	2 μm	150 × 12–15 μm	120 × 3 μm, parallel, filiform	On stalks of <i>Compositae</i> <i>vivae</i> (<i>Asteraceae</i>) Rio de Janeiro, Brazil	Rehm 1901
L. andina	-	-	-	-	On dead branchlets of a shrub Venezuela	Chardón & Toro 1934, Spegazzini 1912
*L. arengae MFLU 15–0305	582–928 μm diameter × 293–354 μm high	1.5–3 μm diameter	137–190 × 10–14 μm	$108-132 \times 2-3.5$ µm, C-shaped or sigmoid, ends rounded, with polar mucilaginous appendages	On dead rachis of <i>Arenga</i> <i>pinnata</i> (<i>Arecaceae</i>) Thailand	In this study
*L. bambusae	500–850 μm diameter × 200–250 μm high	2–3.5 μm diameter	$100-195.5 \times 9-13.5$ µm	$130-175 \times 2-3 \mu m$, 2-6-septate curved, narrow, acute at both ends	On dead culms of bamboo (<i>Poaceae</i>) Thailand	Dai et al. 2016
L. clelandii	-	-	-	-	On dead branches of Acacia kempeana (Fabaceae) Central Australia	Hansford 1957
L. clinopodii	-	-	-	-	Clinopodium chinense (Lamiaceae) Taiwan	Sawada 1943
* <i>L. cocois</i> MFLU 15–2349	705–977 μm diameter × 209–298 μm high	3–6 μm diameter	145–242 × 8–13 μm	$99-156 \times 2.5-4 \mu m$, straight or curved, rounded at the apex, pointed at the base	On dead rachis of <i>Cocos</i> nucifera (Arecaceae) Thailand	In this study
L. dicksoniae	-	-	-	-	Dicksonia squarrosa (Dicksoniaceae) Portugal	Sousa da Camara & da Luz 1939
^{#,*} L. gregaria (type species)	800–1,000 μm diameter	filiform	100 × 9–10 μm	55–70 × 2.5–3 μm, 7-septate	Wood Tjibodas, Java, Indonesia	Penzig & Saccardo1897, Huhndorf et al. 2004, Huhndorf & Miller 2011

Table 1 Ascomata, hamathecium, asci and ascospore dimensions of species in Leptosporella, Linocarpon and Neolinocarpon.

Table 1 Continued.

Species name	Ascomata	Hamathecium	Asci	Ascospores	Host/Substrates/Location	References
L. leucodontis	-	-	-	-	On dead leaves of Leucodon sciuroides (Leucodontaceae) France	Racovitza 1959
L. lignicola	-	-	-	-	Wood Venezuela	Chardón 1939
L. macrotheca	350–600 μm diameter	1–1.5 diameter µm	179–200 × 12–15 μm	$82110\times45~\mu\text{m}$	Wood New South Wales	Sydow 1938
L. rosae	-	-	-	-	On dead branches of <i>Rosa</i> (<i>Rosaceae</i>) Uttar Pradesh, India	Edward et al. 1972 (Not validly published)
L. sparsa	300 µm diameter	no observed	90–120 \times 9–12 μm ,	$30-35 \times 3 \ \mu m$	Wood Java	Penzig & Saccardo 1897
Linocarpon alpiniae	400 μm diameter × 100 μm high	up to 4 µm at the base	81–108 × 8–11 μm	$58-68 \times 2.25-3 \mu m$, lack refringent septum-like bands, ends of a rounded point with a minute mucilaginous drop	On basal stem of <i>Alpinia</i> (<i>Zingiberaceae</i>) Malaysia, Peninsular	Hyde 1997
^{*.\$} L. angustatum	800–944 μ m diameter \times 400–448 μ m high	2–3 μm diameter	125–195 × 12.5–22 μm	57.5–87.5 \times 3.5–6 µm, needle-shaped, narrow, point at the base, inconspicuous mucilage	On intertidal petiole of Nypa fruticans (Arecaceae) Malaysia, Peninsular	Hyde & Alias 1999, Bahl 2006
L. apiculatum	400–650 μm diameter × 80 μm high	up to 4 μ m at the base	120–140 × 9–11 μm	56–64 × 3.5–4.5 μm	On decaying petiole of palm in freshwater swamp (<i>Arecaceae</i>) Papua New Guinea, Irian Jaya	Hyde 1997
*L. appendiculatum	330–510 μm diameter × 120–180 μm high	wide at the base	110.5–169 × 7.8–9.8 μm	$75-120 \times 2.2-3.5$ µm, with an appendage at a polar swelling with a flattened end (bell- shaped) containing mucilage	On rotten fronds of <i>Nypa</i> <i>fruticans</i> (<i>Arecaceae</i>) Brunei	Hyde 1988, 1992, Huhndorf et al. 2004, Miller & Huhndorf 2005, Bahl 2006

 Table 1 Continued.

Species name	Ascomata	Hamathecium	Asci	Ascospores	Host/Substrates/Location	References
L. appendisporum	320 μm diameter × 150 μm high	up to 6.5 μm at the base	100–150 × 8–10 μm	$60-76 \times 2.75-4 \ \mu m$, appendages at each ends containing mucilage	On dead leaves of <i>Pandanus</i> in freshwater swamp (<i>Pandanaceae</i>) Papua New Guinea, Irian Jaya	Hyde 1997
L. aquaticum	420–700 μm diameter × 300–450 μm high	up to 4 μ m at the base	180–260 × 12–14 μm	$110-160 \times 2.4-2.8$ µm, appendages at each ends, which grasps a mucilaginous	On rachis of palm (<i>Arecaceae</i>) Australia, Queensland	Hyde 1997
*L. arengae MFLU 15–0306	878–1,368 μm diameter × 125–355 μm high	2–3.5 µm diameter	132–177 × 9–15 μm	$91-102 \times 2-4 \mu m$, ends rounded, with polar mucilaginous appendage at apex	On dead rachis of <i>Arenga</i> pinnata (Arecaceae) Thailand	In this study
L. australiense	520 μm diameter × 120 μm high	up to 3 µm diameter at the base	124–1 50 × 8–12 μm	$92-108 \times 2-2.5 \ \mu m$, C-shaped or sigmoid, cream color in mass, ends round with an apiculate short appendage	On rachis of <i>Licuala</i> ramseyi, Archontophoenix alexandrae (Arecaceae) Australia, Queensland	Hyde 1997, Taylor & Hyde 2003
L. bambusicola	700–1300 μm diameter × 550–780 μm high	up to 4 µm wide at the base	155–(175)–190 × 7.5–(9.5)–11 μm	$107-132.5-170 \times 1.5-$ 1.8-2 µm, rounded at the apex, the basal end provided with 1-3 minute mucilaginous drops	On stems of bamboo submerged in river (<i>Poaceae</i>) Philippines	Cai et al. 2004
L. bipolare	520–1040 μm diameter × 195–325 μm high	9 μm at the base and 1 μm distally	150–215 × 7.5–12 μm	90–139 × 2–3 μm	On intertidal fronds of Nypa fruticans (Arecaceae) Brunei	Hyde 1992a
L. breve	600 μm diameter × 130 μm high	up to 3 µm wide at the base	104–138 × 4.5–6 μm	$34-45 \times 2.2-2.6 \mu m$, 2-3-seriate, with a collar-like appendage containing mucilage at each ends	On dead leaves of <i>Pandanus (Pandanaceae)</i> Papua New Guinea, Irian Jaya	Hyde 1997

Table 1	Continued.
---------	------------

Species name	Ascomata	Hamathecium	Asci	Ascospores	Host/Substrates/Location	References
L. bruneiense	1,060 μm diameter × 340 μm high	2.5 μm diameter	224.4–265.2 μm × 10.2–15.3 μm	(117.3–)126.2–159.4 × (2.6–)3.1–3.8(–4.6) μ m, a small mucilage appendage at both tips, rounded end, a crescent-shape pad while the narrower end has a flame- shaped appendage	On dead petiole of <i>Calamus pogonacanthus</i> (<i>Arecaceae</i>) Brunei	Fröhlich & Hyde 2000
L. cajani	325–390 μm diameter × 130–260 μm high	5 μm at the base, 2 μm at the apex	82–100 × 7–10 μm	$50-80 \times 1.5-2.5 \ \mu m$ diameter, both ends rounded with a small mucilaginous pad at each end	On dry stalks of <i>Cajanus</i> <i>cajan</i> (<i>Fabaceae</i>), <i>Elaeis</i> <i>guineensis</i> (<i>Arecaceae</i>) Papua New Guinea, Tanzania	Petrak & Deighton 1952, Pirozynski 1972, Hyde 1992a
L. calamicola	542–587 μm diameter × 310–368 μm high	3.8–4.4 μm diameter at the base	178–240 × 8–11.2(– 14.35) μm	97.9–117.45 \times 2–2.6 µm, a mucilaginous pad at the base, with bipolar pads at maturity	On dead rattan of <i>Calamus</i> <i>australis</i> , <i>C.conirostris</i> , <i>Archontophoenix</i> <i>alexandrae</i> (<i>Arecaceae</i>) Australia, Queensland	Fröhlich & Hyde 2000, Taylor & Hyde 2003
*. ^{\$} L. carinisporum	560 μm diameter × 160 μm high	up to 6 μm at the base	110–160 × 8–1 1 μm	$84-98 \times 2.4-3.2 \mu m$, with or without refringent septum- like bands, rounded and swollen at the apex, basally narrow (cone-shaped) with a keel-like mucilaginous appendage	On dead rachis of <i>Licuala</i> ramsayi, Cocos nucifera, Calamus conirostris, Calamus pogonacanthus (Arecaceae) Peninsular Malaysia, Australia, Brunei Darussalam	Hyde 1997, Froehlich & Hyde 2000, Taylor & Hyde 2003, Bahl 2006
*,\$L. clavatum	360 μm diameter × 160 μm high	up to 4 µm at the base	74–92 × 12–17 μm, clavate	$41-51 \times 4-5.5 \mu m$, clavate, widest at the center, lack appendage, basal truncate and narrow, with a mucilaginous appendage	On rachis of <i>Pinanga</i> (<i>Arecaceae</i>) Peninsular Malaysia	Hyde 1997, Bahl 2006

Table 1 Co	ntinued.
------------	----------

Species name	Ascomata	Hamathecium	Asci	Ascospores	Host/Substrates/Location	References
*L. cocois MFLU 15–2345	400–980 μm diameter \times 73–184 μm high	0.5–1 μm diameter	100–153 × 8–15 μm	$69-90 \times 3-5 \mu m$, without refringent septum-like bands, ends rounded, the base wider than apex	On dead rachis of <i>Cocos</i> nucifera (Arecaceae) Thailand	In this study
^{*,\$} L. copelandi	-	-	-	-	Daemonorops sp. (Arecaceae) Brunei	Bahl 2006
*. ^{\$} L. eccentricollum	233–360 μm diameter × 86–160 μm high	2.75–5 μm diameter at the base	103.75–137.5 × 8.75–11(–13.5) μm	$68.75-100 \times 2.5-3.25$ µm, obvious mucilage appendage at the base of the ascospore only	On dead petiole of <i>Mauritia flexuosa</i> (<i>Arecaceae</i>) Ecuador	Fröhlich & Hyde 2000, Bahl 2006
*. ^{\$} L. elaeidis	(350–)450–(480–)520 μm diameter × (150–)195(–220) μm high	3–3.5 μm wide	(94–)116–(134–)148 × (8–)9–(10–)13 μm, clavate-cylindric, cylindrical	72–(90–)97 × (2–)3– 4 μ m, mucilage at the base	Dead rachis of <i>Elaeis</i> guineensis, Calamus conirostris, C.radicalis, Calamus sp., Licuala longicalycata, Mauritia sp., Phoenix hanceana, Phoenix sp., Raphia vinifera, Trachycarpus fortunei, Trachycarpus sp. (Arecaceae) Brazil, Brunei Darussalam, Australia, Malaysia, Sierra Leone, Tanzania, Thailand, Hong Kong	Petrak & Deighton 1952, Pirozynski 1972, Turner 1971, Liu 1977, Hyde 1992, Fröhlich & Hyde 2000, Lu et al. 2000, Zhuang 2001, Taylor & Hyde 2003, Bahl 2006, Pinruan et al. 2007
L. falciformisporum	500 μm diameter × 120 μm high	up to 5 μm wide at the base	112–140 × 8–10 μm	33-42 × 2.5-4.5 μm, 2-3-seriate, appendage mucilaginous becoming sickle- shaped or veil-like in water	On decaying leaves of <i>Pandanus</i> in freshwater swamp (<i>Pandanaceae</i>) Papua New Guinea, Irian Jaya	Hyde 1997

Table 1 Continued	Ι.
-------------------	----

Species name	Ascomata	Hamathecium	Asci	Ascospores	Host/Substrates/Location	References
L. fasciatum	550–650 μm diameter × 140–170 μm high	2–6 µm diameter	$110178\times814~\mu\text{m}$	84–110 × 2.5–3.5 μ m, appendage absent	On fallen leaves of Pandanus eydouxia (Pandanaceae) Mauritius	Dulymamode et al. 1998
L. freycinetiae	280–420 μ m diameter \times 100 μ m high	poorly preserved	54–82 × 7–10 μm, cylindric-clavate	28–32 × 2.5–3 μm, no appendages observed	In freshwater swamp on decaying <i>Pandanus</i> leaves (<i>Pandanaceae</i>) Indonesia	Hyde 1997
L. hamaspora	170–220 μm diameter × 120–150 μm high	deliquescent	44–66 × 8–11 μm	$38.5-50 \times 1-2 \mu m$, with an obtuse apex and tapering to the base	On leaves of <i>Quercus</i> <i>tinctoria</i> (<i>Fagaceae</i>) Great Smoky Mountains National Park (U.S. National Park Service)	Barr 1993, Hyde 1997
L. lammiae	420–485 μm diameter × 190–202 μm high	3–7 μm diameter	97–133 × 13.5–26 μm	$53-76 \times 4.5-7 \ \mu m$, without visible gelatinous appendages	On decaying leaves of Pandanus tectorius (Pandanaceae) Queensland, Australia	Thongkantha et al. 2003
*. ^{\$} L. livistonae	up to 700 μm diameter × 195 μm high	embedded in a gel, wide	100–140 × 6–12 μm, whitish in mass, short-pediculate	$70-104 \times 1.6-2.3 \mu m$, apex rounded, the base narrow with mucilage	Pandanus (Pandanaceae), Livistona chinensis, Livistona sp., Arenga engleri, Archontophoenix alexandrae, Licuala longicalycata, Ptychosperma sp., (Arecaceae) Philippines, Mindanao Island, Taiwan, Australia, Thailand, Indonesia	Hyde 1989, 1992a, Bahl 2006, Taylor & Hyde 2003, Pinruan et al. 2007
L. longisporum	585–780 μm diameter × 130–210 μm high	6 μm at the base, 2 μm at the apex	170–216 × 8–12 μm, long-pediculate	$124-140 \times 2.5-3.0$ µm, one end rounded, one end tapering with mucilage, curved, C- shaped or sigmoid, very rarely 1-septate in the center	On intertidal fronds of <i>Nypa fruticans (Arecaceae)</i> Brunei	Hyde 1992a

 Table 1 Continued.

Species name	Ascomata	Hamathecium	Asci	Ascospores	Host/Substrates/Location	References
L. luteocollum	260–425 μm diameter × 70–130 μm high	2–5 μm	156–186 × 7.6–10 μm	$88-107 \times 2-2.8 \ \mu m$, parallel in asci, rounded apex, attenuated base with small mucilaginous pad, lacking or present refringent septum-like bands	On dead rachis of Archontophoenix alexandrae (Arecaceae) Australia, Queensland	Taylor & Hyde 2003
L. manihotis	150–300 μm diameter	-	50–90 μm × 5–10 μm	45–70 × 1–1.5 μm	Manihot utilissima (Manihotis utilissimae) (Euphorbiaceae) India, Travancore, Pulliyanur	Petrak 1956
L. mauritiae	360–472 μm diameter × 152–232 μm high	1.5–2.5 μm diameter at the base	125–170 × 10–12 μm	$82.5-107.5 \times 2-2.8$ µm, neither ascospore end has a mucilaginous appendage	On dead petiole of <i>Mauritia flexuosa</i> (<i>Arecaceae</i>) Ecuador	Fröhlich & Hyde 2000
L. nipae	465–620 μm diameter × 150–290 μm high	wide at the base	147–221 × 11.7–18.2 μm, long-cylindrical, strongly curved, long- pediculate	91–123.5 × 2.6–4.3 μ m, yellowish in mass, mucilage at basal	Nypa fruticans (Arecaceae) Philippines, Luzon, Pampanga, Brunei Darussalam	Hyde 1989, 1992a
L. palmetto	325–429 μm diameter	wide at the base	$70-100 \times 8-10 \ \mu m$	$50-56 \times 2.5-3.5 \mu m$, hyaline in mass, one end wider with mucilage at the base	On dead places in living leaves of <i>Sabal palmetto</i> (<i>Arecaceae</i>) United States, Langlois, Oregon, Louisiana	Barr 1978, Hyde 1992
^{#,*,\$} L. pandani (type species)	up to 600–650 μm diameter × 200–300 μm high	3–4 μm wide at base	100–140 × 8–10 μm, long cylindrical	$62-80 \times 2-4 \mu m$, centrally wide, ends rounded, parallel or spiral, without gelatinous appendages or mucilage	Pandanus leaves (Pandanaceae), Arenga engleri, Licuala longicalycata, Ptychosperma sp. (Arecaceae) Hong Kong, Thailand, Taiwan	Sydow & Sydow 1917, Sivanesan & Hsieh 1989, Hyde 1992a, Bahl 2006, Pinruan et al. 2007

 Table 1 Continued.

Species name	Ascomata	Hamathecium	Asci	Ascospores	Host/Substrates/Location	References
*L. pandanicola	700–800 μm diameter × 185–260 μm high	up to 6 μm wide at the base	160–190 × 8–10 μm	72–100 × 2.6–3.2 μm, with a small mucilaginous pad	Pandanus decaying leaves, in freshwater swamp (Pandanaceae), Archontophoenix alexandrae, Mauritia flexuosa, Phoenix hanceana, Phoenix sp. (Arecaceae) Papua New Guinea (Iryan Jaya), Australia, Ecuador	Hyde 1997, Froehlich & Hyde 2000, Lu et al. 2000, Zhuang 2001, Taylor & Hyde 2003
L. siamense	575–825 μm diameter × 650–875 μm high	3.1–12.3 μm	100–156 × 7.7–9.3 μm,	59–71 × 3.1–3.3 μ m, with appendage	On decaying leaves of Pandanus penetrans (Pandanaceae) Thailand	Thongkantha et al. 2003
L. smilacis	300–350 μm diameter × 300–400 μm high	2–5 μm wide	150–160 × 7–10 μm	$120-130 \times 2-2.5 \ \mu m$, ends rounded	On dead stems of <i>Smilax</i> (<i>Smilacaceae</i>) Taiwan	Hsieh et al. 1998
L. spathulatum	240–320 μm diameter × 70–100 μm high	3.5–4.5 µm wide	110–170 × 12–16 μm	$66-89 \times 4-5.5(-6) \ \mu\text{m},$ the appendage tip rounded	On dead leaf of <i>Pandanus</i> palustris (Pandanaceae) Mauritius	Dulymamode et al. 1998
L. stipae	-	-	-	-	On dead culms of <i>Stipa</i> sp. (<i>Poaceae</i>) South Australia	Hansford 1954
L. sulcatum	260–340 μm diameter × 70–130 μm high	2–4 μm wide, rarely branched	92–170 × 12–20 μm	76–107 \times 3–4 $\mu m,$ with a basal appendage	On dead leaves of <i>Pandanus barklyi</i> (<i>Pandanaceae</i>) Mauritius	Dulymamode et al. 1998
L. suthepense	300–485 µm diameter	4.6–7.7 μm	77–92.5 × 61–7.7 μm	$18.5-30.8 \times 2.3-3.1$ µm, with appendage	On dead leaves of Pandanus penetrans (Pandanaceae) Thailand	Thongkantha et al. 2003
L. verminosum	Up to 600 µm diameter	-	70–102 × 9–12 μm	$60-88 \times 1.9-3.2 \ \mu m$, spiral in asci, hyaline in mass, lacking mucilage	In petioles of palms and Sabal palmetto, Guiana, Cayenne, Florida	Schrantz 1960, Hyde 1989, 1992a

Table 1 Continued.

Species name	Ascomata	Hamathecium	Asci	Ascospores	Host/Substrates/Location	References
L. versisporum	250–333 µm diameter	embedded in a gel, wide	70–80 \times 8–9 μm ,	$60-70 \times 2-2.5 \ \mu m$, pale yellow, without septate	On dead petioles of <i>Sabal</i> serrulata (Arecaceae) Florida	Petrak 1952
L. williamsii	-	-	-	-	On dead culms of Gramineae (<i>Poaceae</i>) South Australia	Hansford 1954
L. zingiberacicola	600 μm diameter × 320 μm high	up to 4 µm at the base	140–180 × 9–1 2 μm	$102-120 \times 2.4-3 \ \mu m$, mostly curved, the ends rounded with mucilage	On basal stem of <i>Zingiberaceae</i> Malaysia, Peninsular	Hyde 1997
*Neolinocarpon arengae MFLU 15–0298	230–490 μm diameter × 336–566 μm high	2–4 µm diameter	168–214 × 15–21 μm	$114-134 \times 3-4 \mu m$, ends rounded, with polar mucilaginous appendage at apex	On dead leaflet of <i>Arenga</i> <i>pinnata</i> (<i>Arecaceae</i>) Thailand	In this study
N. attaleae	$350-880 \times 220-650$ µm	up to 5 µm	137.5–227.5 × 7.5–14(–15) μm	$(52.5-)57.5-93(-105) \times$ 3-4(-5) µm, filiform-fusoid to clavate, lack appendages	On dead rachis of <i>Attalea</i> <i>funifera (Arecaceae)</i> Brazil, Bahia	Vitoria et al. 2013
N. australiense	560–616(–760) μm diameter × (204–)296–380 μm high	deliquescing during maturation	125–164 × 11–15 μm	$81-107(-126) \times 2.5-3.5$ µm, base narrower than apex with an inconspicuous, keel-like mucilaginous appendage, lacking appendage	On dead rattan of <i>Calamus</i> moti, <i>Calamus australis</i> , <i>Arenga engleri</i> , <i>Arenga</i> sp., <i>Livistona chinensis (Arecaceae)</i> Australia, North Queensland, Hong Kong	Hyde et al. 1998, Lu et al. 2000, Zhuang 2001
* ^{\$} N. calami	448–500 μm diameter × 292–336 μm high	-	115–138 × 10.5– 13 μm	$68-85 \times 2.5-3.5 \mu m$, swollen blunt base, rounded apex, crescent- shaped mucilage pad at end, lacking at the rounded end	On dead petiole of <i>Calamus</i> <i>conirostris</i> (<i>Arecaceae</i>) Brunei	Hyde et al. 1998, Bahl 2006
*. ^{\$} N. enshiense	225–335 μm diameter × 200–260 μm high	2–3.6 μm at the base	74–108 × 8–13 μm	$42-64 \times 2-3.5 \ \mu\text{m}$, apex rounded, truncate with a small mucilaginous pad	On dead petiole of <i>Trachycarpus fortunei</i> (<i>Arecaceae</i>) China, south west Hubei, Enshi	Hyde et al. 1998, Bahl 2006

Table 1 Continued.

Species name	Ascomata	Hamathecium	Asci	Ascospores	Host/Substrates/Location	References
N. eutypoides	204–312 μm diameter × 544–576 μm high	up to 5.2 μm wide at the base, tapering to 1–2.9 μm at the tip	108–138 × 6–8.5 μm	$73-95(-106) \times 1.5-$ 2.2(-2.5) µm, rounded apex towards the flexuose or pointed base, mucilaginous appendage	Acrocomia sclerocarpa, Archontophoenix alexandrae, Calamus conirostris, Cocos nucifera, Daemonorops margaritae, Licuala spp., Livistona chinensis, Plectocomia elongata (Arecaceae) Australia, Brunei Darussalam, Hong Kong, Indonesia, Malaysia	Hyde et al. 1998, Lu et al. 2000
^{#,*,\$} N. globosicarpum (type species)	155–400 μm diameter × 310–520 μm high	5.6 μm diameter at the base	136–170 × 11–12 μm	$70-1\ 19.3 \times 2.0-2.8$ µm, one end rounded, the other end irregular with a mucilaginous appendage	On decaying intertidal fronds of <i>Nypa fruticans</i> (<i>Arecaceae</i>) Brunei, South China Sea	Hyde 1992b, Bahl 2006, Jasrotia et al. 2014
N. inconspicuum	200–255 μm diameter × 365–410 μm high	2.6–6 μm diameter at the base	106–156 × 7.5–12 μm	76–98 × 2–3 μm	On dead rachis of Archontophoenix alexandrae (Arecaceae) Australia, Queensland	Hyde et al. 1998
*. ^{\$} N. nonappendiculatum	635–710 μm diameter × 375–520 μm high	2.8–4 μm diameter at the base	134–190 × 8.5–12 μm	114–138 × 2–2.5 μm	On dead petiole of Archontophoenix alexandrae (Arecaceae) Australia, Queensland, Singapore	Hyde et al. 1998, Bahl 2006
N. nypicola	600–1,000 μm diameter	5–8.8 μm diameter at the base	100–164 × 8–10 μm,	92–117 × 2–3.8 μ m, cream color in mass	On dead aerial rachids of Nypa fruticans (Arecaceae) Malaysia, Kuala Selangor	Hyde & Alias 1999
N. penniseti	-	-	-	-	On dead stem of Pennisetum purpureum (Poaceae) Hong Kong	Bhilabutra et al. 2006
*N. rachidis MFLU 15–0307	320–390 μm diameter × 508–590 μm high	2.5–4 μm diameter	157–205 × 9–19 μm	$123-140 \times 2-4$, apex rounded, pointed at the base, appendage	On dead rachis of Arenga pinnata (Arecaceae) Thailand	In this study

Note: [#]the type species; *have sequence data; ^{\$}have sequence data but not used in this study.

and EF1-983F and EF1-2218R to amplify the fragment of translation elongation factor $1-\alpha$ (TEF1- α) (Rehner & Buckley 2005).

Polymerase chain reaction (PCR) amplification was carried out as follows: the final volume of the PCR reaction was 25 µl, which contained 1 µl of DNA template, 1 µl of each forward and reverse primers, 12.5 µl of 2 × Power Taq PCR Master Mix and 9.5 µl distilled deionized water. The PCR thermal cycle program of ITS, LSU, and SSU genes amplifications were provided as: initially 94 °C for 3 min, followed by 35 cycles of denaturation at 94 °C for 30 s, annealing at 55 °C for 50 s, elongation at 72 °C for 1 min, and final extension at 72 °C for 10 min. The PCR thermal cycle program for the RPB2 gene was provided as initially 95 °C for 5 min, followed by 35 cycles of denaturation at 95 °C for 5 min, followed by 35 cycles of denaturation at 72 °C for 90 s, and final extension at 72 °C for 10 min. The PCR thermal cycle program for the RPB2 gene was provided as initially 95 °C for 5 min, followed by 35 cycles of denaturation at 96°C for 2 min, elongation at 72 °C for 90 s, and final extension at 72 °C for 10 min. The PCR thermal cycle program for TEF1- α was set for denaturation at 96°C for 2 minutes, followed by 40 cycles of denaturation at 96°C for 45 seconds, annealing at 52°C for 5 minutes. Amplified PCR fragments were sequenced at the company. Generated new sequences of ITS, SSU, LSU, RPB2, and TEF1- α regions were deposited in GenBank.

Sequence alignment and phylogenetic analyses

DNA sequences were aligned in BioEdit (Hall 2004). Based on blast searches in GenBank, using LSU or ITS sequence data, separate phylogenetic analyses were carried out to determine the phylogeny of each fungal group within Sordariomycetes. Supplementary sequences were downloaded from GenBank, based on blast search and recent publications.

Multigene sequence alignments were generated with MAFFT v. 7.215 (Katoh & Standley 2013, http://mafft.cbrc.jp/alignment/server/index.html) and edited manually when necessary in MEGA7 version 7.0 (Kumar et al. 2016) or BioEdit v. 7.0 (Hall 2004). ITS and LSU sequence datasets were selected to construct the phylogenetic tree, were first analyzed separately and then the individual datasets were concatenated into a combined dataset and prepared in MEGA7 (Kumar et al. 2016). Data were converted from fasta to nexus format with Alignment Transformation Environment online, ALTER (Glez-Peña et al. 2010, https://sing.ei.uvigo.es/ALTER/).

Maximum likelihood analysis was performed by RAxMI GUI v.1.0. (Stamatakis 2006, Silvestro & Michalak 2011). Alignments in PHYLIP format were exchanged and loaded from the website (http://sing.ei.uvigo.es/ALTER/) (Glez-Peña et al. 2010). The search strategy was set to rapid bootstrapping at 1,000 and the analysis carried out using the GTR-GAMMA model of nucleotide substitution. The model of evolution was determined with MrModeltest 2.2 (Nylander 2004) under the Akaike information criterion (AIC). The model selected was GTR+I+G for each of gene and the combined dataset (Nylander 2004). The number of replicates was inferred using the stopping criterion. Bootstrap values greater than 50% were accepted. The posterior probabilities (PP) were determined by Markov Chain Monte Carlo sampling (BMCMC) using MrBayes v3.1.2 (Huelsenbeck & Ronquist 2001). Six simultaneous Markov chains were run for ten million generations and trees sampling frequency of every 1,000 generations. The first 10,000 trees were excluded as burn-in phase based on suggestion from Tracer. Bayesian posterior probabilities (BYPP) were calculated from the remaining 5,000 trees and values greater than 0.95 were accepted. The phylogenetic tree was visualized by FigTree v1.4.0 (Rambaut 2006).

Results

Phylogenetic analyses

The combined ITS and LSU sequence dataset alignment including our new taxa comprise taxa from related Sordariomycetes species. Members from Boliniales are a basal clade in this tree. Phylogenetic trees were generated by maximum likelihood (ML) under different optimality criteria, but tree topologies were similar and the best scoring ML with BYPP is shown in Fig. 1. Species of *Linocarpon* and *Neolinocarpon* cluster together in a moderately supported clade which we

established herein as *Linocarpaceae* fam. nov. Species of *Leptosporella* form another wellsupported monophyletic clade which we introduce as *Leptosporellaceae* fam. nov. within Chaetosphaeriales. Our phylogenetic analysis depicts a close relationship of *Linocarpon arengae* with *L. cocois* with good support (95 % ML, 1.00 BYPP), while related to the sister branches which comprise other species of *Linocarpon*. *Neolinocarpon arengae* groups with *N. rachidis* (96 % ML, 1.00 BYPP). *Leptosporella arengae* and *L. cocois* cluster with good bootstrap support (93 % ML). Our six new species show a relationship in Chaetosphaeriales in the phylogenetic tree (Fig. 1).

Taxonomy

Leptosporellaceae Konta & K.D. Hyde, fam. nov.

Index Fungorum number: IF553956; Facesoffungi number: FoF03840

Saprobic or *endophytic* on various plants. Sexual morph: *Ascomata* solitary, superficial, comprising black, carbonaceous, dome-shaped, raised, blistering areas, within the plant tissues, flattened at the base, ostiole central. *Peridium* outer cells merging with the host epidermal cells, composed of dark brown to black cells of textura angularis. *Hamathecium* comprising numerous paraphyses. *Asci* 8-spored, unitunicate, cylindrical, long-pedicellate, with a J⁻, wedge-shaped, subapical ring. *Ascospores* fasciculate, filiform, hyaline or pale-yellowish in mass, aseptate, ends rounded, with or without polar mucilaginous appendages. Asexual morph: Undetermined.

Notes – Species of *Leptosporellaceae* are mostly saprobic on wood, and have been recorded on stalks of *Compositae vivae* (*Asteraceae*), on dead branchlets of a shrub, *Rosa, Acacia kempeana* (*Fabaceae*), dead culms of bamboo, dead rachides or petioles of palms, on *Clinopodium chinense* and *Dicksonia squarrosa*, and dead leaves of *Leucodon sciuroides*, an endophytic species have been recovered from eupolypod fern (Polypodiales) (Penzig & Saccardo 1897, Rehmit 1901, Spegazzini 1912, Chardón & Toro 1934, Sydow 1938, Chardón 1939, Sousa da Camara & da Luz 1939, Sawada 1943, Hansford 1957, Racovitza 1959, Edward et al. 1972, Huhndorf et al. 2004, Huhndorf & Miller 2011, Dai et al. 2016, Del & Arnold 2017). Our phylogenetic analysis show that *Leptosporellaceae* species cluster together in a distinct clade, sister to *Helminthosphaeriaceae* in Chaetosphaeriales (Fig. 1). The new family differs from others families within Chaetosphaeriales as a morphologically and phylogenetically a well-resolved group.

Type genus – Leptosporella Penz. & Sacc., Malpighia 11(9-10): 406 (1897)

Leptosporella Penz. & Sacc., 1987

Saprobic or endophytic on undetermined wood, bamboo (Poaceae), Acacia kempeana (Fabaceae), Clinopodium chinense (Lamiaceae), Dicksonia squarrosa (Dicksoniaceae), Leucodon sciuroides (Leucodontaceae), Rosa (Rosaceae), palms (Arecaceae) and eupolypod ferns (Polypodiales). Sexual morph: Ascomata solitary, superficial, comprising black, carbonaceous, dome-shaped, raised, blistering areas, within the plant tissues, subglobose, flattened at the base, ostiole central. Peridium outer cells merging with the host epidermal cells, composed of dark brown to black cells of textura angularis. Hamathecium comprising numerous, hyaline, hypha-like, septate, paraphyses, longer than asci. Asci 8-spored, unitunicate, cylindrical, long-pedicellate, with a J⁻, wedge-shaped, subapical ring. Ascospores fasciculate, spiral, filiform, straight or curved, hyaline or pale-yellowish in mass, aseptate, ends rounded, with or without polar mucilaginous appendages, smooth-walled. Asexual morph: Undetermined.

Notes – *Leptosporella* was introduced by Penzig & Saccardo (1897) with *L. gregaria* Penz. & Sacc. as the type species. This genus was placed in the subclass Sordariomycetidae, genera *incertae sedis* by Lumbsch & Huhndorf (2010) and the holotype and fresh specimens were examined by Huhndorf & Miller (2011). Based on the phylogenetic analyses of LSU sequence data, *Leptosporella* was transferred to the Chaetosphaeriales (Huhndorf & Miller 2011). Maharachchikumbura et al. (2015) did not assign *Leptosporella* to any families in Sordariomycetes. Dai et al. (2016) introduced a new species, *L. bambusae*, from bamboo and based on LSU and ITS

991.00 901.00 901.00	Chaetosphaeriaceae	Chaetosphaeriales
Chaetosphaeria conirostris Pyrigemmula aurantiaca CPC 18063 96/1.00 Neolinocarpon arengae MFLUCC 15-0323 Neolinocarpon rachidis MFLUCC 15-031 92/0.98 Linocarpon coccis MFLUCC 15-0812 59/. 100/1.00 Linocarpon pandanicola HKUCC 3783 Linocarpon pandanicola HKUCC 3783	³² Linocarpaceae	S
52/0.95 - Linocarpon appendiculatum HKUCC2986 S2/1.00 Ruzenia spermoides SMH4606 Synaptospora plumbea SMH3962 Helminthosphaeria canescens SMH4791 Hilberina caudata SMH1542 Endophragmiella dimorphospora FMR 12150	MH4192 Helminthosphaeriaceae	
981- Leptosporella gregaria SMH 4673 1000.99 Leptosporella gregaria SMH 4290 100/1.00 93/- Leptosporella arengae MFLUCC 15-0330 Leptosporella decorás MFLUCC 15-0816 Leptosporella bambusae MFLUCC 12-0846	ptosporellaceae	
51/- Meliola d 100/1.00 Irenopsis comuta VIC Irenopsis vincensi Endomeliola dingleyae PDD 9830	i VIC 31752	Meliolales
730.99 Ascovaginospora stellipala 97/1.00 Coccodiella miconiae ppMP1342 Phyllachora graminis TH 544	Phyllachoraceae	Phyllachorales
Phyllachora graminis TH 544 796- Copromyces sp. CBS 386.78 100/1.00 Sordaria fimicola 986- Neurospora crassa - Neurospora tetraspora	Sordariaceae	
53/- Lasiosphaeria ovina SMH 4605 Bombardia bombarda AFTOL-ID 967 Cercophora mirabilis	Lasiosphaeriaceae	Sordariales
b3/1.00 Chaetomidium galaicum CBS 113678 Chaetomium elatum IFO 6554 Corynascella inaegualis CBS 284.82	Chaetomiaceae	
66/i Barrina polyspora AWR9560A 70/i 90/1 00i Coniochaeta ostrea AFTOL-ID 915 93/0 99 Coniochaeta luteoviridis CBS 206.38 93/0 99 Coniochaeta ligniaria C8 91/0.99 Cordana inaequalis CBS 508.83 90/0.99 Cordana pauciseptata CBS 121804	Cordanaceae	Coniochaetales
99/1.00 Phialemonium atrogriseum CBS 604.67 05- Cephalotheca foveolata UAMH11631 99/1.00 Albertiniella polyporicola NBRC 30914 Cryptendoxyla hypophloia WM10.89 Comipulvina ellipsoides	Cephalothecaceae	

Figure 1 The parsimonious trees resulting from maximum likelihood (ML) analysis of a combined ITS and LSU dataset of species in the subclass Sordariomycetidae. Maximum likelihood (ML) bootstrap values \geq 50%. Bayesian posterior probabilities (BYPP) greater than 0.95 is given at the nodes. The ex-type strains are in bold. The new family *Linocarpaceae* and new strains are in blue. The new family *Leptosporellaceae* and new strains are in red.

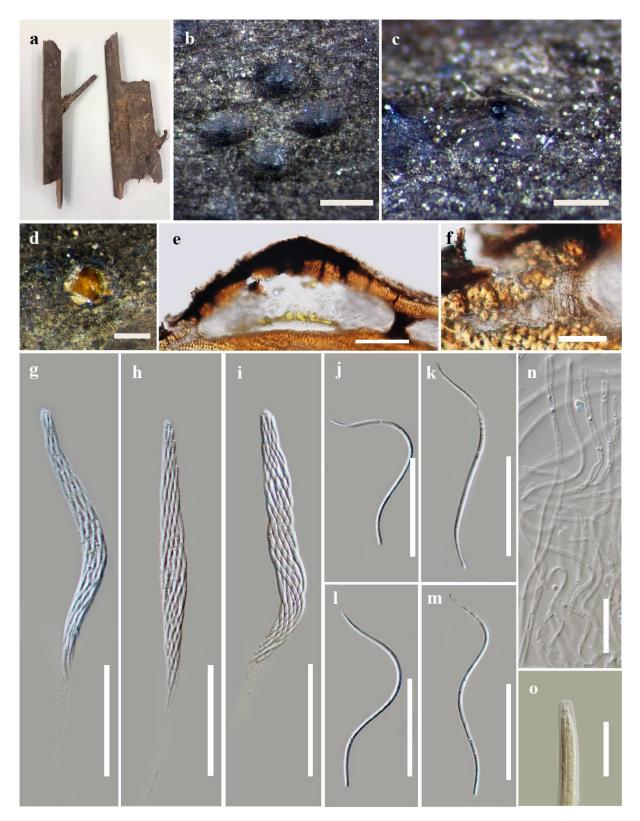
 Table 2 GenBank accession numbers of the sequences used in phylogenetic analysis.

<u> </u>	<u>04</u>	GenBank acc	ession number
Species name	Strains		ITS
Albertiniella polyporicola	NBRC 30914	AB178271	AB278196
Anacacumisporium appendiculatum	HMAS 245593	KT001553	KT001555
Ascovaginospora stellipala	-	U85088	-
Asteridiella obesa	VIC31239	JX096809	KC252608
Barrina polyspora	AWR9560A	AY346261	-
Bombardia bombarda	AFTOL-ID 967	DQ470970	-
Brunneodinemasporium brasiliense	CBS 112007	JQ889288	JQ889272
Camaropella pugillus	-	EU481406	-
Camaropena pagnas Camarops ustulinoides	AFTOL-ID 72	DQ470941	_
Cephalotheca foveolata	UAMH11631	KC408398	KC408422
Cercophora mirabilis	SMH 4002	-	KX171945
Chaetomidium galaicum	CBS113678	FJ666361	JN573175
Chaetomium gatacum Chaetomium elatum	IFO 6554	DQ368628	JI(3/31/3
Chaetosphaeria chlorotunicata	SMH 1565	AF466064	-
Chaetosphaeria Chiorostinicaia Chaetosphaeria conirostris	SMH 1303 SMH 2183	AF466066	-
Chaetosphaeria inaequalis	51011 2105	AI 400000	AF178564
	- MD 1149	-	AF178550
Chaetosphaeria vermicularioides C hloridium gonytrichii ="Melanopsammella	MR 1148 SMH 3785	-	
Chloridium gonytrichii = "Melanopsammella gonytrichii"	SIMID 3/83	AF466085	-
•	CBS 143.54	AF178544	A E170514
Chloridium lignicola			AF178544
Coccodiella miconiae	ppMP1342	KX430506	- KP004465
Codinaea pini	CBS 138866	KP004493	
Coniochaeta ligniaria	C8	AY198388	AY198390
Coniochaeta luteoviridis	CBS 206.38	AF353603	-
Coniochaeta ostrea	AFTOL-ID 915	DQ470959	-
Copromyces sp.	CBS 386.78	AY346277	-
Cordana inaequalis	CBS 508.83	HE672157	HE672146
Cordana pauciseptata	CBS:121804	HE672160	HE672149
Corynascella inaequalis	CBS 284.82	-	HQ871763
Dendrophoma cytisporoides	CBS 223.95	JQ889289	JQ889273
Dictyochaeta fuegiana	FMR_13126	KY853500	KY853440
Dictyochaeta siamensis	MFLUCC 15-0614	KX609952	KX609955
Dictyochaeta simplex	ICMP 14613	-	EF029193
Dinemasporium cruciferum	KH385	-	AB900896
Dinemasporium ipomoeae	CBS 138898	KP004474	KP004446
Dinemasporium pseudostrigosum	CBS 717.85	JQ889294	JQ889278
Echinosphaeria canescens	SMH4791	AY436403	-
Endomeliola dingleyae	PDD98304	GU138866	GU138865
Endophragmiella dimorphospora	FMR_12150	KY853502	KY853442
Exserticlava vasiformis	TAMA 450	AB753846	-
Helminthosphaeria clavariarum	-	AY346283	-
Helminthosphaeria hyphodermae	SMH4192	KF765608	-
Hilberina caudata	SMH1542	KF765615	-
Irenopsis cornuta	VIC32058	KC618642	-
Irenopsis vincensii	VIC31752	JX096807	KC252607
Infundibulomyces cupulata	-	EF113979	EF113976
Lasiosphaeria ovina	SMH4605	AY436413	AY587923
Lecythothecium duriligni	-	AF261071	-
Leptosporella arengae	MFLUCC 15-0330	MG272246	MG272255
Leptosporella bambusae	MFLUCC 12-0846	KU863122	KU940134
Leptosporella cocois	MFLUCC 15-0816	-	MG272256
Leptosporella cocois Leptosporella gregaria	SMH 4290	- AY346290	
	SMH 4290 SMH 4673	HM171287	-
Leptosporella gregaria			-
Linocarpon appendiculatum	ATCC 90499	AY346291	-
Linocarpon appendiculatum	HKUCC2986	DQ810199	-
Linocarpon arengae	MFLUCC 15-0331	MG272247	- M(1252255
Linocarpon cocois	MFLUCC 15-0812	MG272248	MG272257
Linocarpon pandanicola	HKUCC3783	DQ810210	-

Table 2 Continued.

Spacing many	Studius	GenBank acc	ession numbers
Species name	Strains	LSU	ITS
Linocarpon pandanicola	HKUM16280	DQ810211	-
Neolinocarpon arengae	MFLUCC 15-0323	MG272249	MG272258
Neolinocarpon rachidis	MFLUCC 15-0332	MG272250	-
Meliola centellae	VIC31244	JQ734545	-
Menispora glauca	FMR 12089	HF678538	HF678528
Menispora tortuosa	AFTOL-ID 278 =	AY544682	KT225527
Neopseudolachnella acutispora	DAOM231154 HHUF:29727	AB934041	AB934065
Neopseudolachnella acuitspora Neopseudolachnella magnispora	HHUF:29977	AB934041 AB934042	AB934065 AB934066
Neopseudolachnetia magnispora Neurospora tetraspora =Gelasinospora tetrasperma	CBS 178.33 =	DQ470980	AY681178
Neurospora terraspora –Getasinospora terrasperma	AFTOL-ID1287	DQ470980	A1001170
Phyllachora graminis	TH544	KX430508	-
Pseudodinemasporium fabiforme	CPC 24781	KR611906	KR611889
Pseudolachnea fraxini	CBS 113701	JQ889301	JQ889287
Pseudolachnea hispidula	HHUF 30118	AB934048	AB934072
Pseudolachnella scolecospora	HHUF:30268	AB934062	AB934086
Pseudolachnella yakushimensis	HHUF:29996	AB934064	AB934088
Pseudoneurospora amorphoporcata	CBS 626.80	AJ579682	-
Pyrigemmula aurantiaca	CBS 126743	-	HM241692
Rattania setulifera	GUFCC15501	HM171322	GU191794
Ruzenia spermoides	SMH4606	AY436422	
Sordaria fimicola	CBS 508.50	AY681160	AY681188
Sporoschisma aotearoae = "Melanochaeta aotearoae"	SMH 3551	AF466082	-
Sporoschisma hemipsila = "Melanochaeta	SMH2125	AY346292	-
hemipsila" Stanjehughesia hormiscioides	_	DQ408570	_
Striatosphaeria codinaeophora	CBS 101323	-	AF178546
Synaptospora plumbea	SMH3962	KF765621	-
Tainosphaeria crassiparies	SMH 1934	AF466089	_
Tainosphaeria siamensis	MFLUCC 15-0607	KY212758	KY212750
Thozetella fabacearum	MFLUCC 15-1020	KY212762	KY212754
Thozetella nivea	-	EU825200	EU825201
Umbrinosphaeria caesariata	-	AF261069	-
Zanclospora iberica	FMR_11584	KY853544	KY853480

sequence data and placed *Leptosporella* as Chaetosphaeriales *incertae sedis*. In this study we formally establish *Leptosporella* in *Leptosporellaceae* fam. nov. (Chaetosphaeriales). Presently 12 species epithets are included *Leptosporella* in Index Fungorum (2017). The ascospores in species of *Leptosporella* are narrowly, long filiform, with gradually tapering ends and if mucilage is present it is indistinct. In *Linocapon* and *Neolinocarpon* species ascospores have a distinct appendage at the apex and are generally wider and differ in appearance at the ends.


Leptosporella arengae Konta & K.D. Hyde, sp. nov.

Index Fungorum number: IF553957; Facesoffungi number: FoF03841 Etymology – The specific epithet refers to the host genus *Arenga* Holotype – MFLU 15–0305

Saprobic on rachis of Arenga pinnata (Wurmb) Merr. Sexual morph: Ascomata 582–928 µm diameter × 293–354 µm high ($\bar{x} = 777 \times 333$ µm, n = 10), solitary, superficial, comprising black, carbonaceous, dome-shaped, raised blister-like areas, subglobose, flattened at the base, ostiole central. Peridium 78–150 µm diameter ($\bar{x} = 104$ µm, n = 10), outer cells merging with the host epidermal cells, composed of dark brown to black cells of *textura angularis*. Hamathecium comprising numerous, 1.5–3 µm diameter ($\bar{x} = 2$ µm, n = 10), hyaline, hypha-like, septate paraphyses, longer than asci. Asci 137–190 × 10–14 µm ($\bar{x} = 160 \times 12$ µm, n = 20), 8-spored, unitunicate, cylindrical, long-pedicellate, with a J⁻, wedge-shaped, subapical ring. Ascospores 108–

Fig. 2

 $132 \times 2-3.5 \ \mu m$ ($\overline{x} = 122 \times 3 \ \mu m$, n = 20), fasciculate, spiral, filiform, straight or curved, C-shaped or sigmoid, hyaline or pale-yellowish in mass, aseptate, ends rounded, with polar mucilaginous appendages, smooth-walled. Asexual morph: Undetermined.

Figure 2 – *Leptosporella arengae* (MFLU 15–0305, holotype). a Appearance of ascomata on host substrate. b, c Close up of ascomata. d Yellowish ascospore mass. e Section of ascoma. f Peridium. g–i Asci. j–m Ascospores. n Paraphyses. o J- reaction of apical ring. Scale bars: $b = 1,000 \mu m$, c–d = 500 μm , e = 200 μm , f–m = 50 μm , n–o = 20 μm .

Culture characters – Ascospores germinating on MEA within 3 days. Colonies on MEA reaching 6–7.5 cm diameter after two months at 25°C, white at the edge, brown in the center with strong radiations outwards, after 30 days of incubation, colonies smooth-walled, flat, margin lobate, white at the center and become brown at the margin, hyphae, septate, branched and smooth-walled.

Material examined – THAILAND, Phang-Nga Province, on dead rachis of *Arenga pinnata* (Wurmb) Merr. (*Arecaceae*), 5 December 2014, Sirinapa Konta PHR07a (MFLU 15–0305, holotype); HKAS100704, isotype; ex-type living culture, MFLUCC 15–0330.

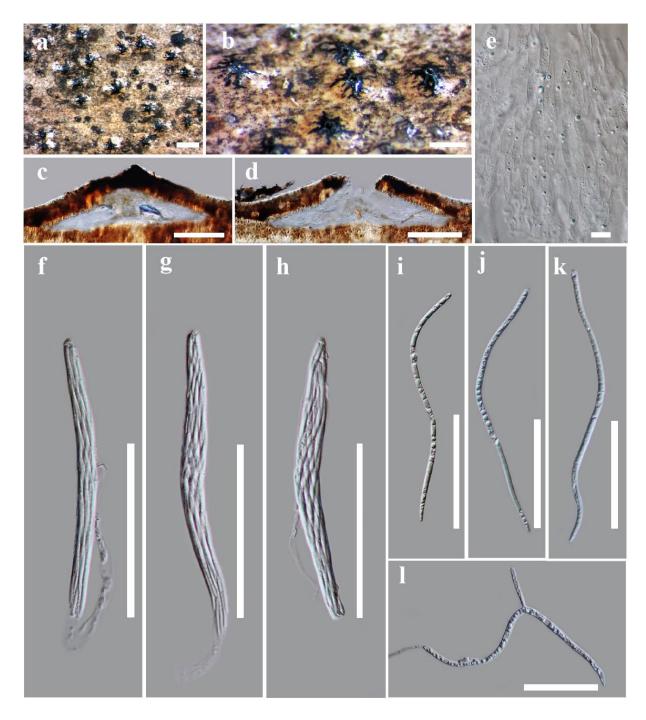
GenBank numbers - SSU: MG366594; TEF: MG272259; RPB2: MG272260

Notes – *Leptosporella arengae* is introduced as a new species based on its unique morphology and phylogeny. It differs from other species in *Leptosporella* in having cylindrical, long pedicellate, thin-walled asci and spiral, filiform, straight or curved, C-shaped or sigmoid ascospores with polar mucilaginous appendage at the apex (Table 1). However, it shares similarity with other species, it has solitary, superficial, carbonaceous, dome-shaped ascomata, asci with J-, subapical ring, and hyaline ascospores. Phylogenetic analysis indicates that *Leptosporella arengae* clusters with *L. cocois* (93% BS), but differs in having smaller ascomata, asci, ascospores, aseptate with a mucilaginous appendage ascospores, while *L. cocois* has larger ascomata, paraphyses, asci, ascospores without mucilaginous appendage, and 2–4-septate when ascospore geminated. Sequence data are available only for *L. gregaria* and *L. bambusae*, and with two unidentified strains.

Leptosporella cocois Konta & K.D. Hyde, sp. nov.

Fig. 3

Index Fungorum number: IF553958; Facesoffungi number: FoF 03842 Etymology – The specific epithet refers to the host genus *cocos*


Holotype - MFLU 15-2349

Saprobic on rachis of Cocos nucifera L. Sexual morph: Ascomata 705–977 µm diameter × 209–298 µm high ($\bar{x} = 800 \times 250$ µm, n = 10), solitary or aggregated, superficial, comprising black, dome shaped, raised blistering areas, subglobose, flattened at the base, ostiole central. *Peridium* 76–125 µm diameter ($\bar{x} = 98$ µm, n = 10), outer cells merging with the host epidermal cells, composed of dark brown to black cells of *textura angularis*. *Hamathecium* comprising numerous, 3–6 µm diameter ($\bar{x} = 4.5$ µm, n = 10), hypha-like, septate paraphyses, longer than asci. Asci 145–242 × 8–13 µm ($\bar{x} = 187 \times 10$ µm, n = 20), 8-spored, unitunicate, cylindrical, long-pedicellate, with a J-, wedge-shaped, subapical ring. Ascospores 99–156 × 2.5–4 µm ($\bar{x} = 126 \times 3$ µm, n = 20), fasciculate, becoming spiral when mature, filiform, straight or curved, hyaline, aseptate, rounded at the apex, pointed at the base, smooth-walled, 1–4-septate when geminated. Asexual morph: Undetermined.

Culture characters – Ascospores germinating on MEA within 2 days. Colonies on MEA growing, reaching 7–8.5 cm diameter after 2 months at 25°C, white at the edge, brown in the center, outwardly with strong light brown radiations. After 30 days of incubation, colonies smooth, flat, margin entire, hypha septate, branched and smooth-walled.

Material examined – THAILAND, Prachaupkhirikan Province, Sai Khu Water Fall, on dead rachis of *Cocos nucifera* L. (*Arecaceae*), 30 July 2015, Sirinapa Konta PJK04k (MFLU 15–2349, holotype, HKAS 100705, isotype; ex-type living culture, MFLUCC 15–0816).

Notes – The phylogenetic analyses indicate that *Leptosporella cocois* is closely related to *L. arengae*, but they differ in the features of ascomata, asci, ascospores and paraphyses (Figs. 1, 2 and 3). Morphological differences are discussed under the latter species. *Leptosporella cocois* differs from *L. gregaria* (type species) in having larger asci with long pedicels, and filiform aseptate ascospores, while *L. gregaria* has smaller asci and ascospores than *L. cocois*, short pedicellate asci, and 7-septate ascospores. *Leptosporella cocois* is distinct from *L. arengae* in having larger ascomata, asci and ascospores without mucilaginous appendages, while *L. arengae* has smaller ascomata, asci and aseptate ascospores, lacking mucilaginous appendages and it differs from *L. macrothecea*, *L. sparsa*, and *L. bambusae* in having filiform ascospores (Table 1).

Figure 3 – *Leptosporella cocois* (MFLU 15–2349, holotype). a Appearance of ascomata on host substrate. b Close up of ascomata. c–d Sections of ascomata. e Paraphyses. f–h Asci. i–k Ascospores. l Germinated ascospore. Scale bars: a = 1,000 μ m, b = 500 μ m, c–d = 200 μ m, e = 10 μ m, f–k = 50 μ m, l = 20 μ m.

Linocarpaceae Konta & K.D. Hyde, fam. nov.

Index Fungorum number: IF553959; Facesoffungi number: FoF03843

Saprobic on monocotyledon and dicotyledons. Sexual morph: *Ascomata* solitary, superficial comprising black, dome-shaped (*Linocarpon*), slightly raised or flattened circular areas, or immersed (*Neolinocarpon*) with a black shiny papilla. *Peridium* composed of dark brown to black cells of *textura angularis*. *Hamathecium* of septate paraphyses, longer than asci, wider at the base, tapering towards the apex. *Asci* 8-spored, unitunicate, cylindrical, with a J⁻ an apical ring, developing from the base and periphery of the ascomata. *Ascospores* parallel or spiral in asci, filiform, straight or curved, hyaline or pale-yellowish in mass, unicellular with refringent bands,

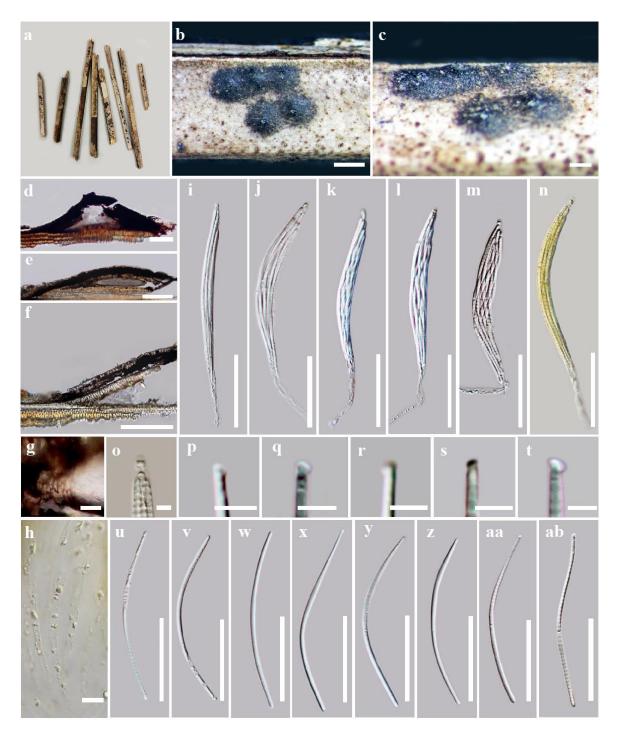
with or without polar appendages. Asexual morph: A phialophora-like spp. was found in *Linocarpon appendiculatum* and *L. elaeidis* cultures (Hyde 1992a), but has not been recovered in other species.

Notes – The species belongs in *Linocarpaceae* are saprobes on monocotyledons and dicotyledons plants. Characteristic of species of *Linocarpaceae* was mentioned above and phylogenetic analysis indicates that *Linocarpaceae* forms a distinct clade sister to Chaetosphaeriaceae (Fig. 1). Thus, *Linocarpaceae* is introduced as a new family in Chaetosphaeriales (Sordariomycetidae) based on morphology and phylogeny.

Type genus – Linocarpon Syd. & P. Syd., Annls mycol. 15(3/4): 210 (1917)

Linocarpon Syd. & P. Syd., Annls mycol. 15(3/4): 210 (1917)

Saprobic on monocotyledon and dicotyledon plants. Sexual morph: Ascomata solitary, superficial, comprising black, dome-shaped, raised blistering areas, subglobose, flattened at the base, with a central ostiole. Peridium outer cells merging with the host epidermal cells, composed of dark brown to black cells of textura angularis. Hamathecium comprising hyaline, septate paraphyses, longer than asci, wider at the base, tapering towards the apex. Asci 8-spored, cylindrical, unitunicate, apically rounded, with a small non amyloid apical ring, developing from the base and periphery of the ascomata. Ascospores filiform, hyaline or pale-yellowish in mass, parallel or spiral in the ascus, ends rounded, inflated, appendage or acute, containing numerous refringent septum-like bands (Syd & Syd 1917, Hyde 1992a). Asexual morph: Phialophora-like spp. was found in Linocarpon appendiculatum and L. elaeidis cultures but never reported in other species.


Notes – *Linocarpon* was introduced by Sydow & Sydow (1917), monographed by Hyde (1992a), and updated by Hyde (1997), Dulymamode et al. (1998), Hyde & Alias (1999), Fröhlich & Hyde (2000), Thongkantha et al. (2003) and Cai et al. (2004). *Linocarpon* species have ascomata on the host surface that form black, dome-shaped, raised blistering areas, with a central ostiole. Asci are unitunicate, cylindrical with a small non-amyloid apical ring. Ascospores are filiform and aseptate (Fröhlich & Hyde 2000, Poonyth et al. 2000). The distinct ascospore appendage at the apex is important to differentiate *Linocarpon* and *Neolinocarpon* from *Leptosporella* as well as distinguish between species (Poonyth et al. 2000, Yanna & Hyde 2003, Cai et al. 2004). The *Phialophora* asexual morph of *Linocarpon* is rarely observed (Hyde 1992a). Fourty-one records of *Linocarpon* are listed in Index Fungorum 2017 and DNA sequence data are available for 33 sequences in GenBank (16 November 2017).

Linocarpon arengae Konta & K.D. Hyde, sp. nov.

Fig. 4

Index Fungorum number: IF553960; Facesoffungi number: FoF03844 Etymology – The specific epithet refers to the host genus *Arenga*. Holotype: MFLU: 15–0306.

Saprobic on rachis of Arenga pinnata (Wurmb) Merr. Sexual morph: Ascomata 125–355 µm high × 878–1,368 µm diameter ($\bar{x} = 205 \times 1,094$ µm, n = 10), solitary or aggregated, superficial, comprising black, dome-shaped, raised, blistering areas, subglobose, flattened at the base, with a central ostiole. Peridium 64–90 µm diameter ($\bar{x} = 76$ µm, n = 10), outer cells merging with the host epidermal cells, composed of dark brown to black cells of textura angularis. Hamathecium comprising numerous, 2–3.5 µm diameter ($\bar{x} = 3$ µm, n = 10), hyaline, hypha-like, septate paraphyses, longer than asci. Asci 132–177 × 9–15 µm ($\bar{x} = 153 \times 11$ µm, n = 20), 8-spored, unitunicate, cylindrical, long-pedicellate, with a J⁻, wedge-shaped, subapical ring. Ascospores 91–102 × 2–4 µm ($\bar{x} = 102 \times 3$ µm, n = 20), parallel when immature, becoming spiral when mature, filiform, straight or curved, hyaline, aseptate, containing numerous refringent septum-like bands, ends rounded, with polar mucilaginous appendage at the apex, smooth-walled. Asexual morph: Undetermined.

Figure 4 – *Linocarpon arengae* (MFLU 15–0306, holotype). a Appearance of ascomata on host substrate. b, c Close up of ascoma. d Yellowish ascospore mass. e Section of ascomata. f, g Peridium. h Paraphyses. i–n asci. o J- reaction of apical ring. p–t Appendage. u–ab Ascospores. Scale bars: $b = 500 \mu m$, $c-f = 200 \mu m$, $g = 20 \mu m$, $h = 10 \mu m$, i–n, u–ab = 50 μm , and o–t = 5 μm .

Culture characters – Ascospores germinating on MEA within 3 days. Colonies on MEA reaching 6.5–7 cm diameter after 2 months at 25°C, white at the edge, brown in the middle with strong radiations outwards. After 30 days of incubation, colonies smooth, hyphae septate, branched, smooth.

Material examined – THAILAND, Phang-Nga Province, on dead rachis of *Arenga pinnata* (Wurmb) Merr. (*Arecaceae*), 5 December 2014, Sirinapa Konta PHR07h (MFLU 15–0306, holotype); HKAS100700, isotype; ex-type living culture, MFLUCC 15–0331.

GenBank number – SSU: MG366596

Notes – *Linocarpon arengae* is introduced as a new species based on the morphology and DNA sequence data. However, the species that was included in this genus is known form a polyphyletic clade based on LSU sequence data (Bahl 2006). Furthermore, in this study the phylogenetic analyses indicated that *L. arengae* is most closely related to *L. cocois* with good bootstrap support and was placed in the same clade with *L. pandanicola* and shown as a monophyletic clade within *Linocarpaceae* fam. nov., but it forms a distinct lineage (Table 1).

Linocarpon cocois Konta & K.D. Hyde, sp. nov.

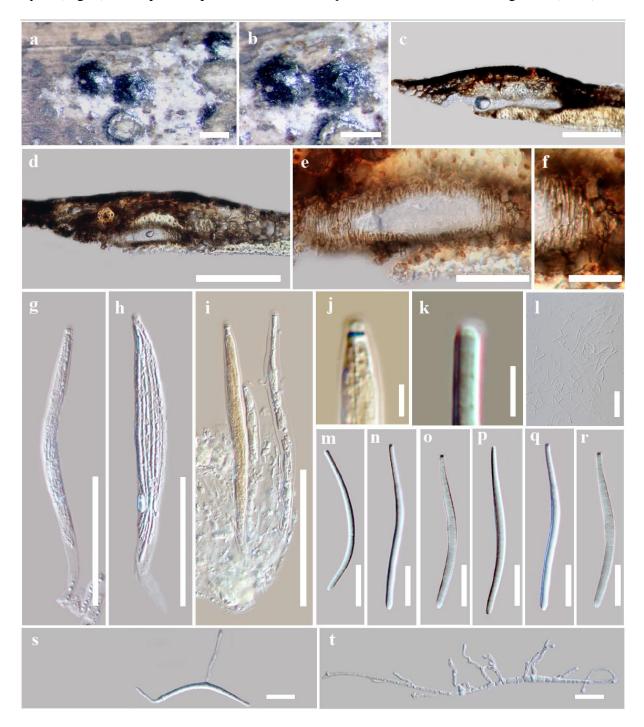
Fig. 5

Index Fungorum number: IF553961; Facesoffungi number: FoF 03845 Etymology – The specific epithet refers to the host genus *Cocos* Holotype: MFLU 15–2345

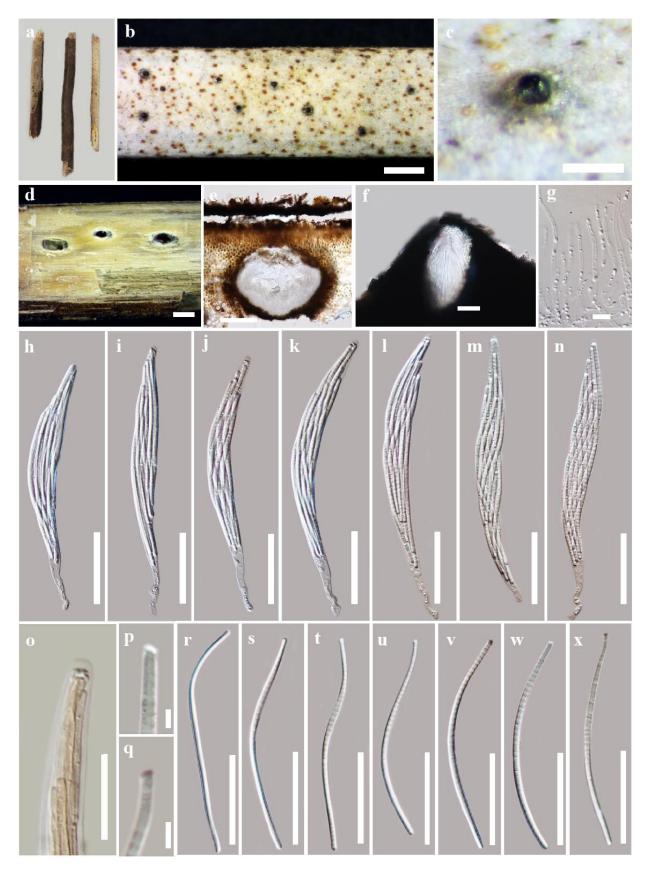
Saprobic on rachis of Cocos nucifera L. Sexual morph: Ascomata 73–184 µm high × 400–980 µm diameter ($\bar{x} = 124 \times 655$ µm, n = 10, up to 1,000 µm), solitary or aggregated, superficial, comprising shiny, black, dome shaped, raised blistering areas, subglobose, flattened at the base, central ostiole. *Peridium* 60–92 µm diameter ($\bar{x} = 71$ µm, n = 10), outer cells merging with the host epidermal cells, composed of dark brown to black, cells of textura angularis. *Hamathecium* comprising numerous, 0.5–1 µm diameter ($\bar{x} = 0.7$ µm, n = 10), hyaline, septate, hypha-like paraphyses, longer than asci. Asci 100–153 µm × 8–15 µm ($\bar{x}=120 \times 10$ µm, n = 20), 8-spored, unitunicate, cylindrical, long-pedicellate, with a J-, wedge-shaped, subapical ring. Ascospores 69–90 × 3–5 µm ($\bar{x} = 76 \times 4$ µm, n = 20), parallel when immature, becoming spiral at maturity, filiform-fusiform, straight or curved, hyaline, aseptate when mature, becoming multi-septate when germinating, without refringent septum-like bands, ends rounded, the base wider than apex, smooth-walled, with a mucilaginous appendage at the apex, producing germ tube from each cell. Asexual morph: Undetermined.

Culture characters – Ascospores germinating on MEA within 24 hours. Colonies on MEA reaching 7–8.5 cm diameter after 2 months at 25°C, white at the edge with strong radiations outwards. After 30 days of incubation, colonies smooth, flat, entire edge margin, brown, hyphae septate, branched, smooth.

Material examined – THAILAND, Prachaupkhirikan Province, Sai Khu Water Fall, on dead rachis of *Cocos nucifera* L. (*Arecaceae*), 30 July 2015, Sirinapa Konta PJK04f (MFLU 15–2345, holotype); HKAS100701, isotype; ex-type living culture, MFLUCC 15–0812.


Notes – *Linocarpon cocois* is morphologically similar to *Linocarpon* genus in its black, dome-shaped, raised blistering areas, flattened at the base, with a central ostiole. Phylogenetically *L. cocois* groups together with *L. arengae* (Fig. 1). In addition our *L. cocois* isolate has been collected from the same family host (*Arecaceae*) with *L. arengae* but has been collected from *Cocos nucifera* and *Arenga pinnata*. *Linocarpon pandanicola*, on the other hand, has been isolated from *Pandanaceae*. Although *L. cocois* is closely related to *L. arengae*, it differs in having ascospore shape, size, lack the refringent septum-like bands and differ in the shape and the type of appendages.

Neolinocarpon K.D. Hyde 1992


Saprobic on mostly monocotyledons. Sexual morph: *Ascomata* solitary, deeply immersed, oval to globose, with central raised, dark, shiny papilla, ostiole with periphyses, ascospores paleyellowish in mass. *Peridium* outer cells merging with the host epidermal cells, composed of dark brown to black cells of *textura angularis*. *Hamathecium* comprising tapering, septate paraphyses, longer than asci. *Asci* 8-spored, unitunicate, long cylindrical, pedicelate, apex rounded, containing an oblong to wedge-shaped, refractive, apical ring, and some with a refractive circular body below. *Ascospores* filiform, straight or curved, hyaline, 1-celled, with refringent bands, with apical appendages (Hyde 1992b). Asexual morph: Undetermined.

Notes – *Neolinocarpon* was introduced by Hyde (1992b) and typified by *N. globosicarpum* K.D. Hyde. This genus was placed in *Xylariaceae* based on morphology (Hyde 1992b). Hyde (1997) included *Neolinocarpon* in *Hyponectriaceae*. Wang & Hyde (1999) excluded

Neolinocarpon from *Hyponectriaceae*. Then Kirk et al. (2001) and Eriksson (2006) assigned *Neolinocarpon* into Sordariomycetes *incertae sedis*. Bahl (2006) re-examined the utilized fresh samples and dried herbarium material. Based on the phylogenetic analysis of LSU and RPB2 DNA sequence data, *Neolinocarpon* was not monophyletic clade and transferred into Xylariales and Chaetosphaeriales (Bahl 2006). Maharachchikumbura et al. (2015) did not determine the family placement of *Neolinocarpon* in their studies.Vitoria et al. (2013) introduced new species of *Neolinocarpon attaleae* from *Attalea funifera* (*Arecaceae*) based on the morphological characters. In this study *Neolinocarpon* is placed in *Linocarpaceae* (Chaetosphaeriales) based on phylogenetic analysis (Fig. 1). Ten species epithets of *Neolinocarpon* are listed in Index Fungorum (2017).

Figure 5 – *Linocarpon cocois* (MFLU 15–2345, holotype). a Ascomata on host substrate. b Close up of ascomata. c–e Sections of ascomata. f Peridium. g–i Asci. j J⁻ reaction of apical ring. k Appendage. 1 Paraphysoids. m–r Ascospores. s–t Germinated ascospores. Scale bars: a, b = 500 μ m, c, d = 200 μ m, e, g–i = 50 μ m, j, k = 5 μ m, f, l–t = 20 μ m

Figure 6 – *Neolinocarpon arengae* (MFLU 15–0298, holotype). a Appearance of ascomata on host substrate. b, c Close up of ascomata. d Yellowish ascospore mass. e Section of ascoma. f Papilla. g Paraphyses. h–n Asci. o J- reaction of apical ring. p–q Appendages. r–x Ascospores. Scale bars: b = 500 μ m, c = 200 μ m, d = 50 μ m, e = 200 μ m, g = 10 μ m, h–n, r–x = 50 μ m, o = 20 μ m, and p–q = 5 μ m.

Neolinocarpon arengae Konta & K.D. Hyde, sp. nov.

Index Fungorum number: IF553963; Facesoffungi number: FoF03847 Etymology – The specific epithet refers to the host genus *Arenga* Holotype: MFLU 15–0298

Saprobic on dead leaflet of Arenga pinnata (Wurmb) Merr. Sexual morph: Ascomata 336– 566 µm high × 230–490 µm diameter ($\bar{x} = 430 \times 368$ µm, n = 10), solitary, deeply immersed, with a central raised black, papilla, with a central ostiole. Papilla 129–218 µm high × 174–296 µm diameter at the base ($\bar{x} = 154 \times 203$ µm, n = 5), black, shiny, with hyaline periphyses. Peridium 33–80 µm diameter ($\bar{x} = 50$ µm, n = 10), outer cells merging with the host epidermal cells, composed of dark brown to black cells of *textura angularis*. Hamathecium comprising numerous, 2–4 µm diameter ($\bar{x} = 3$ µm, n = 10), hypha-like, septate, unbranched paraphyses, longer than asci,. Asci 168–214 × 15–21 µm ($\bar{x} = 186 \times 18$ µm, n = 20), 8-spored, unitunicate, cylindrical, longpedicellate, with a J-, wedge-shaped, subapical ring. Ascospores 114–134 × 3–4 µm ($\bar{x} = 121 \times 4$ µm, n = 20), parallel when immature, becoming spiral at maturity, filiform, straight or curved, hyaline, aseptate, containing numerous refringent septum-like bands, ends rounded, with polar mucilaginous appendage at apex, smooth-walled. Asexual morph: Undetermined.

Culture characters – Ascospores germinating on MEA within 2 days. Colonies on MEA reaching 6–8 cm diameter after 2 months at 25°C, white to gray at the edge, gray to brown in the middle forward until nearly margin, light brown at margin, dark brown when mycelium growing into media 30 days of incubation, colonies smooth, flat, lobate margin, hyphae septate, branched, smooth.

Material examined – THAILAND, Phang-Nga Province, on dead leaflet of *Arenga pinnata* (Wurmb) Merr. (*Arecaceae*), 5 December 2014, Sirinapa Konta PHR07d (MFLU 15–0298, holotype); HKAS100703, isotype; ex-type living culture, MFLUCC 15–0323.

GenBank numbers -SSU: MG366597; RPB2: MG272261

Notes – *Neolinocarpon arengae* is similar to species of *Neolinocarpon* with respect to the ascomata and filiform ascospores. It however differs from some species in terms of ascomata size, ascospores shape at both ends and presence of mucilaginous appendage, and based on host differences (Table 1). Phylogenetic analysis incicated that *Neolinocarpon arengae* is related to *N. rachidis* (96% ML, 1.00 PP) (Fig.1).

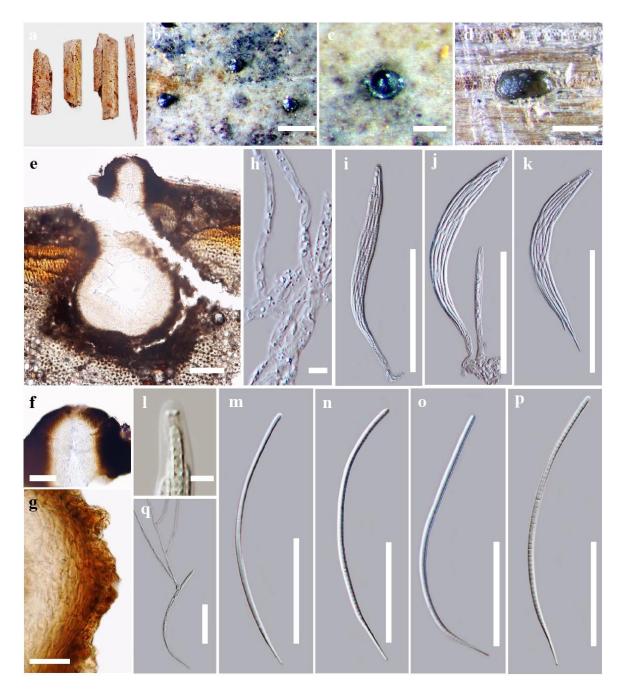

Neolinocarpon rachidis Konta & K.D. Hyde, sp. nov.

Fig. 7

Index Fungorum number: IF553962; Facesoffungi number: FoF 03846 Etymology – The specific epithet refers to the host habitat (rachids). Holotype: MFLU: 15–0307.

Saprobic on rachis of Arenga pinnata (Wurmb) Merr. Sexual morph: Ascomata 508–590 µm high × 320–390 µm diameter ($\bar{x} = 557 \times 346$ µm, n = 10), solitary, deeply immersed, with a central raised, black, globose-subglobose papilla, with a central ostiole. Papilla 157–223 µm high × 127–198 µm diameter at the base ($\bar{x} = 188 \times 157$ µm, n = 5), black, shiny, with hyaline periphyses. Peridium 34–80 µm wide ($\bar{x} = 55$ µm, n = 10), outer cells merging with the host epidermal cells, composed of dark brown to black cells of *textura angularis*. Hamathecium comprising numerous, 2.5–4 µm diameter ($\bar{x} = 3$ µm, n = 10), hypha-like, septate, unbranched, paraphyses, longer than asci. Asci 157–205 × 9–19 µm ($\bar{x} = 180 \times 14$ µm, n = 20), 8-spored, unitunicate, cylindrical, long-pedicellate, with a wedge-shaped, J-, subapical ring. Ascospores 123–140 × 2–4 µm ($\bar{x} = 133 \times 3$ µm, n = 20), parallel in ascus, becoming spiral when mature, filiform, straight or curved, hyaline, aseptate, containing numerous refringent septum-like bands, rounded at the apex with appendage, pointed at the base, smooth-walled. Asexual morph: Undetermined.

Culture characters – Ascospores germinating on MEA within 7 days. Colonies on MEA reaching 3–4 cm diameter after two months at 25°C, white at the edge, brown in the middle with strong radiations outwards. After 30 days of incubation, colonies smooth, flat, margin undulate, white to gray in the center, gray-brown at the margin, mycelium becoming dark brown when growing into media, hyphae septate, branched, smooth-walled.

Figure 7 – *Neolinocarpon rachidis* (MFLU 15–0307, holotype). a Appearance of ascomata on host substrate. b, c Close up of ascomata. d Yellowish ascospore mass. e Section of ascoma. f Papilla. g Peridium. h Paraphyses. i–k Asci. 1 J- reaction of apical ring. m–p Ascospores. q Germinated ascospore. Scale bars: b, d = 500 μ m, c = 200 μ m, e, i–k = 100 μ m, f–g = 20 μ m, h = 10 μ m, 1 = 5 μ m, m–q = 50 μ m.

Material examined – THAILAND, Phang-Nga Province, on dead rachis of *Arenga pinnata* (Wurmb) Merr. (*Arecaceae*), 5 December 2014, Sirinapa Konta PHR06e (MFLU 15–0307, holotype); HKAS 100702, isotype; ex-type living culture, MFLUCC 15–0332).

GenBank number -SSU: MG366598

Notes – *Neolinocarpon rachidis* is typical of *Neolinocarpon* species in having deeply immersed ascomata with a shiny visible papilla and filiform, hyaline ascospores. However, it is distinct as ascospores are rounded at the apex and pointed at the base, and differing type of mucilaginous appendages (Table 1). In the phylogenetic analysis *N. rachidis* clusters with *N. arengae* (96% ML, 1.00 PP) (Fig. 1), but the species have very different ascospores (Table 1).

Discussion

Hyde (1992b) suggested that *Linocarpon* and *Neolinocarpon* species are similar to Lasiosphaeriaceous taxa in the apical structure of the ascus and in ascospore morphology. Hyde (1997) assigned *Linocarpon* and *Neolinocarpon* to *Hyponectriaceae*, Jeewon et al. (2003) also indicated *Linocarpon* to have relationships with *Hyponectriaceae* (Xylariales), while Bahl (2006) suggested *Linocarpon* and *Neolinocarpon* to have a closer relationship with *Chaetosphaeriaceae* and *Helminthosphaeriaceae* (Duong et. al 2004, Huhndorf et al. 2004). Our study confirms that these *Linocarpon* and *Neolinocarpon* should be placed in Chaetosphaeriales in a distinct family (Fig. 1).

Linocarpon (Linocarpaceae) and *Leptosporella (Leptosporellaceae)* species have very similar ascomata and asci and are therefore hard to distinguish. The easiest way to distinguish these genera/ families is by the ascospores. In *Linocarpon* the ascospores are slightly wider and have distinct, blunt, appendages at the apex, while in *Leptosporella* the ascospores are narrower and taper gradually towards the ends and if an appendages are present they are relatively indistinct. *Neolinocarpon* can be distinguished from both *Linocarpon* and *Leptosporella* as ascomata are deeply immersed and oval-globose, with a superficial, black, shiny papilla, while the ascus is sometimes provided with a refractive globose body as well as a ring. The ring with continuous structures will appear when staining with erythosin, lactofuschin and lactophenol cotton blue (Hyde 1992b). Bahl (2006) found that *Linocarpon* species are frequently isolated from *Pandanus* hosts and rarely occur on bamboo (Thongkantha et al. 2003). Fresh collections with molecular data are needed from taxa from various hosts to establish whether they have been correctly named based on modern concepts.

In this study, we introduce two new families, *Leptosporellaceae* and *Linocarpaceae*, based on phylogenetic analysis (Table 2). Both ML and BYPP analyses gave the same topologies and placed the families in Chaetosphaeriales in separate clades (Fig. 1), with Boliniales as basal. In these families, ascomata form blackened/darkened domes (*Leptosporella, Linocarpon*) on the host surface or are immersed with only shiny erumpent papilla showing (*Neolinocarpon*). Asci are unitunicate, cylindrical with J- subapical ring. Ascospores are 8-spored, filiform, hyaline, and septate or aseptate, with or without mucilaginous appendages (Fröhlich & Hyde 2000). The nature of the ascospore appendages is important in differentiating between species (Poonyth et al. 2000). The asexual morph has rarely been observed and is Phialophora-like (Hyde 1992a). Four orders were recognized in the subclass Sordariomycetidae by Maharachchikumbura et al. (2015, 2016) and six well-resolved orders were reported by Hongsanan et al. (2017). The MCC tree supported the status of the families in Sordariomycetidae with stem ages between 145–216 MYA (Hongsanan et al. 2017).

Leptosporellaceae clusters as a monophyletic clade (Fig. 1) with a stable position within Chaetosphaeriales and is introduced as a novel family with a single genus Leptosporella. All species that are included in this genus have similar morphology in possessing superficial ascomata, and filiform ascospores. Linocarpaceae is introduced as a new family in Chaetosphaeriales comprising Linocarpon and Neolinocarpon. Several strains of Linocarpon and Neolinocarpon in GenBank have low quality sequence data, such as the LSU sequence data for Linocarpon pandani (type species), which are less than 800 base pairs. Thus, we used sequence data from our taxonomic novelties, plus some quality sequences in GenBank, to clarify the placement of the taxa that were previously placed in Xylariomycetidae genera incertae sedis.

Acknowledgements

Saranyaphat Boonmee would like to thank the National Research Council of Thailand (grant for microfungi on palms no. 61215320023) for supporting studies on microfungi on palms and the Mushroom Research Foundation for partly supporting this research. Sirinapa Konta is grateful to Saowaluck Tibpromma, Ausana Mapook, Mingkwan Doilom, Chayanard Phukhamsakda, Chada Norphunpuan, Li Junfu, Luo Zonglong, Yuanpin Xiao, Boontiya Chuankid, COE staff, Paul Kirk, and Shaun Pennycook for their valuable suggestions and helps.

References

- Ariyawansa HA, Ji-Chuan Kang, Alias SA, Chukeatirote E et al. 2014 Towards a natural classification of Dothideomycetes: The genera *Dermatodothella*, *Dothideopsella*, *Grandigallia*, *Hysteropeltella* and *Gloeodiscus* (Dothideomycetes incertae sedis). Phytotaxa 176, 007–017.
- Arx JA von, Olivier DL. 1952 The taxonomy of *Ophiobolus graminis* Sacc. Transactions of the British Mycological Society 35, 29–33.
- Bahl J. 2006 Molecular evolution of three morphologically similar families in the Xylariomycetidae (*Apiosporaceae*, *Clypeosphaeriaceae*, *Hyponectriaceae*). PhD Thesis, The University of Hong Kong.
- Barr ME. 1978 The Diaporthales in North America: with emphasis on *Gnomonia* and its segregates. Mycologia Memoirs 7, 1–232.
- Barr ME. 1993 Redisposition of Ellis taxa: a correction. Mycotaxon 48, 537–537.
- Bhilabutra W, Lumyong S, Jeewon R, McKenzie EH et al. 2006 *Neolinocarpon penniseti* sp. nov. on the grass *Pennisetum purpureum (Poaceae)*. Cryptogamie Mycologie 27, 305–310.
- Cai L, Zhang KQ, McKenzie EHC, Hyde KD. 2004 *Linocarpon bambusicola* sp. nov. and *Dictyochaeta curvispora* sp. nov. from bamboo submerged in freshwater. Nova Hedwigia 78, 439–445.
- Chardón CE. 1939 Boletín de la Sociedad Venezolana di Ciencias Naturales 5, 335–368.
- Chardón CE, Toro RA. 1934 Mycological explorations of Venezuela. Monograph Universidad de Puerto Rico Series B 2, 1–353.
- Chomnunti P, Hongsanan S, Hudson BA, Tian Q et al. 2014 The Sooty Moulds. Fungal Diversity 66, 1–36.
- Cribb AB, Cribb JW. 1955 Marine fungi from Queensland. I. Papers of the Department of Botany University of Queensland 3, 77–81.
- Dai DQ, Phookamsak R, Wijayawardene NN, Li WJ et al. 2016 Bambusicolous fungi. Fungal Diversity 1–105.
- Del Olmo-Ruiz M, Arnold AE. 2017 Community structure of fern-affiliated endophytes in three neotropical forests. Journal of Tropical Ecology 33, 60–73.
- Dulymamode R, Cannon PF, Peerally A. 1998 Fungi from Mauritius: *Linocarpon* species on *Pandanus*. Mycological Research 102, 1331–1337.
- Duong LM, Lumyong S, Hyde KD, Jeewon R. 2004 *Emarcea castanopsidicola* gen. et sp. nov. from Thailand, a new xylariaceous taxon based on morphology and DNA sequences. Studies Mycology 50, 253–260.
- Edward JC, Singh KP, Tripathi SC, Sinha MK et al. 1972 Fungi associated with moribund branches of *Rosa species*. Sydowia 26, 266–271.
- Eriksson OE. 2006 Outline of Ascomycota 2006. Myconet 12, 1–82.
- Fröhlich J, Hyde KD. 2000 Palm Microfungi. Fungal Diversity Research Series 3, 1–375.
- Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M, Fdez-Riverola F et al. 2010 ALTER: programoriented conversion of DNA and protein alignments. Nucleic acids research 38, 14–18.
- Hall T. 2004 BioEdit. Ibis Therapeutics, Carlsbad, CA, 92008, USA.
- Hansford CG. 1954 Australian Fungi. II. New species and revisions. Proceedings of the Linnean Society of New South Wales 79, 97–141.
- Hansford CG. 1957 Australian Fungi. IV. New species and revisions (cont'd). Proceedings of the Linnean Society of New South Wales 82, 209–229.
- Höhnel F von. 1909 Fragmente zur Mykologie: VIII. Mitteilung (Nr. 354 bis 406). Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften Math.-naturw. Klasse Abt. I 118, 1157–1246.

- Hongsanan S, Maharachchikumbura SSN, Hyde KD, Samarakoon MC et al. 2017 An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Diversity 84, 25–41.
- Hsieh WH, Chen CY, Sivanesan A. 1998 Six new ascomycetes from Taiwan. Mycological Research 102, 228–234.
- Huelsenbeck JP, Ronquist F. 2001 MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.
- Huhndorf SM, Miller AN. 2011 A molecular re-appraisal of taxa in the Sordariomycetidae and a new species of *Rimaconus* from New Zealand. Studies in Mycology 68, 203–210.
- Huhndorf SM, Miller AN, Fernández FA. 2004 Molecular systematics of the Sordariales: the order and the family *Lasiosphaeriaceae* redefined. Mycologia 96, 368–387.
- Hyde KD. 1988 The genus *Linocarpon* from the mangrove palm *Nypa fruticans*. Transactions of the Mycological Society of Japan 29, 339–350.
- Hyde KD. 1989 The genus *Linocarpon* from the mangrove palm *Nypa fruticans*. Transactions of the Mycological Society of Japan 29, 339–350.
- Hyde KD. 1992a Fungi from palms I. The genus *Linocarpon*, a revision. Sydowia 44, 32–54.
- Hyde KD. 1992b Fungi from decaying intertidal fronds of *Nypa fruticans*, including three new genera and four new species. Botanical Journal of the Linnean Society 110, 95–110.
- Hyde KD. 1997 Additions to the genus *Linocarpon* (ascomycetes: *Hyponectriaceae*). Botanical Journal of the Linnean Society 123, 109–131.
- Hyde KD, Alias SA. 1999 *Linocarpon angustatum* sp. nov. and *Neolinocarpon nypicola* sp. nov. from petioles of *Nypa fruticans*, and a list of fungi from aerial parts of this host. Mycoscience 40, 145–149.
- Hyde KD, Cannon PF. 1999 Fungi causing tar spots on palms. Mycological Paper 175, 1–114.
- Hyde KD, Taylor JE, Fröhlich J. 1998 Fungi from palms. XXXIV. The genus *Neolinocarpon* with five new species and one new combination. Fungal Diversity 1, 115–131.
- Index Fungorum 2017 http://www.indexfungorum.org/Names/Names.asp (Accessed 16 November 2017).
- Jasrotia P, Green SJ, Canion A, Overholt WA et al. 2014 Watershed-scale fungal community characterization along a pH gradient in a subsurface environment contaminated with uranium and nitrate. Applied and environmental microbiology 80, 1810–1820.
- Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J et al. 2015 The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Diversity 74, 3–18.
- Jeewon R, Hyde KD. 2016 Establishing species boundaries and new taxa among fungi: recommendations to resolve taxonomic ambiguities. Mycosphere 7, 1669–1677.
- Jeewon R, Liew EC, Hyde KD. 2003 Molecular systematics of the Amphisphaeriaceae based on cladistic analyses of partial LSU rDNA gene sequences. Mycological Research 107, 1392– 1402.
- Jones EBG, Sakayaroj J, Suetrong S, Somrithipol S, Pang KL. 2009a Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Diversity 35, 1–187.
- Jones EB, Zuccaro A, Mitchell J, Nakagiri A et al. 2009b Phylogenetic position of freshwater and marine Sigmoidea species: introducing a marine hyphomycete *Halosigmoidea* gen. nov. (Halosphaeriales). Botanica Marina 52, 349–359.
- Kirk PM, Cannon PF, David JC, Stalpers JA. 2001 Ainsworth and Bisby's dictionary of the fungi (No. Ed. 9). CABI publishing.
- Katoh K, Standley K. 2013 MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology & Evolution 30, 772–780.
- Kumar S, Stecher G, Tamura K. 2016 MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular biology and evolution msw054.
- Liu PSW. 1977 A supplement to a host list of plant diseases in Sabah, Malaysia. Phytopathological papers 21, 1–49.

- Liu YJ, Whelen S, Hall BD. 1999 Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution 16, 1799–1808.
- Lu B, Hyde KD, Ho WH, Tsui KM et al. 2000 Checklist of Hong Kong Fungi. Fungal Diversity Press, Hong Kong, 207 pages.
- Lumbsch HT, Huhndorf SM. 2011 Myconet Volume 14. Part One. Outline of Ascomycota— 2009. Part Two. Notes on Ascomycete Systematics. Nos. 4751–5113.
- Maharachchikumbura SSN, Hyde KD, Jones EG, McKenzie EHC et al. 2015 Towards a natural classification and backbone tree for Sordariomycetes. Fungal Diversity 72, 199–301.
- Maharachchikumbura SSN, Hyde KD, Jones EG, McKenzie EHC et al. 2016 Families of Sordariomycetes. Fungal Diversity 79, 1–317.
- Miller AN, Huhndorf SM. 2005 Multi-gene phylogenies indicate ascomal wall morphology is a better predictor of phylogenetic relationships than ascospore morphology in the Sordariales (Ascomycota, Fungi). Molecular phylogenetics and evolution 35, 60–75.
- Nylander JAA. 2004 MrModeltest 2.0. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.
- Penzig AJO, Saccardo PA. 1897 Diagnoses fungorum novorum in insula Java collectorum. Series. I. Malpighia 11, 387–409.
- Petrak F. 1952 Über die Gattungen Gaeumannomyces v. Arx et Olivier, Halophiobolus Linder und *Linocarpon* Syd. Sydowia 6, 383–388.
- Petrak F. 1956 Mykologische Bemerkungen. Sydowia 10, 296–305.
- Petrak F, Deighton FC. 1952 Beiträge zur Pilzflora von Sierra Leone. Sydowia 6, 309–322.
- Pinruan U, Hyde KD, Lumyong S, McKenzie EHC et al. 2007 Occurrence of fungi on tissues of the peat swamp palm *Licuala longicalycata*. Fungal Diversity 25, 157–173.
- Pirozynski KA. 1972 Microfungi of Tanzania. I. Miscellaneous fungi on oil palm. Mycological Papers 129, 1–39.
- Poonyth AD, Hyde KD, Wong SW, Peerally A. 2000 Ultrastructure of asci and ascospore appendages in *Linocarpon appendiculatum* and *L. nypae*. Botanica Marina 43, 213–221.
- Racovitza A. 1959 Étude systématique et biologique des champignons bryophiles. Mémoires du Muséum national d'histoire naturelle. Série B, Botanique 10, 1–288.
- Rambaut A. 2006 FigTree: Tree Figure Drawing Tool Version 1.4.0 2006–2012, Institute of Evolutionary Biology, University of Edinburgh.
- Rehmit H. 1901 Beiträge zur Pilzflora von Südamerika. XII. Sphaeriales. Hedwigia 40, 100–124.
- Rehner SA, Buckley E. 2005 A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97, 84–98.
- Sawada K. 1943 Descriptive catalogue of Formosan fungi. Part IX. Report of the Department of Agriculture Government Research Institute of Formosa 86, 1–178.
- Schrantz JP. 1960 Recherches sur les pyrénomycètes de l'ordre des Diatrypales sensu Chadefaud. Bulletin de la Société Mycologique de France 76, 305–40.
- Silvestro D, Michalak I. 2011 raxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12, 335–337.
- Sivanesan A, Hsieh WH. 1989 New species and new records of ascomycetes from Taiwan. Mycological research 93, 340–351.
- Sousa da Camara, da Luz. 1939 Agron. Lusitan 1, 47.
- Spegazzini C. 1912 Mycetes argentinenses (Series VI). Anales del Museo Nacional de Historia Natural Buenos Aires 23, 1–146.
- Stamatakis A. 2006 RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
- Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW. 2007 A multi-gene phylogeny of *Clavicipitaceae* (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution 44, 1204–1223.

Sydow H. 1938 – Neue oder bemerkenswerte australische Micromyceten - III. Annales Mycologici. 36, 295–313.

- Sydow H, Sydow P. 1917 Beitrag zur Kenntniss der Pilzflora der Philippinen-Inseln. Annales Mycologici 15, 165–268.
- Taylor JE, Hyde KD. 2003 Microfungi of Tropical and Temperate Palms. Research Series 12, 1– 459.
- Thongkantha S, Lumyong S, Lumyong P, Whitton SR et al. 2003 Microfungi on the *Pandanaceae: Linocarpon lammiae* sp. nov., *L. siamensis* sp. nov. and *L. suthepensis* sp. nov. are described with a key to *Linocarpon* species from the *Pandanaceae*. Mycologia 95, 360–367.
- Turner PD. 1971 Microorganisms associated with oil palm (*Elaeis guineensis* Jacq.). Phytopathological papers 14, 1–58.
- Vasilyeva LN. 1993 Pyrenomycetes of the Russian Far East. I. Gnomoniaceae. Institute of Biology & Pedology, Russian Academy of Sciences, Far East Department, Vladivostok.
- Vilgalys R, Hester M. 1990 Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172, 4238–4246.
- Vitoria NS, Cavalcanti MA, dos Santos CD, Pereira J et al. 2013 *Neolinocarpon attaleae* sp. nov. on *Attalea funifera (Arecaceae)* from Brazil. Mycotaxon 123, 141–145.
- Wang YZ, Hyde KD. 1999 *Hyponectria buxi* with notes on the *Hyponectriaceae*. Fungal Diversity 3, 159–172.
- Walker J. 1980 Gaeumannomyces, Linocarpon, Ophiobolus and several other genera of scolecospored ascomycetes and Phialophora conidial state, with a note on hyphopodia. Mycotaxon 11, 1–129.
- White TJ, Bruns T, Lee SJWT, Taylor JW. 1990 Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18, 315–322.
- Yanna HWH, Hyde KD. 2003 Can ascospore ultrastructure differentiate between the genera *Linocarpon* and *Neolinocarpon* and species therein? Mycological Research 107, 1305–1313.
- Zhuang WYE. 2001 Higher Fungi of Tropical China. Mycotaxon, Ltd., Ithaca, NY, 485 pages.