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Abstract: A Streptomyces strain was isolated from soil and the sequence of 1471 nucleotides
of its 16S rDNA showed 99% identity to Streptomyces sp. HV10. This newly isolated
Streptomyces strain produced an extracellular polysaccharide (EPS) composed mainly of glucose
and mannose in a ratio of 1:4.1, as was characterized by Fourier transform infrared spectroscopy
(FTIR), HPLC and 1H-NMR. The antioxidant activities of the partially purified MOE6-EPS were
determined by measuring the hydroxyl free radical scavenging activity and the scavenging of
2,2-diphenyl-2-picryl-hydrazyl (DPPH) radicals. In addition, the partially purified MOE6-EPS
showed high ferrous ion (Fe2+) chelation activity which is another antioxidant activity. Interestingly,
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays that were colorimetric
assays for NAD(P)H-dependent cellular oxidoreductases and a proxy of the number of viable cells,
showed that the partially purified MOE6-EPS inhibited the proliferation of the human breast cancer
cells (MDA-MB-231). The scratch wound assay showed that MOE6-EPS reduced the migration of
mouse breast cancer cells (4T1). This study reports the production of EPS from Streptomyces species
with promising antioxidant, metal chelating and mammalian cell inhibitory activities.
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1. Introduction

Microbial polysaccharides are high molecular weight polymers consisting of carbohydrates [1].
These polysaccharides exist in different forms: covalently bound to the cell surface as capsular
polysaccharides or secreted into the surrounding environment as free exopolysaccharides (EPS).
Microbial polysaccharides have different biological functions: protecting the cell from desiccation,
acting as antimicrobial agents, facilitating the adhesion of bacteria to various solid surfaces, and playing
an important role in symbiosis [2,3]. EPS may be homopolysaccharides, which are composed of a
single type of monosaccharide forming the polysaccharide chain, or heteropolysaccharides, which
are chains composed of two or more different sugars usually with different ratios [4]. The different
structures and saccharide composition of EPS produced from different microbial strains hold the
potential for diverse functionalities.

Microbial polysaccharides are used extensively in various industrial and pharmacological
applications due to their unique physical and rheological properties. These polymers can be used
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as gelling, emulsifying, thickening or flocculating agents in food, cosmetics and adhesive industries,
as well as waste water treatment and oil recovery applications [5]. Interestingly, certain EPS products
have demonstrated functional biological activities when used as antitumor, antiviral, anticoagulant
and/or immunomodulating agents [6,7].

The role of Reactive Oxygen Species (ROS) is well established in the development of many diseases
including cancer, cellular aging and neurodegeneration, as well as coronary heart disease, because
ROS oxidatively damage tissues and cellular machinery [8,9]. Since many of the synthetic antioxidants
have unfavorable side effects [10], the development of treatments has focused on the production of
antioxidant drugs of natural origin. Several microbial polysaccharides have been reported to have
strong antioxidant activities and may be developed as natural antioxidant drugs [11,12].

While the production of microbial EPS from bacteria is extensively studied, the understanding
of its production from Streptomyces species is incomplete. Streptomyces species are Gram positive,
filamentous bacteria found mainly in soil and they are well known producers of biologically active
compounds, mainly antibiotics [13]. In this study, we report on a novel isolate from the soil of
Columbia, MO, USA with 16S rDNA sequence homologous to Streptomyces sp. HV10. The newly
isolated strain produces EPS, that shows apparent antioxidant, metal chelating activities, as well as
inhibition of proliferation and migration of mammalian cells.

2. Results and Discussion

2.1. Isolation and Identification of the Streptomycetes

A Gram-positive, filamentous Streptomyces species was isolated from soil sample of Columbia,
Missouri, USA; the colonies are white, chalky and circular shaped, which is characteristic of the
Streptomycetaceae family. A 1471-base pair fragment of the 16S rDNA of the isolate was sequenced,
and the genus of the organism was assigned with a maximum likelihood phylogenetic tree and
sequence alignment (Figure 1). Based on high (>99%) sequence identity of the 16S rDNA gene to that
of Streptomyces sp. HV10 and position on the Streptomyces branch of the phylogenetic tree, the isolate
was assigned to the Streptomyces genus. The 16S rDNA sequence has been submitted to GenBank
(accession number KY742742, available at https://www.ncbi.nlm.nih.gov/genbank/).
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2.2. Characterization of Streptomyces sp. MOE6 Exopolysaccharide

Following extraction, partial purification and lyophilization of the EPS, the final product deemed
MOE6-EPS had a yield of (2.5 g/L) and was observed to be a white, spongy precipitate. MOE6-EPS
was then subjected to structural and molecular content characterization by spectroscopy and sugar
analyses to confirm the product to be EPS and to understand its physical properties.

Fourier transform infrared (FTIR) spectroscopy was employed to detect the main functional
groups in MOE6-EPS [14]. The FTIR spectrum (Figure 2) showed that the MOE6-EPS contains the
typical absorption peaks associated with polysaccharides. The broad, large peak at 3433 cm−1 indicates
the presence of hydroxyl groups which are characteristic for polysaccharides, as each monosaccharide
has more than one hydroxyl [15]. The bands in the regions of 2962 cm−1 and 1200 cm−1 to 1400 cm−1

are assigned to weak CH-stretching of methylene (–CH2–) groups and angular vibration which is
evidence that the produced MOE6-EPS contains carbohydrate [16,17]. Moreover, the band around
1656 cm−1 may result from C=O stretch of the carboxylic group for uronic acid [18]. In the spectrum,
the absorption at 1088 cm−1 region is attributed to the stretching vibration of pyranose ring [19].
Taken together, all of these features in the FTIR spectrum confirm that the product is a polysaccharide
containing pyranoses.
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Figure 2. Fourier transform infrared (FTIR) spectrum of the MOE6-EPS in the range of 400–4000 cm−1

showing common bands which are characteristic for polysaccharides.

Additional spectroscopic characterization of the partially purified MOE6-EPS was carried out with
UV-visible absorption spectroscopy (Figure 3). The absorption spectrum of 250 µg MOE6-EPS/mL had
maximum absorption in the range of 200–210 nm, with a small shoulder in the range of 250–290 nm.
The region between 200–210 nm could be attributed to the presence of carboxyl, carbonyl, or ester
functional groups, while the presence of bands at 250–290 nm is commonly due to the presence of
aromatic compounds. The bands at 260 nm and 280 nm may be attributed to DNA and protein
respectively [20]. The UV-vis spectrum provided further evidence that the MOE6-EPS product could
be composed of carbohydrates. Since spectroscopic studies were suggestive of sugar content found in
polysaccharides, MOE6-EPS was tested chemically for carbohydrate content and the sugars typically
found in MOE6-EPS. The phenol sulfuric assay [21] showed that the partially purified MOE6-EPS
contains 71 ± 1% carbohydrate. The metahydroxydiphenyl assay for the uronic acids [22] revealed
that the MOE6-EPS contains 3.6 ± 0.1% uronic acid while the Bradford assay for protein content [23]
showed that MOE6-EPS contains 0.78 ± 0.1%.
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The monosaccharide units of the MOE6-EPS were then identified by HPLC retention times
compared to the retention times of reference sugars including: glucose, galactose, mannose, xylose and
glucuronic acid. After hydrolysis with 2M trifluoroacetic acid (TFA) at 110 ◦C for 6 h, the sugars were
analyzed on the HPLC and the refractive index chromatograms of each sugar were recorded. In the
neutral sugar region, two distinct peaks (Figure 4, peaks 1 and 2) on the MOE6-EPS chromatogram
were observed at retention times corresponding to those of glucose (15.9 min) and mannose (16.7 min)
and were assigned peaks 1 and 2, respectively (Figure 4). By comparing peak areas of the two sugars,
the ratio of glucose to mannose in MOE6-EPS was calculated to be 1:4.1, respectively. Similarly,
Miyazaki and Yamada [24] reported that Streptomyces sp. FERM-P1185, which also was isolated from
soil, produces an EPS which is composed of repeating units of glucose and mannose in molar ratio
1.87:1. This comparison suggests that even bacteria from the same genus produce EPS with unique
sugar content. The polysaccharide may also contain non-carbohydrate moieties such as acetate and
pyruvate as in the case of xanthan gum which contains 85.3% carbohydrates formed mainly of glucose,
mannose and glucuronic acid together with acetate and pyruvate, the concentrations of the acetate and
pyruvate varied depending on the fermentation process conditions [25]. The reference sugars were
run on HPLC before and after hydrolysis, and it was found that after hydrolysis, an additional peak
appeared at a retention time, which is so close to that of the glucuronic acid, and it overlapped the
glucuronic acid peak making an identification and quantification of glucuronic acid indeterminate.

The partially purified MOE6-EPS was further characterized by one-dimensional (1D) 1H-NMR
spectroscopy (Figure 5). The 1H-NMR spectrum of polysaccharides consists mainly of three regions.
The first region is the ring proton region (δH 3.1–4.5 ppm) which shows a crowded signal region due
to the presence of many sugar residues and this region is typical for polysaccharides. The second
region is the anomeric proton region (δH 4.5–5.5 ppm) and, finally, the third region is the alkyl region
(δH 1.2–2.3 ppm) [26]. The 1H-NMR spectrum of MOE6-EPS showed the ring proton region which
is characteristic of polysaccharides, and it also showed a signal at δ 2.102 ppm indicating that the
polysaccharide contains acetyl groups. Moreover, the 1H-NMR spectrum of MOE6-EPS contained
six main anomeric protons. The anomeric region of the NMR spectrum revealed the presence of
α-anomeric and β-anomeric protons, due the presence of signals between δ 4.90 ppm to δ 5.50 ppm
and δ 4.30 ppm to δ 4.80 ppm, respectively. The proton signals at 5.04 ppm and 4.9 ppm may be
attributed to the presence of the hydrogen (H1) that is binding to the carbon (C1) of both mannose
and glucose respectively. These results are similar to what was shown by 1H-NMR spectroscopy of a
glucomannan isolated from Amorphophallus species that had signals at 4.9 ppm and 5.05 ppm due to
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the presence of H1 of glucose and mannose units, respectively [27]. The 1H-NMR spectrum confirms
the results obtained from HPLC which showed that the MOE6-EPS contains glucose and mannose.Molecules 2017, 22, 1396 5 of 18 
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The matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) analysis of MOE6-EPS
(Figure 6) showed the presence of 4 prominent peaks at 8265 (±2 to 5 Da; as determined by the
University of Missouri Charles W. Gehrke Proteomics Center), 11,465; 14,190; and 16,320 Da suggesting
that MOE6-EPS may be a low molecular weight polysaccharide. However, it has not been established
whether the original product is actually much larger or whether it could not be ionized for analysis.
If the product were large, then the fragments identified could have resulted from damage occurring
during the purification process or the laser ablation.

We found additional evidence in the spectrum that the EPS is most likely a polysaccharide.
The mass differences between the base peak at 8423 and its closest fragment peak at 8265 is
approximately 158 Da, suggesting a six-carbon sugar monomer (180 less water + proton = 163 Da) was
lost from the chain. Also a similar mass difference, 169, was found between peak at 14,359 and 14,190.
Therefore, the molecular mass of the polymer is at least 8 to 16 kDa.
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Figure 6. MALDI-TOF of MOE6-EPS.

2.3. Antioxidant Activities of MOE6-EPS

EPS products isolated from many bacteria have demonstrated antioxidant activity by scavenging
free radicals. This is a desired reaction in many biological systems to prevent ROS induced oxidative
damage. The efficiency of this reaction depends on the sugar content and structure of each EPS [28].
Since EPS products from different bacteria have unique compositions, the ability of each strain’s EPS
to act as an antioxidant will be characteristic of the composition. ROS includes radical and non-radical
oxygen species which are generated from the partial reduction of oxygen. When the production
of these radicals increases, they will be out of control of the cellular antioxidant defense system
generating an oxidative stress [29]. This oxidative stress results in the damage of many biologically
active molecules including nucleic acids, lipids, and proteins that contribute to the development of
several diseases in mammals, such as neurodegenerative diseases [30] and cancer [29]. Hence, it is
crucial to develop novel antioxidant compounds particularly of natural sources to avoid possible side
effects of synthetic antioxidants.

2.3.1. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging

The DPPH assay has been extensively used to evaluate the ability of different compounds to
scavenge free radicals. The scavenging of free radicals is one mechanism of antioxidant activity. When
the unpaired electron on the nitrogen atom of DPPH receives a hydrogen atom from antioxidants,
it will be reduced and lose its deep purple color and form a pale yellow color [31]. The decrease in the
absorbance at 517 nm is used to measure the DPPH radical scavenging activity of the tested compound.
Figure 7 shows the DPPH radical scavenging activity of the partially purified MOE6-EPS compared to
ascorbic acid, a very strong antioxidant. The ascorbic acid was used as a positive control and it showed
higher DPPH scavenging activity at the same weights used for EPS. The DPPH scavenging activity of
MOE6-EPS was concentration dependent and linearly increased over the MOE6-EPS concentrations
tested. At 0.5 mg/mL, the EPS showed scavenging ability of 6.0 ± 0.1% of the DPPH free radicals,
while at 4 mg/mL, the EPS showed 37.8 ± 0.1% scavenging of initial DPPH concentration.

2.3.2. Hydroxyl Radical Scavenging Activity

A second antioxidant activity assay measures the ability of the partially purified MOE6-EPS to
scavenge hydroxyl radicals. The hydroxyl radical •OH is a potent reactive oxygen species formed by
the partial reduction of oxygen [32].

The antioxidant capacity of the purified MOE6-EPS was tested as described by Yin et al.,
(2010) with the phenanthroline assay. In this assay, the hydroxyl radicals are generated through
the following reaction:

Fe2+ + H2O2 → Fe3+ + OH− + •OH,

In this reaction, there are two mechanisms for the antioxidation activity. The first mechanism is the
direct scavenging of the formed hydroxyl radicals to form a non-radical compound. And the second
mechanism is through the suppression of the formation of these hydroxyl radicals by chelating the Fe2+

required for the generation of hydroxyl radicals. These iron complexes are rendered unable to react
with H2O2 to form •OH [33]. Therefore, the polysaccharides with metal chelating activities should be
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able to reduce the generation of •OH through the chelation Fe2+ and thus display antioxidant activity.
The phenanthroline assay does not discriminate between these two mechanisms and the scavenging
ability seen in this assay can result from direct reduction of hydroxyl radicals, the suppression of
radical generation by metal chelation or a combination of both mechanisms.
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of MOE6-EPS (0.5, 1, 1.5, 2, 3, 4 mg/mL) from Streptomyces sp. MOE6 compared to that of ascorbic acid
(0.5, 1, 1.5, 2, 3, 4 mg/mL) as a positive control. Values are means ± SD (n = 3). 100% (w/v) of DPPH
was 78.86 µg/mL. The absence of error bars indicates that the errors were smaller than the symbols.

Figure 8 shows the phenanthroline assay of the partially purified MOE6-EPS hydroxyl radical
scavenging activity compared to ascorbic acid as a positive control. The hydroxyl radical scavenging
activity increased with increasing concentrations of MOE6-EPS in the range of 0.5–4 mg/mL.
At 0.5 mg/mL, MOE6-EPS showed hydroxyl radical scavenging activity of 3.6 ± 0.1% while the
maximum hydroxyl radical scavenging activity measured was 26.0 ± 0.1% achieved at 4 mg/mL EPS.
By contrast, at 4 mg/mL ascorbic acid had nearly 100% hydroxyl radical scavenging activity. Like the
MOE6-EPS, the ascorbic acid scavenging activity increased with increasing its concentration until,
unlike the MOE6-EPS, ascorbic acid reached a maximum scavenging activity (100%) at 3 mg/mL with
no further increase in the activity observed above this concentration. The low scavenging activity of
the EPS could be attributed to the metal chelating activity of the polymer. To decipher if MOE6-EPS is
acting as an antioxidant through direct reduction or metal chelation, Fe2+ chelating activity of the EPS
in a ferrozine-based assay was performed.
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4 mg/mL) as a positive control. Values are means ± SD (n = 3). 100% w/v of OH− was 340 µg /mL.
The absence of error bars indicates that the errors were smaller than the symbols.
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2.3.3. Ferrous Ion Chelating Activity of Purified EPS

Ferrous ion chelation (Fe2+) activity is strongly related to the antioxidant activity, due to the
ability of transition metal ions to initiate radical formation through the transfer of a single electron to
certain compounds thereby generating free radicals [34,35]. Metal chelating activity of the partially
purified MOE6-EPS was measured following the method reported by Qiao and co-workers [34,36],
where the absorbance at 562 nm of the red colored complex of ferrozine with reduced iron was
measured. The addition of a metal-chelating agent disrupts the formation of the ferrozine–Fe2+

complex decreasing the red color formed by the complex. In Figure 9, MOE6-EPS showed strong
ferrous ion chelation activity which increased with increasing concentrations of the MOE6-EPS as
compared to EDTA–Na+ at similar EPS concentrations. The MOE6-EPS maximum chelating capacity
occurred at a concentration of 2 mg/mL which was 92.0 ± 0.1% where EDTA–Na+ had a 98.4 ± 0.02%
chelating capacity at the same concentration (2 mg/mL). There was no apparent increase in the metal
chelation activity upon increasing the EPS concentration beyond 2 mg/mL. The chelating ability of a
compound can be described as the formation of bonds between two or more binding sites within the
same molecule with one single central atom [37]. Since the characterization results showed that the
produced MOE6-EPS contains uronic acid, the negatively charged carboxyl groups could act as the
binding sites for ferrous ions [38,39]. Similar results were obtained by Li et al., 2014 [40] who reported
three EPS products isolated from Lactobacillus helveticus MB2-1. All three of the EPS products had the
ability to chelate ferrous ion under the same experimental conditions, and the metal chelating activities
of these polysaccharides increased by increasing the polysaccharide concentrations reaching maximum
activity at 2 mg/mL as observed for MOE6-EPS. Additionally, as seen for MOE6-EPS, a further increase
in the polysaccharide concentration above 2 mg/mL did not show any significant effect on the ferrous
iron chelating activity. However, MOE6-EPS had almost twice the binding capacity of the Lactobacillus
EPS products. The three EPS products of Lactobacillus showed metal chelating activities of 53.2 ± 0.1%,
45.9 ± 0.1 and 38.7 ± 0.1% each at a concentration of 4 mg/mL. These results suggest that MOE6-EPS
is a strong metal chelator.
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4 mg/mL) from Streptomyces sp. MOE6 compared to that of EDTA-Na+ (0.25, 0.5, 1, 1.5, 2, 3, 4 mg/mL)
as a positive control. Values are means ± SD (n = 3). 100% (w/v) Fe2+ was 111.6 µg/mL. The absence of
error bars indicates that the errors were smaller than the symbols.

There are several factors that affect the antioxidant activities of the polysaccharides. You et al.,
2013 [41] showed that the antioxidant activity of the polysaccharide was affected by the molecular
weight, the smaller the molecular weight the higher the antioxidant activity. Based on this finding, the
difference in scavenging ability of the MOE6-EPS as compared to ascorbic acid could be attributed
to the difference in molecular weight, as the MOE6-EPS in the assay was not hydrolyzed. Structural
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studies of MOE6-EPS would help resolve the mechanisms of radical scavenging and metal chelation.
Furthermore, the monosaccharide composition and the structure of the polymer also have been shown
to affect the free radical scavenging activities [28]. In future studies, the structure of the MOE6-EPS
will be determined allowing interpretation of the structure–activity relationship of the MOE6-EPS
in antioxidant activity mechanisms. Taken together, the sugar-composition characterization and
antioxidant assays suggest that MOE6-EPS might prove useful as an antioxidant and metal-chelator.

2.4. Effect of MOE6-EPS on the Migration and Proliferation of Mammalian Cells

Understanding the effects of Streptomyces EPS on mammalian cell growth may provide the basis
for the development of a product useful for intervention in disease. Breast cancer is the most frequently
diagnosed cancer type and is one of the leading causes of cancer death worldwide [42]. ROS levels
are elevated in all cancer types as they modulate the behavior of cancer cells and are involved in cell
proliferation, cell apoptosis, angiogenesis, metabolism, protein synthesis and inflammation [43].

Additionally, the essential contribution of iron to tumor growth is well established [44]. Iron is
crucial for the activity of iron-and heme-containing enzymes that are involved in the mitochondrial
activity, DNA synthesis and cell cycle [45]; hence, iron supports tumor growth through promoting
cell replication and metabolism [46,47]. Also, iron induces the generation of deleterious hydroxyl
radical ROS that results in DNA damage and the generation of carcinogenic mutations. Interestingly,
several cancer types, including breast cancer, show elevated iron acquisition and storage due to the
increased expression levels and activity of the proteins responsible for iron metabolism in malignant
cells, e.g., transferrin, lipocalin and ferritin [46,48–51]. As such, therapeutic approaches targeting iron
metabolism focus on iron chelators [52,53] where some have shown promise in preclinical and clinical
studies as anticancer agents [53–55]. Based on our results with scavenging ROS and chelation of iron,
we sought to evaluate the inhibitory activity of the partially purified EPS of isolate MOE6 toward
the murine (4T1) and human breast cancer cells (MDA-MB 231) as a first step in determining the
effectiveness of MOE6-EPS as an inhibitor of mammalian cell growth and development.

2.4.1. The Scratch Wound Assay

Often cancer involves uncontrolled cell migration that is the first step in metastasis [43], the process
by which cancer cells migrate away from their original tumor site and disseminate throughout the
body [44]. The migration ability of tumor cells is crucial for the metastasis of various cancer types
including breast cancer cells [56,57]. As a result, a scratch wound assay was used to assess the influence
of the EPS on the migration [58] of murine breast cancer cells (4T1 cells). In the scratch assay, an artificial
gap (scratch) is created after the cancer cells form a confluent monolayer. The cells at the edge of the
scratch will migrate closing this scratch and forming a monolayer once more [58]. Here, the migration
of 4T1 cells was monitored by real time microscopy through imaging at regular intervals following the
addition of different concentrations of the partially purified MOE6-EPS. The results revealed that the
MOE6-EPS treatment significantly reduced the migration ability of murine breast cancer 4T1 cells in a
concentration dependent manner. The percentage of migration distance was 80.9% in untreated cells,
and was significantly decreased upon treatment with EPS to 70.1%, 48.5% and 48.9% at concentrations
of 1, 2 and 4 mg/mL respectively (Figure 10). This result demonstrates that the EPS inhibits murine
breast cancer cell migration.
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2.4.1. The Scratch Wound Assay 

Often cancer involves uncontrolled cell migration that is the first step in metastasis [43], the 
process by which cancer cells migrate away from their original tumor site and disseminate 
throughout the body [44]. The migration ability of tumor cells is crucial for the metastasis of various 
cancer types including breast cancer cells [56,57]. As a result, a scratch wound assay was used to 
assess the influence of the EPS on the migration [58] of murine breast cancer cells (4T1 cells). In the 
scratch assay, an artificial gap (scratch) is created after the cancer cells form a confluent monolayer. 
The cells at the edge of the scratch will migrate closing this scratch and forming a monolayer once 
more [58]. Here, the migration of 4T1 cells was monitored by real time microscopy through imaging 
at regular intervals following the addition of different concentrations of the partially purified MOE6-
EPS. The results revealed that the MOE6-EPS treatment significantly reduced the migration ability of 
murine breast cancer 4T1 cells in a concentration dependent manner. The percentage of migration 
distance was 80.9% in untreated cells, and was significantly decreased upon treatment with EPS to 
70.1%, 48.5% and 48.9% at concentrations of 1, 2 and 4 mg/mL respectively (Figure 10). This result 
demonstrates that the EPS inhibits murine breast cancer cell migration. 
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be attributed to the iron chelating of the EPS. Further investigation on the mechanism of the inhibitory 
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Figure 10. MOE6-EPS reduces the migration of 4T1 murine breast cancer cells. The 4T1 cells were
cultured in 0, 1, 2 and 4 mg MOE6-EPS/mL. The wound healing was monitored for 24 h by real time
microscopy and images were captured after 0 and 24 h. (A) Representative images of 3 independent
experiments; (B) Quantification and statistical analysis of the migrated distance by 4T1 cells as a
percentage of control. Values are means ± SD (n = 3) where ** p < 0.01 indicate significant decreases
from untreated cells.

2.4.2. MTT Assay

Another major therapeutic approach for cancer therapy is to inhibit uncontrolled cancer cell
proliferation, a typical characteristic of various cancer types [59]. The anti-proliferative activity of the
partially purified MOE6-EPS was assessed by the MTT assay, where the yellow MTT will be reduced
to purple formazan by cellular mitochondrial dehydrogenase found in the living cells [60], thus the
increase in staining of viable human breast cancer cells MDA-MB 231 will be proportional to the
living cells [61]. The MTT assay showed that the EPS has a significant effect on the proliferation of
MDA-MB 231 breast cancer cells, where the cell viability decreased with the increase of the MOE6-EPS
concentrations and this growth inhibitory activity is dose-dependent at EPS concentrations ranging
from (0–16 mg/mL) (Figure 11). The IC50 of EPS was calculated to be 2.93 mg/mL. Compared with the
negative control (untreated), the partially purified MOE6-EPS showed significant inhibition (p < 0.05)
and (p < 0.01) at 4 mg/mL and 8–16 mg/mL respectively, which as mentioned earlier, might be
attributed to the iron chelating of the EPS. Further investigation on the mechanism of the inhibitory
activity of the EPS in a variety of tumor-bearing and non-tumor cell lines will be pursued in our future
work. Thus, we report for the first time that the Streptomyces sp. MOE6 produces EPS with apparent
activity against the proliferation of human breast cancer, one of the most prevalent cancer types and
with the highest mortality rate among women [42]. Further studies will determine whether the EPS
inhibition occurs differentially with normal cells being more resistant than cancer cells, a desired result
for the development of a useful treatment product.
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231 cells were cultured in 0, 2, 4, 8 and 16 mg MOE6-EPS/mL for 96 h and then the cell viability was
assessed by the MTT assay. Values are means ± SD (n = 3), where * p < 0.05, ** p < 0.01 and *** p < 0.001
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3. Materials and Methods

3.1. Materials and Reagents

2,2-Diphenyl-1-picrylhydrazyl (DPPH), trifluoroacetic acid (TFA), EDTA-Na, KBr, FeCl2·4H2O,

MgSO4·7H2O, anhydrous CaCO3, ZnSO4·7H2O, galactose, mannose, xylose were purchased from
Sigma Chemical Co. (St. Louis, MO, USA). 1,10-phenanthroline, m-hydroxybiphenyl, H2O2, phenol,
H2SO4, yeast extract, tryptone, glucose, agar, NaCl, glycerol, anhydrous K2HPO4, KH2PO4, ascorbic
acid were purchased from Fisher Scientific Co. (Fair Lawn, NJ, USA). Ethanol was purchased from
Decon Labs, Inc. (King of Prussia, PA, USA). Ferrozine was purchased from HACH Chemical Co.
(Ames, IA, USA). Malt was purchased from MP Biomedicals, LLC. (Solon, OH, USA). Dulbecco’s
Modified Eagle Medium (DMEM) was purchased from Thermo Fisher Scientific (Waltham, MA, USA).

Cell cultures: the mouse breast cancer cell line (4T1 cells ATCC CRL-2539) and the human
breast cancer cell line (MDA-MB-231 ATCC HTB-26) were purchased from American Type Culture
Collection (ATCC).

3.2. Isolation of Streptomyces Strain

Soil samples were collected from different regions of Columbia, Missouri, USA at a depth of
15–20 cm into sterile containers. Five grams of each soil sample were diluted in 50 mL of International
Streptomyces Project (ISP2) medium [62] and the inoculated medium was placed in a 30 ◦C shaker at
100 rpm for 60 min. Ten mL of three different dilutions (10−1, 10−2, 10−3) were prepared in sterile
saline solutions 0.85% (w/v) NaCl. Then, 100 µL of each dilution was cultured on ISP 2 solidified
medium composed of the following in one liter: yeast 4 g, malt 10 g, glucose 4 g and agar 15 g and
Glycerol–asparagine agar medium which is composed of the following in one liter (asparagine 1 g,
glycerol 10 g, anhydrous K2HPO4 1 g, 1 mL trace salt solution (0.1 g FeSO4·7H2O, 0.1 g MnCl2·4H2O,
0.1 g ZnSO4·7H2O and 100 mL H2O), 15 g agar). Nystatin 100 mg/L was added to each medium as an
antifungal agent. Plates were incubated at 30 ◦C and monitored each 24 h for 14 days. Typical chalky
Streptomyces colonies with earthy odor were selected and then streaked on ISP agar medium [63] and
examined microscopically. The isolated Streptomyces species were preserved in the production medium
(see Section 3.4) with glycerol at final concentration 20% (v/v) and kept at −20 ◦C.
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3.3. Identification of the Streptomyces Strain

A Streptomyces strain was identified on the basis of 16S rDNA gene sequencing where DNA was
isolated from 1 mL of an overnight culture grown aerobically in production medium (see Section 3.4)
with a Promega Wizard Genomic DNA purification kit according to the manufacturer’s instructions.
For PCR amplification of the 16S rDNA gene, (Table 1) the following universal primers were used, FD1
and 1492R, and amplification was done with Herculase II fusion DNA polymerase. The amplified
DNA product was purified with the Wizard PCR clean-up system (Promega Corp., Madison, WI, USA).
For sequencing, we used the following primers FD1, 334F, 519F, 529R and 1099F and 1492R. The 16S
rDNA (1471 nucleotides) sequence was compared to the sequences available in the National Center for
Biotechnology Information (NCBI) database (5 March 2017). The phylogenetic analysis was performed
with MEGA version 6 software [64].

Table 1. Nucleotide sequences for PCR amplification and sequencing primers.

Primers Nucleotide Sequences (5′ to 3′) References

FD1 AGAGTTTGATCCTGGCTCAG [65]
E334F CCAGACTCCTACGGGAGGCAGC [66]
519F CAGCAGCCGCGGTAA [67]

1099F GCAACGAGCGCAACCC [67]
529R CGCGGCTGCTGGCAC [67]

1492R GGTTACCTTGTTACGACTT [68]

3.4. Production Medium of EPS

EPS was produced in a production medium composed of the following in one liter (tryptone
5 g, yeast extract 5 g, glucose 10 g, anhydrous K2HPO4 3 g, KH2PO4 1 g, NaCl 3 g, MgSO4·7H2O
0.5 g, anhydrous CaCO3 0.5 g) pH 7.0 [69]. Cells were removed by centrifugation at 17,136× g for
20 min, this was followed by precipitation of the EPS from cell-free culture medium with two volumes
of cold ethanol 100% v/v and stored overnight at 4 ◦C. The precipitated EPS was then collected
by centrifugation at 17,136× g for 20 min at 4 ◦C. The EPS was re-dissolved in distilled water and
precipitated with two volumes of cold ethanol 100% v/v, this step was repeated three times. The white
EPS precipitate was collected by centrifugation and lyophilized for further analysis.

3.5. EPS Spectral Analyses

For the detection of the functional groups of MOE6-EPS, infrared spectrum for MOE6-EPS was
recorded with Fourier transform infrared (FTIR) spectroscopy (Thermo Nicolet, NY, USA). An EPS
sample of two milligrams was ground with 200 mg of dry KBr powder and then pressed into a pellet
which was used for FTIR analysis in the frequency range of 4000–400 cm−1.

For UV visible analysis, (250 µg/mL) MOE6-EPS was dissolved in distilled water and then
detected with a UV-visible spectrophotometer (Cary 50 Bio UV-Visible) at wavelengths ranging from
200–400 nm.

The NMR experiments were performed on a Bruker AVIII HD 600 MHz NMR spectrometer
equipped with a triple resonance cryogenic probe. About 5 mg of MOE6-EPS sample was dissolved in
0.75 mL of D2O and placed in a 5 mm NMR tube. The temperature of the sample was 25 ◦C for all the
NMR experiments. Chemical shift axis was calibrated with respect to the residual solvent proton at
4.78 PPM. Proton NMR was acquired with and without water suppression.

The MALDI-TOF was done by dissolving 3 mg MOE6-EPS/mL H2O. Serial dilutions (1:1, 1:5,
1:10, and 1:20 v/v) of the sample were made into 2,5-dihyroxybenzoic acid (DHB) or a 9:1 mix of
DHB and 2-hydroxy-5-methoxybenzoic acid (superDHB), both at 10 mg/mL in a solution of 60%
(v/v) acetonitrile, 1% (v/v) formic acid in H2O. An aliquot (1 µL) was spotted onto a teflon-coated
stainless steel MALDI plate and allowed to co-crystalize at room temperature. Once the samples
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were dry, the plate was loaded into the instrument, and high voltage turned on for 20 min prior
to data acquisition (to stabilize flight-tube voltages). Adding salt to the DHB matrix can help with
carbohydrate ionization (by the formation of Na-adducts) [70]. Addition of 0.5 uL of 0.5M NaCl to the
spotted 1 µL sample (prior to complete drying) did improve signal to noise slightly for low-mass ions.

The Voyager DE-PRO instrument was operated in linear positive-ion mode (25 kV acceleration
voltage, 300 ns delayed extraction, 7500 to 20,000 mass range) and positive-ion reflector mode for low
mass (600–4000 m/z, 25 kV acceleration, 150 ns delayed extraction). Spectra were acquired at a laser
intensity of 2300 (linear mode) and 2000 (reflector mode). Each spectrum consisted of 500 shots per
acquisition. Each sample was calibrated against a close external spot containing intact proteins (AB
Sciex Cal mix 3). The average mass error for these ions was ~2.5 Da. Masses of compounds should be
accurate to within 5Da with this close external calibration.

3.6. Sugar Analysis

For detection of the monosaccharide composition of the MOE6-EPS, 10 mg of EPS was hydrolyzed
by boiling with one mL of 2 M trifluoroacetic acid (TFA) at 110 ◦C for 6 h. Excess TFA was removed by
lyophilization. The hydrolysis product was detected by HPLC on an Aminex column HPX-87N with
the following dimensions: 300 mm × 7.8 mm, with deionized water as mobile phase and a flow rate of
0.5 mL/ min at 80 ◦C monitored with a refractive index detector.

3.7. Neutral Sugar, Uronic Acid and Protein Analyses

The neutral sugar contents in MOE6-EPS were determined by the phenol-sulfuric acid method
with glucose as the standard at 490 nm [21]. Proteins were determined by Bradford assay with bovine
serum albumin as a standard [23]. The uronic acid contents were determined by m-hydroxybiphenyl
at 525 nm with glucuronic acid as the standard [22].

3.8. Antioxidant Activity of EPS

3.8.1. DPPH Radical-Scavenging Assay

The DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical-scavenging activity of the produced EPS
was measured according to Yin et al., 2010 [71]. One mL of 0.2 mM DPPH in ethanol 100% v/v was
mixed vigorously with one mL of EPS sample of different concentrations (0.5, 1, 1.5, 2, 3, 4 mg/mL).
Then the mixture was incubated in the dark for 30 min. The absorbance of triplicate samples was
measured at 517 nm and the absorbance compared to that of the ascorbic acid in the following
concentrations (0.5, 1, 1.5, 2, 3, 4 mg/mL) was used as a positive control.

The DPPH scavenging percentage activity was calculated as follows [70]:

Scavenging ability % = [1 − (As − Ab)/Ac] × 100 (1)

where As is the absorbance of EPS sample with DPPH, Ab is the absorbance of the blank which is the
absorbance of EPS without DPPH, Ac is the absorbance of the negative control which is the absorbance
of DPPH alone without EPS.

3.8.2. Hydroxyl Free Radical-Scavenging Assay

Hydroxyl free radical-scavenging activity was estimated following the method reported by
Yin et al., 2010 [71] with some modifications. Where 2.0 mL of phosphate buffered saline (PBS, 20 mM,
pH 7.4), 1.0 mL of 2.5 mM 1, 10-phenanthroline, 1.0 mL of 2.5 mM FeSO4 and 1 mL of 20 mM H2O2

were mixed. This was followed by the addition of one mL of various concentrations of the MOE6-EPS
sample (0.5, 1, 1.5, 2, 3, 4 mg/mL) and then the whole mixture was incubated for one hour at 37 ◦C.



Molecules 2017, 22, 1396 14 of 18

The mixture absorbance was measured at 536 nm and the hydroxyl radical scavenging activity of the
EPS was calculated as follow:

Scavenging ability % = [(As − Ac)/(Ao − Ac) × 100] (2)

where As is the absorbance of the mixture with different concentrations of EPS sample, Ac is the
absorbance of the control without EPS sample, and Ao is the absorbance of the mixture in the absence
of both H2O2 and the EPS sample. Ascorbic acid (0.25, 0.5, 1, 1.5, 2, 3, 4 mg/mL) was used as a
positive control.

3.8.3. Ferrous Ion Chelating Assay

The Fe2+ chelating assay was measured following the method of Qiao et al., 2009 [36]. Briefly,
1.0 mL of MOE6-EPS solution (0.25, 0.5, 1, 1.5, 2, 3, 4 mg/mL) was mixed well with 0.05 mL of a 2 mM
ferrous chloride (FeCl2·4H2O) solution, which was followed by addition of 0.2 mL of a 5 mM ferrozine
solution and then the final volume was adjusted to 4 mL with water. The mixture was shaken and
incubated for 10 min at room temperature, after which, the absorbance of the mixture was measured at
562 nm with deionized water and EDTA-Na in same concentration of EPS as the blank and a positive
control, respectively. The ferrous ion-chelating ability was calculated as follows:

Fe2+ chelating % = [(Ab − (As − Ao)/Ab)] × 100 (3)

where As is the absorbance of EPS solution, Ab is the absorbance of the blank, Ao is the absorbance of
the same concentration of sample with water instead of FeCl2.

3.9. Effect of MOE6-EPS on Breast Cancer Cells

3.9.1. Scratch-Wound Assay

Cancer cells (4T1 mouse breast cancer cells) were seeded in a 6-well plate for 48 h in Dulbecco’s
Modified Eagle’s medium (DMEM). When the cells formed a confluent layer, the scratch-wounds
were made with sterile micropipette tips in each well and fresh DMEM containing 1% v/v fetal bovine
serum was added with and without MOE6-EPS at different concentrations of 0, 1, 2 and 4 mg/mL.
The healing of the scratch was monitored for 24 h by real time imaging on a Nikon TI-E inverted
microscope with a humidified incubation chamber maintained at 37 ◦C, 95% air and 5% CO2. The cell
migration rate was measured as the ratio of migration distance to a total distance of the wound gap:

Migration % = ((original scratch width − final scratch width)/original scratch width) × 100. (4)

3.9.2. MTT Cell Proliferation Assay

The inhibition of mammalian cell viability by the produced EPS was examined by measuring
the cell proliferation rate of tumor cells with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT) assay described by Mosmann [72] where the cancer cells (MDA-MB 231 human
breast cancer cell line) were seeded in a 24-well plate at a density of 3 × 104 cells/well. After 24 h,
fresh DMEM was added to the cells with increasing concentrations of MOE6-EPS (0, 2, 4, 8 and
16 mg/mL) at 37 ◦C and 5% CO2 in air. The growth of the cells was monitored for 96 h and then the cell
viability was assessed with the Vybrant MTT assay kit (Thermofisher, Waltham, MA, USA) according
to the manufacturer’s suggested protocol. Absorbance (570 nm) of the formazan produced from the
reduction of the tetrazolium dye was measured on an Enspire 2300 Multilabel Reader (Perkin Elmer,
Waltham, MA, USA). The MTT assay was performed three times with three replicates conducted for
each experiment.
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3.10. Statistical Analyses

Data represent means ± SE of three experiments. Statistical significance was defined as p < 0.05
and was calculated by Student’s t-test, with Graph Pad Prism software (GraphPad Software, Inc.,
San Diego, CA, USA).

4. Conclusions

In conclusion, in this study we report for the first time that the Streptomyces sp. MOE6, which was
isolated from a soil sample, produced an EPS composed mainly of glucose, mannose and glucuronic
acid. The partially purified EPS showed antioxidant activities by scavenging DPPH and hydroxyl
radicals. Moreover, it exhibited metal chelation activity. Additionally, the EPS reduced the migration
and the proliferation of mouse (4T1) and human breast cancer cell lines (MDA-MB 231), respectively.
These results were interpreted to mean that the EPS from Streptomyces sp. MOE6 might be a candidate
for the development of novel antioxidant and mammalian cell inhibitor drugs from natural sources.
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