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Abstract: Fungi, especially edible mushrooms, are considered as high-quality food with nutritive
and functional values. They are of considerable interest and have been used in the synthesis of
nutraceutical supplements due to their medicinal properties and economic significance. Specific
fungal groups, including predominantly filamentous endophytic fungi from Ascomycete phylum
and several Basidiomycetes, produce secondary metabolites (SMs) with bioactive properties that are
involved in the antimicrobial and antioxidant activities. These beneficial fungi, while high in protein
and important fat contents, are also a great source of several minerals and vitamins, in particular
B vitamins that play important roles in carbohydrate and fat metabolism and the maintenance of
the nervous system. This review article will summarize and discuss the abilities of fungi to produce
antioxidant, anticancer, antiobesity, and antidiabetic molecules while also reviewing the evidence
from the last decade on the importance of research in fungi related products with direct and indirect
impact on human health.

Keywords: fungi; medicinal mushroom; myco-derived compounds; drug discovery

1. Introduction

Secondary metabolites (SMs) are essential players in fungal growth and development,
and they are actively involved in the interactions with other organisms. Recently, interest
in fungal SMs production and their function and mode of action drag high attention in
drug discovery [1]. Most SMs are produced after the fungus has achieved its initial growth
phase [2]. The fungal SM production process is influenced by the internal (genetics) [3]
and external (environmental) factors [4], which includes the involvement of many suc-
cessive enzymatic reactions essential for transforming primary metabolites sugars, lipids
and amino acids into SMs during advanced stages of fungal growth [5], mainly during
sporulation, virulence, intra- and interspecies signallings, defensive microbial mutualism,
protection against abiotic stress, and reproductive development and form pigments [3].
Fungal SMs are either secreted into the environment or remain cell-attached by being in-
corporated into the structural elements within the cell [6,7]. Besides wild fungi, cultivated
filamentous fungi in submerged flask-culture are also shown to have a high ability in
producing functional SMs [8]. It is intriguing to understand how fungal SMs are involved
in distinct functions, such as mediating intra- and interspecies communication, as well as
regulating defence against competitors, nutrient acquisition, and symbiotic interactions [9].

Basidiomycetes, a major class of higher fungi, are capable of adjusting to differ-
ent growth conditions, which result in the production of a variety of secondary metabolites.
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In sharp contrast to Ascomycota, Basidiomycota is highly diverse in its production, growth
environment and morphology [10]. Most wild edible basidiomycetes propagate in the
host plant roots. However, their rates of germination are low and only selected species are
efficient at colonizing host plant roots via sporulation [10,11]. Although the exact number of
basidiomycetes species is difficult to be estimated, it is agreed that about 14,000 mushrooms
have been identified as basidiomycetes, in which about 7000 species are considered edible,
and more than 2000 species are regarded as high-value edible mushrooms. Within these
edible mushrooms, there are more than 700 species that are known to possess substantial
pharmacological properties [12]. Edible mushrooms have an exceptional distinctive texture,
taste, fragrance, and high nourishing value, and thus become highly valuable ingredients
in epicure cuisine worldwide. Despite a widespread appreciation for edible mushrooms
as a delicious alternative protein source, there are still a lot of concerns about consuming
wild fungi [13,14]. Currently, there are more than a hundred mushroom species that can
be cultivated [15,16], yet less than thirty species are widely recognized as food and only
a few are commercially produced [17]. Agaricus bisporus, Lentinus edodes, Pleurotus spp.,
and Flammulina velutipes are considered the most cultivated mushroom worldwide. While
China is currently being the biggest mushroom producer, other mushroom-producing
countries have also increased their production in the last decade [18].

Edible mushrooms are a rich source of distinctive SMs that are not found in other fungi,
besides being natural product chemists as a source of hallucinogens such as Gymnopilus
junonius mushroom [19], and pigments such as melanin from Auricularia auricula [20] and
Termitomyces albuminosus [21]. Edible mushrooms are considered a food with high nutritive
value and they have been used for a long time as functional food/nutraceuticals and
medicinal remedies with economic significance [22,23]. They are considered an important
source of essential nutrients as they are rich in protein and important fat contents [18],
several minerals such as copper (Cu), manganese (Mn) and iron (Fe) and vitamins such
as vitamin B and C [24] that are involved in the metabolism of carbohydrates and fats
(Figure 1). Even though wild mushroom price higher than cultivated mushrooms, there is
still demand for consuming cultivated mushroom due to their constant availability [25]. For
that reason, they could be considered an excellent source of many different nutraceuticals
and could be used directly in a human diet to promote health [26,27]. With a large number
of fungi have not been cultured and not well characterized, there is still significant work that
needs to be conducted to grow uncultured fungi as a potential source of new chemicals with
the potential for the discovery of new SMs with beneficial use for human [28]. Although
fungi normally produce SMs in minute amounts due to the internal cellular regulatory
mechanisms that regulate the low-level production, the amount produced is probably
sufficient to increase the fungal growth competitiveness to other organisms and/or allow
the fungi to coexist with other species in macrocosm [2,29].

In nature, fungi are confronted with multiple biotic and abiotic stressor that range from
the competition and/or attack by other microorganisms, nutrient deficiency to changes in
acidity, humidity, and temperature [30]. To maintain their sustenance and reproduction,
fungi have developed several strategies for protection and communication, one of which
is by producing various types of SMs. These fungal SMs increase the fungal protection
against the invasion of predators, parasites, and diseases [31,32]. They may also be used
to compete with other species and facilitate the reproductive processes [31,32]. In the last
decade, the discovery of new fungal metabolites has accelerated tremendously [33]. How-
ever, with millions of fungal species to be identified in the future, there are many years of
work to be conducted to increase the percentage of the discovery of these metabolites as an
alternative source of natural pharmaceutical products [34]. Many compounds are produced
by fungi with antioxidant, anticancer, antiallergic, antiobesity, immune-system-modulating,
cardiovascular-protecting, anticholesterolemic, antimicrobial, detoxication, antitumor and
inflammatory functions (Table 1) [35]. For a long time, edible fungi in general produce
natural substances that usually have medicinal or nutraceutical activities as a promis-
ing source of new therapeutics. Those mushroom-related compounds such as β-glucans,
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other polysaccharide, vitamins and protein widely used in drug design and discovery
with beneficial effects against dangerous diseases with less recorded side effects [36,37].
Polysaccharides considered one of the most important molecules for modern pharmaceu-
tical research due to their flexibility to act as drug delivery agents especially for cancer
therapy [38]. Many metabolites produced by edible fungi are known to be unique bioactive
compounds that can be found in the fruiting bodies and liquid cultured mycelium [39,40].
Modern biotechnology research like omics-based research on fungi has revealed that many
edible/medicinal species are beneficial for the inhibition and treatment of some enduring
diseases, such as cancer, brain function cardiovascular diseases, diabetes and degenerative
nerve diseases [41]. In light of the emerging literature, the objective of this chapter is to
compile the more recent evidence about the importance of SMs which play important roles
in fungal defence and/or signalling and with high potential health benefits to human.
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Figure 1. Schematics overview of edible mushroom contribution to human health.

Table 1. Examples of major compounds from fungi and their main potential benefits to human health reported between
2010 and 2020.

Fungal Species Active Molecules Effect Reference

Colletotrichum capsici Taxol Anticancer (mitotic inhibitor) [42]

Ganoderma lucidum C-19 fatty acids antitumour activity
against HL-60 [43]

Penicillium buchwaldii and
Penicillium spathulatum asperphenamate Anticancer [44]

Schizophyllum commune hydrophobin SC3 Anticancer (sarcoma S180 cell line) [45]

Fusarium solani Taxol, baccatin III Anticancer (HeLa) [46]



J. Fungi 2021, 7, 503 4 of 21

Table 1. Cont.

Fungal Species Active Molecules Effect Reference

Flammulina velutipe FIP-fve Anticancer (A549) [47]

Gomphus clavatus gCG-1 Antioxidant (against activity (apoptosis
of HepG-2)) [48]

Ganoderma atrum FIP-gat Antioxidant (against MDA-MB-231) [49]

Lignosus rhinocerotis FIP-Lrh Anticancer (HeLa, A549, MCF-7) [50]

Aspergillus candidus 3-Hydroxyterphenyllin (3-HT) Anticancer (ovarian carcinoma cell
lines, A2780/) [51]

Ramaria botrytis ubiquitin-like Anticancer (293T, HeLa A549, KB and
MCF-7) [52]

Fusarium solani (FIP-nha) A549 apoptosis [53]

Cerrena unicolor ex-LMSI, ex-LMSII, and ex-LMSIII Anticancer (MDA-MB-231, PC3, and
MCF7) [54]

Trichoderma viride 3-beta-hydroxy urs-12-en-28-oic
acid Anticancer (HeLa) [55]

Poria cocos Triterpenes Anti-Hyperglycemic [56]

Pleurotus tuber-regium polysaccharides (1P, 2P, and 3P) Anti-Hyperglycemia [57]

Aspergillus oryzae P-1 and P2 peptide α-Glucosidase Inhibitory [58]

Agaricus blazei, Coprinus
comatus, Cordyceps militaris,
Inonotus obliquus, Phellinus

linteus

p-coumaric acid, p-hydroxybenzoic
acid and cinnamic acid Inhibition of α-amylase [59]

Ganoderma lucidum (WEGL) mycelium reduces obesity [60]

Penicillium digitatum AfpB protein Antifungal activity [61]

Pleurotus ostreatus and
Pleurotus florida Methanolic extracts Antimicrobial activity [62]

Monascus purpureus,
Aspergillus oryzae, Neurospora

intermedia, Fusarium venenatum
Fungal biomass Vegan protein [63]

Agaricus blazei Multi-vitamins Immune sustem stimulators,
antimicrobial [64]

2. Fungi Contribution as Antioxidant and Anticancer Products

Fungi including very popular, affordable and widely utilized mushrooms are a great
source of a high-quality natural products with good potential anticancer and antioxidant
agents that could be further studied and clinically tested for a future anticancer drug [65].
The white common mushrooms, A. bisporus, is currently the most widely cultivated and
most studied edible mushroom worldwide. It is consumed due to its pleasant flavour
and good natural source of vitamin B [66]. A study conducted on the digested protein
from the common mushroom showed that it possessed natural functional properties in
suppressing oxidative stress and suggested its potential application in the food industry as
alternative natural antioxidants [67]. This white mushroom has been extensively studied
and many reports have examined and discussed its antioxidant ability from both wild and
cultivated Agaricus species from different parts of the world [67–71]. The debate regarding
the vast fungal biodiversity linked to direct the resources for the discovery of new SMs
especially from newly identified fungi species which needs further research to characterize
those SMs and their mode of action. In this regard, research conducted on different Agaricus
species revealed the number of phenolic compounds varied with dried Aspergillus brasilien-
sis extracts revealed the highest concentration content of l phenolic acid (33.9 mg/100 g)
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while A. bitorquis showed the highest scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radicals ability [72]. Previous studies showed that Agaricus blazei possessed potential
anticancer and antiproliferation properties mainly due to its ability to produce betaglu-
cans and polysaccharides [73], and hot extracts of these fungi were shown to have an
apoptotic effect on human cancer cell lines [74,75]. The fungus proved on a clinical trial
to be safe for long term consumption [76] with many commercial nutraceuticals prod-
ucts available in the market [77]. Despite the debate of the proper scientific name, the
traditional fungus Sanghuangporus sanghuang growing on mulberry is believed to have
medicinal value and used to treat inflammation [78]. Triterpenoid extracted from the
mycelium of this fungus exhibits antioxidant activity against hydroxyl radicals, (2,2′-azino-
bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and DPPH free radicals [79]. However,
more in vitro studies on the antioxidant mechanism and active compounds are needed to
support those findings. Storage temperature and fungal nutrition were also shown to have
an impact on the production of high-quality antioxidant compounds. Low temperature
appears to be a reduction factor, and lower temperature showed lower antioxidant activity
in a range of +25 to −40 ◦C [80] while the presence of essential minerals like zinc (Zn)
and selenium (Se) increased the antioxidant related metabolites produced such as ascorbic
acid [81]. The effect of medium composition on the antioxidant and anticancer activity
of cultivated endophytic fungi was further investigated where Talaromyces purpureogenus
isolated from seaweed showed the highest antioxidant activity when they were grown on
potato dextrose agar, but anticancer activity against HeLa, MCF-7 and HePG2 cell lines
respectively appear to be at the highest level when this species was cultivated in malt
extract broth [82]. Exopolysaccharides from Fusarium oxysporum isolated from tropical
Otoba gracilipes leaves and cultivated using Potato dextrose broth revealed higher antiox-
idant ability compared to the extract from the same fungi that were grown on potato
dextrose–yeast extract broth (PDYB) [83]. A group of Fusarium species that are isolated
from the fritillary bulb were shown to produce compounds such as rutin, phlorizin, 2,4-di-
tert-butylphenol and 2,6-di-tert-butyl hydroquinone with antioxidant activity as measured
using DPPH and antioxidant ABTS, HPLC and gC-MS. Phenolic, flavonoid, and saponin
compounds from the fungus Fritillaria unibracteata exhibited potential activity to remove
reactive oxygen species with potential novel antioxidant compound [84]. Toledo and his
collaborators work conducted using gas chromatography with flame ionization detec-
tion gC-FID and ultra-fast liquid chromatography coupled to a photodiode array detector
(UFLC-PDA) have revealed antioxidant activities from nine different edible mushrooms
in Argentina and Ramaria patagonica showed the highest antioxidant activities and the
highest phenolic content represented by the presence of gallic, cinnamic acids, p-coumaric
and, p-hydroxybenzoic [85]. Oyster mushroom (Pleurotus ostreatus) is considered one of
the very important edible mushrooms with high medicinal and nutritional value [86].
Different stages of the mushroom were examined for antioxidant activity, and the DPPH
and ABTS radical scavenging activity test showed the highest levels in polyphenols from
the fruiting body [87]. Pleurotus tuber-regium contains polysaccharide with antitumor
activity [88] and a study on the proteomic changes in this mushroom revealed increase rate
of mycelium growth and polysaccharide production as an effect of adding Tween 80 [89].
A proteomic study on tiger milk mushroom identified pharmacological-related proteins
besides other proteins involved in defence and metabolism. In that study, proteins like
subtilin-like serine were found to have potential anticancer activity against breast cancer
cells [90]. A recent review on the pharmaceutical abilities of the tiger milk mushroom
discussed the anticancer, antimicrobial and antiasthmatic properties of tiger milk mush-
room [91].To investigate the anticancer activities of polysaccharides isolated from edible
mushrooms, a proteomic study was conducted on HepG2 cells upon the treatment with
polysaccharides from Ganoderma lucidum, Auricularia auricular and Phellinus linteus, and
found that changes detected in the lung cancer cell line proteins might lead to HepG2
apoptosis [92]. Colon cancer HT-29 cell death was induced by low molecular weight
(LMW) extracts from the cultivated rot fungus Cerrena unicolor with no negative effect
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in the control of normal cell lines [93]. The same fungus in earlier research showed that
LMW extracts have the same potential anticancer activity in breast (MDA-MB-231, MCF7)
and prostatic (PC3) cancer cell lines besides antibacterial activity against some human
pathogenic bacteria like Bacillus subtilis, Staphylococcus aureus, and Escherichia coli [54].
Extraction methods of phenolic compounds always play an important role in the quality
of the antioxidant obtained from edible mushroom [94]. The 50% ethanol proved to be
the most efficient method when several dry edible mushrooms were compared for their
phenolic compounds and antioxidant activities, and shitake mushroom (L. edodes) showed
the highest [95]. While 70% ethanol exhibited the highest antioxidant activity of termite
mushroom (Termitomyces spp.), hot water extract proved to be the method of choice to get
the highest scavenge ability when it related to wood ear mushroom (Auricularia spp.) [96].
A comparison between hot water extracts from edible mushroom antioxidant activities
showed higher activity of antioxidants from Ganoderma lucidum compared to other fungi
like Schizophyllum commune [97]. Low molecular fraction (ex-LMS), Laccase (ex-LAC) and
endo-polysaccharides (c-EPL) isolated from the basidiomycete fungi Cerrena unicolor with
the first (ex-LMS) showing the highest reduction capacity using DPPH assay. Besides
that, the identified metabolites showed also antibacterial activity against Escherichia coli
(ex-LAC, ex-LMS) and more effectively against Staphylococcus aureus (c-EPL, ex-LMS) [98].
Rhodiola spp. Alpine endophytic fungi examined by Cui and coresearchers when they
identified more than 100 metabolites linked to more than 300 species. The study revealed
phenolic and flavonoid compounds with antioxidant properties that reached up to 90% of
DPPH radical-scavenging rates such as Rct45, Rsc57, and Rct63 from plant species Rhodiola
crenulata with high potential for the production of these antioxidants by artificial fungal
cultivation [99]. Lion’s mane edible mushroom (Hericium erinaceus) is known for its bioac-
tive compound with antibacterial, antitumor, and immune-modulating properties [100].
Proteomic study of the mycelium and fruiting body of this mushroom revealed proteins
with potential function in carbohydrate metabolism, cell signaling, and sterol production
and suggested potential pharmacological properties for many polysaccharides [101]. Bole-
tus spp. is considered a wild edible mushroom rich with compounds that have antioxidant
properties [102,103]. The antioxidant ability of the Boletus edulis (together with Xerocomus
badius) cooked for consumption was tested and revealed a high concentration of phenols,
flavonoid antioxidant activity and vitamin content [104]. Later, 13 different Boletus species
were compared for antioxidant ability, Boletus luridus showed very high antioxidant abil-
ity with potential natural nutraceuticals product from this species [105]. Transcriptomic
study on the edible mushroom L. edodes showed significant changes in expression between
mycelium and the fruiting body with developmental stages specific protein identified and
linked to potential antioxidant properties [106]. Tiger milk mushroom (Lignosus rhinocerus)
is known for its valuable health properties, yet it is hard to be found in nature and many
efforts have been made to cultivate it. Cultivated tuber exhibited antioxidant activities
and anticancer properties against human breast cancer cell line (MCF7) and human lung
cancer cell line (A549) with no toxic effect on normal human lung cell line (MRC5) [107].
A group of Ascomycota endophytic fungi have shown antioxidant potential were isolated
from the stem of the mangrove species Rhizophora stylosa and Rhizophora mucronata with
more than 80% of those antioxidant compounds showing antioxidant ability. Both HHL38
and HHL55 recorded the highest natural antioxidant capacity [98]. Not only endosymbiont
fungi but some pathogenic filamentous species like Aspergillus can infect human (Figure 2)
(e.g., Aspergillus fumigatus), animals (e.g., Aspergillus flavus), and plant (Aspergillus niger)
and also can be used in food production (Aspergillus oryzae) [108]. A study on the growth
of A. unguis on different media showed the ability of this fungus to produce metabolites
with high antioxidant and antimicrobial activity when cultivated using potato dextrose
agar [109]. Another filamentous fungus, Mucor circinelloides, was tested for antioxidant
content by comparing different strains cultivated and extracted using different extraction
methods, the ethanolic-based extraction method from the strain MC277.49 cultivated for
5 days showed the highest antioxidant content after testing with the β-carotene bleaching
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assay, ABTS scavenging activity. Certainly, there is an increasing need in discovering and
producing antioxidant, anticancer therapeutic agents efficiently from natural sources that
have low toxicities and less impact on the environment. Myconutrients product is one of
the sources to meet these measures. Such products are secondary metabolites in nature has
a varied range of applications in medicinal and drug discovery opportunities.
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Figure 2. Pathogenic filamentous fungi potential and positive interactions with the human.

Due to the extensive structural variety, complexity and various pharmaceutical char-
acteristic of identified metabolites, this area has been more interesting for researchers and
more research on animal experiment and clinical trials are needed to verify the validity of
those claims towards supplement/drug production at the industrial level.

3. Fungi as Protein and Carbohydrate Source

Generally, fungi can be considered as a source of cholesterol-free protein and carbohy-
drate and a good meat substitute that is produced via low carbon footprint processes, such
as commercially cultivated Fusarium venenatum [110,111].

Fungal polysaccharides are known to possess great antioxidant activities, as have
been shown in Lentinus edodes [112], Grifola forndosa [113] and Leucopaxillus giganteus [114].
The functional and nutritive properties of fungi as dietary protein sources have also been
discussed and reviewed elsewhere [115]. While edible mushrooms are generally regarded
as containing a high level of proteins and carbohydrates, further investigation on the stud-
ies performed for the last 10 years indicates that the fungal nutritive characteristics vary
depending on the genera of the fungi, wild or cultivated, the geographical location, and the
cultivation media (Table 2). Some of these edible wild fungi from different geographical
origins have relatively high protein contents such as Hygrocybe parvula (36.5%), Calocybe
cornucopioides (47.2 g/100g), and Boletus edulis (39.0%) while some have relatively poor
protein content such as wild desert truffle, Terfezia boudieri Chatin. Cultivated fungi from
different species seemed to fare better in their protein contents such as Volvariella volvacea
(32%), Pleurotus pulmonarius RN82 (43.07%), Tricholoma, Shiitake mushroom (37.23%), Pleuro-
tus sajor-caju (36.75%), and yeast, Candida valida (44.3%), although the compost medium
composition did affect the protein content greatly. Some specific species of edible fungi
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possess high carbohydrate contents such as Marcolepiota procera (83.65 g/100 g), Boletus
regius (88.79 g/100 g), Lentinus torulosis (68.24 g/100 g), Armillaria mellea (71.28 g/100 g),
Boletus aereus Bull. (72.83%), L. deliciosus (76.0%). Yet species such as Ganoderma lucidum
(Leyss ex Fr.) Karst. Yashan was shown to have low protein and carbohydrate contents
at 9.31% and 0.54% respectively. While these findings mostly measured crude protein
and carbohydrate contents only, it would be interesting to investigate their specific amino
acid and protein composition as well as polysaccharides as sources of functional food for
future work.

Several wild mushrooms reveal their importance as sources of carbohydrate and
essential minerals, for instance, the termite mushroom, Termitomyces heimii [116], Termito-
myces microcarpus and Termitomyces tyleranus [24]. Much molecular-based research revealed
the protein and carbohydrate biosynthesis pathways and how this could be utilized in
applications of nutritious/functional food production from fungi. Transcriptomic and
proteomic studies on A. aegerita revealed that the annotated genes and peptide steroid
biosynthesis were upregulated in the mycelium whereas the polysaccharide biosynthesis-
related genes were upregulated in the fruiting bodies with higher associated peptides
were produced [117]. Transcriptomic de novo assembly of the rare edible fungi, Leucocalo-
cybe mongolica (S. Imai), using Illumina paired-end sequencing technology were able to
identify genes potentially involved in, steroid, terpenoid, and unsaturated fatty acids
biosynthesis and were annotated to play a vital role in the metabolism of nutrients [118].
This information could also be helpful for the cultivation of rare species [118]. Recently,
the brown mycelium features of Shiitake mushroom (L. edodes) were investigated using
comparative transcriptomics analysis. The study revealed the role of brown mycelium in
cell wall synthesis, light sensing, reduction of oxygen, and metabolic of carbohydrates [119].
Different cultivation components were compared during the cultivation of the edible mush-
room Grifola frondosa (Maitake) CE–MS-based metabolomics study revealed differences in
amino acid and organic acid in the strain gF433 with high amount compared to the stain
Mori52, which may reveal high efficiency of the stain gF433 with high metabolite content
and product efficiency [120]. Research conducted using a pea byproduct as a substrate for
fungi growth with A. oryzae showed the highest ability to produce protein mass (54% of
the total mass). The promising findings could be a start point to consider the production
of vegan mycoproteins at the industrial scale [63]. The same species can produce protein
mass from wastewater from starch plants which serve well as a good source of animal
feed [121]. Enokitake mushroom has many health properties reported [122], a metabolomic
study on this edible mushroom revealed 16 different potential biomarker metabolites in-
volved in glutamate metabolism, tricarboxylic acid (TCA) cycle, carbohydrate metabolism,
arginine and proline metabolisms, while also revealed the liver-protective effects of this
mushroom metabolites in vivo on acute liver injury rats [123].

Table 2. List of studies on protein and carbohydrate contents in edible fungi from different geographical locations from
2010–2021.

Fungal
Species Wild or Cultivated Location Composition References

24 Chilean wild and commercial
edible mushrooms from genera
Agaricus, Agrocybe, Boletus,
Cortinarius, Cyttaria, Flammulina,
Grifola, Lactarius, Lentinus,
Macrolepiota, Morchella, Pleurotus,
Ramaria, Suillus, Tricholoma, and
Xeroco-mus

Wild and cultivated
mushrooms

Ñuble and Bio-Bio
Regions, Chile

Crude protein content:
8.56–23.88 g/100 g d.w.
(Highest in Cortinarius lebre
(Chilean endemic
mushroom)); Carbohydrate
content:
62.97–83.65 g/100 g d.w.
(highest in Marcolepiota
procera);

[124]
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Table 2. Cont.

Fungal
Species Wild or Cultivated Location Composition References

Volvariella volvacea Cultivated mushroom Solan, India
Protein content: 32%;
Carbohydrate content:
52.2%

[125]

Clavaria rosea, Ganoderma sp.,
Geastrum triplex, Hygrocybe
parvula, Schleroderma bermudense

Wild mushrooms
Shivamogga
District, Karnataka,
India

Protein contents:
25.71–36.51% (highest in
Hygrocybe parvula);
Carbohydrate
contents:37.38–48.63%
(highest in Ganoderma sp.)

[126]

Pleurotus pulmonarius RN2, P.
djamor RN81 and RN82

Cultivated mushrooms
(cultivated on rice
straw (Oryza sativa L.),
corn stubble and husk
(Zea maize L.))

USA and Panama

Protein contents:
23.54–43.07% (highest in
RN82 cultivated on corn
husk); carbohydrate
contents: 27.39–52.44%
(highest in RN2 cultivated
on corn stubbles)

[127]

Lentinus sajor-caju and Lentinus
torulosus Wild mushrooms Similipal Biosphere

Reserve, India

protein content: 27. 31–28.
36 g/100 g; carbohydrate
content: 64. 95–68.
24 g/100 g.

[128]

Amanita crocea (Quél. in Bourd.)
Singer ex Singer, Amanita mairei
(Foley), Boletus porosporus (Imler
ex Bon & g. Moreno), Boletus
regius (Krombh.), Gyromitra
esculenta (Pers. ex Pers.) Fr.,
Helvella lacunose (Afzel.), Russula
aurea Pers., Russula virescens
(Schaeff.) Fr.

Wild mushrooms
Bragança
(Northeast
Portugal)

Protein content:
4.40–21.85 g/100 g d.w.
(highest in Rusula
virenscens); Carbohydrate
content:
49.64–88.79 g/100 g d.w.
(highest in Boletus regius).

[129]

Agaricus bohusii Bon Wild mushroom Jabučki rid,
Northern Serbia

Protein content:
18.06 g/100 g dw;
carbohydrate content:
69.79 g/100 g d.w.

[130]

Fistulina hepatica,
Infundibulicybe geotropa,
Laetiporus sulphureus,
Macrolepiota procera var. procera
and Suillus granulatus

Wild mushrooms Sicily, Southern
Italy

Protein contents:
1.31–4.37 g% (highest in L.
sulphureus); carbohydrate
contents: 2.08–4.57 g%
(highest in I. geotropa)

[131]

Cantharellus isabellinus, C. cibarius
var. longipes, C. rhodophyllus,
C. miniatescens, C. appalachiensis,
C. cibarius, C. natarajanii,
C. fibrillosus, C. lateritius,
C. applanatus, Cr. cibarius var.
intermedius C. himalayensis,
C. elongatipes, C. cibarius var.
multiramis, C. indicus,
C. pseudoformosus, C. umbonatus,
C. minor

Wild mushrooms Northwestern
Himalayas, India

Protein: 21.6–43.2 mg/g
(highest in C. miniatescens);
carbohydrate:
9.94–26.5 mg/g (highest in
C. minor)

[132]
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Table 2. Cont.

Fungal
Species Wild or Cultivated Location Composition References

Armillaria mellea (Vahl) P. Kumm.,
Calocybe gambosa (Fr.) Donk,
Clitocybe odora (Fr.) P. Kumm.,
Coprinus comatus (O.F. Müll.)
Pers.

Wild mushrooms Bragança,
Northeast Portugal

Protein:
15.46–17.33 g/100 g dw
(highest in Clitocybe odora);
carbohydrates:
69.83–71.28 g/100 g dw
(highest in Armillaria
mellea)

[133]

Pleurotus florida, P. sajor-caju and
P. ostreatus

Cultivated mushrooms
(cultivated on bean
straw)

Pantnagar, India

Protein contents:
30.92–36.75% db (highest in
Pleurotus sajor-caju);
carbohydrate contents:
0.49–31.59% db (highest in
Pleurotus florida)

[134]

Agaricus campestris, Boletus edulis,
Calocybe gambosa,
Cantharelluscibarius, Calocybe
cornucopioides, Entoloma
clypeatum, Flammulina velutipes,
Macroleptiotaprocera, M. elata,
Pleurotus ostreatus

Wild mushrooms

Croatian regions of
Istria (northwest)
and Slavonia
(northeast)

Protein:
24.22–47.21 g/100 g dw
(highest in
C. cornucopioides);
carbohydrates:
24.6–66.78 g/100 g (highest
in Macroleptiota procera)

[135]

Boletus aereus Bull., Boletus edulis
Bull., Boletus reticulatus Schaeff. Wild mushrooms Bragança,

Northeast Portugal

Protein:
17.86–22.57 g/100 g
(highest in Boletus
reticulatus); carbohydrates:
55.16–72.83 g/100 g
(highest in Boletus aereus
Bull.

[136]

Candida valida

Edible yeast isolated
from babies’ weaning
food produced from
fermented corn (Ogi)
and grown on synthetic
medium and cane
molasses

Japan

Protein: 42.6–44.3%
(highest when cultured
using cane molasses);
carbohydrate: 26.9–28.8%
(highest when cultured
using synthetic medium)

[137]

Polyporus tenuiculus

Cultivated mushroom
(cultivated in
supplemented and
nonsupplemented
wheat straw and
willow sawdust)

Argentina

Protein: 15.1–22.5%
(highest when cultivated
using wheat straw
supplemented with
soybean flour (5%) and
wheat brand (15%));
carbohydrate: 47.2–51.6%
(highest when cultivated
using willow sawdust)

[138]

Terfezia boudieri Wild desert truffle Ben guerdane,
Southeast Tunisia

Protein: 10.5%, 15.4% total
sugars [139]

Terfezia boudieri Wild desert truffle

Hilvan- Sanliurfa,
Yenice/Ceylanpinar/
Sanliurfa,
Polatlı/Ceylanpinar/
Sanliurfa,
Kiziltepe-Mardin
and Malatya from
Southeast of Turkey

Protein 1.40–2.73 g/100 g
carbohydrate:
4.84–12.30 g/100 g (highest
from Kiziltepe/Mardin)

[140]
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Table 2. Cont.

Fungal
Species Wild or Cultivated Location Composition References

Astraeus hygromatricus Wild edible fungus South-west India

11.71% and 4.66% protein
from inner and outer part
of the fruit bodies, 29.48%
and 35.41% carbohydrate
from inner and outer fruit
bodies

[141]

Pleurotus ostreatus

Cultivated mushroom
(cultivated on oat straw
(control), blank paper
scraps and printed
paper scraps)

Portugal

Protein contents:
9.29–14.7 g/100 g (highest
when cultivated on oat
straw; Carbohydrate
contents: 73.2–78.6 g/100 g
(highest when cultivated in
printed paper)

[142]

Pleurotus florida and P. eous

Cultivated mushrooms
(cultivated on paddy
straw that has been
added with either
chicken manure, rice
bran, wheat bran,
black gram, green gram,
or horse gram.)

Tamil-Nadu, India

Protein contents: 3.4–35.2%
dwt. (highest when
cultivated on paddy straw
with chicken manure);
carbohydrate contents:
31–63.8% dwt. (highest
when cultivated on paddy
straw with green gram)

[143]

Boletus edulis, Boletus mirabilis,
and Lactarius deliciosus Wild mushrooms KwaZulu-Natal,

South Africa

Protein contents:
17.5–39.0% (highest in B.
edulis); carbohydrate
content: 51.7–76.0%
(highest in L. deliciosus)

[144]

Pleurotus pulmonarius Cultivated mushroom Sao Paolo, Brazil

Protein contents: 31% in
Basodioma, 32% in
Mycelium; Carbohydrate
contents: 30% of the
aqueous solution

[145]

Pleurotus eryngii, Dictyophora
indusiata (Vent. ex Pers) Fisch,
Agrocybe aegerita, Ganoderma
lucidum (Leyss. ex Fr.) Karst.,
Yanshan Agaric, Pholiota nameko
Ito ex Imai., Hericium erinaceus,
Copyinds comatus (MUII. Fr) gray,
Tremella, Cordyceps militaris,
Lentinus edodes (Berk.) Sing,
Auricularia auricula (L.ex Hook.)
under wood, Agaricus blazei
Murrill, Volvariella volvacea
(Bull.:Fr.) Sing., Morchella
esculenta, Griflola frondosa,
Arimillaria mellea, Boletus, Russula
vinosa Lindblad, and
Sparassis crispa.

- China

Protein contents:
9.31–37.23% (highest in
Tricholoma Shiitake);
Carbohydrate contents:
0.54–37.23% (highest in
Pleurotus eryngii);
Ganoderma lucidum (Leyss
ex Fr.) Karst. Yashan has
the lowest protein and
carbohydrate contents.

[146]

4. Antiobesity and Antidiabetic Abilities of Fungi

Fungi especially edible mushroom, besides its well documented antioxidant capac-
ities, they have also shown boost body immunity. The habit of consistent consumption
of edible fungi is effective in the treatment of several medical conditions, such as obesity,
and edible fungi could be a good candidate to be applied in future pharmaceutical or
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nutraceutical applications [147,148]. Recently, in a study on obese mice, water extracts of
Pleurotus citrinopileatus appeared to be effective in reducing the mice weight and helped
to improve glucose tolerance and reduce the triglycerides, cholesterol and low-density
lipoprotein (LDP) [149]. In an earlier study on obese mice, the fungus Cordyceps militaris
played an important cofactor role by fermenting mulberry leaves forming a fungal-plant
complex with the ability to rude adipose tissue and decrease LDP [150]. The ascomycete
fungi Eurotium cristatum reported having the reduced obesity effect on mice by regulating
the mice stomach normal flora [151]. While metabolites extracted from Nigrospora oryzae
isolated from plan leaf contain abscisic acid compounds with antidiabetic properties, these
fungus extracts show the ability to reduce blood sugar in diabetic [152]. Besides its an-
tioxidant and antiproliferation abilities [91], the tiger milk mushroom showed potential
antidiabetic characteristic in its genomes with antiglycation activity medium molecu-
lar weight compound with the ability to inhibit lysine in human serum albumin [153].
Peptides with alpha-amylase and alpha glycosidase inhibitory activity identified in the
fungus Aspergillus awamori showing the potential of this endophytic fungi with a good
biomaterial to be considered for scaled-up production of that peptidase as antidiabetic
medication [154]. Recently, Calvatia gigantean revealed promising antidiabetic properties.
In an amylase inhibitory test, the fungus revealed the ability to inhibit half of the enzyme
(alpha-amylase) at 0.46 µg/mL with 90 times more efficient than the standard acarbose
standard drug [155]. group of fungal isolates from medicinal plants belong to Alternaria,
Fusarium and Aspergillus sp. showed a promising ability to inhibit α-glucosidase enzyme
with potential antidiabetic characteristics [156]. Ganoderma lucidium showed promising
antidiabetic/antioxidant abilities in comparison to other medicinal mushroom used tradi-
tionally in China [157]. Despite all the studies highlighted above and other studies done
earlier which showed promising antidiabetic activity for proteins, peptides and polysac-
charides from fungal sources, many more studies on the mycotoxicological, clinical level
and mode of action are still needed to uncover the safety and efficiency of those molecules.

5. Fungi as a Biocontrol Agent against Human Pathogen

Metabolites and their fractions from fungal sources have shown over the years great
importance in the discovery of new drugs and compounds with potential antimicrobial
properties [158,159]. There has been no attempt to discuss the history of antibiotic discovery
from fungal sources and the development of antibiotic production in this review, and few
earlier reviews have covered this topic [160–163]. Instead, the focus here is to highlight
some of the relatively recent promising findings from fungal research with potential antimi-
crobial characteristics. Aspergillus spp. isolated from river sediment showed antibacterial
activities by producing a toxin called gliotoxin that worked actively against pathogenic
bacteria like methicillin-resistant Staphylococcus aureus MRSA, Enterococcus faecalis, and
Escherichia coli, as well as against human pathogenic yeast such as Candida albicans [164].
Penicillium spp. (P. commune and P. canescen) and Alternaria alternate isolated from olive
leaves show the ability to produce phenylethyl alcohol and 3-methyl-1-butanol with both
showing the ability to inhibit gram-negative and gram-positive pathogenic bacteria [165].
The mycelial aqueous extract from Ganoderma lucidum demonstrated higher anti-candida
activity, the study illustrates the preventive effect of G. lucidum against C. albicans and
Candida glabrata biofilms [166]. Maitake mushroom (Grifola frondosa) revealed anti-biofilm
activity against human pathogenic bacteria Staphylococcus aureus [167]. A 40 KDa unique
protein, PEP, that was isolated from edible mushroom Pleurotus eryngii using MALDI-TOF
proteomic analysis, was revealed to possess anti-inflammatory properties when tested on
LPS-stimulated macrophage in the treatment of colon infection [168]. Another proteomic
study, but this time using 1DE LC/MS analysis, showed a group of functional proteins
from the edible mushroom Ganoderma lucidum, one of which was the immunomodulatory
protein gL18769 with potential function to boost immunity [169]. Oyster mushroom proved
to have high antimicrobial characteristics when tested against human pathogenic fungi and
bacteria. The mushroom aminophenyl-1thio-3-hydroxypropanoic acid believed to have
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antifungal (against gut yeast Candida albicans, and other pathogenic fungi like Trichosporon
cutaneum and Cryptococcus humicola) with antibacterial activities against Staphylococcus
aureus and Escherichia coli [170]. The recently promising finding reveals the ability of the
synthesized eushearilide which isolated in the first place from the fungus Eupenicillium
shearii [171] to inhibit the growth of a wide range of bacteria, including methicillin-resistant
Staphylococcus aureus (MRSA) [172]. Recent fungi reported to have anti-biofilm activity are
listed in Table 3.

Table 3. Examples of fungal species with anti-biofilm activity.

Fungal Species Target Reference

Russula delica, Fistulina hepatica, Mycena rosea,
Leucopaxilus giganteus, and Lepista nuda Pseudomonas aeruginosa [173]

Auricularia auricula Pseudomonas aeruginosa and Pseudomonas
fluorescens [174]

Lentinus edodes Streptococcus mutans [175]

Chaetomium globosum Staphylococcus aureus, Klebsiella pneumoniae and
Candida albicans [176]

Aspergillus nidulans Candida albicans [177]

Marasmius oreades Staphylococcus epidermidis and Pseudomonas
aeruginosa [178]

Aspergillus fumigatus Staphylococcus aureus, Klebsiella pneumoniae and
Candida albicans [179]

Epicoccum nigrum and Alternaria alternata Staphylococcus aureus, Pseudomonas aeruginosa,
Escherichia coli and Bacillus subtilis [180]

Aspergillus nidulans Staphylococcus aureus [181]

Morchella angusticeps, Ganoderma lucidum, Cerioporus
squamosus, Trametes versicolor and Lentinula edodes Enterococcus faecalis [182]

6. Conclusions and Future Perspective

Due to the important roles of edible fungi in human and their beneficial applications
in medicine and plant protection, further research on SMs from the fungal origin should be
intensified to discover and identify novel SMs, understanding their regulatory mechanisms
and their physiological function in nature. Only the combination of all factors such as
choosing the isolate or the strain, temperature (growth and storage), the medium used
to grow the cultivated fungi and the method of choice to extract those compounds can
ensure that a certain SM is produced specifically in response to distinct environmental
requirements, thus providing a benefit to the fungus. Elucidating the principles behind this
complex SM regulatory process using omics will not only allow a deeper understanding
of how fungi translate their environmental signals into the biosynthesis of SM, but will
also allow for the profiling of novel SMs and a thorough understanding of their potential
ecological role. Considering that a vast majority of the known fungi have yet to be culti-
vated in the laboratory, further efforts in finding the optimum conditions and methods
needed to grow such uncultured microorganisms should be pursued. The use of my-
cosecondary metabolites has made significant improvements in the fields of agriculture,
pharmaceutical/drug discovery, medicine, and nutraceuticals industries, especially with
the assimilation of modern biotechnology. The numbers of promising applications of fungal
metabolites in improving human wellbeing are limitless and continually evolving. There is
an urgent demand for the development of new molecular templates for targeted cancer
therapeutics and medications to battle multidrug-resistant pathogens. Research must focus
on verifying compounds with therapeutic value, and as such, the preclinical and clinical
trials on SMs from fungi will lead to faster and more efficient drug development efforts
and allow the diversity of these metabolites to be utilized and their application in various
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industries to be considered. Focusing the research community’s resources on producing
high-quality genome sequences of fungi that yield important and unique SMs and relating
these secondary metabolite groups to their annotated biological functions would be a
valuable approach. Multiomics high-throughput analyses and information may help us in
understanding the production pathways and mode of actions of those vital metabolites.
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