academicJournals

Vol. 6(8), pp. 624-636, August 2014 DOI: 10.5897/JBC2014.0730 Article Number: F287DBC47003 ISSN 2141-243X Copyright © 2014 Author(s) retain the copyright of this article http://www.academicjournals.org/JJBC

International Journal of Biodiversity and Conservation

Full Length Research Paper

Diversity of life-forms within Sapindaceae Juss. in West Africa and Western Cameroon: A field guide

Onuminya, T. O* and Ogundipe, O. T.

Department of Botany, University of Lagos, Akoka, Lagos, Lagos State, Nigeria.

Received 23 May, 2014; Accepted 21 August, 2014

One of the major challenges faced by biologist during field studies is the identification of plant species and this is most evident in the tropics where biodiversity richness is very high. Hence this study was conducted in order to document and produce a guide for the identification of the diversity of life forms that represents the family Sapindaceae in West Africa. In view of this, plant exploration was carried out in five West African countries with the aim of collecting and recording the different life forms in the family Sapindaceae as well as their specific locations. This revealed that Sapindaceae are widely distributed in West Africa and the highest number of species was recorded in Nigeria (47 taxa). A total of 104 species was recorded in the region and these are represented by diverse life forms ranging from trees (58 species) to shrubs (32 species) and climbers (4 species) with compound trifoliate (e.g. Allophylus), paripinnate (e.g. Deinbollia) or imparipinnate (e.g. Paullinia) leaves. Flowers are arranged in groups either as cymes or racemes. Fruits are in the form of berry (e.g. Melicoccus), capsules (e.g. Blighia) or drupes (e.g. Deinbollia); some are inflated (e.g. Cardiospermum) or trilobed and woody (e.g. Chytranthus). This study provides a guide to field identification of members of the family Sapindaceae in West Africa and can be seen as a step in solving taxonomic identification problems and biodiversity conservation as a whole.

Key words: Conservation, distribution, identification, Sapindaceae, West Africa.

INTRODUCTION

The family Sapindaceae Juss., is one of the families in the order Sapindales and can be divided into 5 or 6 subfamily depending on the treatment. Most Sapindaceae are large emergent trees or erect shrubs however some are tendril lianes (Acevedo et al., 2011). They are comprised of about 140-150 genera with 1400-2000 species worldwide. Many of these are lactiferous, that is, they contain milky sap, and many contain mildly toxic saponins with soap-like qualities in the foliage

and/or the seeds or roots. Approximately one-third of the members of the family are found in the tribe Paullineae. Members include economic plants which are largely used as lumber trees or oil seed crops although some are edible.

The majority of species are native to Asia, although there are a few in South America, Africa and Australia (APG II, 2003). They occur in temperate to tropical regions throughout the world with about 18 (Hutchinson

*Corresponding author. E-mail: topssy4u@yahoo.co.uk. Tel: +2347030241452.

Author(s) agree that this article remain permanently open access under the terms of the <u>Creative Commons Attribution License 4.0</u> <u>International License</u>

Table 1. Sites visited for plant collection.

Country	Herbarium	Botanic Gardens	Forest Reserve/ National Parks
Nigeria	University of Lagos (LUH), Lagos University of Ibadan (UIH), Ibadan Bayero University (BUH), Kano Ahmadu Bello University (ABU), Zaria Forestry Herbarium Ibadan (FHI) University of Benin	University of Lagos, Lagos Ahmadu Bello University, Zaria	Olokemeji, Ibadan Aponmu, Ondo Owena, Ondo Idanre hills, Ondo Omo, Ogun Sakponba, Benin Edondon Community forest, Obubra. Cross River National Park, Erokut Station Awi, Cross river
Cameroon	National Herbarium of Cameroon, (HCN) Yaounde Limbe Botanic Gardens	Limbe Botanic Gardens SABOGA, Bamenda	Bakingili, Limbe Bimbia/Mabeta, Limbe Buea Mountains Likombe, Buea Oku Elak, Oku Bali Ngemba, Bali
Ghana	University of Ghana (GC), Legon Forestry Research, Achimota	Aburi botanic garden University of Ghana, Legon	Achimota community forest Bia Legon hills
Togo Ivory Coast	Lome		Lome d'IDERT

and Daziel, 1958) to 26 (Adeyemi and Ogundipe, 2012) genera in west tropical Africa and 13 (Keay et al., 1964) to 18 (Adeyemi and Ogundipe, 2012) species in Nigeria.

Sapindaceae are recognizable by their often spiral, alternate, simple, or more commonly pinnately compound leaves that often have sub-opposite leaflets and a terminal rachis tip. Most often they are pollinated by birds or insects, with a few species pollinated by wind (Singh, 2004). The fruits are fleshy or dry. They may be nuts, berries, drupes, schizocarps, capsules (Bridgesia), or samaras (Acer) often red, containing seeds (Heywood, 1978). The embryos are bent or coiled, without endosperm in the seed, but frequently with an aril (Singh, 2004). Members of the family Sapindaceae are one of the most important forest species to be conserved and valued in Africa due to their multiple uses, high nutritional content and medicinal value. Globally, biodiversity is being threatened by climate change as well as human activities and this has aroused concerns about their conservation status. Hence, this current study is designed as an effort to aid in the conservation and identification of this plant family in Western Africa. Our aim is to explore the diversity of family Sapindaceae in West Africa, with emphasis on the collection, identification and preservation of the collected plant specimens as well as production of a field guide for field identification purposes.

METHODOLOGY

Study area

The study was carried out in the western part of tropical Africa and five countries were visited namely: Nigeria, Ghana, Togo, Ivory Coast and western Cameroon. The study area is characterized by tropical rain forest and prominent water bodies. The land is plain lying less than 300 m above sea level, though isolated high points exist in some areas.

Sample exploration

The national herbaria as well as local herbaria were visited so as to observe the samples in the repositories, take necessary morphological data from each of the samples and collect some of the samples examined where permission is given to do so. The visit provided information on the last location in which the sample was recorded in the region and this informed our decision on where to collect samples in the field.

Consequently, various national parks, forest reserves and botanic gardens were visited in West Africa for the collection of fresh samples of the plant specimens. Permission was obtained from the various authorities involved in each region in order to collect samples from the reserves.

Access to the reserves was possible only through the use of a 4x4 wheel drive vehicles and motorcycles due to the rugged and untarred nature of the roads. Some reserves could only be assessed by trekking some distances of up to 40-50 km as the case may be. A list of the herbaria and reserves visited is shown in Table 1.

Preservation and identification of samples

Preliminary identification was achieved with the aid of floras including that of Hutchinson and Daziel (1958), Fouilloy and Hallé (1973) and Cheek et al. (2000). For preparation of voucher specimens, a part (usually branch) of each plant sample was placed in between each old newspapers and this was kept in a plant press. The press was tied with twines and kept in the dryer for two days in order to prevent the decomposition of the plant material. Each of the dried specimens was then removed from the newspaper and mounted on white cardboard papers using white gum (glue). Label was attached to each of the herbarium specimen in order to give a full description of the plant, its location, the date of collection and the name of collector. This was then authenticated at the Forestry Herbarium, Ibadan and deposited at the University of Lagos Herbarium for reference purposes.

Data analysis

Data obtained was analyzed using Shannon and Wiener indices following Ubom (2010) Magurram (1988) and Kent and Coker (1985). The Shannon and Wiener Diversity Index, which accounts for species richness and how the species are distributed, is derived from the relation:

H1 = Pi ln Pi

I = 1

Where: H1 = Shannon-Weiner index; S = number of species; Pi = proportion of individuals or abundance of the i^{th} species expressed as a proportion of the total number of individuals of all species: In = log base10.

RESULTS

Sample exploration was carried out across five African countries and 35 plant species were collected from the field (Table 2) while 69 species were retrieved from the herbarium (Table 3), identified and authenticated at the Forestry Herbarium Ibadan. Our sampling revealed that Sapindaceae are widely distributed in West Africa being represented by 26 genera and 104 species. Of these species, 4 are climbers 32 are shrubs and 58 are trees representing 3.84, 30.76 and 65.38% of the total number of species, respectively. The largest population was recorded in the southern highlands of Nigeria (47 taxa), western region of Cameroon (45 taxa) and western and eastern River banks in Ghana (25 taxa) (Figure 1); however, taxa shared are highest between Nigeria and Cameroon. Leaf, stem, fruit and flower samples were collected and photographs were taken (Plate 1). Also, GPS coordinate of each sample was recorded and inputted into a map (Figure 2). Voucher samples of samples collected from the field have been deposited at the University of Lagos Herbarium (LUH) Nigeria.

Diverse life forms were encountered ranging from trees (Aporrhiza Radlk., Blighia Koenig, Chytranthus Hook. f., Deinbollia Schumach. and Thonn., Dodonaea L., Eriocoelum Hook. f., Ganophyllum (Chev.) Hauman., Lecaniodiscus Planch. ex Benth., Lepisanthes Blume, Lychnodiscus Radlk., Majidea J. Kirk ex Oliv., Melicoccus

P. Browne., Nephelium L., , Placodiscus Radlk., Radlkofera Gilg., Sapindus L. and Zanha Hiern.), to shrubs (Allophylus L., Glenniea Hook. f., Haplocoelum Radlk., Harpullia Roxb., Laccodiscus Radlk. and Pancovia Willd.) and climbers (Cardiospermum L. and Paullinia L.) as shown in the appendix below. They possess compound trifoliate (For example Allophylus), paripinnate (for example, Chytranthus) or imparipinnate (example, Paullinia) leaves with an exception of Dodonaea which has simple leaves. Most species have leaves with entire margin but some possess serrated margins (example, Allophylus and Cardiospermum). The leaf surface is papery and glossy as in Pancovia, glabrous as in Allophylus africanus or pubescent as in Laccodiscus ferrugineus and Allophylus hirtellus). Flowers are arranged in groups either as cymes or racemes. Fruits are in the form of berry (example, Melicoccus), capsules (example, Blighia) or drupes (example, Deinbollia); some are inflated (example, Cardiospermum) or trilobed and woody (example, Chytranthus). The percentage number of samples collected per genera is shown in Table 4 while the number of life forms is shown in Figure 3.

DISCUSSION

Most of the samples collected from the field were found in Cameroon, due to the presence of large area of conserved forest, that is, 24 samples, followed by Nigeria (14 samples). Only 5 samples each was found in the other three countries visited: Ghana, Togo and Ivory Coast. However, the forestry herbarium in Nigeria houses the largest number of taxa (33) of all the herbarium visited. Taxa shared were highest between Nigeria and Cameroon with 9 taxa endemic to the mountains. A key item in the conservation of biodiversity is identification of species and this could be challenging especially in field studies. Over the years, this has been made difficult by the fast rate of disappearance of species largely as a result of changes in the climate as well as a wide range of unsustainable human activities hence the need for this study. All the observations made in this study are consistent with earlier description of the family given by Heywood (1978), Singh (2004), Acevedo-Rodríguez et al. (2011) and Adeyemi et al. (2013). With exception of a few species, members of Sapindaceae were largely found in lowland forest. Most of the taxa are native to the region with exception to Melicoccus bijugatus and Nephelium lappaceum which are exotic species. Also, 11 of the species encountered are yet to be identified at the species level due to absence of fruiting structures in the samples.

Several authors, including Alamu and Agbeja (2011) and Pelemo et al. (2011), have highlighted the main drivers of deforestation to include agriculture, logging and mining, use of fuel wood and logging all of which pose threats to biodiversity

Table 2. Samples collected in the field and their locations.

Species	Locations	Collector(s)	Voucher ID
Allophylus africanus P. Beauv.	Olokemeji and Bakingili forest reserves	Adeyemi, T.O and Ogundipe, O.T	LUH 1194
Allophylus bullatus Radlk.	Buea Mountain	Adeyemi, T.O	LUH1185
Allophylus hirtellus (Hook. f.) Radlk.	Bakingili forest reserve	Adeyemi, T.O	LUH 1190
Allophylus sp	Bakingili forest reserve	Adeyemi, T.O	LUH 3441
Allophylus spicatus Radlk.	Olokemeji forest reserve	Adeyemi, T.O and Ogundipe, O.T	LUH 3442
Allophylus ferrugineus Taub.	Bakingili forest	Adeyemi, T.O	LUH 1192
Blighia sapida Koenig.	Oshodi Lagos, Limbe Botanic Gardens, Bakingili, University of Ghana and Idanre hills forest	Adeyemi, T.O and Ogundipe, O.T	LUH 1196
Blighia unijugata Bak.	Sakponba forest reserve	Adeyemi, T.O and Ogundipe, O.T	LUH 3443
Cardiospermum grandiflorum Sw.	Owena and Idanre hills forest reserves	Adeyemi, T.O and Ogundipe, O.T	LUH 1196
Chytranthus macrobotrys (Gilg) Exell and Mendonca.	Bimbia/Mabeta forest reserve	Adeyemi, T.O	LUH 1187
Chytranthus setosus Radlk.	Bimbia/Mabeta and Bakingili forest reserves	Adeyemi, T.O	LUH 3444
Chytranthus sp. i	Bakingili forest reserve	Adeyemi, T.O	LUH 3445
Chytranthus sp. ii	Bakingili forest reserve	Adeyemi, T.O	LUH 3446
Chytranthus talbotii (Bak.) Keay	Sakponba and Aponmu forest reserves	Adeyemi, T.O and Ogundipe, O.T	LUH 3447
Deinbollia sp.	Bimbia forest reserve	Adeyemi, T.O	LUH 3448
Eriocoelum macrocarpum Gilg. ex Radlk.	Limbe Botanic Gardens	Adeyemi, T.O	LUH 1195
Laccodiscus ferrugineus (Bak.) Radlk.	Bakingili, Bimbia/Mabeta and Omo forest	Adeyemi, T.O and Ogundipe, O.T	LUH 1183
Lecaniodiscus cupanioides Planch.	Olokemeji, Sakponba and Idanre hills forest	Adeyemi, T.O and Ogundipe, O.T	LUH 3451
Majidea fosterii (Sprague) Radlk.	Limbe Botanic Gardens	Adeyemi, T.O and Ogundipe, O.T	LUH 1718
Glenniea africanus (Radlk.) Leenh.	Aponmu forest reserve	Adeyemi, T.O and Ogundipe, O.T	LUH 3449
Pancovia atroviolaceus	Bakingili forest reserve	Adeyemi, T.O and Ogundipe, O.T	LUH 1182
Pancovia floribunda Pellegrin.	Calabar	Adeyemi, T.O	LUH 12061
Pancovia sp. i	Bimbia/Mabeta forest reserve,	Adeyemi, T.O and Ogundipe, O.T	LUH 1188
Pancovia sp. ii	Bimbia/Mabeta forest reserve	Adeyemi, T.O and Ogundipe, O.T	LUH 1186
Pancovia sp. iii	Buea/Likombe forest reserve	Adeyemi, T.O and Ogundipe, O.T	LUH 3453
Paullinia pinnata L.	Limbe Botanic Gardens, Bimbia/Mabeta forest	Adeyemi, T.O	LUH 1193
Placodiscus leptostachyus Radlk.	Bimbia/Mabeta forest reserve	Adeyemi, T.O	LUH 3454
Placodiscus sp. i	Bimbia/Mabeta forest reserve	Adeyemi, T.O	LUH 3455
Placodiscus sp. ii	Aponmu forest reserve	Adeyemi, T.O and Ogundipe, O.T	LUH 3456
Radlkofera calodendron Gilg.	Bimbia/Mabeta forest reserve	Adeyemi, T.O	LUH 3457
Radlkofera sp. i	Aponmu forest reserve,	Adeyemi, T.O and Ogundipe, O.T	LUH 3458
Radlkofera sp. ii	Owena forest reserve,	Adeyemi, T.O and Ogundipe, O.T	LUH 3459
Radlkofera sp. iii	Beau Mountains	Adeyemi, T.O	LUH 3460
Sapindus saponaria L.	Limbe Botanic Gardens	Adeyemi, T.O	LUH 3461
Zanha golugensis Hiern.	Forestry Research Institute of Nigeria, Ibadan	Adeyemi, T.O and Ogundipe, O.T	LUH 3462

Table 3. Samples collected from the herbarium and their locations.

Species	Location	Collector(s)	Date	Voucher ID
Allophylus abyssinicus (Hochst.) Radlk.	Trinderet forest		16-Jan-64	FHI 20336
Allophylus cobbe (L.) Raeusch.	Buea Mountain	Bos, J.J	19-Dec-69	FHI 103688
Allophylus conraui Gilg ex Radlk.	Mambilla Plateau	Chapman,	12-Feb-72	FHI 78107
Allophylus didymanaeus				FHI 75205
Allophylus grandifolius (Bak.) Radlk.	Muyuka	Letouzey, R.	26-Aug-83	HNC 50596
Allophylus macrobotrys Gilg.	Limbe Botanic Gardens	Reekmans,	04-Jan-79	FHI 95067
Allophylus megaphyllus Hutch. and Dalz.	Ndian	Thomas, D.W.	24-Nov-86	HNC 64379
Allophylus nigericus Bak.	Calabar	Olorunfemi, J	27-Jun-79	FHI 92242
Allophylus rubifolius Engl. Abh. Preuss.	Ndian falls	Reekmans,	24-Nov-86	FHI 98646
Allophylus talbotii Bak.	Yaoundé	Letouzey, R	25-Jul-60	SFRK 28391
Allophylus zenkeri Gilg. ex Radlk.	Batouri	Letouzey, R	14-Apr-62	SFRK 6261
Aporrhiza nitida Gilg.	Sakponba	Emwiogbon	21-Jan-79	FHI 63061
Aporrhiza talbotii Bak.	Cross river	Amshoff, G	11-May-78	FHI 87370
Aporrhiza urophylla Gilg.		Alexandria, C.P.	29-Dec-65	FHI 6969
Cardiospermum corindium L.		Daramola, B.O		FHI
Cardiospermum halicacabum L.	Dumbi community	Ohaeri, A.O. 947	29-May-75	ABU 947
Chytranthus angustifolius Exell.	Makoku	Gentry, A.L	20-Jul-81	FHI 102936
Chytranthus atroviolaceus Bak. ex Hutch. and Dalz.	Kade	Hall, J.B	28-Mar-72	GCH 43435
Chytranthus carneus Radlk.	Bia National park	Abbiw and Hall, J.B.	26-Sep-76	GCH 4650
Chytranthus cauliflorus (Hutch. and Dalz.) Wickens.		Abbiw and Hall, J.B.	05-Jan-74	GCH 44715
Chytranthus gilleti De Wild.	Mbalam	Mbamba, Ekitike	23-Aug-82	HNC 48253
Deinbollia angustifolius D.W. Thomas	Makoku	Gentry A.L	20-Jul-81	FHI 84378
Deinbollia grandifolia Hook. f.	Bakwai	Hall, J.B.	09-Jun-79	GCH 47068
Deinbollia insignis Hook. f.	Obudu	Ariwaodo, J.O and Odewo, T.K.	18-Mar-86	FHI 102216
Deinbollia kilimandscharia Taub.		De WILDE, J.J and De WILDE, B.E.	17-Aug-65	GCH 7781
Deinbollia maxima Gilg.	Bakossi mountain	Thomas, D.W and Mcleod, H.L.	03-Jan-86	HNC 56603
Deinbollia mezilii Thomas and Harris	Kribi	De WILDE, J.J	24-Jun-75	GCH 44613
Deinbollia pinnata Schum. and Thonn.	Ondo	Odewo, T.K.	17-Apr-89	FHI 103697
Deinbollia pycnophylla Gilg ex Radlk.	Batouri	Letouzey, R.	30-Apr-62	GCH 6226
Deinbollia molluscula Radlk.	Bonsa	Abbiw and Hall	05-Nov-73	GCH 45939
Deinbollia pynaerti De Wild.	Batouri	Letouzey, R.	30-Apr-62	GCH
Deinbollia voltensis Hutch.	Kpondai	Hall, J.B.	15-Jul-70	GCH 40483
Dodonaea viscosa (L.) Jacq.	ABU, Zaria	Adeyemi, T.O	02-Jun-09	LUH
Eriocoelum kertstingii Gilg. ex Engler.	Mambilla Plateau	Ibhanesebhor	13-Nov-75	FHI 177683
Eriocoelum microspermum Radlk. ex De Wild.	Limbe Botanic Gardens			FHI
Eriocoelum oblongum Keay	Calabar	Onyechuson	28-Mar-64	FHI 154222

Table 3. Contd.

Species	Location	Collector(s)	Date	Voucher ID
Eriocoelum pungens Radlk. ex Engl.	Abidjan	De WILDE, J.J	29-Sep-63	GCH 53159
Eriocoelum racemosum Bak.	Benso	Enti, A.A	Sep-59	GCH 7306
Ganophyllum giganteum (Chev.) Hauman.	Youkadouma	Letouzey, R	2-Jul-63	HNC 7361
Haplocoelum gallaense (Engler) Radlk.		Letouzey, R	20-Jul-86	HNC 59423
Harpullia zanguebarica (Oliv.) Radlk.	Victoria			FHI 9291
Laccodiscus pseudostipularis Radlk.	Mamfe	Florey, J.J.	Nov-72	FHI 39252
Lecaniodiscus punctatus J.B. Hall	Kibi-Akwadum	Hall, J.B.	25-Nov-77	GCH 46960
Lepisanthes senegalensis (Juss. ex Poir.) Leenh.	Imo	Ohaeri, A.O.	13-Sep-88	ABU 2619
Lychnodiscus brevibracteatus R. Fouilloy	Yaoundé	Letouzey, R	6-Jul-72	SFRK 28388
Lychnodiscus danaensis Aubreville and Pellegrin.	Asukese	Enti, A.A	02-Mar-73	FHI 79666
Lychnodiscus grandifolius Radlk.	Kribi	Bos, J.J	15-Dec-69	HNC 31755
Lychnodiscus reticulatus Radlk.	Obubra	Ariwaodo, J.O	18-May-77	FHI 88761
Melicoccus bijugatus Jacq.	Victoria	Ogu	13-Apr-60	FHI 52431
Nephelium lappaceum L.	Kade	Hall, J.B	14-Jul-76	GCH 46110
Pancovia bijuga Wild.	Lagos	Jullick, R	06-May77	FHI 56562
Pancovia harmsiana Gilg.	Bertoua	Letouzey, R	20-Jan-60	SFRK 2926
Pancovia laurentii (De Wild.) Gilg ex De Wild.	Mesamena	Letouzey, R	21-Feb-62	SFRK 6223
Pancovia sessiliflora Hutch. and Dalz.	Cross river	Letouzey, R	16-Oct-73	SFRK 72404
Pancovia turbinate Radlk.	Marone	Abbiw and Hall, J.B.	12-Aug-75	GCH 45363
Placodiscus attenuates J.B. Hall	Kissi	Hall, J.B	2-Mar-75	GCH 47087
Placodiscus bacoensis Aubrév. and Pellegr.	Yakossi	Hall, J.B and Abbiw	6-Apr-76	GCH 3193
Placodiscus boya Aubrév. and Pellegr.	Yokadouma	Letouzey, R	08-Feb-71	SFRK 23551
Placodiscus bracteosus J.B. Hall	Ashanti	Vigne, G	Jan-30	GCH 2694
Placodiscus cuneatus Radlk. ex Engl.	Yaoundé	-	21-Nov-63	HNC
Placodiscus glandulosus Radlk.	Ndikinimiki	Letouzey, R	8-Jan-72	SFRK 28397
Placodiscus letestui	Cross river	Latilo, A and Oguntayo	28-Feb-73	FHI 67759
Placodiscus oblongifolius J.B. Hall	Beberi	Leewenberg, A.J.	23-Feb-59	GCH 2796
Placodiscus pseudostipularis Radlk.	Beberi	Hall, J.B and Abbiw	20-Aug-75	GCH 45568
Placodiscus pynaertii De Willd.	Congo	Abbiw and Hall, J.B.	14-Sep-46	FHI 15475
Placodiscus riparius Keay	Njala	Deighton, J.C.	17-Sep-51	FHI 39473
Placodiscus turbinatus Radlk.	Korup	Odewo, T.K	3-Apr-88	FHI 10543
Sapindus trifoliatus L.	Abeokuta	Daramola, B.O.	31-Aug-68	FHI 61564
Schleichera trijuga Willd.	Limbe Botanic Gardens	De WILDE, J.J	14-Mar-34	FHI 12061

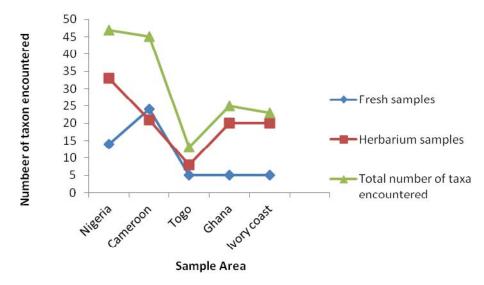
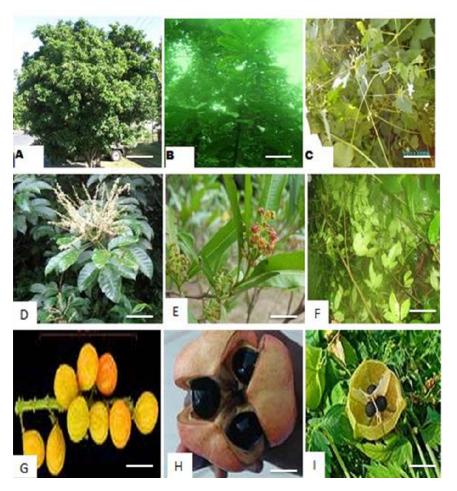
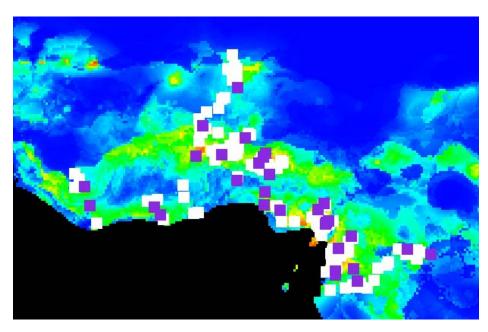




Figure 1. Number of taxa encountered per country visited.

Plate 1. Diversity of life forms within the family Sapindaceae in West Africa. (A.) Tree Species; (B.) Shrub (C.) Climbling Form (D.) Compound leaves with inflorescence in *Allophylus* (E.) Simple leaves of *Dodonea viscosa* (F.) Trifoliate leaves of *Allophylus* (G.) Drupe in clusters (H.) Trilobed dehiscent capsule of *Blighia* (I.) Trilobed inflated fruit of *Cardiospermum*. Scale: 20 mm.

Figure 2. Distribution of sapindaceae in West Africa and western Cameroon: White dots show the locations.

Table 4. Percentage number of species encountered according to genera.

Genera	Number of species encountered	Percentage number of species
Allophylus	16	15.1%
Aporrhiza	3	2.8%
Blighia	3	2.8%
Cardiospermum	3	2.8%
Chytranthus	10	9.4%
Deinbollia	12	11.3%
Dodonaea	1	0.9%
Eriocoelum	6	5.7%
Ganophyllum	1	0.9%
Glenniea	1	0.9%
Haplocoelum	1	0.9%
Harpulia	1	0.9%
Laccodiscus	2	1.9%
Lecanodiscus	2	1.9%
Lepisanthes	1	0.9%
Lychnodiscus	4	3.8%
Majidea	1	0.9%
Melicoccus	1	0.9%
Nephelium	1	0.9%
Pancovia	10	9.4%
Paullinia	1	0.9%
Placodiscus	15	14.2%
Radlkofera	4	3.8%
Sapindus	2	1.9%
Schleichera	1	0.9%
Zanha	1	0.9%
Total	104	100

Figure 3. Number of life forms of family Sapindaceae represented in West Africa.

conservation. This is confirmed in this study as it was observed that some of the species earlier recorded in some of the reserves were no longer found largely due to the high rate of deforestation and agricultural activities going on in the reserves.

This study provides a virtual guide to field identification of members of the family Sapindaceae in West Africa and can be seen as a step in solving taxonomic identification problems and biodiversity conservation as a whole. It is therefore expected that this report will assist scientists in the area for on-the spot identification of plants in the field.

Conflict of Interests

The author(s) have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors would like to thank the Explorers Club USA (www.explorers.org) for their financial support. Also special thanks go to Dr Jean M. Onana (Herbier National du Cameroun, Yaounde), Dr I. K. Asante (Department of Botany, University of Ghana, Legon), Mr. Gilbert Kimeng and Mr. Kossi Adjonou for their technical support.

REFERENCES

Acevedo-Rodríguez P, Van Welzen PC, Adema F, van der Ham RWJM. (2011). Sapindaceae. In: K. Kubitzki (ed.) The Families and Genera of Vascular Plants: Flowering Plants. *Eudicots: Sapindales, Cucurbitales, Myrtaceae*. Volume X. Springer-Verlag, Berlin, Heidelberg. pp. 357-407.

Adeyemi TO, Ogundipe OT (2012). Biodiversity of Sapindaceae in West Africa: A Checklist. Int. J. Biodiver. Conserv. 4(8):326-331

Adeyemi TO, Ogundipe OT, Olowokudejo JD (2013). A Review of the Taxonomy of African Sapindaceae based on Quantitative and Qualitative Characters. Ife J. Sci. 15(2):303-314

Alamu LO, Agbeja BO (2011). Deforestation and endangered indigenous tree species in South-West Nigeria. Int. J. Biodivers. Conserv. 3(7):291 297.

Angiosperm Phylogeny Group (APG II) (2003). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. Bot. J. Linn. Soc.141:399-436.

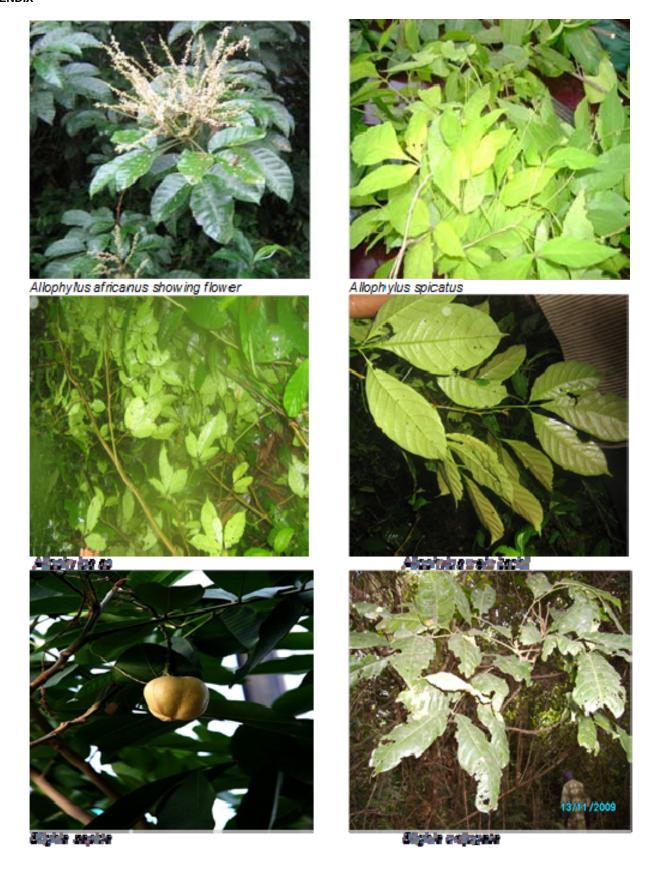
Cheek M, Onana JM, Pollard BJ (2000). *The Plants of mount Oku and* the Ijim ridge, Cameroon: *A Conservation Checklist*. RoyalBotanic Gardens, Kew, London. 211pp.

Fouilloy R, Hallé N (1973). Flora of Cameroon: *Sapindaceae*. Volume 16. National Museum of Natural History, Paris. 202pp.

Heywood VH (1978). Flowering Plants of the World. Oxford University Press, London. 335pp.

Hutchinson J, Daziel JM (1958). Flora of West Tropical Africa. Volume 1, Part 2. Crown Agents for Overseas Government and Administrations, Millbank, London. 828pp.

Keay RWJ, Onochie CFA, Stanfield DP (1964). Nigerian Trees. Volume II Department of Forest Research, Ibadan. 495pp.


Kent M, Coker P (1985). Vegetation Description and Analysis. John Wiley and Sons, London, UK. 401pp.

Magurram AE (1988). Ecological Diversity and its Measurement. Chapman and Hall, London. 179pp.

Pelemo OJ, Akintola BA, Temowo OO, Akande EO, Akoun M (2011). Effects of Landscape Change on Biodiversity in Nigeria: Remote Sensing and GIS Approach. Cont. J. Environ. Design Manag. 1(2):22–29

Singh G (2004). Plant Systematics: An Integrated Approach. Science Publishers, New Hampshire, Enfield. 561pp. Ubom R (2010). Ethnobotany and Biodiversity Conservation in the Niger Delta, Nigeria. Int. J. Bot. 6:310-322.

APPENDIX

Cardiospermum grandiflorum

Chytranthus macrobotrys

Chytanthus sp ii

Cardiospremum halicacabum

Chytranthus setosus

Chytranthus talbotii

Malkieu foaterii

