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Summary

The chloroplast has recently emerged as pivotal to co-ordinating plant defence responses and as

a target of plant pathogens. Beyond its central position in oxygenic photosynthesis and primary

metabolism – key targets in the complex virulence strategies of diverse pathogens – the

chloroplast integrates, decodes and responds to environmental signals. The capacity of

chloroplasts to synthesize phytohormones and a diverse range of secondary metabolites,

combined with retrograde and reactive oxygen signalling, provides exquisite flexibility to both

perceive and respond to biotic stresses. These processes also represent a plethora of

opportunities for pathogens to evolve strategies to directly or indirectly target ‘chloroplast

immunity’. This review covers the contribution of the chloroplast to pathogen associated

molecular pattern and effector triggered immunity as well as systemic acquired immunity. We

address phytohormone modulation of immunity and surmise how chloroplast-derived reactive

oxygen species underpin chloroplast immunity through indirect evidence inferred from genetic

modification of core chloroplast components and direct pathogen targeting of the chloroplast.

We assess the impact of transcriptional reprogramming of nuclear-encoded chloroplast genes

during disease and defence and look at future research challenges.

II. Introduction

A plant’s initial response to a broad spectrum of different stresses,
including pathogens, is through integrated signalling modules that
recognize a common set of second messengers (calcium, reactive

oxygen species (ROS), nitric oxide (NO) and lipid molecules),
often incorporating kinase-based signal transduction cascades.
Understanding how cells specify the timing, amplitude and
duration of signal outputs, and decode and integrate these signals
locally anddistally remains a key challenge in plant biology.What is*These authors contributed equally to this work.
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often neglected is that these signals are perceived not only at the cell
surface and/or in the nucleus, but also by other organelles, which
collectively contribute to orchestrating an effective response.

1. Plant immunity, more than membrane to nuclear
signalling

Put simply, plant immunity comprises three core modules. Predom-
inately membrane-localized pattern recognition receptors (PRRs)
perceive pathogen-associated molecular patterns (PAMPs) activating
PAMP-triggered immunity (PTI). Pathogens deliver effectors (gen-
erally proteinaceous but also small molecules) directly or indirectly
into the cell to collectively suppress PTI, often targeting the PRRs and
their coreceptors. This effector triggered suppression (ETS) can be
successfully overcome by intracellular plant disease resistance (R)
proteins which activate effector-triggered immunity (ETI) effectively
containing and eliminating the invading pathogen through a
programmed cell death process known as the hypersensitive response
(HR)(Jones&Dangl, 2006).However, there is a growing acceptance
that PTI and ETI are not two distinct processes but are somewhat
interdependent and contribute as a continuum to host immune
responses (van der Burgh& Joosten, 2019). Superimposed on ETI is
the initiation and establishment of broad-spectrum systemic immu-
nity known as systemic acquired resistance (SAR) (Shine et al., 2019).
Because of the localization of PRRs and signalling components of
ETI, most of the innate immunity research has been focused on the
cellmembrane, the nucleus and the role ofMAPK(mitogen-activated
protein kinase) signalling cascades in unravelling plant immunity
mechanisms.

2. The chloroplast is a key hub in coordinating effective plant
immune responses

Aside from oxygenic photosynthesis, chloroplasts act as both
environmental signal integrators andmetabolic hubs. Chloroplasts
not only link to primary metabolism but synthesize phytohor-
mones, fatty acids, amino acids and a plethora of other secondary
metabolites. This therefore provides unprecedented flexibility in
fine tuning complex signalling to specific environmental stresses,
and the capacity to rapidly modulate and redeploy metabolic
signalling. This review will focus on the role of the chloroplast in
disease and defence and seek to provide the reader with an overview
of current knowledge of chloroplast immunity. We will examine
evidence of a pivotal role for chloroplasts both in orchestrating an
effective immune response and as a pathogen target, to suppress
immunity. Pathogens probably also reconfigure primary
metabolism for nutrition, although experimental insight into this
is limited. We will additionally touch on current concepts in
retrograde signalling and draw parallels with other stress process
that impact chloroplast homeostasis to explore commonalities in
signalling responses.

3. Chloroplasts in plant immunity: an historical overview

In the past decade, the chloroplast has emerged as a central player in
plant defence, initially in the context of its identification as a

genuine effector target but more recently in recognition of its
contribution to defence. The importance of the chloroplast in
immunity has been known for a long time. Kupeevicz (1947) first
reported that viruses and other plant pathogens alter chlorophyll
(Chl) accumulation during infection. By the 1990s, viral proteins,
such as the coat protein of Tobacco Mosaic Virus (TMV), were
identified within the chloroplast (Banerjee & Zaitlin, 1992). In
comparison to virus research (whichwe only use here as exemplars),
studies on how bacteria, fungal and oomycete pathogens target the
chloroplast were limited until the emergence of ‘effector biology’ in
the early 2000s.

4. The complexity of chloroplast immunity: where to begin?

We aim to leave readers with two key messages, the first being that
chloroplast-derived reactive oxygen species (cROS) play a pivotal
role in establishing effective plant immunity and, secondly, that
pathogen effectors directly and indirectly target chloroplast
processes to suppress immunity. Obviously, to effect these changes
a plethora of processes are activated or suppressed. While
recognising this is still an embryonic field, we will draw on relevant
examples to provide insight into current state-of-knowledge of the
complexity of chloroplast processes modified and known compo-
nents targeted. We first briefly overview phytohormone modula-
tion of immunity, and the contribution of the chloroplast to PTI,
ETI and SAR in the context of cROS, and how effectors modulate/
facilitate this.

We next document potential processes contributing to chloro-
plast immunity that have been revealed using genetic approaches,
with a strong focus on the role of cROS. We then provide a
comprehensive overview of proteinaceous pathogen effectors
targeted to the chloroplast and their targets, if known. Finally, we
examine transcriptional control of nuclear-encoded chloroplast
genes in PTI and ETI and touch on the emerging role of subcellular
reorganization. Chloroplast retrograde signalling has recently been
comprehensively reviewed (Chan et al., 2016; de Souza et al.,
2017), including possible roles for metabolites in immune
signalling (Fernandez & Burch-Smith, 2019) and hence this is
not addressed here, other than to highlight specific examples.

We have tried to illustrate a variety of key immune processes
that impact the chloroplast throughout the review. A powerful
technique to visualize the impact of pathogens on chloroplast
physiology is through Fv/Fm measured by Chl fluorescence
imaging (Baker, 2008). Fv/Fm provides sensitive quantitative
temporal–spatial measurements of changes in the maximum
(dark-adapted) quantum efficiency of photosystem II (PSII; a
sensitive indicator of damage/downregulation of photosynthesis),
while simultaneously enabling imaging of pathogen challenges in
real time and, thus, is increasingly being used to monitor
pathogen infection dynamics (de Torres Zabala et al., 2015).
Fig. 1 illustrates suppression of PTI by the virulent phytobacterial
pathogen Pseudomonas syringae pv. tomato strain DC3000 (Pst)
both visually (Fig. 1a) and quantitatively (Fig. 1b) and its
relationship to in planta bacterial multiplication (Fig. 1c). Fv/
Fm can also effectively capture changes in chloroplast physiology
caused by fungal challenges (Fig. 1d).
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Fig. 1 Photosystem II quantum efficiency (Fv/Fm) captures early chloroplast changes in response to virulent and avirulent pathogens. (a,b) Challengewith the
virulent apoplastic bacterial phytopathogen P. syringae pv. tomatoDC3000 (Pst) but not mock (MgCl2) or the disarmed hrpAmutant results in reduced Fv/Fm
7–8 hpi (h post-infection) as illustrated visually (a) or quantitatively during disease establishment (b). (c) Pstmultiplication significantly increase above initial
inoculation levels at 8 h post-infiltration, coincident with reduction in Fv/Fm. Error bars, � SD. (d) Spray infection with spores of the virulent rice pathogen
Magnaporthe oryzaeGuy11 similarly induces localized decreases in Fv/Fm. (e) Challengewith the vascular pathogen Xanthomonas campestris pv. campestris

(Xcc) or P. syringae pv. maculicola suppresses Fv/Fm during infection, the extent of which is directly correlatedwith virulence of the strains. Pretreatment with
ABA, which is rapidly induced de novo following virulent bacterial infections, dramatically enhances suppression of Fv/Fm in both Xcc and Pst. (f) ETI induced
either by RPM1 or RPS4 following challenge with Pst carrying the respective avirulence genes,AvrRpm1 or AvrRps4, causes a rapid suppression of Fv/Fm, the
timing of which is unique to the specific R protein and correlates with speed of HR development. Kindly provided by: (a–c, f) M. Grant & S. Breen; (d) G.
Littlejohn; (e) de Torres et al. (2015: Fig. S4).
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III. Hormones and chloroplasts, a well-established
link in plant immunity

Being the main site of phytohormone precursor synthesis, the
chloroplast is central to integrating signals from PTI and ETI and
an obvious target for effector modulation. Hormonal crosstalk in
plant–microbe interactions is now well established (Robert-
Seilaniantz et al., 2011; Burger & Chory, 2019). Thus, here we
only briefly overview the core roles of, or selected new insights into,
the three key immunity modulating hormones salicylic acid (SA),
jasmonic acid (JA) and abscisic acid (ABA) to provide context for
further reference in later sections.

1. Salicylic acid

Salicylic acid (SA) is the archetypal defence hormone effective against
biotrophic and hemibiotrophic pathogens (Ding & Ding, 2020).
Rapid SA biosynthesis in response to pathogens occurs through
formationof isochorismateby the chloroplast-localized isochorismate
synthase (ICS). The decades long challenge to understand how
isochorismate was converted to SA was recently resolved. EDS5
(ENHANCED DISEASE SUSCEPTIBILITY 5) exports isochoris-
mate to the cytosol where the amidotransferase PBS3 (avrPphB
SUSCEPTIBLE3), originally identified in a genetic screen for loss of
RPS5-specified resistance (Warren et al., 1999), catalyses its conju-
gation to glutamate, forming isochorismate-9-glutamate, which
spontaneously decomposes into SA (Rekhter et al., 2019; Torrens-
Spence et al., 2019). SA may directly interfere with pathogen
virulence strategies through its interaction with nonexpressor of
pathogenesis-relatedgene (NPR)SAreceptors. Increases inSA inhibit
the transcriptional corepressors NPR3 and NPR4, but activate the
transcriptional coactivator NPR1, collectively inducing SA respon-
sive defence genes, including key regulators of plant immunity (Ding
et al., 2018). SA can also function indirectly by inhibiting ROS
scavenging enzymes such as catalase and ascorbate peroxidases
(Durner&Klessig, 1995; Zhang et al., 2016).More recently, SAwas
proposed as a retrograde signal generated by impaired PSII
proteostasis (Duan et al., 2019), although whether biotic stress leads
to sufficient accumulation of photodamaged proteins to instigate SA
retrograde signalling remains to be demonstrated.

2. Jasmonates

Classically, jasmonates are associated with core biotrophic
pathogen virulence strategies to suppress SA signalling. JA also
acts synergistically with ethylene in defence against necrotrophic
pathogens and ABA during herbivory (Robert-Seilaniantz et al.,
2011; Zhang et al., 2017; Yang et al., 2019). Linolenic and linoleic
acid, derived from chloroplast galactolipids, provide the 18-carbon
fatty acid substrate which is oxidized at the C-13 position by
chloroplast lipoxygenase then cyclized to 12-oxo-phytodienoic acid
(OPDA) via the consecutive activities of allene oxide synthase and
allene oxide cyclase. OPDA is exported to the peroxisome where it
is converted, via a series of beta oxidation steps, to JA which is
conjugated to isoleucine to form bioactive JA-Ile. JA may undergo
alternative modifications, although biological understanding of

their significance is currently limited (Wasternack&Hause, 2013).
With a predominant focus on jasmonate antagonism of biotrophic
defences, it is often overlooked that jasmonates are also produced de
novo during ETI (Andersson et al., 2006; Zoeller et al., 2012) and
have been implicated in both SAR (Truman et al., 2007) and
induced systemic resistance (ISR) (van Wees et al., 2000).

3. The role of ABA in repressing chloroplast immunity

While early studies revealed thatABA treatment suppressed resistance
to biotrophic and hemibiotrophic bacterial, fungal and oomycete
pathogens (Henfling et al., 1980; Mohr & Cahill, 2003), it was not
until subsequent, transcriptomic and genetic studies with ABA
biosynthetic and signalling mutants demonstrating that pathogens
hijack host ABA signalling to promote virulence that ABA became
universally recognized as a key player in suppression of biotrophic
immunity. De novo ABA synthesis induced by virulent Pst is
remarkably rapid, occurring within 6 h of challenge, significantly
preceding bacterial multiplication (de Torres-Zabala et al., 2007,
2009). Pathogen-induced ABA requires transcriptional upregulation
of genes encoding the chloroplast-localized 9-cis-epoxycarotenoid
dioxygenase (NCED) and cytosolic abscisic aldehyde oxidase (AAO)
– key enzymes in the final steps of ABA biosynthesis (Truman et al.,
2006; de Torres-Zabala et al., 2007, 2009; Peng et al., 2019).
Concomitantly, transcripts encoding protein phosphatase 2Cs
(PP2C), negative regulators of ABA signalling, are suppressed
(Truman et al., 2006) (see Fig. 4c later for a summary).

Carotenoid intermediates provide the precursors for ABA
biosynthesis. Zeaxanthin, derived from b-carotene – whose
oxidation products are themselves potential chloroplast signalling
molecules (reviewed by Havaux, 2014) – is converted to violax-
anthin, and then via trans-neoxanthin into 90-cis-neoxanthin and
90-cis-violaxanthin. These substrates are converted byNCED to the
15-carbon xanthoxin which is transported to the cytosol where it is
converted into abscisic aldehyde and finally to ABA via AAO (Seo
& Koshiba, 2002). De novo ABA induced by Pst is proposed to
suppress PTI-induced cROS (de Torres Zabala et al., 2015) as well
as antagonizing later SA signalling (de Torres Zabala et al., 2009).
ABA biosynthetic mutants (aao3) are more resistant to Pst and
other biotrophic pathogens. Notably, pretreatment with ABA
abolished PTI, enhanced the decrease of Fv/Fm (Fig. 1e) and,
analogous to ABA suppression of ROS in imbibed seeds (Ye et al.,
2012), induced ROS (de Torres Zabala et al., 2015). As ABA can
repress transcription of many plastid genes through PP2C-
dependent activation of nuclear genes (Yamburenko et al., 2015),
the recent demonstration that Xanthomonas effectors of both rice
and Arabidopsis pathogens promote virulence by suppressing
transcripts encoding chloroplast-localized PP2Cs (Akimoto-
Tomiyama et al., 2018) reinforces the complex role of ABA in
effector modulation of chloroplast immunity.

IV. cROS in immunity and insights from disruption of
chloroplast components

Specificity in ROS signalling is achieved via the spatiotemporal
control of production and scavenging at different organellar and
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subcellular locations. During plant defence, recognition of PAMPs
by PRRs activates plasma membrane-localized NADPH oxidase
(Zhou et al., 2019) and apoplastic type III peroxidases (Daudi et al.,
2012) generating, within minutes, a rapid burst of H2O2

comprising synthesis of short-lived superoxide and its more stable
dismutation product hydrogen peroxide in the apoplast (Smirnoff
& Arnaud, 2019). Hydrogen peroxide can enter the cytosol via
plasma membrane aquaporins (Rodrigues et al., 2017). ROS are
also produced in organelles by oxygen reduction during electron
transport and by oxidase enzymes in peroxisomes (Asada, 2006;
Mullineaux et al., 2018;Waszczak et al., 2018; Smirnoff&Arnaud,
2019). The prominent routes for cROS generation are oxygen
photoreduction at PSI (Mehler reaction) and possibly via the PSII
electron acceptor plastoquinone (Dietz et al., 2016; Vetoshkina
et al., 2017). Singlet oxygen (1O2), a highly reactive species, is
formed in PSII by transfer of excitation energy from triplet-state
Chl (Mullineaux et al., 2018a; Dogra et al., 2019) and is the major
ROS involved in ETI-induced lipid peroxidation (Zoeller et al.,
2012).

1. PTI and cROS

As part of PTI, chloroplasts of Arabidopsis leaves challenged with
virulent Pst generate reactive species (as determined by 2070-
dichlorodihydrofluorescein diacetate (H2DCFDA) oxidation)
which are suppressed within 4 h by Pst effectors (de Torres Zabala
et al., 2015). DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea),
which blocks photosynthetic electron transport between PSII and
plastoquinone (Metz et al., 1986), also blocks 2070-dichlorodihy-
drofluorescein oxidation, indicating that this burst is probably
generated by oxygen photoreduction producing superoxide/H2O2

downstream of PSII (Mubarakshina et al., 2010; Exposito-
Rodriguez et al., 2017). Interestingly, Pst ROS suppression
coincides with a decrease in Fv/Fm (Fig. 1a,b) and photosynthesis
(de Torres Zabala et al., 2015) and an increase in bacterial growth
(Fig. 1c) indicating that effectors (some of which are targeted to the
chloroplast) interfere with critical photosynthetic components that
have yet to be identified. Notably, ABA mimics DCMU applica-
tion, suggesting that Pst-induced de novo ABA biosynthesis may
play a key role in suppressing ROS production. Indeed, pretreat-
ment of leaves with ABA strongly enhances the Pst-induced
decrease in Fv/Fm and this is common to other, less virulent
pathogens such as Xanthomonas campestris pv. campestris (Fig. 1e).
At the same time, Pst (and other pathogens) suppress the expression
of a large set of nuclear-encoded chloroplast genes including
photosynthesis-related and antioxidant enzyme transcripts (Bilgin
et al., 2010; de Torres Zabala et al., 2015; Su et al., 2018). The
signalling mechanism driving PTI-generated cROS is unclear but
may involve calcium and/or retrograde signalling as discussed
below.

2. cROS and ETI

The interaction between high light, phytochrome and pathogen
responses has been documented (Bechtold et al., 2005; Ballare,
2014). Light is required for, or enhances, ETI-triggered HR

(Torres et al., 2006; Nomura et al., 2012). These observations
suggest the interaction of cROS with photosynthesis, SA produc-
tion (Chaouch et al., 2010, 2012) and additionally NO (Zaninotto
et al., 2006; Yun et al., 2011; Yun et al., 2016). The development of
an HR is rapid and effectively contains the pathogen. The HR is
widely thought to be triggered by 1O2 generation, which leads to
lipid peroxidation (Havaux, 2014). Pioneering analytical studies of
the temporal accumulation of oxidation products derived from
unsaturated fatty acids during theHR strongly support a 1O2 burst.
Notably, the HR leads to an early and massive accumulation of
both enzymatic and nonenzymatic chloroplast galactolipid-derived
oxylipins (Andersson et al., 2006; Zoeller et al., 2012) with huge
increases in JA measured within 5 h of infection with PstavrRpm1
(Zoeller et al., 2012). This timing is consistent with the earlier
biophoton production following PstavrRpm1 challenge (Bennett
et al., 2005), which is indicative of lipid oxidation (Havaux et al.,
2006). For example, HR in Arabidopsis inoculated with
PstavrRpm1 is enhanced by increased light intensity and associated
with disruption of the PSII light harvesting complex, decreased Fv/
Fm (Fig. 1f) and accumulation of the Chl catabolite phaeophor-
bide, a potent photosensitizer that generates 1O2 (Mur et al., 2010).
Indeed, Fv/Fm provides a powerful readout to accurately capture
and quantify the timing of specific R protein activation, before
visible symptoms, as illustrated for the RPM1–AvrRpm1 and
RPS4–AvrRPS4 interactions (Fig. 1f; for a recent review see also
Perez-Bueno et al., 2019).

Further evidence that chloroplast-sourced ROS are involved in
ETI and mediated by MAPK pathways are provided by studies in
Nicotiana benthamiana (Liu et al., 2007) and Arabidopsis (Su et al.,
2018).PstavrRpt2 (likePstavrRpm1, Fig. 1f) causes amuch larger and
earlier decrease in PSII quantum efficiency than Pst (Fig. 1a) (de
Torres Zabala et al., 2015), and a more prolonged activation of
MAPKs (Su et al., 2018). This response is mirrored by conditional
induction of MAPKs (MPK3/6) leading to cell death. Both
PstavrRpt2 and MAPK activation increase cROS within 6 h in a
light-dependent manner (consistent with biophoton generation at
c. 7 h post-inoculation (hpi); Bennett et al., 2005), accompanied by
visible disruption of PSII. Comparison of apparent chloroplast-
sourced ROS between PTI and ETI in this system indicates that
chloroplast-targeted effectors decrease photosynthesis and suppress
cROS production (de Torres Zabala et al., 2015) whereas ETI
involves a more aggressive effect on photosynthesis, as illustrated by
rapid decreases in Fv/Fm and an increase in ROS (Su et al., 2018),
consistent with extensive chloroplast galactolipid oxidation recorded
during early ETI (Andersson et al., 2006; Zoeller et al., 2012).

3. A role for cROS in systemic immunity?

The chloroplast is becoming increasingly linked to effective SAR, a
process conferring broad-spectrum and lasting immunity to
pathogens of diverse lifestyles (Fernandez & Burch-Smith, 2019).
Classic SAR is established following successful ETI leading to the
HR. Chloroplast lipids and cROS appear to be central to
generation of SAR inducing signal(s) following ETI-activated
HR (Wendehenne et al., 2014; Shine et al., 2019), supported by the
SAR-deficient phenotypes of fatty acid desaturase (sfd2;
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SUPPRESSOR OF FATTY ACID DESATURASE
DEFICIENCY2) mutants. The chloroplast galactolipid mutants
mgd1 and dgd1 (monogalactosyl synthase 1, digalactosyl synthase 1),
responsible for monogalactosyldiacylglycerol (MGDG) and
digalactosyldiacylglycerol (DGDG) synthesis respectively, func-
tion nonredundantly in initial SAR signal perception (Gao et al.,
2014; Shah et al., 2014). As noted above, ETI-generated ROS
modify fatty acids on chloroplast galactolipids leading to rapid JA
accumulation (Andersson et al., 2006; Zoeller et al., 2012).
Although JA is classically associated with suppression of SA
signalling in biotrophic interactions, jasmonates have been impli-
cated in both SAR (Truman et al., 2007; Liu et al., 2016) and ISR
(van Wees et al., 2000). While somewhat speculative, interesting
parallels are emerging between the role of ROS in signalling
pathways that regulate SAR and systemic acquired acclimation
(SAA) andwounding, where awave of ROS signalling appears to be
a common earlymediator of systemic signalling responses although
on different time scales (Zandalinas et al., 2019).

V. Immunity insights from perturbation of chloroplast
metabolism and cROS production

The following sections describe components of the photosynthetic
electron transport system and themain sources ofROSoccurring in
the chloroplast. The reader is referred to the schematic in Fig. 2 for
context. The removal of H2O2 in chloroplasts is carried out by a
diverse set of enzymes providing robustness to PTI. These include
ascorbate peroxidases localized to the stroma or attached to the
thylakoid membrane along with glutathione and associated
enzymes to regenerate oxidized ascorbate: glutathione peroxidase-
like and peroxiredoxins (Smirnoff & Arnaud, 2019) (Fig. 2).
Oxidized peroxiredoxins are regenerated by thioredoxin with
involvement of NADPH-dependent thioredoxin reductase C
(NTRC) (Perez-Ruiz et al., 2017). While mutants of individual
peroxiredoxins (Prx) in Arabidopsis (there are four chloroplast Prx
isoforms in Arabidopsis; Tripathi et al., 2009), have normal Pst
responses, an NTRC mutant (ntrc) shows increased cell death and
increased peroxide production as determined by 3,3’-diaminoben-
zdine staining (Ishiga et al., 2011) but no difference in Pst growth
compared to wild-type Col-0. Interestingly, the authors also
showed that NTRC-silenced tomato plants showed accelerated
necrotic cell death and enhanced symptom development in
response to the necrotrophic soil pathogen Sclerotinia
sclerotiorum. A similar response was elicited by nonhost
P. syringae, although pathovars varied in specific responses (Ishiga
et al., 2016). Notably, these symptoms were absent in plants
inoculated with a coronatine (COR)-deficient Pst strain, implicat-
ing a role for COR in cROS-induced disease-associated necrosis
(Ishiga et al., 2016). Antisense knockdown of two chloroplast
GPX-like enzymes in Arabidopsis increases H2O2 and high light-
induced SA.These plants had elevated PTI toPst andP. syringaepv.
maculicola (Psm), and more extensive HR following PstavrRpm1-
initiated ETI (Chang et al., 2009). Manipulation of chloroplast
APX also impacts pathogen response. Rice lines overexpressing
thylakoid membrane-bound APX exhibited increased initial
tolerance to rice bacterial blight conferred by Xanthomonas oryzae

pv. oryzae, whereas RNAi lines were more susceptible, and this was
correlatedwithH2O2 levels, presumably chloroplast-derived (Jiang
et al., 2016). In Arabidopsis, conditional silencing of thylakoid-
bound APX showed that accumulation of chloroplastic H2O2

triggered retrograde signalling leading to induction of nuclear-
encoded pathogen defence genes in the absence of any pathogen
challenge (Maruta et al., 2012).While not confined to chloroplasts,
the concentration of the antioxidants ascorbate and glutathione,
which are involved in H2O2 removal and redox regulation,
influence pathogen responses. Ascorbate-deficient mutants have
increased H2O2, PR levels, camalexin and SA accumulation and
have increased basal resistance to Pst and the oomycete
Hyaloperonospora (Barth et al., 2004; Pavet et al., 2005; Colville
& Smirnoff, 2008; Mukherjee et al., 2010). Consistent with these
observations, glutathione-deficient mutants have decreased resis-
tance to PstavrRpm1 (Ball et al., 2004; Parisy et al., 2007).

Expressing the cyanobacterial electron transport protein flavo-
doxin in tobacco chloroplasts improves robustness of photosyn-
thesis to various stresses including methyl viologen (MV: a redox
cycling compound that generates superoxide at PSI) and high light.
This appears to be associated with decreased cROS production
(Tognetti et al., 2006) and altered pathogen responses (Zurbriggen
et al., 2009; Rossi et al., 2017). The reason that flavodoxin, which
has a flavin cofactor, improves stress resistance and decreases cROS
production is not immediately apparent. It functionally replaces
the plant PSI electron acceptor ferredoxin (Tognetti et al., 2006)
which has a 2Fe–2S reaction centre. One possibility is that electron
transport through flavodoxin decreases oxygen photoreduction at
PSI (the Mehler reaction) (Fig. 2). Alternatively, because Fe–S
proteins are a target for superoxide and H2O2, which can
demetallate them (Imlay, 2013), chloroplastic ferredoxin may be
sensitive to inactivation by ROS. Indeed, superoxide inactivates
spinach ferredoxin (Fisher et al., 2016), consistent with the marked
increase in resistance to MV (Tognetti et al., 2006). This may
account for the significant reduction in localized cell death induced
by the nonhost pathogen Xanthomonas campestris pv. vesicatoria
(Xcv) in flavodoxin-expressing tobacco leaves, which was associated
with decreased cROS production (Zurbriggen et al., 2009).
Similarly, infection of flavodoxin-overexpressing tobacco with
the necrotrophic fungus Botrytis cinerea significantly restricted
hyphal growth, lesion development, Pathogenesis Related (PR) gene
expression and phytoalexin accumulation (Rossi et al., 2017).
Expression of flavodoxin inArabidopsis chloroplasts decreases ROS
production and disassembly of PSII in response to PstavrRpt2,
attenuating ETI (Su et al., 2018). These studies highlight a central
role for cROS in effective PTI and ETI. A mutant in the main
chloroplast ferredoxin (fd2; Fig. 2) exhibiting altered pathogen
responses provides additional evidence linking electron transport
from PSI with PTI (Wang et al., 2018). fd2wasmore susceptible to
Pst, possibly as a direct result of the elevated JA observed. By
contrast, ETI elicited by AvrRpt2 was stronger, with twice as much
H2O2 generation. This result is part of a growing body of evidence
for possible photosystem-specific roles for ROS generation during
ETI and PTI, with ROS generated by ETI being primarily derived
from PSII whereas PTI may generally require electron transport to
PSI, which is compromised in fd2 plants. This is also consistent
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with PSI being the source of H2O2 for PTI (de Torres Zabala et al.,
2015).

In conclusion, various lines of evidence show that cROS is
induced by PTI and ETI, andwe speculate thatH2O2 derived from
PSImay be the primaryROSunderpinning PTIwhereas ETI elicits
rapid accumulation of 1O2 (Fig. 2). The intensity and duration of
the response, and hence the eventual pathogenic outcome is
dictated by a complex interaction, its outcome being dictated by the
specific pathogen virulence strategy and host resistance protein
complement.HigherH2O2 levels can improve basal immunity, but
effectors collaborate to directly or indirectly repress cROS
production, probably by inhibiting electron transport to PSI. By
contrast, and somewhat counterintuitively, ETI appears to elicit an
extensive disruption of photosynthesis, including breakdown of
PSII leading to greater ROS production and the HR. This is likely
to be driven by 1O2. However, at this point a fuller understanding
of these mechanisms is limited by the poor specificity of the ROS
assays (Smirnoff & Arnaud, 2019). New genetically encoded
reporters (Nietzel et al., 2019) and nanosensors (Lew et al., 2020)
offer better specificity and temporal spatial resolution to better
dissect these processes.

VI. Direct targeting of pathogen effectors to the
chloroplast

The previous sections show that pathogen effectors modulate
chloroplast function, either directly or indirectly, which implies

that effectorsmay themselves localize to the chloroplast and directly
interact with chloroplast-located targets. Here we summarize direct
and indirect experimental evidence for effector localization to the
chloroplast.

1. Bacterial effectors

Evidence for physical targeting of chloroplasts by bacterial effectors
did not emerge until themid-2000s (Jelenska et al., 2007; Lee et al.,
2008) yet remarkably and more than 10 of Pseudomonas syringae’s
core effector repertoire of 30–40 proteins have been predicted or
experimentally shown to localize to the chloroplast (Table 1).More
recently, a number of effector proteins from Ralstonia
solanocerarum have been shown to localize to the chloroplast
(Table 1), although knowledge of their host targets is limited
(Jelenska et al., 2007; Lee et al., 2008; Rodriguez-Herva et al.,
2012).

Pseudomonas syringae The recently described P. syringae pan
genome (Laflamme et al., 2020) has provided a rich resource to
further expand our knowledge of effectors targeted to the
chloroplast.

HopI1 One of the first bacterial effectors found to target the
chloroplast was HopI1 from Psm. HopI1 has a redundant
chloroplast-targeting sequence and contains P/Q-rich repeats (to
facilitate protein folding) and a J domain, through which it directly
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binds to and affects the activity and/or specificity of chloroplast-
associated cytosolic Heat shock protein 70 (Hsp70). While in
planta interaction with the Hsp70 chloroplast isomer has yet to be
demonstrated, HopI1 induces altered thylakoid structure and
reduced SA accumulation (Jelenska et al., 2007), although how
HopI1 enters the chloroplast remains to be determined.

HopN1 HopN1 suppresses ROS accumulation, callose deposi-
tion and HR cell death (L�opez-Solanilla et al., 2004; Rodriguez-
Herva et al., 2012), these activities being dependent on its cysteine
protease activity. HopN1 localizes to the thylakoid membrane,
interacting with and degrading PsbQ from PSII, reducing oxygen
production, electron transport and attenuating cROS.Collectively,
these studies have shown that PsbQ quantitatively contributed to
both PTI and nonhost HR.

AvrRps4/HopK1 AvrRps4 is more commonly associated with
triggering ETI when recognized by RPS4 in A. thaliana. However,
AvrRps4 localizes to both the nucleus and the chloroplast and has
high N-terminal sequence homology to another effector protein,
HopK1. Both AvrRps4 and HopK1 target the chloroplast via a
cleavable transit peptide (Li et al., 2014) and their chloroplast
localization is required to suppress the classical PTI responses, ROS
production and callose deposition, and to enhance bacterial
growth. The generation of combinations of chimeric effectors
between C- and N-terminal domains of AvrRps4 and HopK1
demonstrated that AvrRps4 contributes to bacterial virulence inPst
lacking HopK1, although the chloroplast targets of these effectors
remain to be determined. HopK1N-AvrRps4C but not AvrRps4N-
HopK1C chimeras induced a strong HR delivered through
Pseudomonas fluorescens (Halane et al., 2018). However, AvrRps4N

not only directly interacted with EDS1 but also contributed to
bacterial virulence in Pst lacking HopK1, establishing AvrRps4 as
an evolved bipartite effector with dual nuclear and chloroplast
functions (Halane et al., 2018).

HopM1 PstHopM1 localizes to the trans-Golgi network where it
interacts with the ADP-ribosylation factor guanine nucleotide
exchange factor, AtMIN7, to suppress vesicle-trafficking (Nomura
et al., 2011). However, HopM1 from P. syringae pv. actinidiae,
with 67% amino acid identity to Pst HopM1, localizes to the
chloroplast (Choi et al., 2017), suggesting an intriguing evolution
of alternative functions for these proteins.

Of the remaining P. syringae effectors that are known to localize
to the chloroplast, the predictedADP-ribosyl transferaseHopO1-2
andHopR1 translocate into isolated chloroplasts (de Torres Zabala
et al., 2015) although further functional insight is lacking. HopR1
and HopO1-2 were amongst a number of effectors identified to
interact with predicted chloroplast-localized proteins in yeast two-
hybrid screens, including HopU1, HopZ1, HopW1 andHopBB1
(Lee et al., 2008; Mukhtar et al., 2011).

Other bacterial effectors Evidence for effectors targeting to the
chloroplast is emerging from other bacterial pathogens. The
chloroplastic phospholipase A1 RipAL (Ralstonia-injected pro-
teins) from Ralstonia solanacearum (Nakano & Mukaihara, 2018)T
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shares homology with DEFECTIVE IN ANTHER
DEHISCENCE1 (Ishiguro et al., 2001), which catalyses the release
of linoleic acid, a critical precursor of JA biosynthesis, from
chloroplast membranes. RipAL localizes to the chloroplast and wild
type, but not a lipase active site mutant, suppressed PTI in N.
benthamiana via enhanced JA signalling and JA/JA-isoleucine
content, with a concomitant decrease in SA and associated SA-
signalling genes (Nakano & Mukaihara, 2018). The F-box domain
RipG effector family comprises sevenmembers, of which RipG3 and
RipG7 interact with chloroplast proteins – possible targets for
ubiquitination and proteasomal degradation (Dahal et al., 2018).
RipAD is also localized to chloroplasts, although its host target(s)
remain unknown (Jeon et al., 2020). Notably, both RipAL and
RipAD interfere with flg22-triggered ROS production presumably
from the chloroplast (Nakano&Mukaihara, 2018; Jeon et al., 2020).

2. Effectors from filamentous pathogens

Chloroplast-localized effector proteins from fungi and oomycetes
are now being identified, indicating that filamentous pathogens
have also evolved to target the chloroplast (Table 1).

Rusts Transient expression inN. benthamiana has localized eight
effector proteins from rusts (Table 1) (Petre et al., 2015; Petre et al.,
2016; Sperschneider et al., 2017). Notably, the program LOCALISER

has proved useful for in silico prediction of chloroplast and other
cellular effector addresses (Sperschneider et al., 2017), identifying a

further two chloroplast-localized effectors from the biotrophic rust
Puccinia graminis f. sp. tritici, PGTG_00164 and PGTG_06076,
which were experimentally validated.

Given the dearth of experimentally validated chloroplast-
localized effector proteins from other fungi, this may reflect a rust
virulence strategy or lack of experimental endeavour.

Oomcyete Oomcyete effectors are largely of the ‘RXLR’ class.
RXLRs are defined by a secretion signal peptide followed by a
conserved N-terminal domain comprising the RXLR (Arg–Xaa–
Leu–Arg) consensus sequence, where X is any amino acid that
shares a conserved structural fold (Win et al., 2012). A high-
throughput screen of 83 candidate RXLR effectors of the obligate
biotrophic oomycete Plasmopara viticola (Liu et al., 2018)
identified four effectors localized to the chloroplast (Table 1).
Only one contained a cleavable N-terminal transit peptide and was
specifically targeted to the chloroplast, PvRXLR86, whereas the
others had multiple organellular addresses (Liu et al., 2018).
PvRXLR61 and PvRXLR161 localized to the chloroplast and
nuclei whereas PvRXLR54 additionally targeted the mitochondria
(Liu et al., 2018). A chloroplast-localized effector was also
identified from the related sunflower powdery mildew,
Plasmopara halstedii. PhRXLR-C20, expressed during pathogen
colonization, was observed in the chloroplast and stromules (Pecrix
et al., 2019). Notably, PhRXLR-C27 targeted plastid-associated
membranes (Pecrix et al., 2019). The host targets of these two
effectors remain unknown.
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Fig. 3 Convergent targeting of Thylakoid formation 1 (Thf1), a negative regulator of cell death, by diverse pathogens. Thf1 plays an important role in
photosystem II (PSII) – light harvesting complex II dynamics and is targeted by necrotrophs, biotrophs and viruses. (a) The effector protein ToxA found in a
varietyof necrotrophicwheat fungal pathogens,Parastagonospora nodorum (Pn),Pyrenophora tritici-repentis (Ptr) andBipolaris sorokiniana (Bs), targets the
wheat Thf1 orthologue, ToxA Binding Protein 1 (ToxABP), inducing necrosis via ROS accumulation through reduction in PSI and PSII protein complex
abundance.Thewheat sensitivityprotein,Tsn1, is required forToxA-dependentnecrosis andmaymonitorbindingofToxA toToxABP1. (b)Thehemibiotrophic
bacterium Pseudomonas syringae pv. tomato (Pst) delivers effectors (yellow circles) which appear to disrupt Thf1 function, again leading to enhanced lesion
formation,although it remains tobedeterminedwhether this is bydirect or indirect interaction. (c)TheTobamovirus (TBV)N0 virus resistanceprotein,belongs to
the conserved Solanaceae I2 class of CC-NBS-LRR resistance protein.that also confersresistance to Phytophthora and Fusarium sp.TBV’s CC domain physically
targets and destabilizes TBV-coat protein in a light-dependent manner to enhance resistance. Based on analogy to the cyanobacterium Synechocystis Thf1
orthologue, Psb29, Thf1 destabilization affects accumulation of the FtsH ATP-dependent zinc metalloproteases, FTSH2 and FTSH5 (also known as VAR2 and
VAR1 respectively), which are involved in the selective degradation of PSII subunits, such as D1 during PS repair. This would lead to PSII disassembly and
increased ROS production.
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Nectrophic fungal effectors ToxA, a 178 amino acid secreted
necrotrophic effector protein was first isolated from the fungus
Pyrenophora tritici-repentis (Sarma et al., 2005) and was more
recently identified in Parastagonospora nodorum and Bipolaris
sorokiniana (McDonald et al., 2017). ToxA targets the chloroplast
ToxA Binding Protein 1 (ToxABP1), inducing ROS accumulation
through decrease in PSI and PSII protein complex abundance
(Manning et al., 2007; Faris et al., 2010). The sensitivity inwheat to
ToxA is governed by the Tsn1 locus, encoding classical nucleotide
binding, leucine rich repeat disease resistance proteins, suggesting
these may monitor ToxA activity. The severity of necrosis can be
restricted by preventing ROS accumulation or silencing ToxABP1
(Manning et al., 2007). The A. thaliana homologue of the wheat
ToxABP1, known asThylakoid formation 1 (Thf1), is also targeted
by multiple pathogens (see below), suggesting convergent evolu-
tion of effector targets. The S. sclerotiorum effector SsITL has
recently been shown to localize to the chloroplast and interact with
the chloroplast-localized calcium-sensing receptor (CAS, see
below) (Tang et al., 2020). The interaction of SsITL with CAS
interferes with the SA signalling pathway to reduce SA accumu-
lation during early infection while overexpression of CAS increased
resistance to S. sclerotiorum (Tang et al., 2020).

3. Convergent targeting of Thf1, a negative regulator of cell
death, by diverse pathogens

Aside from being a target of ToxA, chloroplast-localized Thf1 is
involved in a range of host–microbe interactions (necrotrophic,

biotrophic, viral), mediating both PTI and ETI (Fig. 3). Thf1 is an
orthologue of ToxABP1which binds ToxA (see above, Fig. 3a) and
plays a central role in controlling PSII–light-harvesting complex II
(LHCII) dynamics during dark-induced senescence and light
acclimation (Huang et al., 2013). It has also been linked to
DC3000 virulence and virus infection (Fig. 3b,c). Both virus-
induced gene-silenced SlALC, the tomato Thf1 orthologue, and
Arabidopsis thf1 mutants exhibited accelerated lesion formation
upon DC3000 challenge, and SlALC1 chloroplast localization was
affected by coronatine (Wangdi et al., 2010). Interestingly, Thf1
was additionally identified as an interactor with the CC domain of
the Solanaceae I2-like class of CC-NLRs (Ori et al., 1997), which
provide immunity against a range of pathogens including Fusarium
oxysporum f. sp. lycopersici (Hamel et al., 2016), Phytophthora
infestans in potato (Huang et al., 2005) and Tobamovirus coat
protein in pepper (Tomita et al., 2011). Using N0, an I2 CC-NLR
which recognizes Tobamoviruses coat protein (Hamel et al., 2016)
demonstrated that Thf1 functions as a negative regulator of cell
death, and activation ofN0 results in the destabilization of Thf1 in a
light-dependent manner (Fig. 3c). Notably, like the TMV N
protein interaction with chloroplast-localized NRIP protein (see
below (Caplan et al., 2008)), the N0–Thf1 interaction appears to
take place in the cytosol. Possible insight into how Thf1
destabilization impacts chloroplast immunity is provided by the
demonstration that a cyanobacterial Thf1 homologue Psb29 is
required for the accumulation of the FtsH ATP-dependent zinc
metalloproteases, which function in selective degradation of PSII
subunits during repair (Beckova et al., 2017). Normally, inactiva-
tion of PSII is restored through a repair cycle replacing damaged
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protein subunits, mainly the D1 reaction centre subunit, with
functional copies. Damaged D1 repair is usually mediated through
proteolysis by members of the Arabidopsis FTSH family. Thf1 is
required for normal accumulation of FTSH2 and FTSH5 (also
known as VAR2 and VAR1 respectively; Wu et al., 2013). Thus N0

destabilization ofThf1would diminish FTSH2/5 levels, impacting
PSII repair, and lead to the production ofROS andpresumablyHR
cell death (Fig. 3c).

4. Getting the message across: is calcium signalling
involved?

There are common and distinct roles for ROS and calcium
signalling in activating and uncoupling chloroplast immunity.
Calcium signalling, like ROS signalling, is probably via a
propagative wave, initiated at the plasma membrane upon PRR
activation and transmitting to the chloroplast and nucleus,
although current knowledge of this remains sparse. Twenty years
ago, rapid transient cytosolic calcium (Ca2+cyt) increases in
response to PTI (Pst, PsthrpA and Pst avrRpm1 challenges) were
recorded using the calcium-sensitive reporter aequorin (Grant
et al., 2000). PstavrRpm1 (ETI) elicited an additional slow,
sustained increase in Ca2+cyt, yet it is still unclear whether this is a
signal perceived by other organelles, or indicative of loss of Ca2+

homeostasis coincident with HR development.
A role for calcium in establishment of chloroplast immunity is

evidenced from studies on the thylakoid-membrane-localized
Ca2+-sensing protein (CAS), which generates stromal Ca2+ spikes
via Ca2+ release from thylakoid membranes (Fig. 4a). The cas-1
mutant was strongly compromised in resistance to virulent and
avirulent Pst (Fig. 4b). Additionally, classical PTI responses such as
callose deposition and stomatal closure were attenuated in cas-1.
Biochemical characterization of CAS-silenced N. benthamiana
plants positioned CAS downstream of activated MAPK signalling
cascades and upstream of ROS signalling (Nomura et al., 2012).
Recently, the S. sclerotiorum integrin-like effector SsITLwas shown
to directly target CAS to suppress immunity (Fig. 4b) (Tang et al.,
2020). SsITL-expressing transgenic plants were more susceptible
and CAS overexpression enhanced resistance to S. sclerotiorum,
consistent with the previously reported role of SsITL in suppression
of JA/ethylene signalling (Zhu et al., 2013). Thus, stromal calcium
signalling appears important in mediating broad-spectrum immu-
nity.

VII. Cellular reorganization during infection,
stromules and perinuclear chloroplast movement

Subcellular reorganization is well documented during plant–
pathogen interactions. In addition to the generation of specialized
interfaces between plant cells and invading pathogens (e.g. the
extrahaustorial membrane (EHM) and biotrophic interfacial
complex (BIC)), cellular components are recruited to sites of
infection, oftenmediated by actin microfilaments or microtubules,
as recently reviewed (Park et al., 2018b; Boevink et al., 2020).
Chloroplasts move around the cell on actin microfilaments, but
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Fig. 5 Physical responses of chloroplasts to pathogen infection. Stromule
formation is common to both ETI and PTI, possibly providing a conduit of
physical retrograde communication. (a) Confocal micrographs of tobacco N
protein TMV p50-mediated ETI with chloroplasts visualized in N-containing
NRIP1-Cerulean plants. Upper left: stromules wrapped around nuclei
(maximum-intensity projection of a z stack). Upper right: direct connection
to the nucleus of clusters of stromule tips (single z stack plane). Lower panels:
nucleiwith amixtureof tip or surrounding stromule connections (transparent
projections of z stacks). Bars, 10 lm (fromCaplan et al., 2015). (b) Confocal
images of reactive oxygen species (visualized by 20,70-dichlorodihydrofluor-
escein diacetate [H2DCFDA] staining) in nucleus and chloroplasts of leaf cells
challenged with the nonvirulent Pseudomonas syringae pv. tomato (Pst)
hrpAmutant eliciting PAMP-triggered immunity (PTI; left panel, bar 20 lm)
or virulent Pst capturing effector-triggered susceptibility (ETS; right panel,
bar 10 lm) visualized c. 5 h post-inoculation. White arrows denote
chloroplasts sitting on the nucleus – both organelles show strong H2DCFDA
staining. Yellow arrow represents an H2DCFDA F-stained chloroplast whose
stromule is associatedwith the nucleus. Red fluorescence corresponds to Chl
and green channel to the H2DCFDA signal. Bars, 10 lm. (c) Compared with
mock challenge (left panel) chloroplast aggregation is seen during Pst ETS in
A. thaliana (18 h post-infection (hpi)). Red fluorescence signal is derived
from Chl and green fluorescence from Pst labelled with GFP (adapted from
Hutt et al., 2014).
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there is compelling evidence which shows that stromule formation
(finger-like tubular stroma-filled chloroplast extensions) is mainly
microtubule-dependent (Caplan et al., 2015; Erickson et al., 2018).
However, treatment with the microtubule-depolymerizing agent
oryzalin indicates additional microtubule-independent stromule
formation with each type characterized also by its speed of
movement (Erickson et al., 2018).

1. Stromules and perinuclear chloroplast movement – ROS
as a retrograde immune signal?

Systematic studies of chloroplasts during pathogen challenge are
limited. Pioneering work on the TMV N resistance protein/TMV

p50 effector demonstrated a cytosolic interaction of N with
chloroplastic localized N Receptor Interacting Protein 1 (NRIP1)
(Caplan et al., 2008). N-mediated ROS-induced stromules in a
CHloroplast Unusual Positioning 1 (CHUP1)-dependentmanner
(Fig. 5a) (Caplan et al., 2015). While stromules can be induced
in vitro, indicating this is a chloroplast autonomous response, actin
microfilament remodelling to facilitate perinuclear chloroplast
movement appears to be an active ETI strategy to establish a
conduit for possible retrograde ROS (or metabolite) signals
(Fig. 5a) (Caplan et al., 2015; Kumar et al., 2018; Park et al.,
2018a; Park et al., 2018b; Fernandez & Burch-Smith, 2019).

Stromules were observed following flg22 treatment, but not
20 hpi with PsthrcC (Caplan et al., 2015). This apparent anomaly
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may represent a timing issue as cROS is produced during early PTI
(4–5 hpi with PsthrpA; de Torres Zabala et al., 2015 (Fig. 5b)).
Strikingly, PTI-induced cROS, as determined by H2DCFDA
staining, was only detected in perinuclear chloroplasts or those with
stromules that appear to physically contact the nucleus following
PsthrpA challenge. Interestingly, chloroplasts staining for ROS
were significantly smaller than the others (Fig. 5b), suggesting
heterogeneity in chloroplasts as reported for high light responses
(Exposito-Rodriguez et al., 2017), possibly a direct consequence of
stromule formation. Additionally, there is evidence for chloroplast
aggregation late in successful infections, as illustrated in Fig. 5(c)
and described by Hutt et al. (2017). As many of these studies use
different cell types (epidermal vs mesophyll), the importance of cell
type on chloroplast function and chloroplast heterogeneity in
specific pathogen immune responses requires further investigation.
Chloroplasts also appear to be recruited to the EHM in P. infestans
infections of N. benthamiana, where the anchoring of chloroplasts
to the EHM is also CHUP1-mediated (Toufexi et al., 2019).
Silencing ofCHUP1 reduced chloroplast recruitment to the EHM,
reduced stromule formation and led to higher levels of P. infestans
hyphal growth, reinforcing the importance of CHUP1 and
highlighting a role for chloroplast dynamics in establishment of
plant immunity.

Thus, organization of chloroplasts during infection is typified by
perinuclear chloroplast localization and the CHUP1-dependent
extension of stromules toward the nucleus, each of which provide a
physical basis for retrograde signalling (Erickson et al., 2018;
Mullineaux et al., 2020). Indeed, perinuclear positioning of
chloroplasts in immunity appears generic, being reported during
viral infections (Fig. 5a) and in both avirulent (Pst), virulent
(PsthopQ1-1) and Agrobacterium tumefaciens challenges of
N. benthamiana, transient expression of effectors or viral proteins
such as p50, or following exogeneous application of ROS (Erickson
et al., 2014; Caplan et al., 2015;Ding et al., 2019). Pathogen effects
on stromule formation and chloroplast–nuclear association is
remarkably similar to cROS-mediated high light responses
(Exposito-Rodriguez et al., 2017) and oxidative stress imposed by
silencing of NTRC (Brunkard et al., 2015).

Recent evidence for effector suppression of stromules comes
from studies with the Xcv E3 ubiquitin ligase effector XopL.
Overexpression of XopL but not an XopL E3 ubiquitin ligase
mutant in N. benthemiana abolished stromule formation in lower
epidermal cells induced by A. tumefaciens (Erickson et al., 2014;
Erickson et al., 2018). By contrast, XopQ, known to elicit ETI in
N. benthemiana, increased stromule formation by over 50%.
Notably, perinuclear chloroplast localization was still observed
with XopL overexpression, implying nuclear recruitment of
chloroplasts and formation of stromules to be independent
mechanisms in immunity.

VIII. Functional significance of suppression nuclear-
encoded chloroplast genes (NECGs)

While suppression of NECGs has been reported previously (e.g.
Bilgin et al., 2010), a detailed time course comparing Pst with its
type III secretion-deficient hrpA mutant revealed that wholesale

suppression of NECGs was a PTI response, with c. 35% of all
differentially suppressed genes within 3 hpi representing NECGs
(de Torres Zabala et al., 2015; Lewis et al., 2015). This appears to
indicate an active defence response to prioritize defence at the
expense of growth. Notably, neither hrpA (nor flg22) challenge
markedly affected Chl fluorescence parameters (de Torres Zabala
et al., 2015), yet within 3 hpi, Pst effectors differentially regulate a
subset of hrpA-suppressed NECGs (Fig. 6). These transcriptional
changes occur in parallel to suppression of cROS and before
measurable differences in Fv/Fm or decrease in photosynthesis rate
(de Torres Zabala et al., 2015).

A meta-analysis of rice transcriptomic datasets also reported
extensive downregulation ofNECGs under both biotic and abiotic
stress (Cohen & Leach, 2019). Considering the 11 diverse datasets
and disparate temporal sampling, a core set of 85 photosynthesis-
related geneswere identified as suppressed across eight experiments.
Thus, rapid transcriptional suppression of NECGs is a core
response to retrograde stress signals, possibly representing a
universal strategy to maximize resource allocation to defence by
short-term attenuation of photosynthetic capacity, but possibly
collaterally decreasing the capacity to repair effector targets.

Increasing evidence suggests thatMAPKsmediate the transcrip-
tional reprogramming of NECGs. MAPKs are rapidly activated
following PAMP recognition and the subsequent apoplastic ROS
burst (Meng&Zhang, 2013) (Fig. 6a). MAPKs can be induced by
ROS but can themselves modulate ROS production. A body of
evidence is emerging that the MPK3/MPK6 pathway also
orchestrates ETI responses downstream of R protein activation
that contribute to elevated cROS. Conditional activation of
tobacco MPK3/6 orthologues SIPK/Ntf4/WIPK led to rapid,
light-dependent suppression of CO2 fixation, resulting in excess
excitation energy, the generation of cROS and HR-like cell death
(Liu et al., 2007). ETI induced by constitutively active Nicotiana
tabacumMAPK kinase 2 (NtMEK2DD) led to sustained activation
of MPK3/MPK6 in Arabidopsis (Fig. 6c). Similarly, conditional
induction of AvrRpt2 activated MPK3/MPK6, resulting in a rapid
inhibition of PSII and accumulation of singlet oxygen andH2O2 in
chloroplasts (Su et al., 2018). How MAPKs impose specificity in
modulating chloroplast immunity and transcriptional regulationof
NECGs requires further investigation. It has recently been shown
that fluctuating light activates local and systemic transcriptional
reprogramming, including overrepresentation of genes involved in
photoprotection, photosynthesis and photorespiration (Kumar
et al., 2018; Schneider et al., 2019). Whether MPK6 integrates the
retrograde signals to drive this adaptive, photoprotective response
remains to be determined.

1. Emerging examples of indirect transcriptional modulation
of ETI- and PTI-mediated chloroplast immunity

Here we review two examples of chloroplast immunity impacted by
differential gene regulation. The first involves ETI activation of the
P. infestans R protein Rpi-vnt1.1 by its effector AVRvnt1, which
depends on light-driven alternative promoter selection. Light is
required for expression of full-length tomato and potato glycerate 3-
kinase (GLYK) transcripts encoding a chloroplast transit sequence.
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AVRvnt1 binds to this chloroplast-targeting sequence and activates
resistance (independent of GLYK kinase activity), impairing
accumulation of GLYK in both total and chloroplast fractions of
potato (Gao et al., 2020). This is somewhat analogous to the TMV
N–NRIP1 interaction described above (Caplan et al., 2008), but in
this case AVRvnt1 intercepts GLYK’s trafficking to the chloroplast,
the depletion of which (probably via proteasomal degradation) is
indirectly sensed by Rpi-vnt1.1 activating ETI (Fig. 7a).

The second example requires both differential expression of the
rice Light Harvesting Complex of Photosystem II 5 (LHCB5) and its
light-dependent phosphorylation. During infection by the rice
blast fungus Magnaporthe oryzae, japonica but not indica rice
varieties show elevated PTI due to a simple nucleotide polymor-
phism in the japonica LHCB5 promoter leading to increased
expression of LHCB5 (Liu et al., 2019). Cytosolic phosphorylation

of LHCB5’s chloroplast transit sequence on Thr24 leads to
accumulation of both LHCB5 and superoxide in the chloroplast
and enhanced basal immunity. Interestingly, LHCB5 was not
phosphorylated during ETI. LHCB5 overexpression lines were
more resistant, and RNAi knockdown lines were more susceptible,
to M. oryzae. LHCB5 binds PsbS, a thylakoid sensor that is
involved in nonphotochemical quenching (NPQ). As phosphory-
lated LHCB5 accumulating in the chloroplast can form a trimeric
complex, the authors predicted that during M. oryzae japonica
infection PsbS binding is disrupted, resulting in decreased electron
transfer, increased cROS and enhanced basal resistance (Fig. 7b)
(Liu et al., 2019). This is supported by studies on Arabidopsis and
rice plants deficient in PsbS, which have higher levels of cROSwith
rice mutants showing enhanced resistant toM. oryzae (Zulfugarov
et al., 2014). This may help mechanistically explain the results of
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Gohre et al. (2012) where the observed flg22-induced decrease in
PsbS abundance may be associated with increased cROS (Gohre
et al., 2012).

2. Direct targeting of ‘resistance’ proteins to the chloroplast

Given effector localization to the chloroplast, it is not unreasonable
to propose classical R proteins to be associated with the chloroplast
to monitor activity, and R proteins have been experimentally
predicted to be chloroplast-associated (http://suba.live/). Indeed,
the atypical chloroplast-localizedWheat Kinase START1 (WKS1)
confers partial race-nonspecific resistance to P. striiformis f. sp.
tritici and is encoded at the YR36 (Yellow Rust resistance) locus. N-
terminally processedWKS1 localizes to the chloroplast, binding to
and phosphorylating both thylakoid-associated ascorbate peroxi-
dase (tAPX) potentially restricting cROS detoxification (Gou et al.,
2015) and PSII component PsbO, decreasing its ability to bind to
the supercomplex (Wang et al., 2019) (Fig. 7c). Both psbo-A1
mutant and RNAi lines exhibited induction of chlorosis and
reduced P. striiformis f. sp. tritici growth (Wang et al., 2019). The
authors concluded that WKS1 initially triggers chlorosis by
phosphorylating PsbO, and the gradual accumulation of ROS
(exacerbated by the phosphorylation of tAPX) induces cell death. It
is currently unknown whether WKS1 is a target for P. striiformis f.
sp. tritici effectors. Thus, the PSII supercomplex is emerging as a
common effector target, as further evidenced by HopN1 targeting
of PsbQ (Rodriguez-Herva et al., 2012).

IX. Concluding remarks

Chloroplasts are a central hub in plant metabolism, enabling them
to act as environmental sensors and communicate via a diversity of
retrograde signals to the nucleus. It is now clear that chloroplasts
play an essential role in plant immunity, and effectors from diverse
pathogens have evolved to directly or indirectly target chloroplast
function. At the biochemical level, the underlying mechanisms are
complex, involving chloroplast-sourced oxylipins, hormones,
hydrogen peroxide and singlet oxygen. An emerging theme is that
PTI is associated with simultaneous repression of NECGs and
induction of cROS, predominantly generated at PSI. Effector-
mediated suppression includes modulating NECGs, and manip-
ulating hormonal balance and various strategies to attenuate cROS
via disassembly of the photosystems, although a detailed under-
standing of this remains elusive. Recent evidence suggests that plant
resistance proteins can monitor perturbations to chloroplast
homeostasis or recognize chloroplast-targeted effectors to activate
ETI. Although further evidence is needed, it appears that in
contrast to PTI, ETI drives 1O2 generation via PSII disassembly,
the resultant lipid oxidation products contributing to HR.
Impairment of photosystem function is potentiated by chloro-
plast-targeted effectors, some of which have been shown to interact
with components of the photosystems likely to affect their function
and stability. Furthermore, pathogen infection elicits chloroplast
repositioning and formation of stromules that might facilitate
retrograde signalling. Not considered in this review, but equally
important, are the interacting roles of NO and interorganellular

interactions with mitochondria (which have well-known roles in
cell death) and peroxisomes.

Further challenges in this relatively embryonic field aremultiple.
We need to better understand the role of the multiple retrograde
chloroplast to nucleus signalling pathways, in addition to ROS,
which have been proposed to influence light response, and how
these might interact with pathogens (Vogel et al., 2014). Further-
more, in some cases ROS production could be a side reaction
associated with other changes that comprise the actual signalling
mechanism. This would not be easy to resolve but should be
considered when assessing results. The challenge of understanding
the relationship between the production of ROS by organelles and
from the initial apoplastic PAMP-induced oxidative burst will
require the use of probes with high spatial and chemical specificity.
It will also require understanding the chloroplast targets manip-
ulated by pathogens to suppress immunity.

Identifying the chloroplast targets of effectors and characterizing
their interaction will not only provide important insight into how
pathogens have evolved to target chloroplast immunity, but may
potentially identify new herbicide leads. Aside from this, other
particularly fundamental questions remain. Does the increasingly
observed heterogeneity in size and positioning of chloroplasts in the
cell reflect different metabolism and signalling roles in response to
pathogens? How are PTI-induced cROS generated and how many
chloroplasts need to respond to confer effective immunity? How
many effectors, both in number and in diversity, need to target a
(specific) chloroplast to suppress cROS? That being the case, do R
proteins effectively guard chloroplasts?

Answers to these and other questions will not only contribute to
fundamental understanding of chloroplast biology, but place the
chloroplast at the forefront of endeavours to develop crops with
improved pathogen resistance.
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