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Based on sequence data from the nuclear ITS and four cpDNA regions (matK, trnH-psbA,

trnL-trnF, rbcL), phylogeny of the tribe Thermopsideae was inferred. Our analyses

supported this tribe being merged into a monophyletic Sophoreae in a broad sense, with

exclusion of Pickeringia. Genera of Sophoreae were separated into the Thermopsoid clade

and Sophoroid clade. Monophyly of Anagyris, Baptisia and Piptanthus were basically

supported in the Thermopsoid clade. Ammopiptanthus, consisting of A. mongolicus and A.

nanus, nested within the Sophoroid clade, with Salweenia as its sister. Ammopiptanthus

and Salweenia disjunctively distributed in desert of Northwestern China and Hengduan

Mountains, respectively. Divergence age was estimated based on the ITS phylogenetic

analysis. Emergence of the common ancestor of Ammopiptanthus and Salweenia,

divergence between these two genera, and split of Ammopiptanthus species occurred at

approximately 26.96 Ma, 4.74 Ma and 2.04 Ma, respectively, which may be response to the

second, third, fourth rapid uplift of the Qinghai-Tibetan Plateau, respectively.
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15 Abstract:

16 Based on sequence data from the nuclear ITS and four cpDNA regions (matK, trnH-psbA, 

17 trnL-trnF, rbcL), phylogeny of the tribe Thermopsideae was inferred. Our analyses supported 

18 this tribe being merged into a monophyletic Sophoreae in a broad sense, with exclusion of 

19 Pickeringia. Genera of Sophoreae were separated into the Thermopsoid clade and Sophoroid 

20 clade. Monophyly of Anagyris, Baptisia and Piptanthus were basically supported in the 

21 Thermopsoid clade. Ammopiptanthus, consisting of A. mongolicus and A. nanus, nested within 

22 the Sophoroid clade, with Salweenia as its sister. Ammopiptanthus and Salweenia disjunctively 

23 distributed in desert of Northwestern China and Hengduan Mountains, respectively. Divergence 

24 age was estimated based on the ITS phylogenetic analysis. Emergence of the common ancestor 

25 of Ammopiptanthus and Salweenia, divergence between these two genera, and split of 

26 Ammopiptanthus species occurred at approximately 26.96 Ma, 4.74 Ma and 2.04 Ma, 

27 respectively, which may be response to the second, third, fourth rapid uplift of the Qinghai-

28 Tibetan Plateau, respectively.

29
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30 Introduction: 

31 Thermopsideae (Yakovlev 1972) is a small tribe in Leguminosae, comprising six genera, 

32 Ammopiptanthus S.H.Cheng, Anagyris L., Baptisia Vent., Pickeringia Nutt. ex Torr. & A.Gray, 

33 Piptanthus Sweet, Thermopsis R.Br. ex W.T.Aiton, with a total of ca. 45 species. Thermopsideae 

34 ranges from Mediterranean Basin, C and NE Asia to temperate N America (Lock 2005; Turner 

35 1981; Wang 2001). Early phylogenetic works supported that Thermopsideae, except for 

36 Pickeringia, was nested in the <core genistoids= group, which always contains quinolizidine 

37 alkaloids (Crisp et al. 2000; Wojciechowski et al. 2004). Subsequent results of Wang et al. (2006) 

38 resolved two unsisterly clades in this tribe: the genus Ammopiptanthus and the <core genera= 

39 clade, consisting of Anagyris, Baptisia, Piptanthus and Thermopsis. Based on plastid marker 

40 matK, some recent analyses conducted by Cardoso et al. (2012a, 2013) treated the five 

41 abovementioned genera of Thermopsideae into Sophoreae in a broad sense. However, Zhang et 

42 al. (2015a) accepted the concept of Thermopsideae without sampling of Pickeringia. The 

43 monophyly and the tribal rank of Thermopsideae are thus controversial.

44 Within Thermopsideae, Anagyris (Ortega-Olivencia 2009), Baptisia (Larisey 1940a; Turner 

45 2006), Pickeringia (Wojciechowski 2013), Piptanthus (Turner 1980; Wei 1998; Wei & Lock 
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46 2010) and Thermopsis (Chen et al. 1994; Czefranova 1970; Larisey 1940b; Peng 1992; Sa 1999; 

47 Sa 2000) were studied taxonomically, phylogentically and biogeographically. The genus 

48 Ammopiptanthus was established by Cheng (1959) on the basis of A. mongolicus (Maxim.) 

49 Cheng. and A. nanus (M.Pop.) Cheng f., agreed by Yakovlev (1988), Yakovlev et al. (1996) and 

50 Wei (1998), while Wei & Lock (2010) unified these two species. Although some phylogenetic 

51 works indicated a well supported Ammopiptanthus (Cardoso et al. 2013; Wang et al. 2006), the 

52 infra- and inter-generic phylogeny of this genus need further studies. Zhang et al. (2015a) 

53 inferred a diverging time of Ammopiptanthus from the <core genera= clade, but some closely 

54 related Sophoreae genera were not sampled (Cardoso et al. 2013; Wang et al. 2006), which may 

55 affect the accuracy of dating.

56 As for phytogeography of Ammopiptanthus, various workers proposed different 

57 speculations. Liu et al. (1996) suggested ancestor of this genus emerged in southern hemisphere, 

58 dispersing northwards when the Tertiary forest expanded due to the uplift of the Qinghai-Tibet 

59 Plateau (QTP) and the retreat of Tethys. Some following studies granted Ammopiptanthus a 

60 southern laurasian origination, and regarded this genus as a relic of Tertiary flora (Sun 2002a; 

61 Sun & Li 2003; Wang 2001). Based on molecular evidence, Wang et al. (2006) and Zhang et al. 
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62 (2015a) approved the relic status of Ammopiptanthus, holding its ancestral area as in central Asia. 

63 However, the existing phylogeny-based biogeographic analyses were under sampled towards the 

64 tribe Sophoreae, which is closely related to Thermopsideae (Cardoso et al. 2012a; Cardoso et al. 

65 2013; LPWG 2013), leading to possible inaccuracy in their bioinformatical inference.

66 We herein employ sequence data from nrDNA ITS and plastid matK, rbcL, trnL-trnF and 

67 psbA-trnH, with an extensive sampling for Ammopiptanthus and its allies, to a) test the 

68 monophyly and systematic status of Thermopsideae; b) infer the phylogeny and biogeography of 

69 Ammopiptanthus.

70  

71 Materials and methods 

72 Sampling scheme 

73 All the 9 haplotypes (A3H, 270) of the two species of Ammopiptanthus found by Su et al. 

74 (2016) and Shi et al. (accepted for publication) were included in the present study. Both species 

75 of Salweenia Baker f. were sampled (Yue et al. 2011). The nuclear internal transcribed spacer 

76 (ITS) sequences for Salweenia wardii Baker f. and Maackia amurensis Rupr., and the plastid 

77 psbA-trnH and trnL-trnF intergenic spacer sequences for Maackia amurensis were generated in 
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78 the present study. The DNA extraction, amplification and sequencing methods followed Su et al. 

79 (2016). All other ITS, matK, rbcL, trnL-trnF and psbA-trnH sequences were obtained from 

80 GenBank. According to the phylogenetic analyses of Ammopiptanthus by Wang et al. (2006) and 

81 Zhang et al. (2015a), and phylogeny of the Genistoids s.l. (Cardoso et al. 2012b; Crisp et al. 

82 2000; Pennington et al. 2001; Peters et al. 2010; Wojciechowski 2003), we selected 21 species in 

83 Thermopsis, 7 species in Piptanthus, 2 species in Anagryris, 6 species in Bapstisia, 13 species in 

84 Sophora, one or two species in Ammodendron, Genista and so on. The specific taxa including 

85 their GenBank accession numbers were showed in Table 1.

86 Phylogenetic analyses

87 Multiple sequence alignments were performed using MUSCLE (Edgar 2004) in the 

88 Geneious v.8.1.2 platform (Kearse et al. 2012) with default settings and manual adjustments. The 

89 best-fit substitution models for the ITS1, 5.8S, ITS2, matK, psbA-trnH, rbcL and trnL-trnF 

90 regions were determined separately using jModelTest v.2.1.7 (Darriba et al. 2012). Phylogenetic 

91 relationships were inferred using Bayesian inference (BI) as implemented in MrBayes v.3.2.5 

92 (Ronquist & Huelsenbeck 2003) and maximum likelihood (ML) analysis with RAxML v.8.2 

93 (Stamatakis 2014). The nuclear ITS dataset was partitioned into ITS1, 5.8S and ITS2 partitions. 
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94 For the concatenated plastid dataset, partitions were done for the matK, psbA-trnH, rbcL and 

95 trnL-trnF regions separately. In BI, two independent analyses with one cold and three 

96 incrementally heated Markov chain Monte Carlo (MCMC) chains were run for 10,000,000 

97 generations. Trees were sampled every 1,000 generations. All Bayesian analyses produced split 

98 frequencies of less than 0.01, showing convergence between the paired runs. The first 2,500 trees 

99 were discarded as burn-in, and the remaining trees were used to construct a 50% majority-rule 

100 consensus tree and posterior probabilities (PP). In ML, the rapid bootstrap analysis was 

101 performed with a random seed, 1,000 alternative runs, and the same partition scheme as in the 

102 Bayesian analysis. The model parameters for each partition of the dataset were optimized by 

103 RAxML with the GTRCAT command. Trees were visualized in FigTree v1.4.3 

104 (http://tree.bio.ed.ac.uk/software/figtree/). The ML bootstrap support values (BS) were labeled 

105 on the corresponding branches of the BI trees.

106 Estimation of divergence times

107 Divergence times were estimated by using the ITS dataset and the BEAST v.2.4.3 package 

108 (Bouckaert et al. 2014). The ITS dataset was partitioned into the ITS1, 5.8S and ITS2 partitions, 

109 and nucleotide substitution models were unlinked across the three partitions. Models were those 
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110 determined by jModelTest. The log normal relaxed clock model was used, and clock model was 

111 linked across partitions. The birth-death model was employed, and was linked across partitions. 

112 Two independent MCMCs were each run for 50,000,000 generations, and samples were stored 

113 every 1,000 generations. The effective sample size (ESS) of each sampled parameter and the 

114 convergence between runs were checked by using Tracer v.1.6 (http://beast.bio.ed.ac.uk/Tracer). 

115 The ESSs of all the parameters exceeded 200, and the two independent runs were convergent. 

116 After removing a 25% burn-in of each run, the trees from the two runs were combined by using 

117 LogCombiner (Bouckaert et al. 2014). The maximum clade credibility tree was found and 

118 annotated by using TreeAnnotator (Bouckaert et al., 2014), and only the branches with posterior 

119 probability greater than 0.5 were annotated. The dating tree was visualized in FigTree v.1.4.3.

120 Calibration points were chosen from the molecular dating analysis of the Fabaceae Family of 

121 Lavin et al. (2005). In the matK phylogeny of Lavin et al. (2005), the essential Genistoid crown 

122 clade (excluding Ormosia Jacks.) had been set to a minimum of 56 million years ago (Ma) 

123 according to fossil records. This clade was equal to our clade of ingroups, therefore the crown 

124 age of our ingroups was set as an exponential distribution with a mean of 1 and an offset of 56 

125 Ma. The Genistoid crown age had been estimated as 56.4 ± 0.2 Ma (Lavin et al. 2005); this age 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2757v1 | CC BY 4.0 Open Access | rec: 26 Jan 2017, publ: 26 Jan 2017



126 was used to set the age of the root of our tree as a normal distribution with a mean of 56.4 Ma 

127 and a standard deviation of 0.2 Ma. The age of the most recent common ancestor (MRCA) of 

128 Bolusanthus speciosus Harms and Spartium junceum Linn. was set as a normal distribution with 

129 a mean of 45.2 Ma and a standard deviation of 2.2 Ma, and the age of the MRCA of Piptanthus 

130 nepalensis Sweet and Baptisia australis R.Br. was set as a normal distribution with a mean of 

131 26.5 Ma and a standard deviation of 3.4 Ma, according to the ages of the equivalent nodes that 

132 had been estimated by Lavin et al. (2005).

133 Results 

134 Phylogenetic analyses

135 Because the plastid sequences putatively evolve as a single molecule, sequences of the four 

136 plastid markers (matK, rbcL, psbA-trnH and trnL-trnF) were concatenated. Phylogenetic 

137 analyses were conducted on both of the nuclear and combined four plastid data (Figs. 1-3: Fig.1 

138 emphasized the position of Pickeringia; Figs. 2-3 intensified the sampling for Sophoreae). The 

139 models used in the Bayesian analyses were listed as follow: matK: GTR+G; psbA-trnH: HKY+G; 

140 rbcL: HKY+I+G; trnL-trnF: GTR+G; ITS1: GTR+G; 5.8S: K80+G; ITS2: GTR+G. The ITS and 

141 plastid tree topology were distinct with regard to some key groups, we thus analyzed them 
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142 separately.

143 Our analysis (Fig. 1) displayed that Pickeringia was phylogenetically far from the rest 

144 genera of Thermopsideae. According to the detailed trees (Figs. 2 & 3), all genera of this tribe, 

145 except for Pickeringia, belonged to the well supported <Core Genistoids= (PP = 1/BS = 100% 

146 and PP = 1/BS = 94% in Figs 2 and 3, respectively). Four genera, Anagyris, Baptisia, Piptanthus 

147 and Thermopsis, clustered into the <Thermopsoid clade= (1/100% for ITS tree; 1/94% for plastid 

148 tree), within which Anagyris (1/100% & 1/99%) and Baptisia (1/100% & 0.95/95%) were shown 

149 to be monophyletic. Piptanthus was strongly supported by the ITS tree (1/99%). 

150 Ammopiptanthus, showing a sistership with Salweenia (1/100% in both trees), was monophyletic 

151 (1/100% & 0.99/89%). This genus was not related to the Thermopsoid clade. It nested in the 

152 <Sophoroid clade= (0.99/83% & 0.71/74%), which in turn form a robustly supported group (1/96% 

153 & 1/100%, the tribe Sophoreae, see Discussion) with the Thermopsoid clade.

154 Presently sampled taxa from the tribes Crotalarieae, Genisteae and Podalyrieae formed a 

155 clade (the PCG clade; 0.89/80% & 0.92/79%), while Bolusanthus and Dicraeopetalum clustered 

156 together (the BOD clade; 1/100% in both trees). These two clades occupied different position 

157 with relation to Sophoreae (0.92/88% & 0.99/56%).
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158

159 Estimating divergence time

160 A phylogenetic dating was conducted based on the ITS dataset (Fig. 4). The estimated mean 

161 ages and their 95% highest posterior density intervals (in parentheses) of the interested clades 

162 were put as below: 41.24 (35.2, 46.93) Ma for the Sophoreae plus PCG clade, 35.59 (28.88, 

163 42.44) Ma for the Sophoroid plus Thermopsoid clade, 30.61 (22.91, 38.28) Ma for the Maakia 

164 plus its sister clade, 26.96 (19.36, 34.62) Ma  for Node I, 4.74 (1.72, 8.77) Ma for Node II and 

165 2.04 (0.67, 3.73) Ma for Node III. 

166

167 Discussion

168 Phylogenetic position of Thermopsideae

169 The widely distributed legume tribe Thermopsideae containing six genera, was proposed by 

170 Yakovlev (1972), and was accepted by most of subsequent studies (Lock 2005; Polhill 1994; 

171 Turner 1981; Wang 2001; Wei et al. 2010; Wei 1998; Yakovlev 1972). Phylogenetic works 

172 indicated most genera of this tribe are members of the <core genistoids=, which in turn belongs to 

173 the Genistoid clade in a broad sense (Cardoso et al. 2012b; Cardoso et al. 2016; Cardoso et al. 
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174 2013; Crisp et al. 2000; Pennington et al. 2001; Peters et al. 2010; Wojciechowski 2003). 

175 However, the western North American endemic genus Pickeringia was an outlier from the core 

176 genistoids (Fig. 1; also see Lavin et al. 2005; Wojciechowski 2013; Wojciechowski et al. 2004; 

177 LPWG 2013). Therefore, Lock (2005) suggested that this genus may be ruled out from 

178 Thermopsideae. Our results confirm such view (Fig. 1). Pickeringia also differs from other 

179 genera of Thermopsideae in basic chromsome number (x = 7 vs. x = 8; Chen 1992; Goldblatt 

180 1981; Pan & Huang 1993) and quinolizidine alkaloids (absence vs. presence; see Turner 1981; 

181 Käss & Wink 1994; Crisp et al. 2000; Doyle et al. 2000).

182 With the exclusion of Pickeringia, Cardoso et al. (2012b, 2013) proposed to merge 

183 Thermopsideae into Sophoreae sensu Cardoso, which is characterized by free stamens, to render 

184 it monophyletic. Such treatment is basically verified by our results (Figs. 2 & 3). A more 

185 inclusive Sophoreae sensu Cardoso can avoid taxonomic over-fragmentation of the core 

186 Genistoids taxa and the establishments of new tribes based on many small clades. On the other 

187 side, one clade, constituted of Bolusanthus speciosus Harms and Dicraeopetalum mahafaliense 

188 (M.Peltier) Yakovlev (the BOD clade), was involved in Sophoreae by Cardoso et al. (2013) with 

189 weak support. Such relationship is not validated by our ITS tree (Fig. 2; also not supported by 
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190 the likelihood bootstrap value of plastid tree, see Fig. 3). The newly circumscribed Sophoreae, 

191 equal to Sophoreae sensu Cardoso with exclusion of the BOD clade, is further divided into the 

192 Thermopsoid clade and Sophoroid clade (Figs. 2 & 3). Besides, Cardoso et al. (2013) elevated 

193 Ormosia from Sphoroeae as tribe Ormosieae, yet our results do not confirm the affiliation of 

194 Clathrotropis with this tribe (Figs. 2 & 3).

195 The Core Genistoids is composed of three robust groups: Sophoreae, the BOD clade and 

196 PCG clade. Our ITS and plastid tree topologies are incongruent with regard to these clades. 

197 Sophoreae forms a clade with the PCG clade in the ITS tree (Fig. 2), whereas it is sister to the 

198 BOD clade in the plastid tree (Fig. 3). Although not all of the support values are significant (BI 

199 posterior probability> 0.95, ML bootstrap value > 70%), the current case of topological 

200 discordance is similar to Xu et al. (2012), García et al. (2014) and Duan et al. (2016), which 

201 likely implied a chloroplast capture event in the origin of Sophoreae. Nevertheless, highly 

202 supported analyses are required to further verified this hypothesis.

203

204 Phylogeny of the Thermopsoid clade

205 The Thermopsoid clade possesses four genera: Anagyris, Baptisia, Piptanthus and 
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206 Thermopsis, and is divided into two well supported groups: the Eurasian group and the American 

207 group.

208 The monophyletic Anagyris (also see Ortega-Olivencia & Catalan 2009) is endemic to 

209 circum-Mediterranean region, and belongs to the Eurasian group (Figs 2 & 3). The Eurasian 

210 group also includes the Hengduan-Himalaya-distributed genus Piptanthus, whose monophyly 

211 was accepted by Wang et al. (2006) and supported by our ITS result (Fig. 2). Baptisia is 

212 restricted to North America (central, northern and southern states of U.S.A.), embedding within 

213 the Thermopsoid American group. Our analyses yielded robust support for this genus, following 

214 Wang et al. (2006), Uysal et al. (2014) and Zhang et al. (2015a).

215 Previous (Uysal et al. 2014; Wang et al. 2006; Zhang et al. 2015a) and the present results 

216 (Figs. 2 & 3) resolve a polyphyletic Thermopsis, with its species being assigned into both the 

217 Eurasian and the American groups. It is obvious that this genus needs further taxonomic revision. 

218 Noticeably, three Asian species, Thermopsis fabacea (Pall.) DC., T. chinensis Benth. ex S.Moore 

219 and T. turcica Kit Tan, Vural & Küçük., nest in the American group, making biogeography of 

220 this genus an attractive question in the future. Besides, our trees failed to support the generic 

221 status of the monotypic Vuralia Uysal & Ertu�rul (= Thermopsis turcica), which was proposed 
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222 by Uysal et al. (2014) mainly based on some unique morphological characters such as 3-

223 carpellate ovary and indehiscent fruit.

224

225 Placing Ammopiptanthus within the Sophoroid clade

226  Within the Sophoroid clade, the monophyletic Maackia Rupr. diverges first, and the 

227 remaining taxa are divided into two highly supported groups. The first group embraces a non-

228 monophyletic Sophora (also see (Cardoso et al. 2013; Kajita et al. 2001; Kass & Wink 1997; Lee 

229 et al. 2004; Wink & Mohamed 2003), and some allied Sophoreae genera, i.e. Ammodendron 

230 Fisch. ex DC., Ammothamnus Bunge, Echinosophora Nakai, Euchresta Benn. Sophora is a 

231 widespread genus, and has been revised by various taxonomists (Bao 2010; Heenan et al. 2004; 

232 Ma 1990; Ma 1994; Tsoong 1981a; Tsoong 1981b; Vasil'chenko 1945; Yakovlev 1996), whereas 

233 its phylogeny and taxonomy are long-standing puzzles, which require unremitting efforts to 

234 solve.

235 The former Thermopsideae member Ammopiptanthus, with a sister of Salweenia, constitute 

236 another group in the Sophoroid clade (Figs. 2 & 3). Traditionally, Ammopiptanthus contains two 

237 species: A. mongolicus and A. nanus (Cheng 1959; Fu 1987; Li & Yan 2011; Wei 1998; 
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238 Yakovlev 1996;), while Wei & Lock (2010) merged the latter into the former. Our results (Figs. 

239 2 & 3) confirmed the specific status of A. nanus, which is confined in SW Xinjiang of China and 

240 E Kirgizstan, compared to a non-overlapping range of A. mongolicus in N InnerMongolia, N 

241 Gansu, E Xinjiang of China and S Mongolia (Fig. 5). Besides, taxonomic separation of the two 

242 species is also supported by morphological (Cheng 1959; Wei 1998), anatomical (Yuan & Chen 

243 1993; Shi et al. unpublished), cytological (Chen 1992; Liu et al. 1996; Pan & Huang 1993) and 

244 biochemical (Feng et al. 2011; Shi 2009; Wei et al. 2007; Wei & Shi 1995; Yin & Zhang 2004) 

245 evidence. Recently, Lazkov (2006) described a new species in Kirgizstan: Ammopiptanthus 

246 kamelinii Lazkov. Yet its type specimen is not significantly distinct from A. nanus, plus its type 

247 locality is overlapped with A. nanus, we thus suspend the recognition of A. kamelinii.

248

249 Biogeography of Ammopiptanthus and Salweenia

250 The abovementioned Ammopiptanthus-Salweenia group displays a disjunctive distribution. 

251 Ammopiptanthus is recorded from arid lands of NW China, S Mongolia and E Kirgizstan (Fig. 

252 5A - C), contrastively, Salweenia is endemic to the Hengduan Mountains in E Qinghai-Tibetan 

253 Plateau (QTP) (Fig. 5A & D). Several hypotheses have been proposed for the evolutionary 
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254 history of Ammopiptanthus, most of which believe that this genus is a relic survivor of the 

255 Tertiary flora (Sun 2002a; Sun & Li 2003; Wang 2001; Wang et al. 2006; Zhang et al. 2015a). 

256 Yet these studies were conducted in a context of Thermopsideae, which is already treated into 

257 Sophoreae (see Discussion above). Furthermore, none of them paid attention to the sister 

258 relationship between Ammopiptanthus and Salweenia.

259 Central Asian origination for Ammopiptanthus, as suggested by Wang et al. (2006) and 

260 Zhang et al. (2015a) may be valid due to its unique habit in the NW desert of China: it is the only 

261 evergreen broadleaf shrub therein, which can be regarded as a symplesiomorphy characterized 

262 by the Tertiary flora. However, due to the monophyly of the Ammopiptanthus-Salweenia group, 

263 the ancestral range of Salweenia is probably not in Gondwana as depicted in Li & Ni (1982) and 

264 Yue et al. (2011). Thus, we may hypothesize the evolution process for this group as below (see 

265 Fig. 4). The second main uplift of QTP occurred at ca. 25 Ma, triggering the E Asian monsoon 

266 (Chen et al. 1999; Li 2001; Shi et al. 1999; Teng et al. 1997). Common ancestor of 

267 Ammopiptanthus and Salweenia arose in the Tertiary evergreen forest of ancient central Asia at 

268 ca. 26.96 Ma (Fig. 4: Node I). Their common ancestor dispersed southwards with the forest 

269 expansion after Tethys retreat (as in Sun 2002b). 
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270 The third rapid uplift of QTP as a whole happened at 7-8 Ma (Harrison & Copeland 1992; 

271 Liu et al. 2001; Wang et al. 2008; Zheng & Yao 2006), and followed by a main raising of NW 

272 QTP at ca. 4.5 Ma (Zheng et al. 2000), leading to the <inlandization= of central Asia, as well as 

273 cooler climate and aridification. The vicariance and environment change probably led to the 

274 divergence between Ammopiptanthus and Salweenia (ca. 4.74 Ma, see Fig. 4: Node II). The 

275 former kept the evergreen shrubby habit and obtained xerophytic characters, e.g. the pubescent, 

276 coriaceous leaves, in the central Asian arid land; while the latter retained more Tertiary flora 

277 traits in the less disturbed region of the Hengduan Mountains (Sun 2002a; Sun 2002b; Sun & Li 

278 2003).  

279 Split of the two Ammopiptanthus species (2.04 Ma; see Fig. 4: Node III) is possibly the 

280 response to the last (fourth) rapid elevation of QTP, when aridification of Asian inner land 

281 intensified (3.6-2.5 Ma; Chen et al. 1999; Li & Fang 1999; Li 2001; Tang & Liu 2001; Zheng & 

282 Yao 2006). This estimated age is slightly older than that of Su et al. (2016), which shared the 

283 view with us that the speciation of Ammopiptanthus was caused by climate oscillation and range 

284 shifts. A. nanua grows in a dryer habitat than that of A. mongolicus, the former therefore 

285 possesses more xerophytic apomorphy: shorter plants, usually 1-foliolate, unambiguous leaf 
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286 nerves, thicker root cortex, more complex karyotype, more vulnerable phytocommunities, etc. 

287 (Cheng 1959; Pan & Huang 1993; Wei 1998; Zhang et al. 2007; Shi et al. unpublished).

288  Such disjunction resulting from QTP uplift also takes place in other Legume taxa, e.g. 

289 infra-generic biogeography of some genera in the tribe Caraganeae (QTP-NW China/C Asia 

290 disjuction; see Zhang et al. 2010; Zhang et al. 2015b; Zhang et al. 2015c); inter-generic 

291 evolutionary history of Gueldenstaedtia and Tibetia (mesic E Asia-QTP disjunction; see Xie et 

292 al., 2016). Unlike neither of the cases above, our results may provide a new insight into the 

293 evolutionary pattern of an inter-generic QTP-NW China/C Asia disjunctive distribution. 

294
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507 Figure 1. Bayesian tree of the concatenated nuclear ITS (Left) and the concatenated plastid data 

508 of matK, rbcL, trnL-trnF and psbA-trnH sequences (Right) data. Bayesian posterior probabilities 

509 and maximum likelihood bootstrap are given above branches.

510

511 Figure 2. Bayesian tree of the concatenated nuclear ITS data, showing Sophoreae and its allies. 

512 Bayesian posterior probabilities and maximum likelihood bootstrap are given above branches.

513

514 Figure 3. Bayesian tree of the concatenated plastid data of matK, rbcL, trnL-trnF and psbA-trnH 

515 sequences, showing Sophoreae and its allies. Bayesian posterior probabilities and maximum 

516 likelihood bootstrap are given above branches.

517

518 Figure 4. Divergence times estimated by using BEAST based on the ITS dataset. Calibration 

519 points are marked by A-D. Nodes labels and bars represent the estimated mean ages (in Ma) and 

520 their 95% highest posterior density intervals. Node I, II, and III represented the divergence ages 

521 of 26.96 Ma, 4.74 Ma and 2.04 Ma, respectively.

522
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523 Figure 5. Distribution (A) and representative plants of Ammopiptanthus (B & C) and Salweenia 

524 (D). A: red - Ammopiptanthus (I: distribution of A. mongolicus; II: distribution of A. nanus), 

525 green - Salweenia; B: Ammopiptanthus mongolicus; C: Ammopiptanthus nanus; D: Salweenia 

526 wardii.

527

528

529

530
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1 Table 1. Taxa names, sources and GenBank accession numbers of DNA sequences. New sequences generated in this study are indicated by an asterisk (*). 

2 Missing sequences are indicated by a dash (-).

GenBank Accession Number

Species Pop.

ITS rbcL matK

psbA-

trnH trnL-trnF

Sources

Ammopiptanthus nanus KP636563 - JQ820170 KP636577 KP636626

Ammopiptanthus nanus A KU178932 - - KU178934 KU178937 39.66° N, 74.75° E, 2290 m

Ammopiptanthus nanus B KU178932 - - KU178935 KU178937 39.49° N, 74.88° E, 2512 m

Ammopiptanthus nanus C KU178932 - - KU178934 KU178937 39.76° N, 76.39° E, 2350 m

Ammopiptanthus mongolicus KP636562 - JQ820168 KP636576 KP636624

Ammopiptanthus mongolicus D KU178933 - - KU178936 KU178938 41.63° N, 103.22° E, 1010 m

Ammopiptanthus mongolicus E KU178933 - - KU178936 KU178939 40.49° N, 106.86° E, 1039 m

Ammopiptanthus mongolicus F KU178933 - - KU178936 KU178940 38.98° N, 105.87° E, 1762 m

Ammopiptanthus mongolicus G KU178933 - - KU178936 KU178941 37.99° N, 105.25° E, 1323 m

Ammopiptanthus mongolicus H KU178933 - - KU178936 KU178940 37.93° N, 105.26° E, 1355 m

Ammopiptanthus mongolicus 270
KU178933 - - * *

China: Turpan, Turpan Eremophytes Botanic 

Garden, Pan b. r. (TURP)

Ammodendron conollyi EF457705 - - - -

Ammodendron argenteum - - AY386957 - -

Ammothamnus lehmannii EF457706 - - - -

Anagyris foetida AY091571 Z70122 KP230735 - FJ499429

Anagyris latifolia FJ482248 - - - FJ499419

Anarthrophyllum desideratum - - AY386923 - -

Anarthrophyllum rigidum FJ839488 - - - FJ839594

Baptisia alba AY773348 KP126860 KP126860 - -

Baptisia cinerea AY773350 - - - -

Baptisia tinctoria Z72314 & 

Z72315
Z70120 - - AJ890964
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Baptisia sphaerocarpa AY773351 - - - -

Baptisia australis AY091572 KF613006 AY386900 - FJ499421

Baptisia bracteata AY773349 KP126854 KP126854 - -

Bolusanthus speciosus EF457708 U74243 AF142685 - AF310994

Bowdichia nitida JX124478 - JX124419 - JX124432

Cadia purpurea KF850559 U74192 JX295932 - AF309863

Castanospermum australe * - * * * USA: Sri Lanka, kandy, Rudd v.e.3339 (US)

Calpurnia aurea CAU59887 U74239 AY386951 - AF310993

Clathrotropis brachypetala EF457714 - - - AF309827

Clathrotropis macrocarpa - - JX295930 - JX275957

Crotalaria incana JQ067262 JQ591662 GQ246141 JQ067481 KP691137

Cyclolobium nutans AF467041 - AF142686 - AF309857

Cytisus scoparius
AF351120 KM360746 AY386902 -

KJ746350 & 

AF352216

Dicraeopetalum mahafaliense EF457716 - - - -

Dicraeopetalum stipulare - - GQ246142 - AF310995

Diplotropis purpurea JX124507 JQ625878 JX124418 GQ428691 JX124441

Echinosophora koreensis - AB127036 - - AB127028

Euchresta formosana - AB127039 - - AB127031

Euchresta japonica - AB127040 - - AB127032

Genista monspessulana
JF338307 KM360800 AY386862 -

JF338219 & 

JF338559

Guianodendron praeclarum JX124489 - JX124403 - JX124443

Lupinus argenteus
AY338929 - AY386956 -

AY618502 

&AF538706
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Maackia amurensis * Z70137 AY386944 * * China: Jilin, Fusong, Sun s.n. (NENU)

Maackia amurensis subsp. buergeri - AB127041 - - -

Maackia chinensis EF457721 - - - -

Maackia floribunda - AB127042 - - AB127034

Maackia tashiroi - AB127043 - - AB127035

Ormosia amazonica EF457724 GQ981820 - GQ982307 AF309484

Ormosia fordiana KP092737 KP094453 KP093527 KP095377 -

Ormosia coccinea - JQ625915 GQ982055 GQ982308 -

Ormosia costulata - - JX295887 - JX275917

Pickeringia montana * - * * * Mexico: Tecate, Moran r. 13982 (US)

Ormosia arborea - KF981227 JX295939 - -

Piptanthus laburnifolius KP636565 - - KP636579 KP636630

Piptanthus nepalensis AF215922 Z70123 AY386924 - -

Piptanthus nepalensis1 FJ482250 - - KP636581 KP636631

Piptanthus tomentosus AY091570 - - - -

Piptanthus concolor KP636564 - - KP636578 KP636629

Piptanthus leiocarpus AY091569 - - KP636580 -

Piptanthus leiocarpus KP636566 - - - -

Poecilanthe itapuana KJ028462 AB045818 KJ028458 - -

Poecilanthe parviflora KJ028463 - KJ028459 - AF208897

Salweenia wardii          
* U74251 - JF725689 JF725659

China: Tibet, Qamdo, Chang et al. QZ-491 

(WUK)

Salweenia bouffordiana - - - JF725692 JF725662

Sophora davidii AY773352 Z70138 AY386958 JF725695 JF725665
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Sophora flavescens FJ528290 Z70139 HM049520 JF725696 JF725666

Sophora velutina FN813569 - - - AF309828

Sophora jaubertii Z72342 & 

Z72343
Z70140 - - -

Sophora macrocarpa Z95563 & 

Z95577
AY725479 JQ619975 - -

Sophora inhambanensis FN813570 KM894237 KM896910 - -

Sophora tomentosa HQ207666 AB127038 - JX495463 AB127030

Sophora tetraphylla AJ310734 - - - -

Sophora howinsula AY046514 - - - -

Sophora microphylla AY056075 AY725480 JQ619976 GQ248391 -

Sophora prostrata AY056077 - - - -

Sophora raivavaeensis AY056080 - - - -

Sophora toromiro AY056079 GQ248696 GQ248201 GQ248392 -

Sophora viciifolia - KP088855 KP089313 - -

Spartium junceum
DQ524327 KM360993 AY386901 HE966833

JF338264 & 

JF338600

Thermopsis inflata AF123451 - - - -

Thermopsis inflata 1 - - - KP636586 KP636638

Thermopsis inflata 2 - - - - KP636639

Thermopsis inflata 3 - - - KP636587 KP636640

Thermopsis smithiana KP636573 - - KP636597 KP636650

Thermopsis turkestanica KP636574 - - KP636598 KP636651

Thermopsis mongolica KP636570 - - KP636594 KP636647

Thermopsis alpina KP636567 - JQ669594 KP636582 KP636632
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Thermopsis alpina 1 AF123447 - - -- KP636633

Thermopsis alpina 2 - - - KP636583 KP636634

Thermopsis alpina 3 - - - KP636584 KP636635

Thermopsis alpina 4 - - - KP636585 KP636636

Thermopsis lanceolata AF123448 - JQ669595 KP636589 KP636642

Thermopsis lanceolata 1 - - - KP636590 KP636643

Thermopsis przewalskii KP636571 - - - KP636648

Thermopsis schischkinii KP636572 - - KP636596 KP636649

Thermopsis yushuensis KP636575 - - KP636599 KP636652

Thermopsis barbata KP636568 - - - KP636637

Thermopsis licentiana KP636569 - - - -

Thermopsis licentiana 1 - - - KP636591 KP636644

Thermopsis licentiana 3 - - - KP636592 KP636645

Thermopsis licentiana 4 - - - KP636593 KP636646

Thermopsis turcica JQ425645 KT175217 KT175216 KT175218 -

Thermopsis chinensis AF123443 - - GU396777 -

Thermopsis macrophylla AF123450 - - - -

Thermopsis divaricarpa AY091575 - - - -

Thermopsis villosa AY773355 - - - AF311384

Thermopsis rhombifolia KP861904 JX848468 AY386866 KP861905 AY618487

Thermopsis rhombifolia var. ovata AF007468 - - - -

Thermopsis fabacea AY091573 Z70121 - - -

Thermopsis kaxgarica - - - KP636588 KP636641

Thermopsis montana AY091574 - - - AF385411 & 
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AF385937

Ulex europaeus
AY263686 KM361025 JQ669586 -

AF385427 

&AY264062

3 * I will added the Genebank number after accepted

4
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Figure 1

Figure 1. Bayesian tree of the concatenated nuclear ITS (Left) and the concatenated

plastid data of matK, rbcL, trnL-trnF and psbA-trnH sequences (Right) data.

Bayesian posterior probabilities and maximum likelihood bootstrap are given above

branches.
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Figure 2(on next page)

Figure 2. Bayesian tree of the concatenated nuclear ITS data, showing Sophoreae and

its allies.

Bayesian posterior probabilities and maximum likelihood bootstrap are given above

branches.
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Figure 3(on next page)

Figure 3. Bayesian tree of the concatenated plastid data of matK, rbcL, trnL-trnF and

psbA-trnH sequences, showing Sophoreae and its allies.

Bayesian posterior probabilities and maximum likelihood bootstrap are given above

branches.
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Figure 4(on next page)

Figure 4. Divergence times estimated by using BEAST based on the ITS dataset.

Calibration points are marked by A-D.

Nodes labels and bars represent the estimated mean ages (in Ma) and their 95% highest

posterior density intervals. Node I, II, and III represented the divergence ages of 26.96 Ma,

4.74 Ma and 2.04 Ma, respectively.
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Figure 5(on next page)

Figure 5. Distribution (A) and representative plants of Ammopiptanthus (B & C) and

Salweenia (D).

A: red - Ammopiptanthus (I: distribution of A. mongolicus; II: distribution of A. nanus), green -

Salweenia; B: Ammopiptanthus mongolicus; C: Ammopiptanthus nanus; D: Salweenia wardii.
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