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Plan for today

• Feature detection / keypoint extraction

– Corner detection

– Blob detection

• Feature description (of detected features)



What we see What a computer sees

Source: S. Narasimhan
Adapted from S. Narasimhan

An image is a set of pixels…



• Not invariant to small changes

– Translation

– Illumination 

– etc.

• Some parts of an image are more important 
than others

• What do we want to represent? 

Problems with pixel representation



Human eye movements

Yarbus eye tracking

D. Hoiem



Local features

• Local means that they only cover a small part 
of the image

• There will be many local features detected in 
an image

• Later we’ll talk about how to use those to 
compute a representation of the whole image

• Local features usually exploit image gradients, 
ignore color



Local features: desired properties

• Locality
– A feature occupies a relatively small area of the

image; robust to clutter and occlusion

• Repeatability and flexibility
– The same feature can be found in several images      

despite geometric, photometric transformations 
– Robustness to expected variations
– Maximize correct matches

• Distinctiveness 
– Each feature has a distinctive description

– Minimize wrong matches

• Compactness and efficiency
– Many fewer features than image pixels

Adapted from K. Grauman and D. Hoiem



Interest(ing) points

• Note: “interest points” = “keypoints”, also 
sometimes called “features”

• Many applications

– Image search: which points would allow us to 
match images between query and database?

– Recognition: which patches are likely to tell 
us something about the object category?

– 3D reconstruction: how to find 
correspondences across different views?

– Tracking: which points are good to track?
Adapted from D. Hoiem



Interest points

• Suppose you have to 
click on some point,  
go away and come 
back after I deform the 
image, and click on the 
same points again.  

– Which points would 
you choose?

original

deformed

D. Hoiem



Choosing interest points

Where would you 
tell your friend to 
meet you?

D. Hoiem

 Corner detection



Choosing interest points

Where would you 
tell your friend to 
meet you?

D. Hoiem

 Blob detection



Application 1: Keypoint Matching for Search

Adapted from K. Grauman, 

B. Leibe
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Application 1: Keypoint Matching For Search

Goal: 

We want to detect points that are repeatable and 
distinctive

• Repeatable: so that if images are slightly different, 
we can still retrieve them

• Distinctive: so we don’t retrieve irrelevant content
Adapted from D. Hoiem

Query
In database



Application 2: Panorama stitching

We have two images – how do we combine them?

L. Lazebnik
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Application 2: Panorama stitching

We have two images – how do we combine them?

Step 1: extract features

Step 2: match features

Step 3: align images
L. Lazebnik



• No chance to find true matches, yet we have 

to be able to run the detection procedure 

independently per image.

• We want to detect (at least some of) the 

same points in both images  want 

repeatability of the interest operator

Adapted from K. Grauman

Application 2: Panorama stitching



• We want to be able to reliably determine 

which point goes with which  want operator 

distinctiveness

• Must provide some invariance to geometric 

and photometric differences between the two 

views, without finding many false matches

?
Adapted from K. Grauman

Application 2: Panorama stitching



Corners as distinctive interest points
• We should easily recognize the keypoint by looking 

through a small window

• Shifting a window in any direction should give a large 
change in intensity

“edge”:

no change along 

the edge direction

“corner”:

significant change 

in all directions

“flat” region:

no change in 

all directions

A. Efros, D. Frolova, D. Simakov
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What points would you choose?

K. Grauman
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Harris Detector: Mathematics

Window-averaged squared change of intensity 
induced by shifting the image data by [u,v]:

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

D. Frolova, D. Simakov



Harris Detector: Mathematics

Window-averaged squared change of intensity 
induced by shifting the image data by [u,v]:

IntensityShifted 
intensity

Window 
function

E(u, v)

D. Frolova, D. Simakov
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K. Grauman

Harris Detector: Mathematics



Harris Detector: Mathematics
Expanding I(x,y) in a Taylor series expansion, we have, for small 
shifts [u,v],  a quadratic approximation to the error surface between 
a patch and itself, shifted by [u,v]:

where M is a 2×2 matrix computed from image derivatives:

D. Frolova, D. Simakov



What does the matrix M reveal?

Since M is symmetric, we have TXXM 









2

1

0

0





iii xMx 

The eigenvalues of M reveal the amount of intensity 
change in the two principal orthogonal gradient 
directions in the window.

K. Grauman



Corner response function

“flat” region:

1 and 2 are small

“edge”:

1 >> 2

2 >> 1

“corner”:

1 and 2 are large,
1 ~ 2

Adapted from A. Efros, D. Frolova, D. Simakov, K. Grauman



Harris Detector: Mathematics

Measure of corner response:

(k – empirical constant, k = 0.04-0.06)

D. Frolova, D. Simakov



Harris Detector: Algorithm

• Compute image gradients Ix and Iy for all pixels

• For each pixel

– Compute 

by looping over neighbors x, y 

– compute

• Find points with large corner response function  R (R 
> threshold)

• Non-max suppression: Take the points of locally 
maximum R as the detected feature points (i.e., pixels where 
R is bigger than for all the 4 or 8 neighbors) 32

D. Frolova, D. Simakov

(k :empirical constant, k = 0.04-0.06)

How can I write this 
without using w(x, y), if 
window function is just 1 
inside, 0 outside?



K. Grauman

Example of Harris application



• Corner response at every pixel

Example of Harris application

K. Grauman



More Harris responses

Effect: A very precise 

corner detector.

D. Hoiem



More Harris responses

D. Hoiem



Properties: Invariance vs covariance

“A function is invariant under a certain family of 

transformations if its value does not change when a 

transformation from this family is applied to its argument.

A function is covariant when it commutes with the 

transformation, i.e., applying the transformation to the 

argument of the function has the same effect as applying 

the transformation to the output of the function. […]

[For example,] the area of a 2D surface is invariant under 

2D rotations, since rotating a 2D surface does not make 

it any smaller or bigger. 

But the orientation of the major axis of inertia of the 

surface is covariant under the same family of 

transformations, since rotating a 2D surface will affect 

the orientation of its major axis in exactly the same way.”

“Local Invariant Feature Detectors: A Survey” by Tinne Tuytelaars and Krystian Mikolajczyk, 

in Foundations and Trends in Computer Graphics and Vision Vol. 3, No. 3 (2007) 177–280

Chapter 1, 3.2, 7 http://homes.esat.kuleuven.be/%7Etuytelaa/FT_survey_interestpoints08.pdf

http://homes.esat.kuleuven.be/~tuytelaa/FT_survey_interestpoints08.pdf


What happens if: Affine intensity change

• Only derivatives are used => 

invariance to intensity shift I  I + b

• Intensity scaling: I  a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I  a I + b

L. Lazebnik



What happens if: Image translation

• Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation (on image level), 

corner response is invariant (on patch level)

Adapted from L. Lazebnik



What happens if: Image rotation

Second moment ellipse rotates but its shape 

(i.e. eigenvalues) remains the same

Adapted from L. Lazebnik

Corner location is covariant w.r.t. rotation (on image level), 

corner response is invariant (on patch level)



What happens if: Scaling

Invariant to image scale?

image zoomed image

A. Torralba



What happens if: Scaling

All points will 

be classified 

as edges

Corner

Corner location is not covariant to scaling!

L. Lazebnik



• Problem: 

– How do we choose corresponding circles independently in 
each image?

– Do objects in the image have a characteristic scale that we 
can identify?

D. Frolova, D. Simakov

Scale invariant detection



Scale invariant detection

• Solution:

– Design a function on the region which is “scale invariant” 
(has the same shape even if the image is resized)

– Take a local maximum of this function

scale = 1/2

f

region size

Image 1 f

region size

Image 2

Adapted from A. Torralba

s1 s2



Scale invariant detection

• A “good” function for scale detection:
has one stable sharp peak

• For usual images: a good function would be a one 
which responds to contrast (sharp local intensity 
change)

f

region size

Bad

f

region size

Bad

f

region size

Good !

A. Torralba



Automatic scale selection

K. Grauman, B. Leibe
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How to find corresponding patch sizes?



Automatic scale selection

• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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Automatic scale selection

• Function responses for increasing scale (scale signature) 

K. Grauman, B. Leibe
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What is a useful signature function?

• Laplacian of Gaussian = “blob” detector

K. Grauman, B. Leibe



• Laplacian of Gaussian: Circularly symmetric operator 
for blob detection in 2D

Blob detection in 2D
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K. Grauman



Difference of Gaussian ≈ Laplacian

• We can approximate the Laplacian with a 
difference of Gaussians; more efficient to 
implement.

 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

(Laplacian)

(Difference of Gaussians)

K. Grauman



Laplacian pyramid example

• Allows detection of increasingly coarse detail



Difference of Gaussian: Efficient computation

• Computation in Gaussian scale pyramid

K. Grauman, B. Leibe
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Find local maxima in position-scale space 
of Difference-of-Gaussian

Adapted from K. Grauman, B. Leibe



2

3
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5

 List of
(x, y, s)

Position-scale space:

Find places where X 
greater than all of its 
neighbors (in green)



Results: Difference-of-Gaussian

K. Grauman, B. Leibe



Plan for today

• Feature detection / keypoint extraction

– Corner detection

– Blob detection

• Feature description (of detected features)



Geometric transformations

e.g. scale, 

translation, 

rotation
K. Grauman



Photometric transformations

T. Tuytelaars



Scale-Invariant Feature Transform (SIFT) descriptor

[Lowe, ICCV 1999]

Histogram of oriented 

gradients

• Captures important texture 

information

• Robust to small translations /

affine deformations
K. Grauman, B. Leibe



Computing gradients

• tan(α)= 
𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑠𝑖𝑑𝑒

𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒

L = the image intensity

gradient in x direction gradient in y direction 

gradient in y direction gradient in x direction 



Gradients

m(x, y) = sqrt(1 + 0) = 1
Θ(x, y) = atan(0/-1) = 0 



Gradients

m(x, y) = sqrt(0 + 1) = 1
Θ(x, y) = atan(1/0) = 90 



Gradients

m(x, y) = sqrt(1 + 1) = 1.41
Θ(x, y) = atan(1/1) = 45 



Basic idea:
• Take 16x16 square window around detected feature

• Compute gradient orientation for each pixel

• Create histogram over edge orientations weighted by magnitude

• That’s your feature descriptor! 

Scale Invariant Feature Transform

Adapted from L. Zitnick, D. Lowe

0 2
angle histogram



Full version
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Quantize the gradient orientations i.e. snap each gradient to one of 8 angles

• Each gradient contributes not just 1, but magnitude(gradient) to the histogram, i.e. 

stronger gradients contribute more 

• 16 cells * 8 orientations = 128 dimensional descriptor for each detected feature

Scale Invariant Feature Transform

Adapted from L. Zitnick, D. Lowe



Full version
• Divide the 16x16 window into a 4x4 grid of cells (2x2 case shown below)

• Quantize the gradient orientations i.e. snap each gradient to one of 8 angles

• Each gradient contributes not just 1, but magnitude(gradient) to the histogram, i.e. 

stronger gradients contribute more 

• 16 cells * 8 orientations = 128 dimensional descriptor for each detected feature

• Normalize + clip (threshold normalize to 0.2) + normalize the descriptor

• After normalizing, we have:

Scale Invariant Feature Transform

0.2

Adapted from L. Zitnick, D. Lowe

such that:



CSE 576: Computer Vision

Image from Matthew Brown

• Rotate patch according to its dominant gradient orientation
• This puts the patches into a canonical orientation

K. Grauman

Making descriptor rotation invariant



SIFT is robust

• Can handle changes in viewpoint
• Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination
• Sometimes even day vs. night (below)

• Fast and efficient—can run in real time

• Can be made to work without feature detection, resulting in 
“dense SIFT” (more points means robustness to occlusion)

• One commonly used implementation
• http://www.vlfeat.org/overview/sift.html

Adapted from S. Seitz

http://www.vlfeat.org/overview/sift.html


Examples of using SIFT



Examples of using SIFT



Examples of using SIFT

Images from S. Seitz



Applications of local invariant features

• Object recognition

• Indexing and retrieval

• Robot navigation

• 3D reconstruction 

• Motion tracking

• Image alignment

• Panoramas and mosaics

• …

Adapted from K. Grauman and L. Lazebnik

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html


Additional references
• Survey paper on local features

– “Local Invariant Feature Detectors: A Survey” by Tinne Tuytelaars and 
Krystian Mikolajczyk, in Foundations and Trends in Computer Graphics 
and Vision Vol. 3, No. 3 (2007) 177–280 (mostly Chapters 1, 3.2, 7) 
http://homes.esat.kuleuven.be/%7Etuytelaa/FT_survey_interestpoints
08.pdf

• Making Harris detection scale-invariant
– “Indexing based on scale invariant interest points” by Krystian

Mikolajczyk and Cordelia Schmid, in ICCV 2001 https://hal.archives-
ouvertes.fr/file/index/docid/548276/filename/mikolajcICCV2001.pdf

• SIFT paper by David Lowe 
– “Distinctive Image Features from Scale-Invariant Keypoints” by David 

G. Lowe, in IJCV 2004 http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

http://homes.esat.kuleuven.be/~tuytelaa/FT_survey_interestpoints08.pdf
https://hal.archives-ouvertes.fr/file/index/docid/548276/filename/mikolajcICCV2001.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Summary

• Keypoint detection: repeatable 
and distinctive

– Corners, blobs, stable regions

– Laplacian of Gaussian, automatic 
scale selection

• Descriptors: robust and selective

– Histograms for robustness to small 
shifts and translations (SIFT 
descriptor)

Adapted from D. Hoiem, K. Grauman


