

https://doi.org/10.11646/phytotaxa.343.2.2

A new entomopathogenic fungus, Ophiocordyceps ponerus sp. nov., from China

JIAO-JIAO QU^{1,2}, LAN-QING YU², JIAN ZHANG², YAN-FENG HAN² & XIAO ZOU^{2*}

¹ Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China

² Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang, 550025, China

*Author for correspondence. E-mail address: xzou@gzu.edu.cn

Abstract

A new species, *Ophiocordyceps ponerus*, is reported from a survey of invertebrate-associated fungi in Xiaochehe Wetland Park, Guiyang City, China. Evidence for the new species is provided by morphological and molecular characters. Synnemata of this species emerged from cadavers of soldier ants of *Ponera* sp. (Hymenoptera). It differs from similar species mainly in having verticillate phialides on the upper portions of the synnemata with septa, $112-158 \times 7.5-10 \mu m$; cylindrical or oval conidiogenous cells, which are inflated at the base, and suddenly tapering to a short, thin and verrucose neck, $13-25 \times 2.5-5 \mu m$; solitary, smooth conidia nearly oval or forming curved orange segments, $7.5-10 \times 3.8-5 \mu m$. Phylogenetic analysis using combined ITS, SSU, RPB2 and TEF sequence data support its systematic position in *Ophiocordyceps* and as a new species.

Key words: 1 new species, entomopathogenic fungi, Ophiocordyceps, multiple genes, taxonomy

Introduction

The entomopathogenic genus Ophiocordyceps (= Hymenostilbe) belongs to Ophiocordycipitaceae, Hypocreales (Wijayawardene et al. 2017). Hymenostilbe was first proposed based on the type species H. muscarium, a species parasitic on dipteran insects that was later found to be an asexual morph of Ophiocordyceps forquignonii (Quél) Sung (Petch, 1931; Sung et al., 2007). As the oldest asexual generic name associated with the 'O. sphecocephala clade', Hymenostilbe was synonymized under Ophiocordyceps, most species of which sporulate from adult insects (Sung et al., 2007; Luangsa-ard et al., 2011; Maharachchikumbura et al., 2015, 2016; Wijayawardene et al. 2017). Species of Ophiocordyceps have unusual cylindrical synnemata and smooth conidia that are very similar to those of Akanthomyces (Lebert, 1858) and are parasitic on insects of Diptera, Orthoptera, Hymenoptera and spiders (Wijayawardene et al. 2017). The main identifying characteristics of this asexual *Ophiocordyceps* are solitary conidia, which are polyblastic and form on a denticle, whereas those of Akanthomyces form in chains on phialides (Petch, 1932; Mains, 1950; Huang et al., 1998). Petch questioned the acceptability of the genus Hymenostilbe when he reported the species Akanthomyces aculeatus Lebert (Petch, 1933). Subsequently, Kobayasi (1941) and Mains (1950) found that it was very difficult to delimit Hymenostilbe from Akanthomyces, especially for species producing synnemata which covers with a hymenial layer at surface. After comprehensive studies, Samson and Evans (1975) proposed polyphialides as a species-specific character of *Hymenostilbe*. On the basis of this, they re-described nine taxa and established the taxonomic status of Hymenostilbe. Sung suggested that Hymenostilbe asexual morphs might be derived from within Hirsutella because of the close phylogenetic relationship between Hirsutella and Hymenostilbe asexual morphs, but more evidence is needed to support this (Sung et al., 2007).

In the Index Fungorum (http://www.indexfungorum.org), there are 26 asexual morph species listed in *Hymenostilbe*, including 24 formally described species. Among them, *O. aranearum* Petch was originally classified in *Akanthomyces* (Mains, 1950) and *Hymenostilbe sphecophila* Petch (as *Isaria sphecophila* Ditmar) was later merged with *Hirsutella* (Van *et al.*, 2005). However, there has been debate about the attribution of *Hymenostilbe sphecophila*, and some scholars believe that it is an asexual morph of *Ophiocordyceps sphecocephala* and should be placed in *Hymenostilbe* (Nigel, 1995). In the last two decades, a small number of Chinese and international studies have addressed the

taxonomy, molecular evolution and phylogeny of *Hymenostilbe* asexual morphs, with sporadic reports of six new species, including *O. ventricosa* Hywel-Jones (1995), *O. aurantiaca* Hywel-Jones (1996), *O. ichneumonophila* Van Vooren & Audibert (2005), *O. furcata* Aung *et al.* (2006), *O. spiculata* Huang *et al.* (1998) and *O. verrucosa* Peng *et al.* (2008).

During a survey of invertebrate-associated fungi in natural forests near Guiyang City in China, a fungus parasitic on soldier ants of *Ponera* sp. (Hymenoptera) was found in a nest. Attempts to identify the fungus showed that neither the gene sequences nor morphological traits matched any known *Hymenostilbe* asexual morphs. To conform to Article 59 of the International Code of Botanical Nomenclature, some mycologists have proposed suppressing the use of some asexual names proposed for taxa in this 'O. sphecocephala clade', including *Hymenostilbe*, in favor of *Ophiocordyceps* as the genus name for the entire clade (Sung *et al.*, 2007, Kepler *et al.*, 2013, Quandt *et al.*, 2014, Simmons *et al.*, 2015, Spatafora *et al.*, 2015). In light of these recommendations by respected researchers of these fungi, we describe the fungus represented by GZUIFR–2012xch03 as *Ophiocordyceps ponerus*. Based on morphological character comparisons and phylogenetic analyses, the aim of the present study is to introduce the new species and to investigate its biology and phylogenetic position.

Materials and methods

Specimen

The specimen was collected from Xiaochehe Wetland Park, Guiyang City, Guizhou Province, China (26°32' N, 106°40' E, approximately 1100 m above sea level) in November 2012 by J. J. Qu & Y. M. Zhou, on cadavers of soldier ant of *Ponera* sp. (Hymenoptera) from rotting wood. Holotypus: GZUIFR–2012xch03 and an isolated strain of its asexual stage GZUIFR xch03 were deposited at the Institute of Fungal Resources of Guizhou University (GZUIFR); the isolated strain was also deposited at the China General Microbiological Culture Collection Center (CGMCC), CGMCC 3.18756.

Fungal isolation and culture

The surface of specimen was rinsed with sterile water, followed surface sterilization with 75% ethanol for 3–5 s. The part of the insect body was cut off and inoculated a piece of tissue in haemocoel on the potato dextrose (PDA) agar. Then, the strain was isolated and cultured at 22°C for 14 d under 12-h light/12-h dark conditions following protocols described by Zou *et al.* (2010).

OM and SEM observations

For optical microscopy (OM) observations and imaging, the fresh hyphae were stained with lactic acid phenol cotton blue solution and observed with optical microscope (OM, BK5000, OPTEC, USA). The captured images were edited and digitally contrasted with Paint Shop Pro v. 5.0.1 (Corel, Ottawa, Canada).

Electron microscopy was carried out following to Qu *et al.* (2017). Briefly, 1 cm wide agar blocks with hyphae of the fungus were cut from PDA cultures, and the collected samples were fixed with 4% glutaraldehyde at 4°C overnight, then washed three times with phosphate buffer solution (PBS) (137 mM NaCl, 2.7 mM KCl, 8.1 mM Na₂HPO₄, 1.5 mM KH₂PO₄, pH 7.4) three times, 10 min/times. Fixed hyphae and conidia were dehydrated using 50%, 70%, 90% and 100% alcohol, 10 min/each level; dehydrated with supercritical carbon dioxide at last. Placed the samples to spray gold. Conidia and mucilage were examined with scanning electron microscope (SEM, S-3400N, HITACHI, Japan) and photographed.

DNA extraction, PCR amplification and sequencing

To construct a phylogeny of major lineages, representative taxa of members from the major species were chosen based on previous phylogenetic studies (Sung *et al.*, 2007; Quandt *et al.*, 2014). A total of 45 taxa were selected to represent the morphological and ecological diversity of *Ophiocordyceps*, including outgroup taxon *Colletotrichum gloeosporioides*, which is classified within Glomerellaceae (Sung *et al.*, 2007). Axenic mycelia (0.05–0.1g) of tested fungi which needed to extract molecular data were harvested from PDA plates and transferred into 1.5 ml eppendorf tubes for genomic DNA extraction and PCR amplification, which were carried out as previously described (White *et al.*, 1990; Rehner *et al.*, 1994; Rehner *et al.*, 2005; Sung *et al.*, 2007; van den Brink *et al.*, 2012; Simmons *et al.*, 2015). Sequences from four nuclear loci, including the small subunit ribosomal RNA (SSU), the transcription elongation

factor-1 alpha (TEF), the largest and second largest subunits of RNA polymerase II (RPB2) and the first and the internal transcribed spacers (ITS1–5.8S rDNA–ITS2 region, ITS) were used for phylogenetic analyses. All other sequences were collected from GenBank. Efforts were made for all species to have data for at least two genes to be considered in our analyses. Sequences used in this study were combined with published data on species of *Hymenostilbe* asexual morphs, *Polycephalomyces* and *Ophiocordyceps*. The GenBank accession numbers are shown in Table 1.

Species	Voucher	ITS	RPB2	SSU	TEF
	Information				
Ophiocordyceps irangiensis	OSC 128577	JN049823	DQ522427	DQ522546	DQ522329
Ophiocordyceps nutans	OSC 110994	AF224274	EF495090	DQ522549	DQ522333
Ophiocordyceps sphecocephala	OSC 110998	AJ786597	DQ522432	DQ522551	DQ522336
Colletotrichum gloeosporioides	FAU 513	EU358953	DQ858455	JN940361	AF543772
Colletotrichum gloeosporioides	FAU 553	EU358952	DQ522441	JN940359	AF543773
Ophiocordyceps aurantiaca	OSC 128578		DQ522445	DQ522556	DQ522345
Ophiocordyceps dipterigena	OSC 151912	GU723771	KC610712	KJ878920	KJ878967
Ophiocordyceps muscaria	OSC 151902		KJ878945	KJ878912	
Ophiocordyceps odonatae	TNS F18563	AB104725	KJ878992	D86055	
Ophiocordyceps ponerus	CGMCC	KP890688	KY953145	KY953152	KY953153
	3.18756				
Ophiocordyceps acicularis	OSC 128580	JN049820	DQ522423	DQ522543	DQ522326
Ophiocordyceps agriotidis	ARSEF 5692	JN049819	DQ522418	DQ522540	DQ522322
Ophiocordyceps annulata	CEM 303			KJ878915	KJ878962
Ophiocordyceps brunneipunctata	OSC 128576	GU723777	DQ522420	DQ522542	DQ522324
Ophiocordyceps curculionum	OSC 151910		KJ878999	KJ878918	
Ophiocordyceps dipterigena	OSC 151911	EU573346	KC610715	KJ878919	KJ878966
Ophiocordyceps entomorrhiza	KEW 53484	AJ786561	EF468911	EF468954	EF468749
Ophiocordyceps formicarum	TNSF 18565	AB222679	KJ878946	KJ878921	KJ878968
Ophiocordyceps forquignonii	OSC 151908	HQ662164	KJ878947	KJ878922	
Ophiocordyceps gracilis	EFCC 8572	HM142942	EF468912	EF468956	EF468751
Ophiocordyceps heteropoda	EFCC 10125	JN049852	EF468914	EF468957	EF468752
Ophiocordyceps irangiensis	OSC 128579	GU723767	EF469107	EF469123	EF469060
Ophiocordyceps lloydii	OSC 151913	KP200892	KJ878948	KJ878924	KJ878970
Ophiocordyceps longissima	EFCC 6814	AB968406	AB968546	AB968392	EF468757
Ophiocordyceps myrmecophila	CEM 1710			KJ878927	KJ878973
Ophiocordyceps myrmecophila	HMAS 199620	EU573350		KJ878929	KJ878975
Ophiocordyceps nigrella	EFCC 9247	JN049853	EF468920	EF468963	EF468758
Ophiocordyceps nutans	NBRC 100944	AB544486	AB968549	DQ522549	DQ522333
Ophiocordyceps oxycephala	MRCIF53	EU573348	EF495091	DQ838794	
Ophiocordyceps ravenelii	OSC 110995		DQ522430	DQ522550	DQ522334
Ophiocordyceps rhizoidea	NHJ 12522	GU723769	EF468923	EF468970	EF468764
Ophiocordyceps sobolifera	KEW 78842	AB027374	EF468925	EF468972	AB968590
Ophiocordyceps sphecocephala	NBRC 101753	JN943351	AB968553	JN941700	AB968592
Ophiocordyceps stylophora	OSC 111000	JN049828	DQ522433	DQ522552	DQ522337
Ophiocordyceps tricentri	NBRC 106968	AB968410	AB968554	AB968393	AB968593
Ophiocordyceps unilateralis	OSC 128574	AY494596	DQ522436	DQ522554	DQ522339
Ophiocordyceps buquetii	HMAS 199613			KJ878939	KJ878984
Ophiocordyceps buquetii	HMAS 199617			KJ878940	KJ878985
Polycephalomyces formosus	ARSEF 1424	KF049661	KF049671	KF049615	DQ118754
Polycephalomyces nipponica	BCC 2325	KF049665	KF049677	KF049622	KF049696
Polycephalomyces paracuboidea	NBRC 101742	AB925954	KF049669	KF049611	KF049685
Polycephalomyces prolifica	TNSF 18547	KF049660	KF049670	KF049613	KF049687
Polycephalomyces tomentosus	BL 4	KF049666	KF049678	KF049623	KF049697
Polycephalomyces sp.	RMK 2013	KF049662	KF049672	KF049616	KF049690

TABLE 1. Specimen information and GenBank acc	ession numbers for sequences	used in this study
---	------------------------------	--------------------

Molecular phylogeny

Sequences were aligned and edited manually using the BioEdit Sequence Alignment Editor ver. 7.0.5.3 (Hall, 1999) with the Clustal X ver. 1.83 software (Thompson *et al.*, 1999) package. Gaps were excluded from the phylogenetic analysis. The data set contained 45 taxa and consisted of 574 bp for SSU, 508 bp for TEF, 512 bp for RPB2 and 306 bp for

ITS. A combined data included 1900 characters set of the four regions was analyzed. The Akaike information criterion (AIC) in jModeltest 0.1.1 (Guindon & Gascuel, 2003; Posada, 2008) was used to select the nucleotide substitution model for each partition. Maximum likelihood (ML) phylogenetic analyses were conducted in RAxML (Stamatakis *et al.*, 2008) with the recommended partition parameters to determine the best tree topology and bootstrap support values from 500 search replicates, which were summarized in FigTree. Bayesian posterior probabilities (BPP) were estimated with the same partition parameters in an analysis conducted in MrBayes 3.1.2 (Ronquist & Huelsenbeck, 2003), in which two runs of four chains each were executed simultaneously for 5 000 000 generations, with sampling every 500 generations. TreeGraph was used to compute BPP from a summary of 7501 trees retained after a burn-in of the first 2500 trees collected.

Results

Taxonomy

Ophiocordyceps ponerus X. Zou & Y. F Han, *sp. nov*. Fig. 1. MycoBank no.: MB 814427; Facesoffungi number: FoF03305.

FIGURE 1. *Ophiocordyceps ponerus* (GZUIFR–2012xch03, holotype). a. The Infection ant specimen with long and black synnemata; b, c. Front and rear morphology of colonies formed on PDA medium after 20 d; d, e. SEM images showing the synnemata and whorled conidiophores; f, g. SEM images showing the phialides and conidia. Scale bars: a-c = 10 mm, $d = 50 \mu\text{m}$, $e = 30 \mu\text{m}$, $f = 10 \mu\text{m}$, $g = 5 \mu\text{m}$.

Etymology: the species epithet refers to the genus name of the host, *Ponera* sp. (Lat."ponerus"). Host was approximately 5 mm long \times 3 mm wide. Synnemata approximately 20–50 mm long \times 0.2 mm wide, several, cylindrical, tapering at the end, arising from the thorax of the insect, sometimes simple-branched, black, fawn brown near the apex. Mycelium spreading slowly 20–30 mm diam. after 20 d, on PDA medium under 20–22°C.; Colony circular, center of surface with dark brown dense bulges, pink sparse flocculent aerial hyphae on colonies margins; much brown pigment secreting into the media making the back of the colonies show dark brown. Conidiophores 112–158 \times 7.5–10 µm, formed outside the synnemata with septa, verticillate phialides on the upper portions of the synnemata, asperulate; conidiogenous cells 13–25 \times 2.5–5 µm, forming on conidiophores or side branches, cylindrical or oval inflated at the base, suddenly tapering to the short and thin neck, vertucose; conidia 7.5–10 \times 3.8–5 µm, solitary, smooth, hyaline, nearly oval or shaped like curved orange segments.

Ophiocordyceps ponerus differs from related species mainly in having verticillate phialides on the upper portions of the synnemata; conidiogenous cells that are cylindrical or oval, inflated at the base, and vertucose; and conidia that are solitary, smooth, and nearly oval or forming curved orange segments $(7.5-10 \times 3.8-5 \ \mu\text{m})$.

Holotype: CHINA. Guizhou Prov.: elev. 1100m, Xiaochehe Wetland Park, Guiyang City, on cadavers of soldier ant of

Ponera sp. (Hymenoptera) from rotting wood, 16 November 2012, GZUIFR–2012xch03. Isotype: KUN–F0085001. GenBank: ITS = KP890688; RPB2= KY953145; SSU= KY953152; TEF= KY953153.

Known distribution: Xiaochehe Wetland Park, Guiyang, Guizhou Province, China.

Phylogenetic analysis

The tree was regenerated with maximum likelihood analysis and Bayesian posterior probabilities with *Collectotrichum gloeosporioides* as the outgroup taxon (Fig. 2). The tree could be broadly divided into three clades: *Hymenostilbe*, *Hirsutella* and *Polycephalomyces* clades. In the phylogenetic tree, *Ophiocordyceps ponerus* cluster with *Hymenostilbe* asexual morphs species and formed a separate branch from other species with credible bootstrap support (87/92%). Within a separate branch, *Ophiocordyceps ponerus* and *Ophiocordyceps odonatae* clustered together closely, suggesting that these species were truly related. The molecular phylogenetic analysis confirmed that there were differences between *Ophiocordyceps ponerus* and other related species.

0.05

FIGURE 2. Phylogenetic tree of *Ophiocordyceps ponerus* and related species using combined DNA sequences of the RPB2, TEF, ITS and SSU datasets obtained with maximum likelihood method. Numbers below the branches are bootstrap percentage values based on 10,000 replicates, ML/BPP, maximum likelihood bootstrap support values greater than 50% and Bayesian posterior probabilities above 90%. The placement of *O. ponerus* is indicated in red.

Key

1.	Host is an ant, phialides verrucose or not	
1.	Host is not an ant, phialides verrucose	
2.	Phialides vertucose, synnemata cylindrical, tapering to the end, $6-11 \times 1-1.2 \ \mu m$ O. lloy	dii (Fawc) Sung (H. formicarum Petch)
2.	Phialides vertucose; conidia nearly oval, or orange segments, $7.5-10 \times 3.8-5 \mu m$	O. ponerus X. Zou & Y. F Han
2.	Conidia with smooth surface, narrowly terete, slightly curved	
3.	Host is orthopteran or an arachnid	
3.	Host is a dipteran	5
4.	Conidia cylindrical, round at both ends, $6.5-9 \times 1.5-1.8 \mu\text{m}$	O. fragilis Petch
4.	Conidia $6-8 \times 2-3.5 \mu m$, host is a spider	
5.	Conidia 4–13.5 × 2–4 μm	O. dipterigena Petch
5.	Conidia 3–7 × 1.5–3.5 μm	

Discussion

Both morphological and phylogenetic analysis showed that *Ophiocordyceps ponerus* is a new taxon. *Ophiocordyceps* species produce conidia singly from multiple denticles on conidiogenous cells that form a palisade-like layer along the entire outer surface of the synnemata (Mains, 1950). However, the new species has verticillate and verrucose phialides in whorls on the synnemata, distinguishing it from the vast majority of species in the genus. Other reported similar species parasitic on ants include *O. aurantiaca* Hywel-Jones (1996), *O. australiensis* Mains (1948), *O. camponoti* Mains (1950), *O. lloydii* Sung *et al.* (2007) (*Hymenostilbe formicarum* Mains), *O. longispora* Samson *et al.* (1975) and *O. melanopoda* Petch (1932). Unlike the solitary conidia of *O. ponerus*, *O. aurantiaca* and *O. longispora* are polyblastic, and the others apparently form a palisade layer over the synnemata that clearly distinguishes them from *O. ponerus*. In addition, other similar species, such as *O. aphidis* Petch (1942), *O. lecaniicola* Mains (1950), *O. spiculata* Huang *et al.* (1998), *O. ventricosa* Hywel-Jones (1995) and *O. verucosa* Mains (1950), differ from the new species in the shape of their phialides and conidia. For more details see the Key and Supplementary Table S1.

As the asexual species associated with *Ophiocordyceps*, *Hymenostilbe* and *Hirsutella* were synonymized under *Ophiocordyceps* (Maharachchikumbura *et al.* 2015). In this study, multiple gene sequences of related *Ophiocordyceps* species were used for the phylogenetic analysis despite the fact that the available genetic data in public databases are limited for a number of this species and include mainly partial sequences (Aung *et al.*, 2006; Sung *et al.*, 2007; Quandt *et al.*, 2014). In our phylogenetic tree, the close phylogenetic relationship with *Ophiocordyceps* asexual morphs is exemplified by the close positions of the two separate clades. Furthermore, *Ophiocordyceps ponerus* and *Ophiocordyceps odonatae* cluster closely, but the phialides of the latter are cylindrical (9.7–14 × 3.2 μ m) and the conidia are narrower and cylindrical (6.5–9.7 × 1.1–2.2 μ m).

Acknowledgements

We thank Professor Zizhong Li from the institute of entomology GuiZhou University for identifying the ant on specimens GZUIFR–2012xch03. This work was supported by the National Natural Science Foundation of China (No. 31360031, 31660150, 31460010); the Major Project of Guizhou Province, China (Qian Ke He Major Project [2016] 3022-07); the Youth Science and Technology Talent Project of Guizhou Province [2017]5617.

References

Aung, M.O., Kang, J.C., Liang, Z.Q., Soytong, K. & Hyde, K.D. (2006) A new entomopathogenic species, *Hymenostilbe furcata*, parasitic on a hemipteran nymph in northern Thailand. *Mycotaxon* 97: 241–245.

Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. *Systematic biology* 52: 696–704.

https://doi.org/10.1080/10635150390235520

Hall, T.A. (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.

Huang, B., Fan, M.Z. & Li, Z.Z. (1998) A new species of Hymenostilbe Petch. Mycosystema 17: 193–194. [in Chinese]

https://doi.org/10.1080/10635150390235520

Hywel-Jones, N.L. (1995) *Hymenostilbe ventricosa* sp. nov. a pathogen of cockroaches in Thailand. *Mycological Research* 99: 1201–1204.

https://doi.org/10.1016/S0953-7562(09)80279-7

Hywel-Jones, N.L. (1996) Cordyceps myrmecophila–like fungi infecting ants in the lesf litter of tropical forest in Thailand. Mycological Research 100: 613–619.

https://doi.org/10.1016/S0953-7562(96)80017-7

Kepler, R., Ban, S., Nakagiri, A., Bischoff, J., Hywel-Jones, N., Owensby, C.A. & Spatafora, J.W. (2013) The phylogenetic placement of hypocrealean insect pathogens in the genus Polycephalomyces: an application of One Fungus One Name. *Fungal biology* 117: 611–622.

https://doi.org/10.1016/j.funbio.2013.06.002

- Kobayasi, Y. (1941) The genus Cordyceps and its allies. Science Reports of the Tokyo Bunrika Daigaku Sect B 5: 53-260.
- Lebert, H. (1858) Ueber einige neue oder unvollkommen gekannte Krankheiten der Insekten, welche durch En- twicklung niederer Pflanzen im lebenden Korper en- stehen. Zeitschrift für wissenschaftliche Zoologie 9: 439–453.
- Luangsa-ard, J.J., Ridkaew, R., Tasanathai, K., Thanakitpipattana, D. & Hywel-Jones, N.L. (2011) *Ophiocordyceps halabalaensis*: a new species of *Ophiocordyceps* pathogenic to *Camponotus gigas* in Hala Bala Wildlife Sanctuary, Southern Thailand. *Fungal Biology* 115: 608–614.

https://doi.org/10.1016/j.funbio.2011.03.002

Maharachchikumbura, S.S., Hyde, K.D., Jones, EG., McKenzie, E.H., Huang, S.K., Abdel-Wahab, M.A., Daranagama, D.A., Dayarathne, M., D'souza, M.J., Goonasekara, I.D., Hongsanan, S., Jayawardena, R.S., Kirk, P.M., Konta, S., Liu, J.K., Liu, Z.Y., Norphanphoun, C., Pang, K.L., Perera, R.H., Senanayake, I.C., Shang, Q.J., Shenoy, B.D., Xiao, Y.P., Bahkali, A.H., Kang, J.C., Somrothipol, S., Suetrong, S., Wen, T.C. & Xu, J. (2015) Towards a natural classification and backbone tree for Sordariomycetes. *Fungal Diversity* 72: 199–301.

https://doi.org/10.1007/s13225-015-0331-z

Maharachchikumbura, S.S., Hyde, K.D., Jones, E.G., McKenzie, E.H.C., Bhat, J.D., Dayarathne, M.C., Huang, S.H., Norphanphoun, C., Senanayake, I.C., Perera, R.H., Shang, Q.J., Xiao, Y.P., D'souza, M.J., Hongsanan, S., Jayawardena, R.S., Daranagama, D.A., Konta, S., Goonasekara, I.D., Zhuang, W.Y., Jeewon, R., Phillips, A.J.L., Abdel-Wahab, M.A., Al-Sadi, A.M., Bahkali, A.H., Boonmee, S., Boonyuen, N., Cheewangkoon, R., Dissanayake, A.J., Kang, J.C., Li, Q.R., Liu, J.K., Liu, X.Z., Liu, Z.Y., Luangsa-ard, J.J., Pang, K.L., Phookamsak, R., Promputtha, I., Suetrong, S., Stadler, M., Wen, T.C., Wijayawardene, N.N. (2016) Families of Sordariomycetes. *Fungal Diversity* 79: 1–317.

https://doi.org/10.1007/s13225-016-0369-6

- Mains, E.B. (1948) Entomogenous Fungi. Mycologia 40: 402-416.
- https://doi.org/10.2307/3755147
- Mains, E.B. (1950) Entomogenus species of *Akanthomyces*, *Hymenostilbe* and *Insecticola* in North America. *Mycologia* 42: 566–589. https://doi.org/10.2307/3755572
- Nigel, H.J. (1995) Cordyceps sphecocephala and a Hymenostilbe sp. infecting waspsand bees in Thailand. Mycological Research 99: 154–158.

https://doi.org/10.1016/S0953-7562(09)80879-4

- Peng, F., Chen, M.J. & Huang, B. (2008) A new record species of *Hymenostilbe* Petch. *Mycosystema* 27: 452–454. [in Chinese] https://doi.org/10.13346/j.mycosystema.2008.03.004
- Petch, T. (1931) New species of fungi collected during the Whitby foray. Naturalist 101-103.
- Petch, T. (1932) Notes on entomogenous fungi. *Transactions of the British Mycological Society* 16: 209. https://doi.org/10.1016/S0007-1536(32)80001-X
- Petch, T. (1933) Notes on entomogenous fungi. *Transactions of the British Mycological Society* 18: 48–75. https://doi.org/10.1016/S0007-1536(33)80026-X
- Petch, T. (1942) Notes on Entomogenous Fungi. *Transactions of the British Mycological Society* 19: 259. https://doi.org/10.1016/S0007-1536(42)80017-0
- Posada, D. (2008) jModeltest: phylogenetic model averaging. *Molecular Biology and Evolution* 25: 1253–1256. https://doi.org/10.1093/molbev/msn083
- Qu, J.J., Zou, X., Yu, J.P. & Zhou, Y.M. (2017) The conidial mucilage, natural film coatings, is involved in environmental adaptability and pathogenicity of *Hirsutella satumaensis* Aoki. *Scientific reports* 7: 1301. https://doi.org/10.1038/s41598-017-01368-1
- Quandt, C.A., Kepler, R.M., Gams, W., Araújo, J.P., Ban, S., Evans, H.C. & Luangsa-Ard, J.J. (2014) Phylogenetic-based nomenclatural proposals for Ophiocordycipitaceae (Hypocreales) with new combinations in Tolypocladium. *IMA fungus* 5: 121–134.

https://doi.org/10.5598/imafungus.2014.05.01.12

- Rehner, S.A. & Buckley, E.A. (2005) *Beauveria* phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. *Mycologia* 97: 84–98. https://doi.org/ 10.3852/mycologia.97.1.84
- Rehner, S.A. & Samuels, G.J. (1994) Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. *Mycological Research* 98: 625–634.

https://doi.org/10.1016/S0953-7562(09)80409-7

Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572–1574.

https://doi.org/10.1093/bioinformatics/btg180

- Samson, R.A. & Evans, H.C. (1975) III. The genus Hymenostilbe. Series C 78. Notes on entomogenous fungi from Ghana. Proceedings, Koninklijke Nederlandse Akademie van Wetenschappen, pp. 73–80.
- Simmons, D.R., Kepler, R.M., Rehner, S.A. & Groden, E. (2015) Phylogeny of *Hirsutella* species (Ophiocordycipitaceae) from the UsA: remedying the paucity of Hirsutella sequence data. *IMA fungus* 6: 345–356.

https://doi.org/10.5598/imafungus.2015.06.02.06

- Spatafora, J.W., Quandt, C.A., Kepler, R.M., Sung, G.H., Shrestha, B., Hywel-Jones, N.L. & Luangsa-ard, J.J. (2015) New 1F1N species combinations in Ophiocordycipitaceae (Hypocreales). *IMA fungus* 6: 357–362. https://doi.org/10.5598/imafungus.2015.06.02.07
- Stamatakis, A., Hoover, P. & Rougemont, J. (2008) A rapid bootstrap algorithm for the RAxML Web–Servers. *Systematic Biology* 75: 758–771.

https://doi.org/10.1080/10635150802429642

- Sung, G.H., Nigel, H.J., Sung, J.M., Luangsa–ard, J.J., Shrestha, B. & Spatafora, J.W. (2007) Phylogenetic classification of *Cordyceps* and the clavicipitaceous fungi. *Studies in mycology* 57: 5–59. https://doi.org/10.3114/sim.2007.57.01
- Thompson, J., Plewniak, F. & Poch, O. (1999) A comprehensive comparison of multiple sequence alignment programs. *Nucleic Acids Res* 27: 2682–2690.

https://doi.org/10.1093/nar/27.13.2682

- Van Vooren, N., Cédric, A. & Révision, D.C. (2005) partie1: les guêpes végétales. Cordyceps sphecocephala. Bulletin Mensuel Societe Linneenne De Lyon 74: 221–254.
- Van den Brink, J., Samson, R.A., Hagen, F., Boekhout, T. & de Vries, R.P. (2012) Phylogeny of the industrial relevant, thermophilic genera *Myceliophthora* and *Corynascus*. *Fungal Diversity* 52: 197–207. https://doi.org/10.1007/s13225-011-0107-z
- White, T.J., Bruns, T., Lee, S. & Taylor, J.W. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *In*: Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. (Eds.) *PCR protocols: a guide to methods and applications*. Academic Press, New York, pp. 315–322.
- Wijayawardene, N.N., Hyde, K.D., Rajeshkumar, K.C., Hawksworth, D.L., Madrid, H., Kirk, P.M., Braun, U., Singh, R.V., Crous, P.W., Kukwa, M., Lücking, R., Kurtzman, C.P., Yurkov, A., Haelewaters, D., Aptroot, A., Lumbsch, H.T., Timdal, E., Ertz, D., Etayo, J., Phillips, A.J.L., Groenewald, J.Z., Papizadeh, M., Selbmann, L., Dayarathne, M.C., Weerakoon, G., Jones, E.B.G., Suetrong, S., Tian, Q., Castañeda-Ruiz, R.F., Bahkali, A.H., Pang, K.-L., Tanaka, K., Dai, D.-Q., Sakayaroj, J., Hujslová, M., Lombard, L., Shenoy, B.D., Suija, A., Maharachchikumbura, S.S.N., Thambugala, K.M., Wanasinghe, D.N., Sharma, B.O., Gaikwad, S., Pandit, G., Zucconi, L., Onofri, S., Egidi, E., Raja, H.A., Kodsueb, R., Cáceres, M.E.S., Pérez-Ortega, S., Fiuza, P.O., Monteiro, J.S., Vasilyeva, L.N., Shivas, R.G., Prieto, M., Wedin, M., Olariaga, I., Lateef, A.A., Agrawal, Y., Fazeli, S.A.S., Amoozegar, M.A., Zhao, G.Z., Pfliegler, W.P., Sharma, G., Oset, M., Abdel-Wahab, M.A., Takamatsu, S., Bensch, K., de Silva, N.I., De Kesel, A., Karunarathna, A., Boonmee, S., Pfister, D.H., Lu, Y.-Z., Luo, Z.-L., Boonyuen, N., Daranagama, D.A., Senanayake, I.C., Jayasiri, S.C., Samarakoon, M.C., Zeng, X.-Y., Doilom, M., Quijada, L., Rampadarath, S., Heredia, G., Dissanayake, A.J., Jayawardana, R.S., Perera, R.H., Tang, L.Z., Phukhamsakda, C., Hernández-Restrepo, M., Ma, X., Tibpromma, S., Gusmao, L.F.P., Weerahewa, D. & Karunarathna, S.C. (2017) Notes for genera: Ascomycota. *Fungal diversity* 86: 1–594. https://doi.org/10.1007/s13225-017-0386-0
- Zou, X., Liu, A.Y., Liang, Z.Q., Han, Y.F. & Yang, M.F. (2010) *Hirsutella liboensis*, a new entomopathogenic species affecting *Cossidae* (*Lepidoptera*) in China. *Mycotaxon-Ithaca Ny* 111: 39–44. https://doi.org/10.5248/111.39

species	host	synnemata	conidia	phialides	refrence
Ophiocordyceps	ant	cylindrical, 2.0-5.0 cm long	nearly oval, sometimes	on conidiophores or side	This study
ponerus		\times 0.2 mm wide, black, fawn	curved orange segment,	branches, cylindrical or oval	
		brown near the apex;	$7.5-10 \times 3.8-5 \ \mu m;$	inflated at the base, with thin	
				tumors, $13-25 \times 2.5-5 \ \mu m$;	
O. ampullifera	gnats	very slender, up to 3 mm	narrowly cylindric	ellipsoid to short cylindric, 10-15	Mains, 1950
		long, brown, white from	5.2–9 ×1.1–2 μ m slightly	\times 3–5 $\mu m,$ narrowing above into	
		pulverulent masses of	narrowing but rounded at the	an acuminate apex with a short	
		adhering spores;	ends, smooth, catenulate;	sterigma, smooth;	
O. aphidis	aphids	solitary, rufous brown, up to	narrow oval or fusoid,	conoid, narrow flask-shaped or	Petch, 1942
		2 mm high, 0.1 mm diameter,	hyaline, smooth, 9–15 \times	subcylindrical, 12–18 \times 4–6 μ m;	
		terete, minutely pruinose;	4–5 μm;	cylindrical sterigma, $3-6 \times 1 \ \mu m$;	
O. aranearum	spiders	cylindric to clavate, 0.8-10	narrowly obclavate, 8-14	obovoid or ellipsoid, $6-12 \times 4-8$	Mains, 1950
		mm long \times 0.1–0.2 mm thick,	\times 1.5–3 $\mu m,$ often acute at	μ m, rounded above and abruptly	
		brown, flexuous, asperulate	the lower end, narrowing	narrowing into a short sterigma,	
		hyphae;	upward, hyaline, smooth,	asperulate;	
			catenulate;		
O. aurantiaca	ants	usually single, slender,	solitary, cymbiform to	orange, clavate, 9.3–25.0 \times	Hywel-
		cylindrical, up to 150 mm	obclavate to strongly	3-6 µm, polyblastic, sympodial	jones, 1996
		long, 150–200 μm diam,	obclavate, single-celled,	succession, denticles stout;	
		apricot orange to orange;	smooth-walled, orange,		
			5.3–17.0 ×1.3–3. 0 µm;		
O. australiensis	ants	linear with the apices acute,	clavate or obovate, 6–9 \times	cylindric or clavate, $15-18 \times 3$	Mains, 1948
		obtuse or slightly inflated	2.5–4 μm;	μ m, apparently forming a palisade	
		into a head;		layer over the synnemata;	
O. camponoti	ant	cylindric, 8 mm long \times 0.3	broadly fusoid, $4-6 \times 2 \ \mu m$,	subcylindric, $6-10 \times 3-3.5 \ \mu m$;	Mains, 1950
		mm thick below, furcate	acute at the ends, hyaline;	narrowing to an acute apex	
		above into two short		terminated by a sterigma to 4µm	
		branches, grayish brown;		long;	
O. dipterigena	muscidae	Subcylindric, 4-12 mm long	obovoid, 4–9 \times 2–4 $\mu m,$	terminating lateral branches	Mains, 1950
		\times 0.2–0.5 mm thick;	hyaline, single;	covering the synnema;	
O. lloydii	ant	simple, terete, up to 14 mm.	conidia narrowly clavate or	cylindric, $24 \times 4 \ \mu m$, verrucose	Mains, 1950
(H. formicarum)		long \times 0.2 mm thick, enlarged	subcylindric, $6-11 \times 1-1.2$	above, with one or two broad	
		to 0.3 mm above or furcate,	$\mu m,$ one end acute, the other	truncate sterigmata;	
		pale brown ashy, fibrillose	truncate or rounded;		
		below, pruinose above;			
O. fragilis	orthopterous	clavate, 0.7-1.5 mm long; the	subcylindric $6.5-9 \times 1.5$	subcylindric to narrowly clavate,	Mains, 1950
	larva	upper portion sporogenous,	μm somewhat narrowed	$7-10 \times 2.5-3 \ \mu\text{m}$, verrucose in	
		subgloboid to obovoid,	and rounded at the ends,	the upper portions;	
		$130-300 \ \mu m \ long \times 130-250$	catenulate;		
		μm thick, white;			
O. furcata	Hemipteran	slender, 10–14 mm long,	solitary, smooth, hyaline,	polyblastic, clavate or cylindrical,	Aung et al.,
	nymph	94–120 μm wide, cylindrical,	fusiform, $8.5 - 15 \times 3 - 4.5$	$5-18 \times 3.5-6.5 \ \mu\text{m}$, apically with	2006
		white; central core of parallel	μm;	2–7 furcellate denticles, 0.6–2.4	
		hyphae composed of cells		μm;	
		$3-55 \times 2.5-4 \ \mu m;$			~
O. ghanensis	spider	cylindrical to clavate, grey to	solitary, pyriform, apiculate,	polyblastic, clavate or cylindrical,	Samson et
		lilac, 3–25 mm long, 50–125	smooth-walled to finely	apically crowed with denticles	al., 1975
		μm wide;	roughened, hyaline, 4.5–6.5	0.5 μm;	
			× 2.7–3.8 μm;		
O. ichneumonophila	Ichneumon	cylindric, filiform, $12-15 \times$	round or ellipsoidal, smooth-	claviform, with anobtuse apex,	Van Vooren
	sp.	0.2 mm, solitary or furcal,	walled, hyaline, $6-9(10) \times$	$12-24 \times 3.5-4 \ \mu m$,	et al., 2006
o 1 i		gray to white;	3.5–5 μm) (· · · · · · ·
O. lecanucola	scale insect	cylindric to slightly clavate,	ellipsoid to broadly fusoid,	arising laterally from outer	Mains, 1950
		up to 3 mm long \times 0.1–0.5	$4-8 \times 2-2.5 \ \mu\text{m}$, hyaline	nyphae, subcylindric $10-30 \times$	
		mm thick, gray to brownish,	single;	4–3 μm;	
01.		pruinose;	1		0
O. longispora	ant	cylindrical to club-shaped,	sontary, narrowly clavate,	$3-13 \times 4.5-6 \mu m$, polyblastic,	Samson <i>et</i>
		black, near the fertile apex	occasionally slightly curved,	cylindrical to clacate, apically	al.,19/5
		pink, red or white, 6–20 mm	smooth-walled, hyaline,	with crowded denticles, 2 µm	
		long \times 50–125 µm wide;	$11-24 \times 1.5-2.3 \ \mu m;$	long;	

TABLE S1 Morphological comparison among Ophiocordyceps ponerus and its similar species

...Continued on the next page

TABLE S1 (Continued)

species	host	synnemata	conidia	phialides	refrence
O. melanopoda	ant	stalk bifurcate, branch	obovate, hyaline, with a	cylindric, with anobtuse apex,	Petch, 1932
		bearing a globose head, red	truncate base $5-10 \times 3-4$	$10-15 \times 3 \ \mu m;$	
		to black;	μm;		
O. nutans	Callibaphus	stromata up to 10cm in	ellipsoide or fusiform, 4.3–7	polyblastic, cylindrical, 15-24	Hywel-
	longirostris	length;	\times 2.7–3.3 µm, hyalina;	\times 4.5–6.5 µm, pointed apically denticles, 1.5–2.5 µm long;	Jones, 1995
O. odonatae	dragonfly	orange, developed from all	solitary, cylindrical, 6.5-9.7	cylindrical, $9.7-14 \times 3.2 \ \mu m$;	Kobayasi,
		body internode membrane,	× 1.1–2.2 μm;		1941; Zhou
		0.4–0.5 cm long × 179–333 μm;			et al., 2015
O. sphecocephala	wasp	terete, up to 3 cm long, 0.5	fusoid, 6–12 \times 2.5–3.5 $\mu m;$	forming a compact palisade layer,	Mains, 1950
		mm thick, composed of		subcylindric to clavate, 16–24 \times	
		longitudinal, parallel hyphae;		$4-5 \mu m$, acute at the apices;	
O. sphingum	moths	terete, narrowing upward,	ellipsoid or obovoid often	subcylindric or narrowly	Mains, 1950
		very variable in length,	acute at the lower end, $3-6$	ellipsoid, $6-16 \times 2.5-4 \ \mu m$,	
		$1-8 \text{ mm. long} \times 0.1-0.5 \text{ mm}$	$\times 2-3 \mu\text{m}$, smooth, hyaline	narrowing above to an acute apex	
		thick, yellowish;	catenulate;	terminated by a short sterigma up	
O spigulata	spider	avlindrical 0.5, 0.3 × 0.05	solitary oboyoid 56 86 x	forming a compact palisade laver	Huang at al
0. spicululu	spider	0.13 mm cream:	13-27 µm smooth hyaline:	polyblastic cylindrical 10 1–15.6	1008
		0.15 mm, cream,	1.5 2.7 µm, smooth, nyume,	$\times 27-39$ µm ⁻	1770
O. sulphurea	Homoptera	cylindrical, sulphur yellow.	solitary, subglobose to	polyblastic, cylindrical to clavate.	Samson et
	1	white and powdery near	ellipsoidal, apiculate, rough-	$15-25 \times 5.0-6.5 \ \mu\text{m}$, apically	al.,1975
		the apex, 15–27 mm long,	walled to finely echinulate,	crowded with denticles, 1.5 µm;	
		250–400 µm wide;	hyaine, 6.5–9.2 × 4.5–5.5		
			μm;		
O. ventricosa	cockroach	several, 6-13 mm long, 200-	solitary, ventricose,	cylindric or clavate, $12-18 \times 2-3$	Hywel-
	nymphs	350 µm wide, cylindrical,	smooth-walled, hyaline,	μ m, verrucose or tuberculate at	jones, 1995
		very pale pink;	10.0–14.0 µm long 3.7–5.3	the apices;	
			μ m,base truncate 2–3 μ m		
2	.,	1 1 1 1	wide;		1050
O. verrucosa	spider	narrowly cylindric or slightly	obovoid, 6–8 × 2–3.5 μ m,	cylindric or clavate, $12-18 \times 2-3$	Mains, 1950
		ciavate, 1–4 mm long, 0.2–	nyanne;	μm, vertucose or tuberculate at	
		0.4 mm unek, pare brown		uic apice.	

References

- Aung, O.M., Kang, J.C., Liang, Z.Q., Soytong, K. & Hyde, K.D. (2006) A new entomopathogenic species, *hymenostilbe furcata*, parasitic on a hemipteran nymph in northern thailand. *Mycotaxon* 97 (4): 241–245.
- Huang, B., Fan, M.Z. & Li, Z.Z. (1998) A new species of Hymenostilbe. Mycosystema 17 (3): 193-194.
- http://dx.doi.org/10.13346/j.mycosystema.1998.03.001
- Hywel-jones, N.L. (1996) *Cordyceps myrmecophila*–like fungi infecting ants in the leaf litter of tropical forest in Thailand. *Mycological Research* 100 (5): 613–619.

https://doi.org/10.1016/S0953-7562(96)80017-7

Hywel-jones, N.L. (1995) Notes on *Cordyceps nutans*, and its anamorph, a pathogen of hemipteran bugs in Thailand. *Mycological Research* 99 (6): 724–726.

https://doi.org/10.1016/S0953-7562(09)80536-4

Hywel-jones, N.L. (1995) Hymenostilbe ventricosa sp. nov. a pathogen of cockroaches in Thailand. Mycological Research 99 (10): 1201-1204.

https://doi.org/10.1016/S0953-7562(09)80279-7

Kobayasi, Y. (1941) The genus Cordyceps and its allies. Science Reports of the Tokyo Bunrika Daigaku 5: 223

Mains, E.B. (1950) Entomogenous Species of *Akanthomyces*, *Hymenostilbe* and *Insecticola* in North America. *Mycologia* 42 (4): 570–587.

https://doi.org/10.2307/3755572

Mains, E.B. (1948) Entomogenous Fungi. Mycologia 40 (4): 402-416.

https://doi.org/10.2307/3755147

- Petch, T. (1932) Notes on entomogenous fungi. *Transactions of the British Mycological Society* 16 (4): 209 https://doi.org/10.1016/S0007-1536(32)80001-X
- Petch, T. (1942) Notes on Entomogenous Fungi. *Transactions of the British Mycological Society* 19 (25): 259. https://doi.org/10.1016/S0007-1536(42)80017-0

Samson, R.A. & Evans, H.C. (1975) Notes on entomogenous fungi from Ghana. III. The genus hymenostilbe. Mycology 78 (1): 73-80.

Van Vooren, N. & Audibert, C. (2006) Révision du complexe «Cordyceps sphecocephala» 2e partie: les mouches végétales. Bulletin mensuel de la Société linnéenne de Lyon 75 (5): 225–237. https://doi.org/10.3406/linly.2006.13629

Zhou, J.X., Zou, X. & Liang, Z.Q. (2015) Redescription of a rare entomogenous fungus *Hymenostilbe odonatae*. *Journal of Mountain Agriculture and Biology* 34 (6): 050–052. [in Chinese]