

https://doi.org/10.11646/phytotaxa.383.2.4

Cytospora piceae sp. nov. associated with canker disease of *Picea crassifolia* in China

MENG PAN¹, HAI-YAN ZHU¹, CHENG-MING TIAN¹, LOURDES V. ALVAREZ² & XIN-LEI FAN^{1*} ¹The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China; ²Department of Biology, College of Science, Polytechnic University of the Philippines, Sta. Mesa, Manila, Philippines *Correspondence author: xinleifan@bjfu.edu.cn

Abstract

Cytospora species are common pathogens associated with stem canker diseases of woody plants, with a worldwide distribution and broad host range. The criteria of species level identification are difficult due to insufficient ex-type cultures with molecular data and phylogenetic understanding. Two fungal specimens were collected from *Picea crassifolia* associated with symptomatic canker and dieback disease in the Xinjiang Uygur Autonomous Region, China. They were identified as novel species based on morphology plus support from multilocus phylogenetic analyses of ITS, LSU, ACT, RPB2 and TEF1- α gene regions. *Cytospora piceae* is characterized by its ostiolated pycnidia with vesicularly arranged locules, and hyaline, eguttulate, aseptate, allantoid conidia, which differs from similar species in its host association and multilocus phylogeny.

Key words: canker disease, Cytosporaceae, Diaporthales, phylogeny, taxonomy

Introduction

Species of Cytospora cause cankers and dieback disease on more than 100 species of hardwoods and coniferous plants, which is one of the most important pathogenic genera causing severe commercial and ecological damage and significant losses worldwide (Sinclair et al. 1987, Adams et al. 2005, 2006, Fan et al. 2014a, 2014b, 2015a, 2015b, Zhu et al. 2018). The genus Cytospora (Ascomycota: Diaporthales) was established by Ehrenberg (1818). It is characterized by single or labyrinthine of pycnidial locules, filamentous conidiophores (enteroblastic and phialidic conidiogenous cells) producing hyaline, allantoid conidia in asexual morph; diaporthalean-like perithecia, clavate to elongate obovoid asci with 4- or 8- hyaline, allantoid ascospores in sexual morph (Spielman 1983, 1985, Adams et al. 2005). Under moist conditions, the conidia emerge from the pycnidia in the form of yellow, orange to red gelatinous tendrils. Over 615 species epithets of Cytospora are listed in Index Fungorum (2018) while Kirk et al. (2008) estimated 110 species. In the past it was difficult to name Cytospora species as morphology overlapped, and this caused confused species delimitation. The previous identification of Cytospora species is based mainly on their host affiliations, often with unclear morphological descriptions. Morphology and phylogeny using ITS sequence data was combined to describe 28 species of Cytospora from Eucalyptus, of which eleven species were new to science by Adams et al. (2005), and also described fourteen species from South Africa using the same methodology (Adams et al. 2006). However, only ITS gene is available for most known Cytospora species, and ex-type sequence data are available for only a few species and many taxa need epitypifying. Thus, recent studies have subsequently emphasized on part of Cytospora species using multiphase approaches to solve the confused frame (Fan et al. 2014a, 2014b, 2015a, 2015b, Yang et al. 2015, Lawrence et al. 2017, Norphanphoun et al. 2017, Zhu et al. 2018).

During an investigation of forest pathogens that cause canker or dieback disease in China, two *Cytospora* specimens were collected from *Picea crassifolia* with obvious symptoms. Both specimens were characterized by ostiolated pycnidia with vesicularly arranged locules, and hyaline, eguttulate, aseptate, allantoid conidia. Phylogenetic analyses inferred from combined ITS, LSU, ACT, RPB2 and TEF1- α gene regions provided strong support that this species is novel. Thus, we introduce *Cytospora piceae* as a new in this paper with a description and illustrations and compare it with other species in the genus.

Materials and methods

Sampling and fungal isolates

Strains of *Cytospora* were isolated from diseased branches or twigs of *Picea crassifolia*, during collecting trips in the Xinjiang Uygur Autonomous Region of China (Table 1). Isolations were made directly from conidiomata, and spreading the suspension over the surface of a Petri dish with 1.8% of potato dextrose agar (PDA) at 25°C for up to 24h. After incubation for up to 24h, single germinating conidia were transferred to fresh plates of PDA. Specimens have been deposited at the working Collection of X.L. Fan (CF) housed at the Beijing Forestry University (BJFC). Living cultures were deposited at China Forestry Culture Collection Centre (CFCC).

Morphology

Specimens were observed based on the morphological characteristics of their fruiting bodies from infected host materials. The macro-morphological photographs were captured using a Leica stereomicroscope (M205), including size of conidiomata; presence or absence of special structure such as conceptacle and central column; number and diameter of ostioles per ectostromatic disc; the color, shape and size of discs; number of locules. Micro-morphological observations such as size and shape of conidiophores and conidia were determined under a Nikon Eclipse 80i microscope equipped with a Nikon digital sight DS-Ri2 high definition colour camera with differential interference contrast (DIC). Over 30 conidiomata were sectioned and 50 conidia were selected randomly to measure their lengths and widths. Colony diameters were measured and the colony colours described after 3 days and 14 days according to the colour charts of Rayner (1970). Adobe Bridge CS v. 6 and Adobe Photoshop CS v. 5 were used for the manual editing. Nomenclatural novelties and descriptions were deposited in MycoBank (Crous *et al.* 2004).

DNA extraction, PCR amplification, and sequencing

Mycelium for DNA extraction was grown on PDA with cellophane for 3 days and obtained from the surface of cellophane by scrapping. Genomic DNA was extracted using the modified CTAB method (Doyle & Doyle 1990). DNA concentrations were estimated visually by electrophoresis in 1% agarose gels by comparing band intensity with a DNA marker 1 kbp (Takara Biotech). PCR amplifications were performed in DNA Engine (PTC-200) Peltier Thermal Cycler (Bio-Rad Laboratories, CA, USA). DNA were amplified from the ITS, LSU, TEF1- α , ACT, and RPB2. The ITS region was amplified using primers ITS1 and ITS4 (White *et al.* 1990). The LSU region was amplified using the primers LROR and LR7 (Vilgalys & Hester 1990). The ACT region was amplified using primers ACT512F and ACT783R (Carbone & Kohn 1999). The RPB2 region was amplified using primers RPB2-5F and fRPB2-7cR (Liu *et al.* 1999). The TEF1- α region was amplified with the primer EF-688F and EF-1251R (Carbone & Kohn 1999). The PCR amplification products were estimated visually by electrophoresis in 2 % agarose gels. DNA sequencing was performed using an ABI PRISM® 3730XL DNA Analyzer with BigDye® Terminater Kit v.3.1 (Invitrogen) at the Shanghai Invitrogen Biological Technology Company Limited (Beijing, China). DNA sequences generated by each primer combination were used to obtain consensus sequences using Seqman v. 7.1.0 in the DNASTAR lasergene core suite software (DNASTAR Inc., Madison, WI, USA).

Phylogenetic analyses

The first analysis using ITS sequence data was performed to compare *Cytospora* species from the current study with other strains in GenBank. Sequences were aligned using MAFFT v.6 (Katoh & Standley 2013) and edited manually using MEGA v.6.0 (Tamura *et al.* 2013). Ambiguously aligned sequences were excluded from analysis. Phylogenetic analysis was performed by PAUP v.4.0b10 for maximum parsimony (MP) method (Swofford 2003), MrBayes v.3.1.2 for Bayesian Inference (BI) method (Ronquist & Huelsenbeck 2003) and RAxML for maximum likelihood (ML) method (Stamatakis 2006). To clarify the phylogenetic position of our isolates, a second analysis based on the combined five concatenated sequences (ITS, LSU, ACT, RPB2 and TEF1- α) was performed. *Diaporthe vaccinii* was selected as the outgroup in all analyses.

A partition homogeneity test (PHT) with heuristic search and 1000 replicates was performed using PAUP v.4.0b10 to test the discrepancy among the ITS, LSU, ACT, RPB2 and TEF1- α sequence dataset in reconstructing phylogenetic trees. MP analysis was performed using a heuristic search option of 1,000 random-addition sequences with a tree bisection and reconnection (TBR) branch swapping algorithm (Swofford *et al.* 2003). The branches of zero length were collapsed and all equally parsimonious trees were saved. Clade stability was assessed with a bootstrap analysis of 1,000 replicates (Hillis and Bull 1993). Other parsimony scores such as tree length (TL), consistency index (CI),

IABLE I. SURAINS Superiors	01 <i>Cytospora</i> used in th Strain	ne molecular analyses in ti Host	11s study. Origin		Gen	Rank accession n	umhers	
				STI	TSU	ACT	RPB2	TEF1-α
C. abyssinica	$CMW 10181^{T}$	Eucalyptus globulus	Ethiopia	AY347353				
C. abyssinica	CMW 10178	Eucalyptus globulus	Ethiopia	AY347354	ı		ı	
C. abyssinica	CMW 10179	Eucalyptus globulus	Ethiopia	AY347352	ı		ı	
C. acaciae	CBS 468.69	Ceratonia siliqua	Spain	DQ243804	ı		ı	
C. ambiens	CFCC 89622	Pyrus bretschneideri	China	KR045616	KR045698	KU710988	KU710944	KU710911
C. ambiens	CFCC 89894	Pyrus bretschneideri	China	KR045617	KR045699	KU710989	KU710945	KU710912
C. ampulliformis	MFLUCC 16-0583 ^{T}	Sorbus intermedia	Russia	KY417726	KY417760	KY417692	KY417794	
C. ampulliformis	MFLUCC 16-0629	Acer platanoides	Russia	KY417727	KY417761	KY417693	KY417795	
C. atrocirrhata	CFCC 89615	Juglans regia	China	KR045618	KR045700	KF498673	KU710946	KP310858
C. atrocirrhata	CFCC 89616	Juglans regia	China	KR045619	KR045701	KF498674	KU710947	KP310859
C. austromontana	$CMW 6735^{T}$	Eucalyptus pauciflora	Australia	AY347361	ı	ı	ı	
C. berberidis	$CFCC 89927^{T}$	Berberis dasystachya	China	KR045620	KR045702	KU710990	KU710948	KU710913
C. berberidis	CFCC 89933	Berberis dasystachya	China	KR045621	KR045703	KU710991	KU710949	KU710914
C. berkeleyi	StanfordT3 ^{T}	Eucalyptus globulus	California, USA	AY347350	ı		ı	
C. berkeleyi	UCBTwig3	Eucalyptus globulus	California, USA	AY347349	ı		ı	
C. brevispora	CBS 116829	Eucalyptus grandis	Venezuela	AF192321	ı	ı	ı	ı
C. brevispora	CBS 116811^{T}	Eucalyptus grandis \times tereticornis	Democratic Republic of the Congo	AF192315	ı	ı	ı	ı
C. cabonacea	CFCC 50055	Ulmus pumila	Shanxi, China	KP281262	KP310808	KP310838	ı	
C. cabonacea	CFCC 50058	Ulmus pumila	Heilongjiang, China	KP281264	KP310810	KP310840	ı	
C. carbonacea	CFCC 89947	Ulmus pumila	Qinghai, China	KR045622	KP310812	KP310842	KU710950	KP310855
C. carpobroti	$CMW 48981^{T}$	Carpobrotus edulis	Cape Town, South Africa	MH382812	MH411216	ı	ı	MH411212
C. cedri	CBS 196.50		Italy	AF192311	ı	ı	ı	
C. centrivillosa	MFLUCC 16-1206 ^{T}	Sorbus domestica	Italy	MF190122	MF190068		MF377600	
C. centrivillosa	MFLUCC 17-1660	Sorbus domestica	Italy	MF190123	MF190069	ı	MF377601	
C. chrysosperma	CFCC 89629	Salix psammophila	Shanxi, China	KF765673	KF765689	KF765721	KF765705	ı
C. chrysosperma	CFCC 89600	Sophora japonica	Gansu, China	KR045623	KP310804	KU710992	KU710951	ı
C. cincta	CFCC 89956	Prunus cerasifera	China	KR045624	KR045704	KU710993	KU710953	KU710916
C. cinerostroma	$CMW 5700^{T}$	Eucalyptus globulus	Chile	AY347377	ı		ı	
C. cotini	MFLUCC 14-1050 ^T	Cotinus coggygria	Russia	KX430142	KX430143	ı	KX430144	ı
C. curvata	MFLUCC 15-0865 ^{T}	Salix alba	Russia	KY417728	KY417762	KY417694	KY417796	ı
C. davidiana	CXY 1350 ^T	Populus davidiana	China	KM034870	I	1	I	
							continue	d on the next page

,
opulus davidiana
iucalyptus globulus
sucalyptus grandis
sucalyptus globulus
losa sp.
Jrataegus monogyna
alix alba
Elaeagnus angustifolia
Elaeagnus angustifolia
Eriobotrya japonica
dalix imes fragilis
iequoia sempervirens
sucalyptus nitens
Sucalyptus grandis
Eucalyptus grandis
Tibouchina sp.
<i>Sugenia</i> sp.
raxinus ornus
raxinus ornus
lbies alba
lbies alba
opulus simonii
opulus ussuriensis
ilaeagnus oxycarpa
luglans regia
luglans regia
uniperus procumbens
alix psammophila
Hippophae rhamnoides
Hippophae rhamnoides
² runus persicae
uniperus communis
uniperus communis
opulus maximowiczii
opulus maximowiczii
² inus radiata
orbus aucuparia

TABLE 1. (Continue	ed)							
Species	Strain	Host	Origin		Genł	ank accession nu	umbers	
				ITS	LSU	ACT	RPB2	TEF1-α
C. leucostoma	CFCC 50015	Sorbus pohuashanensis	China	KR045634	KR045714	KU711002		KU710925
C. longiostiolata	MFLUCC 16-0628 ^T	Salix imes fragilis	Russia	KY417734	KY417768	KY417700	KY417802	
C. mali	CFCC 50031	Crataegus sp.	China	KR045636	KR045716	KU711004	KU710965	KU710927
C. mali	CFCC 50044	Malus baccata	China	KR045637	KR045717	KU711005	KU710966	KU710928
C. melnikii	MFLUCC 15-0851 ^T	Malus domestica	Russia	KY417735	KY417769	KY417701	KY4178034309	
C. mougeotii	ATCC 44994	Picea abies	Norway	AY347318	I	ı	·	
C. multicollis	CBS 105.89^{T}	Quercus ilex subsp. rotundifolia	Spain	DQ243803	ı	ı	ı	
C. myrtagena	CBS 116843^{T}	Tibouchiina urvilleana	Hawaii, USA	AY347363	ı			
C. nivea	MFLUCC 15-0860	Salix acutifolia Willd.	Russia	KY417737	KY417771	KY417703	KY417805	
C. nivea	CFCC 89641	Elaeagnus angustifolia	China	KF765683	KF765699	KU711006	KU710967	KU710929
C. nivea	CFCC 89643	Salix psammophila	China	KF765685	I		KU710968	KP310863
C. palm	CXY1276	Cotinus coggygria	Beijing, China	JN402990	ı	ı		KJ781296
C. palm	$CXY1280^{T}$	Cotinus coggygria	Beijing, China	JN411939	ı	ı		KJ781297
C. parakantschavelii	MFLUCC 15-0857 ^T	Populus imes sibirica	Russia	KY417738	KY417772	KY417704	KY417806	
C. parakantschavelii	MFLUCC 16-0575	Pyrus pyraster	Russia	KY417739	KY417773	KY417705	KY417807	
C. parapersoonii	$T28.1^{T}$	Prunus persicae	Michigan, USA	AF191181	ı	ı		
C. parasitica	MFLUCC 15-0507 ^T	Malus domestica	Russia	KY417740	KY417774	KY417706	KY417808	ı
C. paratranslucens	MFLUCC $15-0506^{T}$	Populus alba var. Bolleana (Lauche) Otto	Russia	KY417741	KY41775	KY417707	KY417809	ı
C. paratranslucens	MFLUCC 16-0627	Populus alba	Russia	KY417742	KY417776	KY417708	KY417810	ı
C. piceae	CFCC 52841 ^T	Picea crassifolia	Xinjiang, China	MH820398	MH820391	MH820406	MH820395	MH820402
C. piceae	CFCC 52842	Picea crassifolia	Xinjiang, China	MH820399	MH820392	MH820407	MH820396	MH820403
C. pini	CBS 197.42	Pinus Sylvestirs	Switzerland	AY347332	ı	ı		
C. pini	$CBS 224.52^{T}$	Pinus strobus	New York	AY347316	ı	ı	ı	
C. populina	CFCC 89644	Salix psammophila	Shanxi, China	KF765686	KF765702	KU711007	KU710969	KU710930
C. predappioensis	MFLU 17-0323	Platanus hybrida	Italy	MG873484	MG873480			
C. pruinopsis	$CFCC 50034^{T}$	Ulmus pumila	Shanxi, China	KP281259	KP310806	KP310836	KU710970	KP310849
C. pruinosa	CFCC 50035	Ulmus pumila	Jilin, China	KP281260	KP310807	KP310837	KU710971	KP310850
C. pruinosa	$CBS 201.42^{T}$	Syringa sp.	Switzerland	DQ243801	ŗ	ı	ı	ı
C. prunicola	MFLU 17-0995 ^T	Prunus sp.	Italy	MG742350	MG742351	MG742353	MG742352	MG742354
							continued o	n the next page

TABLE 1. (Conti	inued)							
Species	Strain	Host	Origin		Ger	Bank accession n	umbers	
				ITS	LSU	ACT	RPB2	TEF1-α
C. quercicola	MFBBH 42443	Quercus sp.	Italy	MF190128	MF190074	1	1	
C. quercicola	MFLUCC 14-0867 ^T	Quercus sp.	Italy	MF190129	MF190073	ı	ı	
C. rhizophorae	MUCC302	Eucalyptus grandis	Australia	EU301057		ı	ı	
C. ribis	CFCC 50026	Ulmus pumila	Qinghai, China	KP281267	KP310813	KP310843	KU710972	KP310856
C. ribis	CFCC 50027	Ulmus pumila	Qinghai, China	KP281268	KP310814	KP310844		KP310857
C. rusanovii	MFLUCC 15-0854 ^{T}	Salix babylonica	Italy	MF190131	MF190075			
C. rostrata	CFCC 89909^{T}	Salix cupularis	Gansu, China	KR045643	KR045722	KU711009	KU710974	KU710932
C. rostrata	CFCC 89910	Salix cupularis	Gansu, China	KR045644	KR045723	KU711010	KU710975	KU710933
C. rusanovii	MFLUCC 15-0853	Populus imes sibirica	Russia	KY417743	KY417777	KY417709	KY417811	
C. rusanovii	MFLUCC 15-0854 ^{T}	Salix babylonica	Russia	KY417744	KY417778	KY417710	KY417812	
C. sacculus	CFCC 89624	Juglans regia	China	KR045645	KR045724	KM401888	KU710976	KP310860
C. sacculus	CFCC 89625	Juglans regia	China	KF225616	KM401887	KM401889		
C. salicacearum	MFLUCC 15-0509 ^T	Salix alba	Russia	KY417746	KY417780	KY417712	KY417814	
C. salicacearum	MFLUCC 15-0861	Salix imes fragilis	Russia	KY417745	KY417779	KY417711	KY417813	
C. salicacearum	MFLUCC 16-0576	Populus nigra var. italica	Russia	KY417747	KY417781	KY417713	KY417815	
C. salicacearum	MFLUCC 16-0587	Prunus cerasus	Russia	KY417748	KY417782	KY417714	KY417816	
C. salicicola	MFLUCC 15-0866	Salix alba	Russia	KY417749	KY417783	KY417715	KY417817	
C. salicicola	MFLUCC 14-1052	ı	ı	KU982636	KU982635	KU982637		
C. salicina	MFLUCC 15-0862 ^{T}	Salix alba	Russia	KY417750	KY417784	KY417716	KY417818	
C. salicina	MFLUCC 16-0637	Salix imes fragilis	Russia	KY417751	KY417785	KY417717	KY417819	
C. schulzeri	CFCC 50040	Malus domestica	Ningxia, China	KR045649	KR045728	KU711013	KU710980	KU710936
C. schulzeri	CFCC 50042	Malus asiatica	Qinghai, China	KR045650	KR045729	KU711014	KU710981	KU710937
C. sibiraeae	CFCC 50045^{T}	Sibiraea angustata	Gansu, China	KR045651	KR045730	KU711015	KU710982	KU710938
C. sibiraeae	CFCC 50046	Sibiraea angustata	Gansu, China	KR045652	KR045731	KU711015	KU710983	KU710939
C. sophorae	CFCC 50047	Styphnolobium japonicum	Shanxi, China	KR045653	KR045732	KU711017	KU710984	KU710940
C. sophorae	CFCC 50048	Magnolia grandiflora	China	MH820401	MH820394	MH820409	MH820397	MH820405
							continue	d on the next page

TABLE 1. (Contin	ued)							
Species	Strain	Host	Origin		GenBa	nk accession nu	umbers	
				ITS	LSU	ACT	RPB2	TEF1-α
C. sophorae	CFCC 89598	Styphnolobium japonicum	Gansu, China	KR045654	KR045733	KU711018	KU710985	KU710941
C. sophoricola	CFCC 89596	Styphnolobium japonicum	Gansu, China	KR045656	KR045735	KU711020	KU710987	KU710943
C. sophoricola	CFCC 89595 ^T	Styphnolobium japonicum var.	Gansu, China	KR045655	KR045734	KU711019	KU710986	KU710942
C. sorbi	MFLUCC 16-0631 ^{T}	Sorbus aucuparia	Russia	KY417752	KY417786	KY417718	KY417820	ı
C. sorbicola	MFLUCC 16-0584 ^T	Acer pseudoplatanus	Russia	KY417755	KY417789	KY417721	KY417823	
C. sorbicola	MFLUCC 16-0633	Cotoneaster melanocarpus	Russia	KY417758	KY417792	KY417724	KY417826	
C. spiraeae	CFCC 50049 ^T	Spiraea salicifolia	Gansu, China	MG707859	MG707643	MG708196	MG708199	ı
C. spiraeae	CFCC 50050	Spiraea salicifolia	Gansu, China	MG707860	MG707644	MG708197	MG708200	
C. spiraeae	CFCC 50051	Spiraea salicifolia	Gansu, China	MG707861	MG707645	MG708198	MG708201	
C. tanaitica	MFLUCC 14-1057 ^T	Betula pubescens	Russia	KT459411	KT459412	KT459413	ı	
C. tibouchinae	$CPC 26333^{T}$	Tibouchina semidecandra	France	KX228284	KX228335	ı	ı	
C. translucens	CXY1351	Populus davidiana	Inner Mongolia, China	KM034874	ı	ı	ı	ı
C. ulmi	MFLUCC 15-0863 ^{T}	Ulmus minor	Russia	KY417759	I	ı	ı	
C. valsoidea	$CMW 4309^{T}$	Eucalyptus grandis	Sumatra, Indonisia	AF192312	I	ı	ı	
C. valsoidea	CMW 4310	Eucalyptus grandis	Sumatra, Indonisia	AF192312	ı	ı	ı	
C. variostromatica	$CMW 6766^{T}$	Eucalyptus globulus	Australia	AY347366	I	ı	ı	
C. variostromatica	CMW 1240	Eucalyptus grandis	South Africa	AF260263	I	ı	ı	
C. variostromatica	PPRI5297	Eucalyptus grandis	Pretoria, South Africa	AF260264	I	ı	ı	
C. vinacea	CBS 141585^{T}	Vitis interspecific	New Hampshire, USA	KX256256	I	I	ı	KX256277
C. viticola	CBS 141586 ^T	Vitis vinifera	Connecticut, USA	KX256239	I	ı	ı	KX256260
Diaporthe vaccinii	CBS 160.32	Vaccinium macrocarpon	Massachusetts, USA	KC343228	I	JQ807297	ı	KC343954
							continued o	n the next page

retention index (RI) and rescaled consistency (RC) were calculated (Swofford *et al.* 2003). ML analysis was performed with GTR+G+I model of site substitution following recent studies (Zhu *et al.* 2018), including estimation of gammadistributed rate heterogeneity and a proportion of invariant sites using RaxMl v.7.2.8 (Stamatakis 2006). The branch support was evaluated with a bootstrapping method of 1000 replicates (Hillis and Bull 1993). BI analysis was performed using a Markov Chain Monte Carlo (MCMC) algorithm with Bayesian posterior probabilities (Rannala & Yang 1996). A nucleotide substitution model was estimated by MrModeltest v.2.3 (Posada and Crandall 1998), and a weighted Bayesian analysis was considered. Two MCMC chains were run from random trees for 1,000,000 generations, and trees were sampled each 100th generations. The first 25 % of trees were discarded as the burn-in phase of each analysis, and the posterior probabilities (BPP) were calculated to assess the remaining trees (Rannala & Yang 1996). The branch support from MP and ML analysis were evaluated with a bootstrapping (BS) method of 1,000 replicates (Hillis & Bull 1993). Phylograms are shown using Figtree v.1.3.1 (Rambaut & Drummond 2010). Sequence data were deposited in GenBank. The ITS and multilocus sequence alignment file were deposited in TreeBASE (www. treebase. org) as the accession number S23479.

Results

Two isolates of *Cytospora* from *Picea crassifolia* were sequenced for ITS locus, which contained 143 *Cytospora* ingroup strains with a total of 604 characters including gaps. In the alignment, 178 characters were constant, 147 variable characters were parsimony- uninformative and 920 characters were variable and parsimony-informative. There were 178 variable sites of which 68 were parsimony informative. MP analyses generated 200 parsimonious trees, one of which was presented in Fig. 1 (TL = 949, CI = 0.413, RI = 0.844, RC = 0.349). ML and Bayesian analyses were similar to the MP tree. *Cytospora piceae* clustered with *C. friesii* and *C. mougeotii*, presenting an unstable clade with low support value.

To clarify the phylogenetic position of *Cytospora piceae*, the second phylogenetic analyses were performed based on available ITS, LSU, ACT, RPB2 and TEF1- α sequence dataset. The alignment included 98 *Cytospora* ingroup strains with a total of 2936 characters including gaps. In the alignment 1869 characters were constant, 147 variable characters were parsimony-uninformative and 920 characters were variable and parsimony-informative. MP analyses generated 12 parsimonious trees, one of which was presented in Fig. 1 (TL = 4386, CI = 0.397, RI = 0.766, RC = 0.304). ML and Bayesian analyses were similar to the MP tree. *Cytospora piceae* represented a monophyletic clade with high support value (MP/ML/BI = 100/100/1) (marked in blue in Fig. 2). The MP bootstrap supports (BS) equal to or above 50% were shown in branches in Fig. 1. The branches with significant Bayesian posterior probabilities (BPP) equal to or above 0.95 were shown in the phylogram.

Taxonomy

Cytospora piceae Fan Fig. 3

MycoBank 828432

Holotype:—China, Xinjiang Uygur Autonomous Region, Bole Mongol Autonomous Prefecture, 44°46'13.44"N, 81°13'58.72"E, from branches of *Picea crassifolia*, July 2017, C.M. Tian & X.L. Fan, holotype CF 20176561, ex-type living culture CFCC 52841.

Etymology:--Named after the host genus on which it was collected, Picea.

Descriptions:—Asexual state: *Conidiomata* pycnidial, ostiolated, immersed in bark, scattered, erumpent through the surface of bark when mature. *Locules* multiple, discoid, circular to ovoid, arranged vesicularly with common walls, $(680-)720-1190(-1200) \ \mu m \ (\bar{x} = 945 \pm 130 \ \mu m, n = 30)$ in diam. *Conceptacle* absent. *Ectostromatic disc* white to light brown, circular, disc dark, $(160-)230-290(-310) \ \mu m \ (\bar{x} = 255 \pm 36 \ \mu m, n = 30)$ in diam., with one ostiole in the centre of disc. *Ostiole* conspicuous, circular to ovoid, dark brown to black at the same level as the disc, $(65-)70-115(-130) \ \mu m \ (\bar{x} = 93 \pm 17 \ \mu m, n = 30)$ in diam. *Conidiophores* hyaline, branched at base or not branched, thin walled, filamentous, $(12-)13.5-19.5(-20) \ \mu m \ (\bar{x} = 16.5 \pm 3 \ \mu m, n = 30)$. *Conidiogenous* cells enteroblastic, polyphialidic. *Conidia* hyaline, allantoid, eguttulate, smooth, aseptate, thin-wall, $(4.5-)5-5.5(-6) \times 1-1.5 \ \mu m \ (\bar{x} = 5.2 \pm 0.3 \times 1.3 \pm 0.1 \ \mu m, n = 50)$. Sexual morph: not observed.

FIGURE 1. Phylogram of *Cytospora* based on ITS gene. MP and ML bootstrap support values above 50 % are shown at the first and second position. Thickened branches represent posterior probabilities above 0.95 from BI. Ex-type strains are in bold. Strains in current study are in blue.

FIGURE 1 (Cont.)

Culture characteristics: Cultures on PDA are initially white, becoming saffron after one week. The colonies are tight, thin with a uniform texture, lacking aerial mycelium, up to 1.8 cm after four weeks. Sterile.

Materials examined:—**China, Xinjiang Uygur Autonomous Region**, Bole Mongol Autonomous Prefecture, 44°46'15.32"N, 81°13'57.54"E, from branches of *Picea crassifolia*, July 2017, C.M. Tian & X.L. Fan, deposited by X.L. Fan, CF 20176562, living culture CFCC 52842.

Notes:—*Cytospora piceae* is associated with canker disease of *Picea crassifolia*. The phylogenetic inferences resolved this species as a confused clade in ITS phylogram (Fig. 1), which was closed to *Cytospora friesii* and *C. mougeotii*. To clarify this clade, the second analysis indicated this species represented an individual clade with high support value (MP/ML/BI = 100/100/1) based on combined multilocus gene phylogenetic analysis, which was distinguish from other available species (Fig. 2). Morphologically, *Cytospora piceae* has larger conidia than those of *C. friesii* (5–5.5 × 1–1.5 vs. 4–5 × 1 µm), and wider than *C. mougeotii* (5–5.5 × 1–1.5 vs. 5–7 × 0.7–1 µm) (Saccardo 1884). *Cytospora piceae* is thus here considered as a novel species.

FIGURE 2. Phylogram of *Cytospora* based on combined ITS, LSU, ACT, RPB2 and TEF1-α genes. MP and ML bootstrap support values above 50 % are shown at the first and second position. Thickened branches represent posterior probabilities above 0.95 from BI. Ex-type strains are in bold. Strains in current study are in blue.

Discussion

The current study introduced *Cytospora piceae sp. nov.* associated with stem cankers on *Picea crassifolia*. Although *C. piceae* indicated an ambiguous related group to *Cytospora friesii* and *C. mougeotii* in only ITS phylogram (Fig. 1), it is distinguished based on the vesicularly arranged locules, the size of conidia, and multilocus phylogenetic data as well as its unique host (Fig. 2). The results showed that *Cytospora* species still needs multilocus DNA data to define the criteria in species level, and we recommended the combination of five genes (ITS, LSU, ACT, RPB2 and TEF1- α) in genus *Cytospora*.

The *Cytospora* species is a weak parasitic or saprophytic fungus with strong ecological adaptability and a wide range of hosts. *Picea crassifolia* is an important ornamental tree species to afforestation in China, whereas few relative taxonomic studies of Cytospora canker or dieback disease from coniferous plants was performed, such as *Cytospora ambiens, C. friesii* (as *Valsa friesii*), *C. kunzei, C. leucostoma* and *C. pini* (Adams *et al.* 2005). In China, *Cytospora species* from deciduous tree have attracted the attention by studies. *Cytospora* species from cankered apple and pear bark were examined and compared with morphology and rDNA-ITS sequences (Wang *et al.* 2007, 2011). Fan *et al.*

(2014) clarified and illustrated *C. chrysosperma*, *C. sophorae* and *C. sophoricola* from the *Sophora japonica* using only ITS region. Subsequently, the multilocus phylogeny has led to the illustrations and descriptions of additional new species of *Cytospora* in China (Wang *et al.* 2013, Zhang *et al.* 2014, Fan *et al.* 2014a, 2014b, 2015a, 2015b, Yang *et al.* 2015, Zhu *et al.* 2018). The current study implies that many additional undiscovered species of *Cytospora* from coniferous tree exist in China, and further studies are needed to discover the species of *Cytospora* associated with branch and twig dieback or canker disease in China and other countries.

FIGURE 3. Morphology of *Cytospora piceae* from *Picea crassifolia* (CF 20176561). A, B: Habit of conidiomata on twig. C: Transverse section of conidioma. D: Longitudinal section through conidioma. E: Conidiophores and conidiogenous cells. F: Conidia. G: Colonies on PDA after two weeks. Scale bars: $B-D = 500 \mu m$; $E-F = 5 \mu m$.

Acknowledgements

This study is financed by National Natural Science Foundation of China (Project No.: 31670647) and College Student Research and Career-creation Program of Beijing (Peoject No.: S201810022005). X.L. Fan wants to thank his colleagues to endure the mess of Office 516 due to the current work. All authors want to thank the Experimental Teaching Centre (College of Forestry, Beijing Forestry University) for providing installed scientific equipments during the whole process.

References

- Adams, G.C., Roux, J. & Wingfield, M.J. (2006) *Cytospora* species (Ascomycota, Diaporthales, Valsaceae), introduced and native pathogens of trees in South Africa. *Australasian Plant Pathology* 35: 521–548. https://doi.org/10.1071/AP06058
- Adams, G.C., Roux, J., Wingfield, M.J. & Common, R. (2005) Phylogenetic relationships and morphology of *Cytospora* species and related teleomorphs (Ascomycota, Diaporthales, Valsaceae) from *Eucalyptus*. *Studies in Mycology* 52: 1–144.
- Carbone, I. & Kohn, L. (1999) A method for designing primer sets for speciation studies in filamentous ascomycetes. *Mycologia* 91: 553–556.
 - https://doi.org/10.2307/3761358
- Crous, P.W., Gams, W., Stalpers, J.A., Robert, V. & Stegehuis, G. (2004) MycoBank: an online initiative to launch mycology into the 21st century. *Studies in Mycology* 50: 19–22.
- Doyle, J.J. & Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus 12: 13-15.
- Ehrenberg, C.G. (1818) Sylvae Mycologicae Berolinenses. Formis Theophili Bruschcke, Berlin, Germany.
- Fan, X.L., Liang, Y.M., Ma, R. & Tian, C.M. (2014a) Morphological and phylogenetic studies of *Cytospora* (Valsaceae, Diaporthales) isolates from Chinese scholar tree, with description of a new species. *Mycoscience* 55: 252–259. https://doi.org/10.1016/j.myc.2013.10.001
- Fan, X.L., Tian, C.M., Yang, Q., Liang, Y.M., You, C.J. & Zhang, Y.B. (2014b) Cytospora from Salix in northern China. Mycotaxon 129: 303–315. https://doi.org/10.5248/129.303
- Fan, X.L., Hyde, K.D., Liu, M., Liang, Y.M. & Tian, C.M. (2015a) *Cytospora* species associated with walnut canker disease in China, with description of a new species *C. gigalocus. Fungal Biology* 119: 310–319. https://doi.org/10.1016/j.funbio.2014.12.011
- Fan, X.L., Hyde, K.D., Yang, Q., Liang, Y.M., Ma, R. & Tian, C.M. (2015b) *Cytospora* species associated with canker disease of three anti-desertification plants in northwestern China. *Phytotaxa* 197: 227–244. https://doi.org/10.11646/phytotaxa.197.4.1
- Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. *Systematic Biology* 42: 182–192. https://doi.org/10.1093/sysbio/42.2.182
- Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. *Molecular Biology and Evolution* 30: 772–780. https://doi.org/10.1093/molbev/mst010
- Kirk, P.M., Canoon, P.F., Minter, D.W. & Stalpers, J.A. (2008) Ainsworth & Bisby's dictionary of the Fungi, 10rd edn, Wallingford, UK.

https://doi.org/10.1079/9780851998268.0000

Lawrence, D.P., Travadon, R., Pouzoulet, J., Rolshausen, P.E., Wilcox, W.F. & Baumgartner, K. (2017) Characterization of *Cytospora* isolates from wood cankers of declining grapevine in North America, with the descriptions of two new

Cytospora species. Plant Pathology 5: 713-725.

https://doi.org/10.1111/ppa.12621

- Liu, Y.L., Whelen, S. & Hall, B.D. (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. *Molecular Biology and Evolution* 16: 1799–1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092
- Norphanphoun, C., Doilom, M., Daranagama, D.A., Phookamsak, R., Wen, T.C., Bulgakov, T.S. & Hyde, K.D. (2017) Revisiting the genus *Cytospora* and allied species. *Mycosphere* 8: 51–97. https://doi.org/10.5943/mycosphere/8/1/7
- Posada, D. & Crandall, K.A. (1998) Modeltest: Testing the model of DNA substitution. *Bioinformatics* 14: 817–818. https://doi.org/10.1093/bioinformatics/14.9.817
- Rambaut, A. & Drummond, A. (2010) *FigTree v.1.3.1*. Institute of evolutionary biology, University of Edinburgh, Edinburgh, UK.
- Rannala, B. & Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. *Journal of Molecular Evolution* 43: 304–311. https://doi.org/10.1007/BF02338839

Rayner, R.W. (1970) A Mycological Colour Chart. Commonwealth Mycological Institute, Kew, UK.

Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572–1574.

https://doi.org/10.1093/bioinformatics/btg180

- Saccardo, P.A. (1884) Sylloge fungorum 3. Typis Seminarii, Italy.
- Sinclair, W.A., Lyon, H.H. & Johnson, W.T. (1987) *Diseases of Trees and Shrubs*. Coinstock Publishing Associates, Cornell University Press, USA
- Spielman, L.J. (1983) Taxonomy and biology of Valsa species on hardwoods in North America, with special reference to species on maples. Cornell University, New York, USA.
- Spielman, L.J. (1985) A monograph of *Valsa* on hardwoods in North America. *Canadian Journal of Botany* 63: 1355–1378.

https://doi.org/10.1139/b85-190

Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22: 2688–2690.

https://doi.org/10.1093/bioinformatics/btl446

- Swofford, D.L. (2003) PAUP*: Phylogenetic Analysis Using Parsimony, * and Other Methods. Version 4.0b10. Sinauer Associates, Sunderland.
- Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. *Molecular Biology and Evolution* 30: 2725–2729. https://doi.org/10.1093/molbev/mst197
- Vilgalys, R. & Hester, M. (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *Journal of Bacteriology* 172: 4238–4246. https://doi.org/10.1128/jb.172.8.4238-4246.1990
- White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR protocols: a guide to methods and applications* 18: 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1
- Wang, X.L., Kang, Z.S., Huang, L.L. & Yang, P. (2007) Pathogen identification of Valsa canker on pear tree: evidences from rDNA-ITS sequences and cultural characteristics. *Mycosystema* 26: 517–527. [in Chinese]
- Wang, X.L., Kang, Z.S., Huang, L.L. & Wei, J. (2011) Re-evaluation of pathogens causing Valsa canker on apple in China. *Mycologia* 103: 317–324.

https://doi.org/10.3852/09-165

- Wang, Y.L., Lu, Q., Jia, X.Z., Liang, J. & Zhang, X.Y. (2013) First report of branch canker caused by *Cytospora atrocirrhata* on *Populus* sp. and *Salix* sp. in China. *Plant Disease* 97: 426. https://doi.org/10.1094/PDIS-09-12-0854-PDN
- Yang, Q., Fan, X.L., Crous, P.W., Liang, Y.M. & Tian, C.M. (2015) Cytospora from Ulmus pumila in northern china. Mycological Progress 14 (74): 1–12. https://doi.org/10.1007/s11557-015-1096-1

Zhu, H.Y., Fan, X.L. & Tian, C.M. (2018) Multigene phylogeny and morphology reveal *Cytospora spiraeae* sp. nov. (Diaporthales, Ascomycota) in China. *Phytotaxa* 338 (1): 49–62. https://doi.org/10.11646/phytotaxa.338.1.4