

Article

https://doi.org/10.11646/phytotaxa.592.3.1

Morphological characteristics and phylogenetic analyses revealed three new woodinhabiting fungi (Agaricomycetes, Basidiomycota) in Southern China

OI YUAN^{1,3}, KAI-YUE LUO^{1,4}, YING ZHANG^{1,5}* & CHANG-LIN ZHAO^{1,2,6}*

- ¹ College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
- ² Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, P.R. China
- ³ fungiyuanqi@163.com; https://orcid.org/0000-0002-6732-1656
- ⁴ fungikaiyuel@163.com; https://orcid.org/0000-0001-6145-4864
- ⁵ syingb.zhang@swfu.edu.cn; https://orcid.org/0000-0002-1204-1278
- *Corresponding author: C.L. Zhao, ■fungichanglinz@163.com

Abstract

Fungi are one of the most diverse groups of organisms on Earth, among which wood-inhabiting fungi play a crucial role in ecosystem processes and functions. Three wood-inhabiting fungi belonging to the genera *Ceraceomyces, Stereopsis*, and *Xenasmatella* were found in Southern China. Combined with morphological characteristics and molecular biological evidence, the present study describes them to be new fungal taxa *Ceraceomyces yunnanens*, *Stereopsis yunnanens*, and *Xenasmatella bambusicola*. *Ceraceomyces yunnanens* is distinguished by the resupinate basidiomata with merulioid hymenial surface, monomitic hyphal system and cylindrical basidiospores; *S. yunnanensis* is characterized by the laterally stipitate basidiocarps with greyish brown to brown pilei, monomitic hyphal system and subglobose basidiospores; and *X. bambusicola* is characterized by the resupinate basidiomata, arachnoid hymenophore with white to greyish hymenial surface and warted basidiospores. Sequences of ITS and nLSU rRNA markers of the studied samples were generated, and phylogenetic analyses were performed with maximum likelihood, maximum parsimony, and Bayesian inference methods. The phylogenetic analyses of ITS+nLSU showed that three new species nested into families Amylocorticiaceae, Stereopsidaceae and Xenasmataceae (Agaricomycetes), in which *C. yunnanens* grouped sister to *C. borealis*; *S. yunnanensis* grouped with *S. radicans*; and *X. bambusicola* grouped sister to *X. xinpingensis*.

Keywords: Biodiversity, Classification, Forest ecosystem, Molecular systematics, Taxonomy

Introduction

Fungi are well-known as a diverse group of microorganisms, that play important roles in the forest ecosystems (Phookamsak *et al.* 2019). Wood-inhabiting fungi are essential to natural ecosystems for nutrient cycling, and maintaining plant diversity (Drinkwater *et al.* 2017, Horwath 2017, Hyde *et al.* 2018, Wu *et al.* 2022).

The wood-inhabiting fungal genus *Ceraceomyces* Jülich. (1972: 146) (Amylocorticiaceae, Amylocorticiales), typified by *C. tessulatus* (Cooke) Jülich. (1972: 154) (Jülich 1972) is characterized by annual, resupinate, pellicular basidiomata with a smooth or merulioid hymenial surface, thin hymenial layer and loose subiculum, a monomitic hyphal system with clamped generative hyphae, narrowly clavate basidia and subglobose to narrowly ovate to ellipsoid basidiospores (Chikowski *et al.* 2017). Based on the MycoBank database (http://www.MycoBank.org, accessed on 27 March 2023) and the Index Fungorum (http://www.indexfungorum.org, accessed on 27 March 2023), the genus *Ceraceomyces* contains 30 specific and registered names, but the legitimate number of species has reached 12 (Chikowski *et al.* 2017, Dhingra & Singh 2008, Dhingra *et al.* 2014, Larsson & Larsson 1998, Roberts 2000). *Stereopsis* D.A. Reid. (1965: 290), (Stereopsidaceae, Stereopsidales), typified by *S. radicans* (Berk.) D.A. Reid (Sjökvist *et al.* 2014), is characterized by the spathulate-flabellate basidiomata with upperside smooth to radiately or irregularly rugose, a monomitic hyphal system with or without clamped generative hyphae, clavate basidia with 2–4 sterigmata, and ellipsoid to subglobose, smooth, thin-walled basidiospores (Eriksson 1984). The MycoBank database (http://www.MycoBank.org, accessed on 27 March 2023) and Index Fungorum (http://www.indexfungorum.org, accessed on 27

March 2023) have registered 23 specific and infraspecific names in *Stereopsis*, but the legitimate number of species has reached 21 (Ryvarden 2012; Sjökvist *et al.* 2014; Guo 1987). The genus *Xenasmatella* Oberw. (1966: 28), a typical wood-inhabiting fungal group is mainly distributed in the tropics (Oberwinkler 1966). This genus is characterized by a combination of resupinate to effused basidiomata with a ceraceous to subgelatinous consistency, smooth to porulose, reticulate, grandinioid hymenophore, a monomitic hyphal structure with clamped generative hyphae, pleural basidia, and colorless, thin to slightly thick-walled, warted, globose to cylindrical basidiospores (Oberwinkler 1966, Bernicchia & Gorjón 2010). Based on the MycoBank database (http://www.MycoBank.org, accessed on 27 March 2023) and the Index Fungorum (http://www.indexfungorum.org, accessed on 27 March 2023), the genus *Xenasmatella* contains 43 specific and registered names, but the legitimate number of species has reached 33. Recently, the genus *Xenasmatella* has been thoroughly studied in China, in which seven new species viz. *X. ailaoshanensis* C.L. Zhao ex C.L. Zhao & T.K. Zong (2020: 118), *X. gossypina* (C.L. Zhao) G. Gruhn & Trichies (2021: 40), *X. nigroidea* K.Y. Luo & C.L. Zhao (2022: 13), *X. rhizomorpha* C.L. Zhao (2020: 115), *X. tenuis* C.L. Zhao (2020: 116), *X. wuliangshanensis* (C.L. Zhao) G. Gruhn & Trichies (2021: 40), and *X. xinpingensis* C.L. Zhao were described (Huang *et al.* 2019, Luo & Zhao 2022, Zong *et al.* 2021).

These phylogenetic studies of re-thinking the classification of corticioid fungi including three genera viz. Ceraceomyces, Stereopsis and Xenasmatella, were just the prelude to the molecular systematics of the wood-inhabiting fungi group (Larsson 2007). The high phylogenetic diversity among corticioid homobasidiomycetes based on a data set with 178 taxa analysed using neighbour-joining and maximum parsimony methods revealed that Ceraceomyces nested into euagarics clade, in which it grouped with Amylocorticium Pouzar and Hypochniciellum Hjortstam & Ryvarden, but it did not cluster with Byssomerulius, and Gloeoporus, even though all of them have the typical morphological characteristics of a merulioid to poroid hymenophore (Larsson et al. 2004). Re-thinking the classification of corticioid fungi inferred from 5.8S and nuLSU rDNA sequences using Bayesian analysis showed that Ceraceomyces nested into the family Amylocorticiaceae (Larsson 2007). The phylogenetic classification for corticioid fungi at the family level carried out by Larsson (2007) proposed that nine genera viz. Clavulicium Boidin. (1957: 280), Conohypha Jülich. (1975: 303), Crustoderma Parmasto. (1968: 87), Paullicorticium J. Erikss. (1958: 66), Phlyctibasidium Jülich. (1974: 54), Scotomyces Jülich. (1978: 139), Stereopsis, Thujacorticium Ginns. (1988: 69), and Trechinothus E.C. Martini & Trichies. (2004: 262), were sequenced but they still could not be assigned to any of the orders accepted, in which based on the nuLSU phylogenetic analyses, and these taxa always occurred on long branches, and several of them were grouped at the base of the tree. The new order Stereopsidales and the new family Stereopsidaceae were described to accommodate Stereopsis radicans and S. globosa based on multi-gene phylogenetic analyses of SSU, nLSU, RPB 2 and tef 1-α (Sjökvist et al. 2014). The outline of all genera of Basidiomycota with combined SSU, ITS, nLSU, tef1α, RPB1, and RPB2 datasets showed that Xenasmatella grouped with Xenasmataceae within the order Russulales (He et al. 2019). Recently, according to the internal transcribed spacer and nuclear large subunit analyses including 13 orders, Xenasmatella and related genera in the family Xenasmataceae formed a single lineage and grouped with orders Atheliales, Boletales, and Hymenochaetales, therefore, a new order Xenasmatales was introduced based on both morphology and multigene phylogeny to accommodate Xenasmataceae (Luo & Zhao 2022).

During investigations on wood-inhabiting fungi in the Yunnan Province of China, three potentially new species were collected. To clarify the taxonomic position of the three unidentified wood-inhabiting fungi, phylogenetic analyses based on the ITS and nLSU sequences and morphological studies were carried out.

Materials and methods

Morphological studies

The specimens studied are deposited at the herbarium of Southwest Forestry University (SWFC), Kunming, Yunnan Province, P.R. China (Herbarium numbers: *Ceraceomyces yunnanensis*: SWFCF0001412, SWFCF00018930, SWFCF00018992,SWFCF00019024,SWFCF00019054,SWFCF00019070;*Stereopsisyunnanensis*: SWFCF00003171, SWFCF00003277, SWFCF00003767; *Xenasmatella bambusicola*: SWFCF00010985). Macromorphological descriptions are based on field notes. Special color terms follow Petersen (1996). Micromorphological data were obtained from the dried specimens, and observed under a light microscope following Dai (2010). The following abbreviations were used: KOH = 5% potassium hydroxide, CB = Cotton Blue, CB— = acyanophilous, IKI = Melzer's reagent, IKI— = both nonamyloid and non-dextrinoid, L = mean spore length (arithmetic average of all spores), W = mean spore width (arithmetic average of all spores), Q = variation in the L: W ratios between the specimens studied, n (a/b) = number of spores (a) measured from given number (b) of specimens.

Molecular procedures and phylogenetic analyses

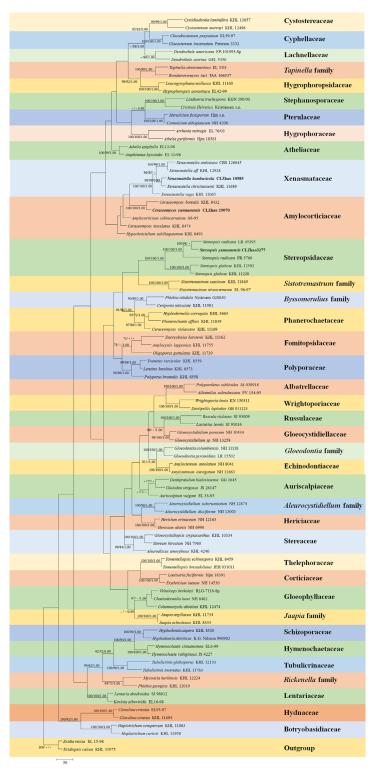
CTAB rapid plant genome extraction kit-DN14 (Aidlab Biotechnologies Co., Ltd, Beijing) was used to obtain genomic DNA from dried specimens, according to the manufacturer's instructions. ITS region was amplified with primer pair ITS5 and ITS4 (White *et al.* 1990). The PCR procedure for ITS was as follows: initial denaturation at 95 °C for 3 min, followed by 35 cycles at 94 °C for 40 s, 58 °C for 45 s and 72 °C for 1 min, and a final extension of 72 °C for 10 min. The PCR procedure for nLSU was as follows: initial denaturation at 94 °C for 1 min, followed by 35 cycles at 94 °C for 30 s, 48 °C for 1 min and 72 °C for 1.5 min, and a final extension of 72 °C for 10 min. The PCR products were purified and directly sequenced at Kunming Tsingke Biological Technology Limited (Yunnan Province, P.R. China). All of the newly generated sequences were deposited in NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank/) (Table 1).

TABLE 1. List of species, specimens and the corresponding GenBank accession numbers of the sequences used in this study.

Species name	Sample no.	GenBank accession no.		D. C
		ITS	nLSU	References
Albatrellus. subrubescens	PV 154-95	AF506395	AF506395	Larsson & Larsson (2003)
Aleurocystidiellum disciforme	NH 13003	AF506402	AF506402	Larsson & Larsson (2003)
4. subcruentatum	NH 12874	AF506403	AF506403	Larsson & Larsson (2003)
Aleurodiscus amorphus	KHL 4240	AF506397	AF506397	Larsson & Larsson (2003)
Amphinema byssoides	EL 11-98	AY463375	AY586626	Larsson et al. (2004)
Amylocorticium subincarnatum	AS-95	AY463377	AY586628	Larsson et al. (2004)
Amylostereum areolatum	NH 8041	AF506405	AF506405	Larsson & Larsson (2003)
1m. laevigatum	NH 12863	AF506407	AF506407	Larsson & Larsson (2003)
Imylocystis lapponica	KHL 11755	EU118603	EU118603	Larsson (2007)
Arrhenia retirugis	EL 76/03	EU118604	EU118604	Larsson (2007)
Athelia pyriformis	Hjm 18581	EU118605	EU118605	Larsson (2007)
1t. epiphylla	EL12-98	AY463382	AY586633	Larsson et al. (2004)
1uriscalpium vulgare	EL 33-95	AF506375	AF506375	Larsson & Larsson (2003)
Bondarcevomyces taxi	TAA 166337	AY463386	AY586637	Larsson et al. (2004)
Ceraceomyces borealis	KHL 8432	EU118610	EU118610	Larsson (2007)
Ce. tessulatus	KHL 8474	AY463391	AY586642	Larsson et al. (2004)
Ce. violascens	KHL 11169	EU118611	EU118612	Larsson (2007)
Ce. yunnanensis	CLZhao 19070	OQ132516	OQ147006	This study
Ce. yunnanensis	CLZhao 4112	OQ132517	_	This study
Ce. yunnanensis	CLZhao 18930	OQ132518	_	This study
Ce. yunnanensis	CLZhao 18992	OQ132519	OQ147003	This study
Ce. yunnanensis	CLZhao 19024	OQ132520	OQ147004	This study
Ce. yunnanensis	CLZhao 19054	OQ132521	OQ147005	This study
Ceriporia reticulata	KHL 11981	EU118613	EU118614	Larsson (2007)
Chaetodermella luna	NH 8482	EU118615	EU118615	Larsson (2007)
Chondrostereum purpureum	EL59-97	AY463393	AY586644	Larsson et al. (2004)
Clavulina cinerea	KHL 11694	EU118616	EU118616	Larsson (2007)
Cl.cristata	EL95-97	AY463398	AY586648	Larsson et al. (2004)
Columnocystis abietina	KHL 12474	EU118619	EU118619	Larsson (2007)
Coronicium alboglaucum	NH 4208	AY463400	AY586650	Larsson et al. (2004)
Cristinia helvetica	Kristiansen s.n.	EU118620	EU118620	Larsson (2007)
Cystidiodontia laminifera	KHL 13057	EU118622	EU118622	Larsson (2007)
Cystostereum murrayi	KHL 12496	EU118623	EU118623	Larsson (2007)
Dacryobolus karstenii	KHL 11162	EU118624	EU118624	Larsson (2007)

.....continued on the next page

TABLE 1. (Continued)


Species name	Sample no.	GenBank accession no.		References
		ITS	nLSU	References
Dendrothele acerina	GEL 5350	_	AJ406581	Langer et al. (2001)
D. americana	FP-101995-Sp.		AY293178	Binder et al. (2005)
Dentipellis. leptodon	GB 011123	EU118625	EU118625	Larsson (2007)
Dentipratulum bialovisence	GG 1645	AF506389	AF506389	Larsson & Larsson (2003)
Erythricium laetum	NH 14530	AY463407	AY586655	Larsson et al. (2004)
Exidia recisa	EL 15-98	AF347112	AF347112	Larsson et al. (2004)
Exidiopsis calcea	KHL 11075	AY463406	AY586654	Larsson et al. (2004)
Gloeocystidiellum porosum	NH 10434	AF310094	AF310094	Larsson & Hallenberg (2001)
G. sp	NH 13258	AF310089	AF310089	Larsson & Hallenberg (2001)
Gloeocystidiopsis cryptacanthus	KHL 10334	AF506442	AF506442	Larsson & Larsson (2003)
Gloeodontia columbiensis	NH 11118	AF506444	AF506444	Larsson & Larsson (2003)
Gl. pyramidata	LR 15502	AF506446	AF506446	Larsson & Larsson (2003)
Gloeostereum incarnatum	Petersen 3332	AF141637	AF141637	Parmasto & Hallenberg (2000
Gloiodon strigosus	JS 26147	AF506449	AF506449	Larsson & Larsson (2003)
Haplotrichum conspersum	KHL 11063	AY463409	AY586657	Larsson et al. (2004)
Haplotrichum curtisii	KHL 12950	EU118629	EU118629	Larsson (2007)
Hericium abietis	NH 6990	AF506456	AF506456	Larsson & Larsson (2003)
He. erinaceum	NH 12163	AF506460	AF506460	Larsson & Larsson (2003)
Hygrophoropsis aurantiaca	EL42-99	AY463411	AY586659	Larsson et al. (2004)
Hymenochaete cinnamomea	EL6-99	AY463416	AY586664	Larsson et al. (2004)
H. rubiginosa	JS 4227	AY463417	AY586665	Larsson et al. (2004)
Hyphodermella corrugata	KHL 3663	EU118630	EU118630	Larsson (2007)
Hyphodontia. aspera	KHL 8530	AY463427	AY586675	Larsson et al. (2004)
Hy. detritica	K.G. Nilsson 990902	DQ677507	DQ677507	Larsson (2007)
Hypochniciellum subillaqueatum	KHL 8493	AY463431	AY586679	Larsson et al. (2004)
Jaapia argillacea	KHL 11734	EU118636	EU118636	Larsson (2007)
I. ochroleuca	KHL 8433	EU118637	EU118637	Larsson (2007)
Kavinia alboviridis	EL16-98		AY463434	Larsson et al. (2004)
Lactarius leonis	SJ 91016	AF506411	AF506411	Larsson & Larsson (2003)
Laetisaria fuciformis	Hjm 18391	EU118639	EU118639	Larsson (2007)
Lentaria dendroidea	SJ 98012	EU118640	EU118641	Larsson (2007)
Lenzites betulina	KHL 8573	AY463436	AY586683	Larsson et al. (2004)
Leucogyrophana mollusca	KHL 11160	EU118643	EU118643	Larsson (2007)
Lindtneria trachyspora	KGN 390/00	EU118646	EU118646	Larsson (2007)
Merulicium fusisporum	Hjm s.n.	EU118647	EU118647	Larsson (2007)
Mycoacia kurilensis	KHL 12224	EU118649	EU118649	Larsson (2007)
Oligoporus guttulatus	KHL 11739	EU118650	EU118650	Larsson (2007)
Phanerochaete affinis	KHL 11839	EU118652	EU118652	Larsson (2007)
Phlebia georgica	KHL 12019	DQ873645	DQ873645	Larsson et al. (2006)
Ph. nitidula	Nystroem 020830	EU118655	EU118655	Larsson (2007)
Polyporoletus sublividus	JA 030918	DQ389663	DQ389663	Unpublished
Polyporus brumalis	KHL 8558	AF347108	AF347108	Larsson et al. (2004)
Russula violacea	SJ 93009	AF506465	AF506465	Larsson & Larsson (2003)
Sistotremastrum niveocremeum	EL 96-97	AF347094	AF347094	Larsson et al. (2004)

.....continued on the next page

TABLE 1. (Continued)

Species name	Sample no.	GenBank acce	ssion no.	References
		ITS	nLSU	
S. suecicum	KHL 11849	EU118666	EU118667	Larsson (2007)
Stereopsis radicans	PR 5760	JN649370	JN649370	Sjökvist et al. (2012)
St. radicans	LR 45395	JN649371	JN649371	Sjökvist et al. (2012)
St. globosa	KHL 11228	JN649330	JN649330	Sjökvist et al. (2012)
St. globosa	KHL 12592	JN649331	JN649331	Sjökvist et al. (2012)
St. yunnanensis	CLZhao 3277	MK268905	OQ147007	This study
St. yunnanensis	CLZhao 3171	OQ148432	_	This study
St. yunnanensis	CLZhao 3767	OQ148431	OQ147008	This study
Stereum hirsutum	NH 7960	AF506479	AF506479	Larsson & Larsson (2003)
Tapinella atrotomentosa	EL 3/03	EU118673	EU118673	Larsson (2007)
Tomentellopsis bresadoliana	JEH 031011	EU118674	EU118674	Larsson (2007)
To. echinospora	KHL 8459	AY463472	AY586718	Larsson et al. (2004)
Trametes suaveolens	CBS 279.28	MH855012	MH866480	Vu et al. (2019)
Tr. versicolor	KHL 8559	AF347107	AF347107	Larsson et al. (2004)
Tubulicrinis globisporus	KHL 12133	DQ873655	DQ873655	Larsson et al. (2006)
Tu. inornatus	KHL 11763	DQ873659	DQ873659	Larsson et al. (2006)
Veluticeps berkeleyi	RLG-7116-Sp.	_	AY293219	Binder et al. (2005)
Wrightoporia lenta	KN 150311	AF506489	AF506489	Larsson & Larsson (2003)
Xenasmatella ailaoshanensis	CLZhao 4839	MN487106	_	Huang et al. (2019)
X. ailaoshanensis	CLZhao 3895	MN487105	_	Huang et al. (2019)
X. aff.	KHL 12928	EU118658	EU118658	Larsson (2007)
X. ardosiaca	CBS 126045	MH864060	MH875515	Vu et al. (2019)
X. bambusicola	CLZhao 10985	OQ371469	OQ147009	This study
X. borealis	UC 2022974	KP814210	_	Rosenthal et al. (2017)
X. borealis	UC 2023132	KP814274	_	Rosenthal et al. (2017)
X. christiansenii	KHL 11689	EU118659	EU118659	Larsson (2007)
X. christiansenii	TASM YGG 36	MT526342	_	Gafforov et al. (2020)
X. christiansenii	TASM YGG 26	MT526341	_	Gafforov et al. (2020)
X. gossypina	CLZhao 8233	MW545957	_	Zong & Zhao (2021)
X. gossypina	CLZhao 4149	MW545958	_	Zong & Zhao (2021)
X. nigroidea	CLZhao 18300	OK045679	OK045677	Luo & Zhao (2022)
X. nigroidea	CLZhao 18333	OK045680	OK045678	Luo & Zhao (2022)
X. rhizomorpha	CLZhao 9847	MT832953	_	Zong et al. (2021)
X. rhizomorpha	CLZhao 9156	MT832954	_	Zong et al. (2021)
X. tenuis	CLZhao 11258	MT832959	_	Zong et al. (2021)
X. tenuis	CLZhao 4528	MT832960	_	Zong et al. (2021)
X. tulasnelloidea	HHB-19281	MW740272	_	Unpublished
X. tulasnelloidea	FRDBI 20222550	OL828785	_	Unpublished
X. vaga	KHL 11065	EU118660	EU118661	Larsson (2007)
X. vaga	BHI-F 160a	MF161185	_	Larsson (2007)
X. wuliangshanensis	CLZhao 4080	MW545962	_	Zong & Zhao (2021)
X. wuliangshanensis	CLZhao 4380	MW545963	_	Zong & Zhao (2021)
X. xinpingensis	CLZhao 2216	MT832961	_	Zong et al. (2021)
X. xinpingensis	CLZhao 2467	MT832962	_	Zong et al. (2021)

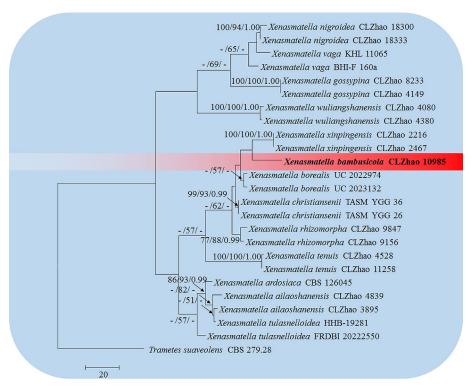

Sequencher 4.6 (GeneCodes, Ann Arbor, MI, USA) was used to edit the DNA sequences. Sequences were aligned in MAFFT 7 (http://mafft.cbrc.jp/alignment/server/) using the "G-INS-i" strategy and manually adjusted in BioEdit (Hall 1999). The sequence alignment was deposited in TreeBase (submission ID 30000). Sequences of *Exidia recisa* (ITS: AF347112, LSU: AF347112) (Ditmar) Fr. and *Exidiopsis calcea* (ITS: AY463406, LSU: AY586654) (Pers.) K. Wells obtained from GenBank were used as an outgroup to root the tree following Larsson (2007) (Fig. 1). Sequence of *Trametes suaveolens* (L.) Fr. obtained from GenBank was used as the outgroup to root the tree following a previous study (Luo & Zhao 2022) (Fig. 2).

FIGURE 1. Maximum Parsimony strict consensus tree illustrating the phylogeny of three new species and related species based on ITS+nLSU sequences. Branches are labelled with maximum likelihood bootstrap equal to or greater than 70%, parsimony bootstrap proportions equal to or greater than 50% and Bayesian posterior probabilities equal to or greater than 0.95, respectively, Scale bar = 50.

Maximum parsimony analysis was applied to the ITS and nLSU datasets. Approaches to phylogenetic analyses followed Zhao and Wu (2017), and the tree construction procedure was performed in PAUP* version 4.0b10 (Swofford 2002). All characters were equally weighted and gaps were treated as missing data. Trees were inferred using the heuristic search option with TBR branch swapping and 1,000 random sequence additions. Max-trees were set to 5,000, branches of zero length were collapsed and all parsimonious trees were saved. Clade robustness was assessed using a bootstrap (BT) analysis with 1,000 replicates (Felsenstein 1985). Descriptive tree statistics—tree length (TL), consistency index (CI), retention index (RI), rescaled consistency index (RC), and homoplasy index (HI) were calculated for each Maximum Parsimonious Tree generated. Datamatrix was also analyzed using Maximum Likelihood (ML) approach with RAxML-HPC2 through the Cipres Science Gateway (www.phylo.org, Miller *et al.* 2009). Branch support (BS) for ML analysis was determined by 1,000 bootstrap replicates.

MrModeltest 2.3 (Nylander 2004) was used to determine the best-fit evolution model for each data set for Bayesian inference (BI). BI was calculated with MrBayes 3.1.2 (Ronquist & Huelsenbeck 2003). Four Markov chains run for 2 runs from random starting trees for 3.5 million generations for ITS+nLSU (Fig. 1), 400 thousand generations for ITS (Fig. 2) and trees were sampled every 100 generations. The first one-fourth generations were discarded as burn-in. The majority rule consensus tree of all remaining trees was calculated. Branches were considered as significantly supported if they received maximum likelihood bootstrap (BS) equal to or greater than symbol 70%, maximum parsimony bootstrap (BT) equal to or greater than symbol 50%, or Bayesian posterior probabilities (BPP) equal to or greater than symbol 0.95.

FIGURE 2. Maximum Parsimony strict consensus tree illustrating the phylogeny of one new species and related species in *Xenasmatella* based on ITS sequences. Branches are labelled with maximum likelihood bootstrap equal to or greater than 70%, parsimony bootstrap proportions equal to or greater than 50% and Bayesian posterior probabilities equal to or greater than 0.95, respectively, Scale bar = 20.

Results

Molecular phylogeny

The combined ITS+nLSU dataset (Fig. 1) comprises sequences from 93 specimens and 91 species. The dataset had an aligned length of 1731 characters, of which 739 characters were constant, 274 were variable and parsimony-uninformative and 718 were parsimony-informative. Maximum parsimony analysis yielded one equally parsimonious tree (TL = 7158, CI = 0.250, HI = 0.750, RI = 0.407, RC = 0.102). Best model suggested by MrModeltest and applied in BI was GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as MP analysis; BI had the average standard deviation of split frequencies = 0.006466, and the effective sample size (ESS) across the two runs is

double that of the average ESS (avg ESS) = 290. The phylogeny reconstruction based on the ITS+nLSU dataset (Fig. 1) demonstrated that three new species nested into families Amylocorticiaceae, Stereopsidaceae and Xenasmataceae, in which *C. yunnanens* clustered into the genus *Ceraceomyces* sister to *C. borealis*; and *S. yunnanensis* clustered into genus *Stereopsis* grouped with *S. radicans*.

The ITS dataset (Fig. 2) comprises sequences from 25 specimens and 14 species. The dataset had an aligned length of 651 characters, of which 410 characters were constant, 76 were variable and parsimony-uninformative and 165 were parsimony-informative. Maximum parsimony analysis yielded 8 equally parsimonious trees (TL = 456, CI = 0.675, HI = 0.325, RI = 0.792, RC = 0.535). The best model for the ITS+28S dataset estimated and applied in the Bayesian analysis was GTR+I+G. Bayesian analysis and ML analysis resulted in a similar topology as MP analysis; BI had the average standard deviation of split frequencies = 0.009316, and the effective sample size (ESS) across the two runs is double that of the average ESS (avg ESS) = 203.5. The ITS dataset of genus *Xenasmatella* demonstrated that *X. bambusicola* formed a distinct clade sister to *X. xinpingensis* that is similar to a previous study.

Taxonomy

Ceraceomyces yunnanensis Q. Yuan & C.L. Zhao, sp. nov. Figs. 3, 4 MycoBank no.: MB 846982

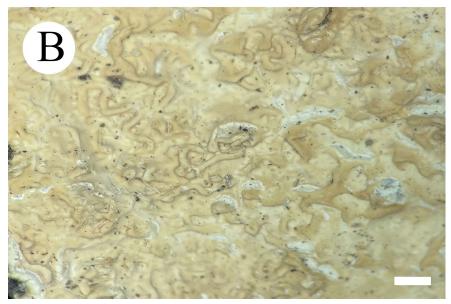
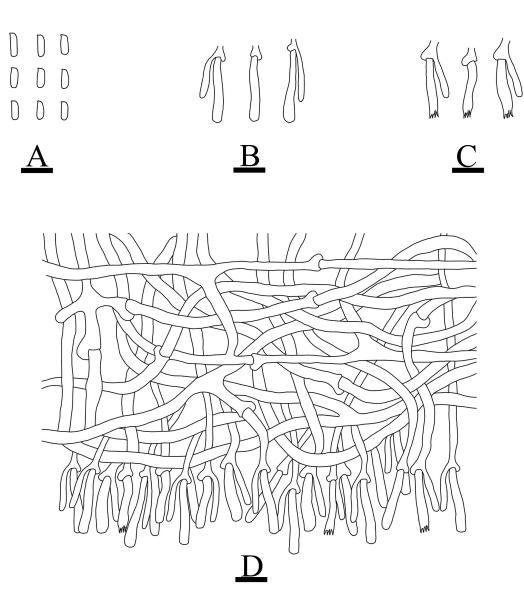



FIGURE 3. Basidiomata of Ceraceomyces yunnanensis (holotype). Bars: A = 1 cm, B = 1 mm.

FIGURE 4. Microscopic structures of *Ceraceomyces yunnanensis* (holotype). A Basidiospores. B basidioles. C Basidia. D A section of hymenium. Bars: $A = 5 \mu m$, $B-D = 10 \mu m$.

Holotype:—CHINA, Yunnan Province, Honghe, Pingbian County, Daiweishan National Nature Reserve, E 103°42′, N 22°57′, elev. 2100 m, on the fallen branch of angiosperm, 9 June 2020, CLZhao 19070 (SWFC).

Etymology:—yunnanensis (Lat.)—refers to the locality (Yunnan Province) of the type specimens.

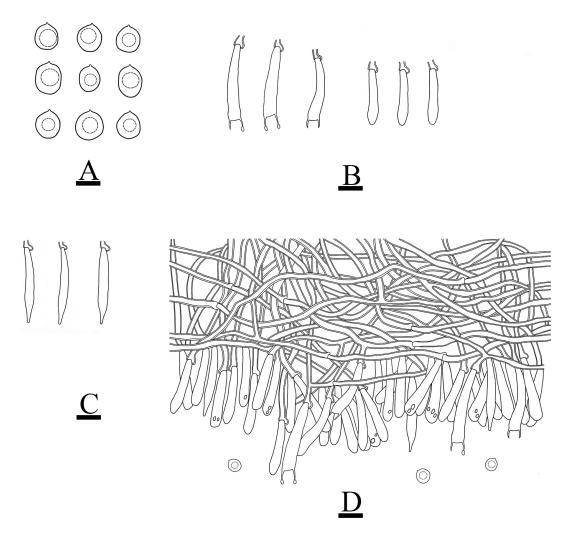
Fruiting body:—Basidiomata resupinate, adnate, pellicular when fresh, membranous upon drying, without odor or taste when fresh, up to 10 cm long, 4 cm wide, 100–200 μm thick. Hymenial surface merulioid, cream when fresh, turn to cream to slightly buff upon drying. Margin sterile, white, fimbriate.

Hyphal structure:—Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, branched, interwoven, 2.2–6.4 μm in diameter, IKI–, CB–; tissues unchanged in KOH.

Hymenium:—Cystidia and cystidioles absent; basidia narrowly clavate, in a dense palisade, with 4 sterigmata and a basal clamp connection, $14-19 \times 2.5-4 \mu m$.

Spores:—Basidiospores cylindrical, colorless, smooth, thin-walled, IKI–, CB–, $3-4 \times 1-1.5 \mu m$, L = $3.54 \mu m$, W = $1.33 \mu m$, Q = 2.56-2.73 (n = 180/6).

Additional specimens examined (paratypes):—China, Yunnan Province, Honghe, Pingbian County, Daiweishan National Nature Reserve, E 103°42′, N 22°57′, elev. 2100 m, on angiosperm trunk, 9 Jun 2020, CLZhao 19024 (SWFC), CLZhao 19054 (SWFC), 8 Jun 2020, CLZhao 18930 (SWFC), on fallen angiosperm branch, 9 Jun 2020, CLZhao 18992, CLZhao 6132 (SWFC); Puer, Jingdong County, Wuliangshan National Nature Reserve, E 100°08′, N 24°04′, elev. round to 3000 m, on the stump of angiosperm, 5 Oct 2017, CLZhao 4112 (SWFC).


FIGURE 5. Basidiomata of *Stereopsis yunnanensis* (holotype). Bars: A = 1 cm, B = 1 mm.

Holotype:—CHINA, Yunnan Province, Puer, Jingdong County, Kongqueshan Forestry Park, E 100°08′, N 24°04′, elev. 3002 m, on dead bamboo, 3 October 2017, CLZhao 3767 (SWFC).

Etymology:—yunnanensis (Lat.)—refers to the locality (Yunnan Province) of the type specimens.

Fruiting body:—Annual, laterally stipitate, gregarious. Pilei medium-sized, infundibuliform, brittle when fresh, hard on drying, up to 3 cm long, 4 cm wide, 1.5 mm thick; fawn to isabelline when fresh, greyish brown to brown on

drying; proliferous from a central common base, usually with several laterally confluent spathulate to flabelliform or valves; the surface radially striate; margin thin, wavy. Hymenial surface stereoid, buff to clay-buff when fresh, clay-buff to slightly brown on drying. Stipe cylindrical, up to 2 cm long, up to 1 cm in diameter. Context leathery in fresh condition, corky to leathery in dried condition, up to 1 mm thick at the thickest portion of pileus, thinner at margin and thicker toward the base, buff. Odor mild when fresh, somewhat smelly when dried, or with the beef jerky flavor.

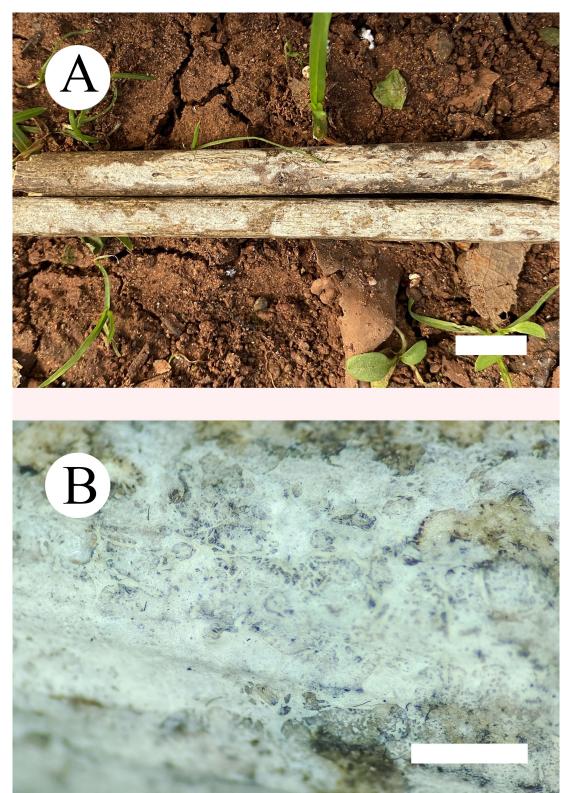
FIGURE 6. Microscopic structures of *Stereopsis yunnanensis* (holotype). A Basidiospores. B Basidia and basidioles. C Cystidia. D A section of hymenium. Bars: $A = 5 \mu m$, $B-D = 10 \mu m$.

Hyphal structure:—Hyphal system monomitic, hyphae thick-walled, with clamp connections, colorless, 1.5–3.5 μm in diameter, IKI–, CB–; tissues unchanged in KOH.

Hymenium:—Cystidia fusiform, $34.5-39 \times 3.5-4.5 \mu m$; basidia narrowly clavate, with 2 sterigmata and a basal clamp connection, $28-35 \times 3.5-5.5 \mu m$.

Spores:—Basidiospores subglobose, with large droplet of oil, colorless, thin-walled, smooth, IKI-, CB-, $4.5-6.5 \times 4-5.5 \mu m$, L = $5.56 \mu m$, W = $4.90 \mu m$, Q = 1.09-1.17 (n = 60/2).

Additional specimens examined (paratypes):—China, Yunnan Province, Puer, Laiyanghe National Forestry Park, E 101°6′, N 22°35′, elev. 1207 m, on the dead bamboo, 30 Sep 2017, CLZhao 3277 (SWFC), CLZhao 3171 (SWFC).


Xenasmatella bambusicola Q. Yuan & C.L. Zhao, *sp. nov*. Figs. 7, 8 MycoBank no.: MB 846984

Holotype:—CHINA, Yunnan Province, Wenshan, Xiaoqiaogou National Nature Reserve, E 104°41′, N 23°21′, elev. 1900 m, on dead bamboo, 15 Janurary 2019, CLZhao 10985 (SWFC).

Etymology:—Bambusicola (Lat.)—refers to the host from which the holotype occurrence on dead bamboo.

Fruiting body:—Basidiomata resupinate, adnate, thin, very hard to separate from substrate, membranous, without

odor or taste when fresh, up to 11 cm long, 1 cm wide, 30– $80 \,\mu m$ thick. Hymenial surface arachnoid, white when fresh, white to greyish when dry. Sterile margin thin, white.

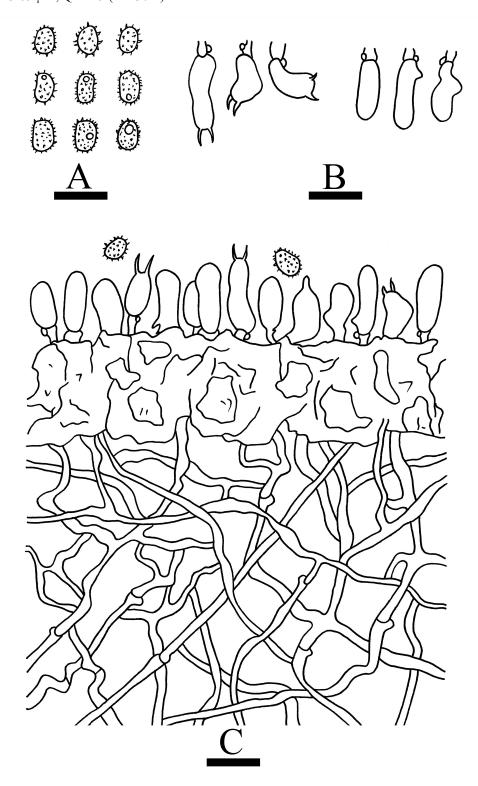


FIGURE 7. Basidiomata of *Xenasmatella bambusicola* (holotype). Bars: A = 1 cm, B = 1 mm.

Hyphal structure:—Hyphal system monomitic, generative hyphae with clamp connections, colorless, thin-walled, 1.5–2 µm in diameter, IKI–, CB–; tissues unchanged in KOH.

Hymenium:—Cystidia and cystidioles absent; basidia pleural, clavate, with 2 sterigmata and a basal clamp connection, $9-12.5 \times 3.5-5 \mu m$.

Spores:—Basidiospores ellipsoid, colorless, thin-walled, warted, with one oil drop, IKI–, CB–, $3-7 \times 2$ –4.5 μ m, L = 5.45 μ m, W = 3.65 μ m, Q = 1.5 (n = 30/1).

FIGURE 8. Microscopic structures of *Xenasmatella bambusicola* (holotype). A Basidiospores. B Basidia and basidioles. C A section of hymenium. Bars: $A-C = 10 \mu m$.

Discussion

In the present study, *Ceraceomyces yunnanensis*, *Stereopsis yunnanensis* and *Xenasmatella bambusicola* are described as new species based on phylogenetic analyses and morphological characteristics.

Based on the multi-gene phylogenetic analyses of nLSU, SSU, 5.8s, RPB1, RPB2, and tef1-α, an outline of all genera of Basidiomycota including 241 families, 68 orders, 18 classes and four subphyla, revealed that *Ceraceomyces* clustered into family Amylocorticiaceae Jülich (Amylocorticiales); *Stereopsis* grouped into family Stereopsidaceae (Stereopsidales); and *Xenasmatella* grouped into family Xenasmataceae (He *et al.* 2019). In the present study (Figs. 1, 2), three new species nested into families Amylocorticiaceae, Stereopsidaceae and Xenasmataceae (Agaricomycetes), in which *C. yunnanens* clustered into the genus *Ceraceomyces* sister to *C. borealis*; *S. yunnanensis* clustered into genus *Stereopsis* with *S. radicans*; and *X. bambusicola* nested into the genus *Xenasmatella* sister to *X. xinpingensis*. However, morphologically *C. borealis* differs from *C. yunnanensis* by its whitish basidiomata and larger basidiospores (6–8 × 1.8–2 μm, Hjortstam *et al.* 1977); *S. radicans* is separated from *S. yunnanensis* by both larger basidia (40–70 × 5–8 μm) and basidiospores (7.5–10 × 7–7.5 μm, Reid 1965); and *X. xinpingensis* differs from *X. bambusicola* by the ceraceous basidiomata and 4-sterigmatis basidia (Zong *et al.* 2021).

Morphologically, Ceraceomyces atlanticus K.H. Larss. & Chikowski, C. tessulatus (Cooke) Jülich and C. corymbatus (G. Cunn.) Stalpers, are similar to C. yunnanensis by having the resupinate basidiomata with the membranous to subceraceous hymenophore. However, Ceraceomyces atlanticus differs in its cracked hymenophore and wider basidiospores (4–5 × 2–2.5 μm, Chikowski et al. 2017); C. tessulatus differs in its thick hymenium and obliquely ellipsoid to pip-shaped basidiospores (Hjortstam et al. 1977); and C. corymbatus differs in its arachnoid hymenophore and wider basidiospores (8–9.5 × 3.5–4.5 μm, Stalpers 1985). Ceraceomyces yunnanensis resembles C. americanus Nakasone, C.R. Bergman & Burds, C. bizonatus Dhingra & Avn.P. Singh and C. simulans (Berk. & Broome) Hjortstam in having a monomitic hyphal system. However, Ceraceomyces americanus is distinguished from C. yunnanensis by having a rimous hymenial surface and larger basidia (22–36 × 4–5 μm, Nakasone et al. 1994). Ceraceomyces bizonatus differs in having a yellowish brown hymenial surface and wider basidiospores (2.5–3.3 × 1.8–2.2 μm, Dhingra & Singh 2008). Ceraceomyces simulans differs in having ochraceous to pale brown basidiomata and wider basidia (17–20 × 4–5 μm, Hjortstam 1989).

Stereopsis burtianum (Peck) D.A. Reid, S. cartilaginea (Massee) D.A. Reid, S. reidii (Losi & A. Gennari), and S. vitellina (S. Lundell) D.A. Reid, are similar to S. yunnanensis in having the stipitate infundibuliform to spathulate basidiomata. However, Stereopsis burtianum differs in its submembranous basidiomata and narrower basidiospores (3.5–4.5 × 2.5–3.5 μm, Reid 1965); S. cartilaginea in its waxy hymenial surface and larger basidia (48–65 × 7–8 μm, Reid 1965); and S. vitellina in its glabrous hymenium and smaller basidiospores (3–4 × 2.2–2.5 μm, Eriksson 1984). Stereopsis yunnanensis resembles S. sparassoides (D.A. Reid, K.S. Thind & Adlakha) D.A. Reid and S. hiscens (Berk. & Rav.) Reid in having a monomitic hyphal system. However, Stereopsis sparassoides is distinguished from S. yunnanensis by having the violet-grey hymenial surface and narrower basidiospores (4.5–5.5 × 2–4 μm, Reid 1965); and S. hiscens differs in having the dark bluish-grey hymenial surface and larger basidia (90–150 × 7–10 μm, Reid 1965).

Xenasmatella bambusicola is similar to X. californica (Liberta) Hjortstam, X. christiansenii (Parmasto) Stalpers and X. wuliangshanensis in having its membranous basidiomata. However, Xenasmatella californica can be distinguished by the bluish-gray hymenial surface and wider basidia (7–13 × 5–6 μm, Liberta 1965); X. christiansenii differs from X. bambusicola by having the effused basidiomata with radially arranged rhizomorphs and wider basidia (10–18 × 5–7 μm, Bernicchia & Gorjón 2010); and X. wuliangshanensis differs from X. bambusicola by having a clay-pink sterile margin and 4-sterigmatis basidia (Zong & Zhao 2021). Xenasmatella bambusicola is similar to X. nigroidea, X. odontioidea Ryvarden & Liberta and X. vaga (Fr.) Stalpers in having the ellipsoid basidiospores. However, Xenasmatella nigroidea differs from X. bambusicola by its black sterile margin and larger basidia (12–18 × 4.5–6 μm, Luo & Zhao 2022); X. odontioidea can be distinguished from X. bambusicola by its colliculosa hymenial surface and larger basidia (17.5–20 × 4.5–5 μm, Luo & Zhao 2022) and smaller basidiospores (2.5–3.5 × 2–3 μm, Ryvarden & Liberta 1978); and X. vaga differs from X. bambusicola by its hymenial surface reddish in KOH and larger basidia (15–20 × 5–6 μm, Stalpers 1996).

The Basidiomycota constitutes a major phylum of the kingdom Fungi (He *et al.* 2019, Wijayawardene *et al.* 2020). Wood-rotting fungi are an extensively studied group of Basidiomycota (Bernicchia & Gorjón 2010, Dai 2012, Gilbertson & Ryvarden 1987, Núñez & Ryvarden 2001, Ryvarden & Melo 2014, Wu *et al.* 2022), but the wood-rotting fungal diversity is still not well known in China, especially in subtropical and tropical areas, and many recently described taxa of this ecological group were from China (Bian *et al.* 2016, Guan *et al.* 2020, Huang & Zhao 2020, Ma & Zhao 2019, Zhao *et al.* 2014, Zhao *et al.* 2015, Zhao *et al.* 2016). Three new species in the present study are described based on morphological and molecular phylogenetic analyses, which are also from the subtropics. This study enriches the wood-rotting fungal diversity in China and the world.

Acknowledgments

The research was supported by the National Natural Science Foundation of China (Project No. 32170004), the Yunnan Fundamental Research Project (Grant No. 202001AS070043), and the High-level Talents Program of Yunnan Province (YNQR-QNRC-2018-111).

References

- Bernicchia, A. & Gorjón, S.P. (2010) Fungi Europaei 12: Corticiaceae s.l. Edizioni Candusso, Lomazzo. pp. 1-1007.
- Bian, L.S., Wu, F. & Dai, Y.C. (2016) Two new species of *Coltricia* (Hymenochaetaceae, Basidiomycota) from Southern China based on evidence from morphology and DNA sequence data. *Mycological Progress* 15: 27.

https://doi.org/10.1007/s11557-016-1173-0

- Binder, M., Hibbett, D.S., Larsson, K.H., Larsson, E., Langer, E. & Langer, G. (2005) The phylogenetic distribution of resupinate forms across the major clades of mushroom-forming fungi (Homobasidiomycetes). *Systematics Biodiversity* 3: 113–157. https://doi.org/10.1017/S1477200005001623
- Boidin, J. (1957) Hétérobasidiomycètes saprophytes et Homobasidiomycètes résupinés. II. Catalogue raisonné des espèces pyrénéennes de la région de Luchon (Haute-Garonnes). *Bulletin de la Société d'Histoire Naturelle de Toulouse* 92: 277–292.
- Chikowski, R.D., Larsson, K.H. & Gibertoni, T.B. (2017) *Ceraceomyces atlanticus* (Amylocorticiales, Basidiomycota), a new species from the Atlantic Rain Forest, Brazil. *Phytotaxa* 296: 73–80.

ttps://doi.org/10.11646/phytotaxa.296.1.5

- Dai, Y.C. (2010) Hymenochaetaceae (Basidiomycota) in China. *Fungal Diversity* 45: 131–343. https://doi.org/10.1007/s13225-010-0066-9
- Dai, Y.C. (2012) Polypore diversity in China with an annotated checklist of Chinese polypores. *Mycoscience* 53: 49–80. https://doi.org/10.1007/s10267-011-0134-3
- Dhingra, G.S. & Singh, A.P. (2008) A new species of Ceraceomyces (Basidiomycetes) from India. Mycotaxon 106: 399-401.
- Dhingra, G.S., Singh, A.P., Kaur, J., Kaur, H., Rani, M., Sood, S., Singla, N., Kaur, H. & Jain, N. (2014) A checklist of resupinate, non-poroid agaricomycetous fungi from himachal pradesh, India. *Synopsis Fungorum* 32: 8–37.
- Drinkwater, L.E., Schipanski, M., Snapp, S. & Jackson, L.E. (2017) *Ecologically based nutrient management. In: Agricultural systems, 2nd edn.* Elsevier, Amsterdam. pp. 203–257.

https://doi.org/10.1016/B978-0-12-802070-8.00007-4

- Eriksson, J., Hjortstam, K. & Ryvarden, L. (1984) The Corticiaceae of North Europe. Fungiflora, Oslo.
- Felsenstein, J. (1985) Confidence intervals on phylogenetics: an approach using bootstrap. *Evolution* 39: 783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
- Gafforov, Y., Ordynets, A., Langer, E., Yarasheva, M., Gugliotta, A.M., Schigel, D., Pecoraro, L., Zhou, Y., Cai, L. & Zhou, L.W. (2020) Species diversity with comprehensive annotations of wood-inhabiting poroid and corticioid fungi in Uzbekistan. *Frontiers in Microbiology* 11: 598321.

https://doi.org/10.3389/fmicb.2020.598321

- Gilbertson, R.L. & Ryvarden, L. (1987) North American polypores 1-2. Fungiflora, Oslo. pp. 1-433.
- Guan, Q.X., Zhao, T.J. & Zhao, C.L. (2020) Morphological characters and phylogenetic analyses reveal two new species of *Peniophorella* from Southern China. *Mycological Progress* 19: 397–404.

https://doi.org/10.1007/s11557-020-01568-6

- Guo, Z.T. (1987) Stereaceae in China 3. Bulletin of Botanical Research Harbin 7: 85-112.
- Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symposium Series* 41: 95–98.

https://doi.org/10.1021/bk-1999-0734.ch008

He, M.Q., Zhao, R.L., Hyde, K.D., Begerow, D., Kemler, M., Yurkov, A. & McKenzie, E.H.C.(2019) Notes, outline and divergence times of Basidiomycota. *Fungal Diversity* 99: 105–367.

https://doi.org/10.1007/s13225-019-00435-4

Hjortstam, K. (1989) Corticioid fungi described by M.J. Berkeley. Kew Bulletin 44: 301-315.

https://doi.org/10.2307/4110803

Hjortstam, K., Larssonn, K. & Ryvarden, L. (1977) The Corticiaceae of North Europe. *Mycologia* 69: 864. https://doi.org/10.2307/3758885 Horwath, W.R. (2017) The role of the soil microbial biomass in cycling nutrients: A Paradigm Shift in Terrestrial Biogeochemistry. Microbial Biomass, New Zealand. pp. 41–66.

https://doi.org/10.1142/9781786341310 0002

Huang, R.X., Chen, J.Z., Wu, J.R. & Zhao, C.L. (2019) *Phlebiella ailaoshanensis* sp. nov. (Polyporales, Basidiomycota) described from China. *Phytotaxa* 419: 105–109.

https://doi.org/10.11646/phytotaxa.419.1.8

Huang, R.X. & Zhao, C.L. (2020) Three new species of *Phlebia* (Polyporales, Basidiomycota) based on the evidence from morphology and DNA sequence data. *Mycological Progress* 19: 753–767.

https://doi.org/10.1007/s11557-020-01591-7

Hyde, K.D., Chaiwan, N., Norphanphoun, C., Boonmee, S. & Zhao, Q. (2018) Mycosphere notes 169–224. *Mycosphere* 9: 271–430. https://doi.org/10.5943/mycosphere/9/2/8

Jülich, W. (1972) Monographie der Athelieae (Corticiaceae, Basidiomycetes). Willdenowia Beiheft 7: 1–283.

Jülich, W. (1975) Studies in resupinate basidiomycetes - III. Persoonia 8: 291-305.

Larsson, E. & Hallenberg, N. (2001) Species delimitation in the *Gloeocystidiellum porosum*-clavuligerum complex inferred from compatibility studies and nuclear rDNA sequence data. *Mycologia* 93: 907–914.

https://doi.org/10.1080/00275514.2001.12063225

Larsson, E. & Larsson, K.H. (2003) Phylogenetic relationships of russuloid basidiomycetes with emphasis on aphyllophoralean taxa. Mycologia 95: 1037–1065.

https://doi.org/10.1080/15572536.2004.11833020

Larsson, K.H. (2007) Re-thinking the classification of corticioid fungi. Mycological Research 11: 1040–1063.

https://doi.org/10.1016/j.mycres.2007.08.001

Larsson, K.H. & Larsson, E. (1998) A molecular perspective on Ceraceomyces sublaevis. Folia Cryptogamica Estonica 33: 71-76.

Larsson, K.H., Larsson, E. & Kõljalg, U. (2004) High phylogenetic diversity among corticioid homobasidiomycetes. *Mycological Research* 108: 983–1002.

https://doi.org/10.1017/S0953756204000851

Larsson, K.H., Parmasto, E., Fischer, M., Langer, E., Nakasone, K.K. & Redhead, S.A. (2006) Hymenochaetales: a molecular phylogeny for the hymenochaetoid clade. *Mycologia* 98: 926–936.

https://doi.org/10.1080/15572536.2006.11832622

Liberta, A.E. (1965) A new species of Xenasma. Mycologia 57: 967–968.

Luo, K.Y. & Zhao, C.L. (2022) Morphology and multigene phylogeny reveal a new order and a new species of wood-inhabiting basidiomycete fungi (Agaricomycetes). *Frontiers in Microbiology* 13: 970731.

https://doi.org/10.3389/fmicb.2022.970731

Ma, X. & Zhao, C.L. (2019) *Crepatura ellipsospora* gen. et sp. nov. in Phanerochaetaceae (Polyporales, Basidiomycota) bearing a tuberculate hymenial surface. *Mycological Progress* 18: 785–793.

https://doi.org/10.1007/s11557-019-01488-0

Miller, M.A., Holder, M.T. & Vos, R. (2009) The CIPRES Portals. – CIPRES. Available from: http://www.phylo.org/sub_sections/portal (accessed 19 April 2023). [archived by WebCite® at http://www.webcitation.org/5imQlJeQa]

Nakasone, K.K., Bergman, C.R. & Burdsall, H.H. (1994) *Phanerochaete filamentosa–Corticium radicatum* species complex in North America. *Sydowia* 46: 44–62.

Núñez, M. & Ryvarden, L. (2001) East Asian polypores 2. Synopsis Fungorum 14: 165-522.

Nylander, J.A.A. (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Oberwinkler, F. (1966) Primitive Basidiomyceten. Revision einiger Formenkreise von Basidienpilzen mit plastischer Basidie. *Sydowia* 19: 1–72.

Parmasto, E. & Hallenberg, N. (2000) A taxonomic study of phlebioid fungi (Basidiomycota). *Nordic Journal Botany* 20: 105–118. https://doi.org/10.1111/j.1756-1051.2000.tb00740.x

Petersen, J.H. (1996) Farvekort. The Danish Mycological Society's colourchart. Foreningen til Svampekundskabens Fremme, Greve. pp. 1–6.

Phookamsak, R., Hyde, K.D., Jeewon, R., Bhat, D.J., Jones, E.B.G., Maharachchikumbura, S.S.N., Raspe, O., Karunarathna, S.C., Wanasinghe, D.N. & Hongsanan, S. (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. *Fungal Diversity* 95: 1–273.

https://doi.org/10.1007/s13225-019-00421-w

Reid, D.A. (1965) A monograph of the stipitate stereoid fungi. Beihefte zur Nova Hedwigia 18: 1–382.

Roberts, P. (2000) Corticioid fungi from Korup National Park, Cameroon. Kew Bulletin 55: 803-842.

https://doi.org/10.2307/4113628

Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* 19: 1572–1574.

https://doi.org/10.1093/bioinformatics/btg180

Rosenthal, L.M., Larsson, K.H., Branco, S., Chung, J.A., Glassman, S.L., Liao, H.L., Peay, k.G., Smith, D.P., Talbot, J.M., Taylor, J.W., Vellinga, E.C., Vilgalys, R. & Bruns, T.D. (2017) Survey of corticioid fungi in North American pinaceous forests reveals hyperdiversity, underpopulated sequence databases, and species that are potentially ectomycorrhizal. *Mycologia* 109: 115–127. https://doi.org/10.1080/00275514.2017.1281677

Ryvarden, L. (2012) A note on Stereopsis P. Karst. in the Neotropics. Synopsis Fungorum 30: 25-26.

Ryvarden, L. & Liberta, A.E. (1978) Contribution to the Aphyllophoralles of the Canary Islands 4. Two new species of *Trechispora* and *Xenmastella*. *Botany* 56: 2617–2619.

https://doi.org/10.1139/b78-314

Ryvarden, L. & Melo, I. (2014) Poroid fungi of Europe. Synopsis Fungorum 31: 1-455.

Sjökvist, E., Larsson, E., Eberhardt, U., Ryvarden, L. & Larsson, K.H. (2012) Stipitate stereoid basidiocarps have evolved multiple times. *Mycologia* 104: 1046–1055.

https://doi.org/10.3852/11-174

Sjökvist, E., Pfeil, B.E., Larsson, E. & Larsson, K.H. (2014) Stereopsidales-A new order of mushroom-forming fungi. *PLoS One* 9: e95227.

https://doi.org/10.1371/0095227

Stalpers, J.A. (1985) Type studies of the species of *Corticium* described by G.H. Cunningham. *New Zealand Journal Botany* 23: 301–310.

Stalpers, J.A. (1996) The aphyllophoraceous fungi II. Keys to the species of the Hericiales. Studies in Mycology 40: 1-185.

Swofford, D.L. (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer associates, Massachusetts.

Vu, D., Groenewald, M., Vries, M.D., Gehrmann, T., Stielow, B. & Eberhardt, U. (2019) Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. *Studies in Mycology* 92: 135–154.

https://doi.org/10.1016/j.simyco.2018.05.001

Wijayawardene, N.N., Hyde, K.D., Al-Ani, L.K., Tedersoo, L., Haelewaters, D., Rajeshkumar, K.C. & Zhao, R. (2020) Outline of Fungi and fungus-like taxa. *Mycosphere* 11: 1060–1456.

https://doi.org/10.5943/mycosphere/11/1/8

White, T.J., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: A guide to methods and applications 18: 315–322.

https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Wu, F., Man, X.W., Tohtirjap, A. & Dai, Y.C. (2022) A comparison of polypore funga and species composition in forest ecosystems of China, North America, and Europe. *Forest Ecosystems* 9: 100051.

https://doi.org/10.1016/j.fecs.2022.100051

Zhao, C.L., Chen, H., Song, J. & Cui, B.K. (2015) Phylogeny and taxonomy of the genus *Abundisporus* (Polyporales, Basidiomycota). *Mycological Progress* 14: 38.

https://doi.org/10.1007/s11557-015-1062-y

Zhao, C.L., Wu, F. & Dai, Y.C. (2016) *Leifiporia rhizomorpha* gen. et sp. nov. and *L. eucalypti* comb. nov. in Polyporaceae (Basidiomycota). *Mycological Progress* 15: 799–809.

https://doi.org/10.1007/s11557-016-1210-z

Zhao, C.L., He, X.S., Wanghe, K.Y., Cui, B.K. & Dai, Y.C. (2014) Flammeopellis bambusicola gen. et. sp. nov. (Polyporales, Basidiomycota) evidenced by morphological characters and phylogenetic analysis. Mycological Progress 13: 771–780. https://doi.org/10.1007/s11557-014-0960-8

Zong, T.K., Wu, J.R. & Zhao, C.L. (2021) Three new *Xenasmatella* (Polyporales, Basidiomycota) species from China. *Phytotaxa* 489: 111–120.

https://doi.org/10.11646/phytotaxa.489.2.1

Zong, T.K. & Zhao, C.L. (2021) Morphological and molecular identification of two new species of *Phlebiella* (Polyporales, Basidiomycota) from Southern China. *Nova Hedwigia* 112: 501–514.

https://doi.org/10.1127/nova hedwigia/2021/0628