
AWGUA Maya Master Class August 2001
Integrating an animation rig into a creature pipeline: Presentation Outline

Presenter: Jason Schleifer
Weta Digital, Wellington, NZ

I. Developing the Pipeline

l What is a pipeline?
l How does the animation rig fit into the pipeline?

II. Defining the Creature

INTEGRATING AN ANIMATION RIG
INTO A CREATURE PIPELINE

AWGUA Maya Seminar August 2001

Image Courtesy of Weta Digital LTD.

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l What is a creature?
l Creating and locating creatures.

III. Orienting Joints

l Manually Re-orienting joints.
l Re-orienting joints based on a script.

IV. Animation Control Concepts

l Iconic Representation.
l Limiting Selection and keyability.
l Rotation Order.
l Extra Gimbal Control
l Customized pickWalking.

V. Automatic/Manual shoulder control

l History
l Creating the control structure
l Cleaning the controls

VI. Realistic Forearm Twist
l Radius and Ulna
l Creating the control structure

VII. FK/IK Back Control

l History
l Creating the spline ik
l Adding stretching
l Creating ik control structure
l Adding fk control structure
l Adding twist
l Adding stretch warning color

VIII. Procedural Animation Rig

l What is a procedural animation rig?
l Creating the rig
l Updating the rig

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

IX. Recap and Questions

These data files are included with the coureware data:

MEL Scripts:

endName.mel
jsChannelCtrl.mel
jsConstObj.mel
jsCreateCreature.mel
jsDefineCreature.mel
jsGetShape.mel
jsListCreatures.mel
jsMovIn.mel
jsMovOut.mel
jsOrientJoint.mel
jsOrientJointUI.mel
jsPickWalk.mel
jsRenameWindow.mel
jsRotateOrder.mel
jsScaleJointsByCurve.mel
jsUnlockTransforms.mel

Scenes

backSolver_start.mb*
boneStructure_done.mb*
boneStructure_start.mb*
forearm_end.mb*
forearm_start.mb*
lrKeithAnim.mb*
lrKeithGimbal_done.mb*
lrKeithGimbal_start.mb*
mrKeithSkel.ma*
rings.mb*

Other

web pages and sample movies
backSolver_end.mb
boneStructure_start.mb
boneStructure_done.mb

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schlieifer, and Weta Digital LTD.

I. Developing the Pipeline

What is a pipeline?

A pipeline is the basic path that a shot, or a portion of a shot can take from
start to finish.

Example 1: Film I/O Pipeline:

¡ Scan film into computer using film scanner.
¡ Convert images to all resolutions/formats for production (TV res for

animation, 1k and 2k for comp).
¡ Put images in logical location.
¡ Notify appropriate parties.

Example 2: Modeling Pipeline:

¡ Take physical sculpture and trace contour lines around model
¡ Digitize countours into computer.
¡ Build rough surface based on mesh.
¡ Refine, and deliver final subdivision or nurbs surfaces.

Example 3: Shot pipeline.

¡ Bring scanned plates online
¡ Matchmove a camera to the plates
¡ Build relevant 3D data (floor plane, interaction geometry).
¡ Animate creatures to the scene
¡ Add FX
¡ Render separate elements
¡ Composite all elements together.
¡ Write final frames to film.

Obviously building a facility which runs well requires smaller pipelines which fit
into the broader structure of creating a shot. In this course, were going to
focus on the character animation, or creature rig aspect of the pipeline:

l Building a skeletal structure that makes sense.
l Developing controls for that skeletal structure.
l Delivering the motion to the skinning system in a consistant way.

Where Does the Animation Rig fit in the
Pipeline?

In order to determine how were going to build our puppets to fit into the
production pipeline, its important to know what part of the pipe they are, and
what their relationship is with other aspects of the pipe. To do this, you need
to determine the following things:

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

¡ What type of motion are you going to be dealing with? Hand keyed
animation? Motion capture? Procedural? A combination of those?

¡ What packages are involved in the process? Are they all Maya based, or
do you have to integrate with Houdini, Softimage, Mirai, etc.

Basically you want to ask yourself, How am I going to get this motion to that
skinned creature?.

The image above shows a simplified flow of motion through the skinning
system at Weta Digital. We had at least three different types of motion being
delivered through the system: proceduraly generated, motion capture, and
keyframe animated.

In order to keep things consistant and easy to keep track of, we knew that we
would need one method of transferring animation from the motion capture, the
rigs, and the procedural system to our skinning system.

There are basically two methods for transferring animation from a
creature rig to a skinned creature:

¡ Control based
¡ Skeletal based

Control Based Animation Transfer

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Animation gets copied from the animator controls, and applied to those same
controls on a more complicated skeleton.

l This setup usually involves a few resolutions of a creature:

¡ Low resolution, easy and fast to animate.. usually a body control, arm
and leg controls, and a head control.

¡ Medium resolution, still somewhat quick to animate, but has more
detail.. fingers, toes, eyes, facial, etc. Basically everything you need
about 90% of the time

¡ High resolution. This has everything on the creature you could possibly
animate maybe even all the skinning is applied. This is a slow creature
to move, but you can control every aspect of it.

Skeletal Based Animation Transfer

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Animation gets copied from the bones themselves, to a creature rig which is
driven by the same bone structure.

l Any control can be applied to the skeleton, as long as the enveloping and
puppet models have the same controls the animation will come across.

Which to use?

l Both method work fine, and have been used sucessfully in many productions.
Which method you choose depends on what the pipeline is you need to use.

l A benefit to the control based animation transfer is that the animator can
tweak the final skin of their creature with the same controls they use to
animate with. They can at any point make those fine adjustments, always
knowing exactly what theyre going to get.

l With the skeletal based animation system, once the skeleton is defined the
animator and td can do whatever they want to the control structure, and the
animation will always come across correctly. This is extremely important if you
have a creature that needs different setups depending on the situation theyre
in. You only have to build ONE muscle model, but you can have 15 different
control structures depending on whats needed. Converseley, you can have 47
different muscle models with fixes for certain angles (if necessary), and as
long as the skeleton is the same you can take the animation across.

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

II. Defining the "Creature" (step by step)

What is a creature?

l In order to be able to consistenly work with your animation rig and muscle model,
it's important to define what the "creature" is.

l The "creature" can be anything, really, as long as it's easily accessable and you
can keep track of it. It's a handy place to keep notes about the setup, keep track
of version numbers, even animation tips.

l At Weta we had a specific node which was our "creature" node. That was the
parent of all the animation controls in the rig, and of the entire muscle model in
the muscle setup. It allowed us to keep things neat and tidy when working with
50 characters in the scene.

l The creature node was also used to point to the ASF which was represented by
that character. Because all our animation is being transferred using ASF/AMC,
we need to know what ASF is being used (sometimes asf's would change for a
creature).

jsDefineCreature.mel script

This script allows you to define which controls are going to be exported using
jsMovOut, or imported using jsMovIn.

¡ Bring up the interface by typing "jsDefineCreature" in the script editor.

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

1. All the "creatures" in the scene.

2. Add a new creature to the scene.

3. Remove a creature from the scene.

4. All the connected objects for the selected creature.

5. Add selected objects to the current creature

6. Remove highlighted objects from the current creature

7. Select the highlighted objects.

Example:

¡ Load lrKeithAnim.mb
¡ Bring up jsDefineCreature.
¡ Notice how there's a lrKeith creature in the scene.
¡ Now we're going to add a "creature" for the platform.
¡ Click Add Creature to create a new creature.
¡ Call it "platform".
¡ Highlight platform.
¡ In the outliner, select platform_twist, platform_tilt1, platform_tilt2.
¡ Click Add Objects.

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Notice how the platform attributes are all shown in the UI. It will add
all keyable attributes.

¡ Select the attributes we don't want and remove them by clicking Remove
Objects.

Now we have a platform creature!

jsMovOut.mel script

This script allows you to take the animation from a creature and write it out as
mov data.

Use this script whenever you want to export frame-by-frame animation from a
creature to a mov file.

Example:

¡ Load lrKeithAnim.mb

This is blocking motion of keith attempting to jump onto a pillar of
blocks. (view the lrKeithJumping.avi)

¡ Bring up jsMovOut.
¡ Select the lrKeith.

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

¡ Click Export MOV
¡ Enter the name of a mov file.

Maya will now export the information on those controls frame by
frame.

jsMovIn.mel script

This script allows you to import the animation from a mov file onto a creature.

Use it when you've exported animation from a creature and you want to import it
onto another creautre.

Example:

¡ Open mrKeithSkel.mb

This is the medium resolution of the Keith puppet.

¡ Run jsMovIn.
¡ Pick mrKeith.
¡ Click Import Mov.
¡ Choose the mov file you generated from above.

This will now import the motion onto this medium resolution version of
keith!

III. Defining a "type" of node (step by step)

Creating a "type" of node

The example of using jsDefineCreature, jsMovIn, and jsMovOut works
because we've defined what the creature is, and we can search our scene for all
the nodes of that type.

This is done by simply adding an attribute which we can search for.

¡ Create a locator, add an attribute called "Creature" of type string.
¡ Select Create > Locator
¡ Select Modify > Add Attribute;
¡ Name the attribute Creature, and make it type String;

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Finding a creature

Now that we know that our "creatures" are actually locators with an attribute on
them called "Creature", it becomes really easy to find. Using mel, we can type
the following command:

ls -type spaceLocator;

This will return all the locators in the scene.

You can use the attributeQuery command to find out of an attribute exists on a
certain node:

attributeQuery -exists -node <node> <attribute>;

Throw this whole thing into a loop, and you can easily find all the locators in the
scene with the attribute of name Creature:

string $locators[0];
string $creatures[0];
int $c = 0;

// get the list of locators
$locators = `ls -type spaceLocator`;

// cycle through each locator
for ($loc in $locators)

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

{

// check and see if the attribute exists
if (`attributeQuery -exists -node $loc "Creature"`)
{

// if the attribute exists, add $loc to the list of creatures
$creatures[$c] = $loc;

// increment $c
$c++;

}

}

print $creatures;

If you want to get really tricky, you can throw the whole thing into a procedure
called "findCreature", and add an option for a "type" of creature.

global proc string [] findCreature (string $type)
{

string $locators[0];
string $creatures[0];
int $c = 0;

// get the list of locators
$locators = `ls -type spaceLocator`;

// cycle through each locator
for ($loc in $locators)
{

// check and see if the attribute exists
if (`attributeQuery -exists -node $loc "Creature"`)
{

// if the attribute exists, check and see if
// the creature is of the right type
$attrType = `getAttr ($loc + ".Creature")`;
if ($type == "")
{

$creatures[$c] = $loc;

// increment $c
$c++;

}

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

else if ($type == $attrType)
{

$creatures[$c] = $loc;

// increment $c
$c++;

}

}

}

return $creatures;

}

Finding nodes which relate to the creature

Quite frequently, you'll need to execute scripts based on certain nodes of a
creature. For example, at Weta, we had scripts to automatically switch between
fk and ik using a single (or a few) button clicks. To do that, we had to know which
controls were being used for fk, which for ik, and what attribute was dealing with
the constraints. In the case of jsMovIn and jsMovOut, we need to know which
nodes and attributes we're going to be exporting.

This can be done using names, but 99.9% of the time, the name you determine
for a node is going to be changed, either through importing, or another object
being named something similar.

Using connections to derive names from your scripts is really the only way
to insure that you're not going have your scripts break each time they're
executed.

To do this, add an attribute which is easily found by you, and is of type message.
It can be multi, or not. It depends on what you're using it for.

You are going to Add the attribute, make the connection, and use
listConnections to determine what the names are.

l Adding the attribute:

// add a message attribute to a node
// addAttr -ln <attribute name> -at "message" <nodeName>;
addAttr -ln leftHand -at "message" troll;

// add a multi message attribute to a node
// addAttr -ln <attributeName> -at "message" -multi -im false <nodeName>;
addAttr -ln exportBones -at "message" -multi -im false troll;

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Connecting to the attribute

// connect to a single message attribute
// connectAttr -force <node.message> <nodeName.attribute>
connectAttr -force leftHandCtrl.message troll.leftHand;

// connect to a multi message attribute
// connectAttr -force <node.message> -nextAvailable <nodeName.attribute>
connectAttr -force -nextAvailable torso_1.message troll.exportBones;
connectAttr -force -nextAvailable torso_2.message troll.exportBones;
connectAttr -force -nextAvailable torso_3.message troll.exportBones;

l Listing the connections

// list the connection without the attribute (just return the node name)
// listConnections -plug false -destination false -source true
// <nodeName.attribute>;
listConnections -plug false -destination false -source true troll.leftHand;
// Result: leftHandCtrl //

// list the connection WITH the attribute
// listConnections -plug true -destination false -source true
// <nodeName.attribute>;
listConnections -plug true -destination false -source true
troll.exportBones;
// Result: torso_1.message torso_2.message torso_3.message //

Note: When you use listConnections, the result always comes back as a string
array.. even if there's only one element being returned.

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

III. Orienting Joints

Joint orientation

Joint orientation doesn't seem to get a lot of attention, but it's extremely
important.

Maya's joint structure is defined different from other programs, it's not segment
based, it's joint based, meaning that a skeleton segment is actually made up
of two locations, as apposed to an orientation and a length.

The auto-align tool is handy when first creating joints for making sure they're
somewhat aiming at their children, but they don't actually fit the bill when really
looking to control a joint structure.

For example, if you're building a characters back and you use the auto-
orientation tool, maya re-orients the joints each time you click the mouse, and
doesn't actually draw them all in the same orientation. Also, if you move the
joints around the orientation doesn't change.

You can always use the joint -e -oj xyz command to re-orient the joints, but it
doesn't give you quite the control which is necessary when building
complicated characters.

Building a back with standard Maya Joint
Orientation

l Select the joint tool.

In the settings, make sure Auto Joint Orient is on.

l Create a series of joints which represent the s-curve of a back (6 to 8 joints).
l Display the local rotation axes for each of the joints.

You can see that the joints are indeed aiming at their children, there's no
consistancy as to how the joints are oriented.
(Display > Component Display > Local Rotation Axis).

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

This can be a problem in two areas:

1. If you modify the joint positions, the joints no longer are aiming at their
children. (fixable with the joint -e -orientJoint command).

2. If you rotate all the joints in Z, some joints rotate forward, others rotate
backwards. This can be confusing for animators.

The solution is to come up with a way of re-orienting the joints with control as
to what the joint is aiming at, and what it's up vector is.

Manually Re-orienting a Joint in Maya.

l Select the joint tool.
l Create two joints, one at 0, 0, 0, and the other at 5, 0, 0;
l Display the local rotation axis for the joint.

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Move the end joint somewhere off to the side.

Notice when the first joint is selected, it no longer aims at it's child, and
in fact if you rotate it in X, whichis what used to cause the joint to spin
around it's axis, it no longer does so. This joint has become extremely
difficult to control.

To solve this, we're going to manually force joint1 to aim at it's child.
Note, in some cases using the joint -e -orientJoint command may work
fine. In many cases, however, the technical director will want more
control as to the up vector of the joint. The following technique will
provide exact control.

l Unparent joint2 from joint1.

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Open the attribute editor for joint1 and make sure the jointOrient is set to 0 0

0, and that rotate is 0 0 0;
l Create a locator to be used as the upVector. Place is somewhere above

joint1.

Now you are going to make an aimConstraint.

l Select joint2 then joint1.
l Select Constrain > Aim > Option.

Set the following values:

Aim Vector: 0 1 0
Up Vector: 0 0 1
World Up Type: Object Up
World Up Object: locator1

l Click Add/Remove.

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Notice the joint is aiming at the child. If you want to change the upVector for
the joint, you can move it wherever you like, until you're happy with the
orientation.

l Delete the aimConstraint and the locator.
l Copy the rotation values from joint1 to the jointOrient values.

setAttr joint1.jox `getAttr joint1.rx`;
setAttr joint1.joy `getAttr joint1.ry`;
setAttr joint1.joz `getAttr joint1.rz`;

l Now set all the rotations to 0.
l Parent joint2 to joint1 again. The joint has now been re-oriented to aim at the

child joint.

Automatic re-orienting of joint(s)
(jsOrientJoint.mel)

Obviously the previous process is too time consuming to perform all the time.
Thus, we can use jsOrientJoint for 95% of the cases where it's necessary to
re-orient the joints.

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Recreate the 6 to 10 back joints as shown above.
l Display the local rotation axis for each of the joints.

l Bring up the jsOrientJoint window by typing jsOrientJoint in the scriptEditor.

This interface has two buttons, one will align the selected joints with their
Z axis pointing up, the other with the Z axis pointing down.

·

l Select the first joint (joint1).
l Click Z Up. The joint will re-orient so the Z is aiming up

l Select the next joint and this time click Z Down to keep the Z axis going the

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

same direction.
l Continue this, choosing Z Up or Z Down until all the joints are aligned the

same direction. In the image below, you can see the difference between the
orig joints and the newly oriented joints.

AWGUA Maya Master Class August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

IV. Animation Control Concepts
Quite frequently you will be setting up animation rigs for other people to animate,
not for yourself. Because of this, it is imperative that you control what the
animator can and cannot touch, and give them easily recognizable controls. It's
hard enough to animate a convincing creature, let alone spend extra brain power
trying to figure out what to pick, where all those extra keys are coming from, and
why in the world your creature's left arm is flying off into never-never land.

Iconic Representation

The first step in making things easy to select is giving making the controls easy to
understand. If you have a creature that has all the controls visible just as IK
handles or selection handles, the screen can become extremely confusing.

In the images above, you can see that in the setup on the left is a little bit more
difficult to understand what's going on. If an animator were asked to pick the full
body control, which one would they choose' In the image on the right, we've
clearly defined which controls are which. If we keep consistent in making these
controls the animator always knows what control is what.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

In addition, you'll also notice that the two sides of the controls are different colors.
This again helps the animator differentiate between left and right sides of the
character.

To change the color of a control, use display layers.

Limiting Selection

The next step in making sure an animator doesn't grab the wrong controls is
limiting what they can select. Take all the objects you don't want the animators
touching, and put them in layers which are set to reference mode. This means
they're visible, and they show up in shaded mode (unlike templated objects), but
you can't select them.

Limiting Keyability

For all the nodes they're animating, it's important to set any attributes you don't
want them keying to be non-keyable. (Window > General Editors > Channel
Control). It does the animators no good to be dealing with five times the number
of anim curves they need to.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Rotation Order

The next step in making sure the creature can move around is to check the
rotation orders on the objects they're animating. This is the order that the
rotations get evaluated on a node. An easy way to understand how this works is
to actually use separate nodes to control the rotation of an object.

In the image above you can see that we have three different objects available for
rotation, rx, ry, and rz. They are currently in the default evaluation order that maya
works in (xyz).

l If we rotate the rz you will see the other rings rotate with it.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Now, if we rotate ry you will see that rz stays where it is, and rx moves.

l If we rotate rx, both ry and rz will stay where they are.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

You can see the same result if you use the gimbal mode when selecting an object
and rotating it.

If we take a look at a common example of where the default rotation order can
screw up a character, let's set the rotation values back to 0 0 0.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Now we want to rotate the character around in Y so he's facing the a different
direction.

l We just rotated ry 90 degrees. You can tell pretty quickly that we're in trouble with

rotation orders. Right now the character can keep twisting in Y, and it can bend
forward, but it can't lean to the side.

If we decide to change the rotation orders instead so ry is evaluated first, then we
eliminate the problem of not allowing our creatures to turn around.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l You can do the same thing with changing the rotation order for an object in Maya.
In this case, you would change the rotation order in the Attribute editor for the
cube to zxy.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Extra gimbal control

While changing the rotation orders can certainly help remove some of the
problems with gimal locking, it can't remove them 100%. No matter what rotation
order you choose for a control, you may run into a gimbal lock problem at some
point. (Imagine a character falling from a great height.. if he has to tuble, twist,
and spin.. at some point the animator may want him to turn in some direction you
haven't planned on.)

Due to this, it's sometimes necessary to add an extra "gimbal" control for the
animators to work with.

l Load lrKeithGimbalHand.ma

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

As you can see, we can't rotate Keith's hand up towards his face due to
running out of available rotations.

l We will create an object which the animator can recognize as an extra "gimbal"
control. An implicit sphere works well for this.

createNode implicitSphere;

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

When you create the implicitSphere in this manner, it selects the shape, not
the transform.

l Pickwalk up to get the transform.
l Rename it gimbalCtrl.
l Parent gimbalCtrl under lr_l_handCtrl.
l Point and orient constrain the gimbalCtrl to lr_l_handCtrl to get it in the right

position.
l Apply a freezeTransformations.
l Change the gimbalCtrl's radius to make it more visible.

This is accessable through the attribute editor.

l Parent all the objects which were under the orig control to the new gimbalCtrl.
l Lock and make unkeyable all translate, scale, and visibility attributes on the

gimbalControl.
l If desired, you can make a gimbalCtrl display layer for all the gimbal controls.. that

way the animator only sees them when they need to.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

It's also highly useful to create a script to generate the gimbal control. This will
allow you to add the control to any node the animator has selected, giving them
the opportunity to add them only where needed.

// find out what objects are selected
string $objs[0];
$objs = `ls -sl`;

// for each object selected, greate a gimbal control
for ($ob in $objs)
{

// create a gimbal control
$gimbalShape = `createNode implicitSphere`;

// get the transform
$parents = `listRelatives -fullPath -parent $gimbalShape`;
$gimbalTransform = $parents[0];

// rename the gimbal node to match the object
$gimbalTransform = `rename $gimbalTransform ($ob + "_gimbal")`;

// add a "radius" attribute to the transform and attach it to
// the shape's radius attribute. This will allow us to
// scale the control
addAttr -ln "radius" -at double $gimbalTransform;
setAttr -k 1 ($gimbalTransform + ".radius");
connectAttr ($gimbalTransform + ".radius") ($gimbalTransform +

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

"Shape.radius");

// move the gimbalTransform to the same place as the control
// using point and orient constraints
select $ob $gimbalTransform;

$cmd = ("pointConstraint");
$pc = `evalEcho $cmd`;

$cmd = "orientConstraint";
$oc = `evalEcho $cmd`;

// get the children of the orig control
$children = `listRelatives -f -c -type transform -type joint $ob`;

// parent the children under the gimbal control
parent $children $gimbalTransform;

// parent the $gimbalTransform under the gimbal control, in
// order to make sure we still get the right name for
// $gimbalTransform, select it, parent it,
// and then grab the name of the selected object
select $gimbalTransform;
parent $gimbalTransform $ob;
$sel = `ls -sl`;
$gimbalTransform = $sel[0];

// delete the constraints
delete $oc $pc;

// lock translate, scale, and visibility of the gimbal control
string $attrs[] = {"tx", "ty", "tz", "sx", "sy", "sz", "v"};
for ($at in $attrs)
{

setAttr -l 1 ($gimbalTransform + "." + $at);
setAttr -k 0 ($gimbalTransform + "." + $at);

}

}

// select the orig objects
select $objs;

Add Customized PickWalking Tools

Because there is so much to think about when animating, it can be extremely

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

helpful for the animator to have tools to easily move between controls without
having to hunt and peck for what they're going to select, and without having to go
to a separate interface.

PickWalking is a great way of doing this (hitting the arrow keys to step to the
different controls), however, it is extremely rare that the next node the animator
will want is going to be anywhere near the one they have selected in the
hierarchy. Thus, you can use jsPickWalk to provide that fucntionality.

jsPickWalk does performs it's navigation through connections as opposed to
hierarchy, so there is no limit as to what the next object the animator is going to
select.

jsPickWalk comes with two different methods of use, definition and navigation.
When defining what the animator is going to pickWalk to, you can use the
jsMakePickWalkUI to easily define what is going to be selected. To navigate, the
command jsPickWalk <dir> to navigate to either up, down, left, or right, based
on the current selection.

Defining the navigation

¡ Bring up the interface by sourcing jsPickWalk, and then executing
jsMakePIckWalkUI

source jsPickWalk; jsMakePickWalkUI;

¡ The interface will come up looking like the following image:

The Current Mode section defines what mode the interface is in.

In Creation mode, clicking on the middle button will put the selected object
in the middle, and show the relationships already defined in the up, down,
left, and right buttons. Selecting another object and clicking on one of
those buttons will define that object as the target for pickWalking in that
direction.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

In Navigation mode, clicking on one of the up, down, left or right buttons
will place that object in the middle and re-draw the layout based on the
newly selected object. You can easily check your navigation this way

Navigating
To navigate, you can either use the interface shown above, or map the
navigation to hotkeys using the following commands:

jsPickWalk "up";
jsPickWalk "down";
jsPickWalk "left";
jsPickWalk "right";

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

V. Automatic/Keyable
 Shoulder Solution

Why need one?

l The clavical is an extremely important aspect of the character, which quite
often gets overlooked. It's motion is integral to creating realistic characters.

l Because of the tight deadlines, and the amount of revisions that are getting
done, reducing the amount of animating that the animator needs to do is
extremely benifitial - an automated solution provides an answer to this
problem.

l Animators need to have utmost control over what it is they're animating, thus a
keyable solution is absolutely necessary.

l Coming up with a solution which works for FK is easy, simply rotate the
shoulder joint based on the rotation of the upper arm. However, when you try
and do something like that for an IK arm, it doesn't quite work as well. You end
up with a cycle. (load shoulderNotWorking.mb to see an example of how this
doesn't work)

The following solution provides a control which gives the animator the ability to
key the automation on and off, animate on TOP of the automation, and even
provide a percentage of influence.

Creating the Control Structure

Given a simple torso, clavical, arm structure, create the necessary
additional controls.

boneStructure_done.mb
boneStructure_start.mb

Load boneStructure_start.mb

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Duplicate l_up_arm and parent the duplicate under torso_4.
l Rename the duplicate hieararchy l_up_arm_ik, l_low_arm_ik, l_wrist_ik.
l Delete all the extra geometry under the l_up_arm_ik hierarchy.

l Create a joint chain which will be used to aim at the l_low_arm_ik elbow. It

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

should start at l_shoulder, and end at l_low_arm_ik.
l Name these joints l_shoulder_aim and l_shoulder_aim_end.

l Orient the joint so it's Z is pointing up using jsOrientJointUI, then decrease
the ty value of l_shoulder_aim_end until it's located roughly around the same
location as l_up_arm (about 5).

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Parent l_shoulder_aim under torso_4.

Generate ikHandles for the joints

l Choose the IK Handle tool and bring up the option box.

Set the solver type to ikRPsolver.

l Create an ikHandle for l_up_arm to l_wrist, and another one for l_up_arm_ik
to l_wrist_ik.

l Parent both ikHandles under l_wristCtrl.
l Make the l_elbowCtrl a poleVectorConstraint for each of the ikHandles.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Bring up the option box for the ikHandle tool again and change the Solver
Type to ikSCsolver.

l Create an ikHandle from l_shoulder to l_up_arm.
l Parent the ikHandle under l_shoulderCtrl.
l Create an ikHandle from l_shoulder_aim to l_shoulder_aim_end.
l Parent this ikHandle under torso_4, and name it l_aim_ikHandle.

Create the constraints for the l_aim_ikHandle.

l Create a locator, name it l_auto, and constrain it to l_low_arm_ik
l Create another locator, name it l_orig. Put it in the same position as

l_shoulder_aim_end but do not constrain it.
l Parent both locators under torso_4.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Select both locators, and select the l_aim_ikHandle, and create a
pointConstraint.

l Add an attribute to l_shoulderCtrl called "autoOrient".

Give it a Min value of 0,
Max of 1,
Default of .6.

l Using the connectionEditor, connect l_shoulderCtrl.autoOrient to the
pointConstraint's l_autoW# attribute.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l In the Hypergraph, create a reverse node, and connect
l_shoulderCtrl.autoOrient to the inputX of that node, then connect the
outputX to the pointConstraint's l_origW# attribute.

l Parent l_shoulderCtrl to l_shoulder_aim
l Unparent the ikHandle which is under l_shoulderCtrl,
l Perform a freezeTransformations on l_shoulderCtrl, and re-parent the

ikHandle.

Now when you rotate the handle wrist control around, you can see how the
shoulder will follow the motion of the elbow. You can control how much this

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

following action happens by animating the autoOrient attribute on
l_shoulderCtrl.

Finishing up the Controls

Hide unecessary nodes & Create appropriate display layers.

l Hide all the ikHandles.
l Hide the two locators.
l Create l_armCtrls display layer.
l Create untouchables display layer.
l Create aimCtrls display layer.
l Select all the joints that the animator shouldn't be touching, and put them in

untouchables.
l Select l_shoulder_aim, l_shoulder_aim_end, l_up_arm_ik, l_low_arm_ik,

l_wrist_ik and put them in ikCtrls.
l Select l_wristCtrl, l_elbowCtrl, and l_shoulderCtrl and put them in

l_armCtrls.
l Set untouchables and ikCtrls to reference.
l Set a nice color for l_armCtrls.

Get rid of Unecessary Attributes

l Lock and make unkeyable all rotate, scale, and the visibility attribute for
l_elbowCtrl.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Lock and make unkeyable scale and visibility for both l_shoulderCtrl and
l_wristCtrl.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

VI. REALISTIC FOREARM TWIST

What is a "realistic forearm"

When most people set up a forearm/wrist control in Maya, they do one of two
things:

¡ Forget about doing anything special for their character's forearm and
end up with "candy-wrapper" hands.

¡ Create a joint in the middle of their lower arm and put the twist there,
using a lattice deformer to deform the skin.

While the second option will work in many cases, if you're creating a realistic
character, it's important to follow what's really happening under the skin.

In actuality, the twist which happens in your forearm is caused by the
movement of two bones, the radius and the ulna.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

¡ The ulna starts at your elbow, and travels down to the top inside of your
wrist (it's that little bump on your wrist where your pinky is).

¡ The radius also starts up near your elbow and reaches down to the
other side of your wrist.

When you twist your wrist, the ulna moves slightly to keep itself connected to
the end your wrist, and the radius rotates over the ulna, causing the twisting of
the muscles. This is how your elbow stays in one place while you wrist can
twist around.

Creating the Control Structure

Moving the raidus and ulna correctly based on wrist rotation

forearm_start.mb

l Load forearm_start.mb

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Create joints for the radius and ulna.
¡ Draw a joint chain going from the elbow of the ulna down to the end.
¡ Name it ulna_joint, and parent the ulna geometry under it.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

¡ Draw a chain going from the place where the radius touches the ulna
(near the elbow) to the end of the radius.

¡ Name it radius_joint, and parent the radius geometry under it.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

¡ Move the joints if you need to to get them in the desired places.
¡ Use jsOrientJoint to make sure the joints are all oriented correctly

l Create an ikHandle for the radius joint.
l Parent the ikHandle under wrist.

Now when the wrist rotates, the radius will rotate with it.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Hide the ikHandle.
l Create an ikHandle for the ulna joint.
l Parent the ikHandle under the wrist.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Notice when the wrist rotates, the elbow breaks. This is because the ulna
doesn't actually twist, it only moves a bit to keep the radius attached.

To keep this from breaking, instead of parenting the ikHandle, we'll point
constrain it to a locator in the same place, and then parent the ikHandle under
low_arm.

¡ Create a locator.
¡ Put it in the same location as the ikHandle
¡ PointConstrain the ikHandle to the locator.
¡ Parent the locator under wrist.
¡ Parent the ikHandle under low_arm.
¡ Hide the locator.

Now rotate the wrist and see how the arm behaves much better.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l The next step is to parent the joints under low_arm. Now you can rotate
low_arm and the wrist and everything will behave correctly.

Notice the wrist is working correctly for twisting in Y, however, if you twist it in
X or Z, you get a little bit of movement in the forearms. In a real arm, there
would be little to no motion here. If you want to replicate that behavior, you
need to create another "wrist" to parent the radius and ulna controls under.
Then connect the rotateY of your animated wrist to the rotateY of that new
wrist.

l Duplicate wrist.
l Name it forearm_wrist.
l Delete all the children of the duplicated wrist.
l Parent ikHandle1 and locator1 to the forearm_wrist.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Using the conneciton editor, connect the rotateY of wrist to the rotateY of
forearm_wrist.

l Hide forearm_wrist.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer chlieifer, and Weta Digital LTD.

VII. FK/IK BACK SOLUTION

WHY COME UP WITH A BACK SOLUTION?

What does the back need to do?
Some animators like to work in an FK mode of using the back, others prefer
IK.
The animator should be able to move the hips and shoulders independently of
eachother.

l Example: Animate a character turning around in a circle as if he's going to
wrestle. After the blocking is done, you want to be able to keep the shoulders
somewhat steady, while allowing for the hips to move independently.
To make sure the back is easy to manipulate, it should stretch to meet the root
and shoulder controls.

CREATING THE BACK

Notes on joints created for the back

l Use the joint tool to create a common s-curve back shape. The more joints
you use, the better, as these joints are merely going to be a representation of
the curve used to manipulate them.

l Orient the joints correctly using jsOrientJoint. This script will allow you to
make sure the joints all are oriented towards eachother, and facing the correct
direction. It's extremely important for the joints to ONLY have translations in Y,
as this is the axis we're going to be scaling them in.

Generate splineIk for the back joints

backSolver_start.mb

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Open the file backSolver_start.mb .

This file has a back already generated using the above method, with
geometry parented underneath so you can see what the back is doing
when it's rotated.

l Choose the IK Spline Handle tool and bring up the option box.

Auto create Curve to On,
Root on Curve to On
Auto Simplify Curve to On.
Auto parent curve to off.
Set Auto simplify curve to 2.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Choose L_5 and C_1. This will create an ikHandle and a curve from the
lumbar joint to the cervical. Name the curve "back_curve", and the ikHandle
"back_ikHandle".

l Hide the ikHandle.

Create clusters for the curve.

In order to move the back around, we're going to create two main controls. A

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

shoulder control and a hip control. These controls will move the curve through
the use of clusters.

l Create a cluster for each cv on the curve.

Create "stretchyness" on the joints.
We need to allow the joints to stretch in order to make the control work
correctly. To do this, we measure the arcLength of the curve. Divide the
original arcLength by the current arcLength, and multiply that result by each of
the joint's original translateY attributes. This value will be what the joint's new
translateY will be.

l Select the curve and type:

arclen -ch 1;

This adds a node called curveInfo1. This node contains the arclength of
the curve (a aproximation of the true length of the curve).

Note: If you want to simplify the display of the hypergraph as shown
below, you can use the Show > Show Selected Type option with nodes
that are selected.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Create a multiplyDivide node which will measure the length of the curve and
output a scale value (the scale of the curve relative to it's initial length).

l Name the multiplyDivide node "back_scale".
l Connect the arcLength value of the curveInfo node and put it in the input1X of

the multiplyDivide node.

l Take the current arcLength value of the curveInfo node and put it in the
input2X of the multiplyDivide node.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Set the Operation attribute to "Divide".

This will give you the scale. When the two values are the same, the
"scale value" will be 1. When the curve is half it's length, the scale will
be .5. When it's twice it's length it will be 2. We're going to use this scale
value to adjust the torso joint translateY attributes.

We start stretching from L_4, because you don't want to change the
translateY on the first joint (it will cause the joint to go off the curve).

l Create another multiplyDivide node.

This one will be used on L_4 (call it L_4_scale).

l Copy the L_4.ty value and put it in L_4_scale.input2X.
l Connect the back_scale.outputX attribute to L_4_scale.input1X.

l Connect L_4_scale.outputX to L_4.ty;

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Now when you scale the curve, you should see L_4.ty changing.

Using jsScaleJointsByCurve
to Automate Back Scaling

To make this process easier, you can use the jsScaleJointsByCurve script
which will hook up the given chosen joints to the given curve.

l Bring up the jsScaleJointsByCurve interface by typing
jsScaleJointsByCurve in the script editor.

1. Curve to measure.
2. All the joints that are going to be scaled.
3. Add a joint to the list.
4. Apply the scale joint command.
5. Remove joints from the list of joints.
6. Close the interface.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Select back_curve and click sel in the "curve" area of the
jsScaleJointsByCurve interface.

l Select all the joints from L_4 through C_1.
l Click Add Joints In the jsScaleJointsByCurve interface.
l Translate the clusters around to see the back scale.

Create hip and shoulder controls.

To control the back, we're going to use a hip and shoulder control setup.

l Create two text curves, one "h" for hip and one "s" for shoulder.

l Rotate the controls 90 deg in Y so they face the correct direction.

l Label the "s" "shoulderCtrl".
l Label the "h" "hipCtrl".
l Move the pivot for shoulderCtrl to C_1.
l Move the pivot for hipCtrl to root.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Parent the top two clusters to the shoulderCtrl.
l Parent the bottom two custers to the hipCtrl.

Move the hip control and notice how the root doesn't move with it.

l Use jsConstObj to constrain the root to the hip control. (Select hipCtrl, select
root, type jsConstObj. Or, you can point and orientConstrain the root to the
hipCtrl).

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Now when you move the top two controls, you'll notice the back moves
around, aside from the middle cluster. This middle cluster is a stabalizing
control used mainly to make the FK part of the control more stable.

Create Stabalizing and FK controls

The stabalizing cluster is going to be constrained between the shoulder and
hip controls.

l Select the hipControl and the shoulderControl and the middle cluster.
l Use jsConstObj to constrain it to both of them.

jsConstObj is a mel script which will automatically create a point and
orient constraint for an object. It also ties the point and orient constraints
together, and adds attributes to the object being constrained to allow for
easier manipulation of the constraint weights.

Now create the joints which we're going to use to animate the back.

l Create three skeleton segments, one which starts at the root and goes 1/3 of
the way up the back, then another which goes 2/3 up, and the last which ends
at the neck (C_1).

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Use jsOrientJoint to orient the joints correctly.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Name the joints torso_1, torso_2, torso_3, and torso_3_end.
l Parent shoulderCtrl under torso_3_end.
l Parent hipCtrl under torso_1.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Make sure hipCtrl and shoulderCtrls are 0 0 0.
¡ For shoulderCtrls, unparent the children, select shoulderCtrl, perform

Freeze Transformations, and re-parent the children.

For hipCtrls we need to do something a little bit different. If you perform
a freeze transformations the same as done for the shoulder controls,
then the orientation of the hip control won't be aligned correctly with the
world.

¡ To fix this, unparent the hipCtrl children as you did with the
shoulderCtrl children.

¡ Group hipCtrl to itself to make a group above it, and rename that group
hipCtrlOrientGrp.

¡ Measure the jointOrientX attribute of the torso_1 joint and subtract that
value from 180.

This will give you the amount that you need to rotate
hipCtrlOrientGrp to get the hipCtrl to align correctly. For example,
use the following mel command:

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

setAttr hipCtrlOrientGrp.rx (180-`getAttr
torso_1.jointOrientX`);

¡ Now freeze transformations on hipCtrl, and re-parent the children.

l Create a "fullBody" control that can be used to animate the entire back, fk, ik,
and all. This can be a curve which is easily recognizable.

l Parent torso_1 to fullBody.

Add twist to the back

Currently the back will move around with the controls, but not when you try
and twist it. This next step will create the control for twisting the back in any
direction. Note: This technique will work with rotations up to 180 degrees. If
the back rotates past it, it will flip. However, It's not physically possible to
rotate your back past 180 degrees anyway, so this shouldn't be too much of
an issue.

l Create a joint structure which goes from the root to the neck, and then from
the neck to the top of the head.

l Name the joints "hip_orient", "shoulder_orient", and

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

"shoulder_orient_end".

l Use jsOrientJoint to orient the joints correctly. Set the rotation order on all of
them to xzy.

We're going to use the y rotation of "shoulder_orient" to drive the twist value of
the ikHandle.

l Create a ikSCsolver ikHandle from "hip_orient" to "shoulder_orient", name
it orient_ikHandle.

l OrientConstrain shoulder_orient to shoulderCtrl (use jsMakeOrient and
delete the pointConstraint).

l Make an expression on back_ikHandle that connects shoulder_orient.ry to
back_ikHandle.twist

(Note: you MUST do an expression for this. A direct connection breaks it).

back_ikHandle.twist = shoulder_orient.ry;

l pointConstrain the orient_ikHandle to shoulderCtrl.
l parent the orient_ikHandle and hip_orient to hipCtrl.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Add Stretch Warning Color

While this has lots of control to move things around, it's good to warn the
animator if they're taking things too far. You can do this using a "stretch"
warning color.

l Bring up the hypershade and select the boneShader.

We're going to use the incandescenceR channel to let the animator know if
they're stretching things too far.

l Select the incandescenceR channel in the channel box and click the RMB to
bring up the setDrivenKey dialogue.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Select the backCurve and bring up the hypergraph.
l Graph the dependency graph for the curveShape. Pick the back_curve_scale

and put it in the drivers column of the setDrivenKey window.

outputX is the item which is driving the scale. We'll use it to drive the
incandescenceR of the shader.

l Select those channels, and hit Key.
l Move shoulderCtrl up a bit until the back is stretched as far as you want to

allow it.
l Select the shader in the setDrivenKey window and in the channel box change

incandescenceR to 1.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

l Press Key.
l Move the control down so the back is compressed as much as you want it to

be.
l Change the incandescenceR to 1

l Press Key.
l Now alter the curves in the graph editor to give you just as much stretching as

you want to allow.

Clean everything up for the animator

l Assign all joints and controls which you don't want the animator to have

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

access to a display layer called "untouchables". These will be in reference
mode.

l Assign the torso controls to a displayLayer called "torsoCtrls". Color it in a
way that would make it easy to see.

l Assign the back cuve controls to a displayLayer called backCtrls;
l Turn on display handles for the joint-based torso controls.
l Check all rotation orders so they behave how you'd expect. (e.g. the ik

controls should be xzy so the body can rotate around in any direction).

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

VIII. Procedural Animation Rig

What is a "procedural animation rig"?

The idea behind the procedural animation rig is to provide automated and
consistent ways of creating and updating rigs. If the directory structure for
genering rigs is consistent, and you have mel scripts written to build controls
for the character, it's possible to make scripts which will build an animation rig
from the ground up in a matter of seconds.

Creating a procedural animation rig

Here are the basic steps one could take in building a rig for their character:

¡ Import the skeleton
¡ Import the geometry and parent it to the appropriate joints.
¡ Define the "creature"
¡ Add arm controls
¡ Add leg controls
¡ Add back control
¡ Add head control
¡ Save File.

These steps can easily be broken down into mel scripts and commands if the
locations for the files and the naming scheme for geometry and controls is
consistent.

For example, if you have previously defined in your environment the location
of all skeleton files as a global string $gSkelLoc, all geometry files as
$gGeoLoc, and the location to save the rigs as $gRigLoc, all you need to do
is determine which creature you're building the rig for and the script can easily
import the skeleton and geometry, combine them, and then save the file.

// get the creature
string $creature = "keith";

// define the global variables
global string $gBaseProject;
global string $gSkelLoc;
global string $gGeoLoc;
global string $gRigLoc;

$gBaseProject = "C:/myProject/";
$gSkelLoc = ($gBaseProject + $creature + "/skeleton/");
$gGeoLoc = ($gBaseProject + $creature + "/geo/");
$gRigLoc = ($gBaseProject + $creature + "/rig/");

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

Once you've defined where the files will sit, it's up to you how you locate them.
The easiest thing to do is to have the file always named the same, and linked
to the latest revision. For example, if you have 10 versions of the skeleton, you
should have 10 directories in the skeleton directory called "r#", and one file in
the directory called creature_skeleton.mb which is linked to the most recent
version. That way it's easy to find the most recent version, for humans and for
the script.

If the pipeline is set up correctly, you can just assume that the files are going
to be named as you're expecting and not need to perform a search for it. But
it's always good to check. To do that you can use the fileTest command:

// IMPORT THE SKELETON
$skeleton = ($creature + "_skeleton.mb");

// check and see if the file exists and is readable
If (!`fileTest -r ($gSkelLoc + $skeleton)`)
{

// it doesn't exist! Error out.
error ($skeleton + " in " + $gSkelLoc + " is not readable.\n");

}
else
{

// it does exist.. import it.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

file -import ($gSkelLoc + $skeleton);

}

Next we import the geometry using the same technique as above. Again, if the
geometry is created of individual pieces which have the same names as the
joints it makes it extremely easy to place them correctly on the skeleton. In the
case below, all the geometry is named "joint_mesh". So the geometry for the
root joint would be "root_mesh", and the geometry for the fingers would be
"finger_mesh".

Then if your geometry is named correctly you can run a script like the following
to parent it under the joints:

// PARENT THE GEOMETRY UNDER THE SKELETON

// find all the geometry
string $geos[0];
string $geo;
$geos = `ls -type transform ("*_mesh")`;

// for each bit of geometry, find the appropriate joint name and parent it.
for ($geo in $geos)
{

// use the substitute command to find the correct joint.
string $jointName;
$jointName = `substitute "_mesh" $geo ""`;

// check and make sure the joint exists
if (!`objExists $jointName`)
{

warning ($jointName + " doesn't exist.. skipping..\n");

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

}
else
{

// parent the geo under the joint
parent $geo $jointName;

}

}

Now that all the geometry is parented correctly, you can define the creature
using the methods shown in the previous lesson. The steps are as follows:

¡ Create a locator
¡ Add a "Creature" attribute to the locator.
¡ Add a multi attribute to connect the joints you want.
¡ Connect the joints/controls necessary to the attribute.

Once the creature is defined you have a good low-resolution version of your
creature. It can be used for lighting, quick playblasts, rotoscoping, etc. It
doesn't have all the nifty controls your final animation rig will have, but it does
have the joints which will be driving the skinned version, so it can take
animation just as the muscle model can take animation. It's a good idea to
save this version of the file as a low-resolution lighting rig.

Now we start to add the controls. You can easily use mel commands to
perform this, and if you have a consistant setup for how your creatures are
generated, they can all take the same scripts. For example, if you have twenty
bipedal characters in your scene, you only have to write the script for
generating arm controls once, then you can apply it to each of your creatures.

After the controls are added, simply save the file as the most recent version
(make a new revision number, and save the file in that directory, then make a
link to it in the $gRigLoc directory).

Updating an animation rig

Creating the rig is only first step in having a procedural system. While it's nice
to be able to generate rigs by executing only a few commands, it's in updating
the rigs that using mel becomes extremely handy.

If you have 12 animators all working on similar characters, and you need to
make an update as to how some of the creatures are working, instead of going
to each animator's computer and manually updating the scenes, it's much
more time-effective to write a mel script to do it.

The trick to doing this is that joints and structures may not be named the same

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

as they were when you created the character (due to multiple creatures in the
scene). So a script which would work with one character in the scene:

ikHandle -sj l_up_arm -ee -l_wrist;

suddenly doesn't work anymore because now there are two creatures in the
scene, and maya doesn't know which l_up_arm you're talking about.

The fix for this is to know what creature it is you're wanting to update.

You can use the ls command with wildcards to find out all the instances of
l_up_arm:

string $l_up_arms[0];
$l_up_arms = `ls -long "*l_up_arm"`;

This will return the entire path of all the "l_up_arm"'s in the scene.

Next we get a full path for the creature that we want in the scene. We can use
the findCreature script created earlier to do this.

string $creatureFullPath = `findCreature "keith"`;

This will return the full path for the "keith" creature.

Note: If your production is going to have multiple creatures of the same
type in the scene, you can modify the script to perform whatever update
your making to each creature.

Once we have the full path for that creature, we can determine the top node in
the hierarchy. For example, if the keith creature's fulll path is:

"|topNode|runAround|keith"

we want to grab "topNode" from this. You can do that using the tokenize
command:

string $breakItUp[0];
tokenize ($creatureFullPath, "|", $breakItUp);
string $topNode = $breakItUp[0];

Note: The best thing to do here would be to define the above commands
as a procedure called "findTopNode" which takes a string and returns
the top node.

Now that we have the top node saved as $topNode, we can iterate through
the $l_up_arms and find the one which has the same top node.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

string $node;
string $l_up_arm; // this will be what we save l_up_arm as
for ($node in $l_up_arms)
{

string $breakItUp[0];
tokenize ($node, "|", $breakItUp);

// check and see if $breakItUp[0] is the same as $topNode
if ($breakItUp[0] == $topNode)
{

// we have a match! Put $l_up_arm as $node
$l_up_arm = $node;

}

}

Now we've found the correct $l_up_arm that we were looking for.

If you wrap all those commands into a single script called something like
"findSpecificNode" and took two arguments, the name of the node you're
looking for and the creature you looking for it under, you could then write
something which would look like this:

$l_up_arm = `findSpecificNode "l_up_arm" "keith"`;
$l_wrist = `findSpecificNode "l_wrist" "keith"`;

ikHandle -sj $l_up_arm -ee $l_wrist;

While this may seem like a pretty simple example, you can extrapolate this
idea in to replacing anything on a creature. Not only replacing or adding
controls, but modifying the current controls, copying animation from one
control to another, even performing a "creature check" to make sure the
animators haven't accidentally deleted anything.

By making sure you've build your rig in a consistant and procedural manner,
you're providing yourself with a flexible method of generating and updating
your creatures.

AWGUA Maya Seminar August 2001

Copyright Alias|Wavefront, Jason Schleifer and Weta Digital LTD.

	Outline
	Developing the Pipeline
	Defining the "Creature"
	Orienting Joints
	Animation Control Concepts
	Automatic/Keyable Shoulder Solution
	Realistic Forearm Twist
	FK/IK Back Solution
	Procedural Animation Rig

