Linking stomatal optimization and cohesion tension theory

 

 

Drought limitations to leaf-level gas exchange: results from a model linking stomatal optimization and cohesion tension theory

by Novick K. A., Miniat C. F., Vose J. M. (2015)

in Plant, Cell & Environment: DOI: 10.1111/pce.12657

ABSTRACT

We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought:

a) a ‘demand limitation’ driven by an assumption of optimal stomatal functioning,

b) ‘hydraulic limitation’ of water movement from the roots to the leaves, and

c) ‘non-stomatal’ limitations imposed by declining leaf water status within the leaf.

Model results suggest that species-specific ‘economics’ of stomatal behavior may play an important role in differentiating species along the continuum of isohydric to anisohydric behavior; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species.

We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought, and showed that many of those features were commonly observed in field observations of tree water use dynamics.

Direct comparisons of modeled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species, but that a hydraulic limitation likely applies in the case of an anisohydric species.

See the text: Wiley

Manipulation of stomata metabolism may represent an effective strategy for plant growth improvement

Guard cell-specific upregulation of sucrose synthase 3 reveals that the role of sucrose in stomatal function is primarily energetic

by Daloso D. M., Williams T. C. R., Antunes W. C., Pinheiro D. P., Müller C., Loureiro M. E., Fernie A. R. (2015)

in New Phytologist: DOI: 10.1111/nph.13704

Early View (Online Version of Record published before inclusion in an issue)

Summary

  • Isoform 3 of sucrose synthase (SUS3) is highly expressed in guard cells; however, the precise function of SUS3 in this cell type remains to be elucidated.
  • Here, we characterized transgenic Nicotiana tabacum plants overexpressing SUS3 under the control of the stomatal-specific KST1 promoter, and investigated the changes in guard cell metabolism during the dark to light transition.
  • Guard cell-specific SUS3 overexpression led to increased SUS activity, stomatal aperture, stomatal conductance, transpiration rate, net photosynthetic rate and growth. Although only minor changes were observed in the metabolite profile in whole leaves, an increased fructose level and decreased organic acid levels and sucrose to fructose ratio were observed in guard cells of transgenic lines. Furthermore, guard cell sucrose content was lower during light-induced stomatal opening. In a complementary approach, we incubated guard cell-enriched epidermal fragments in 13C-NaHCO3 and followed the redistribution of label during dark to light transitions; this revealed increased labeling in metabolites of, or associated with, the tricarboxylic acid cycle.
  • The results suggest that sucrose breakdown is a mechanism to provide substrate for the provision of organic acids for respiration, and imply that manipulation of guard cell metabolism may represent an effective strategy for plant growth improvement.

 See the text: Wiley

Stomata and water use efficiency in Aloe vera

Photo credit: SCIELO

Figure 1 Optical microscopy of a cross section of Aloe vera.

 (c) The epidermis, a stomatal complex, the substomatal chamber, and mesophyll cells (×1,120). (d) The cuticle and the stomatal complex (×1,500).

Relationships between leaf anatomy, morphology, and water use efficiency in Aloe vera (L) Burm f. as a function of water availability

by Silva H., Sagardia S., Ortiz M., Franck N., Opazo M., Quiroz M., Baginsky C., Tapia C. (2014)

in Rev. chil. hist. nat. vol.87  Santiago  2014 –

http://dx.doi.org/10.1186/S40693-014-0013-3

Figure 2 Scanning electron micrographs of leaves.: Images of the stomata of leaves of (c) T2 and (d) T4 plants, showing the difference in the amount of epidermal wax surrounding the stomata of the two plants; arrows indicate the ostioles (OS) of the stomata (×1,500). -http://www.scielo.cl/fbpe/img/rchnat/v87/13f02.jp g.
Figure 2 Scanning electron micrographs of leaves.: Images of the stomata of leaves of (c) T2 and (d) T4 plants, showing the difference in the amount of epidermal wax surrounding the stomata of the two plants; arrows indicate the ostioles (OS) of the stomata (×1,500). -http://www.scielo.cl/fbpe/img/rchnat/v87/13f02.jp g.

ABSTRACT

The effects of water availability were evaluated on the photosynthetic tissue anatomy in Aloe vera (L) Burm f. and its relationship with morphological, physiological parameters, and water use efficiency as a function of aerial biomass and gel production.

Plants were subjected to four levels of water availability equivalent to 20% (T1), 15% (T2), 10% (T3), and 5% (T4) of the atmospheric evaporative demand. The plants exhibited anatomical, morphological, and physiological responses to the different watering treatments.

The extreme treatments produced negative responses due to excess water in T1 and water deficit in T4. Treatments T2 and T3 elicited positive responses in cell characteristics and productivity.

Anatomical and structural characteristics were closely linked to physiology. Increased stomata number was negatively related to leaf length, width, and thickness (r = -0.85, -0.81, and -0.59, respectively) and to biomass production (r = -0.84), and positively related to the increase of cuticle thickness (r = 0.78). Treatment T2 showed the maximum efficiency of water use for biomass production (24.6 g L-1), which was closely related to cell size (r = 0.68) and number of stomata (r = -0.70).

Read the full article: SCIELO

The original publication: http://www.revchilhistnat.com/content/pdf/s40693-014-0013-3.pdf

Stomata in the fossil Quercus delavayi complex

 

Evolution of stomatal and trichome density of the Quercus delavayi complex since the late Miocene

by Hu Q., Xing Y. W., Hu J. J., Huang Y. J., Ma H. J., Zhou Z. K. (2013)

in Chin Sci Bull, 2013, 58,

doi: 10.1007/s11434-013-6005-x –

http://csb.scichina.com:8080/kxtb/CN/abstract/abstract511896.shtml

1, 3, 5, 7: This is the micro-morphology of fossil Quercus delavayi complex. 2, 4, 6, 8 Micro-morphology of extant Q. delavayi. Credit: ©Science China Press -  http://cdn.phys.org/newman/csz/news/800/2013/29-researchersf.jpg
1, 3, 5, 7: This is the micro-morphology of fossil Quercus delavayi complex. 2, 4, 6, 8 Micro-morphology of extant Q. delavayi. Credit: ©Science China Press –
http://cdn.phys.org/newman/csz/news/800/2013/29-researchersf.jpg

See description of this publication: Researchers found response of how plants respond to the changing environment in geological time

EXCERPT

Their results show that Quercus delavayi complex from different periods share similar leaf morphology, but differ with respect to trichome and stomatal densities. The stomatal density of the Q. delavayicomplex was the highest during the late Miocene, declined in the late Pliocene, and then increased during the present epoch. These values show an inverse relationship with atmospheric CO2 concentrations. Since the late Miocene, a gradual reduction in trichome base density has occurred in this complex. This trend is the opposite of that of precipitation, indicating that increased trichome density is not an adaptation to dry environments. These results are important to understand the relationship between plant evolution and climatic change which are important to predict the fate of current biodiversity in a changing environment.

See the text: Phys.org

Stomata in Schizostachyum (Poaceae)

 

Micromorphological study on the leaf epidermis of Schizostachyum nees from Vietnam

by

Tien T. V., Nghia N. H., Xia N. (2014)

in Vietnam Academy of Forest Sciences 2014/07

http://vafs.gov.vn/en/wp-content/uploads/sites/3/2014/07/So2-2014.jpg
http://vafs.gov.vn/en/wp-content/uploads/sites/3/2014/07/So2-2014.jpg

EXCERPT

INTRODUCTION

The usefulness of anatomical characters of the epidermis of bamboos in classification has been recognized for a long time. Brandis (1907) studied the structure of bamboo leaves with special reference to their upper (adaxial) and lower (abaxial) epidermis. Takenouchi (1941) published detailed account of Japanese bamboos with special reference to their morphology, anatomy and development.

The shape of epidermal cells and stomata are also characteristic and can often be of value for diagnostic purposes. Pattanath and Rao (1969) evaluated the importance of anatomical features in the identification of bamboos. They clearly show that the epidermal features arrange along with internodal structure and is very useful in differentiating them. Furthermore, several authors (Wu, 1962; Yang et al., 2008) have also studied the shape of stomata of Schizostachyum species from China. The detailed studies show that the shape of stomata on the lower epidermis covers finger – like protuberances (papillae). They come forth from the epidermal cells next to the epidermal cells and next to the guard cells. They are obvious variations in papillae forms and distributional patterns around the stomatal apparatus amongst the examined genera and species. Their significance is indicating taxonomic value.

The aims of this investigation are to provide the basis for an authoritative description of the anatomical structure of certain, to determine the variability an possible trends the stomata on the lower epidermis covers finger – like protuberances and hairs – microhairs between leaf blades of different species, which could be used in an identification for the Schizostachyum species from Vietnam.

3.2. The stomata and papillae

The stomata of all species on the lower epidermis are larger, elliptical in shape and arranged in 2 – 5 rows on each side of a vein. Each stoma covers finger – like protuberances (papillae) which come forth from the epidermal cells next to the epidermal cells, incline towards the center of stoma (Wu, 1962). There are obvious variations in papillae forms and distributional patterns around the stomatal apparatus amongst the examined genera, and their significance is to indicate taxonomic value (Wu, 1962; Yang et al., 2008). There are usually four triangular papillae overarching each individual stomata apparagus in all species, but otherwise, S. langbianense, S. aciculare, characterized by having four triangular papillae overarching each individual stomata apparatus and surrounded. However, four triangular papillae overarching each individual stomata apparatus are unequal in length amongst species. There are two types:

– The triangular papillae overarching are surrounded, which found in S. dullooa, S. nghianum, S. ninhthuanense and S. yalyense;

– The triangular papillae overarching are long, which found in some other species.

In addition to the papillae, the number of rows of stomata is also worth noting (Wu, 1962).

Read the full article: VAFS

Touch imprint cytology for stomata

Photo credit: JNSCI

Figure 1. Touch Imprint Cytology image of the underside of the leaf of the Mung bean plant. The leaf was pretreated with a solution containing aliquots of iron particle solution and Prussian Blue Stain. The vertical arrow points to the hair cell, known as a trichome, which are prevalent along the leaf edge. The interior of the underside of the leaf is populated by cells showing the characteristic morphology associated with stomata (horizontal arrows). Magnification 40X

Touch imprint cytology of leaves (Vigna radiata) with and without fine iron particles and Prussian Blue staining

by Scherlag B. J., Huang B., Zhang L., Sahoo K., Embi A. A., Po S. S. (2015 )

in Journal of Nature and Science, Vol.1, No.1, e32, 2015

Touch Imprint Cytology, in which tissues are applied to glass slides and stained, has become a useful method for the examination of various types of tumors that need to be studied and diagnosed peri-operatively.

In the present report, we used touch imprinting applied to leaves from the common Mung bean plant (Vigna radiata). Isolated leaves (n=100) were immersed in nano-sized iron particle solutions for 1 hour and the placed between 2 glass slide containing a small amount of aliquots of the iron particle solution plus a specific iron stain Prussian Blue. For comparison, leaves were immersed in deionized water and “sandwiched” between glass slides containing the same medium (n=10). After 12- 24 hour the tissues were peeled off the glass surfaces and examined by optical microscopy.

The experimental set, consistently showed outlines of cell types specific for the epidermal and underside of leaves. Specifically, guard cells surrounding stoma were prevalent on the underside of the leaf, whereas trichomes and cell walls of epidermal cells were noted on the upper surface. The control set showed only imprints of the leaf edges.

Using iron particles and iron staining solutions, touch imprints of several cell types found on the two leaf surfaces of the Mung bean plant were imaged. Evidence was presented that the lignin in plant cell walls have a strong affinity for iron and that inherent electromagnetic energy derived from metabolism may also contribute to the attraction of iron particles to imaging leaf cytology.

Read the full article: JNSCI

BIBLIOGRAPHY OF FOSSIL PLANTS

Alushi I., Veiz X. (2020) – Effects of air pollution on stomatal responses, including paleoatmospheric CO2 concentration, in leaves of Hedera helix – Albanian J Agric Sci 19(1): 21-28 –

Alvin K. L. (1974) – Leaf anatomy of Weichselia based on fusained material – Palaeontology 17(3): 587-598 – https://www.palass.org/sites/default/files/media/publications/palaeontology/volume_17/vol17_part3_pp587-598.pdf – (On our blog : https://plantstomata.wordpress.com/2022/03/01/stomata-of-weichselia-fossil/ )

Alvin K. L. (1976) – The conifers Frenelopsis and Manica in the Cretaceous of Portugal – https://www.palass.org/sites/default/files/media/publications/palaeontology/volume_20/vol20_part2_pp387-404.pdf – (On our blog : https://plantstomata.wordpress.com/2021/10/15/stomata-in-fossil-conifers-2/ )

Ammann B., van der Knaap W. O., Lang G., Gaillard M.-J., Kaltenrieder P., Rösch M., Finsinger W., Wright H. E., Tinner W. (2014) – The potential of stomata analysis in conifers to estimate presence of conifer trees: examples from the Alps – Vegetation History and Archaeobotany 23(3): 249-264 – DOI10.1007/s00334-014-0431-9 – https://www.infona.pl/resource/bwmeta1.element.springer-11d09098-6ac7-3882-9153-74a68b692ec8 – (On our blog : https://plantstomata.wordpress.com/2017/10/14/vegetation-history-and-stomata-records/)

Ammann B., Wick L. (1993) – Analysis of fossil stomata of conifers as
indicators of the alpine tree line fluctuations during the Holocene – In: Frenzel B (ed) European palaeoclimate and man. Fischer, Stuttgart, pp 175–185 –

Anonymous – (x) – Plant cuticles and some of their applications in palaeobotany – http://www.uni-muenster.de/GeoPalaeontologie/Palaeo/Palbot/cuticles.htm – (On our blog : https://plantstomata.wordpress.com/2016/05/21/cuticle-and-stomata-in-palaeobotany/)

Archangelsky A., Andreis R. R., Archangelsky S., Artabe A. (1995) – Cuticular characters adapted to volcanic stress in a new Cretaceous cycad leaf from Patagonia, Argentina. Considerations on the stratigraphy and depositional history of the Baquero Formation – Review of Palaaeibotany and Palynology 89: 213-233 – http://naturalis.fcnym.unlp.edu.ar/repositorio/_documentos/sipcyt/bfa005198.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/27/102759/ )

Artabe A. E., Zamuner A. B., Archangelsky S. (2013) – Estudios cuticulares en Cycadopsidas fosiles. El genero Kurtziana Frenguelli 1942 – Ameghiniana 28(3-4): 365-374 – Retrieved from https://www.ameghiniana.org.ar/index.php/ameghiniana/article/view/2066 – (On our blog : https://plantstomata.wordpress.com/2022/01/10/stomata-show-several-structures-that-suggest-a-strong-xeromorphism/ )

Asakawa T., Yabe A., Yamada T., Uemura K., Terada K., Leppe M., Hinojosa F., Nishida H. (2016) – Araucarian leaves and cone scales from the Loreto Formation of Río de Las Minas, Magellan Region, Chile 1 – Botany 94(9): 805-815 – DOI: 10.1139/cjb-2016-0059https://www.researchgate.net/publication/307998526_Araucarian_leaves_and_cone_scales_from_the_Loreto_Formation_of_Rio_de_Las_Minas_Magellan_Region_Chile_1 – (On our blog : https://plantstomata.wordpress.com/2022/03/02/stomata-in-araucaria-fossils/ )

Aucour A.-M., Gomez B., Sheppard S. M. F., Thévenard F. (2008) – δ13C and stomatal number variability in the Cretaceous conifer Frenelopsis – Palaeogeography, Palaeoclimatology, Palaeoecology  257(4): 462-473 – https://doi.org/10.1016/j.palaeo.2007.10.027 – http://www.sciencedirect.com/science/article/pii/S0031018207005445 – (On our blog : https://plantstomata.wordpress.com/2017/10/03/%CE%B413c-and-stomatal-number-variability-in-the-cretaceous-conifer-frenelopsis/)

Baldoni A. M. (1972) – El genero Lepidopteris (Pteridospermae) en el Triasico de Argentina  – Ameghiniana IX(1): 1-16 (On our blog : https://plantstomata.wordpress.com/2017/01/18/stomata-in-the-fossil-lepidopteris-pteridospermae/)

Baldoni A. M. (1974) – Revision de las Bennettitales de la formacion baquero (Cretacico inferior), Pcia. de Santa Cruz. II. Bracteas – Ameghiniana XI(4): 328-354 – (On our blog : https://plantstomata.wordpress.com/2017/05/01/39262/)

Bandulska H. (1923) – A preliminary paper on the cuticular structure of certain Dicotyledonous and Coniferous leaves from the Middle Eocene Flora of Bournemouth – Journ. Linn. Soc. (Bot.) 46: 241-266 – (On our blog : https://plantstomata.wordpress.com/2017/05/28/cuticular-structure-and-stomata-of-fossil-dicotyledonous-and-coniferous-leaves/)

Bandulska H. (1924) – On the cuticles of some recent and fossil Fagaceae – Journ. Linn. Soc. (Bot.) 46: 427-441 – (On our blog : https://plantstomata.wordpress.com/2017/05/04/stomata-in-recent-and-fossil-fagaceae-dicots/)

Bandulska H. (1924) – On the cuticles of some recent and fossil Myrtaceae – Journ. Linn. Soc. (Bot.) 46: 657-671 – (On our blog : https://plantstomata.wordpress.com/2017/05/04/stomata-in-recent-and-fossil-myrtaceae-dicots/)

Bandulska H. (1928) – On the cuticles of some fossil and recent Lauraceae – Journ. Linn. Soc. (Bot.) 47: 383-425 – (On our blog : https://plantstomata.wordpress.com/2017/05/28/stomata-in-some-fossil-and-recent-lauraceae/)

Banks H. P. (xxxx) – The oldest stomata (paracytic) with paired guard cells – The Palaeobotanist – http://14.139.63.228:8080/pbrep/bitstream/123456789/777/1/PbV25_27.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/04/the-oldest-example-of-paired-guard-cells-and-the-oldest-occurrence-of-paracytic-stomata/ )

Barbacka M., Bóka K. (2000) – The stomatal ontogeny and structure of the liassic pteridosperm Sagenopteris (Caytoniales) from Hungary – International Journal of Plant Sciences 161(1): 149-157 – https://doi.org/10.1086/314240https://hungary.pure.elsevier.com/en/publications/the-stomatal-ontogeny-and-structure-of-the-liassic-pteridosperm-s – (On our blog : https://plantstomata.wordpress.com/2019/03/19/stomatal-ontogeny-and-structure-of-the-fossil-pteridosperm-sagenopteris-caytoniales/ )

Barclay R., McElwain J., Dilcher D., Sageman B. (2007) – The Cuticle Database: developing an interactive tool for taxonomic and paleoenvironmental study of the fossil cuticle record – Courier Forschungsinst. Senckenberg 258: 39-55 – – https://www.scholars.northwestern.edu/en/publications/the-cuticle-database-developing-an-interactive-tool-for-taxonomic – (On our blog : https://plantstomata.wordpress.com/2016/10/20/the-cuticle-database-project-an-internet-accessible-database-of-cuticle-images/)

Barclay R. S., Wing S. L. (2016) – Improving the Ginkgo CO2 barometer: Implications for the early Cenozoic atmosphere – Earth and Planetary Science Letters 439: 158-171 – https://doi.org/10.1016/j.epsl.2016.01.012https://www.sciencedirect.com/science/article/abs/pii/S0012821X16000285?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/01/12/use-of-our-revised-si-pco2-response-curve-and-new-observations-of-selected-fossils-to-estimate-late-cretaceous-and-cenozoic-pco2-from-fossil-ginkgo-adiantoides/ )

Barone Lumaga M. R., Coiro M., Erdei B., Mickle J. (2012) – Leaf micromorphology as a possible tool in cycads systematics – Conference Botany Columbus, Ohio, USA, July 7–11, Abstract ID: 306 – PosterCeratozamiaCBSA2012.jpg – (On our blog : https://plantstomata.wordpress.com/2019/03/08/stomata-in-cycads/ )

Barone Lumaga M. R., Coiro M., Truernit E., Erdei B., De Luca P. (2015) – Epidermal micromorphology in Dioon: Did volcanism constrain Dioon evolution? – Botanical Journal of the Linnean Society · DOI: 10.1111/boj.12326 – https://www.researchgate.net/publication/281371639_Epidermal_micromorphology_in_Dioon_Did_volcanism_constrain_Dioon_evolution – (On our blog : https://plantstomata.wordpress.com/2016/12/14/stomata-in-dioon-fossils/)

Barthel M. (1961) – Der Epidermisbau einiger oberkarbonischer Pteridospermen – Geologie 10: 828–849 –

Barthel M. (1962) – Epidermis Untersuchungen an einigen inkohlter Pteridospermen-blättern des Oberkarbons und Perms – Geologie 11(33): 1-140 –

Beerling D. J. (1993) Changes in the stomatal density of Betula nana leaves in response to increase in atmospheric carbon dioxide concentration since the late glacial. – Special Papers in Palaeontology 49: 181-187 –

Beerling D. J. (1999) Stomatal density and index: theory and application. In: Fossil Plants and Spores: modern techniques. Eds. Jones T. P., Rowe N. P. – The Geological Society, London (1999) –

Beerling D. J., Birks H. H., Woodward F. I. (1995) – Rapid lateglacial atmospheric CO2 changes reconstructed from the stomatal density
record of fossil leaves – Journal of Quaternary Science 10: 379–384 – ISSN 0267-8179 – file:///C:/Users/wille/Downloads/Rapid_late_glacial_atmospheric_CO2_chang.pdf – (On our blog : https://plantstomata.wordpress.com/2022/11/15/109883/ )

Beerling D. J., Chaloner W. G. (1993) – The impact of atmospheric CO2 and temperature change on stomatal density; observations from Quercus robur lammas leaves – Annals of Botany 71: 231-235 – https://doi.org/10.1006/anbo.1993.1029https://www.sciencedirect.com/science/article/abs/pii/S0305736483710292 – (On our blog : https://plantstomata.wordpress.com/2022/11/15/stomatal-density-changes-under-different-co2-and-temperature-conditions-through-the-quaternary/ )

Beerling D. J., Chaloner W. G. (1993) – Stomatal density responses of Egyptian Olea europea L. leaves to CO2 change since 1327 BC – Annals of Botany 71: 431-435 – https://doi.org/10.1006/anbo.1993.1056https://www.sciencedirect.com/science/article/abs/pii/S0305736483710565 – (On our blog : https://plantstomata.wordpress.com/2022/11/15/stomatal-density-falls-as-co2-levels-increase/ )

Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J. (1991) – Tracking stomatal densities through a glacial cycle: their significance for predicting the response of plants to changing atmospheric CO2 concentration. – Global Ecology and Biography Letters 1: 136-142 – DOI: 10.2307/2997427 – https://www.jstor.org/stable/2997427?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/14/stomata-for-predicting-the-response-of-plants-to-changing-atmospheric-co2-concentration/)

Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J. (1993) – Stomatal Density responds to the Glacial Cycle of Environmental Change. – Proceedings Royal Society London: Biological Sciences 251: 133-138
http://dx.doi.org/10.1098/rspb.1993.0019 – (On our blog : https://plantstomata.wordpress.com/2015/09/07/stomatal-density-and-environmental-change/).

Beerling D. J., Chaloner W. G., Huntley B., Pearson J. A., Tooley M. J., Woodward F. I. (1992) – Variations in the stomatal density of Salix herbacea L. under the changing atmospheric CO2 concentrations of late- and postglacial time – Philosophical Transactions of the Royal Society London B 336: 215–224 – https://www.jstor.org/stable/55890?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/09/14/variations-in-stomatal-density-under-changing-atmospheric-co2-concentrations-of-late-and-postglacial-time/)

Beerling D. J, Franks P. J. (2009) – Evolution of stomata in ‘lower’ land plants –
New Phytologist 183: 921–925 –

Beerling D. J., McElwain J. C., Osborne C. P. (1998) – Stomatal responses of the ‘living fossil’ Ginkgo biloba L. to changes in atmospheric CO2 concentrations – Journal of Experimental Botany 49(326): 1603–1607 – http://jxb.oxfordjournals.org/content/49/326/1603.full.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/28/stomatal-responses-to-changes-in-atmospheric-co2-concentrations/)

Beerling D. J., Osborne C. P., Chaloner W. G. (2001) – Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era – Nature 410(6826): 352-354 – DOI: 10.1038/35066546https://www.ncbi.nlm.nih.gov/pubmed/11268207 – (On our blog : https://plantstomata.wordpress.com/2020/03/03/the-evolution-of-planate-leaves-could-only-have-occurred-after-an-increase-in-stomatal-density/ )

Beerling D. J., Royer D. L. (2002) – Reading a CO2 signal from fossil stomata – New Phytol. 153: 387-397 – Stomatal index – DOI: 10.1046/j.0028-646X.2001.00335.x – http://onlinelibrary.wiley.com/doi/10.1046/j.0028-646X.2001.00335.x/full – (On our blog : https://plantstomata.wordpress.com/2016/10/22/the-stomatal-approach-to-estimating-high-palaeo-co2-levels/)

Beerling D. J., Royer D. L. (2002) – Fossil plants as indicators of the Phanerozoic global carbon cycle – Annu. Rev. Earth Planet. Sci. 30: 527–556 –
DOI: 10.1146/annurev.earth.30.091201.141413http://droyer.wescreates.wesleyan.edu/AREPS.pdf – (On our blog : https://plantstomata.wordpress.com/2021/03/11/the-use-of-stomatal-index-and-stomatal-ratios-for-reconstructing-atmospheric-co2-levels/ )

Beerling D. J.Woodward F. I. (1996) – Stomatal density responsesto global environmental change – Advances in Bioclimatology 4 – https://doi.org/10.1007/978-3-642-61132-2_4https://link.springer.com/chapter/10.1007/978-3-642-61132-2_4#citeas – (On our blog : https://plantstomata.wordpress.com/2022/11/15/stomatal-density-responses-to-global-environmental-change/ )

Beerling D. J.Woodward I. (1997) – Changes in land plant function over the Phanerozoic: Reconstructions based on the fossil record – Botanical Journal of the Linnean Society 124(2): 137-153 – https://doi.org/10.1006/bojl.1997.0098 –  – https://www.sciencedirect.com/science/article/pii/S002440749790098X – (On our blog : https://plantstomata.wordpress.com/2018/08/01/stomatal-density-record-of-fossil-leaves-spanning-the-past-400-myr-supporting-the-predicted-changes-in-atsmopheric-co2/ )

Berry E. W. (1933) – The cuticle of an Eocene Combretum – Journ. Washingt. Acad. Sci. 23(11): 505-508 – (On our blog : https://plantstomata.wordpress.com/2017/05/17/stomata-in-fossil-combretum/)

Bobrov A. E. (1974) – Sravniteľnoe izuchenie epider- misa i ust’ist list’ev semeistva Cycadaceae (Comparative studies of the epidermis and stomata of leaves of the family Cycadaceae) – Bot. Zh. 47(6): 808–820 (in Russian) –

Bonis N. R., Van Konijnenburg-van Cittert J. H. A., Kürschner W. M. (2010) – Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris – Palaeogeography, Palaeoclimatology, Palaeoecology 295: 146-161 – https://doi.org/10.1016/j.palaeo.2010.05.034 –https://www.sciencedirect.com/science/article/pii/S0031018210003214 – (On our blog : https://plantstomata.wordpress.com/2018/11/30/end-triassic-fluctuations-in-atmospheric-co2-concentration-reconstructed-by-the-use-of-stomatal-frequency-analysis/ )

Bose M. N., Manum S. B. (1991) – Additions to the family Miroviaceae (Coniferae) from the Lower Cretaceous of West Greenland and Germany: Mirovia groenlandica n. sp., Tritaenia crawa (Seward) comb. nov., and Tritaenia linkii Magdefrau et Rudolph emend – Polar Research 9(1): S20 – file:///C:/Users/wille/Downloads/2810-Article%20Text-14922-1-10-20181123.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/18/distinct-stomatal-bands-within-the-median-stomatal-zone/ )

Boulter M. C. (xxxx) – Fine Details of Some Fossil and Recent Conifer Leaf Cuticles – (On our blog : https://plantstomata.wordpress.com/2017/04/22/stomata-in-fossil-and-recent-conifers/)

Boulter M. C. (1970) – Lignified guard cell thickenings in the leaves of some modern and fossil species of Taxodiaceae (Gymnospermae) – Biol. J. Linn. Soc. 2: 41-46 – DOI: 10.1111/j.1095-8312.1970.tb01685.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8312.1970.tb01685.x/full – (On our blog : https://plantstomata.wordpress.com/2017/09/14/lignified-guard-cell-thickenings-in-stomata-of-modern-and-fossil-taxodiaceae-gymnospermae/)

Bower F. (1920) – The Earliest Known Land Flora – Nature 105: 712–714 – https://doi.org/10.1038/105712a0https://www.nature.com/articles/105712a0#citeas – (On our blog : https://plantstomata.wordpress.com/2022/03/05/103174/ )

Bowles A., Paps J., Bechtold U. (2022) – – The Conversation – New Phytologist https://phys.org/news/2022-02-ancient-began.htmlhttps://nph.onlinelibrary.wiley.com/doi/10.1111/nph.17981 – (On our blog : https://plantstomata.wordpress.com/2022/03/27/novel-genes-in-the-first-land-plants-led-to-the-single-origin-of-stomata-but-the-stomatal-closure-of-seed-plants-resulted-from-later-gene-expansions/ )

Bowman J. L. (2011) – Stomata: Active Portals for Flourishing on Land – Current Biology 21(14): R540-R541 – DOI10.1016/j.cub.2011.06.021 – https://www.infona.pl/resource/bwmeta1.element.elsevier-30ed66d7-875e-3268-bd9f-edf4c55b60da – (On our blog : https://plantstomata.wordpress.com/2017/10/16/early-land-plants-could-actively-control-stomata-2/)

Bres J., Sepulchre P., Viovy N., Vuichard N. (2021) – The Cretaceous physiological adaptation of angiosperms to a declining pCO2: a modeling approach emulating paleo-traits – Biogeosciences 18: 5729–5750 – https://doi.org/10.5194/bg-18-5729-2021https://bg.copernicus.org/articles/18/5729/2021/ – (On our blog : https://plantstomata.wordpress.com/2022/04/20/a-full-atmosphere-vegetation-model-that-couples-stomatal-conductance-to-carbon-assimilation/ )

C. M. J. (1912) – Stomata of Bennettites – Botanical Gazette 54(6) : – https://www.journals.uchicago.edu/doi/abs/10.1086/330984 – (On our blog : https://plantstomata.wordpress.com/2021/04/18/stomata-of-bennettites/ )

Cao Z. Y. (1998) – A study on the cuticles of some Bennettitaleans from the lower part of Xiangshan group in Jiangsu and Anhui Provinces – Acta Palaeon Tologica Sin. 37: 283-294 –

Carpenter R. J., McLoughlin S., Hill R. S., McNamara K. J., Jordan G. J. (2014) – Early evidence of xeromorphy in Angiosperms ;: stomatal encryption in a new eocene species of Banksia (Proteaceae) from Western Australia – American Journal of Botany 101(9): 1486–1497 – doi:10.3732/ajb.1400191https://www.diva-portal.org/smash/get/diva2:769693/FULLTEXT01.pdf – (On our blog : https://plantstomata.wordpress.com/2021/04/05/a-new-species-that-constitutes-the-oldest-record-of-stomatal-encryption-in-the-genus-banksia/ )

Chater C., Kamisugi Y., Movahedi M., Fleming A., Cuming A. C., Gray J. E., Beerling D. J. (2011) – Regulatory Mechanism Controlling Stomatal Behavior Conserved across 400 Million Years of Land Plant Evolution – Current Biology 21(12): 1025-1029 – DOI: 10.1016/j.cub.2011.04.032 – https://www.infona.pl/resource/bwmeta1.element.elsevier-1e5836e0-d96b-31d2-a897-fe1168ed01c4 – (On our blog : https://plantstomata.wordpress.com/2017/10/24/regulatory-mechanism-controlling-stomatal-behavior-conserved-across-400-million-years/)

Chen L.Q., Cheng-Sen L., Chaloner W. G., Beerling D. J., Sun Q-G., Collinson M. E., Mitchell P. L. (2001) – Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change – Am J Bot 88: 1309–1315 – https://core.ac.uk/download/pdf/245608.pdf – (On our blog : https://plantstomata.wordpress.com/2017/01/21/the-stomatal-density-and-index-of-fossil-ginkgo-leaves/)

Chen L.-Q., Li C.-S., Chaloner W. G., Beerling D. J., Sun Q. G., Collinson M. E., Mitchell P. L. (2001) – Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change – American Journal of Botany 88: 1309–1315 – https://doi.org/10.2307/3558342https://bsapubs.onlinelibrary.wiley.com/doi/full/10.2307/3558342 – (On our blog: https://plantstomata.wordpress.com/2022/04/22/calculated-as-stomatal-ratios-the-values-generally-tracked-the-co2-variations-predicted-by-a-long-term-carbon-cycle-model-confirming-the-utility-of-this-plant-group-to-provide-a-reasonable-measu/ )

Clayden S., Cwynar L., MacDonald G.. (1996) – Stomate and pollen
content of lake sediments from across the tree line on the Taimyr
Peninsula, Siberia – Can J Bot 74: 1009–1015 – https://doi.org/10.1139/b96-125https://cdnsciencepub.com/doi/10.1139/b96-125 – (On our blog : https://plantstomata.wordpress.com/2021/02/20/stomate-and-pollen-content-of-lake-sediments/ )

Clayden S., Cwynar L., MacDonald G., Velichko A. A.,(1997) – Holocene pollen and stomates from a forest-tundra site on the Taimyr Peninsula, Siberia – Arct Alp Res 29: 327–333 – https://doi.org/10.2307/1552147https://www.jstor.org/stable/1552147?origin=crossref&seq=1 – (On our blog : https://plantstomata.wordpress.com/2021/02/20/88230/ )

Cleal C. J., James R. M., Zodrow E. L. (1999) – Variation in stomatal density in the late Carboniferous gymnosperm frond Neuropteris ovata – Palaios 14(2): 180–185 –
DOI: 10.2307/3515373https://www.jstor.org/stable/3515373 – (On our blog : https://plantstomata.wordpress.com/2022/01/15/variation-in-stomatal-density-and-in-co2-levels/ )

Cleal C. J., Shute C. H. (1992) – Epidermal features of some Carboniferous neuropteroid fronds – Review of Palaeobotany and Palynology 71: 191–206 –
DOI: 10.1016/0034-6667(92)90162-A

Cleal C. J., Shute C. H. (2012) – The systematic and palaeoecological value of foliage anatomy in Late Palaeozoic medullosalean seed-plants – Journal of Systematic Palaeontology 10(4): 765-800 – DOI: 10.1080/14772019.2011.634442https://www.tandfonline.com/doi/abs/10.1080/14772019.2011.634442 – (On our blog : https://plantstomata.wordpress.com/2022/01/15/stomata-in-medullosalean-seed-plants/ )

Cleal C. J., Zodrow E. L. (1989) – Epidermal structure of some medullosan Neuropteris foliage from the middle and upper Carboniferous of Canada and Germany – Palaeontology 32(4): 97–106 –

Coiro M., Jelmini N., Neuenschwander H., Calonje M. A., Vovides A. P., Mickle J. E., Barone Lumaga M. R. (2020) – Evolutionary Signal of Leaflet Anatomy in the Zamiaceae – International Journal of Plant Sciences 181(7): 697-715 – DOI: 10.1086/709372https://www.journals.uchicago.edu/doi/abs/10.1086/709372 – (On our blog : https://plantstomata.wordpress.com/2020/09/06/85747/ )

Coiro M., Martinez L. C. A., Upchurch G. R., Doyle J. A. (2020) – Evidence for an extinct lineage of angiosperms from the Early Cretaceous of Patagonia and implications for the early radiation of flowering plants – New Phytologist 2020 – http://cycadales.wordpress.com (with submission form) – (On our blog : https://plantstomata.wordpress.com/2020/09/06/stomata-in-an-extinct-lineage-of-angiosperms-from-the-early-cretaceous-of-patagonia/ )

Coiro M., Mickle J., Barone Lumaga M. R. (2015) – Epidermal micromorphology and the diversification of the cycads – https://www.researchgate.net/publication/280446209_Epidermal_micromorphology_and_the_diversification_of_the_cycads – (On our blog https://plantstomata.wordpress.com/2016/12/14/stomata-in-the-cycads/)

Coiro M., Pott C. (2017)Eobowenia gen. nov. from the Early Cretaceous of Patagonia: indication for an early divergence of Bowenia? – BMC Evolutionary Biology 17(1): 97 – https://cycadales.wordpress.com/ – (On our blog : https://plantstomata.wordpress.com/2020/09/06/new-fossil-cycad-solves-the-puzzle-of-the-byfield-fern/ )

Conran J. G., Bannister J. M., Lee D. E. (2013) – Fruits and leaves with cuticle of Laurelia otagoensis sp. nov. (Atherospermataceae) from the early Miocene of Otago (New Zealand) – Alcheringa 37: 496–509 – ISSN 0311-5518 – https://doi.org/10.1080/03115518.2013.798765https://www.tandfonline.com/doi/abs/10.1080/03115518.2013.798765 – (On our blog : https://plantstomata.wordpress.com/2022/06/21/stomata-in-fossil-laurelia-atherospermataceae/ )

Corneanu G. C., Corneanu M., Bercu R. (2004) – Comparison of some morpho-anatomical features at fossil vegetal species and their actual correspondent species – Studia UBB Geologia 49(2): 77-84 –
http://dx.doi.org/10.5038/1937-8602.49.2.7https://digitalcommons.usf.edu/geologia/vol49/iss2/art7 – (On our blog : https://plantstomata.wordpress.com/2022/01/23/the-multiplication-of-genomes-and-the-process-of-gene-amplification-both-result-in-an-increase-in-epidermic-cells-and-stomata-size/ )

David F. (1997) – Holocene tree limit history in the northern French Alps stomata and pollen evidence – Review of Palaeobotany and Palynology 97(3-4): 227-237 – ISSN :0034-6667 – https://www.infona.pl/resource/bwmeta1.element.elsevier-4cc2ec84-1075-3711-8f3f-f6accb544942 – (On our blog : https://plantstomata.wordpress.com/2017/10/14/the-holocene-tree-limit-history-and-stomata-analysis/)

de Boer H. J., Eppinga M. B., Wassen M. J., Dekker S. C. (2012) – A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution – Nature Communications – DOI: 10.1038/ncomms2217https://www.nature.com/articles/ncomms2217.pdf – (On our blog : https://plantstomata.wordpress.com/2023/05/04/a-critical-transition-in-leaf-evolution-facilitated-the-cretaceous-angiosperm-revolution/ )

Degani-Schmidt I., Guerra-Sommer M., Bernardes E. R. (2011) – Variation in stomatal numbers of Glossopteris leaves from the Lower Permian of Paraná Basin (Brazil) – Revista Brasileira de Paleontologia 14(2):137-148 – DOI: 10.4072/rbp.2011.2.02https://www.researchgate.net/publication/272151286_Variation_in_stomatal_numbers_of_Glossopteris_leaves_from_the_Lower_Permian_of_Parana_Basin_Brazil – (On our blog : https://plantstomata.wordpress.com/2021/12/26/variation-in-stomatal-numbers-in-fossils/ )

Denk T. (2003) – Phylogeny of Fagus L. (Fagaceae) based on morphological data – Plant Syst. Evol. 240: 55–8 – DOI: 10.1007/s00606-003-0018-x – (On our blog : https://plantstomata.wordpress.com/2017/02/05/stomata-and-the-phylogeny-of-fagus-l-fagaceae/)

Dilcher D. L. (1963) – Cuticular analysis of Eocene leaves of Ocotea obtusifolia – Amer. J. Bot. 50(1): 1-8 – (On our blog : https://plantstomata.wordpress.com/2017/07/03/stomata-in-the-fossil-ocotea-obtusifolia/)

Dilcher D. (Ed.) (1974) – Stomatal index – The Botanical Review 40 –

Dilcher D. L. (1974) – Approaches to the identification of angiosperm leaf remains – Bot. Rev. 40: 1-157 – (On our blog : https://plantstomata.wordpress.com/2017/06/23/41912/)

Dilcher D. L., Daghlian C. P. (1977) – Investigations of Angiosperms from the Eocene of Southeastern North America: Philodendron leaf remains – Amer. J. Bot. 64 (5): 526-534 – (On our blog :https://plantstomata.wordpress.com/2017/06/24/stomata-in-fossil-philodendron/)

Edwards D., Axe L. (1992) – Stomata and mechanics of stomatal functioning in some early land plants – Cour. Forsch.-Inst. Senckenberg 147: 59-73 – Conference paper – Published in: Schaarschmidt, F. ed. International Symposium on Palaeobotany “Anatomical Investigations of Plant Fossils”: 3rd International Senckenberg Conference Frankfurt am Main 1990. Courier Forschungsinstitut Senckenberg , 147. Stuttgart: Schweizerbart und Borntraeger, 59-73 – 

Edwards D., Fanning U., Richardson J. B. (1986) – Stomata and sterome in early land plants – Nature 323: 438–440 – https://doi.org/10.1038/323438a0https://www.nature.com/articles/323438a0 – (On our blog : https://plantstomata.wordpress.com/2019/09/18/stomata-and-sterome-in-fossils/ )

Edwards D., Kerp H., Hass H. (1998) – Stomata in early land plants: an anatomical and ecophysiological approach – J. Exp. Bot. 49(Suppl 1255-278 – DOI: 10.1093/jexbot/49.suppl_1.255https://www.researchgate.net/publication/230299923_Stomata_in_early_land_plants_An_anatomical_and_ecophysiological_approach – (On our blog : https://plantstomata.wordpress.com/2016/05/19/stomata-in-rhynie-chert/)

Edwards D., Kerp H., Hass H. (1998) – Stomata in early land plants: an anatomical and ecophysiological approach – Journal of Experimental Botany 49: 255-278 – https://doi.org/10.1093/jxb/49.Special_Issue.255https://academic.oup.com/jxb/article/49/Special_Issue/255/507965 – (On our blog : https://plantstomata.wordpress.com/2021/02/21/stomatal-numbers-and-distribution-form-the-basis-for-speculation-on-the-selective-pressures-that-led-to-the-evolution-of-stomata/ )

Edwards D., Morris J. L., Axe L., Duckett J. G., Pressel S., Kenrick P. (2021) – Piecing together the eophytes – a new group of ancient plants containing cryptospores – New Phytologist – DOI: 10.1111/nph.17703https://www.researchgate.net/publication/356438486_Piecing_together_the_eophytes_-_a_new_group_of_ancient_plants_containing_cryptospores – (On our blog : https://plantstomata.wordpress.com/2021/11/29/96484/ )

Edwards W. N. (1924) – On the Cuticular Structure of the Devonian Plant Psilophyton – Journal of the Linnean Society of London, Botany 46(310): 377-385 – https://doi.org/10.1111/j.1095-8339.1924.tb00494.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1095-8339.1924.tb00494.x – (On our blog : https://plantstomata.wordpress.com/2023/06/19/the-presence-of-stomata-with-cuticular-thickenings-on-the-epidermis-of-the-stem-of-psilophyton/)

Egunyomi A. (1982) – On the stomata of some tropical African mosses – Lindbergia 8: 121–124 – https://www.jstor.org/stable/20149430 – (On our blog : https://plantstomata.wordpress.com/2021/08/17/significant-correlations-have-been-obtained-between-stoma-number-and-seta-length-and-stoma-size-and-epidermal-cell-size-in-mosses/ )

Elsik W. C. (1975)Ephedra pollen mimicry by unidentified Pleistocene plant stomata

Erdei B., Calonje M., Hendy A., Espinoza N. (2018) – A review of the Cenozoic fossil record of the genus Zamia L. (Zamiaceae, Cycadales) with recognition of a new species from the late Eocene of Panama – evolution and biogeographic inferences – Bulletin of Geosciences 93(2): 185-204 – http://www.geology.cz/bulletin/fulltext/1671_Erdei_180719.pdf – (On our blog : https://plantstomata.wordpress.com/2021/11/24/96187/ )

Erdei B., Hendy A., Calonje M., Espinoza N. (2014) – The first fossil record of the genus Zamia L. (Zamiaceae, Cycadales) evidenced by epidermal structure from the Eocene of Panama and its comparison with modern species of Zamia – 10th Conference of NAPC, Gainesville, Florida, USA, February 15–18 – https://www.cambridge.org/core/journals/paleontological-society-special-publications/article/first-fossil-record-of-the-genus-zamia-l-zamiaceae-cycadales-evidenced-by-epidermal-structure-from-the-eocene-of-panama-and-its-comparison-with-modern-species-of-zamia/E8BFAB141BB0BCDEAB62EAF5D055AECB – (On our blog : https://plantstomata.wordpress.com/2019/03/08/stomata-in-the-first-fossil-record-of-zamia-cycadales/ )

Evans-Fitz.Gerald C., Porter A. S., Yiotis C., Elliott-Kingston C., McElwain J. C. (2016) – Co-ordination in Morphological Leaf Traits of Early Diverging Angiosperms Is Maintained Following Exposure to Experimental Palaeo-atmospheric Conditions of Sub-ambient O2 and Elevated CO2 – Frontiers in Plant Science 7: Article 1368 – PMCID: PMC5023689 – https://doi.org/10.3389/fpls.2016.01368 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5023689/ – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64610)

Finsinger W., Tinner W. (2020) – New insights on stomata analysis of European conifers 65 years after the pioneering study of Werner Trautmann (1953) – Veget Hist Archaeobot 29: 393–406 –https://doi.org/10.1007/s00334-019-00754-1https://link.springer.com/article/10.1007/s00334-019-00754-1#citeas – (On our blog : https://plantstomata.wordpress.com/2021/12/06/96896/ )

Finsinger W., Wagner-Cremer F. (2009) – Stomatal-based inference
models for reconstruction of atmospheric CO2 concentration: a
method assessment using a calibration and validation approach –
Holocene 19: 757–764 – DOI: 10.1177/0959683609105300https://www.geocraft.com/WVFossils/Reference_Docs/Last_200_years_stomatal_changes_Finsinger_etal_2009.pdf – (On our blog : https://plantstomata.wordpress.com/2019/05/29/stomatal-based-inference-models-for-reconstruction-of-atmospheric-co2-concentration-2/ )

Fischer T. C., Meller B., Kustatscher E., Butzmann R. (2010) – Permian ginkgophyte fossils from the Dolomites resemble extant O-ha-tsuki aberrant leaf-like fructifications of Ginkgo biloba L. –  BMC Evol Biol. 10: 337 – doi: 10.1186/1471-2148-10-337  – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/4381)

Florin R. (1931) – Untersuchungen Zur stammesgeschichte der Coniferales and Corditates.- Kungliga Svenska Vetenskapsakademiens Handlingar Ⅲ, 10(1): 1-588.- (Article not found)

Florin R. (1933) – Studien über die Cycadales des Mesozoikums nebst Erörterungen über die Spaltöffnungsapparate der Bennettitales – Kungliga Svenska Vetenskapsakademiens Handlingar 12: 4–134 – Almqvist & Wiksell –

Franks P. J., Adams M. A., Amthor J. S., Barbour M. M., Berry J. A., Ellsworth D. S., Farquhar G. D., Ghannoum O., Lloyd J., McDowell N., Norby R. J., Tissue D. T., von Caemmerer S. (2013) – Sensitivity of plants to changing atmospheric CO2concentration: from the geological past to the next century – New Phytol. 197(4): 1077-1094 – https://doi.org/10.1111/nph.12104 – https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/nph.12104 – (On our blog : https://plantstomata.wordpress.com/2018/08/01/stomata-and-models-to-develop-a-multi-scale-assessment-of-the-impact-of-changing-ca-on-co2-uptake-and-water-use/ )

Franks P. J., Royer Dana L. (2017) – Comment on “Was atmospheric CO2 capped at 1000ppm over the past 300millionyears?” by McElwain J. C. et al. [Palaeogeography, Palaeoclimatology, Palaeoecology 441: 653–658] – Palaeogeography Palaeoclimatology PalaeoecologyDOI: 10.1016/j.palaeo.2017.01.015 https://www.researchgate.net/publication/312482729_Comment_on_Was_atmospheric_CO2_capped_at_1000ppm_over_the_past_300millionyears_by_McElwain_J_C_et_al_Palaeogeography_Palaeoclimatology_Palaeoecology_441_2016_653-658 – (On our blog : https://plantstomata.wordpress.com/2017/01/24/concentration-of-atmospheric-co2-support-for-the-strategy-of-model-implementation-outlined-in-franks-et-al-2014/)

Froyd C.A. (2005) – Fossil stomata reveal early Pine presence in Scotland: implications for postglacial colonization analyses – Ecology 86: 579–586 –DOI: 10.1890/04-0546 – http://www.esajournals.org/doi/abs/10.1890/04-0546 – (On our blog : https://plantstomata.wordpress.com/2016/05/21/fossil-stomata-provide-unambiguous-evidence-of-past-local-presence-for-plant-species/)

García Álvarez S., García-Amorena I., Rubiales J. M., Morla C.(2009) – The value of leaf cuticle characteristics in the identification and classification of Iberian Mediterranean members of the genus Pinus – Botanical Journal of the Linnean Society 161(4): 436-448 – https://doi.org/10.1111/j.1095-8339.2009.01011.xhttps://onlinelibrary.wiley.com/doi/full/10.1111/j.1095-8339.2009.01011.x – (On our blog : https://plantstomata.wordpress.com/2023/06/22/the-value-of-leaf-cuticle-characteristics-in-the-identification-and-classification-of-species-of-the-genus-pinus-with-the-aim-of-using-these-characters-to-identify-isolated-cuticles-and-stomata/ )

García Álvarez S., Morla Juaristi C., Solana Gutiérrez J., García-Amorena I., (2009) – Taxonomic differences between Pinus sylvestris and P. uncinata revealed in the stomata and cuticle characters for use in the study of fossil material – Rev. Palaeobot. Palynol. 155: 61–68 – https://doi.org/10.1016/j.revpalbo.2009.01.002https://www.sciencedirect.com/science/article/abs/pii/S0034666709000062?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/12/06/taxonomic-differences-revealed-in-the-stomata-and-cuticle-characters-for-use-in-the-study-of-fossil-material/ )

García Álvarez S., Morla Juaristi C., Paull R., García-Amorena I., (2014) – A taxonomic tool for identifying needle remains of south-western European Pinus species of the Late Quaternary – Bot. J. Linn. Soc. 175(2): 282-298 – https://doi.org/10.1111/boj.12166https://onlinelibrary.wiley.com/doi/10.1111/boj.12166 – (On our blog : https://plantstomata.wordpress.com/2023/06/22/a-taxonomic-key-based-on-the-size-shape-and-arrangement-of-the-subsidiary-cells-of-the-stomatal-complexes/ )

Garcia-Amorena I., Wagner F., van Hoof T. B., Gomez-Manzaneque F. (2006) – Stomatal responses in deciduous oaks from southern Europe to the anthropogenic atmospheric CO2 increase; refining the stomatal-based CO2 proxy – Review of Palaeobotany and Palynology 141: 303–312 – ISSN 0034-6667 – https://doi.org/10.1016/j.revpalbo.2006.06.002
https://www.sciencedirect.com/science/article/pii/S0034666706001126 – (On our blog : https://plantstomata.wordpress.com/2023/06/22/usage-of-the-stomata-pore-coefficient-was-introduced-in-order-to-give-a-better-description-of-the-response-of-stomatal-dimensions-to-the-rising-atmospheric-co2-concentrations/ )

Good C. W., Taylor T. N. (1970) – On the structure of Cordaites felicis Benson from the Lower Pennsylvanian of North America – Paleontology 13(I): 29-39 – https://www.palass.org/sites/default/files/media/publications/palaeontology/volume_13/vol13_part1_pp29-39.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/19/stomata-in-the-fossil-cordaites/ )

Greenwood D. R., Scarr M. J., Christophel D. C. (2003) – Leaf stomatal frequency in the Australian tropical rainforest tree Neolitsea dealbata (Lauraceae) as a proxy measure of atmospheric pCO2 – Palaeogeography, Palaeoclimatology, Palaeoecology 196: 375–393 – https://doi.org/10.1016/S0031-0182(03)00465-6https://www.sciencedirect.com/science/article/pii/S0031018203004656 – (On our blog : https://plantstomata.wordpress.com/2019/08/13/leaf-stomatal-frequency-and-historical-levels-of-atmospheric-co2/ )

Hansen B. C. S. (1995) – Conifer stomate analysis as a paleoecological tool: an example from the Hudson Bay Lowlands – Canadian Journal of Botany 73(2): 244-252 – Doi: 10.1139/b95-027 – http://www.nrcresearchpress.com/doi/abs/10.1139/b95-027– (On our blog : https://plantstomata.wordpress.com/2017/01/06/conifer-stomate-analysis-as-a-paleoecological-tool/)

Hansen B. C. S., MacDonald G. M., Moser K. A. (1996) – Identifying the tundra-forest border in the stomata record: an analysis of lake surface samples from the Yellowknife area, Northwest Territories, Canada – Can J Bot 74: 796–800 – https://doi.org/10.1139/b96-099https://cdnsciencepub.com/doi/10.1139/b96-099 – (On our blog : https://plantstomata.wordpress.com/2021/02/20/stomate-analysis-will-become-an-important-technique-supplementing-pollen-analysis-for-reconstructing-past-tree-line-changes/ )

Harvey W. (1978) – The Maslin Bay flora, South Australia – 4. A cuticular survey of Angiosperm leaves – N. Jb. Geol. Paläont. Abh. 155(3): 360-373 – (On our blog : https://plantstomata.wordpress.com/2017/07/19/stomata-in-fossil-angiosperm-leaves/)

Haworth M., Fitzgerald A., McElwain J. C. (2011) – Cycads show no stomatal-density and index response to elevated carbon dioxide and subambient oxygen – Australian Journal of Botany 59: 630–639 – DOI 10.1071/BT11009https://www.publish.csiro.au/bt/BT11009 – (On our blog : https://plantstomata.wordpress.com/2021/11/24/the-cycad-species-showed-no-significant-no-stomatal-density-and-index-response-or-pore-length-response-to-changes-in-co2-or-o2/ )

Haworth M., Hesselbo S. P., McElwain J. C., Robinson S. A., Brunt J. W. (2005) – Mid-Cretaceous pCO2 based on stomata of the extinct conifer Pseudofrenelopsis (Cheirolepidiaceae) – Geology 33(9): 749-752 – https://doi.org/10.1130/G21736.1 – http://www.gsapubs.org/geology/article-abstract/33/9/749/29636/mid-cretaceous-pco2-based-on-stomata-of-the?redirectedFrom=PDF – (On our blog : https://plantstomata.wordpress.com/2017/09/19/atmospheric-pco2-estimated-from-the-ratios-between-stomatal-indices-of-fossil-cuticles-and-those-from-modern-analogs/)

Haworth M., McElwain J. (2008) – Hot, dry, wet, cold or toxic? Revisiting the ecological significance of leaf and cuticular micromorphology. – Palaeogeography, Palaeoclimatology, Palaeoecology 262: 79–90 – https://doi.org/10.1016/j.palaeo.2008.02.009 – http://www.sciencedirect.com/science/article/pii/S003101820800117X – (On our blog : https://plantstomata.wordpress.com/2017/09/15/revisiting-the-ecological-significance-of-leaf-and-cuticular-micromorphology-e-g-stomata/)

Haworth M., Elliott-Kingston C., McElwain J. C. (2012): Sulphur dioxide fumigation effects on stomatal density and index of non-resistant plants: implications for the stomatal palaeo-[CO2] proxy method – Review of Palaeobotany and Palynology 182: 44–54 – https://doi.org/10.1016/j.revpalbo.2012.06.006https://www.sciencedirect.com/science/article/abs/pii/S0034666712001546?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/04/22/stomatal-densities-of-fossil-plants-can-be-used-to-reconstruction-past-co2-levels/ )

Hill K. E., Barr C., Tibby J., Hill R. S., Watling J. R. (2019) – A comparison of stomatal traits between contemporary and fossil leaves of Melaleuca quinquenervia: Do they reflect climate variation? – Review of Palaeobotany and Palynology 271: 104109 – ISSN 0034-6667 – https://doi.org/10.1016/j.revpalbo.2019.104109
https://www.sciencedirect.com/science/article/pii/S0034666719300211 – (On our blog : https://plantstomata.wordpress.com/2022/11/15/the-influence-of-temperature-rainfall-and-co2-on-stomatal-traits-of-modern-and-fossil-leaves/ )

Hill K. E., Hill R. S., Watling J. R. (2019) – Pinnule and Stomatal Size and Stomatal Density of Living and Fossil Bowenia and Eobowenia Specimens Give Insight into Physiology during Cretaceous and Eocene Paleoclimates – International Journal of Plant Sciences 180(4): 323-336 – DOI: 10.1086/702643https://www.journals.uchicago.edu/doi/full/10.1086/702643 – (On our blog : https://plantstomata.wordpress.com/2021/12/17/stomatal-size-and-stomatal-density-of-living-and-fossil-bowenia-and-eobowenia/ )

Hu J.-J., Xing Y.-W., Turkington R., Jacques F. M. B., Su T., Huang Y.-J.,Zhou Z.-K. (2015) – A new positive relationship between pCO2 and stomatal frequency in Quercus guyavifolia (Fagaceae): a potential proxy for palaeo-CO2 levels – Specific positive relationship between stomatal frequency and pCO2 of Quercus pannosa (Fagaceae) indicates a low atmospheric pCO2 during the late Pliocene – Annals of Botany 115: 777-788 – doi: 10.1093/aob/mcv007 – http://aob.oxfordjournals.org/content/115/5/777 – (On our blog : https://plantstomata.wordpress.com/2016/10/22/the-variety-of-stomatal-densityindex-relationships-available-for-estimating-pco2/)

Hu Q., Xing Y. W., Hu J. J., Huang Y. J., Ma H. J., Zhou Z. K. (2013) – Evolution of stomatal and trichome density of the Quercus delavayi complex since the late Miocene – Chin Sci Bull. 58: 2057-2067- doi: 10.1007/s11434-013-6005-x – https://link.springer.com/article/10.1007/s11434-013-0038-z – (On our blog : https://plantstomata.wordpress.com/2017/09/15/the-stomatal-density-of-the-quercus-delavayi-complex-may-be-a-useful-proxy-for-reconstruction-of-paleo-co2-concentrations/)

Hu Y.-Q., Mingram J., Stebich M., Li J.-F. (2016) – A key for the identification of conifer stomata from N.E. China based on fluorescence microscopy – Review of Palaeobotany and Palynology 233: 12-21 – DOI: 10.1016/j.revpalbo.2016.06.005 – https://www.infona.pl/resource/bwmeta1.element.elsevier-42885d03-b511-3452-b5df-0c70cff964d0 – (On our blog : https://plantstomata.wordpress.com/2017/10/20/for-future-stomata-research-fluorescence-microscopy-using-blue-light-excitation-is-strongly-recommended/)

Johnson D. M., Smith W. K., Silman M. R. / McElwain J. C. ( ) – Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure: Comment and Reply – Forum – Downloaded from http://pubs.geoscienceworld.org/gsa/geology/articlepdf/33/1/e83/3530132/i0091-7613-33-1-e83.pdf by guest – (On our blog : https://plantstomata.wordpress.com/2022/02/17/102180/ )

Jones J. H., Dilcher D. L. (1988) – Investigations of Angiosperms from the Eocene of North America: Rhamnus marginatus (Rhamnaceae reexamined – Amer. J. Bot. 67(6): 959-967 – https://www.researchgate.net/profile/David_Dilcher/publication/239278089_Investigations_of_Angiosperms_from_the_Eocene_of_North_America_Rhamnus_marginatus_Rhamnaceae_Reexamined/links/0deec529f3682311b0000000/Investigations-of-Angiosperms-from-the-Eocene-of-North-America-Rhamnus-marginatus-Rhamnaceae-Reexamined.pdf – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/69776 )

Jones J. H., Dilcher D. L. (1988) – A study of the “Dryophyllum” leaf forms from the Palaeocene of Southeastern North America – Palaeontographica Abt. B, 208(4-8): 53-80 – (On our blog : https://plantstomata.wordpress.com/2017/02/05/dryophyllum-leaf-forms-and-stomata/)

Jordan G. J., Carpenter R. J.,Holland B. R., Beeton N. J., Woodhams M. D.,Brodribb T. J. (2020) – Links between environmentand stomatal size through evolutionary time in Proteaceae -Proc. R. Soc. B287: 20192876 – http://dx.doi.org/10.1098/rspb.2019.2876https://royalsocietypublishing.org/doi/epdf/10.1098/rspb.2019.2876 – (On our blog : https://plantstomata.wordpress.com/2023/05/10/guard-cell-length-pavement-cell-area-stomatal-density-and-stomatal-index-covaried-in-ways-consistent-with-coordinated-development-of-leaf-tissues/ )

Kenrick P. (2017) – How land plant life cycles first evolved – Science 358(6370): 1538-1539 – DOI: 10.1126/science.aan2923 – http://science.sciencemag.org/content/358/6370/1538.full – (On our blog : https://plantstomata.wordpress.com/2017/12/23/how-land-plant-life-cycles-first-evolved/)

Kodrul T. M., Maslova N. P. (2017)Kunduriphyllum kundurense gen. et comb. nov. (Platanaceae) and Associated Reproductive Structures from the Campanian of the Amur Region, Russia – Paleontological Journal 51(14): 1584-1596 – DOI: 10.1134/S0031030117140027https://www.researchgate.net/publication/323520759_Kunduriphyllum_kundurense_gen_et_comb_nov_Platanaceae_and_Associated_Reproductive_Structures_from_the_Campanian_of_the_Amur_Region_Russia – (On our blog : https://plantstomata.wordpress.com/2019/03/19/stomata-in-kunduriphyllum-kundurense-fossil-platanaceae/ )

Konrad W., Katul G., Roth-Nebelsick A., Grein M. (2017) – A reduced order model to analytically infer atmospheric CO2 concentration from stomatal and climate data – Advances in Water Resources 104: 145-157 – ISSN 0309-1708 – https://doi.org/10.1016/j.advwatres.2017.03.018
https://www.sciencedirect.com/science/article/pii/S0309170816305024 – (On our blog : https://plantstomata.wordpress.com/2022/11/15/a-reduced-order-model-rom-that-derives-ca-from-a-single-equation-incorporating-the-stomatal-data/ )

Konrad W., Roth-Nebelsick A., Grein M. (2008) – Modelling of stomatal density response to atmospheric CO2 – Journal of Theoretical Biology 253(4): 638-658 – https://doi.org/10.1016/j.jtbi.2008.03.032https://www.sciencedirect.com/science/article/abs/pii/S0022519308001677 – (On our blog :

Konrad W., Roth-Nebelsick A., Grein M. (2010) – Biophysical analysis of plant gas exchange and reconstruction of palaeoclimate – Geophysical Research Abstracts 12, EGU2010-1926, 2010 – EGU General Assembly 2010 – https://meetingorganizer.copernicus.org/EGU2010/EGU2010-1926.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/18/attempts-to-obtain-the-atmospheric-co2-concentration-from-stomatal-density-or-stomatal-index-should-be-accompanied-by-additional-palaeoclimate-studies-of-the-considered-sites/ )

Körner C. (1988) – Does Global Increase of CO2 Alter Stomatal Density? – Flora 181(3-4): 253-257 – https://doi.org/10.1016/S0367-2530(17)33116-X –https://www.sciencedirect.com/science/article/pii/S036725301733116X – (On our blog : https://plantstomata.wordpress.com/2019/03/08/does-global-increase-of-co2-alter-stomatal-density/ )

Kouwenberg L. L. R. (2004 ) – Application of conifer needles in the reconstruction of Holocene CO2 levels – PhD ThesisLPP Contributions series 16. LPP FoundationUtrecht – https://ib.berkeley.edu/labs/looy/People/lenny.html –

Kouwenberg L. L. R., Broughton J. D., Tiffney B. H., McElwain J. C. – Ancient elevation of Northern Sierra Nevada Mountains detected from stomatal analyses of 16 – 23 million year old fossil leaves – https://gsa.confex.com/gsa/2007AM/finalprogram/abstract_129307.htm – (On our blog : https://plantstomata.wordpress.com/2017/09/15/stomata-in-fossils-and-mountain-elevation-estimation/)

Kouwenberg L. L. R., Kürschner W. M., McElwain J. C. (2007) – Stomatal frequency change over altitudinal gradients: prospects for paleoaltimetry. – Reviews in Mineralogy and Geochemistry 66: 215-241 – DOI: 10.2138/rmg.2007.66.9  http://rimg.geoscienceworld.org/content/66/1/215 – (On our blog : https://plantstomata.wordpress.com/2016/11/05/stomatal-frequency-and-altitude-paleoaltimetry/)

Kouwenberg L. L. R., Kürschner W. M., Visscher H. (2004) – Changes in stomatal frequency and size during elongation of Tsuga heterophylla needles – Annals of Botany 94: 561-569 – https://doi.org/10.1093/aob/mch175 – https://academic.oup.com/aob/article/94/4/561/189674 – (On our blog : https://plantstomata.wordpress.com/2017/12/10/changes-in-stomatal-frequency-and-size-during-elongation-of-needles/)

Kouwenberg L. L. R., McElwain J. C. (    ) – The effect of light intensity and temperature changes on the stomatal and epidermal morphology of Quercus kelloggi: implications for paleoelevation reconstruction – http://www.ucmp.berkeley.edu/science/profiles/lenny_poster1.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/06/light-intensity-temperature-and-stomatal-morphology/ )

Kouwenberg L. L. R., McElwain J. C., Kürschner W. M., Wagner F., Beerling D. J., Mayle F. E., Visscher H. (2003) – Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2 – American Journal of Botany 90(4): 610-619 – doi: 10.3732/ajb.90.4.610 – http://www.amjbot.org/content/90/4/610.abstract – (On our blog : https://plantstomata.wordpress.com/2017/12/10/stomatal-frequency-adjustment-to-historical-changes-in-atmospheric-co2/)

Kouwenberg L. L. R., Wagner F., Kürschner W. M., Visscher H. (2005) – Atmospheric CO2 fluctuations during the last Millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles – Geology 33: 33-36 – https://doi.org/10.1130/G20941.1 – https://pubs.geoscienceworld.org/gsa/geology/article-abstract/33/1/33/129251/atmospheric-co2-fluctuations-during-the-last?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2017/12/10/atmospheric-co2-fluctuations-reconstructed-by-stomatal-frequency-analysis/)

Krassilov V. A. (1968) – On classification of stomata – Palaeontol. J. (Moscow), 1: 102-109 (В. А. Красилов, “О классификации устьиц,” Палеонтол. Ж., № 1, стр. 102-109) –

Krassilov V. A. (1978) – Electron microscopy of stomatal guard cells – Palaeontol. J. (Moscow) 3: 128-130 (В. А. Красилов, “Электронная микроскопия замыкающих клеток устьиц,” Палеонтол. Ж., № 3, стр. 128-130 –

Krassilov V. A. (1978) – Bennettitalean stomata – The Palaeobotanist 25: 179-184 – https://paleobotany.ru/pdf/Krassilov%201978%20-%20Bennettitalean%20stomata.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/03/stomata-in-bennettitales/ )

Krassilov V. A., Berner A., Barinova S. (2013) – Morphology as clue to developmental regulation: stomata – Plant 1(3): 30-44 – doi: 10.11648/j.plant.20130103.11 – http://paleobotany.ru/pdf/Krassilov%202013%20-%20Morphology%20as%20Clue%20to%20Developmental.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/27/evolution-of-stomatal-complexes/)

Kvacek Z. (2014) – New fossil records of Ceratozamia (Zamiaceae, Cycadales) from the European Oligocene and lower Miocene – Acta Palaeobotanica 54(2): 231–247 – DOI: 10.2478/acpa-2014-0012New_fossil_records_of_Ceratozamia_Zamiaceae_Cycada (1).pdf – (On our blog : https://plantstomata.wordpress.com/2018/11/29/stomata-in-fossil-ceratozamia/ )

Kunzmann L. (2010) – Geinitzia reichenbachii (Geinitz, 1842) Hollick and Jeffrey, 1909 and Sedites rabenhorstii Geinitz, 1842 (Pinopsida; Late Cretaceous) reconsidered and redescribed – Review of Palaeobotany and Palynology 159(1-2): 123-140 – DOI: 10.1016/j.revpalbo.2009.11.006 – https://www.infona.pl/resource/bwmeta1.element.elsevier-67b34033-2167-3802-b071-5d94873bbcca – (On our blog : https://plantstomata.wordpress.com/2017/10/09/58993/)

Kürschner W. M. (1996) – Leaf stomata as biosensors of palaeoatmospheric CO2 levels –PhD thesisLaboratory of Palaeobotany and Palynology, Utrecht University, Lpp Contributions Series 5: 1-153 – https://research.rug.nl/en/publications/leaf-stomata-as-biosensors-of-palaeoatmospheric-co2-levels

Kürschner W. M., Wagner F., Visscher E. H., Visscher H. (1997) – Predicting the response of leaf stomatal frequency to a future CO2-enriched atmosphere: constraints from historical observations – Geologische Rundschau 86: 512–517 –

Lacourse T., Beer K. W., Hoffman E. H. (2016) – Identification of conifer stomata in pollen samples from western North America – Review of Palaeobotany and Palynology 232: 140-150 – DOI: 10.1016/j.revpalbo.2016.05.005 – https://www.infona.pl/resource/bwmeta1.element.elsevier-5fe5c0a0-08b2-36e3-9359-19c33b713a5c – (On our blog : https://plantstomata.wordpress.com/2017/10/14/identification-of-conifer-stomata-in-fossil-pollen-samples/)

Lacourse T., Delepine J. M., Hodffman E. H. et al (2012) – A 14.000 year
vegetation history of a hypermaritime island on the outer Pacific coast of Canada based on fossil pollen, spores and conifer stomata – Quat Res 78: 572–582 –

Leitner R., Gajewski K. (2004) – Modern and Holocene stomata records
of tree-line variations in northwestern Quebec – Can J Bot-Rev 82: 726–734 –

Li T., Yang X.-J., Zhu Y.-B. (2021) – Estimates of Late Albian atmospheric CO2 based on stomata of Pseudofrenelopsis from Jilin Province, Northeast China – Geological Society, London, Special Publications, 521 – https://doi.org/10.1144/SP521-2021-139https://sp.lyellcollection.org/content/early/2021/11/26/SP521-2021-139 – (On our blog : https://plantstomata.wordpress.com/2021/12/05/96712/ )

Li Y., Popova S., Yao J., Li C. (2014) – A Review on the Taxonomic, Evolutionary and Phytogeographic Studies of the Lotus Plant (Nelumbonaceae: Nelumbo) – Acta Geologica Sinica 88(4) – DOI: 10.1111/1755-6724.12287 – https://www.researchgate.net/publication/265912612_A_Review_on_the_Taxonomic_Evolutionary_and_Phytogeographic_Studies_of_the_Lotus_Plant_Nelumbonaceae_Nelumbo – (On our blog : https://plantstomata.wordpress.com/2018/06/11/the-characters-of-lotus-stomatal-development/ )

Liu X.-Y., Gao Q., Han M., Jin J.-H. (2015) –  The pCO2 estimates of the late Eocene in South China based on stomatal densities of Nageia Gaertner leaves – Clim. Past. Discuss. 11: 2615–2647 – doi:10.5194/cpd-11-2615-2015 – http://adsabs.harvard.edu/abs/2015CliPD..11.2615L – (On our blog : https://plantstomata.wordpress.com/2017/12/10/pco2-estimates-of-the-late-eocene-based-on-stomatal-densities/)

Lockheart M. J., Poole I., Van Bergen P. F., Evershed R. P. (1998) – Leaf carbon isotope compositions and stomatal characters: important considerations for palaeoclimate reconstructions – Organic Geochemistry 29: 1003–1008 – https://doi.org/10.1016/S0146-6380(98)00168-5 –https://www.sciencedirect.com/science/article/pii/S0146638098001685 – (On our blog : https://plantstomata.wordpress.com/2019/03/08/leaf-carbon-isotope-compositions-and-stomatal-characters-for-palaeoclimate-reconstructions/ )

Londoño L., Royer D. L., Jaramillo C., Escobar J., Foster D. A., Cárdenas-Rozo A. L., Wood A. (2018) – Early Miocene CO2 estimates from a Neotropical fossil leaf assemblage exceed 400 ppm – American Journal of Botany 105(11): 1929-1937 – doi: 10.1002/ajb2.1187 https://www.ncei.noaa.gov/access/paleo-search/study/26151 – (On our blog : https://plantstomata.wordpress.com/2022/01/24/use-of-a-leaf-gas-exchange-model-to-estimate-co2-concentrations-using-stomatal-characteristics-of-fossil-leaves-from-a-late-early-miocene-neotropical-assemblage/ )

Lydon S. (2015) – Living fossils: the plants holding the key to ancient and modern climate change – The Guardian 2015- 12-14 – https://www.theguardian.com/science/blog/2015/dec/14/climate-change-plants-key-to-ancient-modern-fossil – (On our blog : https://plantstomata.wordpress.com/2017/01/20/ginkgo-stomata-key-to-ancient-and-modern-climate-change/)

Lydon S. (2018) – How the earliest plants made our world muddy – The Guardian 2018-03-23 – https://www.theguardian.com/science/2018/mar/23/how-the-earliest-plants-made-our-world-muddy – (On our blog : https://plantstomata.wordpress.com/2018/03/23/stomata-in-fossil-land-plants-of-445-million-years-ago/ )

MacDonald G. M. (2001) – Conifer stomata. In: Smol JP, Birks HJB, Last
WM (eds) Tracking environmental change using lake sediments:
terrestrial, algal, and siliceous indicators – Kluwer, Dordrecht 33–47 –

Manchester S. R., Dillhoff R. M. (2004)Fagus (Fagaceae) fruits, foliage, and pollen from the Middle Eocene of Pacific Northwestern North America – Can. J. Bot. 82: 1509–1517 (2004) – doi: 10.1139/B04-112 – (On our blog : https://plantstomata.wordpress.com/2017/02/08/stomata-in-fossil-fagus-fagaceae/)

Maslova N. P., Karasev E. , Kodrul T. M., Spicer R. A., Liu X. (2018) – Sun and shade leaf variability in Liquidambar chinensis and Liquidambar formosana (Altingiaceae) – Botanical Journal of the Linnean Society 90:1-20 – DOI: 10.1093/botlinnean/boy047/5094043https://www.researchgate.net/publication/327592646_Sun_and_shade_leaf_variability_in_Liquidambar_chinensis_and_Liquidambar_formosana_Altingiaceae – (On our blog : https://plantstomata.wordpress.com/2019/03/19/stomata-in-sun-and-shade-leaves-of-fossil-liquidambar-species/ )

Maslova N. P., Shilin P. V. (2011) – The New Species Ettingshausenia sarbaensis (Angiospermae) from the Cenomanian-Turonian of Western Kazakhstan in Light of the Problem of Classification of Dispersed Cretaceous Platanus-Like Leaves – Paleontological Journal 45(4): 459-473 – DOI: 10.1134/S0031030111040071 – https://www.researchgate.net/publication/241055009_The_New_Species_Ettingshausenia_Sarbaensis_Angiospermae_from_the_Cenomanian-Turonian_of_Western_Kazakhstan_in_Light_of_the_Problem_of_Classification_of_Dispersed_Cretaceous_Platanus-Like_Leaves – (On our blog : https://plantstomata.wordpress.com/2019/03/19/stomata-in-ettingshausenia-sarbaensis-fossils/ )

Masterson J. (1994) – Stomatal size in fossil plants: Evidence for polyploidy in majority of angiosperms – Science 264: 421-424 – DOI: 10.1126/science.264.5157.421 – https://science.sciencemag.org/content/264/5157/421 – (On our blog : https://plantstomata.wordpress.com/2019/08/01/the-use-of-fossil-guard-cell-size-as-a-proxy-for-cellular-dna-content/ )

McElwain J. C. (1997) – Fossil stomatal parameters as indicators of palaeo-atmospheric CO2 concentration through Phanerozoic time. PhD thesis, University of London.

McElwain J. C. (1998) – Do fossil plants signal palaeoatmospheric CO2 concentration in the geological past? – Phil.Trans. R. Soc. Lond. B 353: 83-96 – https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1692169/pdf/YAKVJWBFM62NRFN4_353_83.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/28/palaeoatmospheric-co2-concentrations-for-the-middle-eocene-lutetian-based-on-the-stomatal-ratios-of-fossil-lauraceae/)

McElwain J. C. (2004) – Climate-independent paleoaltimetry using stomatal density in fossil leaves as a proxy for CO2 partial pressure – Geology 32: 1017–1020 – https://doi.org/10.1130/G20915.1 –https://pubs.geoscienceworld.org/gsa/geology/article-abstract/32/12/1017/29359/climate-independent-paleoaltimetry-using-stomatal?redirectedFrom=fulltext – (On our blog : https://plantstomata.wordpress.com/2019/03/08/stomatal-density-in-fossil-leaves-as-a-proxy-for-co2-partial-pressure-2/ )

McElwain J. C. (2012) – Evolution of stomatal function: New perspectives and application to the fossil record – Presentation at New Phytologist Symposium Nr. 29 on Stomata 2012 – https://www.newphytologist.org/app/webroot/img/upload/files/29thNPSAbstractBook.pdf – (On our blog : https://plantstomata.wordpress.com/2018/01/12/fossils-and-the-evolution-of-stomatal-function/ )

McElwain J. C. (2021) – The story in the stomata – https://evolution.berkeley.edu/ancient-fossils-and-modern-climate-change/the-story-in-the-stomata/ – (On our blog : https://plantstomata.wordpress.com/2023/04/14/114608/ )

McElwain J. C. (2022) – Nature or nurture: Evolution and phenotypic plasticity – https://evolution.berkeley.edu/nature-or-nurture-evolution-and-phenotypic-plasticity/ – (On our blog : https://plantstomata.wordpress.com/2023/04/14/through-the-process-of-evolution-by-natural-selection-plant-populations-with-fewer-stomata-will-evolve-over-many-generations/ )

McElwain J. C., Chaloner W. G. (1995) –  Stomatal density and index of fossil plants track atmospheric carbon dioxide in the Paleozoic – Annals of Botany 76: 389–395 – doi: 10.1006/anbo.1995.1112 –  http://aob.oxfordjournals.org/content/76/4/389.abstract?ijkey=151721401487fcc4d4138061d603f620e4d2a388&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2016/11/05/stomatal-density-of-fossil-leaves-and-changes-in-atmospheric-co2-concentration-through-geological-time/)

McElwain J. C., Mayle F. E., Beerling D. J. (2002) – Stomatal evidence for a decline in atmospheric CO2 concentration during the younger dryas stadial: a comparison with Antarctic ice core records – Journal of Quaternary Science 17: 21–29 –

McElwain J. C., Mitchell F. J. G., Jones M. B. (2016) – Relationship of stomatal density and index of Salix cinerea to atmospheric carbon dioxide concentrations in the Holocene – Holocene 5: 216-219 – DOI: 10.1177/095968369500500209 – https://www.researchgate.net/publication/249868813_Relationship_of_Stomatal_density_and_index_of_Salix_cinerea_to_atmospheric_carbon_dioxide_concentrations_in_the_Holocene – (On our blog : https://plantstomata.wordpress.com/2017/02/02/relationship-of-stomatal-density-and-index-to-co2-in-the-holocene-fossils/)

McElwain J. C., Mitchell F. J. G., Jones M. B. (2016) – Relationship of stomatal density and index of Salix cinerea to atmospheric carbon dioxide concentrations in the Holocene – The Holocene 5: 216-219 –  http://journals.sagepub.com/doi/abs/10.1177/095968369500500209 – (On our blog : https://plantstomata.wordpress.com/2017/02/15/stomatal-density-and-index-of-fossils-in-relation-to-co2/)

McElwain J. C., Steinthorsdottir M. (2017) – Paleoecology, Ploidy, Paleoatmospheric Composition, and Developmental Biology: A Review of the Multiple Uses of Fossil Stomata – 

McElwain J. C. , Yiotis C., Lawson T. (2016) – Using modern plant trait relationships between observed and theoretical maximum stomatal conductance and vein density to examine patterns of plant macroevolution – New Phytologist 209(1): 94 -103 – doi: 10.1111/nph – https://www.ncbi.nlm.nih.gov/pubmed/26230251 – (On our blog : https://plantstomata.wordpress.com/2016/10/05/patterns-of-plant-macroevolution-maximum-stomatal-conductance-and-vein-density/)

Menéndez C. A., Caccavari M. A. (2013) – ESTRUCTURA EPIDERMICA DE ARAUCARIA NATHORSTI DUS. DEL TERCIARIO DE PICO QUEMADO, RIO NEGRO – Ameghiniana 4(6): – – https://ameghiniana.org.ar/index.php/ameghiniana/article/view/1195

Menzel P. (1969) – Revision zu originalen strukturbietender Blätter aus der Lausitzer un Niederrheinischen Braunkohle – Geologie 18(1): 77-111 – (On our blog : https://plantstomata.wordpress.com/2017/07/22/stomata-in-originals-of-structure-showing-leaves-in-brown-coal-deposits-in-german/)

Merced A. (2016) – Early land plants evolved a simple but effective mechanism to place stomata away from each other – Atlas of Science – https://atlasofscience.org/early-land-plants-evolved-a-simple-but-effective-mechanism-to-place-stomata-away-from-each-other/ – (On our blog : https://plantstomata.wordpress.com/2019/05/29/stomata-in-mosses-do-not-require-meristemoids-instead-stomata-differentiate-before-the-capsule-begins-to-expand/ )

Miao Y., Warny S., Clift P. D., Gregory M., Liu C. (2018) – Climatic or tectonic control on organic matter deposition in the South China Sea? A lesson learned from a comprehensive Neogene palynological study of IODP Site U1433 – International Journal of Coal Geology 190: 166-177 – DOI: 10.1016/j.coal.2017.10.003https://www.researchgate.net/publication/320848842_Climatic_or_tectonic_control_on_organic_matter_deposition_in_the_South_China_Sea_A_lesson_learned_from_a_comprehensive_Neogene_palynological_study_of_IODP_Site_U1433 – (On our blog : https://plantstomata.wordpress.com/2019/04/09/stomata-in-fossils-of-south-china-sea/ )

Murphy J., McElwain J., Weinstein J. (n.d.) – The story in the stomata – Understanding Evolution.berkeley.edu -Fossils & climate change
page 3 of 8 – http://evolution.berkeley.edu/evolibrary/article/mcelwain_03 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64645)

Oak Spring Garden Foundation (2021) – Strap shaped leaf fossils from the Tevshiin Govi locality – https://www.osgf.org/prc-research/mongolia – (On our blog : https://plantstomata.wordpress.com/2022/04/02/stomata-in-podozamites-harrisii-pseudotorellia-resinosa-and-pseudotorellia-palustris/ )

Odell M. E. (1932) – The determination of fossil Angiosperms by the characteristics of their vegetative organs – Ann. Bot. 46: 941-963 – (On our blog : https://plantstomata.wordpress.com/2017/08/09/stomata-in-fossil-angiosperms/)

Ogaya R., Llorens L., Penuelas (2011) – Density and length of stomatal and epidermal cells in “living fossil” trees grown under elevated CO2 and a polar light regime – Acta Oecologica 37: 381-385 – http://www.creaf.uab.es/global-ecology/Pdfs_UEG/2011%20ActaOecol.pdf – (On our blog : https://plantstomata.wordpress.com/2018/02/07/leaf-epidermal-cells-of-living-fossil-species-are-more-sensitive-than-stomata-to-a-doubling-of-co2-concentration/ )

Ogunkunle A. T. J., Oladele F. A. (2008) – Leaf epidermal studies in some Nigerian species of Ficus L. (Moraceae) – Plant Syst Evol (2008) 274: 209–221 – DOI 10.1007/s00606-008-0044-9 – (On our blog : https://plantstomata.wordpress.com/2017/02/08/stomata-in-ficus-moraceae-2/)

Okubo A., Kimura T. (1989)Nilssonia yezoensis, sp. nov., from the Upper Cretaceous Hakobuchi Group, in Hokkaido, Japan – Bull. Natn. Sci. Mus., Tokyo, Ser. C, 15(3): 97-107 – https://www.kahaku.go.jp/research/publication/geology/download/15_3/BNSM_C150303.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/17/stomata-in-nilssonia-yezoensis-sp-nov-fossil/ )

Okubo A., Kimura T. (1991)Cupressinocladus obatae, sp. nov., from the Lower Cretaceous Choshi Group, in the Outer Zone of Japan – Bull. Natn. Sci. Mus. Tokyo, Ser. C., 17(3): 91-109 – https://www.kahaku.go.jp/research/publication/geology/download/17_3/BNSM_C170302.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/05/stomata-in-cupressinicladus/ )

Oswald W. W., Hansen B. C. S., Foster D. R. (2007) – Comparison of pollen and stomata in Late-Glacial and Early-Holocene lake sediments from Eastern Massachusetts – Rhodora 109(938): 225-229 – http://www.jstor.org/stable/23313667 –  https://www.jstor.org/stable/23313667?seq=1 – (On our blog : https://plantstomata.wordpress.com/2020/12/21/pollen-and-stomata-in-lake-sediments-from-eastern-massachusetts/ )

Panti C., Césari S. N., Marenssi S. A., Olivero E. B. (2007) – A new araucarian fossil species from the Paleogene of southern Argentina – Ameghiniana 44(1): – – ISSN 1851-8044 – http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S0002-70142007000100016 – (On our blog : https://plantstomata.wordpress.com/2022/02/13/discontinuous-and-longitudinally-oriented-stomatal-rows-separated-by-epidermal-cells/ )

Parshall T. (2000) – Documenting forest stand invasion: fossil stomata and pollen in forest hollows – Canadian Journal of Botany 77(10) :  – https://doi.org/10.1139/b99-133https://cdnsciencepub.com/doi/abs/10.1139/b99-133?journalCode=cjb1 – (On our blog : https://plantstomata.wordpress.com/2021/03/14/stomata-and-pollen-to-document-stand-scale-forest-invasion/ )

Passalia M. G. (2009) – Cretaceous pCO2 estimation from stomatal frequency analysis of gymnosperm leaves of Patagonia, Argentina – Palaeogeography, Palaeoclimatology, Palaeoecology 273: 17–24 – https://www.sciencedirect.com/science/article/abs/pii/S0031018208006342?via%3Dihub – (On our blog: https://plantstomata.wordpress.com/2021/11/24/cretaceous-pco2-estimation-from-stomatal-frequency-analysis-2/ )

Payne W. W. (1979) – Stomatal patterns in embryophytes: their evolution, ontogeny and interpretation. – Taxon 28: 117–132 – DOI: 10.2307/1219566 –  http://www.jstor.org/stable/1219566?origin=crossref&seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2017/08/18/48721/)

Pennisi E. (2017) – How plants learned to breathe – Science 335(6330): 1110-1111 – DOI: 10.1126/science.355.6330.1110 – http://science.sciencemag.org/content/355/6330/1110 – (On our blog : https://plantstomata.wordpress.com/2017/12/10/how-plants-learned-to-breathe/)

Pisaric M. F. J., Holt C., Szeicz J. M., Karst T., Smol J. P. (2003) – Holocene treeline dynamics in the mountains of northeastern British Columbia, Canada, inferred from fossil pollen and stomata – Sage 13(2): 161-173 – https://doi.org/10.1191/0959683603hl599rphttps://journals.sagepub.com/doi/10.1191/0959683603hl599rp – (On our blog : https://plantstomata.wordpress.com/2021/02/20/holocene-treeline-dynamics-fossil-pollen-and-stomata/ )

Pisaric M. F. J., MacDonald G. M., Cwynar L. C., Velichko A. A. (2001) – Modern pollen and conifer stomates from north-central Siberian lake sediments: their use in interpreting Late Quaternary fossil pollen assemblages – Arct Antarct Alp Res 33: 19–27 – https://doi.org/10.1080/15230430.2001.12003400https://www.tandfonline.com/doi/abs/10.1080/15230430.2001.12003400 – (On our blog : https://plantstomata.wordpress.com/2021/02/20/modern-pollen-and-conifer-stomates-from-north-central-siberian-lake-sediments/ )

Pisaric M. F. J. , MacDonald G. M. , Velichko A. A., Cwynar L. C. (2001) – The late-glacial and post-glacial vegetation history of the northwestern limits of Beringia, based on pollen, stomata and tree stump evidence – Quaternary Science Reviews 20: 235–245 – https://doi.org/10.1016/S0277-3791(00)00120-7https://www.sciencedirect.com/science/article/abs/pii/S0277379100001207?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2021/02/20/the-late-glacial-and-post-glacial-vegetation-history-of-the-northwestern-limits-of-beringia-based-on-pollen-stomata/ )

Pisaric M. F. J., Szeicz J. M., Karst T., Smol J. P. (2000) – Comparison of pollen and conifer stomates as indicators of alpine treeline in northwestern Canadian lake sediments – Can J Bot 78: 1180–1186 – https://doi.org/10.1139/b00-092https://cdnsciencepub.com/doi/abs/10.1139/b00-092 – (On our blog : https://plantstomata.wordpress.com/2021/02/20/the-presence-of-stomates-clearly-distinguishes-vegetation-zones-dominated-by-arboreal-vegetation-from-alpine-tundra-zones-where-trees-are-not-present/ )

Pole M. (2008) – Dispersed leaf cuticle from the Early Miocene of southern New Zealand – Palaeontologia Electronica 11(15) – https://www.researchgate.net/publication/266797560_Dispersed_leaf_cuticle_from_the_Early_Miocene_of_southern_New_Zealand – (On our blog : https://plantstomata.wordpress.com/2018/12/23/stomata-in-fossil-winteraceae/ )

Pole M., Philippe M. (2010) – Cretaceous plant fossils of Pitt Island, the Chatham group, New Zealand – Alcheringa: An Australasian Journal of Palaeontology, 34: 3, 231 — 263 – DOI: 10.1080/03115511003659085 – 2010-pittisland.pdf – (On our blog : https://plantstomata.wordpress.com/2019/04/10/77553/ )

Poole I., Kürschner M. (1999) – Stomatal density and index: the practice. – In: Jones, T.P., Rowe, N.P. (Eds.), Fossil Plants and Spores: Modern Techniques. – The Geological Society, London, 257–260 – https://www.researchgate.net/publication/46596820_Stomatal_density_and_index_The_practice – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64659)

Poole I., Weyers J. D. B., Lawson T., Raven J. A. (1996) – Variations in stomatal density and index: implications for palaeoclimatic reconstructions. – Plant, Cell and Environment 19 705712 – DOI: 10.1111/j.13653040.1996.tb00405.x – – http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1996.tb00405.x/abstract – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/64665)

Pott C., McLoughlin S., Lindström A. (2010) – Late Palaeozoic foliage from China displays affinities to Cycadales rather than to Bennettitales necessitating a re−evaluation of the Palaeozoic Pterophyllum species – Acta Palaeontologica Polonica 55 (1): 157–168 – doi:10.4202/app.2009.0070file:///C:/Users/wille/Downloads/app.2009.0070.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/01/stomatal-characteristics-to-define-affinities/ )

Pšenička J., Bek J. (2003) – Cuticles and spores of Senftenbergia plumosa (Artis) Bek and Pšenička from the Carboniferous of Pilsen Basin, Bohemian Massif – Review of Palaeobotany and Palynology 125(125): 299-312 – DOI: 10.1016/S0034-6667(03)00006-Xhttps://www.researchgate.net/publication/230561120_Cuticles_and_spores_of_Senftenbergia_plumosa_Artis_Bek_and_Psenicka_from_the_Carboniferous_of_Pilsen_Basin_Bohemian_Massif – (On our blog : https://plantstomata.wordpress.com/2019/02/13/stomata-in-senftenbergia-plumosa-artis/ )

Raven J. A. (2008) – Selection pressures on stomatal evolution – New Phytologist 153(3): 371-386 – https://doi.org/10.1046/j.0028-646X.2001.00334.xhttps://nph.onlinelibrary.wiley.com/doi/full/10.1046/j.0028-646X.2001.00334.x – (On our blog : https://plantstomata.wordpress.com/2021/02/21/the-time-scale-of-environmental-fluctuations-over-which-stomatal-responses-can-maximize-carbon-gain-per-unit-water-loss-varies-among-taxa-and-life-forms/ )

Reichman M. A., Schabilion J. T. (1985) – STOMATAL STRUCTURE OF ALETHOPTERIS SULLIVANTII AND NEUROPTERIS SCHEUCHZERI, PENNSYLVANIAN PTERIDOSPERM FOLIAGE – American Journal of Botany 72(9): 1392-1396 – https://doi.org/10.1002/j.1537-2197.1985.tb08396.xhttps://bsapubs.onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1985.tb08396.x – (On our blog : https://plantstomata.wordpress.com/2022/07/05/the-stomata-of-alethopteris-sullivantii-and-neuropteris-scheuchzeri-are-actinocytic-haplocheilic-similar-to-those-found-in-various-modern-cycads-and-conifers/ )

Renzaglia K. S., Villareal J. C., Piatkowski B. T., Lucas J. R., Merced A. (2017) – Hornwort stomata: Architecture and fate shared with 400 million year old fossil plants without leaves – Plant physiology  – DOI: 10.1104/pp.17.00156 – https://www.researchgate.net/publication/316247209_Hornwort_stomata_Architecture_and_fate_shared_with_400_million_year_old_fossil_plants_without_leaves – (On our blog https://plantstomata.wordpress.com/2017/04/28/an-architecture-and-fate-of-stomata-in-hornworts-that-is-ancient-and-common-to-plants-without-sporophytic-leaves/)

Rivera L., Baraza E., Alcover J. A., Bover P., Rovira C. M., Bartolomé J. (2014) – Stomatal density and stomatal index of fossil Buxus from coprolites of extinct Myotragus balearicus Bate (Artiodactyla, Caprinae) as evidence of increased CO2 concentration during the late Holocene – Holocene 24: 876–880 –  doi: 10.1177/0959683614530445 – http://journals.sagepub.com/doi/abs/10.1177/0959683614530445 – (On our blog : https://wordpress.com/post/plantstomata.wordpress.com/65018)

Robinson J. M. (1994) – Speculations on carbon dioxide starvation, late tertiary evolution of stomatal regulation and floristic modernization – Plant, Cell & Environment 17: 345–354 – https://doi.org/10.1111/j.1365-3040.1994.tb00303.xhttps://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1994.tb00303.x – (On our blog : https://plantstomata.wordpress.com/2021/11/24/stomatal-adjustment-mechanisms-should-show-patterned-variation-and-a-single-pattern-of-stomatal-regulation-cannot-be-assumed/ )

Roth-Nebelsick A. (2015) – Interactive comment on “The pCO2 estimates of the late Eocene in South China based on stomatal density of Nageia Gaertner leaves” by X.-Y. Liu et al. – Clim. Past Discuss. 11: C1438–C1440 – https://cp.copernicus.org/preprints/11/C1438/2015/cpd-11-C1438-2015-print.pdf – (On our blog : https://plantstomata.wordpress.com/2021/12/14/interactive-comment-on-the-pco2-estimates-based-on-stomatal-density/ )

Roth-Nebelsick A., Grein M., Utescher T., Konrad W. (2012) – Stomatal pore length change in leaves of Eotrigonolanalus furcinervis (Fagaceae) from the Late Eocene to the Latest Oligocene and its impact on gas exchange – Rev. Palaeobot. Palynol. 174: 106–112 – DOI: 10.1016/j.revpalbo.2012.01.001 – https://www.infona.pl/resource/bwmeta1.element.elsevier-ac1d9a03-045f-38fb-b9fb-93cae038d708 – (On our blog : https://plantstomata.wordpress.com/2018/08/01/stomatal-pore-length-change-from-the-late-eocene-to-the-latest-oligocene/ )

Roth-Nebelsick A., Oehm C., Grein M., Utescher T., Kunzmann L., Friedrich J. P., Konrad W. (2014) – Stomatal density and index data of Platanus neptuni leaf fossils and their evaluation as a CO2 proxy for the Oligocene – Rev. Palaeobot. Palynol. – 206: 1– 9 – DOI: 10.1016/j.revpalbo.2014.03.001 – http://www.sciencedirect.com/science/article/pii/S0034666714000359 – (On our blog : https://plantstomata.wordpress.com/2017/12/18/stomatal-density-and-index-of-a-fossil-platanus/)

Royer D. L. (2001) – Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration – Review of Palaeobotany and Palynology 114: 1-28 – http://www.ldeo.columbia.edu/~peter/Resources/Seminar/readings/Royer%202001.pdf – (On our blog : https://plantstomata.wordpress.com/2016/12/19/stomata-and-paleoatmospheric-co2-concentration/)

Royer D. L. (2003) – Estimating latest Cretaceous and Tertiary atmospheric CO2 from stomatal indices, in Wing, S.L., Gingerich, P.D., Schmitz, B., and Thomas, E., eds., Causes and Consequences of Globally Warm Climates in the Early Paleogene: Boulder, Colorado, Geological Society of America Special Paper 369: 79–93 – doi:10.1130/0-8137-2369-8.79 – http://droyer.web.wesleyan.edu/GSA_Paper.pdf – (On our blog : https://plantstomata.wordpress.com/2018/08/02/a-co2-reconstruction-based-on-stomatal-distributions-in-fossil-and-extant-ginkgo-and-metasequoia-cuticles/ )

Royer D., McElwain J. (xxxx) – Stomatal frequencies proxies – https://paleo-co2.org/proxiesStomatal – (On our blog : https://plantstomata.wordpress.com/2020/12/11/stomatal-frequencies-proxies/ )

Royer D. L., Moynihan K. M., McKee M. L., Londoño L., Franks P. J. (2019) – Sensitivity of a leaf gas-exchange model for estimating paleoatmospheric CO2 concentration – Clim. Past 15: 795-809 – DOI: 10.5194/cp-15-795-2019https://www.researchgate.net/publication/332485435_Sensitivity_of_a_leaf_gas-exchange_model_for_estimating_paleoatmospheric_CO2_concentration -(On our blog : https://plantstomata.wordpress.com/2020/12/11/observational-and-theoretical-constraints-on-one-of-these-models-the-franks-model-can-be-applied-to-most-subaerial-stomata-bearing-fossil-leaves-from-c3-taxa/ )

Rudall P. J., Bateman R. M. (2019) – Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales – Biol Rev Camb Philos Soc. 94(3): 1179-1194 – doi: 10.1111/brv.12497 – Epub 2019 Feb 4 -PMID: 30714286 – https://pubmed.ncbi.nlm.nih.gov/30714286/ – (On our blog : https://plantstomata.wordpress.com/2021/04/24/stomatal-patterning-in-bennettitales-2/ )

Rudall P. J., Hilton J., Bateman R. M. (2013) – Several developmental and morphogenetic factors govern the evolution of stomatal patterning in land plants – New Phytologist 200(3): 598-614 – DOI: 10.1111/nph.12406https://www.researchgate.net/publication/255174678_Several_developmental_and_morphogenetic_factors_govern_the_evolution_of_stomatal_patterning_in_land_plants – (On our blog : https://plantstomata.wordpress.com/2019/08/05/developmental-and-morphogenetic-factors-govern-the-evolution-of-stomatal-patterning/ )

Rundgren M., Beerling D. (1999) – A holocene CO2 record from the stomatal index of subfossil Salix herbacea L. leaves from northern Sweden – The Holocene 9: 509-513 – http://hol.sagepub.com/content/9/5/509 – http://journals.sagepub.com/doi/10.1191/095968399677717287 – (On our blog : https://plantstomata.wordpress.com/2017/08/05/a-holocene-co2-record-from-the-stomatal-index-of-subfossil-salix-herbacea-l/)

Rundgren M., Björck S. (2003) – Late-glacial and early Holocene variations in atmospheric CO2 concentration indicated by highresolution stomatal index data – Earth Planet. Sc. Lett. 213: 191–204 – https://doi.org/10.1016/S0012-821X(03)00324-8 – (On our blog : https://plantstomata.wordpress.com/2018/08/02/highresolution-stomatal-index-data-show-that-atmospheric-co2-may-have-played-an-important-role-in-climate-dynamics-during-the-last-deglaciation/ )

Ruszala E. M., Beerling D. J., Franks P. J., Chater C., Casson S. A., Gray J. E., Hetherington A. M. (2011) – Land plants acquired active stomatal control early in their evolutionary history – Curr Biol 21(12): 1030–1035 – https://doi.org/10.1016/j.cub.2011.04.044 – https://www.sciencedirect.com/science/article/pii/S0960982211004866 – (On our blog : https://plantstomata.wordpress.com/2018/08/14/physiologically-active-stomatal-control-originated-at-least-as-far-back-as-the-emergence-of-the-lycophytes-2/ )

Sadowski E.-M., Schmidt A. R., Seyfullah L. J., Kunzmann L. (2017) – Conifers of the ‘Baltic amber forest’ and their palaeoecological significance – Stapfia 106: – ISSN 0252-192X – https://www.researchgate.net/publication/321965930_Conifers_of_the_%27Baltic_Amber_Forest%27_and_their_Palaeoecological_Significance – (On our blog : https://plantstomata.wordpress.com/2022/02/05/conifers-of-the-baltic-amber-forest-and-their-palaeoecological-%ef%bf%bcsignificance/ )

Scott A. C., Chaloner W. G. (1983) – The earliest fossil conifer from the Westphalian B of Yorkshire – Proc. R. Soc. Lond. B 220: 163-182 – https://royalsocietypublishing.org/doi/pdf/10.1098/rspb.1983.0094 – (On our blog : https://plantstomata.wordpress.com/2019/04/10/stomata-in-fossil-swillingtonia/ )

Sender L. M., Doyle J. D., Upchurch G. R. Jr., Villanueva-Amadoz U., Diez J. B. (2019) – Leaf and inflorescence evidence for near-basal Araceae and an unexpected diversity of other monocots from the late Early Cretaceous of Spain – Journal of
Systematic Palaeontology 17(15): 133-1346 – ISSN: 1477-2019 (Print) – 1478-0941 (Online 2018) – https://doi.org/10.1080/14772019.2018.1528999https://www.tandfonline.com/doi/full/10.1080/14772019.2018.1528999 – (On our blog : https://plantstomata.wordpress.com/2022/06/13/stomata-in-fossil-monocots/ )

Seyfullah L. J. (2012) – Fossil Focus: Using Plant Fossils to Understand Past Climates and Environments – Palaeontology  2(7): 1-8 – http://www.palaeontologyonline.com/articles/2012/fossil-focus-plant-fossils/ – (On our blog : https://plantstomata.wordpress.com/2016/11/23/stomata-in-plant-fossils-to-understand-past-climates-and-environments/)

Sharma B. D. (1968) – Investigations on the Jurassic Flora of Rajmahal Hill, India. 5. Epidermal studies of the bracts in two new species of Williamsonia, W. guptai and W. amarjolense – Acta Bot. Acad. Sci. Hungaricae 14(3-4): 373-383 – (On our blog : https://plantstomata.wordpress.com/2017/08/31/stomata-in-the-bracts-of-williamsonia-bennettitalean-fossils/)

Shi G., Herrera F., Herendeen P., Leslie A., Ichinnorov N., Takahashi M., Crane P. R. (2017) – Leaves of Podozamites and Pseudotorellia from the Early Cretaceous of Mongolia: stomatal patterns and implications for relationships – Journal of Systematic Palaeontology – DOI: 10.1080/14772019.2016.1274343 – https://www.researchgate.net/publication/312870666_Leaves_of_Podozamites_and_Pseudotorellia_from_the_Early_Cretaceous_of_Mongolia_stomatal_patterns_and_implications_for_relationships – (On our blog : https://plantstomata.wordpress.com/2017/02/02/stomatal-patterns-of-podozamites-and-pseudotorellia-fossils/)

Shillito L.-M. (2015) – Microfossil of the month: Plant Stomata – Castles and Coprolites 2015-01-21 –  http://castlesandcoprolites.blogspot.be/2015/01/microfossil-of-month-plant-stomata.html – (On our blog : https://plantstomata.wordpress.com/2016/11/23/stomata-in-fossil-reed/)

Šimůnek Z. (2010) – Cuticles of Paripteris Gothan, 1941 (Pteridospermopsida) from the Westphalian of Poland – Bulletin of Geosciences 85(2): 353 – 360 – http://www.geology.cz/bulletin/fulltext/1192_simunek.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/15/stomata-in-paripteris-gothan-1941/ )

Smith R. Y.Greenwood D. R.Basinger J. F. (2010) – Estimating paleoatmospheric pCO2 during the Early Eocene climatic optimum from stomatal frequency of Ginkgo, Okanagan Highlands, British Columbia, Canada. – Palaeogeography, Palaeoclimatology, Palaeoecology 293: 120131 – http://doi.org/10.1016/j.palaeo.2010.05.006 http://www.sciencedirect.com/science/article/pii/S003101821000283X – (On our blog : https://plantstomata.wordpress.com/2017/04/14/paleoatmospheric-pco2-and-stomatal-frequency-of-ginkgo/)

Steinthorsdottir M., Bacon K. L., Popa M. E., Bochner L., McElwain J. C. (2011) – Bennettitalean leaf cuticle fragments (here Anomozamites and Pterophyllum) can be used interchangeably in stomatal frequency-based palaeo-CO2 reconstructions – Palaeontology 54: 867–882 – Bennettitalean_leaf_cuticle_fragments_he.pdf – (On our blog : https://plantstomata.wordpress.com/2017/12/12/stomatal-frequency-based-palaeo-co2-reconstructions/)

Steinthorsdottir M., Elliott-Kingston C., Coiro M., McElwain J. C. (2021) – Searching for a nearest living equivalent for Bennettitales: a promising extinct plant group for stomatal proxy reconstructions of Mesozoic pCO2 – GFF 143(2-3): 190-201 -Special Issue: Advances in Swedish palaeontology; the importance of fossils in natural history collections – The Department of Palaeobiology at the Swedish Museum of Natural History – https://doi.org/10.1080/11035897.2021.1895304https://www.tandfonline.com/doi/full/10.1080/11035897.2021.1895304 – (On our blog : https://plantstomata.wordpress.com/2022/04/22/bennettitales-pco2-can-be-reconstructed-based-on-cross-calibration-of-stomatal-densities-with-those-of-co-occurring-pco2-responders-such-as-ginkgoales/ )

Steinthorsdottir M., Porter A. S., Holohan A., Kunzmann L., Collinson M., McElwain J. C. (2016) – Fossil plant stomata indicate decreasing atmospheric CO2 prior to the Eocene–Oligocene boundary – Clim. Past, 12: 439-454 – doi:10.5194/cp-12-439-2016http://www.clim-past.net/12/439/2016/ – (On our blog : https://plantstomata.wordpress.com/2017/01/20/fossil-plant-stomata-indicate-decreasing-atmospheric-co2/)

Steinthorsdottir M., Vajda V. (2015) – Early Jurassic (late Pliensbachian) CO2 concentrations based on stomatal analysis of fossil conifer leaves from eastern Australia – Gondwana Res. 27: 932–939 – https://doi.org/10.1016/j.gr.2013.08.021 – https://www.sciencedirect.com/science/article/pii/S1342937X13003043 – (On our blog : https://plantstomata.wordpress.com/2019/03/08/early-jurassic-co2-concentrations-based-on-stomatal-analysis-of-fossil-conifer-leaves/ )

Steinthorsdottir M., Vajda V., Pole M. (2016) – Global trends of pCO2 across the Cretaceous-Paleogene boundary supported by the first Southern Hemisphere stomatal proxy-based pCO2 reconstruction – Palaeogeography, Palaeoclimatology, Palaeoecology 464: 143–152 – https://doi.org/10.1016/j.palaeo.2016.04.033https://www.sciencedirect.com/science/article/pii/S0031018216300967?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/04/22/stomatal-density-worldwide-was-responding-to-significant-changes-in-pco2-across-the-k-pg/ )

Steinthorsdottir M., Vajda V., Pole M. (2016) – Significant transient pCO2 perturbation at the New Zealand Oligocene-Miocene transition recorded by fossil plant stomata – Palaeogeography, Palaeoclimatology, Palaeoecology 515: 152-161 – https://doi.org/10.1016/j.palaeo.2018.01.039https://www.sciencedirect.com/science/article/pii/S0031018217307332 – (On our blog : https://plantstomata.wordpress.com/2023/05/10/a-new-pco2-record-from-the-omt-into-the-early-miocene-reconstructed-using-the-stomatal-proxy-method-with-a-database-of-fossil-lauraceae-leaves-from-new-zealand/ )

Steinthorsdottir M., Vajda V., Pole M., Holdgate G. (2019) – Moderate levels of Eocene pCO2 indicated by Southern Hemisphere fossil plant stomata – Geology 47 – https://doi.org/10.1130/G46274.1https://pubs.geoscienceworld.org/gsa/geology/article/573071/moderate-levels-of-eocene-pco2-indicated-by – (On our blog : https://plantstomata.wordpress.com/2019/08/13/80156/ )

Steinthorsdottir M., Wohlfarth B., Kylander M., Blaauw M., Reimer P. (2013) – Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions – Quaternary Sci. Rev. 68: 43–58 – https://doi.org/10.1016/j.quascirev.2013.02.003 –https://www.sciencedirect.com/science/article/abs/pii/S0277379113000553?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2019/03/08/stomatal-proxy-record-of-co2-concentrations-from-the-last-termination-suggests-an-important-role-for-co2-at-climate-change-transitions/ )

Steinthorsdottir M., Woodward I., Surlyk F., McElwain J. (2012)Deep-time evidence of a link between elevated CO2 concentrations and perturbations in the hydrological cycle via drop in plant transpiration – Geology 40(9) : – Doi : 10.1130/G33334.1https://www.researchgate.net/publication/232279040 – (On our blog : https://plantstomata.wordpress.com/2024/02/19/the-consequences-of-stomatal-responses-to-elevated-co2-may-lead-to-locally-increased-runoff-and-erosion-and-may-link-terrestrial-and-marine-biodiversity-loss-via-the-hydrological-cycle/ )

Steinthorsdottir M., Woodward I., Surlyk F., McElwain J. (2013) – A high CO2 -driven decrease in plant transpiration leads to perturbations in the hydrological cycle and may link terrestrial and marine loss of biodiversity: deep-time evidence – Geology – doi: 10.1130/G33334.1https://www.researchgate.net/publication/258776342_A_high_CO2_-driven_decrease_in_plant_transpiration_leads_to_perturbations_in_the_hydrological_cycle_and_may_link_terrestrial_and_marine_loss_of_biodiversity_deep-time_evidence – (On our blog : https://plantstomata.wordpress.com/2022/01/23/high-co2-driven-changes-in-stomatal-and-canopy-transpiration-provide-a-possible-mechanistic-link-between-terrestrial-ecological-crisis-and-marine-mass-extinction-at-the-tr-j/ )

Steinthorsdottir M.,et al. (2015) – Interactive comment on “Fossil plant stomata indicate decreasing atmospheric CO2 prior to the
Eocene–Oligocene boundary” – Clim. Past Discuss. 11: C2576–C2578 –
www.clim-past-discuss.net/11/C2576/2015https://cp.copernicus.org/preprints/11/C2576/2015/cpd-11-C2576-2015.pdf – (On our blog : https://plantstomata.wordpress.com/2020/11/04/86152/ )

Stidd B. M. (1988) – Stomata of Alethopteris sullivanti: a new stomatal type among seed ferns and vascular plants – Amer. J. Bot. 75(6): 790-796 – https://doi.org/10.2307/2443998https://www.jstor.org/stable/2443998 – (On our blog : https://plantstomata.wordpress.com/2021/08/18/a-cell-within-a-cell-arrangement-unknown-among-stomata-elsewhere-in-the-plant-kingdom/ )

Stidd L. L. O., Stidd B. M. (1976) – Paracytic (Syndetocheilic) Stomata in Carboniferous Seed Ferns – Science 193: 156-157 -DOI: 10.1126/science.193.4248.156 – https://www.ncbi.nlm.nih.gov/pubmed/17759253 – (On our blog : https://plantstomata.wordpress.com/2017/02/06/33798/)

Stubblefield S., Banks H. P. (1978) – The cuticle of Drepanophycus spinaeformis, a long-ranging Devonian Lycopod from New York and Eastern Canada – American Journal of Botany 65(1): 110-118 – https://doi.org/10.1002/j.1537-2197.1978.tb10841.xhttps://bsapubs.onlinelibrary.wiley.com/doi/10.1002/j.1537-2197.1978.tb10841.x – (On our blog : https://plantstomata.wordpress.com/2023/06/19/the-presence-of-paracytic-stomata-and-paired-stomatal-guard-cells-on-specimens-presumed-to-be-drepanophycus-spinaeformis-goppert/ )

Sun B.-N., Ding S.-T., Wu J.-Y., Dong C., Xie S., Lin Z.-C. ( 2012) – Carbon Isotope and Stomatal Data of Late Pliocene Betulaceae Leaves from SW China: Implications for Palaeoatmospheric CO2 -levels – Turkish Journal of Earth Sciences (Turkish J. Earth Sci.) 21: 237–250 – doi:10.3906/yer-1003-42 – http://journals.tubitak.gov.tr/earth/issues/yer-12-21-2/yer-21-2-4-1003-42.pdf – (On our blog : https://plantstomata.wordpress.com/2018/09/02/stomatal-data-of-late-pliocene-betulaceae-leaves/ )

Sun B. N., Xiao L., Xie S .P., Deng S. H., Wang Y. D., Jia H, Turner S. (2007) – Quantitative analysis of paleoatmospheric CO2 level based on stomatal characters of fossil Ginkgo from Jurassic to Cretaceous in China – Acta Geologica Sinica 81: 931– 939 – https://doi.org/10.1111/j.1755-6724.2007.tb01016.x – https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-6724.2007.tb01016.x – (On our blog : https://plantstomata.wordpress.com/2019/03/08/quantitative-analysis-of-paleoatmospheric-co2-level-based-on-stomatal-characters-of-fossil-ginkgo/ )

Sun T.-X., Edwards D., Li C.-S. (2005) – The stomatal apparatus of Lycopodium japonicum and its bearing on the stomata of the Devonian lycophyte Drepanophycus spinaeformis – Bot J Linn Soc 149: 209–216 – DOI: 10.1111/j.1095-8339.2005.00434.x – http://onlinelibrary.wiley.com/doi/10.1111/j.1095-8339.2005.00434.x/abstract – (On our blog : https://plantstomata.wordpress.com/2016/11/02/stomata-in-lycopodium-lycopsida/)

Surange K. R., Singh P. (1951)Walkomiella indica, a new conifer from the lower Gondwanas of India – http://210.212.232.211:8080/jspui/bitstream/123456789/4471/1/CMFRI-%20122%20article%2020.pdf – (On our blog : https://plantstomata.wordpress.com/2022/01/18/100181/ )

Sweeney C. A. (2000-2004) – Conifer stomata analysis in Late Quaternary paleoecolgy in Scandinavia – AMAP Project Portal – http://projects.amap.no/project/conifer-stomata-analysis-in-late-quaternary-paleoecolgy-in-scandinavia/ – (On our blog : https://plantstomata.wordpress.com/2017/01/06/project-conifer-stomata-analysis-as-a-tool-for-study-of-fossils/)

Sweeney C. A. (2004) – A key for the identification of stomata of the native
conifers of Scandinavia – Rev Palaeobot Palynol 128: 281–290 –

Tarran M., Wilson P. G., Hill R. S. (2016) – Oldest record of Metrosideros (Myrtaceae): Fossil flowers, fruits, and leaves from Australia – American Journal of Botany 103(4): – DOI: 10.3732/ajb.1500469https://www.researchgate.net/publication/300083371_Oldest_record_of_Metrosideros_Myrtaceae_Fossil_flowers_fruits_and_leaves_from_Australia – (On our blog : https://plantstomata.wordpress.com/2021/10/05/water-stomata-in-metrosideros-myrtaceae/ )

Tarran M., Wilson P. G., Paull R., Biffin E., Hill R. S.(2018) – Identifying fossil Myrtaceae leaves: the first described fossils of Syzygium from Australia – American Journal of Botany: 105(10) – DOI: 10.1002/ajb2.1163https://www.researchgate.net/publication/328024004_Identifying_fossil_Myrtaceae_leaves_the_first_described_fossils_of_Syzygium_from_Australia – (On our blog : https://plantstomata.wordpress.com/2022/06/21/stomata-in-fossil-syzygium-myrtaceae/ )

Thomas B. A. (1966) – The cuticle of the lepidodendroid stem – New Phytologist 65(3): 296-303 – https://doi.org/10.1111/j.1469-8137.1966.tb06365.xhttps://nph.onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.1966.tb06365.x – (On our blog : https://plantstomata.wordpress.com/2023/06/19/the-cuticle-gives-information-about-the-stomata-of-the-lepidodendroid-stem/ )

Thompson W. P. (1912) – The Structure of the Stomata of Certain Cretaceous Conifers – Botanical Gazette 54(1): 63-67 – (On our blog : https://wordpress.com/block-editor/post/plantstomata.wordpress.com/6135 )

Townrow J. A. (1965) – Notes on some Tasmanian pines. I. Some Lower Tertiary Podocarps – Papers and Proc. Roy Soc. Tasmania 99: 87-107 – https://eprints.utas.edu.au/14304/1/1965_Townrow_Tasmanian_pines_Pt1.pdf – (On our blog :

Townrow J. A. (1967) – The Brachyphyllum crassum complexof fossil conifers – Papers and Proc. Roy Soc. Tasmania 101: 149-172 – https://eprints.utas.edu.au/14262/1/1967_Townrow_Brachyphyllum_Crassum_complex.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/12/stomata-in-brachyphyllum-fossil/)

Townrow J. A. (1967) – On Voltziopsis, a southern conifer of Lower Triassic age – Proc. Roy Soc. Tasmania 101: 173-188 – https://eprints.utas.edu.au/14263/1/1967_Townrow_Voltziopsis_conifer_Triassic.pdf – (On our blog : https://plantstomata.wordpress.com/2022/02/01/stomata-in-the-fossil-voltziopsis/ )

Trautmann W. (1953) – Zur Unterscheidung fossiler Spaltöffnungen den mitteleuropaischen Coniferen – Flora 140: 523-533 – https://doi.org/10.1016/S0367-1615(17)31952-3 – https://ac.els-cdn.com/S0367161517319523/1-s2.0-S0367161517319523-main.pdf?_tid=b79c5fc1-6a6b-4c5f-b973-9fa8e6544743&acdnat=1552060205_2f46e0fb9816c3b0d98dfb4445dd66f3 – – (On our blog : https://plantstomata.wordpress.com/2019/03/08/stomata-in-fossil-conifers/ )

Upchurch G. R. Jr. (1984) – Cuticle Evolution in Early Cretaceous Angiosperms From the Potomac Group of Virginia and Maryland – Annals of the Missouri Botanical Garden 71(2: 522-550 – https://www.jstor.org/stable/2399036?seq=1#page_scan_tab_contents – (On our blog : https://plantstomata.wordpress.com/2019/03/19/stomata-in-early-cretaceous-angiosperms-fossils/ )

Upchurch G. R. Jr. (1984) – Cuticular anatomy of Angiosperm leaves from the Lower Cretaceous Potomac group. I. Zone I leaves – Amer. J. Bot. 71(2): 192-202 – https://digital.library.txstate.edu/bitstream/handle/10877/2569/fulltext.pdf?isAllowed=y&sequence=2 – (On our blog : https://plantstomata.wordpress.com/2021/12/21/98015/ )

Upchurch G. R. Jr., Askin R. A. (1989) – Latest Cretaceous and earliest Tertiary dispersed plant cuticles from Seymour Island – Antarctic Journal 24: 7-10 – https://digital.library.txstate.edu/bitstream/handle/10877/2559/fulltext.pdf?sequence=1&isAllowed=y – (On our blog : https://plantstomata.wordpress.com/2022/02/06/stomata-in-fossil-plant-cuticles/ )

Uzunova K., Palamarev E., Ehrendorfer F. (1997) – Anatomical changes and evolutionary trends in the foliar epidermis of extant and fossil Euro-Mediterranean oaks (Fagaceae). – Plant Systematics and Evolution 204: 141–159 – (On our blog : https://plantstomata.wordpress.com/2017/02/14/stomata-in-extant-and-fossil-euro-mediterranean-oaks-fagaceae/)

Uzunova K., Palamarev E., Kvacek Z. (2001) – Eostangeria ruzinciniana (Zamiaceae) from the Middle Miocene of Bulgaria and its relationship to similar taxa of fossil Eostangeria, and extant Chigua and Stangeria (Cycadales) – Acta Palaeobot. 41(2): 177–193 – http://bomax.botany.pl/cgi-bin/pubs/data/article_pdf?id=570 – (On our blog : https://plantstomata.wordpress.com/2018/11/29/stomata-in-eostangeria-ruzinciniana-and-other-cycads-zamiaceae-cycadophyta/ )

Van de Water P. K., Leavitt S. W., Betancourt J. L. (1994) – Trends in stomatal density and 13C/12C ratio of Plnus flexilis needles during last glacial-interglacial cycle – Science 264: 239–243 – Int. J. Adv. Biol. Res. 5(1): 23-28 – http://science.sciencemag.org/content/264/5156/239?ijkey=3dce4f02b56cc6e9b620cb718a6125df9e63b9d0&keytype2=tf_ipsecsha – (On our blog : https://plantstomata.wordpress.com/2017/05/16/stomatal-density-and-13c12c-ratio-during-last-glacial-interglacial-cycle/)

Wagner F. (1998) The influence of environment on the stomatal frequency in BetulaPh.D. dissertationLaboratory of Palaeobotany and Palynology, Utrecht University, Lpp Contributions Series 9: 1–102 –

Wagner F., Kouwenberg L. L. R., van Hoof T. B., Visscher H. (2004) – Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency – Quaternary Science Reviews 23: 1947-1954 – https://doi.org/10.1016/j.quascirev.2004.04.003 –https://geocraft.com/WVFossils/Reference_Docs/Holocene_CO2_stomata_Wagner_etal_2004.pdf – (On our blog: https://plantstomata.wordpress.com/2019/03/08/reproducibility-of-holocene-atmospheric-co2-records-based-on-stomatal-frequency/ )

Wcislo-Luraniec E. (1985) – New details of leaf structure in Bisdalea dura Harris (Coniferae from the Jurassic of Krakow, Poland – Acta palaeobotanica XXV (1,2): 13-20 – http://bomax.botany.pl/cgi-bin/pubs/data/article_pdf?id=2760 – (On our blog : https://plantstomata.wordpress.com/2021/12/16/stomatal-guard-cells-with-lignine-dorsal-and-polar-lamellae-in-bilsdalea/ )

Wellman C. H., Ball A. C. (2021) – Early land plant phytodebris – Geological Society, London, Special Publications 511: 309-320 – https://doi.org/10.1144/SP511-2020-36https://sp.lyellcollection.org/content/511/1/309 – (On our blog : https://plantstomata.wordpress.com/2022/01/10/stomata-in-phytodebris/ )

Wikipedia (2021) Cooksonia Lang, 1937 in Döring M (2021) – English Wikipedia – Species Pages. Wikimedia Foundation – Checklist dataset https://doi.org/10.15468/c3kkgh – accessed via GBIF.org on 2022-01-24 – https://www.gbif.org/species/165646761 – (On our blog : https://plantstomata.wordpress.com/2022/01/24/stomata-in-cooksonia-lang-1937/ )

Williams M. (2017) – Update: Origins and evolution of stomatal development – In Plant Physiology, Plant Physiology: Updates, Research – https://plantae.org/update-origins-and-evolution-of-stomatal-development/ – (On our blog : https://plantstomata.wordpress.com/2022/02/22/origins-and-evolution-of-stomatal-development-2/ )

Willmer C., Fricker M. (1996) – The distribution of stomata – Book Springer 12-35 – https://link.springer.com/chapter/10.1007%2F978-94-011-0579-8_2#citeas – (On our blog : https://plantstomata.wordpress.com/2021/03/26/stomata-were-relatively-large-in-early-plants/ )

Willmer C., Fricker M. (1996) – The distribution of stomata. In: Stomata. Springer, Dordrecht – https://doi.org/10.1007/978-94-011-0579-8_2 https://link.springer.com/chapter/10.1007/978-94-011-0579-8_2#citeas – (On our blog : https://plantstomata.wordpress.com/2021/04/06/89593/ )

Woodward F. I. (1987) – Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels – Nature 327: 617-618 – DOI: 10.1038/327617a0https://www.nature.com/articles/327617a0 – (On our blog : https://plantstomata.wordpress.com/2019/03/08/stomatal-numbers-are-sensitive-to-increases-in-co2-from-pre-industrial-levels/ )

Wooler M. J., Agnew A. D. Q. (2002) – Changes in graminoid stomatal morphology over the last glacial-interglacial transition: evidence from Mount Kenya, East Africa. -Paleogeography, Plaeoclimatology, Plaoecology 177(1-2): 123-136 – http://dx.doi.org/10.1016/S0031-0182(01)00355-8 – http://www.sciencedirect.com/science/article/pii/S0031018201003558 – (On our blog : https://plantstomata.wordpress.com/2016/11/23/graminoid-stomatal-morphology-over-the-last-glacial-interglacial-transition/)

Xu Y., Wang Y., McLoughlin S. (2023) – How similar are the venation and cuticular characters of Glossopteris, Sagenopteris and Anthrophyopsis? – Review of Palaeobotany and Palynology 2023, 104934, ISSN 0034-6667 – https://doi.org/10.1016/j.revpalbo.2023.104934https://www.sciencedirect.com/science/article/pii/S0034666723001033 – (On our blog : https://plantstomata.wordpress.com/2023/06/29/standardized-descriptions-of-vein-cross-connection-types-and-stomatal-features-to-compare-and-contrast-the-venation-patterns-and-stomatal-architectures-of-fossil-genera/ )

Yao Z.-Q., Liu L.-J. (2004) – A new gigantopterid plant with cuticles from the Permian of South China – Review of Palaeobotany and Palynology 131(1-2): 29-48 – DOI10.1016/j.revpalbo.2004.02.007 – https://www.infona.pl/resource/bwmeta1.element.elsevier-ecc615d1-981f-3a7d-a16b-9bc9f17e03be – (On our blog : https://plantstomata.wordpress.com/2017/10/16/stomata-in-gigantopteridium-marginervum-fossil/)

Yu Z. (1997) – Late Quaternary paleoecology of Thuja and Juniperus
(Cupressaceae) at Crawford Lake, Ontario, Canada: pollen, stomata and macrofossils – Rev Palaeobot Palynol 96: 241–254 –

Yu Z. (1997) – Late Quaternary paleoecology of Thuja and Juniperus (Cupressaceae) at Crawford Lake, Ontario, Canada: pollen, stomata and macrofossils – Review of Palaeobotany and Palynology 96(3-4): 241-254 – ISSN :0034-6667 – https://www.infona.pl/resource/bwmeta1.element.elsevier-4687236f-5e44-3d32-a59f-d40bd1e44b98 – (On our blog : https://plantstomata.wordpress.com/2017/10/20/stomata-of-thuja-and-juniperus-cupressaceae/)

Zdebska D. (1972)Sawdonia ornata (= Psilophyton princeps var. ornatum) from Poland – Acta Palaebotanica XIII(2): 77-97 – http://bomax.botany.pl/cgi-bin/pubs/data/article_pdf?id=2699 – (On our blog : https://plantstomata.wordpress.com/2022/02/26/stomata-in-sawdonia-fossil/ )

Zhang K., Zhao Y., Guo X. L. (2011) – Conifer stomata analysis in paleoecological studies on the Loess Plateau: An example from Tianchi Lake, Liupan Mountains – Journal of Arid Environments 75(11): 1209–1213 – http://www.sciencedirect.com/science/article/pii/S0140196311001406 – (On our blog : https://plantstomata.wordpress.com/2017/01/03/the-analysis-of-fossil-stomata-is-a-valuable-methodological-tool/)

Zhou N., Wang Y., Ya L., Porter A. S., Kürschner W. M., Li L., Lu N., McElwain J. C. (2020) – An inter-comparison study of three stomatal-proxy methods for CO2 reconstruction applied to early Jurassic Ginkgoales plants – Palaeogeography, Palaeoclimatology, Palaeoecology 542: 109547 – https://doi.org/10.1016/j.palaeo.2019.109547https://www.sciencedirect.com/science/article/abs/pii/S0031018219304183?via%3Dihub – (On our blog : https://plantstomata.wordpress.com/2022/04/22/a-likely-occurrence-of-polyploidy-in-sphenobaiera-huangii-may-result-in-underestimated-paleo-co2-when-applying-mechanistic-method-due-to-an-increase-in-the-size-of-the-stomatal-complex-2/ )

 

Stomata in ginkgophyte fossils

Photo credit: Open i

Figure 9: Abaxial cuticles of the O-ha-tsuki leaf of Ginkgo biloba. a: Abaxial cuticle of the lamina with two costal rows without stomata and two intercostal areas with numerous stomatal complexes (inventory number Herbarium BOZ PVASC15174). Scale bar 100 μm. b: Detail of the abaxial cuticle of the lamina. Note the variable thickening and cutinization of the papillae of the subsidiary cells. Scale bar 100 μm.

Permian ginkgophyte fossils from the Dolomites resemble extant O-ha-tsuki aberrant leaf-like fructifications of Ginkgo biloba L.

by Fischer T. C., Meller B., Kustatscher E., Butzmann R. (2010)

in BMC Evol Biol. 2010 Nov 3;10:337.

doi: 10.1186/1471-2148-10-337. –

Free PMC Article 

c: Outside of the abaxial cuticle of the lamina with numerous stomatal complexes, which are variable in the numbers and shape of the papillae (SEM). Scale bar 100 μm. d: Inner side of the abaxial cuticle of the lamina with several stomatal complexes (SEM). Scale bar 100 μm. - http://openi.nlm.nih.gov/imgs/512/250/3087549/3087549_1471-2148-10-337-9.png?keywords=
c: Outside of the abaxial cuticle of the lamina with numerous stomatal complexes, which are variable in the numbers and shape of the papillae (SEM). Scale bar 100 μm. d: Inner side of the abaxial cuticle of the lamina with several stomatal complexes (SEM). Scale bar 100 μm. – http://openi.nlm.nih.gov/imgs/512/250/3087549/3087549_1471-2148-10-337-9.png?keywords=

Abstract

BACKGROUND:

Structural elucidation and analysis of fructifications of plants is fundamental for understanding their evolution. In case of Ginkgo biloba, attention was drawn by Fujii in 1896 to aberrant fructifications of Ginkgo biloba whose seeds are attached to leaves, called O-ha-tsuki in Japan. This well-known phenomenon was now interpreted by Fujii as being homologous to ancestral sporophylls. The common fructification of Ginkgo biloba consists of 1-2 (rarely more) ovules on a dichotomously divided stalk, the ovules on top of short stalklets, with collars supporting the ovules. There is essentially no disagreement that either the whole stalk with its stalklets, collars and ovules is homologous to a sporophyll, or, alternatively, just one stalklet, collar and ovule each correspond to a sporophyll. For the transition of an ancestral sporophyll resembling extant O-ha-tsuki aberrant leaves into the common fructification with stalklet/collar/ovule, evolutionary reduction of the leaf lamina of such ancestral sporophylls has to be assumed. Furthermore, such ancestral sporophylls would be expected in the fossil record of ginkgophytes.

RESULTS:

From the Upper Permian of the Bletterbach gorge (Dolomites, South Tyrol, Italy) ginkgophyte leaves of the genus Sphenobaiera were discovered. Among several specimens, one shows putatively attached seeds, while other specimens, depending on their state of preservation, show seeds in positions strongly suggesting such attachment. Morphology and results of a cuticular analysis are in agreement with an affiliation of the fossil to the ginkgophytes and the cuticle of the seed is comparable to that of Triassic and Jurassic ones and to those of extant Ginkgo biloba. The Sphenobaiera leaves with putatively attached seeds closely resemble seed-bearing O-ha-tsuki leaves of extant Ginkgo biloba. This leads to the hypothesis that, at least for some groups of ginkgophytes represented by extant Ginkgo biloba, such sporophylls represent the ancestral state of fructifications.

CONCLUSIONS:

Some evidence is provided for the existence of ancestral laminar ginkgophyte sporophylls. Homology of the newly found fossil ginkgophyte fructifications with the aberrant O-ha-tsuki fructifications of Ginkgo biloba is proposed. This would support the interpretation of the apical part of the common Ginkgo biloba fructification (stalklet/collar/ovule) as a sporophyll with reduced leaf lamina.

Mentions: The abaxial cuticle of the extant O-ha-tsuki leaf of Ginkgo biloba (figure 9a-d) shows the distinct pattern typical of Ginkgo leaves: narrow costal rows without stomata and broader areas in between (intercostal fields) with numerous stomata. The narrow costal fields are 100-125 μm wide and consist of three to five rows of longitudinal, mostly rectangular cells. The anticlinal walls are indistinct but seem to be straight to very slightly undulating. Papillae occur not on every cell, but often. The intercostal areas are much broader than the costal areas, at least 200 μm or more. Numerous stomata are randomly oriented and are irregularly distributed as well as the papillae. The anticlinal walls between the stomata are indistinct, but mainly straight or curved. The stomata are enclosed by 5-6 (-7) subsidiary cells with prominent marginal papillae; sometimes the papillae are less strong or not observable. The stomata are elongated, their pores do not exceed 40 μm in length, and the inner walls of the guard-cells are slightly thickened in the middle part. The aperture is about 20-25 μm. The outside surface of the whole abaxial cuticle shows a fine granulated structure.

See the text: NCBI

Pictures at: Open i

Stomata in Cacti

Photo credit: SBS UTEXAS

The stem epidermis of Lepismium, like that of all cacti that are obviously cacti (that is, the ones that are not Pereskias) has numerous stomata (only one visible here). Note the large substomatal chamber in the stem cortex.

Modifications to Cactus Epidermis

by Mauseth J. D. (?)

Mauseth Research: Cacti

– http://www.sbs.utexas.edu/mauseth/researchoncacti/epidermis%20text.htm 

This epidermis has been peeled from the stem of an Opuntia-like cactus (Consolea). The white oblongs are stomata at a density almost as high as that found in leaf lower epidermis. The small circles with dark centers are druses of calcium oxalate. - http://www.sbs.utexas.edu/mauseth/researchoncacti/images/15Consolea%20epi%20peel%20large%20lo%20res.jpg
This epidermis has been peeled from the stem of an Opuntia-like cactus (Consolea). The white oblongs are stomata at a density almost as high as that found in leaf lower epidermis. The small circles with dark centers are druses of calcium oxalate. –
http://www.sbs.utexas.edu/mauseth/researchoncacti/images/15Consolea%20epi%20peel%20large%20lo%20res.jpg

Excerpt

The stem’s epidermis has stomata.

An obvious feature that the persistent epidermis of a stem-photosynthetic, leafless succulent must have is stomata. Although stem epidermis in many species do have stomata,

This cross section of stem of Pereskia humboldtii is unusual for actually having a stoma; most Pereskia stems lack them, although Pereskia leaves do have them. -  http://www.sbs.utexas.edu/mauseth/researchoncacti/images/13Pereskia_humboltii%20large%20lo%20res.jpg
This cross section of stem of Pereskia humboldtii is unusual for actually having a stoma; most Pereskia stems lack them, although Pereskia leaves do have them. –
http://www.sbs.utexas.edu/mauseth/researchoncacti/images/13Pereskia_humboltii%20large%20lo%20res.jpg

Urs Eggli in Zurich discovered that stems of the early cacti may have lacked stomata in their epidermis: plants of Pereskia almost completely lack stomata in their stem epidermis (Pereskia is the cactus genus whose members – rather ordinary woody, leafy trees – retain the greatest number of relictual features).

Maurizio Sajeva, however, found that in contrast to Pereskia, the stems of all ordinary cacti (that is, the members of subfamilies Cactoideae and Opuntioideae – the cacti that look obviously like cacti) do have stomata and at densities almost as high as in the lower epidermis of Pereskia leaves.

If the early evolution of cacti involved obtaining the ability to produce stomata where they had not occurred before, that may have been a type of homeotic evolution: mutations in the promoter regions of stomatal complex morphogenesis genes could have allowed those genes to be activated in stem epidermis as well as in leaf epidermis.

Stem epidermis could have more or less instantaneously obtained not only the ability to produce guard cells and subsidiary cells but also the morphogenetic metabolism necessary to control their density and spacing relative to each other.

See the text: SBS UTexas

Morphological and behavioural traits of stomata in Citrus (Rutaceae)

Photo credit: Google

Ploidy levels in Citrus clementina affects leaf morphology, stomatal density and water content

by Padoan D., Mossad A., Chiancone B., Germana M. A., Sha Valli Khan P. S. (2013)

in Theor. Exp. Plant Physiol. vol.25 no.4 Campo dos Goytacazes Oct./Dec. 2013 –

http://dx.doi.org/10.1590/S2197-00252013000400006

ABSTRACT

The objective of the present study was to understand the relationship among leaf morphology, stomatal characteristics and water relations in triploids generated through anther culture and their counterpart diploid plant of Citrus clementina. Triploid plants possessed small and narrow leaves as compared to diploid plant as evident by less leaf length, leaf width and leaf area. By contrast, the leaf index was observed to be more in triploids than haploid ones.

Flow cytometric analysis re-confirmed the ploidy levels of heterozygous plant Hd as diploid and the ploidy of Th1, Th2, Th3 and Th4 plants as triploids.

A positive relation was found between ploidy level and stomatal guard cell length and width, whereas a negative relation was observed between the stomata density and ploidy level.

The stomatal density was reported to be 6.2±0.2 stomata per µm2 in diploid plant, while stomatal density varied between 3.0 and 3.6 stomata per µm2 in triploids. Leaf relative water content (RWC) was slightly higher in triploids (90.8 to 93.1%) than diploid (89.5%). The leaf water loss was found to be marginally higher in diploid than in triploid plants.

Our results show that increase in ploidy level from diploids to triploids caused an effect on leaf morphology and stomatal characteristics with probable consequences to water relations of leaves.

This research will serve as an important basis for future work on complete analysis of both morphological and behavioural traits of the leaf stomata and transpiration rates in relation to diploid versus triploid plants.

Read the full article: SCIELO