Popular Electronics

New, Exciting Low-Cost Projects

- For Joggers: Electronic Pedometer
- For Motorists: Low-Fuel Warning Buzzer
- For Boating: Portable Gas-Leak Meter
- For Basements: Sump Pump Switch/Alarm

no loose ends All-In-One: computer, floppy, I/O, 16K RAM. $\$ 1595^{*}$

New Heathkit ${ }^{8}$ H89 All-In-One Computer

Heath takes the risk out of selecting a balanced computer system. Now, video terminal, floppy, keyboard and 8 -bit computer are brought together in one self-contained, compact unit. Nothing hangs out.

Two Z80's

The personal computer has never been simpler. Or smarter. Two $Z 80$ microprocessors mean terminal never shares power with computer, as do most desk-top units. So this terminal is capable of a multitude of high-speed functions, all controllable by keyboard or software.

102 K bytes storage

Built-in floppy disk system gives you fast access to programs and data. Each $51 / 4-$ inch diskette has more than 102 K bytes of storage area, enough to hold entire files. The All-In-One comes with 16 K RAM, expandable to 48 K .

Hundreds of uses at home or work

The All-In-One Computer runs programs written in MICROSOFT ${ }^{\text {™ }}$ BASIC and ASSEMBLER Languages. And it accepts all current software written for the popular Heathkit H8 computer. You can choose from scores of practical programs for home and business.

Learn by building

What better way to learn about computers than to build one yourself? The All-In-One is available in easy-to-build kit form, as well as completely assembled. Like all Heath electronic kits, it comes to you with its own easy-to-follow assembly manual and a nationwide network of service centers to assure smooth sailing.

FREE CATALOG

For complete detaifs on the Heathkit H89 All-In-One Computer and nearly 400 other electronic kits for your home, work or pleasure, send today for the latest Heathkit Cataliog of values.

* $\$ 1195$ without floppy. Mail order kit price, F.O.B. Benton Harbor, MI. Also available at Heathkit Electronic Centers at slightly higher prices. Prices subject to change without notice.

No-Fault Radar

If you've ever been caught by radar or if you own a radar detector, please read this important message.

JS\&A has never offered a radar detector.
As our president put it, "A radar detector is a flagrant anti-police device that does nothing but permit abuse of our traffic laws.

Although many devices were presented to JS\&A, none were acceptable. Despite all of our efforts, our president stood firm, "Our company will not, under any circumstances. sell radar detectors.

For three years we saw radar detectorssome good, some bad-but because of our president's policy, we were unable to offer a single unit. We saw the units go to both X and K bands; we saw the police develop radar jamming devices; and we saw the FCC prohibit these jamming devices. We followed with great envy as other companies sold thousands of them while JS\&A stood firm on its decision not to sell them.
In January of 1979, our president was travelling on an interstate highway at 55 miles per hour. Other cars were passing him.
As he approached the top of a hill, he neglected to pay attention to his speedometer. As he rolled down the hill his speed increased to 63 MPH . At the bottom of the hill was a police radar trap.
He was apprehended and charged with exceeding the speed limit by eight miles per hour. He was taken to a Justice of the Peace who was in the barber shop, so our president had to wait until he finished. Finally there was a quick trial and a fine was paid.

Our president was four hours late. He felt that he was treated like a common criminal despite his good driving record and he lost very valuable time.

ATTITUDE CHANGES

This small incident created an entire change in his attitude. Our president saw for the first time that even law-abiding citizens are subject to the inequities of radar justice. He saw that the law-abiding citizen must also be protected from the abuses of radar power when unfairly used.

And when he studied the entire situation, our president realized something very frightening for all motorists. Many police departments have quotas imposed on them to realize either federal or state funds. They must issue a
certain amount of tickets to qualify. With more and more motorists using radar detectors and CB's, police must strictly enforce speed limits to reach their quotas. Now, even law-abiding motorists, who might make a slight mistake. are more vulnerable to speeding violations.

NEW MEMORANDUM

In a recent memorandum our president stated, "Due to the changing nature of police radar, JS\&A may offer radar detectors as part of its program if presented within the quality image of our company and if the product represents a truly unique radar detector product."

With the green light to find a radar detector, our product selection group was prepared. They had brochures from practically every manufacturer in the worid. And they eventually selected what even our president thought was the most professional and well-designed unit available.

HIDDEN ANTENNA

Manufactured by a company called Chicago Radar, the unit consists of two parts - one that is hidden behind your grill, and the other under your dash. There's nothing on top of your dash board to indicate that you've got a radar detector and the system is difficult for anybody to steal. The unit under your dash is attached with a self-adhesive Velcro material so there's no screws or installation to worry about.

The control unit has two lights-one to indi-, cate that the unit is on, and the other to indicate that your car is under radar surveillance. There is also an audible alarm that will sound. But at night, when the light is all that you need, you can switch off the audible sound.

The control unit plugs into your cigarette lighter. The radar antenna is placed behind your grill. Just pull into any service station and the mechanic can easily install the entire system. The Velcro material and mounting brackets are all provided.

AMPLIFIED SENSING

The antenna is one of the keys to the unit's high performance. Instead of the squareshaped dish antennas, the Chicago Radar version is a round cylinder. It tends to sense the radar signals sooner and around curves and hills because of its unique design.

The unit responds to both police radar bands X and K and uses all solid-state computer technology in its design.

We urge you to test our selection of what we feel to be the nation's finest radar detector. Order one from JS\&A. When you receive it, drive to your nearest service station or CB dealer and have them install your unit. The antenna installs with just a few brackets and the control unit attaches under your dash with the Velcro material.
Then use it for 30 days. During that time, count the number of radar traps you encounter. On the 30th day, turn off your unit as you travel. See how naked and unprotected you feel.

40 DAYS PROOF

If for any reason you are not completely satisfied, just return your unit within our 40-day trial period and we'll gladly send you a prompt and courteous refund.
To order your system, send $\mathbf{\$ 1 7 9 . 9 5}$ plus $\$ 3.00$ for postage and handling to the address shown below. (llinois residents, please add 5% sales tax.) Credit card buyers may call our toll-free number below. By return mail, you'll receive the complete system, all cables, Velcro material, instructions and a 90 -day limited warranty.

The patented unit is precision crafted by Chicago Radar-one of the most respected names in radar detection systems. JS\&A is America's largest single source of space-age products-further assurance that your modest investment is well protected.

We firmly support our police departments and their efforts, but if they are encouraged to use radar to maintain quotas, the law abiding consumer has no choice but to protect himself. Start today. Order your unit now at no obligation.

Dept. PE One JS\&A Plaza Northbrook, II. 60062 (312) 564-7000 Call TOLL-FREE 800 323-6400 In Illinois Call (312) 564-7000
(C) JS\&A Group, Inc., 1979

ANNOUNCING AMERICA'S ONLY LAND,SEA AND AIR SCANNER.

Only the incredible, new, no-crystal Bearcat 220 Scanner tunes in all the real excitement of the entire AM aircraft band-plus every FM public service frequency-with pushbutton ease.

About the cover:

A soldering iron and a few
inexpensive parts can be used to make some especially useful devices to add
safety and convenience to your lives.

Cover Art by George Kelvin

JOSEPH E. MESICS Publisher
ARTHUR P. SALSBERG Editorial Director
LESLIE SOLOMON Techatical Director
JOHN J. McVEIOM Tathomal Editor
JOHN R. RIGOS Managing Editor
marold a. Roderss Senier Editor
alexander w. burawa Features Editor
EDWARD I. BUXBAUM Art Director
andRE DUZANT Technical illustrator
CARMEN VELAZOUEZ Production Editor
Contributing Editors Hal Chamberlin, Lou Garner, Olenn Hause Julian Mirsech, Ralph Hodges, Forrest Mims
JEFF NEWMAN Assistant to the Editor
LINDA BLUM Advertising Service Manager
MARIE MAESTRI Executive Assistant
EDGAR W. HOPPER Publishing Director

AUGUST 1979
Feature Articles
SCANNER BEAM PINPOINTS THE ACTION!/ Robert Grque 44
Make-it-yourselt antenna for improved reception of public service bands.
SIMPLE TRS-80 PROGRAMS SOLVE ELECTRONICS CALCULATIONS/ Roy Babylon 47
BASIC program for Ohm's law. resonance and inductive formulasTHE ART OF EQUALIZATION/ Ethan Winer49
An expert tells how to achieve that special recorded "sound
Construction ArticlesFOUR LOW-COST PROJECTS FOR YOUR FAMILY'S CONVENIENCE \& SAFETYSOLID-STATE LEVEL-SENSING SWITCH FOR SUMP PUMPS/ Phillip Windoiph31
VEHICLE LOW-FUEL INDICATOR/ Bradiey Albing 34
PORTABLE GAS LEAK METER/Cass Lewart 41
ELECTRONIC PEDOMETER FOR JOGGERS/ Andrew A. Modia 42
BUILD A SPEAKER PROTECTION CIRCUIT/ Mike Rogalskı 54
SPACE-AGE ELECTRONIC PROJECTS FOR BOATS, Part $2 /$ Harold Wright 55
Columns
STEREO SCENE/ Ralph Hodges 20
Recording as Nature Intended
60
EXPERIMENTER'S CORNER/ Forrest M. Mims
66
hobBy Scene John J. Mc Vergh
DX LISTENING/Glenn Hauser 70
WARC-79
SOFTWARE SOURCES/ Leslie Solomon 73
COMPUTER BITS/ Leslie Solomon 74
Windows in the CRT.
PROJECT OF THE MONTH/ Forrest M. Mims 78
A "Matchbox" LED Oscilloscope
Julian Hirsch Audio Reports
FISHER MODEL ST460 SPEAKER SYSTEM 23
Shure m95he Stereo Phono cartridge 24
LECTROTECH MODEL PPI-400 25
Electronic Product Test Report COMPUCOLOR II MODEL 4 PERSONAL COMPUTER SYSTEM 67
Departments
EDITORIAL/ Art Salsberg 4
The TV Piggybacking Furor. 6LETTERS
NEW PRODUCTS 8
NEW LITERATURE 15
OPERATION ASSIST 94
ADVERTISERS INDEX 97
PERSONAL ELECTRONICS NEWS 98

Popular Electronics

ZIFF-DAVIS PUBLISHING COMPANY
Editorial and Executive Offices
One Park Avenue. New York. New Yofk 10016
212-725-3500
Josephe Mesics (725-3568
John J Corton ($725-3578$)
Bonne B Kalser (725-3580)
Midwestern Office
Sulte $1400,180 \mathrm{~N}$ Michigan Ave
Chicago. IL 60601 (312-346-2600)
Western Office
9025 Wilshire Boulevard. Beverly Hills CA 90211 213-273-8050.
Western Representative Norm Schindle 7050 Owensmouth Ave \#209 Canoga Park. CA 91303 (213-999-1414)

Japan James Yagı O„ Palace Aoyama.
6-25 Minam Aoyama, 6 Chome, Minato-Ku. Tokyo. 407-1930/6821 582-2851

ZIFF-DAVIS PUBLISHING COMPANY Philip 8 Korsant. President
Furman Hebb Executive Vice President Phillip T Heffernan. Si Vice President Edward 0 Muhiteld Sr Vice President Philip Sine. Sr Vice President. Secretary
Lawence Sporn. Sr Vice President. Circulation and Mafketing Bard Davis. Vice President, Production George Morrissey. Vice President
Sydney H Rogers. Vice President
Sidney Hoitz. Vice President
Alben S Trana. Vice President
Pault Chook. Vice Prestdent
Edgar W Hopper. Vice President
Robert N Bavier. Ji Vice Presiden! Selwy Taubman. Treasurer
W Bradford Briggs Vice Chairman

ZIFF COAPORATION
Willam Zitt Charman
Martin Pompadur. Presiden
Hershel B Sarbin Executive Vice President

POPULAR ELECTRONICS August 1979. Votume 16 Numi ber 2 Published monthiy at One Park Avpillie Nes York NY 10016 One year subscription rate lot $U S$ and Possessions $\$ 1300$, Canada. $\$ 1600$, an othe: counlres. $\$ 1800$ (cas orders oniv pavable in US currency) Second Class post age paid at New York NY and at additional maling offices Authonized as second class mail by the Posi Ofice Oepat POPULAR ELECTRONICS POPULAR ELEETRONICS MClucin ELECTRONICS Guide to Periocical Lerature COPYRIGHT © 1979 BY Z
PANY ALL RIGHTS RESERVED-DAVIS PUBLISHING COM
Zitt-Davis also publishes Boating Car and Driver. Cycle Flying. Populat Photography Sking Storeo Review. Elec tronic Expermenter's Handbook Tape Recording \& Buying Guide. Stereo Difeciory \& Buying Guide and Communica ons Handtook
Material in this pubication may not be reproduced in any form without permussion Requesis for permission should te Davis Publishano Co Dne Park Ave New York NY 10016 Editorial correspondence: POPULAR ELECTRONICS. Park Ave. New York NY 10016 Entlorial contributions must be accompanied by return postage and will be handled with reasonable care. however, publisher assumes no respons bilty tor return or satety of manuscripts art work, or mod els

Forms 3579 and all subscription correspondence: POP Boulder CO 80302 Ciease alion Oept. PO Box 2774 change of address Include your oid address enclosing. It possible an address label fromarecent is sue

The publisher has no knowledge of any proprietary right which will be violated by the making or using of any tems disciosed in thrs assue

Editorial

THE TV PIGGYBACKING FUROR

In what appears to be a David vs. Goliath contest, Texas Instruments, with inspirational support from RCA, is attempting to have rules on Class I devices for TV amended to include a Class II category. This would permit legal sale of standalone r - f modulators to be used for computers and peripherals. Such a change in the present interface rule that requires r-f modulators to be FCC type approved together with signal-source equipment is vociferously opposed by Radio Shack, Apple. Commodore, and Interact, among personal computer makers.

TI says, essentially, that it's unfair to make a buyer purchase a video monitor when he could just as easily use an existing TV receiver if only the FCC would OK the use of separate r-f modulators. Other computer makers, who are already marketing personal computers, cry "foul," saying, in a nutshell, that such approval would give TI an unfair marketing advantage. Moreover, they point out that this would also cause increased interference with radio and TV reception.

Tl also requested a temporary permit to go ahead with the separate r-f modulator concept while the FCC's bureaucratic wheels turn ever so slowly to reply to the company's initial request for changing the rules. (Note: the FCC has yet to act on a similar request by RCA made about two years ago.) The National Association of Broadcasters (NAB) observes that this second request amounts to trying to solve a private marketplace problem by changing the rules.

With the foregoing as background, let's examine the pro's and con's of the rules change proposal. [I'll ignore the waiver request entirely because (1) it indeed gives a company not yet in the field an unfair advantage and (2) since the Part 15 radiation standards are under active review, it's possible that the "temporary" r-f modulators will not be in line with new standards.]

From a typical consumer's viewpoint, using a separate modulator to connect a computer to one's own TV receiver would likely appear to be an ideal opportunity to save substantial monies. Given the fact that computers are great noise generators, however, it is possible that interference within the household and on nearby neighbors' receivers would be objectionable. Furthermore, using a home TV receiver as information display equipment results in lowered video quality under the best of circumstances when compared to video monitors.
Nevertheless, the possibility of employing a legalized separate r-f modulator is an appealing one, and should be pursued. I firmly believe, though. that the FCC should not rush into making a positive decision on this without setting signal radiation standards that we can live with in the future. On the other hand, it's unfair to penalize manufacturers by the foot-dragging procedures practiced by the FCC.

RCA, by the way, has pointed out that the TI request for an r-f modulator physically separated from computers is not the same as its petition for a rules change that relates to all-in-one-package video disk and tape machines. So the company suggests three classifications: the present Class I TV devices that require type approval, a second classification for built-in r-f modulators, and a third for stand-alone modulators. (How come RCA and other TV makers don't incorporate video jacks in their TV receivers, which would make these rules change requests moot?)

Since this is written in May, I hopefully will learn more about all this at the Consumer Electronics Show in Chicago in June.

Don't take our word forit.

"We can heartily recommend the Superboard II computer system for the beginner who wants to get into microcomputers with a minimum of cost. Moreover, this is a 'real' computer with full expandability."

Popular Electronics March, 1979
"(Their) new Challenger 1P weighs in at $\$ 279$ and provides a remarkable amount of computing for this incredible price."

Kilobaud Microcomputing February, 1979
"Over the past four years we have taken delivery on over 25 computer systems. Only two have worked totally glitch free and without adjustment as they came out of the carton: The Tektronic 4051 (at $\$ 7,000$ the most expensive computer we tested) and the Ohio Scientific Superboard II (at \$279 the least expensive) . . . The Superboard II and companion C1P deserve your serious consideration."

Creative Computing January, 1979
"The Superboard II and its fully dressed companion the Challenger 1P series incorporate all the fundamental necessities of a personal computer at a very attractive price. With the expansion capabilities provided, this series becomes a very formidable competitor in the home computer area."

Interface Age April, 1979
"The graphics available permit some really dramatic effects and are relatively simple to program... The fact that the system can be easily expanded to include a floppy means that while you are starting out with a low-cost minimal system, you don't have to throw it away when you are ready to go on to more complex computer functions. Everything is there that you need; you simply build on to what you already have. You don't have to worry about trading off existing equipment to get the system that will really do what you want it to do. At $\$ 279$, Superboard II is a tough act to follow."

Radio Electronics June, 1979
"The Superboard II is an excellent choice for the personal computer enthusiast on a budget."

Byte May, 1979

IIIIntash

"A Technologilical Masterpiege

Mcintosh C 32

"More Than a Preamplifier"

McIntosh has received peerless acclaim from prominent product testing laboratories and outstanding international recognition! You can learn why the "more than a preamplifier" C 32 has been selected for these unique honors.

Send us your name and address and we'll send you the complete product reviews and data on all Mcintosh products. copies of the international awards, and a North American FM directory. You will understand why Mcintosh product research and development always has the appearance and technological look to the fulure.

Keep up to date. Send now

McIntosh Laboratory Inc.
Box 96 East Side Station
Binghamton, NY 13904
Name
Address
City__State___Zip \qquad
If you are in a hurry for your catalog please send the coupon to McIntosh. For non-rush service send the Reader Service Card to the magazine.
CIRCLENO. 35 ONFREEINFORMATION CARD

Cols)
 Letters

SOLENOID THAT ISN'T

We at Eumig thank Popular Electonics for the fine review regarding our Metropolitan CCD cassette deck in the May 1979 issue. We did, however, note an error regarding the deck's transport in the "User Comment" section: "The solenoid-operated transport is astonishingly silent. We heard none of the thumps or clunks usually associated with solenoid operation." You then go on to state that there is a "motor" sound instead of a solenoid sound.

As a point of information, the reason solenoids are not heard is that there are no solenoids. The motor sound is heard because the head mounting assembly is step-motor engaged, using the same motor that governs last forward and rewind. -Tom Bensen, Eumig (U.S.A.) Inc., Great Neck. NY

MAKING A BETTER WINDOW?

The window comparator circuit shown above has fewer parts and has better input protection than that shown in Fig. 5 of the May

1979 "Experimenter's Corner." Resistors R1, $R 2$, and R3 form the reference voltage source with the upper limit defined by $V_{C c}(R 2$ $+R 3) /(R 1+R 2+R 3)$ and the lower limit defined by $V_{c c} R 3 /(R 1+R 2+R 3)$. For small windows, R2 determines the window opening. For very small windows, on the order of 0 to 15 mV . R2 can be eliminated and the opening can be adjusted via R7. Resistors R4 and R5 protect the inputs from excessive current during accidental inputs exceeding V_{CC} or ground. Diode limiting can be added from the inputs to $V_{C C}$ and ground, using D1 and $D 2$.
System stability is a function of V_{cc} stability and op-amp drifts. For 741 s and $747 \mathrm{~s}, \mathrm{~V}_{\mathrm{CC}}$ should be between 8 and 30 volts. FET-input op-amps lend themselves well to this application. Resistors R4, R5, and R6 limit LED current and should be chosen to allow about 10 mA.-Glenn Fasnacht, Lakewood, OH .

MOPED TURN INDICATORS

Many thanks for "Solid-State Turn Indicators for Mopeds" (May 1979). The article was clearly written. The project will almost certainly prevent accidents because blinking lights are easier to see and interpret. Also, the project is small enough to easily mount on all mopeds. -Bill Saehler, Minnesota City, MN.

While looking over the moped turn-indicator article, I noticed that D4 and C3 are not switched out of the power circuit by S1. While this is not particularly important when the de-
vice is connected to a moped generator, if a battery is used, as suggested in the article, it would quickly discharge to the zener voltage. To obviate this, I would rewire the circuit as shown below.

Note, too, that by substituting a dpdt (cen-ter-off) switch for S1 several advantages arise. Diodes D3 and D4 are eliminated, light assemblies do not have to be insulated from the frame, and return wiring from the lamps to the switch is not required. -Roy F. Gordon, Hampton. VA.

Introducing the Troubleshooter.

Six functions and 24 ranges for $\$ 129^{*}$ make the jump from Analog to Digital more affordable than ever.

We call our new hand-held 8022A DMM the Troubleshooter. It combines the basic performance features you want with all the advantages that give digital DMM's the edge over analog0.25% basic dc accuracy, a rugged, reliable design, a razor sharp $3^{1 / 2}$-digit LCD readout, small size and light weight.

Measure for measure you won't find a better value. Six functions high and low ohms, ac and dc voltage and current (24 ranges in all) make the Troubleshooter a 13 ounce (0.37 kg) package of excellent measurement value. This kind of value wasn't possible until our custom CMOS LSI single chip design made hand-held DMM's an affordable reality and Fluke the industry leader.

Here's something new that won't shock you. Fluke's exclusive probe design features finger guards on the probe and shrouded connections to discourage accidental contact with circuit voltages.

You won't find a more rugged or reliable hand-held DMM. There's a lot more to building a high-quality hand-held DMM than you might suspect. The case has to survive bumps, scrapes, and scuffs. The LCD readout must withstand the extremes of humid*U.S. Price Only
ity, temperature, and vibration. Function switches need to perform reliably through thousands of cycles. And electrical circuitry must survive both physical shock and electrical overloads.

We built the 8022A to withstand all these tortures - with a rugged impact resistant plastic case, a custom LCD display, reliable push-buttons instead of rotary switches and over 20% of the components devoted to overload protection.

Take the next step. Contact the Fluke office, representative or authorized distributor in your area. In the U.S., CALL TOLL FREE (800) 426-0361. (For resi-

CIRCLE NO. 21 ON FREE INFORMATION CARD

COMPLETED UNIT-NOT A KIT! OCL pre amp. \& power stereo amp. with bass, middle, treble 3 -way tone control. Fully ass3mbled and tested, ready to work. Total harmonic distortion less than 0.5% at full power. Output maximum is 60 watts per channel at 8Ω. Power supply is 24 $36 \vee \mathrm{AC}$ or DC. Complete unit

Assembled $\$ 49.50$ ea.

	Assembled $\$ 49.50 \mathrm{ea}$.
Power transformer	$\$ 8.50 \mathrm{ea}$.

LOW TIM DC STEREO PRE-AMP KIT TA-10-20 Incorporates brand-new D.C. design that gives a frequency response from $0 \mathrm{~Hz}-100 \mathrm{KHz} \pm 0.5 \mathrm{dBI}$ Added features like tone defoat and loudness control lat you tailor your own
frequency response. Independent ic regulated power frequency response. Independent I.C. regulated power sup.
plies to eliminate power fluctuation! Specifications: *THD less than $.005 \%{ }^{\circ}$ T.I.M. less than $.005 \%{ }^{*}$ Frequency re. sponse: DC to $100 \mathrm{KHz} \pm 0.5 \mathrm{~dB} * \mathrm{RIAA}$ deviation: $\pm 0.2 \mathrm{~dB}$ "S/N ratio: betrer than 70 dB *Sensitivity: Phono 2 MV 47K/Aux. 100MV 100K ${ }^{\circ}$ Output level: 1.3 V -Max output 15 V *Tone control: bass
$\pm 10 \mathrm{~dB}$
$\pm 0 \mathrm{~Hz} /$ treble

\qquad $\pm 10 \mathrm{~dB} @ 15 \mathrm{~Hz}$ Pow Kit comes with regulated
power power supply, all you
need is a 48 BV C . need is a 48 V C.T. trans
former 00.5 A ONLY $\$ 44.50$ X^{\prime} 'former $\$ 4.50$
WE SELL ALL KINDS OF
ELECTRONIC PARTS \& KITS PLEASE SEND $\$ 2.00$ FOR DETAIL CATALOGUE YOU MAY FIND OUR 2-PAGE AD IN EVERY ISSUE OF RADIO ELECTRONICS
RETAIL STORE OPEN TO PUBLIC MONDAY THRU SATURDAY 10 a.m. -7 p.m.
FORMULA INTERNATIONAL INC. 12503 CRENSHAW BOULEVARD (213) HAWTHORNE, CA 90250 (213) 679-5162 or (213) 973-1921 All items subject to prior sale. Prices subject to change without notice.

New Products
Additional information on new products covered in this section is arailable from the manufacturers. Fither circle the item's code number on the Free Information Card or write to the manufacturer at the address given.

KEF Model 101
 Loudspeaker

The Model 101 loudspeaker by KEF Electronics has a total volume of only 0.25 cu . ft . and is designed for bookshelf placement. A computer is used to match the two

drivers-a $25-\mathrm{mm}\left(1^{\prime \prime}\right)$ tweeter and a $110-$ $\mathrm{mm}\left(4 \mathrm{~L}^{\prime \prime}\right)$ wooter-and the crossover network as well. The speaker is rated to accept the output of an amplifier up to 100 watts and has an automatic protection system to prevent overdriving. Maximum output level is said to be 98 dB SPL. Sold in matched pairs with teak or walnut finish and a brown fabric grille.
CIRCLENO. B8 ONFREEINFORMATION CARD

Low-Cost
 $\mu \mathrm{C}$ Printer

Radio Shack has introduced an inexpensive printer that produces low-cost hard copy on $2^{3 / 3} \mathrm{~s}^{\prime \prime}(60.3-\mathrm{cm})$ wide aluminumcoated paper. The TRS-80 Quick Printer II

prints upper- and lower-case, double-size, and double-spaced characters to allow special effects such as titling pages and printing headings. Automatic "wraparound" prevents data loss due to overflow when text exceeds maximum line length. Printer software is selectable for 16 or 32 characters/line and produces 120 lines/ minute (64 characters/second). The 96 -character, 5×7 dot-matrix characters are a modified ASCII subset. Vertical spacing is 6 lines/inch. All 32 ASCII codes can be produced, as well as codes for the printed characters. Although designed for use with Radio Shack's Level II TRS-80 systems, the printer can also be used with other computers. Measures $91 / s^{\prime \prime} \mathrm{W} \times 63 / 4{ }^{\prime \prime} \mathrm{D} \times$ $3^{5 / 16 " H} . \$ 219.00$.
CIRCLENO. 89 ONFREEINFORMATIONCARD

Digital
 Capacitance Meter

A new digital capacitance meter has been introduced by Data Precision Corp. The $3^{1 / 2}$-digit Model 938 has a rated measuring range of 0.1 pF to $1999 \mu \mathrm{~F}$ in eight switchable ranges, with a basic accuracy of 0.1%. Range selection is via pushbutton switches handily located along the left side of the case. A zero-adjust control with a +20 pF range is provided for compensat-

ing for stray capacitance of test leads. Measurements appear on a 0.5" (12.7mm) high liquid crystal display. An internal fuse prevents instrument damage from charged capacitors and should the test leads be inadvertently connected across a voltage source. Uses a single 9 -volt alkaline battery. \$149.00
CIRCLENO 91 ONFREEINFORMATION CARD

AM/SSB Mobile CB Transceiver

The Model 7001 is the most precise AM/ SSB CB mobile transceiver in Midland's Precision Series. It features: rf attenuator switch; RF GAIN. CLARIFIER, SQUELCH, and MIC GAIN controls: LED transmit/ receive ($T \times / R X$) indicator: DIM, CB/PA, LSB/ AM/USB mode selector, NB \& ANL, and TONE switches. A two-digit, green seven-
(Continued on page 12)

It's a digital signal injector. And it thinks for itself.

Itmay look like a logis jrobe . . but ol-DP-1 Digital Pulser is a lot more unique. Ir is pandheld, cincuit-powered instrument is actually a miniature pulse generator built to speed digital troubleshooting.

Fuich itto a circu t, and DP-1 automatizally senses the lcgic state. So when you push the outton, out comes one perfect pulse --preset to the logic family you're working with of the preper polarity to force the state the ot 3 er was Hold the button Jown for a secend ant it starts injec-ing a 100pps pulse train. Wi.h all the punch you need - Lp to 100 mA .

Thirk wาat a help tra: can be when yo-r logic circu t is coing something illozical. (And just in case you do sometning illogical, we've included reverse-plarity and short-circuit prolection, as weil.)

L's sme t to save -ime with a DP-1. At $\$ 74.95^{*}$, il's a snart buy, tco.
Smarter tools for testing and design.

CONINTNAL SPEEIALIES COFPORACON

70 Fulton Ierrace. New Haven, CT 06539 (233) 624-3103, TWX 710-465-1227 JTHER 0FIGES San Francisax (415); 421-88². TwX 910-372-7992三urope: CSe UK LTD. ${ }^{3}$ hone Seffron-halder 0"99-ह1682, TLX 817477
Call toll-free for details 1-800-243-6077
Suggested US resere. Available at selected local distributors.
Prices, specileations subject to chenge without notice.
© 1979 Yort Thenta Specialies Corporator
CIRCLEHO. BON FTEEINFORMATIONCERD

The craftsmen at Realtime ${ }^{\text {rM }}$ have done something quite unusual. They've created a dramatically thin, rugged alarm chronograph for under $\$ 250$.

In fact, way under $\$ 250$.
And while they've trimmed their timepiece's profile to a slim 9 mm , they have done it without sacrificing a single feature, or compromising quality.

We have yet to see an alarm chronograph that even approaches the value of this superb new product, either in a store or offered through the mail.

Microcomputer technology pushed to the limit.

It's truly remarkable the amount of information you can now carry on your wrist, especially when you consider it's within a piece of jewelry no bulkier than an ordinary, slim wristwatch.

With this chronograph, you have bright liquid crystal digits always telling you the time of day. In hours, minutes and seconds (with accuracy to ± 5 seconds a month).

What's more, you can even program the hours, minutes and seconds for any other time zone you wish for immediate recall, thanks to Realtime's dual time-zone feature.

5 POPULAR ALARM CHRONOGRAPHS COMPARE THINNESS.

It's a multitalented wrist alarm too. You may set it to beep-beep you in both time zones, and at precisely the minute you choose.

And because of Reaitime's "PM" indicator, you won't be setting your alarm for the evening when you had intended to set it for the morning.

Is it Monday in New York? Or Tuesday in Hong Kong? You'll never have to ask that question

again. The day of the week is always displayed. To see the date, simply flick a button. When the sun's down, press another and the Realtime's face is instantly illuminated.

And just as quickly as you recalled the date, you can set into motion a full-featured stopwatch. By the way, this stopwatch doesn't just count to 59 minutes like many other chronographs do-but up to 12 hours or more. It also precisely cleaves every second into tenths.

You may record split times, lap times or freeze the figures anytime. You may even alternate between your stopwatch functions and normal time ones without concern; by activating one mode, you don't interrupt the other.

$\$ 99$ buys an honest design

We wish you had a Realtime alarm chronograph in your hands right now. You'd see and feel the difference a 100% solid stainless steel case makes. (Most other comparably priced chronographs are chrome plated and not solid stainless.) Realtime's back and bracelet are also solid stainless. And every one of those bracelet links is double stamped to produce the exact size and taper required. Each link is then ground and polished. (We defy anyone to find workmanship like this, elsewhere at this price.)

You'll also notice there's no front speaker grill on this alarm chronograph; it doesn't need one. The alarm sound emanates from the rear of the case. Many other chronographs, in trying to look like Seiko with its front-mounted speaker, cleverly paste on printed front grills. These are functionless; they are just imitation. Everything you see on your Realtime chronograph is there for function, nct for show.

Water? Don't you worry.

The Realtime's face crystal isn't plastic like most chronographs you see. It's tough rock crystal. And not only is it hard enough to resist scratches, but it is fitted so tightly to the case that the chronograph has passed water immersion tests of up to 100 feet. We know of no other chrono-graph-at any price-that can ofter you this security.
This chronograph also has no moving parts to break down, and it is unlikely that servicing will ever be required even after years of hard use. It comes with batteries in place (easily changed by any jeweler), a oneyear factory warranty from its manufacturer, complete instructions, convenient service-by-mail facilities right here in the U.S., and The Sharper Image's own guarantee to customers: if for any reason at all, you are not completely delighted with your purchase, please return it within two weeks for a complete and courteous retund.

ORDER NOW. TOLL-FREE.

- Credit card holders may use our toll-free order-
-ling number, for quickest delivery. Or send check
for $\$ 99$ plus $\$ 1.50$ delivery. Add $\$ 5.94$ tax in CA.

(800) 227-3436

- In California (800) 622-0733

THE SHARPER IMACE

260 California St., Dept. RA -
San Francisco, CÁ 94111
(415) 788 -4747
© 1979 The Sharper Image

TheBest Deal In CarStereo

Our FREE Catalog

The 76 page CRUTCHFIELD catalog is nationally recognized as the best source for car stereo product and installation information. It contains all you need to know to buy and install the ideal system for your car.
And it's FREE! Act now and you'll have it in just a few days.

- Over 200 car stereo products at discount prices
- All the specification, dimension and feature charts you'll need
- The best products in car stereo, including Blaupunkt, Clarion, Craig,
Concord, Jensen, Marantz, Panasonic, Pioneer, Sanyo, and many more!
- Illustrated installation articles

Fill out the coupon and send right away for your FREE catalog. Or if you can't wait, call TOLL-FREE:

segment LED display shows the channe tuned, and a large illuminated meter displays relative signal strength and transmitter output power. Specifications: less than

$0.7 \mu V$ for $10 \mathrm{~dB}(\mathrm{~S}+\mathrm{N}) / \mathrm{N}$ sensitivity; 60 dB adjacent-channel selectivity and desensitization; 3 watts at 10% distortion audio output power into 8 ohms; 4 watts maximum, 3.6 watts minimum carrier power with no modulation: $-65-\mathrm{dB}$ spurious emissions; $40-\mathrm{dB}$ transmitter, $-45-\mathrm{dB}$ receiver hum and noise. $\$ 319.95$.
CIRCLE NO. 92 ONFREEINFORMATION CARD

Compact Electric Drill

Wahl Clipper Corporation's "Iso-Tip" is a compact electric drill that's said to be ideal for circuit board revision, solder removal,

and lead hole cleaning. among other jobs. It runs at about 9000 rpm and accommodates drills and burrs with shank size up to $1 / \mathrm{s}^{\prime \prime}$. Less than $5^{\prime \prime}$ long (excluding drill bit), the Iso-Tip is small enough to use at close quarters. The device is housed in highimpact plastic and is equipped with a 10 power cord, as well as a collet chuck, four collets and two drill bits.

CIRCLE NO 93 ON FREE INFORMATION CARD

Antenna Rotor System

The new Ham IV from Cornell-Dubilier Electric Corp. is an antenna rotor system for large communication arrays with maximum wind load areas of 15 sq it when tower mounted. Includes such features as ma-

chined steel drive gears, dual transformer circuitry, power braking, a control unit with illuminated meter readout, and low-voltage operation. \$224.95.

Bose Spatial-Control Receiver

Designed to complement Bose 901 Direct/ Reflecting speakers, but usable with other speakers as well, the Spatial Control Receiver contains equalization for the 901's and "source and room compensation" controls that function in lieu of tone controls. In addition, it is capable of directing mid and high frequencies to either the inner or outer banks of reflected drivers of the 901's, narrowing or widening the stereo image at the listener's option. Bass is directed equally to all drivers at all times. The unit contains four main power amplifiers and two secondary amplifiers for driving headphones. Strapped in pairs, the large amps are rated at 100 watts per channel into 8 ohms, 20 Hz to 20 kHz , with no more than 0.09% THD The FM section is said to achieve 50 dB of quieting in stereo with an input signal of just over 36 dBf. $\$ 799$.
CIRCLENO 94 ONFREEINFORMATION CARD

Anixter-Mark CB Antenna Upgrader

Anıxter-Mark's "Little Devil" adapter is designed to allow CBers to upgrade to a hıgh-er-performance antenna without requiring a new mount or cable assembly. The base loading coil merely unscrews from the present antenna and the Little Devil

(Continued on page 14)

Using a computer is easy... for onComputing readers.

Read onComputing to find out . . .

- What a microcomputer can do
- How to get started
- What's new in personal computers
- Where to buy your computer
- How to use your computer

The editors of onComputing realize that much of the material written about computers is not at all suited to the person who just wants to use a computer as a tool for business, education, home entertainment, laboratory work, or other applications onComputing is dedicated to helping the computer user understand the capabilities of a microcomputer-in non-technical language
onComputing is entertaining and informative. It contains practical articles on how to get started, including what you'll need for your application and what it will cost. It features book reviews, product reviews, information on what's
new in personal computers, where to buy a personal computer, and how to use it.
onComputing is a totally new publication. It is issued quarterly and contains articles from some of the best known names as well as from competent amateurs. It is edited and produced under the guidance of an experienced staff of computer experts. The articles in onComputing have never appeared in any other publication. They are all fresh, informative, and valuable reading for anyone interested in using a computer - for fun or profit!

onComputing
 Start your subscription today.

EVERY THREE MONTHS onComputing will bring the latest developments in the field of personal computing: use, applications, books, selection - all in an easy-to-read style.
onComputing, inc. 1979
onComputing Subscription Department, P.O. Box 307. Martinsville, NJ 08836 REGULAR subscription rate. U.S. 1 yr. (4 issues) a $\$ 8.50 \quad$ Canada ${ }^{\circ}$ Mexico 1 yr. (4 issues) $\mathrm{n} \$ 10.00$ FOREIGN (to expedite service, please remit in U.S. funds drawn on a U.S. bank.) Europe (and all othercountries, exceptabove) lyr.a \$12.00-surface delivery Bill VISA Bill Master Charge Bill me (North America only)

Card Number \qquad Expiration

Grandfather's Clock'Was \mathfrak{O} Never Like This!

If you love contemporary design but want the more traditional, here is the clock for you. In creating our own version of the ever popular Grandfather Clock, we use the electronic eye to display each second, minute, and hour, and also the simulated pendulum motion.

The diagonal model which has no simulated pendulum is available for wall mounting or with base as a desk clock.
Our synthesized sounds composed of tic toc, modified Westminster Chimes and Bongs are available for any AMELECT clock. The chimes and bongs are composed of six frequencies, providing realistic bell sounds. They are totally within clock cabinet.

The AMELECT clocks, cabinets may be your choice of Cherry. Mahogany, Maple, or Walnut hardwoods.

NEW PRODUCTS (Continued)
screws into its place. All of the popular accessories can be used with the Little Devil. which has a " ${ }^{3}$ " 24 thread. The mount and cable from the old antenna installation can still be used, saving on that part of the system. The adapter can be used with both trunk and lip mounts
CIRCLENO 95 ONFREE INFORMATIONCARD

Programmable Clock Radio

General Electric announced the first AM/ FM programmable digital standard broadcast clock radio. "The Great Awakening" Model 4880. It has a programming keyboard for entering a variety of time and operating functions. For example. two people

can wake up at different times to different stations without resetting, or the two systems can be used for weekday/weekend wake-up times. Further, one can fall asleep listening to one station and wake up to a completely different station. Memory capability to store six radio stations, instantly recallable by touching a button, is built in. Also all timekeeping and memory information is protected by battery back-up during power outages. \$116.95.
CIHCLE NO 96 ONFREEINFORMATION CARD

Automotive Speaker Adapter

East Coast Enterprises has introduced "Adapt-A-Sound," a device that matches a standard $6^{\prime \prime}$ by $9^{\prime \prime}$ automotive loudspeaker to the $4^{\prime \prime}$ by $10^{\prime \prime}$ mounting locations provided in some of the newer, space-efficient

cars. The adapter is said to cause little or no loss of sound quality. A snap-in mounting spring designed to fit all $4^{\prime \prime}$ by 10 " locations is claimed to simplify and facilitate installation. Address: East Coast Enterprises. Inc., P.O. Box 639664, Miami, FL 33163.

Sansui Integrated Amplifier

A slew rate of $200 \mathrm{~V} /$ microsecond (said to reduce transient intermodulation to vanishing point) is given as one of the premier specifications of the Sansul AU-919 integrated amplifier. The direct-coupled amplifier, which is equipped with protective circuitry designed to limit dc at speaker terminals to a safe value, is rated to deliver at least 100 watts per channel to an 8 -ohm load. 5 Hz to 20 kHz , with no more than 0.008% THD The phono equalization amplifier of the preamp section includes inputs for moving-coil and fixed-coil pickups. With the latter. it is said to yield a signal-tonoise ratio of 90 dB . Rated accuracy of EO is $-0.2 \mathrm{~dB}, 20 \mathrm{~Hz}$ to 20 kHz . $\$ 800$.
CIRCLENO 97 ONFREE INFORMATIONCARD

Desoldering Tool for Mini-Boards

Hunter Associates is offering the Model GSS Desoldering Tool, which is intended for use on miniature and microminiature circuit boards and modules. Operating by

means of compressed air. the tool creates suction in its tip. with the high-pressure alr flow causing a continuous self-cleaning action as well. Air can be supplied either from a pressurized line or by an ordinary foot pump. The tool has a tip 2.4 mm in diameter with a $1.2-\mathrm{mm}$ vent. $\$ 39.95$

CIRCLENO 98 ONFREE INFORMATION CARD

Debounce Switch

Cincinnati Electrosystems' new Debounce Switch provides a convenient method for clocking logic circuits without contact bounce. A pushbutton switch. when operated. generates a choice of positive or negative $10-\mu \mathrm{s}$ pulse or a level change This latest addition to the company's Black Box series of laboratory instruments measures $4^{\prime \prime} \times 2^{7} \mathbf{y}^{\prime \prime} \times 1^{9 / 16^{\prime \prime}}(102 \times 73 \times 40$ mm). It is designed to be powered from virtually any 5 - to 15 -volt external dc source. \$7.95. Address: Cincinnati Electrosystems Inc., 469 Ward's Corner Rd.. Loveland. OH 45140.

New Literature

HEATH INSTRUMENT CATALOG

Described in a 35-page catalog is the complete Heath-Schlumberger line of instruments Included are computer systems distortion analyzers, frequency counters. generators, individual learning programs, testers oscilloscopes. power supplies, recorders. TV service, and accessories. Products are illustrated and full specifications are given. Address. Heath/Schlumberger Instruments Benton Harbor, MI 49022

NEWSLETTER FOR ELECTRONIC GUITARISTS/MUSICIANS

Device, the Newsletter for the Electronic Guitarist/Musician, is a monthly publication for musicians involved in today's technology. Co-edited by Craig Anderton and Roger Clay. subjects regularly covered include reviews of musical equipment. construction articles, interviews, features on circuit design and reader opinion polls. Rates are $\$ 15 /$ year (USA), \$16 (Canada/Mexico) and \$18 (International) A free sample issue is available from De vice. P.O Box C, Carmichael. CA 95608.

GOULD OSCILLOSCOPE BULLETIN

Rugged, lightweight professional oscilloscopes with standard fealures usually found in more expensive instruments are described in a new four-page illustrated bulletin from Gould The listing includes three dual-trace and one true dual-beam scopes that range in price from $\$ 595$ to $\$ 995$. For a free copy of Form No. 449-7. contact: Marketing Services. Gould Inc., Instruments Div, 3631 Perkins Ave. Cleveland. OH 44115

RADIO SHACK MICROCOMPUTER CATALOG
The TRS-80 Microcomputer Catalog \#RSC-2 is offered by Radio Shack. The 20 page catalog includes current information on the TRS-80 microcomputer, its peripherals and accessories with descriptions, application ideas and specifications. A general section explains what a computer is, what it can do. "Who can use the TRS-80." and "Why the TRS-80?" The catalog then describes the TRS-80 System, Level-1 and Level-1I Basic Language, and the peripheral equipment avallable for use with the TRS-80 including its expansion interface. Mini-Disk System, printers, interfaces, manuals and TRS-80 System Desk Address Radio Shack. 1400 One Tandy Center, Fort Worth, TX 76102

AKAI STEREO COMPONENT CATALOG

Akai's 56 -page catalog describes its full line of stereo components, including tape decks. turntables, receivers, amplifiers. tuners, loudspeaker systems, an equipment cabinet. a mic /line mixer and stereo accessories. The catalog has information on product features. specifications, and color photos of each model, plus a glossary to explain specifications and provide stereo terminology. Address Catalog. Akai America. Ltd P.O. Box 6010. Complon. CA 90224

ANTENNA INCORPORATED CATALOG

An expanded Land Mobile Antenna catalog for commercial two-way communications
systems is offered by Antenna Incorporated The catalog includes several new antenna models and provides reference material in chart format. enabling the reader to match antenna frequency range and model number with the desired type of antenna mount. Included are: 100- and 200-watt low-band vhi antennas: 100 , 150 and 200 -watt. $3-\mathrm{dB}$ gain, high-band vhf antennas; 100 -watt and 150-watt, 5 -dB gain collinear uhf antennas; 1-wavelength models: heavy-duty mobile antennas for use between 25 and 54 MHz ; "disguise" cowl-mount models and base station antennas. Address: Antenna Incorporated, 26301 Richmond Road, Cleveland. OH 44146

Stop reading. And start listening. It's that simple. Even with today's tape technology, there's no such thing as an ideal tape for every machine. Only what's best for you. Which depends only on the sound you like and the response of your deck.

Compare specs if you wish we'll match ours against anyone else's. But we honestly think you'll be more impressed by comparing the sound of our FX-I or II to that of any other premium cassette.

Visit your audio dealer and take the Fuji challenge.

Magnetic Tape Division of Fuji Photo Film U.S.A., Inc. 350 Fifth Avenue, New York, New York 10001

Now NRImakesit TV/Audiohome

Side-by-side equipment comparison of NRI and two other leading schools shows what you get for what you pay. When you have to pay as much as $\$ 905$ more for another school's course, you should carefully consider your tuition investment.

When you sit down and try to pick out the school that's best for you, it gets
to be a problem. Catalogs are radically different and some are not too clear as to what you actually get for your money. So NRI has done a lot of the work for you. And put the prices right up front so you can make your own judgment.

Of course, we can't compare everything. Lesson clarity and content vary. What one covers here, another covers there...or not at all. The material one school breaks down into eight lessons may be four at another. And the qualifications and abilities of instructors are another question.

	NRI	SCHOOL A	SCHOOL B
COURSE TITLE	Master Course in TV, Audio, and lideo System Servicing	Master Course in Color TV Servicing	Electronics Technology and Advanced Troubleshooting I \& II
CASH PRICE (terms available)	\$1,375	\$1539	\$2280
TV SET	NRI designed-for-learning kit. $25^{\prime \prime}$ (diagonal) color TV with built-in computer programming and cabinet	Heathkit GR-2001 $25^{\prime \prime}$ (diagonal) color TV (cabinet extra)	Zenith model G4020W 19 (diagonal) color TV (fully assembled)
OSCILLOSCOPE	NRI designed-for-learning kit. $5^{\prime \prime}(8 \times 10 \mathrm{~cm})$ triggered sweep	Heathkit $10-45415^{\prime \prime}$ $(8 \times 10 \mathrm{~cm})$ triggered sweep (not given until after graduation)	Heathkit $10-45415^{\prime \prime}$ $(8 \times 10 \mathrm{~cm})$ triggered sweep
COLOR BAR GENERATOR	NRI designed-for-learning kit. 10 patterns	Elenco SG-200 (kit) 10 patterns	Elenco SG-200 (fully assembled) 10 patterns
FREQUENCY COUNTER	NRI designed-for-learning kit. Complimentary metal oxide semiconductor digital type		
METER	NRI designed-for-learning kit. Transistorized $A C / D C$ volt-ohm meter	Heathkit (part of TV kit) DConly; IK Ohm volt	Private label multimeter
AUDIO	NRI designed-for-learning kit. Solid-state stereo AM/FM receiver with cabinet and speakers	Private label pocket transistor AM radio kit and AM-FM-SW' solid-state portable radio kit	
TRAINER	NRI Discovery Lah	Breadboard	Experimental Electronics Lah
MISCELIANEOUS EQUIPMENT	Digital logic probe built into TV set	E.ICO Digital Logic Probe	

All data as shown in each school's catalog as of April l, 1979.

One Million Students, Over 65 Years' Experience

So we can only tell you what NRI has to offer. We've been in education since 1914 , starting as a radio school six years before commercial broadcasting was even on the scene. Since then, we've kept right up with the times, improving techniques, adding material, creating new courses to help people improve their skills and income.

Early on, we learned to keep our lessons compact. . thoroughly covering a subject, but not so much that students would be overwhelmed. We call them "bite-size" lessons because they're easy to digest.

Learn by Doing

with "Hands-on" Training
And, we pioneered the concept of "hands-on" training. NRI goes far beyond theory and textbooks to give our students actual bench experience and prepare them for the realities of electronic servicing. Every piece of equipment in our Master Course in TV and Audio Servicing is designed for learning.

You build your own big-screen TV, the only one complete with computer tuning that lets you program an entire evening's entertainment . . a solid-state

Learn as you build with "hands-on" training.

easy to compare study courses.

stereo tuner and amplifier with speakers ...your own oscilloscope, digital frequency counter, and other instruments you use in your course, use later to service TV's, audio equipment, and video tape units.

The point is, none of this equipment is hobby-kit or conmercial assembly line units with lessons "retrofitted" to what was at hand. NRI has designed each so you get invaluable training and experience you just can't get any other way As you build. you study operation of circuitry, see how sections interact, perform "power-on" experiments only possible with NRI. This total training is exclusive with NRI...no other school, home study or resident. offers it.

Instructors
 Who Know Their Business

NRI instructors are thoroughly qualified, with both technical and educational experience. Most of them helped develop NRI courses, lessons, and equipment, so they really know what they're talking about. They're interested in their students, always ready to help with a question, a problem....give good advice to help you reach your goals.

It's instructors and training like this that have made NRI the choice of professional TV servicemen who have taken home study courses. As a national survey shows (summary on request), they recommend NRI by a majority of three to one over any other school.

So how does NRI give you all this and still cost so little? We keep costs down by designing our own training kits, eliminating the middleman's profit on hobby kits or commercial units. And by offering our training by mail only. We have no sales force, no commissions to pay. You make up your mind in your own time, without pressure, let the facts speak for themselves. We pass these savings on to you in the form of lower tuitions, more equipment, carefully designed courses and effective lessons.

Send for Free Catalog, No Salesman Will Call

Send for our free catalog today and get all the details. See every piece of equipment and kit you get ... a complete listing of fully described lessons. . .explanations of each and every experiment you perform. Read about NRI's background and qualifications. . career opportunities .what NRI graduates say about their training ...costs and monthly payment plans for the courses that interest you. Then compare NRI value and results and make your decision. Like the million that have gone before you, we think you'll choose NRI. Send the card today.

Build and keep 2-meter Iransceiver, test equipment for a communications career.

Orcheck out NRI value-training in Computer or Communications/ CB Equipment Servicing.

NRI's new Microcomputer and Microprocessor course trains you to be the complete computer technician, at home with both hardware and software. As you learn, you build your own advanced technology microcomputer, get "handson" experience in servicing and programming. Or you may want to look into

microwave, commercial broadcasting, and more NRI can help you as you build and experiment with your own digitally synthesized 2-meter transceiver. For facts on these and other NRI home study courses, check the postage-paid card and mail today If card is missing, write to:

11 NRI Schools

McGraw-Hill Contiruing
Education Center
3939 Wisconsin Avenue
Washington, D.C. 20016

By Ralph Hodges

RECORDING AS NATURE INTENDED

IT WAS to be a typical recording session (details of time and place are not pertinent to this discussion), and once it began, our little party of journalists took just five minutes to zero in on the best seats from which to hear the orchestra. What we heard as the music untolded was indeed magnificent. As I sat, spellbound by the glorious sound, I could almost visualize my own microphones hanging there just so tar off the floor and just the right distance from the front desks of musicians.
However, that wasn't where the mikes were at all! For one thing, instead of the two or perhaps three I had visualized, there were some two dozen (neither the producer nor the engineer could recall the exact number) and they were strewn around the orchestra like raisins in a fruit cake. The treatment of French horns was particularly puzzling. Sound-reflecting panels had been erected a short distance behind them; which seemed logical because the bell of the horn faces to the rear and the back wall of the stage reflects the sound out to the audience.
Since the recording team had brought the orchestra off the stage and out into what would be the audience seating area-a very common practice in U.S. orchestra recording-something was needed to take the place of the stage's enclosure. What seemed less logical was that the mikes were not in front of the horns but behind them, a few feet away from the reflecting panels. Now if God intended the French horn to be heard with its bell pointing away from the listener or the microphone, what were mikes doing behind the horns and in line with the bell openings? Certainly the sound in the control room did nothing to throw light on the matter.
I suppose I have heard worse emanating from a set of monitors, but that's not saying much. When, for example,
the producer wanted to make sure the brass did not drown out the strings, he had the engineer turn up the string mikes-often to the point where the violins became shrill caricatures of themselves. With microphones sprinkled hither and yon throughout the orchestra, there were no landmarks by which a listener could get his bearings in the stereo image. Perhaps this was just as well, for a more plausible perspective that churned and twisted as this one did (because of the continual changes in insitrumental balance that were being dialed in), might have caused motion sickness. The tympani were getting into all the microphones, thus losing their crispness and much of the "snap" of their impact. It was discouraging to realize that this sound was the product for which many dollars per minute were being spent, when you could walk 30 steps into the hall and hear how wrong it all was.

Miking the Space. A reaction against this sort of recording technique has been underway for some time now. As a concept it might be termed "miking the space." Instead of trying to pick up 40 violins, 25 violas, 20 cellos, 10 string basses, 2 oboes, etc., you adopt the outlook that you're going to try to capture every acoustic event that takes place in an area of, say, 80 by 40 feet-the sort of area a symphony orchestra might occupy. The nature of the acoustic event doesn't matter-it might be a concert of music, a tap-danclng competition, a game of dice, or a fly buzzing around. What matters is that the event as recorded sounds natura!; that it seems to occupy the âmount of space that it did in reality: and that its aural perspectives are preserved. If something is happening in the rear or over to the left, the sound should come from there when the finished recording is played back.

Of course, this is not the sort of recording technique you use if you are trying to cover up deficiencies in the performance or flatter the sound in some way. What actually takes place is what the microphones hear and the tape preserves, warts and all. Nor is it a technique that is easy to bring off in every environment. But if you accept the idea that the space need not be a nice neat rectangle as long as your performing forces can be squeezed into it, and if you realize in advance that the minimum number of microphones required is usually best, with additional microphones often proving detrimental, you can usually manage something.
Here is a procedure I very often find helpful, although like everything in audio, it is fallible. First consider the recording environment, because it will determine the character of the reverberation present on the finished tape. A small auditorium, for example, is usually less reverberant than a stone church. This means that microphones can usually be placed a bit farther away from the performers without loss of clarity. An advantage can be realized here when working with very few microphones, because a more distant mike means less variation in performer-to-mike distance for any given performer and fewer problems with balance. If the performers know how to balance themselves, the recording will be balanced

A church may require closer miking if reverberation is not to interfere with clarity. In this case, you might want to try more closely spaced mikes and group the performers in an arc around them; in other words, the "space" you're defining now becomes a rough semicircle instead of a rectangle. These suggestions are perforce very general; every recording situation is a cut-and-try proposition.

Setting Up. Once the mikes are roughly placed (and before the performers arrive), send your assistant to stage center and have him move forward and back, continuously announcing his distance from an imaginary line connecting the microphones. When the monitor system yields what seems to you the most pleasing balance between the sound coming directly from him and the reverberation his voice sets up in the environment, you've established an approximate "subjective distance" for the per-formance-subjective because you will usually find that he is somewhat closer to the mikes than he sounds to be. Have him mark his positiori on the stage floor

POPULAR ELECTRONICS

POLCE RADARMEETSITSMATCH．

With GUL＇s Micro Scan，you can own a high－technology radar detector for only $\$ \mathbf{7} \mathbf{9}$ ．

Your radar detector should do two things well：give you as much advance warning of police radar as possible，and screen out false signals．And few competitive units are able to perform both these functions well．However，the GUL G．73，developed by B．E．L．Labora－ tories represents a breakthrough in both sensitivity and false signal rejection in a compact，well－ designed case．

Road Superiority．

The 10 －year researched GUL has been tested numerous times against such units as the Fuzzbuster XK，the Whistler XK and the XK Snooper．In separate tests conducted by the Canadian Tire Corporation and Motor Consumer Report，the GUL demonstrated a detection dis－ tance significantly greater on both X and K bands，than all three competi－ tors．Its nondirectional elliptical horn antenna receives these signals from front，back，and sides，and is even sensitive enough to detect the new short pulse KR－11 radar．Sicnals of less than .01 millionths of a volt （ranging from 9．445－24．445 GHz） are sufficient to trigger the alert signal and provide valuable warn－ ings when approaching hills and curves．An adjustable gain control

A good driving record makes for lower insurance
rates and prevents possible loss of your driver＇s license rates and prevents possible It may even pay for itself within the first year of use．depending upon your driving habits．
knob lets you optimize GUL＇s sen－ sitivity for both city and country conditions．

Doesn＇t Cry＂Wolf．＂

The GUL takes full advantage of modern integrated circuit tech－ nology to provide a capability of more than 100 transistors．Many competitive units try to get by with

as few as 20 transistors and they just don＇t work as well．GUL＇s sophisti－ cated circuitry is completely shielded by a diecast and extruded aluminum case．This not only provides a better wearing case than the often used plastic ones，but also protects the input terminals from stray signals，the most common cause of false alarms．In addition， the GUL uses an internal voltage regulator，commutating filter，and
synchronous detector to reduce power consumption to a minimum and provide a more stable gain setting－features usually found only in units costing twice as much．
Two Warnings You Can＇t Miss．
The GUL uses a double warning system．Both a tone and light come on in the presence of radar．And both remain on until radar is gone． You＇re never lulled into a false sense of security by a tone that sounds once and then goes off．And you can control the tone with a front－ mounted on／off switch．

Quick Installation．

The GUL detector is one of the most compact units available，meas－ uring only 4 ＂$\times 3$＂$\times 41 / 2$＂，and weigh－ ing just 20 oz ．Its aluminum case is finished in glare－free matte black and comes with its bracket in place． To mount，simply take the adhesive Velcro pad，peel off the back，and adhere it to the top of your dash－ board．The bottom of the bracket has a matching Velcro foot which anchors your unit securely on top of the dash．It plugs into your cigarette lighter．That＇s all there is to it．The same Velcro mounting also allows for easy removal in seconds to prevent theft．The small size GUL will fit into any glove compartment．

Try It Yourself．

Order the new GUL detector today．Better yet，road test it your－ self．See how comforting it is to observe police radar when it＇s ob－ serving you．If you don＇t find it to be the best electronic counter－intelli－ gence you can have for $\$ 79$ ，simply mail it back．Your GUL comes with The Sharper Image two－week return privilege and a manufacturer＇s 120－day warranty．

ORDER NOW TOLL－FREE

 T Call the toll free ordering number等 $\begin{aligned} & \text { below and charge it to your creat } \\ & \text { card or send check for } \$ 79 \text { plus }\end{aligned}$ card，or send check for $\$ 79$ plus
（800）227－3436
En In Californià（800） 622.0733
THE SIARBEBMABE
260 Calitorna St．，Dept．G
（415） 788.4747
with a strip of that indispensable silver tape.

Then, while he faces forward and talks continuously, have him move left and right on a traverse that approximately encompasses the width you expect the performing group to occupy on stage. If at any time during his traverse his voice seems to recede, have him move forward until the original sense of distance is restored and mark that position with tape. (And, of course, have him move back appropriately if his voice seems to approach the microphones.) When this process is over you will have established a base line for the front row of performers. Ultimately you'll be able to move them slightly forward or back of this line to establish final balances.
Finally, your assistant should cavort around the performing area stamping his feet, clapping his hands, and making as much noise as possible, but never stepping forward of the base line. As he does his act, you should get a vivid sense of continuous movement within a well-defined space. The space may not sound quite like the area blocked out on stage, but it should seem plausible.

NEW CATALOG OF HARD-TO-FIND PRECISION TOOLS

Jensen's new catalog is jam-packed with more than 2000 quality items. Your single source for hard-to-find precision tools used by electronic technicians, scientists, engineers, instrument mechanics, schools, laboratories and government agencies. This popular catalog also contains Jensen's worldfamous line of more than 40 tool kits. Send for your free copy today!

CIRCLE NO. 33 ON FREEINFORMATION CARD

The Inevitable Little Things. By this time you should be in pretty good shape for the arrival of the performers, who it is to be hoped will give you a few minutes of run-through so you can set fi nal balances. If the environment is reverberant and you have had to mike fairly closely, you-may find that sibilants are exaggerated in vocals. Raising the mikes somewhat and instructing the performers not to sing at the mikes but instead straight out into the presumed audience is the usual remedy.

A frequent problem that can be baffling unless you're prepared for it is the initial sound reflection that comes from the performer, caroms off the floor just in front of him, and reaches the microphone an instant after the direct sound. As a rule this is the strongest reflection you'll have to deal with, and it can have an appreciable influence on the sound. The easiest remedy is a sound absorber at the exact bounce point. Churchpew cushions can be highly recommended as absorbers. Do not, however, overdo the treatment at first. Start with a single cushion at the bounce pointwhich can be easily worked out when you consider that the angle of reflection will equal the angle of incidence-and work up from there as necessary.
If the performance calls upon the performers to move-or if they move whether required or not-you have a special problem. Practical stereo microphone setups simply do not respond to movement as two ears attached to a human head do. To get the most naturalsounding effect, you will probably have to discuss their movements with them in advance, using the subjective-distance base line as a guide. Even then there are likely to be difficulties.
. . . and it works. You may not believe it now, but with luck, application, and a mere two microphones, it is possible to get startlingly credible and satisfactory results with this basic technique, as many brilliant tapes produced by persevering amateurs have shown. Even large-studio professional recordists, who sometimes seem incapable of believing, have inadvertantly proven it. Here, an anecdote might serve. It may be apocryphal in some details, but I believe it to be true in the overall sense.

Back shortly before the era of stereo, a major label had proposed to do an LP of excerpts from Swan Lake with a wellknown orchestra. Evidently, the production was to be a quick and easy job just to fulfill contractual agreements. But
there was a hitch-the orchestra was going to be on tour on the date for which the session was scheduled, and the engineers knew nothing about miking the hall in which the recording would have to be made. Worse yet, there was no time to experiment.

This was an intimidating state of affairs because recording engineers and the particular hall had had a long history of enmity. Engineers had found the place prone to echoes, lack of clarity, unfortunate balances, and almost any other sonic ill you can name. The only statement that could be made in the hall's favor was that expert listeners have long found it to be one of the most thrilling and satisfactory environments in the world for listening to symphonic music. In the end, not knowing what else to do, the engineers hung a single microphone above the orchestra on stage and crossed their fingers.

The recording that resulted was peculiar in a number of respects. The strings sounded like strings instead of strident implements of aural torture; you could sense that the brasses could totally overpower them unless held in check by the conductor; and the instruments in the back of the orchestra actually sounded more distant than those in the front. The bass drum was a special revelation; when it went off, you knew something had really hit you-right in the gut. In short, the record had a signal on it that actually managed to represent a symphony orchestra with some plausibility.

And this recording sold-not immediately or in great numbers, but strongly and steadily. The company, convinced it had discovered a hitherto secret love affair between the American record-buying public and Swan Lake, some years later issued a two-LP stereo set of excerpts played by the same orchestra. This time, however, the engineers were on familiar ground and were able to fuss around with mikes and mike placements to their hearts' content. Imagine their surprise when the new, much more lavishly produced recording didn't sell.

As adamant as my ears may be on this point, I can't prove that the differences in recording technique alone account for the wide variation in sales between the two versions. But I suspect that anyone who has no investment in the status quo in recording will prefer the results of simple miking over the multimike "forest" technique, at least for classical music, given the chance to compare. If you have the opportunity, try it for yourself.

POPULAR ELECTRONICS

Julian Hirsch Audio Reports

Fisher Model ST460 Speaker System

The Model ST460 from Fisher is a floor-standing three-way speaker system whose salient characteristic is high efficiency , which permits it to develop very high output levels when driven by lowto moderate-power amplifiers. Bass frequencies are propagated by a $15^{\prime \prime}$ ($38.1-\mathrm{cm}$) woofer that operates at frequencies up to about 1000 Hz , where a pair of $5^{\prime \prime}(12.7-\mathrm{cm})$ cone-type midrange drivers take over. There is a second crossover at 5000 Hz to a single horn-loaded tweeter with a nominal $3^{\prime \prime}(7.5-\mathrm{cm})$ mouth diameter. Both crossovers have symmetrical, $12-\mathrm{dB}$ / octave slopes.

Overall size of the ST460 is $291 / 4^{\prime \prime} \times$ $181 / 4^{\prime \prime} \times 149 / 16^{\prime \prime}(74.3 \times 46.4 \times 37$ cm) and weight is 53 lb . Suggested retail price is $\$ 389.95$, or with genuine walnut veneer finish as the Model ST461 for \$409.95.

General Description. The drivers are mounted symmetrically on the front of the cabinet, with the woofer at the bottom in its own approximately 4-cu-ft ducted-port enclosure. The two midrange drivers are side by side above the woofer with the tweeter centered above them. At the top of the cabinet is a control panel with sepa-
rate three-position switches for adjusting the levels of the midrange and high-frequency drivers over a range of $\pm 3 \mathrm{~dB}$. A pushbutton near the controls resets the circuit breaker that protects the system against overloads. The front of the speaker is covered by removable, acoustically transparent cloth.

Laboratory Measurements. We
made our basic measurements on the ST460 with the system's midrange and tweeter level controls in their 0-dB (center) positions. The frequency response curve obtained in the reverberant field of our testing room was spliced to a woofer response curve taken with close microphone spacing. The latter includes the separately measured contribution of the port radiation at very low frequencies, corrected for the relative radiating areas of the port and the driven cone.

As a rule, even a $12^{\prime \prime}$ woofer might be expected to show cone breakup, beaming, and other undesirable effects at an operating frequency as high as 1 kHz . We were not too surprised, therefore, to find response irregularities and a general drop in output from the ST460's 15" woofer beyond about 500 Hz .

Maximum bass output was reached at frequencies between 70 and 90 Hz , falling off steeply at lower frequencies. Contribution of the port is mostly at frequencies below 40 Hz ; while it is effective to a degree between 20 and 40 Hz , the average output in this octave is far below that of the upper-bass. Above 100 Hz , the output dropped off smoothly and gradually to a minimum at 1000 Hz of 10 dB below the maximum bass level. Beyond 1000 Hz , the output again rose gradually to

Performance Specifications

	Rating	
Frequency response	$40-20,000 \mathrm{~Hz} \pm 10 \mathrm{~dB}$	$48-18,000 \mathrm{~Hz} \pm 5 \mathrm{~dB}$
		$20-19,000 \mathrm{~Hz} \pm 10 \mathrm{~dB}$
Efficiency (avg SPL at 1 meter, 1 watt)	92 dB	92 dB
Recommended amplifier power	25-130 watts	Confirmed
Peak distortion-free SPL with stereo pair in typical room	112 dB	Not checked
Crossover frequencies	1000 and 5000 Hz	Confirmed
Woofer diameter	15"	Confirmed
Voice coil	2"	Not checked
Loading	Ducted reflex	Confirmed
Midrange (size/type)	Two 5" cones	Confirmed
Voice coil diameter	9/16"	Not checked
Tweeter (size/type)	3" horn	2" mount diam.
Nominal impedance	8 ohms	Confirmed
Enclosure dimensions	$291 / 4^{\prime \prime} \times 181 / 4^{\prime \prime} \times 149 / 16^{\prime \prime}$	Confirmed
Weight	53 pounds	Confirmed

about +5 dB between 7000 and $16,000 \mathrm{~Hz}$ and fell off sharply at about $18,000 \mathrm{~Hz}$. Overall frequency response (with the controls centered) was $\pm 5 \mathrm{~dB}$ from 48 to $19,000 \mathrm{~Hz}$, well within Fisher's ratings. Tweeter dispersion was quite good.

The ST460's high efficiency was demonstrated by its ability to produce a 92-dB sound pressure level (SPL) at a distance of 1 meter when driven by 2.83 volts of random noise in an octave centered at 1000 Hz . The toneburst response was uniformly good, with no signs of prolonged ringing or spurious output frequencies. Impedance averaged about 8 ohms, reaching a maximum of about 30 ohms at the $65-\mathrm{Hz}$ bass resonance and a minimum of 6 ohms at 750 Hz . Bass distortion at a 1 -watt input was less than 1% from 100 to 50 Hz , and only 7% at 30 Hz . At a 10 -watt input, distortion measured less than 2% down to about 50 Hz and climbed to 14% at 30 Hz .

User Comment. We listened to a stereo pair of the Fisher ST460 speakers mounted on stands that raised them about $7^{\prime \prime}$ above the floor-an arrangement that, while not critical, seems to enhance the sound of many speakers. What we heard sounded clean, with a generally good frequency balance that correlated well

Composite corrected frequency response for $S T 460$ Speaker System.
with what we had measured. Occasionally, we experienced a heaviness in male speaking voices and in some musical material. We attribute this to the emphasis in bass response around 80 Hz . Although some of the low-frequency performance is based on psychoacoustic illusion, it is convincing enough to give an overall impression of very solid bass.

Clearly, the balance of compromises (a component of all loudspeaker design) has been tipped in favor of disco and rock music in the case of the ST460. The frequency response gives a little extra "punch" to the bass and "sizzle" to the treble, without weakening the midrange to an extent that would cloud vocals. And while the CIRCLENO 101 ON FREEINFORMATION CARD
system's performance with classical music might not suit the most demanding listeners, it is more than adequate for its intended application.

One characteristic of the ST460 that will probably have a special appeal to the rock and disco listener is its ability to conserve amplifier power. We were able to drive the system to ear-shattering levels with a 20-watt amplifier. On the other hand, the system took the output of a 200-watt amplifier right in stride. By most standards, the ST460 would not be considered cheap, but if the potential saving in amplifier power is taken into account, along with the level of musical performance offered, it seems like quite an economical speaker.

The Model M95ED stereo cartridge has occupied the position just below the V-15 Type III in Shure's product line, 24
filling the gap between the moderately priced M91 series and the deluxe $\mathrm{V}-15$ series. Although priced only slightly above the M91, the M95 cartridge was designed for a somewhat flatter high-frequency response.

When Shure introduced the top-of-the-line Model V-15 Type IV phono cartridge last year, one of its features was a hyperelliptical stylus shape derived from the hyperbolic stylus previously developed for the M24H (CD-4) cartridge. This type of stylus has an extended contact area against the groove wall and a small radius that gives it excellent high-frequency tracing ability. It occupies the same position in the Shure products that the Shibata and its derivatives do in the lines of other manufacturers.

The new M95HE consists of an M95 body fitted with the new N95HE stylus. The diamond tip of the stylus is identical to that of the V-15 Type IV. According to Shure, it makes a reduction of as much as 25% in harmonic and intermodulation distortion compared to the elliptical stylus used in the M95ED. Since the M95 cartridge is electromagnetically similar to the

V-15 series, it would appear that adding the N95HE stylus to the M95 body might result in a cartridge that has many of the special qualities of the V-15 Type IV but at a substantially lower price

The M95HE is designed to track at forces from 0.75 to 1.5 grams. Shure's "trackability" ratings rank it a close second to the V-15 Type IV. Since the body is that of a standard M95ED, owners of that cartridge can upgrade to an M95HE at any time by merely plugging in a new N95HE stylus assembly. The M95HE costs $\$ 89.50$, the N95HE stylus $\$ 34.00$.

Laboratory Measurements. We tested the M95HE in the tonearm of a Thorens Model TD-115C record player at the maximum tracking force of 1.5 grams. The electrical load was 47,000 ohms in parallel with 500 picofarads. Shure recommends capacitance between 400 and 500 pF , (more than most turntables and preamps supply), but response measurements with both values showed that 500 pF yielded flatter overall response.

The cartridge's output was 4.75 $\mathrm{mV} /$ ctiannel at a $3.54-\mathrm{cm} / \mathrm{s}$ velocity. Channel levels balanced within 0.9 dB. The vertical stylus angle, measured with a CBS STR160 record, was 26°. Frequency response and channel separation were measured with CBS STR100, JVC TRS-1007, and B\&K QR-2009 test records. In addition, we measured the separation at a number of spot frequencies with an Audio-Technica AT-6605 record.

Frequency response differences between the records were relatively minor. With the STR100 record, response was flat within $\pm 1 \mathrm{~dB}$ from 40 to $16,000 \mathrm{~Hz}$ falling to about -6 dB at $20,000 \mathrm{~Hz}$. Channel separation readings fell into two groups. The CBS and $B \& K$ records revealed less separation than the JVC and Audio-Technica records, which were fairly similar. The midrange separation was 22 to 23 dB with the first two discs and 30 to 35 dB with the other two. At $10,000 \mathrm{~Hz}$, the

Frequency response and crosstalk for M95HE Stereo Phono Cartridge.
separation was 28 to 30 dB with all but the $B \& K$ record, which gave a $20-\mathrm{dB}$ reading. At $20,000 \mathrm{~Hz}$, the CBS and $B \& K$ records gave respective separation readings of 17.5 and 15 dB , while the JVC and Audio-Technica records showed a $22-\mathrm{dB}$ separation.

The low-frequency resonance in the low-mass Thorens tonearm (14 grams effective mass, including the 6.3 grams of the cartridge) was at 10 Hz , with an amplitude of about 7 dB . Tracking distortion was measured with Shure's TTR102 (400- and $4000-\mathrm{Hz}$ intermodulation distortion) and TTR103 (10.8-kHz tone bursts at a $270-\mathrm{Hz}$ repetition rate) test records. The 1 M readings with the TTR102 increased from 2% or 3% at low levels to 6% to 8% at velocities in the 22 to $-27-\mathrm{cm} / \mathrm{s}$ range. With the tracking force reduced to 1 gram, the cartridge mistracked severely above $22 \mathrm{~cm} / \mathrm{s}$. The repetition rate distortion with the TTR103 record was extremely low (Shure cartridges have consistently been outstanding in this test), increasing from 0.63% to 0.84% as the velocity increased from 15 to $30 \mathrm{~cm} / \mathrm{s}$.

Subjective tracking of the M95HE was judged with Shure "Audio Obstacle Course" records. As with the TRR103, we have found that Shure cartridges tend to be among the best in their ability to track these very-highvelocity musical selections without audible distortion. The M95HE was no exception, handling everything on the

ERA III record without difficulty and revealing only a trace of "hardness" on the highest levels of the bells and combined harp and flute sections of the ERA IV record.

User Comment. While it is easy to distinguish between a low-priced cartridge and a high-priced one by listening or measurement, differences tend to become more elusive when comparing cartridges of similar overall quality. Consequently, we found no dramatic audible differences between Shure's M95ED and M95HE cartridges. Their measured performance was similar, too, although most of the differences did favor the M95HE. Of course, we could not measure record wear, which should be appreciably lower with the greater contact area of the hyperelliptical stylus.

The M95HE supplements, but does not supplant, the M95ED in the Shure line. Anyone about to replace a worn stylus on the M95ED would do well to choose an N95HE, but it would be harder to justify replacing a good N95ED stylus with the N95HE just to modernize. While these two siblings can be distinguished on the basis of audible and measured performance, it is the family resemblance that prevails. It may be that reduced record wear, a fairly intangible factor hard to confirm through measurement, will tip the balance in favor of the M95HE.

CIRCLENO 102 ONFREE INFORMATION CARD

Lectrotech Model PPI-400 Dual-channel Peak Power Indicator

for monitoring the outputs of a stereo or two mono power amplifiers. It indicates power levels over a $30-\mathrm{dB}$ range on two vertical columns of LEDs. A range switch provides 18 calibration points for the $0-\mathrm{dB}$ level (six power levels at impedances of 4,8 , and 16 ohms). The indicator can also be calibrated to any other power or impedance over a very wide range by connecting appropriate resistances across terminals on the rear apron. The $0-\mathrm{dB}$ power level can be set anywhere from 3 to 1250 watts at 8 ohms or over a different power range for impedances between 2 and 35 ohms.

The device can be connected across the speaker outputs of an amplifier or across the input terminals of the speaker systems themselves. It measures $14^{\prime \prime} \mathrm{W} \times 8^{\prime \prime} \mathrm{D} \times 3{ }^{3} / /^{\prime \prime} \mathrm{H}(35.6$ $\times 20.3 \times 9.5 \mathrm{~cm}$) and weighs 3.5 lb $(1.6 \mathrm{~kg})$. Suggested retail price is $\$ 129.95$ (plus $\$ 24.95$ for optional No. LWC-1 walnut cabinet).

General Description. Each column of power indicators consists of eight calibrated LEDs. The bottom four are green LEDs and are labelled $-30,-28,-24$, and -12 dB . The next two are yellow LEDs and are labelled -9 and -6 dB . Finally, the two top LEDs are red and are labelled -3 and 0 dB . If the red LEDs flash during operation, it can be assumed that the amplifier is being overdriven or is being driven too close to its limits. This, of course, assumes that 0 dB corresponds to the amplifier's rated maximum output power.
The seven-position range switch has six positions calibrated in watts full-scale from 25 to 800 at a 4 -ohm impedarice. Separate inner scales are used for 8 - and 16 -ohm loads, with $0-\mathrm{dB}$ power levels corresponding to 12.5 to 400 watts full-scale at 8 ohms and 6.25 to 200 watts full-scale at 16 ohms. The seventh position, labelled AUX, can be used with the optional calibration procedure to set the $0-\mathrm{dB}$ sensitivity for almost any power and impedance level one wishes.
The Model PPI-400 is shipped from the factory with its calibration terminals connected together by jumper links and the aux sensitivity set for 6.25 watts into 4 ohms for a $0-\mathrm{dB}$ level indication. (This is 6 dB more sensitive than the lowest standard range.) By replacing the links with suitable resistances, their values determined according to a formula given in the own-

er's manual, the 0-dB sensitivity can be set as desired.

Although the accuracy of the 0-dB calibration depends on the accuracy of the resistors, the relationship between it and other power-level LEDs is fixed by the internal design of the Model PPI-400. (Precision resistors are available from Lectrotech.) Since the two channels are fully independent of each other, it is possible to set each for a different $0-\mathrm{dB}$ reference.

Laboratory Measurements. We connected the Model PPI-400 across the output of an amplifier capable of developing the 60 volts or so required to activate its highest level LEDs. We then drove both channels in parallel to check the device's tracking.
The accuracy of the LED displays was checked at 1000 Hz . At each setting of the range switch, we increased the signal level until each of the LEDs in turn began to glow at its maximum brightness. The actual voltage applied to the device was then measured with an accurate meter and converted to an equivalent power level. Since the LEDs are not driven by a flip-flop or similar circuit, there was some ambiguity as to exactly when each LED was just on. The LEDs began to glow well below the level that produced full brightness, which resulted in an uncertainty factor of a couple of decibels when reading the display. In every case, however, the two channels behaved in identical manner.

The readings we obtained were consistently low. (The indicated power was less than the actual power.) If we had elected to use the point at which a LED first began to glow as our measuring criterion, the error would have been even greater. The error was not significant in any case, measuring about 1 dB and a maximum of 2 or 3 dB near the $-24-\mathrm{dB}$ indicator.

We measured the response of the
device with $1000-\mathrm{Hz}$ tone-burst signals. As we changed the duty cycle from continuous to 4 cycles on and 128 cycles off, the error did not exceed 1 dB . Sensitivity was up about 0.7 dB at 20 Hz and down 4.4 dB at $20,000 \mathrm{~Hz}$, relative to 1000 Hz .

User Comment. In view of its intended application as a peak-power indicator (not a meter), the errors we observed in the Model PPI-400 are of no significant import. The device does a fine job of displaying the actual operating signal levels-both average, shown by the number of LEDs lighted during any passage, and peak. (Even the briefest peak registers visibly on the display.)

The PPI-400 is easy to connect into an audio system, and its LED displays are clearly visible and easy to interpret even from a distance.

The owner's manual refers to the use of the Model PPI-400 as a speak-er-system phasing checker. This is not entirely accurate, since all it can check is a polarity reversal of the two sets of signal leads coming from the amplifier to the speaker systems and to the device itself. Actual phasing of the connections at the speaker systems can have no effect on the behavior of the Model PPl-400.

A power-on indicator in the Model PPl-400 would have been a welcome addition. Its absence, for example, caused us to unwittingly leave the device powered for days on end. But even leaving it powered continuously, the PPI-400 operated coolly, even under full-load conditions.

In sum, this was one of the most versatile and inexpensive peak-power indicators we have used. It is attractive, flexible, and does exactly what it is supposed to do. Such a device can be an educational addition to an audio system.
CIRCLENO. 103 ONFREE INFORMATION CARD

MODEL 500 HH
$50 \mathrm{~Hz}-500 \mathrm{MHz}$
Without Battery Capability

SAVE ${ }^{\$ 5} 5^{00}$

With Battery Capability
MODEL 500 HH . . $\$ 169.95$
MODEL 100 HH .. \$119.95

The 100 HH and 500 HH hand held frequency counters represent a significant new advancement, utilizing the latest LSI design . . . and because it's a DSI innovation, you know it obsoletes any competitive makes, both in price and performance. No longer do you have to sacrifice accuracy, ultra small readouts and poor resolution to get a calculator size instrument. Both the 100 HH and 500 HH have eight .4 inch LED digits -1 Hz resolution - direct in only 1 sec . or 10 Hz in .1 sec - 1 PPM TCXO time base. These counters are perfect for all applications be it mobile, hilltop, marine or bench work.
(800-
(800--542-6253)

FREQUENCY COUNTER CONSUMER DATA COMPARISON CHART

MANUFACTURER	MODEL	SUG'STD. LIST PRICE	FREQUENCY RANGE	TYPE OF TIME BASE	ACCURACY OVER TEMPERATURE		SENSITIVITY			DIGITS		PRE-SCALE INPUT RESOLUTION	
					$17^{\circ}-40^{\circ} \mathrm{C}$	$0^{\circ}-40^{\circ} \mathrm{C}$	100 Hz - 25 MHz	$\begin{aligned} & 50 \mathrm{MHz}^{2} \\ & 250 \mathrm{MHz}_{2} \end{aligned}$	$\begin{gathered} 250 \mathrm{MHz} \\ 450 \mathrm{MHz} \end{gathered}$	No.	SIZE IN INCHES	Resec	1 SEC
OSI INSTRUMENTS	100 HH	\$ 99.95	$50 \mathrm{~Hz}-100 \mathrm{MHz}$	TCXO	1 PPM	2 PPM	25 MV	NA	NA	8	4	100 Hz	10 Hz
DSI INSTRUMENTS	500 HH	\$149.95	$50 \mathrm{~Hz}-550 \mathrm{MHz}$	TCXO	1 PPM	2 PPM	25 MV	20 MV	30 MV	8	4	100 Hz	10 Hz
CSC \ddagger	MAX-550	\$149.95	$1 \mathrm{kHz}-550 \mathrm{MHz}$	Non-Compensated	3 PPM @ $25^{\circ} \mathrm{C}$	8 PPM	500 MV *	250 MV	250 MV	6	1	NA	1 kHz
OPTOELECTRONICS	OPT-7000	\$139.95	$10 \mathrm{~Hz}-600 \mathrm{MHz}$	TCXO	1.8 PPM	3.2 PPM	NS	NS	NS	7	4	1 kHz	100 Hz

100 HH ... $999.95 \quad$ W/Battery Pack. . $\$ 119.95$ 500 HH ... $\$ 149.95$ W/Battery Pack. . $\$ 169.95$ Prices and/ot specifications These prices include factory subject to change without notice or obligation.

T-500 Ant.
AC-9 Battery Eliminator $\$ 7.95$
TERMS: MC - VISA - AE - Cneck - M.O. COD in U.S Funds Please add 10% to a maximum of $\$ 10.00$ for shipping. handling and insurance. Orders outside of USA \& Canada, please add $\$ 20.00$ addition to cover air shipment. California residents add 6% Sales Tax

$\bigcup_{0} \begin{aligned} & \text { solid-state level-sensing } \\ & \text { switch for sump pumps }\end{aligned}$

AFLOODED basement is a minor household disaster. That's why most homeowners whose basements are prone to flooding install sump pumps. Some, however, have discoveared to their chagrin that the pump somehow fails to operate when it is most needed. In many instances of failure, the pump itself is actually in perfect working order. Rather, it is the water-detecting actuator switch that's the culprit. never sending a turn-on command to the pump.

Here's a simple, dependable circuit to replace the often-unreliable (usually mechanical) switch supplied as part of the pump assembly. It will automatically activate the pump when the water level reaches the level of a pump trigger probe. Once activated, the pump will re-
main energized until the water level falls below a keep-alive probe. If the pump fails or cannot keep the water in check, an optional alarm will sound as the water level reaches a trigger probe specifically for that purpose. The project can be powered either by batteries or the ac line Inexpensive components are employed, most of which will be found in any well-stocked junk box

About the Circuit. The Electronic Sump Pump Switch is shown schematically in the figure. Positive voltage from the power supply is applied to the COMMON probe via resistors R1 and R2. (This and all other probes are stiff wires or metal rods suspended above and extending to different levels in the sump.)
 if water level continues to mise ar prumin) isis' tworrfing

Sour-cost Pergiects conntinued...

As can be seen in the figure, the COMMON probe extends almost to the bottom of the sump. Any water entering the sump comes into contact with this probe, but as yet nothing which would cause activation of the pump happens.
As the water level in the sump rises, the KEEP-ALIVE probe touches the water. but this still does not activate the pump. If the water reaches the level of the PUMP TRIGGER probe, current can flow from the positive supply voltage terminal through R1, R2, the water in the sump, R5 and finally into the base of Q3. This transistor then turns on and provides base current for Q4. When Q4 conducts, it energizes the coil of relay K 1 .
Once this relay is energized, the normally open contacts are closed and two things happen. Line current is able to flow through the coil of $K 2$, a heavy-duty ac relay. Also, the path between the KEEP-ALIVE probe and the base of Q3 is completed. Energizing K2 provides line
voltage across S01 for the pump. If the sump pump is connected to the socket, it will be activated and will start to pump the water out of the sump.
As the water level drops, the conductive path provided by the water in the sump between the COMMON and PUMP trigger probes will be interrupted. However, current will continue to reach the base of Q3 via the KEEP-ALIVE probe, R7, and one set of contacts of relay K1. Because this probe extends almost to the bottom of the sump, relays $K 1$ and $K 2$ remain energized (as does the pump motor) until practically all of the water has been evacuated. When the water level drops below the free end of the KEEP-ALIVE probe, Q3 is deprived of base current and is cut off. This causes Q4 to stop conducting, deenergizing $K 1, K 2$ and the pump motor
If the pump motor fails or cannot cope with the amount of water entering the sump, the water level will rise above the

PUMP TRIGGER and KEEP alive probes and eventually reach the ALARM TRIGGER probe. This probe is part of the optional alarm circuit and should be mounted near the top of the sump. Although the alarm circuit is independent of the pump controller, it is a valuable addition to the project.

The alarm circuit closely resembles that of the pump controller and operates in a similar manner. Water reaching the alarm trigger probe provides a path for current to reach the base of Q1. This transistor begins to conduct and provides base drive for Q2. Transistor Q2 then conducts and completes the circuit for audible alarm At, which alerts the homeowner to the fact that water in the sump has risen to a critically high level. He can then try to get the pump working

[^0]32

PARTS LIST

The following are 1/4-watt. 10% tolerance car-bon-composition resistors:
RI-39.000) ohms*
R2 through R7-1000 ohms*
SI-Normally open pushbutton switch
S2—Miniature spst toggle switch
S3-Spst toggle switch*

Schematic diagram of the sump pump switch. Water in the sump provides a path for base current.

SOI-Ac power socket
Misc-Line-powered, regulated or battery de supply*: suitable enclosure; harrier terminal strip; perforated board; fuseholder; line cord; metal rods or stiff, solid-conductor wire; hookup wire: solder; self-tapping and machine hardware, etc.
*See text
POPULAR ELECTRONICS
or, if necessary, bail the water out of the sump manually.

Two switches are associated with the alarm circuit and one switch is included in the pump controller. These switches provide test facilities for the alarm and pump (S1 and S3, respectively) and the ability to silence the alarm (S2). The currents handled by $S 1$ and $S 2$ are relatively small, so miniature components can be used in these locations. Switch S3, however, as well as the contacts of K2 must be capable of handling the current demanded by the pump motor, so use heavy-duty components.

The author employed a solenoid/ spring-type buzzer as his prototype's audible alarm. Diode D1 is connected across the buzzer to protect Q2 from inductive spikes generated by the buzzer. Other lypes of alarms can be used, some of which will not require the inclusion of D1. A Sonalert ${ }^{T M}$ or similar audio oscillator will not necessitate diode protection for Q2, but an alarm bell will.

Which type of audible alarm you choose is largely a matter of personal preference and parts availability. Similarly, there is a great deal of leeway in the choice of components Q1 through Q4 and R1 through R7. General-purpose 2N2222 transistors are suggested in the parts list. Just about any low-power npn transistor is suitable for use as Q1 and Q3. Exactly which transistor types are acceptable for use as Q2 and Q4 depends on the audible alarm and relay (K1) used. If the current demand of either load is fairly low, say, 300 mA or less, a general-purpose component such as type 2N2222 can be used as a relay or alarm driver.

However, if a load draws more than 300 mA , a higher-power driver will have to be used. A good rule of thumb is to use a transistor with a collector current rating that is double the current required by the alarm or relay coil. The author employed a sensitive 6 -volt relay for K1 (Sigma No. 70R4T-6DC), which permitted the use of a low-power npn driver. Diode D2 was included to protect the relay driver from inductive spikes.

The values specified for the fixed resistors ($R 1$ through R7) are nominal ones. Substitutions can be made freely if you want to use components you have on hand. However, do not make the fixed resistances so low that they tax the base current ratings of the transistors employed in the project.

Either a line-powered or battery supply can be used for the project. The exact value of supply voltage is not critical
and can be chosen to accommodate a particular dc relay (K1). Practical supply voltages range from 6 to 15 volts. Although it is not necessary, voltage regulation is desirable in a line-powered supply. The widespread availability of voltage regulator ICs makes the inclusion of regulation simple and inexpensive.

If the alarm circuit is included in the project, battery power enjoys a significant advantage over a line-powered supply-it will still provide power to the project if the commercial power line is blacked out. Of course, if line power is not available, the pump motor will not be activated, even though $K 1$ will be energized. The alarm circuit, however, will be activated if the water in the sump rises to the level of the ALARM TRIGGER probe. This will alert the homeowner that water is accumulating and had best be bailed out before any damage occurs. Also, when neither the alarm nor pump controller circuit is triggered, practically no current is drawn from the battery supply. If nonrechargeable batteries are used to power the project, long operational life can be expected.

Construction. The circuit is relatively simple, which suggests the use of perforated board and point-to-point wiring techniques. Remote mounting of the alarm and pump controller circuits will simplify any future servicing. If this is done, the circuit board, relays, switches and power supply can be housed in a suitable enclosure which can be installed at some convenient location.

A four-terminal barrier strip can be mounted on the control box for the leads running to the sump probes. These probes can be fashioned from either metal rods or lengths of solid No. 12 or No. 14 copper wire and should be mounted rigidly above the sump. The probes are of varying length, with the COMMON probe extending almost to the bottom of the sump, the KEEP-ALIVE probe extending almost as deeply, the PUMP TRIGGER probe reaching about halfway down, and the ALARM TRIGGER probe extending only a short distance into the sump. Suitable lengths of hookup wire should be soldered to the probes and routed to the barrier terminal strip on the control box.

When constructing the control box, be sure to observe the polarities of all semiconductors and, if a line-powered supply is built in, of electrolytic capacitors. Use the minimum amount of solder and heat consistent with making good connections. Take special care in wiring the

117 -volt ac portions of the project so that no shock hazard is present.

Checkout and Installation. After the control box has been wired, connect short lengths of hookup wire to the barrier terminal strip. Remove a portion of the insulation from the free end of each wire. Next, fill a drinking glass or measuring cup with water and place the wire connected to the COMMON probe terminal into the water. Place the wire connected to the KEEP-ALIVE probe terminal into the water. (Keep these and all probes from touching each other to realistically simulate aclual operation. No damage will occur, however, if the probes accidentally come into contact.) Activation of the pump controller, indicated by a click as the relays are energized, should not yet happen.

Now insert the wire connected to the PUMP TRIGGER probe terminal into the water. You should hear a click as the relays are energized. If desired, a lamp can be connected to power socket SO1 and the line cord connected to the power line (assuming this has not yet been done). The lamp will then indicate that the relays are energized and that line power is reaching socket SO1.

Remove the PUMP TRIGGER wire from the water. The relays should remain energized and no click should be heard. Then remove the KEEP ALIVE wire from the water. At this time, the relays should drop out and a click heard. Finally, insert the ALARM TRIGGER wire into the water. The alarm should sound and remain on until the wire is removed from the water.

Press the ALARM TEST pushbutton and keep it depressed. The alarm should sound and remain activated until the ALARM DEFEAT switch is opened. The operation of the PUMP TEST switch can be checked by closing it and observing whether the load connected to socket SO1 receives line power.

Once it has been determined that the control box is functioning properly, a permanent installation can be made. Mount the control box at some convenient point and interconnect it with the sump probes and pump motor. Be sure to bypass the stock pump-activating switch as it is no longer needed. As a final check, you can quickly fill the sump with water. The alarm should sound until the pump has lowered the water level beyond the reach of the ALARM TRIGGER probe. The pump should remain on until the keep alive probe is no longer immersed, at which point nearly all of the water will have been taken out.
(Projects continued overleaf)

AUGUST 1979

RUNNING outof gas can be an exasperating experience. The low-fuel indicator described here can help you avoid this situation. It will sound an alarm when the fuel level in your gas tank reaches a predetermined minimum. This level can be preset by a simple potentiometer adjustment.

Circuit Operation. In most vehicles, the fuel-level sensor is a float-controlled potentiometer (sender) wired in series with the dashboard-mounted fuel gauge (meter) and connected between the chassis and +12 -volt line as shown in Fig. 1. As the fuel level changes, the resistance changes, making the meter indication change.

The voltage level thus generated across the fuel-level sensor can be tapped off (at the meter) and, as shown in Fig. 2, applied through a low-pass filter R8-C4 so that the voltage across C4 is the average across the sender. This low-pass filter also eliminates any rapid voltage fluctuations due to gasoline sloshing and a bouncing sensor float, or

By Bradley Albing

Fig. 1. Typical fuel-gauge circuit.
voltage transients generated by the switching voltage regulator as used in some vehicles.

The C4 voltage is applied to the noninverting (+) input of comparator IC1, and rises with decreasing fuel in the tank. When this voltage exceeds the R4
preset voltage on the inverting (-) input, the output of IC1 (pin 6) goes high.
This voltage (approximately 9 volts) is high enough to cause zener diode $D 6$ to conduct and turn on transistor Q1. When turned on, this transistor draws current through audible alarm A1, and turns on optional indicator LED1.
As long as the fuel level is low, the output of IC1 remains high. To silence the alarm until the tank is filled, CANCEL switch S1 is depressed to trigger SCR1. When triggered, the SCR brings the junction of R5-D6 (the input to Q1) down to approximately 2.2 voits, which is not high enough to cause $D 6$ to conduct and activate the alarm circuit. Since the SCR is powered by dc, it will remain turned on as long as the IC1 output is high (the fuel level is low).

As long as SCR1 is conducting, there will be about 1.2 volts (two diode drops) across $D 7$ and $D 8$, enough to turn on Q2 and cause LED2 to operate. This LED is a special type that incorporates a buill-in flasher circuit that makes the LED flash at a $2.5-\mathrm{Hz}$ rate as long as the LED is Cable on author's prototype has connector for +12 rolts, ground and tank sender unit.
(Continued on page 40)

PARTS LIST

A)-Sonalert, buzzer or oher 12 -volt alarm (Radio Shack 273-060) or similar) C1.C2- $100-\mu \mathrm{F}, 25-\mathrm{V}$ aluminum electrolytic C $3 . C 5-01-\mu \mathrm{F} .25-\mathrm{V}$ dise or Mybar C4-300- $\mu \mathrm{F}$. 15-V tantalum electrolytic D1.D7.DX-1N914
D2-1N5742, 18-V, 400-mW zener
D3.D4.D9—1N75IA.5.I-V.400-mW zenel
D5 $\quad 1 \mathrm{~N} 4001$
D6-1N5732.6.8-V. 400-mW 7ener
ICI-3140E op amp
LED 1-red LED
LED2 Litronix FRL-4403 flashing LED (Ra dio Shack 276-036)
Q1-2N3053 or similar
Q2 2 N 3904 or similar
The following are $1 / 4-$ wat1. 10% tol resistors
RI.R11-100 ohms
R2-3.30hms
R3.R5.R12-470 ohms
R6-10 megohms
R7-470,000 ohms
R8-33.000 ohms
R9 - 330 ohms
R10-10.000 whms
R13-820 ohms
R14-200 ohms
R4-25.000 ohm potentiometer
SCRI—2N5062
Sl-normally open pushbutoon swich
Misc.-Suitable enclosure (Radio Shack 270-2 85 or similar), interconotecting leads. mounting hardware
Nore: The pu board (LF-2) is avallable for $\$ 4.50$ pius $\$ 1$ postage/handling from BFA Electronics. P.O Box 212. Northfield. OH 44067. Ohio residents please add sales tax

Fig. .). Comparator IC1 turns on when fuel drops below some predetermined level, and sounds the alarm. The $S C R$ circuit energizes a flashing LED during the Cancel mode.

Printed circuit board mounted in prototype with alarm and CANCEL switch on top.

If you're interested in learming how to fix air conditioners, service cars or install heating systems - talli to some other school. But if yon're serions abont electronies, come to CIE-The Electronies Specialists.
 Cleveland Institute of Electronies

My father always told me that there were certain advantages to putting all your eggs in one basket. "John," he said, "learn to do one important thing better than anyone else, and you'll always be in demand.

I believe he was right. Today is the age of spectalization. And I think that's a very good thing.

Consider doctors. You wouldn't expect your fanily doctor to perform open heart surgery or your dentist to set a broken bone, either. Would you?

For these things, you'd want a specialist, And you'd trust him. Because you'd know if he weren't any good, he'd be out of business.

Why trust your education

 and career future to anything less than a specialist?You shouldn't. And you certainly don't have to.

FACT: CIE is the largest independent home study school in the world that specializes exelusively in electronics.

We have to be good at it because we put all our eggs in one basket: electronics. If we hadn't done a good job, we'd have closed our doors long ago.

Specialists aren't for everyone.

I'll tell it to you straight. If you think electronics would make a nice hobby, check with other schools.

But if you think you have the cool-and want the training it takes - to make sure that a sound blackout during a prime time TV show will be corrected in seconds - then answer this ad. You'll probably find CIE has a course that's just right for you!

At CIE, we combine theory and practice. You learn the best of both.

Learning electronics is a lot more than memorizing a laundry list of facts about circuits and transistors. Electronics is interesting be cause it's based on some fairly recent scientific discoveries. It's built on ideas. So, look for a program that starts with ideas-and builds on them.

That's what happens with CIE's Auto-Programmed ${ }^{\circledR}$ Lessons. Each lesson uses world-famous "programmed learning" methods to teach you important principles. You explore them, master them completely... before you start to apply them!

But beyond theory, some of our courses come fully equipped with the electronics gear to actually let you perform hundreds of checking, testing and analyzing projects.

In fact, depending on the course you take, you'll do most of the basic things professionals do every day things like servicing a beauty of a Zenith color TV set . . or studying a varicty of screen display patterns with the help of a color bar generator

Plus there's a professional quality oscilloscope you build and use to "see" and "read" the characteristic wave form patterns of electronic equipment.

Tou work with experienced specialists.

When you send us a completed lesson, you can be sure it will be reviewed and graded by a trained clectronics instructor, backed by a team of technical specialists. If you need specialized help, you get it fast .. in writing from the faculty specialists best qualified to handle your question.

People who have known us a long time, think of us as the "FCC License

School."

We don't mind. We have a fine record of preparing people to take and pass. . . the governmentadministered FCC License exams. In fact, in continuing surveys nearly 4 out of 5 of our graduates who take
the exams get their Licenses. Yon may already know that an FCC License is needed for some careers in electronics-and it can be a valuable credential anytime.

Find ont more: Mail this card for your FREE CATALOG today:

If the card is gone, cut out and mail the coupon.

I'll send you a copy of CIE's FREE school catalog, along with a complete package of independent home study information.

For your convenience, I'll try to arrange for a CIE representative to contact you to answer any questions you may have.

Remember, if yon are serions about learning elcetronics... or building upon your present skills, your best bet is to go with the electronics specialists-CIE. Mail the card or conpon today or write CIE (and mention the name and date of this magazine), 1776 East 17th Street, Cleveland, Ohio 44114.

Patterns shown on TV and oscilloseope sereens are simulated.

Fig. 3. Actual-size etching and drilling guide is shoun at left. Component placement guide is above.
powered. The maximum voltage permitted across this special LED is 6 volts, hence the presence of 5.1 -volt zener diode D9.

The incoming dc power line is noise decoupled by R1, C1 and C3. Zener diode D2 clamps any transients to a maximum of 18 volts while diode D1 makes sure that the correct polarity is supplied to $I C 1$. Filter R2-C2 decouples the power line to the alarm and indicator circuit. Diode D5 clamps any voltage spikes that may occur if an inductive load, such as a buzzer, is used as the alarm. Resistor R6, connected between the output of IC1 (pin 6) and the noninverting (+) input, adds a small amount of positive feedback to give the comparator a little hysteresis and speed up the transition from low to high. This also reduces the likelihood of comparator oscillation.

Construction. The circuit may be constructed on perf board, WireWrapped, or on a pc board such as that
shown in Fig. 3 along with the component installation.

The two LED indicators, CANCEL switch S1, level-select potentiometer R4, and the selected audible alarm are not mounted on the pc board.

The finished pc board can be mounted within a selected enclosure that will also mount the off-board components. Power can be derived from any +12 -volt source that becomes active when the vehicle ignition key is operated. The ground can be any convenient metal element that is solidly connected to the vehicle chassis.

You will have to locate the dashboard end of the fuel sensor lead. Test this lead by measuring the voltage across it with various levels of fuel. Usually, the lower the fuel level, the higher the voitage. It is possible for this voltage to vary due to the action of the vehicle switching voltage regulator (if your vehicle uses one) so this must be considered.

If you have any doubt as to the type
and wiring of the fuel-level sensor in your vehicle, consult the vehicle repair manual.

Calibration. There are two ways to calibrate the system. The first is to wait until the fuel level is down to the selected low level, then adjust R4 until the alarm sounds off.

The second approach is to disconnect the fuel gauge from its feed line to the fuel sender but leave the lead connected to the low-fuel alarm, then connect a re-sistor-substitution box between the fuel gauge and ground (as a substitute for the fuel sender). Adjust the value of the resistor until the fuel gauge indicates the desired level. Adjust R4 to sound the alarm at that point. Disconnect the resistor box and replace the fuel sender line.

Once the fuel-level turn-on point has been determined, depress S1 to silence the alarm. After the tank is filled, the alarm will be reset until the fuel level drops below the predetermined point. \diamond

§)

 Whtra-sensitise instrument gives querntitratiur

TOXIC and explosive gases are an ever-present danger in our modern society. They include natural gas, propane, fuel vapors and invisible and odorless carbon monoxide

The ultra-sensitive gas-leak detector presented here indicates the quantitalive presence of these gases and enable one to track down and pinpoint the source of a gas leak by observing the unit's meter indication. Moreover, it is a portable, battery-powered model for use in boats, automobiles, at campsites, or in any other location where ac power is not available. (An ac-operated noxious gas detector with an audible alarm for preset gas levels was described in a project that appeared in Popular ElecTRONICS, August 1976.)

Circuit Operation. The gas sensor, GS 1 in Fig. 1. consists of an electrically heated tin-oxide pellet that changes resistance when exposed to carbon monoxide, hydrogen, propane. alcohol, gasoline vapor and other oxygenreducing gases. Power for the circuit can be obtained from either six D cells, preferably rechargeable. connected in series or from an optional 9 -volt battery eliminator. Regulator IC1 reduces the available 9 -volt level to the 5 volts require by the circuit. Optional $\angle E D 1$ is a 9 -volt power-on indicator

Current from the regulator heats gas sensor GS 1's semiconductor pellet. The sensor. R4. R7. and $R 8$ are arranged in a bridge configuration. The null indicator consists of M1 and R6, while D1 and D2
serve as protection for M1. Overall circult sensitivity is determined by the valle of resistor R5, while S2 provides a BATT. TEST function

Once the bridge is balanced, by NULL potentiometer R8, any change in the resistance of GS1 will create an unbalanced condition. When this occurs, the meter's pointer swings up-scale, by an amount proportional to the change in resistance of GS 1

Construction. With the exception of GS, It M1, B1. R8, S1, and S2, the circuit can be assembled on a piece of perforated board. Select an enclosure large enough to accommodate the board and all off-board components, including B1 and its holder

Thmeghow Company Led. - A company exclusively devoted to electronic time "movements"

Low-cost Projects continued...

Mount the meter movement on one side of the enclosure's front panel, the remaining off-board components (exsept B1 and J1) on the other side of the panel. The battery holder and optional battery-eliminator/charger jack J1 are best mounted on the rear wall of the en-

PARTS LIST

BI Six D cells in series
DI.D2 (germanium diode (1 N 34 A or semi(ai)

GSI-Model 812 gas sensor
ICI 5-volt regulator (Radio Shack No 276-1770 or similar)
JI Normally closed miniature phone jack (Radio Shack No. 274-281 or similar)
LFDI Red light emitting diode
M1-5(1-MA meter (Radio Shack No. 22-0.51 No substitute)
RI IOOH-ohm, 1/2-W, lo\% resistor
R2 22,000-0hm, $1 / 2-\mathrm{W}, 10 \%$ resistor R3.R7-470 0-ohm, $1 / 2-\mathrm{W}, 10 \%$ resistor R4-15,000-ohm, $1 / 2-\mathrm{W}, 10 \%$ resistor R5-2700-6hm. $1 / 2-$ W. 10% resistor R6-2 200 - 6 hm, $1 / 2-\mathrm{W}, 10 \%$ resistor
R8--10.0 60-ohm linear potentiometer
SI Spot switch
S2-1)polt -witchy
Mise. 7-pon miniature tube socket; battery holder, enclosure: 9 -volt de calcalator-type at adapter (optional); machine hardware. hookup ware: sher: ct

* Available for $\$ 7.50$ postpaid from Southwest Technical Product Dept., PE-2. 219 W. Rhapsody, San Antonio, TX 78216.
closure. If desired, GS 1 can be mounted either directly on the front panel or in a separate housing, the latter fitted with a cable to connect it to the main enclosure. The sensor itself takes a miniature 7-pin tube socket.

After the project is assembled, install a fresh set of D cells in the battery hold-
er, set S1 to on and S2 to batt. TEST, and make a note of the point on the meter's scale at which the pointer comes to rest. Turn off the power and carefully remove the cover from the meter's face Use a felt marker to identify the batterytest point on the meter's scale.

S2 to RUN and, in a neutral atmosphere, adjust NULL control R8 until the meter indicates zero. Now, place a drop of alcoho or gasoline on a finger and apbroach the sensor. The meter pointer should swing up-scale. Move the finger away from the sensor; it will take a min-

Fit. 1. The gas sensor forms one arm of a Wheatstone bridge.
Pins 1. 2 and 3 can be interchanged with pins 4,5 and 6 . Once bridge is balanced by $R X$, a change in resistance of GS1 will cause meter pointer to swing upscale.

Operation. Set S1 to ON and allow the sensor to heat up for about two minutes. Set S2 to Batt. TEST and check that supficient voltage is available from the battery. (A set of fresh D cells will last about 20 hours. An external 9 -volt batteryeliminator/charger can be used.)

After the sensor has warmed up, set
ute or so for the sensor to settle back for the next measurement. Readjustment of R8 may be necessary occasionally. If setting time is too long, change $R 7$ to 1000 ohms.

When looking for a gas leak, note locations where the meter swings upscale to narrow down the location

$$
\begin{aligned}
& \Delta \text { Electronic pedometer } \\
& \text { forjoggers } \\
& \text { By Andrew A. Mola } \\
& \text { Harris tr crumedet e cafculutcu isle re pectarneter le }
\end{aligned}
$$

AN INEXPENSIVE pocket calculator can be converted to operate as an electronic pedometer to keep an ongoing tally of the number of steps taken while walking and jogging. Then, with a 42
simple conversion, you can use the calculator to determine the number of yards, meters, miles, or kilometers travelled. Although the conversion described here is "hard wired" into the cal-
culator, you sacrifice none of the calculator's basic builtin capability

Calculator Conversion. The first thing you must do is determine whether

POPULAR ELECTRONICS
or not your calculator has a built-in constant function. To do this, press CLEAR, $1 .+, 1,=,=$. If your calculator has the necessary constant function, the display should read 3 and should increment by 1 for each additional operation of the $=$ key. Having established the fact that your calculator does indeed have the constant function, you can proceed with the conversion.

Conversion of the calculator consists in simply wiring a foot-operated switch across the $=$ key First, carefully open the calculator's case and locate the contacts for the $=$ key. Then solder a 5^{\prime} (1.5-meter) or so length of 26 -gauge flexible stranded wire to each = switch contact. Insulate the soldered connections with a layer of electrical tape.

Now, test your hookups in the following manner. Turn on the calculator and key in $1,+, 1$. Touch together and separate the free ends of the wires two times. With the first touch, the display should read 2 and with the second, 3 . If the test checks out properly, turn off the calculator and reassemble it, routing the wires out through the side of the case. If necessary, use a sharp knife to cut a slot to allow the wires to exit the case. No other modification is necessary.

Footswitch Fabrication. As shown in the drawing, the footswitch is fabricated from a commercially available "airpillow" foam insole. Begin by cutting a $1^{\prime \prime}(25.4-\mathrm{cm})$ square away from the center of the heel area of the insole. Cement a square of copper-coated Mylar or any other flexible conductive material over the cutout on both sides of the insole, conductive surfaces face-to-face.

Solder the free ends of the flexible wires from the calculator to the conductive material. Then cover the "switch" assembly with duct or other durable tape to keep out dirt and moisture.

Slide the insole into your shoe and put on the shoe Turn on the calculator and

Place copper foil on each side of insole hole and insulate with tape.
key in $1,+1$. Now, as you walk around the display should read 2 , then 3 , then 4. etc.. as you successively put weight on the switch shoe with each step. If you do not obtain these results, turn off the cal-
culator and carefully check out the switch arrangement.

Determining Distance. Every time you use the pedometer, you must first key in $1,+, 1$. Thereafter, the calculator increments the display by 1 for each step taken by the shoe in which the switch is installed. To determine how far you have run or walked, you must find out how many steps you take in a given measured distance (mile, kilometer, etc.). You must, therefore, measure off the "control" distance and walk or run it to determine how many steps are required to cover the course.

Let us assume you wish to know how many miles you have walked and have previously determined that it takes you 1056 steps to walk a mile. (Note that a step is two strides. If the switch is in your right shoe, a step is completed every time you set down your right foot.) Now, subtract 1 from the total displayed by the calculator. This is necessary because the first step you take will register 2. If we assume you stopped at 7200 steps, simply divide this number by 1056 your "control" number, using the calculator to obtain the number of miles walked. Therefore. $7200 / 1056=6.82$ miles

levels increase dramaticatly-including the levels of local signals. This can lead to problems. The most serious forms of scanning monitor interference are frontend overloading and intermodulation distortion, recognized by their frequent recurrence throughout the tuning range of the receiver. Images from aircraft communication and FM and TV signals that pop up in the middle of the public safety bands are another problem.
The problems that plague the public-safely-band listener are especially severe in metropolitan areas. The problem is compounded with the use of omnidirectional ground-plane antennas that respond equally well in all directions. What is really needed to maximize reception is a beam antenna with high forward gain and greatly limited side and rear gain. Such an antenna can be aimed at the transmitting source to zero in on that single signal to the virtual exclusion of other signals that can interfere with and mask the desired signal.

A few modifications to a low-cost TV antenna can produce an excellent beam antenna for vhf/uhf public-safety-band monitoring. We modified a Radio Shack "Super Color Special" (similar to the Model VU-90) antenna for our purposes. The results we obtained were so satisfactory that no further experimentation was necessary.

The TV antenna employs a log-periodic design in which every element is cross-connected to the feed line. The antenna is actually a series of center-fed dipoles, each slightly different in length to resonate at a slightly different frequency. The dipoles are connecled to a common feedline. The response of the elements is related to the logarithm of the frequency; hence, the name logperiodic dipole array.

Electrically, elements that are not resonant at the frequency to which a receiver is tuned at any given moment behave like directors and reflectors. This endows the antenna array with both directivity and gain. The elements of a logperiodic antenna are incrementally shortened from the longest wavelength at the lowest frequency to the shortest wavelength at the highest frequency which gives the antenna a characteristic V-shaped outline.
Each dipole is used at two frequen-cies-its resonant half-wave ($\lambda / 2$) frequency and its three-half-wave ($3 \lambda / 2$) frequency. Hence, the longest element performs on 140 and 420 MHz , while the shortest element performs on 174 and 522 MHz . Also, because of the large diameter of the elements, compared to their length, the dipoles are very broadband. This makes the modified antenna usable over a range from well below 130
to beyond 174 Mhz in its $\lambda / 2$ mode and from below 400 to beyond 550 MHz in its $3 \lambda / 2$ mode
With the antenna erected, you will note that its elements are angled forward. This is done to merge the front lobes of the characteristic cloverleaf pattern that occurs on any $3 \lambda / 2$ dipole. The result is that the directivity of the antenna is considerably increased.
When used for TV only applications, the Radio Shack Super Color Special (as well as the Model VU-90) antenna offers an average gain of 4 to 6 dB (about 1 S unit) over a single dipole. Its front-to-back ratio is around 12 dB . Antennas with more elements will provide better gain and directivity figures.

Because the feed impedance for the antenna is approximately 300 ohms or less, a standard 4:1 TV Balun matching transformer is required between the antenna and the coaxial line you will be using. You need not concern yourself about the impedance of the feed line; either 50 - or 75 -ohm coax will work fine. For cable runs in excess of $50^{\circ}(15.2 \mathrm{~m})$. use RG-8/U foam dielectric coax. Although new dry 300 -ohm Iwin-lead feed cable is low in losses, when it gets old, wet. and cracked, it causes more problems than it is worth. It is for this reason that coaxial cable is recommended in-dustry-wide for two-way radio communication and commercial TV signal distribution systems.

Modification. Referring to the drawing, saw off the entire boom section that contains the $6^{\prime \prime}(15.2-\mathrm{cm})$ elements in front of the corner reflector. Be careful to avoid damaging the longer element closest to the reflector (this element is connected to the antenna's cross-feed system) or any of the reflector elements.
Next. cut the longest pair of angled elements to a length of $20^{\circ \prime}(50.8 \mathrm{~cm})$ on each side of the boom. This 40" (101.6cm) dipole is now cut for 140 and 420 MHz . Now. cut the shortest pair of angled elements to $16^{\prime \prime}(40.6 \mathrm{~cm})$ on each side of the boom. This $32^{\prime \prime}(81.2-\mathrm{cm})$ dipole is now cut for 170 and 510 MHz .

Once the longest and shortest elements are trimmed to size, the remaining elements can be proportionately trimmed so that the outline of the antenna will have a characteristic V shape. You simply place a straightedge on each side of the antenna so that it touches the extreme ends of the cut elements and locate the cut points for the remaining elements. In the case of the Super Color Special and Model VU-90 antennas. the

Eye-level Weight Watcher
 Separate digital readout puts your exact weight right before your eyes.

Your present scale gives you a number for every five pounds - and a line for the pounds in between. To make matters worse, the needle's at your feet.
Our scale puts your weight where your eyes are-in bold, red, easy-to-read numbers. It's marvelous! You step on the scale and your weight's right there. A visual record of the pounds you shed

The readout unit mounts with either selfadhesive clips or screws. The color's soft white. The physical size of the scale unit is $10.5^{\prime \prime} \times 10.5^{\prime \prime} \times 2.5^{\prime \prime}$ and the digital readout unit is $4.75^{\prime \prime} \times 3^{\prime \prime} \times 1.25^{\prime \prime}$. Try it on a 15 -day money back guarantee. Call toll free lo charge it to any national credit card or send your check for $\$ 49.95$ plus $\$ 5.50$ shipping and handling to Douglas Dunhill. (III. residents add sales tax.) Complete with four AA batteries.
Watching your weight's never been easier or as nice.

Call Toll-Free
 800-621-5554

Illinois residents please call 800-972-5858 (In operation 24 hours, 7 days a week)

- Computer controlled electronic accuracy
- Automatically adjusts to zero
- 300 lb capacity
- A fraction of the price of doctor-type pedestal scales without a digital readout

Dovy/ar Itunhill

Dept. 53-2378
Ten Douglas Dunhill Drive, Oak Forest, IL 60452 (c) Douglas Dunhill inc. 1979

third and second longest elements will be $17^{\prime \prime}(43.2-\mathrm{cm})$ and $18^{\prime \prime}(45.4-\mathrm{cm})$ long, respectively, on each side of the log periodic array's boom
Trim the longer corner reflector elements so that each of them is $16^{\prime \prime}$ long. Then lift the antenna to locate its new center of balance. Drill two new $1 / 4{ }^{\prime \prime}$ $(6.35-\mathrm{mm})$ holes. properly spaced. through the boom to accommodate the U boll that fastens the antenna to its mast. Make certain that these holes are drilled to permit the antenna to be oriented so that its elements point up and down after mast mounting. Also, make certain that the U-bolt hardware does not touch the aluminum wire that crossconnects the elements

Mount the antenna on a $36^{\prime \prime}$ (0.91-m) length of $11 / 4^{\prime \prime}(31.8-\mathrm{mm})$ outer-diameter rigid PVC pipe Do not substitute a metal pipe because it will interfere with the signal path. The metal mast should be at least $\lambda / 4$ away from the longest antenna element. (Rigid PVC pipe can be obtained from any building supply house and many hardware stores.)

Mount the antenna and PVC pipe support on a rotator, following the cablerouting instructions faithfully. Connect the Balun transformer to the antenna and the coax feed line to the Balun. Then coal the connections with silicone adhesive to weatherproof them

How It Performs. We made comparison checks between the modified TV antenna and an excellent commercially available vht/uhf discone monitor antenna. Signals that were barely readable on vhf with the discone antenna came in substantially stronger with the modified beam antenna. More important was the fact that signals from the back of the antenna were noticeably reduced and those off to the sides were deeply attenuated with the beam, all of which contribute to a reduction in interference and an overall improvement in reception. The modified beam performed even better on uhf than it did on vhf. Signals improved from "barely-discernable" to "full-quieting.
Our experience with the modified beam makes it clear that this antenna is an excetlent choice for listeners who are plagued by strong nearby transmitters and experience weak incoming signals. The modified beam even has the added advantage that it works well on the 2-meter amateur radio band: just be careful to avoid pumping more than a few watts into the Balun to avoid overheating. Happy listening.

POPULAR ELECTRONICS

BASIC programs for Ohm's law, resonance, and inductive

 formulas using a Level-1 machine with $4 K$ of RAM
SIMPLE TRS-80 PROGRAMS SOLVE ELECTRONICS CALCULATIONS BY ROY BABYLON

THE FOLLOWING programs were designed to be run on a Level-1 TRS-80 microcomputer having 4 K of memory. All the programs are selfprompting when run and are also readily adaptable to any other BASIC. (The square-root subroutine can be eliminated if your particular BASIC has a built-in square-root function.)

Ohm's Law. This program, shown in Table 1, is fairly short and has no subroutines. Line 40 selects the unknown resistance, voltage, current or power. Lines 70 through 100 are used to deter-
mine the unknown resistance; lines 110 through 130 are for current, while lines 145 through 160 are used to determine the voltage. Once the current (1) and resistance (R) have been determined, line 295 displays the wattage.

Resonance. The program shown in Table 2 can determine frequency of a tuned circuit when C and L are known, or can determine either C or L if the desired resonant frequency and one of these two elements are known. The program will also determine the Q of a series or parallel tuned circuit, bandwidth
and/or the impedance. The square-root subroutine used in determining resonant frequency is called at line 220.

Inductive Formulas. Table 3 illustrates a program that will determine instantaneous voltage, inductance of a single-layer coil, inductive/resistive time constant, the values of series and/or parallel inductors, the Q of a coil, inductive reactance and impedance of an inductive/resistive circuit. The only subroutine used (square root) is called at line 720, with this subroutine residing at line 30000 .

Table 1—Ohm's Law

```
CLS
    P.T. (20): "OHM'S LAW FORMULAS"
    P. "SELECT NUMBER FOR DESIRED FUNCTION"
    IN. "RESISTANCE =R, CURRENT=C,VOLTAGE = V,
    POWER=P";A
    IF A=R,G. }7
    IF A =C, G. }11
    IF A =V,G. }14
    IF A =P,G. }18
    IN. "ENTER VOLTAGE IN VOLTS"; E
    IN. "ENTER CURRENT IN AMPERES": I
    P."THE RESISTANCE EQUALS";E/I;" OHMS"
    END
    IN."ENTER VOLTAGE IN VOLTS";E
    IN."ENTER RESISTANCE IN OHMS";R
    P."THE CURRENT IS EQUAL TO";E/R;" AMPERES"
    END
    IN."ENTER CURRENT IN AMPERES";|
    IN."ENTER RESISTANCE IN OHMS";R
    P."THE VOLTAGE IS ";';*R;" VOLTS WITH ";R;" OHMS
        AND ";:;" AMPERES"
    END
    IN."ENTER MISSING VARIABLE R,I,E";B
    IF B =R,G. }21
    IF B=1,G. }24
    IF B =E,G. }27
    IN."ENTER CURRENT (1)";I
    IN."ENTER VOLTAGE (E)";E
    P=1*E
    G. }29
    IN."ENTER VOLTAGE (E)";E
    IN."ENTER RESISTANCE (R)";R
    P=(E*E)/R
    G. }29
    IN."ENTER CURRENT (I)";|
    IN."ENTER RESISTANCE (R)";R
    P=(|*)*R
    P."THE POWER IS ";P;" WATTS"
    END
```

Table 2-Resonance (Tuned Circuits)

10 P.T.(15):"VARIOUS FORMULAS
ON RESONANT FREQUENCY"
P."ENTER NUMBER OF DESIRED FUNCTION";
$\begin{array}{lll}\text { P."ENTER NUMBER OF DESTRED } \\ \text { P."RESONANT FREQUENCY } & \text { (FO) } \\ \text { P."UNKNOWN INDUCTANCE } & \text { (L) }\end{array}$
$\begin{array}{lll}\text { P."RESONANT FREQUENCY } & \text { (FO) } \\ \text { P."UNKNOWN INDUCTANCE } & \text { (L) }\end{array}$
P."UNKNOWN CAPACITOR (C) \#3"
P."UNKNOWN CAPACITOR (C)
P."Q OF SERIES OR PARALLEL CIRCUIT (Q)
P."BANDWIDTH (BW)
P."IMPEDANCE, SERIES OR PARALLEL (Z)
\#4"
P.'"BANDWIDTH
P.'IMPEDANCE, SERIES OR PARALLEL (Z)
IN."UNKNOWN FACTOR IS NUMBER"; \cup
\#6"
P."IMPEDANCE, SERIES OR PARALLEL (Z)
IN."UNKNOWN FACTOR IS NUMBER";U
IF $U=1, G .170$
IF U=2,G. 240
$\begin{array}{ll}110 & \text { IF U }=2, G .240 \\ 120 & \text { IF } U=3, G .280\end{array}$
IF $U=4, \mathrm{G} .320$
IF $U=5, G .360$
IF U=6,G. 520
150 IN."ENTER VALUE OF INDUCTOR IN MILLIHENRIES";
170 IN."ENTER VALUE OF INDUCTOR IN MILLIHENRIES";L
180 IN."ENTER VALUE OF CAPACITOR IN MICROFARADS";C
$\begin{array}{ll}180 & \text { IN."ENTER VALUE } \\ 210 & \mathrm{X}=(\mathrm{L} / \mathrm{IE} 3) *(\mathrm{C} / 1 \mathrm{E} 6)\end{array}$
220 GOS. 30030
220 GOS. 30030 P."THE RESONANT FREQUENCY IS ";.159/Y;" HERTZ"
$\begin{array}{ll}230 & \text { P."TH } \\ 235 & \text { END }\end{array}$
240 IN."ENTER RESONANT FREQUENCY (FO) DESIRED";F
240 IN."ENTER RESONANT FREQUENCY (FO) DESIRED";F
250 IN."ENTER CAPACITOR VALUE IN MICROFARADS";
$260 \quad \mathrm{~L}=.0254 /\left(\mathrm{F}^{*} \mathrm{~F}\right)^{*}(\mathrm{C} / 1 \mathrm{E} 6)$
$270 \quad$ P."THE INDUCTOR NEEDED IS "; L * $1000 ;$;" MILLIHENRIES"
270 P."TH
END
IN."EN
IN."ENTER RESONANT FREQUENCY DESIRED "; F
IN."ENTER INDUCTOR VALUE IN MILLIHENRIES": L
$C=.0254 /\left(F^{*} F\right)^{*}(L / 1 E 3)$
$\mathrm{C}=.0254 /\left(\mathrm{F}^{*} \mathrm{~F}\right)^{*}(\mathrm{~L} / 1 \mathrm{E} 3)$
P ."THE CAPACITOR NEEDED IS "; $\mathrm{C}^{*} 1 \mathrm{E} 6$;" MICROFARADS"
END
IN."ENTER THE REACTANCE (XC OR XL) IN OHMS"; X
IN. "ENTER THE SERIES RESISTANCE IN OHMS"; R
P."THE Q OF THE CIRCUIT IS ";X/R;" UNITS"
END
IN. "ENTER UNKNOWN, $\mathrm{Q}=\mathrm{Q}, \mathrm{FO}=\mathrm{F}, \mathrm{BW}=\mathrm{B}$ "; X
IN. "ENTER UN
IF $\mathrm{X}=\mathrm{Q}, \mathrm{G} .400$
$\begin{array}{ll}28 & 10 \\ 8 & 00\end{array}$
数

15	CLS	
20	P.T. (20): "OHM'S LAW FORMULAS"	
30	P. "SELECT NUMBER FOR DESIRED FUNCTION"	
40	IN. "RESISTANCE $=$ R, CURRENT $=C$, VOLTAGE $=V$, POWER=P"; A	
60	IF $A=R, G .70$	
62	IF $A=C, G .110$	
65	IF $A=V, G .145$	
67	IF A =P, G. 180	
70	IN. "ENTER VOLTAGE IN VOLTS"; E	
80	IN. "ENTER CURRENT IN AMPERES"; I	
100	P."THE RESISTANCE EQUALS";E/I;" OHMS"	
105	END	
110	IN."ENTER VOLTAGE IN VOLTS";E	
120	IN. "ENTER RESISTANCE IN OHMS";R	
130	P."THE CURRENT IS EQUAL TO";E/R;" AMPERES"	
140	END	
145	IN."ENTER CURRENT IN AMPERES";	
150	IN."ENTER RESISTANCE IN OHMS";R	
160	P."THE VOLTAGE IS "; I*R;" VOLTS WITH ";R;" OHMS AND ";;;" AMPERES"	
170	END	
180	IN. "ENTER MISSING VARIABLE R,I,E";B	
190	IF B $=$ R, G. 210	
195	IF B $=1, \mathrm{G} .240$	
200	IF B=E, G. 270	
210	IN."ENTER CURRENT (1)";	
220	IN."ENTER VOLTAGE (E)";	
230	$\mathrm{P}=\mathrm{I}^{*} \mathrm{E}$	
235	G. 295	
240	IN."ENTER VOLTAGE (E)";	
250	IN."ENTER RESISTANCE (R)";R	
260	$\mathrm{P}=\left(\mathrm{E}^{*} \mathrm{E}\right) / \mathrm{R}$	
265	G. 295	
270	IN."ENTER CURRENT (I)';	
280	IN."ENTER RESISTANCE (R)";R	
290	$\mathrm{P}=\left(\\|^{*}\right)^{*} R$	
295	P."THE POWER IS ";P;" WATTS"	
300	END	

POPULAR ELECTRONICS

80	IF $X=F, G .440$		
390	IF $\mathrm{X}=$ B.G. 480	270	END
400	IN."ENTER FO IN HERTZ";F	280	IN."ENTER THE VALUE OF INDUCTANCE
410	IN. 'ENTER BW (F2-F1) IN HERTZ"; B		IN HENRIES : L
420	P."THE Q IS EQUAL TO ":F/B;" UNITS"	290	IN. "ENTER THE VALUE OF RESISTANCE
430	END		IN OHMS";R
440	IN. "ENTER THE Q OF THE CIRCUIT'; Q	300	T=L/R
450	IN."ENTER THE BW (F2-F1) IN HERTZ";B	310 315	P."THE TIME CONSTANT IS";T;"SECONDS"
460	P."THE RESONANT FREQUENCY (FO) IS ";Q*B;" HERTZ"	315 320	END ${ }^{\text {IN."ENTER THE NUMBER OF INDUCTORS";B }}$
470	END	330	IF B=2 G. 360
480	IN. "ENTER RESONANT FREQUENCY (FO) IN HERTZ";F	340	IF B=3 G. 420
490	IN. "ENTER THE Q VALUE";Q	350	IF B=4 G. 490
500	P."THE BANDWIDTH IS ";F/Q;" HERTZ"	360	IN. "ENTER VALUE OF L1 IN HENRIES";
510	END	370	IN. "ENTER VALUE OF L2 IN HENRIES";B
520	IN. "ENTER VALUE OF INDUCTOR IN MILLIHENRIES";L	0	$\mathrm{C}=\mathrm{A}+\mathrm{B}$
530	IN."ENTER FREQUENCY IN HERTZ";F	400	P."THE TOTAL SERIES INDUCTANCE IS";C; "HENRIES"
535	IN. "ENTER RESISTOR VALUE IN OHMS";R	400	$\mathrm{D}=(1 / \mathrm{A})+(1 / \mathrm{B})$
540	P."AT SERIES RESONANCE, XL AND XC CANCEL	405	P."THE TOTAL PARALLEL INDUCTANCE IS";1/D;"HENRIES"
0		410	END
560	$\mathrm{Q}=\mathrm{P} / \mathrm{R}$	420	IN."ENTER VALUE OF L1 IN HENRIES";A
570	P."THE PARALLEL IMPEDANCE IS EQUAL	430	IN."ENTER VALUE OF L2 IN HENRIES";B
	TO ";P*Q;" OHMS'	440	IN. "ENTER VALUE OF L3 IN HENRIES"; C
580	END ${ }^{\text {a }}$	450	$\mathrm{D}=(1 / \mathrm{A})+(1 / \mathrm{B})+(1 / \mathrm{C})$
30000	END	460	P."THE TOTAL INDUCTANCE IN SERIES
30010	REM *SQUARE ROOT* INPUT X, OUTPUT Y		IS';'A + B + C ; "HENRIES"
30020	REM ALSO USES W \& Z INTERNALLY	470	P."THE TOTAL INDUCTANCE IN PARALLEL
30030	IF $X=O T . Y=O: R E T$.		IS";1/D;"HENRIES"
30040	IF X > OT. 30060	480	END
30050	P."ROOT OF NEGATIVE NUMBER?'':STOP	490	IN."ENTER VALUE OF L1 IN HENRIES";
30060	$Y=X \cdot 5: Z=0$	500	IN."ENTER VALUE OF L2 IN HENRIES";B
30070	$W=(X / Y-Y)^{*} .5$	510 520	IN."ENTER VALUE OF L3 IN HENRIES"; C
30080	IF $(W=O)+(W=Z) T . R E T$.	520	IN."ENTER VALUE OF L4 IN HENRIES";D
30090	$\mathrm{Y}=\mathrm{Y}+\mathrm{W}: \mathrm{Z}=\mathrm{W}: \mathrm{G} .30070$	530	$\mathrm{E}=(1 / \mathrm{A})+(1 / \mathrm{B})+(1 / C)+(1 / D)$
		550	P."THE TOTAL PARALLEL INDUCTANCE IS";1/E;"HENRIES"
Table	3-Inductive Formulas	540	P."THE TOTAL SERIES INDUCTANCE IS";A + B + C + D; "HENRIES"
2	CLS	555	END
10	CLS	570	IN. "ENTER INDUCTOR VALUE IN HENRIES";L
10	P."AFTER EACH SOLUTION, PRESS R. ENTER TOBEGIN."	580	IN. '"ENTER THE FREQUENCY IN HERTZ'; H
15	P.T.(15)"VARIOUS INDUCTIVE FORMULAS"	590	IN."ENTER RESISTOR VALUE IN OHMS";R
20	P. "ENTER THE NUMBER NFXT TO DESIRED	600	$\mathrm{X}=6.28^{*} \mathrm{H}^{*} \mathrm{~L}$ $\mathrm{Q}=\mathrm{X} / \mathrm{R}$
	FUNCTION"	620	P."THE REACTANCE OF THE CIRCUIT
30	P."INSTANTANEOUS VOLTAGE \#1"		IS":X:"OHMS WITH A Q OF":Q
40	P."INDUCTANCE OF A SINGLE LAYER COIL \#2"	630	END
50	P."INDUCTIVE/RESISTIVE TIME CONSTANT \#3"	640	IN."ENTER THE VALUE OF INDUCTOR IN
60	P."SERIES AND PARALLEL INDUCTORS \#4"		MILLIHENRIES";L
70	P."QOF A COIL \#5"	650	IN. "ENTER THE FREQUENCY
80	P."INDUCTIVE REACTANCE (XL) \#6"	660	$\mathrm{X}=(6.28)^{*}(\mathrm{H})^{*}(\mathrm{~L} / 1000)$
90	P."IMPEDANCE OF INDUCTIVE/RESISTIVE CIRCUIT \#7"	670	P."THE REACTANCE OF THE CIRCUIT IS".X."OHMS"
100	IN."FORMULA DESIRED";F	680	END
110	IF F $=1 \mathrm{G} .160$	690	IN."ENTER THE VALUE OF INDUCTIVE REACTANCE
120	IF F $=2 \mathrm{G} .220$		IN OHMS":P
130	IF F $=3 \mathrm{G} .280$	700	IN."ENTER THE VALUE OF RESISTANCE
140	$\mathrm{IFF}=4 \mathrm{G} .320$		IN OHMS";R
144	IF F $=5 \mathrm{G} .570$	710	$\mathrm{X}=\left(\mathrm{P}^{*} \mathrm{P}\right)+\left(\mathrm{R}^{*} \mathrm{R}\right)$
145	IF F $=6 \mathrm{G} .640$	720	GOS. 30030
146	IF F $=7 \mathrm{G} .690$	730	
160	IN. 'ENTER VALUE OF INDUCTANCE IN HENRIES";L	740	P."THE IMPEDANCE OF THE CIRCUIT IS";';;"OHMS" END
170	IN. "ENTER CHANGE IN CURRENT (12-I1) IN AMPS";1	30000	END
180	IN. "ENTER CHANGE IN TIME (T2-T1) IN SECONDS";T		
190	$E=L *(1 / T)$	30010 30020	REM*SQUARE ROOT*INPUT X, OUTPUT Y
200	P."THE VOLTAGE DEVELOPED IS":E;"VOLTS"	30020	REM ALSO USES W AND Z INTERNALLY $\mathrm{IF} \mathrm{X}=\mathrm{O} \mathrm{~T} . \mathrm{Y}=\mathrm{O}: \mathrm{RET} .$
210	END	30040	IF $X=O T$. $Y=O:$ RET.
220	IN."ENTER NUMBER OF TURNS";	30050	P"'ROOT OF A NEGATIVE NUMB
230	IN."ENTER RADIUS OF COIL IN INCHES";R	30060	P. ROOT OF A NEGATIVE NUMBER?" :STOP $Y=X^{*} .5: Z=0$
240	IN."ENTER LENGTH OF COIL IN INCHES";D	30070	$W=(X / Y-Y)^{*} .5$
250	$\mathrm{L}=\left(\mathrm{N}^{*} \mathrm{R}\right)^{*}\left(\mathrm{~N}^{*} \mathrm{R}\right) /\left(9^{*} \mathrm{R}\right)+\left(10^{*} \mathrm{D}\right)$	30080	IF $(W=O)+(W=Z)$ T. RET
260	P."THE INDUCTANCE IS";L;"MICROHENRIES"	30090	$Y=Y+W: Z=W: G .30070$

An expert tells how to "sweeten" instruments and achieve that special recorded "sound"

BY ETHAN WINER

- A growing number of audio enthusiasts are using equalizers
to shape a stereo system's frequency response, whether to "adjust" a room or for creative recording purposes.
- An equalizer is nothing more than a device to allow frequency response of an audio signal path to be adjusted in some way. Thus, conventional bass and treble controls qualify as charter members of the club. More often, however, the term implies equipment that is more complex and sophisticated, such as that used by a mixing engineer. Let's take a look at some of
the reasons equalization ($E Q$) is useful and how its implementation
has developed into a high art.
- Standard bass and treble tone
controls are broadband devices that have greatest effect at the frequency extremes; that is, the highest highs and the lowest lows.

While this is fine for touching up reproduction, it is of virtually no help in correcting for narrowband colorations, which are often highly disturbing. For example, a peak in the response of an audio system in the low-to-middle treble region can produce a shrill or scratchy quality that a normal treble control cannot effectively tame. Turning down the control enough to eliminate the shrillness kills too much of the highest treble, robbing music of clarity and sparkle. Similarly, using a bass control to correct tubbiness or muddy bass response also falls short of success. Turning the control down to relieve such midbass exaggeration would simply remove the deepest frequencies so important to lifelike reproduction, while perhaps still allowing some muddiness to persist. There's got to be a better way-and there is.

Fig. 1. Layout of a typical front panel for an equalizer. Note that it has controls fortreble, midrange, and bass as well as a 3 -position low-cut filter.

Enter the Graphic Equalizer. The graphic equalizer has become very popular in recent years. It is called "graphic" because, as the front-panel sliders are adjusted, their positions give an approximate display of the resultant frequency response. Each of the five to ten or more frequency bands into which the audible spectrum is divided by these devices is adjustable via its own boost/cut control. Instead of broad adjustments of treble, bass, and maybe the midrange (presence), we now have independent control over the low bass, midbass and high bass, low midrange, etc.

If we attack that shrill midtreble emphasis with an octave-band graphic equalizer, we should be able, more or less, to correct for only the troublesome peak. We'll have to settle for "more or less" because it is highly unlikely that any response anomaly could correspond exactly to the adjustments of even a ten-band device. Therefore, many professional sound contractors, recording studios and audio enthusiasts seeking precise results use the even greater resolution afforded by $1 / 3$-octave equalization. The $1 / 3$-octave graphics usually have 27 or so bands, and can, when teamed up with the proper measuring equipment, be used to make just about any high-quality speaker system flat to within a dB or so over much of the audible range. But there's much more to $E Q$ than simply correcting nonideal loudspeakers or listening rooms.

EQ In the Studio. Now, let's look at the professional recording studio with its abundant knobs, lights, and buttons. This is where the multiple original tracks are adjusted in level and equalized before being mixed together to comprise the final two-track product. The key phrase is "before being mixed." Whereas the home listener can alter the program only in its entirety, the recording engineer can-and must-equalize sounds picked up by each microphone separately. The tool of choice for this ap-

plication is yet another equalizer referred to by many as the "console type." Virtually all professional mixing consoles use this sort of device, with one available for each mike or line input. Additional equalizers are often devoted to echo and reverb lines.
A typical front panel for such an equalizer (Fig. 1) shows that we're back to the bass-mid-and-treble format. But there are no less than five different frequency choices for treble, eight for midrange, and another five for bass. In addition, a 3 -position low-cut filter is provided, as is an in/out switch for instant comparison of "before" and "after." Here we have a device that can exercise control over fifteen different frequency ranges and also be made small enough to fit in quantity into a single mixing board. (A large console will have some 30 or more of these, so size is an important factor.) Though all 15 frequencies cannot be adjusted simultaneously as with the graphic, this rarely is needed in a "one-for-eachmike" situation. Besides, you can always "patch-in" a graphic if you absolutely have to.
The last control, the PEAK/SHELF switch, changes the basic shape of the response curve being created. This is shown in Fig. 2, where in both cases treble frequency has been set to 3.2 KHz and 12 dB of boost is applied. The upper curve represents the switch in the PEAK position while the lower curve shows a shelf. Notice that, while the treble peak affects mainly the specified frequency. there is still some influence on nearby frequencies, whether boosting or cutting. In the shelf position, the boost or cut reaches its maximum at that frequency and remains there for all higher frequencies. The same principle applies to the bass control. The boost or cut reaches maximum at the named frequency but instead continues downward thereafter. The midrange has no shelf capability, but more expensive consoles generally have a second, additional midrange control for added flexibility. Fig. 3 contains bass shelf cuts at four different frequencies. Fig. 4 illustrates the effect of varying the bandwidth of a midrange dip. Bandwidth? Well now we're talking about the "parametric equalizer," the most recent addition to the EQ machine family.

Parametric Power. In a sense, the parametric equalizer is the most powerful of the equalizer types, allowing continuous adjustment of all equalization parameters (hence the name). It is

Fig. 2. The top switch in Fig. 1 changes the basic shape of the response as shown here to a peak (top) or shelf (bottom).
structured similarly to the console equalizer, but there are differences worth elaborating. First, and probably most important, all controls of a parametric are continuously adjustable. Potentiometers, rather than discrete, switch-related resistors, are employed as the tuning elements, allowing a choice of virtually any center frequency. Boost and cut controls are also continuous and typically offer a range of $\pm 20 \mathrm{~dB}$, more than is characteristic of other equalizer lypes.
Another important difference is the inclusion of a bandwidth control. It was explained previously that in boosting or cutting a peak, the effect "spills over" to adjacent frequencies. How far away from the indicated center this influence
extends is determined by the setting of the bandwidth control. When set to NARRow, it allows only a small range of frequencies to be influenced. This is particularly useful for suppressing ringing or removing extraneous tones from, say, drums without changing the basic sound character. On the other side of the coin, this narrowband setting can be used to emphasize a single tone and can often effectively "purify" a muddy-sounding tom tom. Of course, this is not a substitute for proper tuning of the drums, but when all else fails.

Except when dealing with drums and perhaps some tuned percussion instruments like triangles or cowbells, narrowbandwidth boosts should usually be
avoided because unpleasant resonances or other bad effects may show up when the mix is heard on different speakers. In fact, most recording studios have alternate speaker systems available for making instant comparisons.

Broad-bandwidth settings accentuate a larger range of frequencies. Parametric equalizers are inherently peaking rather than shelving devices, but a wide setting can reasonably approximate a shelf. Do not confuse peaking with boosting, though. Peaking refers only to the shape of the curve, not to whether it is being boosted or attenuated.

All this newfound versatility, however, is not without some potential drawbacks. Probably the most obvious is the lack of precise repeatability. Since the operating controls are continuously variable, it may be difficult to recreate seltings exactly to perhaps undo something you later don't like. Another factor is noise. Parametric equalizer designs generally use more op amps per frequency band than do graphic and console types. This means that cumulative noise can be more of a problem, especially when large amounts of boost are used. Distortion can build up in a similar fashion, though the latest high-slew, low-noise FET input op amps are bringing both of these factors under better control. Still, most commercially available units have a switch to bypass each band or section if it's not needed

While studios have not unanimously traded in all their old equalizers for parametrics, many have added at least one or two. And some of the newer mixing boards are showing up with equalizers having a sweepable midrange band or a two-position switch for sharp or broad peak shape selection. So a few of the

Fig. 3. Responsecurres show changes for bass shelf cuts at four different frequencies.

AUGUST 1979
conveniences are added without having to go to a full parametric design.

Now that we've looked at the different types of devices and know how they operate, how can we use $E Q$ to best advantage? When and how would a professional recording engineer use it? Well, first we should note that equalization can be used in two basic ways: as a tool and for personal taste.

EQ As A Tool. If you reflect on the task of a recording engineer, the idea that he is going to run into problems in his work will not seem surprising. The difficulties encountered may lie in the areas of instrumental balances, equipment overload, signal-to-noise ratio, and frequency response, to name a few possibilities. When the problem can be traced to frequency response-and quite a few can-the equalizer becomes an extremely valuable tool.

For example, one problem that occurs regularly is caused by the "proximity effect," a bass boost that happens when using a directional microphone in closemiked situations. Here, the low filter would be your best bet. First, it will attenuate the excessive low-frequency signal before it enters the actual EQ circuitry, minimizing the chance of overload; second, it will leave the bass control free for other uses if needed. (If the mike has its own switchable low-cut filter built in, using that to keep the unwanted frequencies out of the preamp as well will give even more overload protection.)

Another proper occasion to use the low filter is when recording vocals closeup. Not only because of the proximity effect just mentioned, but also to minimize "popping" P's, which contain a lot of low-frequency energy. Moreover, rumble and low-frequency mud can enter
your recordings owing to extraneous vibrations such as walking on non-concrete floors, operating air conditioners, and the like.

Treble is often accentuated to increase clarity or to enhance the presence of a vocal or string part that might otherwise be lost in the mix. Horns, cymbals, acoustic guitars and many other instruments can also be greatly enhanced in this way, but the engineer must know where the formants (the most important characteristic frequencies for the various instruments) lie. Boosting high treble on an instrument with little output in that region will do nothing but add hiss. In fact, when dealing with such an instrument, it is often possible to make a substantial improvement in the signal-tonoise ratio by carefully reducing the unnecessary high-frequency bandwidth with treble control on each channel for frequencies beyond the range of interest. This is most effective when done in mixdown, as tape hiss will also be reduced. For this same reason, when treble boost is employed, it is usually best applied ahead of the recorder.

EQ can also help to correct for poor room acoustics. Recording live, even the most accurate mike may not capture that terrific sound you hear when you stand right next to the instrument. Closemiking may help, but in many cases this is impractical since many instruments do not radiate sound from a single point source.

Consider a grand piano, string bass, xylophone, or gong. All of these radiate sound from a large surface area, leaving no single mike position that would be close to all parts of the source. Such large instruments require a more distant microphone placement if a wellbalanced pickup is to be had. Unfortu-
nately, as the distance between source and mike increases, acoustics of the room begin to affect the sound. This isn't always bad-a good room might add a warmth and character unobtainable in any other manner. But when a close-up sound with lots of presence is desired, equalization in the form of treble boost or midrange cut can often do the trick.

Seasoning To Taste. While no one yet has found a definitive way to tell what sounds good and what doesn't, recording engineers have developed various techniques for emphasizing what they consider to be the more pleasant qualities of musical sounds. In fact, many engineers pride themselves on "getting their own sound." This is an area of taste, so naturally there are no hard, fast rules to apply. Some good starting points can be established, though, as follows. Generally speaking, you would boost treble for clarity or presence (the midrange can affect this too), and bass for fullness or punch. Sometimes it seems that no matter how much top or bottom you add, something is still not right. Often what is involved is one or more unpleasant resonances caused, as mentioned earlier, by either microphone chracteristics or placement, or even by bad qualities within the instrument itself, especially if it is out of adjustment or of low quality. Eliminating these midrange resonances will often improve the sound and may minimize a need to boost highs and/or lows.

To find these magic EQ settings, start by turning off all but the principal microphone that can pick up the instrument you're working with. If it's the snare drum, for example, shut off the tom and kick mikes. They'll interact later anyway, but the less you need to concern your-

Fig. 4. Response curves showing the effect of varying the bandwidth of a midrange dip.

The chart given below lists some common instruments with frequencies at which boost or cut can be effectively applied to cure various problems or obtain certain effects. Indicated frequencies are necessarily approximate, as no two instruments sound exactly alike. The column marked "comments" gives cautions or observations based on experience. They should be taken as guidelines rather than prescriptions, for every situation is different and every recordist has his own sonic goals

A few general hints may contribute to the effective use of equalization: (1) Your

SPECIFIC INSTRUMENTS AND THEIR CHARACTERISTIC FREQUENCIES

memory is shorter than you think; return to a flat setting now and then to remind yourself where you began.
(2) Make side-by-side comparisons against commercial releases; this will help you in judging overall blend.
(3) You can tailor the sound of an instru-
ment only so far without losing its identily; every instrument can't be full, deed. bright. sparkly. etc., all at onse. !eave some 500 m for contrast.
(4) Take a break once in a while. Critical listening tends to numb one's senses after awhile. especially if you like to run monitors at high levels. Sounds may apoez: very different to you the next morning.
(5) Don't be afraid to experiment. If you can't find just what you want with equalization, try moving the mike a little; if that won't work. move the instrument. But. most of all. keep trying.

self with now, the better. Next, try boosting some different midrange frequencies, adding at least 10 or 15 dB , to make the changes obvious. Where you start will naturally depend on the instrument. Since physical resonances of instruments usually fall between, say, 100 Hz and 1 or 2 kHz , these frequencies are likely starting points. After determining which one sounds the worst, return to the flat setting momentarily to allow your ears to readjust, and then cut the chosen frequency in small steps until the AUGUST 1979
optimum point is reached. The same general plan can work for boosting, although then you'd be looking for frequencies that make the sound better when boosted.

When adding treble or bass, be sure the controls are doing what you expect them to. If you don't obtain an appreciable improvement, move on to a different frequency. Remember, a lot of boost at the extreme low end can route excessive infrasonic energy to the loudspeakers, which could damage them. Similar-
ly, too much ultrasonic content can damage tweeters and overload the tape deck. Even with VU meter indicators in the black, safety is not guaranteed; limited meter frequency response sometimes prevents them from giving a true picture. Also, VU meters tend to miss sharp transients from drums and other percussion instruments; the pointer simply cannot move fast enough. Preemphasis within the deck also can aggravate the situation, so be particularly careful at the slower tape speeds. \diamond

BUILD A speaker Protection Circuit
 BY MIKE ROGALSKI

AFTER LONG periods of listening to reproduced music played at a high volume level, it's not uncommon for one's hearing to become insensitive to average loud sounds. As a result, the listener often turns up the gain to compensate for this diminished sensory perception.

The best way to protect our hearing ability-and do a good turn for our speaker systems-is to put an upper limit on the decibel level our sound systems can generate. This is precisely what the automatic audio-over-load/speaker-protection circuit described here does.

There are, of course, many circuits that use zener diodes and SCRs to shunt power to dummy loads. Most act too fast, however. This causes important dynamics such as drum rolls, cymbal crashes, and trumpet blasts to get "crunched." A slow-acting threshold sensor that has built-in hysteresis and a comparator circuit would be excellent for providing automatic level limiting, but it requires a power supply. The speaker-protection system here, on the other hand, is far simpler in circuitry, self-powered, automatic in action, and connects directly between the power amplifier and the speaker system it is to protect. It is also inexpensive to build.

About the Circuit. The output from the power amplifier to the speakerprotection circuit is shown in Fig. 1. (The rectifier diodes should have a forward resistance of approximately 600 ohms to introduce minimal signal distortion.) The signal then goes to the normally-closed relay contacts and out to the speaker system.

At high signal levels, the charging circuit consisting of R1 and C1 generates sufficient voltage levels to energize K1 and open its contacts. When $K 1$ energizes, $R 2$, is connected in series with the speaker system to drop the sound level. Then, when the input signal level drops, K1 de-energizes
and its contacts automatically close, removing R2 from the circuit.

Construction. The simplicity of the protection circuit lends itself to just about any method of construction desired. For those who wish to use print-ed-circuit construction, an actual-size etching-and-drilling guide and compo-nents-placement diagram are given in Fig. 2. Once wired, this compact pc assembly can be permanently mounted inside the speaker system's enclosure or connected directly to the speaker terminals.

Relay $K 1$ should have a dc coil resistance of about 100 ohms and a dc pull-in rating of at least 2 volts less

than the required rms voltage cutout point of the speaker system. This allows for the voltage drop across the rectifier circuit. The diodes and capacitors should have twice the peak voltage rating of the signal passing through them. The components specified in Fig. 1 are for a 4- and an 8-watt unit and will protect a speaker system rated at 5 to 10 watts with a 20% derating factor for safety.
Resistor R1 can be bypassed to move the operating point of $K 1$ down to 4 watts.

Adjustment. Make certain that the common of each amplifier output circuit is connected to the common of the speaker protector and observe proper speaker phasing when connecting the device into your audio system. With a relay whose coil resistance is about 100 ohms, the circuit shown in Fig. 1 will cut out at 4,8 , or 12 watts if the value of $R 1$ is 0,50 , or 100 ohms, respectively. Since the circuit is basically a voltage divider, doubling the value of R1, shifts the rms point 50% higher. You can also experiment with the value of $R 2$ to obtain the low level desired.

PARTS LIST

C1-1(K)- $\mu \mathrm{F}$. S ()-volt electrolytic D1 thru D4--Silicon rectifier diode (see text) K1 $S_{p s t}$ relay with 100 -ohm do-resistance coil (American Zetler No. A 535-11-2 or similar) (see text)
R1-Value depends on power protection lev. el: 010 ohms for 4 watts; 50 ohms for 8 watts: 100 ohms for 12 watts
R2-50-ohm. $1 / 2$-watl resistor
Note: The following items are available from Micpro Sound, 1012 Disston St., Philadelphia. PA 19111: Pe board for $\$ 3 .(\mathrm{K}$) board and all components (state RI wattage) for $\$ 10 .(0)$ postpaid.
lig. l. The self-powered circuit, left, automatically reduces speaker lerel when peaks occur.

Fig. 2. Actual-size etching and drilling guide, right: component placement above.

SPACE-AGE
 ELECTRONIC PROJECTS
 FOR

BOATS part two

LAST MONTH, we showed you various ways to use the LM3914 dot/ bar display driver in instruments for your boat, new approaches to water-level detection, and a rudder-angle indicator. In this second and final part, concentration is on bilge-water warning systems, elec-trical-system transient protection, and a unique digital tachometer.

Bilge Alarm. There are a number of ways to provide bilge-water warning. One of the simplest is the float-actuatedswitch system shown in Fig. 10. Here, a sealed tube containing a reed switch is surrounded by a float with a built-in magnet. The float rides up and down the tube with increasing and decreasing water level, closing and opening the switch's contacts.
With the actuating switch assembly placed low in the bilge, the float lifts with rising water level. At some predetermined point, the contacts of the reed switch close and the alarm sounds or/ and an indicator light comes on. Alternatively, the system can be rigged to automatically turn on the bilge pump as well as sound an alert.

There is nothing electronic about the system shown in Fig. 10, but it is so sim-
ple that it is just about foolproof. While you can fabricate your own float switch if you wish, it is hardly worth the effort because all-plastic units for boats are available from marine hardware stores at low cost.

A second bilge alarm is shown in Fig. 11. Here, a pair of electrodes is sealed in an insulating housing that is mounted low in the bilge. A small screen surrounds the probe-like elements to prevent bridging by debris.

In fabricating the probe shown in Fig. 11. two small brass bolts are mounted on a small disc of insulating board and are connected through a pair of resistors to a water-tight cable that goes to the instrument panel. The disc fits one end of a $3 / 1 / 1$ (19.1 - mm) plastic plumbing fitting. Then the whole rear of the assembly is filled with epoxy to seal in the probe ends, resistors, and cable connections. When potting is finished, there should be no place, except at the probe tips, where moisture can bridge the circuit.

When water bridges the probe lips, the SCR fires and actuates the alarm. The Sonalert alarm will continue to sound, even after the water level drops below the point where it bridges the probe tips, until the switch is opened. To
rearm the alarm, simply close the swilch.

A third type of bilge alarm is illustrated in Fig. 12. This system is designed for boats with multiple bilge spaces that are separated by watertight bulkheads. An audible alarm and a visual indicator to tell you which bilge has water in it are required in this system.
The sensors in this circuit are LM1830 fluid-detector ICs. When water bridges the probes. the output of the associated IC goes high and turns on the pair of transistors connected to it. Output connections to the transistor switches are arranged so that water entering any bilge space and bridging its probes will activate the Sonalert but will light only the LED labelled for that bilge. You can duplicate the circuit for each bilge to be protected. The only thing in common among the circuits is the Sonalert.

Shown in Fig. 12 is a method for marking the safety panel area where the LEDs are mounted. Using the layout shown, you know instantly which of the bilges is leaking (by its lighted LED) when the alarm sounds.

The transistors can be replaced by a DIP transistor array. provided the outputs can sink enough current to drive the Sonalert. You can use a high-power alarm sounder by replacing the Sonalert with a relay whose contacts can handle the bigger alarm's current. If you use this arrangement, be sure to install a proteclive diode across the relay's coil.

Tachometer. The circuit shown in Fig. 13 consists of a basic $0-10-2.4$-volt meter system and a frequency-lo-voltage (f / v) converter. The voltmeler portion made up of IC1 and IC2 features 20 divisions, each represented by a LED. The IC3 f/v converter accepts va-rying-frequency pulses from the engine's ignition points and converts them into proportional dc voltages with conslant updating.

Using a system like that shown makes possible an economical solid-state alternative to the traditional analog meter. It is free from parallax errors and is much easier to read and interpret than the analog meter, too. At night, readability increases, and the red emission of the LEDs has little effect on night vision.

The two LED drivers are cascaded by connecting mode pin 9 of IC1 to pin 1 of IC2. Pin 9 of IC2 connects to pin 11 to produce dot operation. Internal ic operation requires R1 to be connected across LED9 (pin 11 of IC1) to obtain proper operation. Resistor R2 sets the 56

scale of IC1 to half the voltmeter range. Because 1.2 volts should be generated across it, this resistor should have a 1% or better tolerance. Also, since 2.4 volts is generated across it. R3 should be rated at 1% or better tolerance. These re-
sistors also program the ICs to deliver 10 mA to each LED.
A charge-pump frequency-to-voltage (f/v) converter. high-gain op-amp/comparator, and an uncommitted output transistor are contained in IC3 (Fig. 14).

A Schmitt-trigger device is used for the input. It features a built-in hysteresis to provide clean switching if noise is present on the input signal. In the 14 -pin DIP LM2917N version of the IC, an internal zener diode also maintains calibration stability.

In Fig. 13, R5, R6, and C1 condition the input signal from the points. A sta-ble-temperature-characteristic capacitor must be used for $C 2$, which is the timing capacitor for the charge pump. Potentiometer R9 serves as the discharge path and doubles as the scale calibration control. Charge-pump filtering is provided by C3. The uncommitted emitter of the internal output transistor is connected to R10.

The input signal for the voltmeter is taken from R10's wiper. This allows the oulput of the tach section to be matched to the voltmeter's full-scale range. (A)though this could be accomplished via R9, better linearity is possible when the full output of the tach circuit is used and then reduced in level to match the requirements of the voltmeter.) Biasing for the internal op amp is obtained with R7 and $D 2$.

There are a number of ways to assemble the tach. The LEDs can be arranged in a vertical column, with the highest rpm at the top, or you can opt for

PARTS LIST (Fig. 12)

Al-Sonalert Sc 62 L or similar
C1-0.0 $\overline{3}-\mu \mathrm{F}$ disc capacitor
(2- -) (0) $2-\mu \mathrm{F}$ disc capatilor
(3-10- HF . o-V electrolytic
(Cl-LM1830) (National)
LED)-Brightred l.ED
Q1.Q2-2N2222 transivor
R1-2200-ohm, $1 / 2$-W resistor
R2-To viil LED current
PARTS LIST (Fig. 13)

[^1]

Fig. 12. Circuit above is an alarmsystem for boat with multiple bilge spaces. Visualand audible signals are used to indicate which bilge has water in it. LEDs are mounted in diagram as shown at right to show each area.

Fig. 13. Circuit for converting pulses from ignition points to voltages which activate LEDs from 1 to 20 to indicate speed.
the more familiar circular arrangement.
When assembling the project, it is best to slightly recess the LEDs behind a red filter to avoid effects of washout in brightlight. Use high-luminosity LEDs instead of the commonly available "standard" LEDs. Finally, to assure maximum contrast and eliminate reflections as much as possible, apply a coat of matte black paint on all surfaces behind the LEDs and the front panel or bezel into which the red filter is set.

Wiring is not critical. However, it is important that you observe the common ground point near pin 2 of $I C 1$.

There is a considerable variation in the range requirements for a tachometer for inboard boat engines. Commercial analog tachs are scaled for 6000 rpm and supplied with links to adapt them to all types of engines. With the tach described here, the top end of the range can be chosen to suit the requirements of any given engine.

A 4-cycle engine fires each cylinder once every two revolutions. An 8-cylinder engine running at 4000 rpm would fire 4×4000 or 16,000 times per minute. This is equivalent to a tach input frequency of 266.67 Hz . For a 6 -cylinder engine operating at 4000 rpm , there are three pulses per revolution, which is equivalent to an input frequency of 200 Hz . Note that this is a linear relationship and can be plotted as shown in Fig. 15.

Following is the calibration procedure for a 6-cylinder engine with LED2O indicating 4400 rpm . Apply 15 volts from a bench-type power supply to the power leads of the tach. Next, connect the output of a square-wave generator to the tach's input through a $0.1-\mu \mathrm{F}$ capacitor. Using a frequency counter, set the generator for a high-level output of 220 Hz . Set R9 near maximum resistance. Using a high-impedance voltmeter, connected belween pin 5 of IC1 and ground, adjust R10 for a 2.4 -volt reading. This should turn on LED20. Adjust R9 until LED19 extinguishes and LED2O is at full brilliance. There is some overlap buill into the dot drivers so that one LED fades out as the next LED comes on. Slowly reduce the frequency of the generator while observing both the tach display and frequency counter to check the linearity of the tach's scale. It will not be perfect, but it will be better than a quick glance at a standard analog meter.

The calibration procedure for an 8cylinder engine will be the same as that for the 6 -cylinder engine above. The only difference is that you start with a generator frequency of 293.3 Hz .

Fig. 16 Tachometer
add-on is used to identify critical cruising speed.

PARTSLIST (Fig. 16)

($11-10(0)-\mu F, 12-V$ electrolytic RI 1(K)-ohm. 1/2-W revivor R2-10(K)-ohm, 1/2-W resistor R3 470-ohn. $1 / 2$-W revistor

Fig. 17. A serie's diode is used in the positive supply for reverse poltage protection as shom here.

If your finished tach has a tendency to flicker at low rpm, increase the value of C3. Do not overdo this because if the value is raised to $2 \mu \mathrm{~F}$. the flicker will be reduced, but at higher speeds there may be a tendency for adjacent LEDs to flicker back and forth as a low-frequency oscillation sets in. Of course, a rough running engine is going to produce lots of flicker, which can serve as a reminder to have your engine tuned. The value of $C 3$ is a compromise. Once you install the tach, it is a good idea to have it checked against a good-quality tachometer.

The circuit shown in Fig. 16 is a useful add-on for the tach. It can be used to identify the critical cruising rpm where fuel economy is at its best or as an overrpm warning. The LED in the string to which it is connected will flash on and off when the indicated rpm is reached. The flash range is quite narrow. Bear in mind, therefore, that this circuit may not be usable as an attention getter with a rough-running engine. The rpms would be traversing the flash point too rapidly for the circuit to go into action.

Transient Protection. Any mobile electrical system, including that in a boat, can suffer from voltage transients of many kinds. Some transients are capable of destroying solid-state components and systems. Hence, it pays to have adequate transient prolection.

There are simple ways to give a large measure of transient protection to home-built projects. GE's MOV transient protectors is one simple way. A second method is shown in Fig. 13, where $10-$ ohm resistor R4 and 18 -volt zener diode D1 protect the power input line. If the circuit is to take care of a blown regulator, where 18 volts may be on the line continuously, the division of dissipated power between the zener diode and resistor must be calculated. Once breakdown occurs, the circuit will be carrying well over 1 ampere of current. This means that the power (wattage) ratings of the resistor and diode must be calculated.

Reverse voltage protection is a simple matter of installing a series diode in the $+V$ line, with the diode's anode connected to the + input, as shown in Fig. 17. Each subsystem should be individually protected, both for transients and reverse voltages, to assure maximum security against failure. Of course, one heavy-duty zener-diode circuit can be used for an entire instrument group to handle steady-state overvoltage conditions, but smaller suppressor circuits should still be used on each board. \diamond

Introducing...
 The Solar Alarm Chronometer

- Light Energized
- Electronic Quartz Accuracy
- 24 hour alarm

> A personal alarm and time system powered by light.

You can't wear a more accurate watch Plus this new LCD chronometer has a built in 24-hour alarm and personal reminder system. And you no longer have to worry about batteries failing because this watch is constantly being recharged by light. A true scientific break thru.

Forget about losing time

The time base is a finely tuned quartz crystal, trimmed by the manufacturer electronically to an accuracy of 5 seconds per month. And the manufacturer stands behind this accuracy with a one year limited warranty plus a 5 year replacement warrant on the micro-rechargeable energy cells.
Who is the Manufacturer
U.I.T. has been the innovator in the digital watch industry for years. U.I.T. is the prime manufacturer, assembler and importer of LCD watches. U.I.T. has been the pioneers of solar powered watches where "light energy" recharges micro-energy cells contained in the watch. A system so efficient they are able to offer the unheard of 5 year warranty.

Forget about batteries

The new solar-alarm is powered by microenergy cells which are constantly being recharged from available light. Not just solar light but ordinary room light. You never need to worry about batteries.

Forget about changing technology

This solar-alarm watch uses all of the
latest technology in electronics and engineering. The programmed time measuring features include hours, minutes, and pulsating seconds plus the month and date displayed instantly with the touch of a button. The large liquid crystal display constantly shows the time in large easy to read numerals. A special night light command button illuminates the dial for night viewing.

Forget about being late

The most unique function of this solar chronometer is the alarm system. The 24 hour alarm system is easy to set without disturbing the time function. And it sounds with a pleasant electronic beep precisely at the pre-set time. Your own personal alarm system will automatically beep you at the right time for "on-time" punctuality, so important with todays busy schedules. You may never be late again.
Test it for $2,592,000$ seconds
Take 30 full days ($2,592,000$ seconds) to confirm the accuracy and utility of this fine timepiece. If you doubt the quality, merely return it for a full refund.
If you have been looking for that special opportunity to own a chronometer of the future here is your chance! Available in silver or gold tone with fashion flex band. All U.I.T. timepieces feature ultra-thin design, rugged shock proof engineering and water resistant construction. The solar-alarm watch is priced at $\$ 49.95$ each plus $\$ 2.50$ shipping \& handling. (IL. residents add 5% sales tax).

By Forrest M Mims

IC INTERVAL TIMERS

AN INTERVAL timer is a circuit that provides an output pulse of predetermined width at periodic intervals. This can be readily accomplished using any one of several timer ICs available to today's electronic experimenter. Many IC timers, such as the well-known 555, are not only capable of such astable operation but can also function as monostable multivibrators or "one-shots.'

Figure 1 is a timing diagram comparing the operation of a monostable to that of an interval timer. Note that a one-shot timer is designed to activate an external device or circuit for or after a fixed period. An interval timer, on the other hand, provides uniform output pulses at an adjustable interval

You are probably already familiar with numerous applications for conventional one-shot timers. Common examples include automatic switches that extinguish the headlights of a car a minute or so after the ignition is turned off, delayedaction intrusion alarms, switch debouncers, kitchen and darkroom timers, etc.

Although the applications for interval timers are not as numerous, they include two that are particularly interesting: time-lapse photography and time-lapse sound recordings

You have probably seen many examples of time-lapse pho-tography-the opening of a flower, formation of clouds, construction of a building, etc. Time-lapse sound recordings can store periodic samples of data encoded as an audio tone as well as simply capture ambient sounds. In the latter category, an interesting possibility is to compress a 24 -hour history of the sounds at a busy street corner into a one-minute recording. Another is entertaining your family or friends at a party by sampling brief segments of a record, radio program or conversation and playing back the string of sound "snapshots."

Of course, time-lapse photography and sound recordings are not the only applications for interval timers. Before you've
finished reading this column, you will probably have thought of several more.

Basic 555 One-Shot. Although most experimenters have assembled either breadboard or permanent circuits that use a 555 timer, many do not fully understand how this IC works. For those of you in this category, the following paragraphs will provide a quick overview of the monostable operation of the 555. If you're already familiar with 555 basics, you can skip ahead to the next section.

Figure 2 is a simplified block diagram of a 555 connected as a monostable or one-shot timer. The key sections of the 555 are the two comparators, VC1 and VC2. They sense when the timing capacitor (C1) has charged or discharged to a predetermined level.

To understand how the 555 works, assume the circuit in Figure 2 is "off." This means the control flip-flop is reset and Q1 is on. Capacitor C1 is therefore short circuited by Q1 and cannot charge. The output of the circuit (pin 3) is low. A negative pulse applied to the TRIGGER input (pin 2) momentarily causes the output of comparator VC2 to go high, setting the control flip-flop. This cuts off Q1, which allows C1 to charge exponentially at a rate determined by the values of $C 1$ and R1. During this period, the output at pin 3 is high.

Notice the three series-connected 5000 -ohm resistors in the 555. These resistors form a voltage divider that biases the noninverting input of comparator VC2 at one-third of the supply voltage and that of comparator VC1 at two-thirds of the supply voltage. When the voltage across C1 reaches twothirds of the supply voltage, the output of comparator VC1 goes high and resets the control flip-flop. This turns Q1 on and shorts out C1. The output at pin 3 returns to ground and remains there until the entire timing cycle is repeated. This is

Fig. 1. Tiniling diagrams of the output waveforms generated by monostable multiribrator or one-shot (top) and interval timer (bottom).

Fig. 2. Simplified functional diagram displays inner workings of a 555 timer IC. External components R1 and C1 control timer's period.
accomplished by applying a new trigger pulse at pin 2 .
This explanation should give you some insight into the operation of the 555 in its monostable mode. It should now be obvious that you can easily select the time delay by the proper choice of components for R1 and C1. If long delays (more than several minutes) are to be obtained, it's important to use a component with extremely low leakage for $C 1$. Otherwise, the capacitor will never be able to charge as it should and the circuit will not function properly.

555 Interval Timer. A 555 monostable can function only as a single-delay timer. A reset pulse is required to initiate a new delay period. An interval timer, however, can be made by connecting the output of a 555 operated as a free-running (astable) oscillator to the TRIGGER input of a 555 monostable. The period of oscillation of the astable will determine the interval time. The $R C$ time constant of the monostable will determine the duration of the output pulse that follows each timing interval.

Figure 3 shows the schematic of a working dual- 555 interval timer. Interval times (determined by the values of R1 and $C 1$) of up to several minutes are achievable with the values shown. Note that the output pulse from the first 555 is directly coupled into the input of the 555 monostable. The output of the monostable is connected to a low-voltage relay coil through D1. Diode D2 shorts out the powerful inductive kick produced across the relay coil when current to it is interrupted, thereby protecting the 555's output stage from damage.

The values of R3 and C2 determine how long the relay is energized after each timing interval. Those specified keep the relay energized for almost exactly 5 seconds (4.98 seconds for the breadboard circuit I built). Change the value of R3 or C2 or both to obtain different times.
The relay contacts can be used to switch many different circuits or devices on or off. Figure 3, for example, shows the normally-off contacts connected to the switch jack of a tape recorder. This jack is commonly found adjacent to the microphone jack on many cassette recorders. It allows the recorder

Fig. 3. Interval timer employ.s one 555 as an astable multivibrator to trigger a second IC operating as a monostable. Relay K1 keys external circuit.

Fig. 4. This circuit, which employs a 556 dual timer, is functionally identical to the one shown in Fig. 3.
to be turned on and off remotely by means of a small switch such as one mounted on the case of the microphone.
If you want to connect the relay to a tape recorder, use an appropriate plug. You'll have to improvise when connecting the relay contacts to other equipment or circuits. (A few words of caution-never connect the relay to a circuit that exceeds the maximum ratings for the relay's contacts. Also, never switch ac line power with an unenclosed relay. Personally, 1 prefer to play it safe with low-voltage applications only.)

556 Interval Timer. The 556 is a pair of 555 timers on a single silicon chip. The circuit in Figure 3, as you might suspect, can be readily assembled with a single 556 dual timer rather than separate 555's. Figure 4 shows the functionally identical circuit.

XR-2240/555 Long-Duration Timer. Because of leakage in the timing capacitor, the maximum period of a 555 operated as an astable oscillator is usually limited to several
minutes. The XR-2240 (or XR-2340) is a specialized IC timer that incorporates a self-contained flip-flop divider chain to increase the length of the fundamental time delay by a factor of up to 255. Because the output of each flip-flop in the chain is directly accessible, many different time intervals can be selected without having to alter the values of the circuit's timing capacitor and resistor.

Figure 5 is the schematic of a long-duration, programmable interval timer made from an XR-2240 connected as an astable oscillator and a 555 operated as a monostable. Timing components R1 and C1 control the oscillation rate of the XR-2240. The values shown give an adjustable interval T of up to about 100 seconds. The outputs at pins 1 through 8 allow you to select multiples of T ranging from 1 to 128 . Therefore, selecting pin 8 will give you a time delay of up to 128×100 seconds or more than 200 minutes!

The selected output of the XR-2240 is inverted by Q1 and coupled through $C 4$ to the 555 monostable, a circuit essentially identical to the monostable in Figure 3. The timing period of the monostable is controlled by the time constant R6 C5.
The XR-2240/555 interval timer is far more versatile than the dual 555 or 556 version because intervals of several hours can easily be obtained. Calibrating the circuit, however, can pose problems if you attempt to perform the operation when output pin 8 is selected. Calibration is much easier if you select output pin 1. If, for example, you want a timing interval of one hour (3600 seconds), adjust R1 until the interval at pin 1 is 28.13 seconds. Pin 8 will then output a pulse at 128×28.13 seconds or every 3600 seconds.

Incidentally, it's possible to select various combinations of XR-2240 outputs to achieve any time interval of from T to $255 T$ when the chip is operated in its triggered, monostable mode. However, this procedure does not give the desired results when the astable mode is used.

It might be possible to obtain the full versatility of the XR-2240 by operating the chip in its one-shot mode and triggering it externally. The XR-2240 would continue to trigger the 555 one-shot to provide the brief "on" time after each interval. The time delay would be selected by shorting combinations of outputs to a common bus. The delay would be the sum of the delays of the selected outputs. Thus, outputs $4 T, 8 T$ and $128 T$ will give a total delay of $4+8+128$ or $140 T$.

I'll leave the details to those readers who like challenges. See the XR-2240 data sheet for design tips.

Fig. 5. Long-duration, programmable interval timer employs XR-2240 as an astable and 555 as a monostable. Relay K1 keys external circuit.

Build better value with world-famous Heathkit Electronic Products

 selection of fun-to-build, money2 saving electronic kits - plus edứdational programs so effective they're guaranteed!
Every Heathkit product is quality designed and engineered, and gives you extra value because you build it yourself. Our world-famous instruction manuals take you step-by-step from unpacking the kit to final plug-in. They're marvels of technical accurasy and thoroughness. Find out about the pride, satisfaction and savings you can get by building your own elec-

Kitbuilding is easy and fun for the whole family...send for your new
puters • Color TV • Stereo

NEW! All-in-One
Computer Syster
Desktop computer with
Termiral, Floppy Di:k, and Keyboard in one co mpact unit.

TODAY

Nearly 400 fun-to-build money-saving electronic kits your family will enjoy for years to DYeS $\begin{aligned} & \text { Send me my antly noteiving your catalogs. } \\ & 1 \text { amention }\end{aligned}$
\qquad
\qquad

The world of electronics gee-wizardry

-YOURS FREE.
32-pages of test instruments - from the latest digital multimeters to the famous EICO scopes. Security systems. Automotive and hobbyist products. Kits and assembled. EICO quality. EICO value. For FREE catalog, check reader service card or send $50 \notin$ for first class mail

108 New South Road Hicksville, N.Y. 11801

CIRCLENO. 19 ON FREEINFORMATION CARD
Put Professional Knowledge and a COLLEGE DEGREE in your Electronics Career through

by correspondence, while continuing your present job. No commuting to class. Study at your own pace. Learn from complete and explicit lesson materials, with additional assistance from our home-study instructors. Advance as fast as you wish, but take all the time you need to master each topic.
The Grantham electronics degree program begins with basics. leads first to the A.S.E.T. degree, and then to the B.S.E.T. degree. Our free bulletin gives complete details of the program itself, the degrees a warded, the requirements for each degree, and how to enroll. (We are located at 2500 S. LaCienega Bl., Los Angeles, Calif.) Write to our mailing address shown below for Bulletin E-79.
Grantham College of Engineering P. O. Box 35499

Los Angeles, California 90035
Horldwide ('areer Training thru Home Study CIRCLENO. 27 ON FREEINFORMATIONCARD

Hobby Scene / /ás
 By John McVeigh, Technical Editor

antenna length calculations

Q. I am writing with reference to your article, "Choosing a Mobile CB Antenna," which appeared in the April 1978 issue. In the article, it was stated that at CB frequencies, a vertical halfwave dipole would have a length of 5.2 meters. Using the formula $\lambda=c / f$, with $c=2.9971 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (speed of light in air) and $f=27.0 \mathrm{MHz}$, I come up with $\lambda=11.10$ meters, or a halfwavelength of 5.55 meters. Working backwards, I find the frequency corresponding to a half-wavelength of 5.2 meters to be 28.818 MHz , which isn't even close to actual CB frequencies. Could you explain to me why this difference exists? I have searched through my technical references, but have been unable to come up with an answer. -Jim Sloot, Calgary, Alberta, Canada.
A. Your calculations are correct, but the length of a "half-wave" antenna is not exactly one half-wavelength. Rather, a resonant dipole has an electrical length of one half-wavelength. The length of conductor required for a resonant antenna depends on several factors, including the ratio of its length to its diameter. The smaller the ratio (the thicker the conductor), the shorter the antenna for a given electrical length. Practically speaking, the diameter of the conductor accounts for a 2 -to-5-percent shortening

The end effect also reduces antenna length. That is, the strain insulators and wire loops wound on the insulators (in the case of a dipole) contribute a small amount of capacitance, which lowers the resonant frequency. To compensate, the antenna must be shortened by a few percent.
Finally, your calculations are based on a frequency of 27.0 MHz . Generally, an antenna will best cover a range of frequencies when it is tuned to the center frequency. For the 40 -channel Citizens Band, which extends from 26.965 to 27.405 MHz , channel 19 at 27.185 MHz is the median frequency. That's 0.185

MHz above the frequency you used in your calculations and further explains the disparity between my statement and your result.

RFI
Q. I have amateur and CB radio equipment as well as an audio system. Whenever I'm recording an 8 track or cassette tape and using one of my rigs, my transmissions come through the stereo system and are recorded on the tape. All the components are well grounded, and l've inserted low-pass filters at the outputs of the transmitters. The problem still exists. What can I do to cure it? -Bill Columa, KA4DAP, Rocky Mount, NC.
A. The space we have here is far too small to permit a detailed discussion of the RFI problem, but what basically happens is this. At some point in the audio system r-f enters and is rectified (detected), giving up the information used to amplitude modulate it. The detected audio is then processed by the rest of the system, which cannot distinguish between it and the desired audio signals.
The key to solving an RFI problem is to locate the point of entry and treat it with shielding and/or filtering. I wrote a comprehensive article on the RFI problem for the May 1977 issue of our sister publication Stereo Review. That article contained a methodical, step-by-step procedure for eliminating RFI, and I suggest you either locate that issue or order a reprint to the article (ask for Reprint No. 21) at a cost of $\$ 1.50$ from Stereo Review Reprints, Box 278, Pratt Station, Brooklyn, NY 11205. Residents of CA, $\mathrm{CO}, \mathrm{DC}, \mathrm{FL}, \mathrm{IL}, \mathrm{MI}, \mathrm{MO}, \mathrm{NY}, \mathrm{TX}$, or VT must add applicable sales tax. P.S.-I don't get royalties on reprint sales!

[^2]
Product Test Report

Compucolor II Model 4 Personal Computer System

> Has full graphics and built-in floppydiskette drive

AMONG THE few small computing systems that provide color graphics is the Compucolor II from Compucolor Corp. (Address: 5965 Peachtree Corners East, Norcross, GA 30071; Tel: 404-449-5861). Several versions of this computer are available, offering a variety of optional RAM, keyboards, single and multiple disk drives, etc. These are basically two-package systems consisting of a $13^{\prime \prime}(33 \mathrm{~cm})$ diagonal color monitor and disk drive in one and a keyboard/computer system in the other package. The two are interconnected via a single $30^{\prime \prime}(76.2 \mathrm{~cm}$) long multiconductor flat ribbon cable.
We evaluated the Model 4 version of the Compucolor II, configured with 16 K of user-available RAM and a single $51 / 4^{\prime \prime}$ floppy-disk drive. The optional 101-key Model 101 Extended Keyboard was substituted for the Standard 72-key keyboard. In addition to the standard 72 keys, the Extended Keyboard has a separate four-function calculator-type cluster, and a cluster of editing keys. (There is also an optional Deluxe keyboard with AUGUST 1979

117 keys and offering extended plotting capabilities available at extra cost).
The keyboard/computer package measures $19^{\prime \prime}(48.3 \mathrm{~cm})$ wide by $7^{\prime \prime}(178$ mm) deep and slopes from $4^{\prime \prime}(102 \mathrm{~mm})$ high at the rear to $2^{\prime \prime}(51 \mathrm{~mm})$ at the front. The monitor/disk drive package measures $18^{\prime \prime}$ wide by $15^{\prime \prime}$ deep by $13^{\prime \prime}$ high ($457 \times 381 \times 330 \mathrm{~mm}$). Price of the Model 4 with a Standard Keyboard is $\$ 1695$, plus $\$ 135$ when substituting the Model 101 Extended Keyboard.

Technical Details. The computer is based on an 8080A operated with a $2-\mu \mathrm{s}$ cycle time. It can support up to 65 K of memory, and has on-board space for 32 K . There is 16 K of ROM in which are the operating system and BASIC, and sockets are provided for additional 8 K of ROM. The system is designed to use up to 480 I/O ports, 30 of which are implemented in the standard computer. This number includes an RS-232C serial port for printer or modem, with a broad selection of baud rates.

The graphics display features an 8 -
fact:
it's easy to upgrade your M95cartridge and gaindramatic freedom from distortion

One of the critically acclaimed advances introduced in Shure's incomparable V15 Type IV phono cartridge is its revolutionary and unique distortion-reducing Hyperelliptical diamond stylus.
The Hyperelliptical stylus contacts the groove in a "footprint" that is narrower than both the Biradial (Elliptical) and the longcontact shapes such as the Hyperbolic. The performance features of this new tip geometry are now available to owners of M95ED or M95G cartridges by simply upgrading either with a Model N95HE Hyperelliptical stylus.
You'll find the cost extraordinarily low-but the difference in sound will be immediately apparent. The new stylus takes only seconds to install with a simple, no-tools procedure.
The Hyperelliptical stylus is also available in a brand new, ultra-flat frequency response, high trackability cartridge: the M95HE. Write for free brochure (AL600).

N95HE Improvement Stylus

"FESHOE
Shure Brothers Inc
222 Hartrey Ave., Evanston, IL 60204 In Canada
A. C. Simmonds \& Sons Limited

MANUFAC-URERS OF
HIGH FIDELITY COMPONENTS.
MICROPHONES SOUND SYSTEMS AND
RELATED CIRCUITRY.
CIRCLE NO. 47 ON FREEINFORMATION CARD
color selection on a $10^{\prime \prime}$ by $7^{\prime \prime}(254 \times 178$ mm) usable screen area. The 128×128 graphics is refreshed at power-line frequency. Alphanumerics consist of 32 tines of 64 characters/line for small-size capital letters or 16 lines of 64 characters/line with large-size caps. Lowercase letters are not included, but 64 spe-
cial graphic symbols are.
Conventional 40-track diskettes are used with an average access time of 40 ms for 40 tracks, while average latency is 200 ms . Data transfer rate is 76.8 K bits per second, with a diskette storage capacity of 51.2 K bits per side (both sides usable)

The basic keyboard is standard ASCII four-level with 192 codes. It uses gold crossbar keyswitches of commercial quality. CPU reset and automatic diskette loading keys are included.

In software, a complete disk operating system as well as disk BASIC are in ROM. The BASIC is simlar to most other disk BASICs and has 32 statements and commands, 19 mathematical functions, nine string-manipulation functions, and 12 disk-file commands. Calculations are to five decimal places.

The operating system has 31 CON-TROL-plus-key commands, 31 ES-Cape-plus-key codes, and 12 graphicplot commands. There is also a full complement of CRT Terminal commands as well as full-function foreground/background color selection along with 15 plot commands. This wide variety of commands gives the user control over every possible function of the computer.

Most of the keys are assigned two functions. Switching from one function to the other is via the CAPS LOCk key. Some keys are used in conjunction with the CONTROL and Esc keys. Those keys that permit color changes are color coded with their respective colors.

A 50-pin bus connector (located on the rear) provides all addresses, data, clocks, etc., to allow the Compucolor to be extended with any upcoming peripherals. Also located on the rear apron is a connecter for RS-232C signals. This latter port can also be used for a printer or modem. Each connector is fully described in the manual.

A large loose-leaf-type "Programming and Reference Manual" is supplied with the system. This manual contains 10

ATTENTION! Radio-Shack and Heath Kit Owners!

sections that cover full details for using the BASIC language (and covers programming examples), print formatting. and machine-level interfaces for the disk BASIC. The disk-manipulation system is spelled out in detail, as are all color and graphics techniques and the file control system (FCS).

The Manual concludes with seven appendixes that contain in-depth discussions of the disk BASIC, file control system, CRT commands, internal features of the computer, an ASCil value table, and the Compucolor alphanumeric and graphic character set, along with other documentation.

User Report. The Compucolor is a complete computer. Simply unpack the two sections, interconnect them via the flat ribbon cable, plug the line cord into an ac outlet and turn on the power. That's all there is to getting the system up and ready to go in either the operating system or BASIC.

To use a diskette, simply insert the diskette in the drive. close the drive door, and press the auto key on the keyboard. In just a couple of seconds, the disk "menu" pops up on the screen.

The graphics display was clean and sharp with bright colors. The overall quality of the graphics was excellent due to good convergence and the fact that the monitor bandwidth is better than that of a conventional color-TV receiver. One of the major advantages of the color monitor is that opitically disturbing moire patterns (from nearby TV transmitters on adjacent channels or local or mobile hams and CBers) are not seen onscreen. Also, this approach provides an apparent increase in bandwidth since the monitor is not bandwidth-limited by r-f or sound circuits. The Compucolor "Sampler" program on diskette demonstrates the system's graphics capability.

The keyboard was a dream to operate. It has a positive professional "feel" and operated flawlessly.

Having had experience with other BASICs, we found Compucolors version easy to use. It is a fast BASIC and is broad enough to easily adapt to programs written in other BASICs, except where unique symbols are used.

After working some of the programming examples given in the Manual, we typed in several game programs incorporating color graphics. This is quite easy to do, as a single keystroke can be used to change colors, flash symbols, invert and do other formerly difficult graphics "tricks." These keystrokes can
be written into the program.
We also adapted a couple of simple business programs to the color format, making them much easier to read and interpret. Credits and debits for example, are much easier to follow when they are color-coded.

The bottom line here is that the addition of color to a video display does make working and playing with a computer much more pleasant and exciting.

Compucolor is supporting its system with lots of software (diskettes), includ-
ing a large variety of color games, text editor, assembler, and several moneymanagement programs.

In our opinion, the Compucolor II is an excellent choice for a computer system to start and stay with for home use. It is very flexible, thanks to its built-in disk drive, and has sufficient on-board memory to handle just about any length programs. This is a lot of computer for the money. -Leslie Solomon, Technical Director

CIRCLE NO 104 GNFREE INFORMATIONCARD

A surprisingly low $\$ 69.95$. Surprising hecause vou get the type of performance vou've wanted hut expected to pay nuch more for.

Quality, Performance and
 Accuracy

The 2010A offers vou longeterm accuracs with a laser-trimmed resistor network, a stahle bandgap reference element, and single-chip LSI circuitry. With 31 ranges and 6 functions. you can measure AC or $[\mathrm{C}$ volts from $100 \mu \mathrm{~V}$ to 1000 V ; $A C$ and $D C$ current from $0.1 \mu .4$ all the way to 10 A ; resistance from 0.1Ω to 20 $\mathrm{M} \Omega$. Typical DCV and Ohms accurace is 0.1% ± 1 digit. Easy-to-read $31 / 2$ digit $L E D$'s with 9 mm numerals and automatic decimal point.

Extra features for greater convenience and flexibility

- Unique X10 multiplier switch gives you

 convenient selection of the next higher decade Hi-Low Power Ohms capability gives you three high-ohm ranges that supply enough voltage to turn on a semiconductor junction. You use the three low-ohm ranges for in-circuit resistance measurements.- Wide Frequency Response: 40 Hz to 40 kHz fandwidth lets you measure audio through ultrasonic AC signals.
- Touch-and-Hold Capahility (with optional prohe) lets you hold readings as long as vou wish so you can make measurements in hard-to-reach places without taking your eyes off the probe tip.
- And More: automatic polarity and zeroing; overrange indication; overload protection on all ranges.
This compact unit is powered by 4 "C" cells (not included) so that vou can take your lahquality benchtop unit anvwhere with you.

Kit or Factory-Assembled

Either is a tremendous value. Complete kit only $\$ 69.95$; assemble it yourself with our easy-to-follow instructions. Or, for only $\$ 99.50$. Saberonics will ship your 2010A factoryassembled and calibrated.
Whether cou're a professional or a hobbyist (or hoth!): When quality, accuracy, and price count, you should check out the 2010A DMM for wourselt. Order one todav for a full 10 days to inspect it: if vou're not completelv satistied, merely return it in its original condition for a prompt and courteous refund of purchase price. Call with vour Master Charge or Visa number or write the address below.
2010A Kit: $\$ 69.95$ (plus $\$ 4.00$ S\&H) 2010A Assembled: $\$ 99.50$ (plus $\$ 4.00$ S\&H)
AC-115 Adaptor: $\$ 7.50$
NB-120 Nickel Cadmium Batteries: $\$ 17.00$ THP-20 Touch and Hold Probe: $\$ 18.00$

13426 Floyd Circle M/S 24 Dallas, Texas 75243
Telephone $214 / 783$-0994 Telephone 214/783-0994

WARC -79

THIS FALL, the World Administrative Radio Conference (WARC) in Geneva will reallocate the entire radio spectrum, in keeping with anticipated needs through the end of the century. Of prime concern to DX listeners is the proposed reallocation of the shortwave spectrum to allow more space for broadcasting.

Fixed (point-to-point) communication has largely switched to satellites in the past 15 years. This trend will no doubt continue. At the same time, the relatively small shortwave broadcast bands have become overloaded to about three times their capacity. This is why co- and adjacent-channel interference has become the rule rather than the exception. It would appear, then, that the natural solution would be to turn over a portion of the fixed bands to broadcasting. But it's not that simple. There are many other claimants to the hf spectrum (such as Amateur Radio), and different countries have different priorities.

For the past few years, the FCC has sponsored a series of meetings by the International Broadcasting Service Group, to help it determine exactily what should be the US position at WARC. In April, the IBSG issued its final proposal and disbanded, its mission completed.

The world is divided into three broad regions for allocation purposes. Region 1 includes Europe, Africa, the Mideast, and the USSR. Region 2 consists of North and South America. Region 3 is comprised of the rest of the world, which includes Asia and the Pacific.

The IBSG proposes that international broadcasting between 5.8 and 22 MHz should be expanded by 93% in Region 2 , and 80% elsewhere, very nearly a doubling of available inband space, from the present total of 2350 kilohertz to 3940 kilohertz.

Since Third World countries hold the balance of power at WARC, the US position also proposes a 60% expansion of bands for tropical broadcasting by adding five new tropical bands in the $3-10-14-\mathrm{MHz}$ range and making all tropical bands, new and old, exclusively for tropical instead of international broadcasting. No changes are proposed between 3.0 and 5.8 MHz , either in tropical or international bands. The five proposed new tropical bands, totalling an addition of 300 kHz are: 5850 to $5900 \mathrm{kHz}, 7500$ to $7550 \mathrm{kHz}, 9825$ to 9875 kHz , 11,500 to $11,550 \mathrm{kHz}$, and 13,900 to $14,000 \mathrm{kHz}$. These are adjacent, or almost adjacent, to existing or newly proposed international broadcasting bands, for the convenience of listeners, receiver designers, and existing transmitting equipment.

In the proposed new international broadcasting band allocations, all existing bands (except 25 MHz) are expanded, and two totally new bands are added. These new bands would further relieve congestion on adjacent bands and make better use of prevailing maximum useable frequencies. This 70
expansion totals 1290 kilohertz, as follows:

Proposed (kHz)	Present (kHz)
$5900-6200$	$5950-6200$
$7250-7500$	$7100-7300$ (not Region 1)
$9375-9825$	$9500-9775$
$11550-12000$	$11700-11975$
$13600-13850$	none
$15100-15700$	$15100-15450$
$17600-17900$	$17700-17900$
$19750-19990$	none
$21450-21800$	$21450-21750$
$25850-26100$	$25600-26100$

The US position calls for selective sharing between fixed services and broadcasting in all added band space. However, it is not considered likely such sharing will be adopted by the Conference this fall.

The US position also urges, but does not give a specific date for, adoption of single sideband for international broadcasting. But this change is not likely in the near future. Also being considered are power limits of 50 kW for domestic operations and either 250 or 500 kW for international operations. While this may seem excessive, it is realistic. There are already some instances of a full 1000 kW and even 1250 kW being used in some situations

Our thanks to Lawrence E. Magne, member of the IBSG, for supplying this information.

Moscow via Cuba. The USSR has long been the target of American broadcasts from such nearby countries as Greece, Germany, and Britain. Now, more than 20 years after the triumph of the socialist revolution in Cuba, Radio Moscow has begun transmitting in English to North America via Cuba.

We first noted the foregoing arrangement on April 22, Lenin's 109th birthday, as the "newscasts" reminded us every half hour.

The Moscow signals were and are the strongest on the bands during the daytime. This, combined with their steady strength even during ionospheric disturbances that block direct reception from the USSR, made it obvious that a relay was in use. Radio Moscow characteristically made no public announcement of the new relay, nor has it ever been publicly admitted that some of its other broadcasts to North America are relayed via Bulgaria.

Why wasn't the Cuban connection made use of long ago? Cuba has been making full use of its shortwave facilities, but there has always been a shortage of power and spare parts, and there has been no reliable way of feeding the Moscow audio to Cuba. Now, however, Cuba has a satellite link with Moscow and finds it advantageous to dedicate one of its POPULAR ELECTRONICS
transmitters to Soviet broadcasts to North America. In return, a Soviet transmitter is dedicated to Cuba's broadcasts to the Mediterranean area

Radio Moscow thus becomes the international broadcaster with the most hours per day beamed to North America, surpassing the BBC by far. And with this Cuban relay on one good frequency at a time, we may hope that Radio Moscow will no longer find it necessary to use a dozen different frequencies on direct broadcasts from the USSR.

Publications. For a list of club publications and services, send a legal-size SASE with $28 ¢$ postage to ANARC, 557 N . Madison Ave., Pasadena, CA 91101

FRENDX, the shortwave broadcast journal, provides a great deal of timely schedule, logging, and QSL information plus receiver reviews and nontechnical articles. Sample \$1, subscription \$13, from NASWA, Box 13, Liberty, IN 47353.
Review of International Broadcasting, a monthly listeners' magazine emphasizing free discussion of programming and issues affecting the DX listening hobby (an approach lacking in other publications) is $\$ 1$ a sample or $\$ 12$ a year from Glenn Hauser, Radio WUOT, Knoxville, TN 37916

The World in My Ears, is a new book by well-known New Zealand DX Iistener Arthur Cushen, who, despite blindness, has been very successful in shortwave, to the point of being knighted. For information, contact Cushen direct, at 212 Earn St., Invercargill, New Zealand.

August BBC World Service. Among the many fine BBC
programmes planned this month are these (dates and times GMT): "Play of the Week," August 5 at 0030 and 1130 presents the winning entry in the World Service Drama Competition. "On Their Majesties Most Secret Service," four programs on the history of British espionage, Saturdays at 1130, Tuesdays at 2030, Wednesdays at 0230. "The Art of the Whodunnit," on the history of detective fiction, Saturdays at 0815 and 1315, Sundays at 2015, Mondays at 0315. "Venice Pre served," week of August 20, Monday at 0945 and 2130, Thursday at 1430. Week of August 27 at same times, "Pompeii." Week of August 26. Sunday at 1830, Monday at 0100, Tuesday at 1345, "A Thurber Carnival." "Behind Every Great Man . . .," Saturdays at 0430, Mondays at 0815 and 2315 (Subject to change).

Updating Listings. The following changes and additions should be made in the "English Broadcasts" listings that appeared in the June issue:

GMT

1000-1030 1000-1300
1000-1602 1030-1300

1100-1115 1100-1330

1100-1500

Station

R. Korea R. Moscow ABC, Perth CBC Northern Service R. Pakistan BBC
R. Moscow

Frequencies, changes

11725,9580
9600 (via Cuba)
9610

9625, 6065 not 11720
21655, 17662
add 21660; 11775 at $1100-$
1130 \& 1300-1330 only delete

John Simonton's time - proven design provides two envelope generators VCA, VCO \& VCF in a low cost, easy to use package. Use alone with its built-in ribbon controller or modify to use with guitar. electronic piano, polytonic keyboards, etc.

The perfect introduction to electronic music and best of all, the Gnome is only $\$ 59.95$ in easy to assemble kit form. Is it any wonder why we've sold thousands?
 (859.95 plus $\$ 2.00$ postage)
GNOME MICRO-SYNTHESIZER
(Fully Assembled) $\$ 100.00$ plus $\$ 2$ postage Send FREE CATALOG
name:

address:

city: \qquad slate:___ 2ip

BAC/VISA __ Cardno
Ter DEPT 8 P

- 1020 W. WILSHIRE, okLaMoma CITY ok 73116 CIRCLE NO. 43 ONFREEINFORMATIONCARD

Build The World's Most Powerful 8 -Bit Computer Featuring The Famous Intel 8085! Explorer/85 ${ }^{\text {TM }}$

Starting for just $\$ 129.95$ you can now build yourself a sophisticated, state-of-the-art computer that can be expanded to a level suitable for industrial, business and commercial use. You learn as you go . . . in small, easy-to-understand, inexpensive levels!

- Features Intel 8085 cpu/100\% compatible with

 8080A soffware!- Onboard S-100 bus (up to 6 slots)!
- Onboard RAM and ROM expansion!
- Built-in deluxe 2 K Monitor/Operating ROM:
- Cassette/RS 232 or 20 ma/4-1/2 8-bit parallel Cassette/RS 232 or 20 ma./4-1/2 8-bit parallel
 connect EXPLOREA It a terminal. video monitor or tv set and 8 voll power supply and anguage and computer tundamentals II Ieis you run exercise programs ncluding orograms to examine the cpu registers examine memoty 1111 memory move memory and make up games you can load and play back these drograms on an ordinary tape
cassetie-and display your eltoris on any Iv screen. video monior or printer $\$ 8.95$ RF modulator required tor tv use) The simplited architecture of the Intel 8085 makes EXPLILEER tar easier to understand than computers using the older, more complex but less powertul 8080 A Then when you re ready EXPLORER can be peripherals of your choice to fit any for alli specilic requirements Each level of

 prototyong RAM and ROM Expansion LEVEL "A" SPECIFICATIONS

 cessor yet 100% compatible with 8080 A sotitware $\quad \$ 3 \mathrm{p} 8$

 ordirectional paralel $1 / 0$ ports, builh in casselte interitace
with tape control criccuity to aliow labeling cassette tiles

 with any variabie). automatic baud rate seiection, program- kit (less S 100 connectiors) $\$ 4995$ plus $\$ 2$ mable charactiers per line display output format and more' । pen

 boards. 4 K ol RAM and 8 KK of ROM PROM or CIRCLENO. 40 ON FREEINFORMATIONCARD

1200-1255	R. Peking	9820, not 11685
1215-1230	V. of Greece	17785, not 17830 and 15345
1220-1250	R. Ulan Bator	9575 not 6383
1230-1255	Austrian R.	17860, not 21530
1230-1300	R. Sweden	21690, 21615, not 21700
1300-2300	CBC Northern	
	Service	11720, 9625, not from 1030
1330-2200	R. Moscow	11840 (via Cuba)
1400-1430	R. Norway	21730, not 15175
1400-1600	AFRTS	15430, not 15425
1430-1500	R. Finland	17785, not 21475
1500-1600	V. of Rev.	
	Ethiopia	9560, not 9615
1500-1700	R. Moscow	delete
1515-1530	V. of Greece	not 15345
1530-1600	R. Yugoslavia	add 15295
1530-1630	V. of Vietnam	15012, 14990, not 12035 and 9840
1600-1615	R. Pakistan	$\begin{aligned} & 21755,21545, \text { not } 21735 \text { and } \\ & 21595 \end{aligned}$
1600-1630	R. Korea	$\begin{aligned} & \text { add } 11830, \text { not } 9780,9640, \\ & 7150 \end{aligned}$
1600-1800	VOA	add 25880
1610-1655	BRT Belgium	21475 and 17745, not 17740
1700-1800	HCJB,	
	Ecuador	17765, not 17890
1700-2300	WYFR	17845
1800-1830	R. Korea	15255. 11830, not 9780 or 9720
1800-1900	V. of Nigeria	$\begin{aligned} & \text { 15185, } 15120 \text { not } 11770 \text {, } \\ & \text { not to } 1930 \end{aligned}$
1800-0815	R. New Zealand	d 17860
1830-1900	R. Nationale,	
	Guinea	15310 (varies) Mon \& Fri only
1900-1915	R. Japan	15270, not 15105
1900-1930	R. Can. Int.	not 11905
1900-2000	HCJB,	
	Ecuador	not to 2030
2000-2015	R. Japan	15270, not 15105
2000-2030	R. Korea	delete
2000-2030	V. of Islamic	
	Rev., Iran	9139, not 9022
2000-2030	R. Can. Int.	15325, not 17875 or 11855
2100-2115	R. Japan	15270, not 15105
2100-2200	V. of Nigeria	15185, 15120
2100-2300	CBC Radio	17820, 15325 (Mon-Fri), not 17875, not 2200-2300
2115-0815	R. New	
	Zealand	delete
2130-2200	R. Can. Int.	$\begin{aligned} & 17780 \text { and } 11940 \text {, not } 17875 \text {, } \\ & 17820,15325,11945 \end{aligned}$
2130-2200	HCJB,	
	Ecuador	21480, 17790, 15295
2130-2200	R. Sofia	$15135,11750 \text {, not } 11920,$
2200-2400	AFRTS	17765, not 25620
2300-2330	BBC	not 5975
2300-2330	R. Sweden	$\begin{aligned} & 15290,11705, \text { not } 15205 \text {, } \\ & 9695,9690 \end{aligned}$
2300-2330	R. Vilnius	15525, 11735
2300-2330	R. Korea	17860, 15385, 15345
2300-2400	FEBC,	
	Philippines	15450
2300-2400	VOA	not 25990

2305-2320	Austrian R.	$\begin{aligned} & 12015,9770,5945 \text { (Sun.). } \\ & \text { not 0300-0315 } \end{aligned}$
2330-2400	R. Finiand	11800 not 11735
0000-0030	R. Can. Int.	5960
0000-0100	VOA	not 25990
0000-0100	R. Sofia	15330
0000-0500	FEBC,	
	Philippines	17810
0015-0100	BRT, Belgium	11715, not 6080
0030-0100	R. Sweden	15290, not 11905
0030-0100	R. Kiev	15525, 11735, 9800
0100-0120	RAI, Italy	11800, not 11810
0100-0130	R. Can. Int.	17820, not 11940
0100-0145	R. Berlin	
	International	11970 not 11805
0100-0430	AFRTS	177̇65, not 25620
0100-0500	WYFR	9715, not 5985
0130-0155	Austrian R.	5945, not 6155
0130-0200	R. Budapest	17710, 15225 (Wed \& Fri)
0130-0230	R. Japan	15270, not 15195
0200-0230	R. Can. Int.	11940, not 9535
0200-0230	R. Norway	add 11870
0200-0230	R. Budapest	add 17710, 15225, not 15220
0200-0300	R. Moscow	add 12030, 9600
0200-0300	R. Bras	15290, not 15280
0215-0230	V. of Greece	9655, not 9760
0230-0300	R. Lebanon	15285, not 15440
0230-0300	R. Korea	15350
0230-0300	R. Sweden	15290, not 9695
0230-0315	R. Berlin	
	International	11970, not 11805
0300-0330	R. Can. Int.	11940, not 9605
0300-0330	R. Budapest	add 17710, 15225, not 15220
0300-0330	R. Kiev	11830, 11735, 9800
0300-0400	UBC Uganda	delete
0300-0400	R. Moscow	add 12030, 9600
0300-0700	VOA	add 17865
0330-0355	Austrian R.	5945, not 6155
0330-0450	R. Habána	not 11725
0400-0415	R. Budapest	add 17710, 15225, not 15220
0400-0430	R. Budapest	17710, 15225, etc, (Mon. only)
0400-0430	R. Can. Int.	add 11845
0400-0445	FEBA,	
	Seychelles	11805
0430-0455	Austrian R.	15260, not 5945
0430-0500	R. Sofia	11750, not 11860
0430-0500	R. Korea	15345, 9755
0430-0700	AFRTS	9755, not 15330, 9685
0455-0630	V. of Nigeria	$\begin{aligned} & 15185,15120,7275 \text { or } 7255 \text {, } \\ & \text { not } 0555-0835 \end{aligned}$
0500-0515	R. Japan	15270, not 15105
0530-0550	V. of Germany	11905, not 6100
0600-0615	R. Japan	15270, not 15105
0615-0630)	R. Canada	11960 and 9635 , not 11845,
0645-0700)	International	11775, 9590, 6045
0630-0700	R. Korea	delete
0700-0715	R. Japan	15270, not 15105
0755-fade	Action Radio, Guyana	5950
0800-1000	FEBC,	
	Philippines	11765

Note: Frequencies not referred to in a given entry are still correct at presstime. This is a listing of changes only, not giving complete frequency list for any particular transmission.

By Leslie Solomon Technical Director

6502 Operating System. EXOS (Extended Operating System) for 6502 computers comes in a 4 K 2708 PROM and has 20 commands including display, enter, math, memory test. find, fill, move, compare, speed change, load/dump a hex formatted MUST tape, verify, and several "go to" commands. The program is compatible with all MOS Technology TIM systems, or other 6502 computers. Price is $\$ 150$. Also available is DATE (Disassembler-Assembler Trace Editor). Source programs can be entered, assembled, edited, traced and disassembled. The trace mode executes the user program one instruction at a time, displays MPU registers, the instruction and the MOST mnemonics. $\$ 150$. Both programs $\$ 295$. CGRS Mi-
crotech, Box 368, Southhampton, PA 18966 (Tel: 215-757-0284)

Jolt Stuff. ERAC (Editor and Resident Assembler Controller) was designed for users of ROM version of the Jolt resident assembler (\$C900-CFFF). ERAC allows source text and object code to be placed anywhere in RAM Residing in 2 K starting at $\$ 0800$. 1000 or A800, ERAC is an extension of the RAP A paper tape is available for $\$ 5$, manual $\$ 4.50$, and source of $\$ 0800$ version is $\$ 12.50$. LEDIP (Line Editor Program) is a 1.1K line-oriented text editor that can be expanded. It will output source text suitable for usage with the PROM Jolt Resident assembler ($\$ E 800-E F F F$). Paper tape is $\$ 2.75$ manual $\$ 3.25$, cross assembly $\$ 5$. For further information, send $\$ 1$ to the 6502 Program Exchange. 2920 Moana, Reno, NV 89509

8080/Z80 Macro Assembler. This 14 K assembler includes a linking loader, library manager and cross-reference facility and assembles over 1000 lines per minute. It supports the Intel standard macro facility and the number of nesting macros is limited only by memory. Code is assembled in relocatable modules. Conditionals may be nested to 255 levels. Other features include comment blocks, variable input radix from base-2 to base-16, titles and subtitles, variable page size octal or hex listings, PRINTX for printing
assembly or diagnostic messages, and PHASE/DEPHASE to allow code to reside in one area of memory but operate in another. It accepts both 8080 and $Z 80$ opcodes. Price is $\$ 200$ Microsoft, 10800 NE Eighth, Suite 819, Bellvue, WA 98004 (Tel: 206-455-8080)

TRS-80 Solar Package. The SUNGRAPH program calculates and plots the sun's local elevation and azimuth for any tocation on the Earth. It uses TRS-80 Level-II

BASIC, and requires 13 K storage. Options include graphs of elevation vs time of day, azimuth vs time of day, maximum elevation vs date and elevation at a specified azimuth and date. Save options allow the graph to be stored on cassette. Cassette is $\$ 49$, disk is \$75. Solartek, Box 298, Guilderland, NY, 12084

THE MGGOCOMPUIER MART

COMPUTER RETAIL STORES

CALIFORNIA
Omega Microcomputers
Quality Personal-Business Systems
Apple 11-Alpha Micro
3535 Torrance Boulevard
Suite 10
Torrance, CA 90503
(213) 370-9456

Rainbow Computing
Complete Apple 11 Line
1073 White Oak Avenue
Granada Hills. CA 91344
(213) 360-2171

COLORADO

Byte Shop

Complete Apple 11 Line
3464 Acoma Street
Englewood CO 80110
(303) 761-6232

FLORIDA

Computer Age, Inc
Service, Support, Protessionalism
Atrvice, Support, Prooession
At A Very Affordable Price
1308 North Federal Highway
1308 North Federal Highway
Pompano Beach. FLA 33062
Pompano Beach
(305) 689 -

Computer Center of The Palm Beaches The Microcomputer Specialists
2827 Exchange Court
West Paim Beach. FLA 33409
(305) 689-3233

Sara Tech Electronics Inc
Discounts On All Major Brands
400 Base Avenue
Suite 225
P0. Box 692
Venice. FLA 33515
(813) 485-3559

GEORGIA

Graham Business Computer
Featuring Full Line Ohio Scientific
5725 Butord Highway
Suite 216
Atianta GA 30340
(404) 457-8450

MARYLAND
Comm. Center, Inc.
Exidy Sorcerer
Laurel Plaza-Ret. 198
Laurei. MD 20810
(800) 638-4486

Advertisement

Computers Unlimited, Inc. Tomorrow's Technology Today 907 York Road Towson. MD 21204
(301) 321 1-1553

OHIO
Band-Orch, Inc
Complete Ohio Scientific Line
337 East State Street
Alliance. Ohio 44601
(216) $821-2600$

MICHIGAN

Computer Center
Business Systems/Personal Systems
28251 Ford Road
Garden City. Mi 48135
(313) 422-2570

The Computer Mart
We will Not Be Undersold
560 W 14 Mile Road
Clawson. MI 48017
(313) 288-0040

PENNSYLVANIA
Personal Computer Corp.
First in Pennsylvania
Frazer Mail
Lancaster Avenue and Route 352
Frazer PA 19355
(215) 647-8453

Ripley Computers
Affordable Computers For
Business/Churches/Home/Personal
126 N Main Street
Souderton. PA 18964
(215) 723-1509

NEW JERSEY

Computer Mart of New Jersey
The Microcomputer People (R)
501 Route 27
Iselin. NJ 08830
(201) 283-0600

WASHINGTON

P.S.C. Computer Systems

Business And Personal Software Systems
546 North 6th
Walla Walla. WA 99362
(509) 529-9331

No kidding. Speakerlab's catalog took longer to write than some of our competitors have been in business. In fact, we created an industry by "building great kits so you can afford great speakers. "Our catalog is an invaluable
manual of speaker function
and design. And, it will ntroduce you to the finest speaker kits made anywhere...with the strongest money-back guarantee. Find out for yourself...FREE. FREE. that is. Mail the coupon now.
see your dedler today
DEMAND THE ORIGINAL
'Firestik'
"THE FUEL-SEEKER"
THE \# 1 WIRE-WOUND AND MOST COPIED ANTENNA IN THE WORLD! Rugged, Shatterproof Fiberglass
CB Antennas and accesor es tor mar ne Ry
Four Colors Siver-Gray Black Red and Whte Our 17th Year Serving the CB \& Communications Market SEND FOR FREE CATALOG

LIMITED OFFEA - USA ONLY
Get this nine-mnch 'Flrestik ${ }^{\text {®/ }}$ ' Antenna Wars decal in four beautiful colors on a PAL T-shirt. See your dealer today or send $\$ 3.00$ to

PAL 2614 East Adams Phoenix, Az 85034
Name
Streel
Cty
Stale
Dealer \& D str butor Inqu ries inv ted
5-YEAR REPLACEMENT WARRANTY CIRCLENO. 44 ON FREEINFORMATION CARD

- Computer Bits

By Leslie Solomon Technical Director

WINDOWS IN THE CRT

THE MOST common way to communicate with a computer today is via a plug-in or a separate video terminal. The ordinary video terminal forms a single "window," in which all you can see is one piece of data at a time as it appears in sequential order on the screen. Recently, we had the opportunity to work with a very special graphics display system called the "Screensplitter" from Micro Diversions, Inc. (8455-D Tyco Rd., Vienna, VA 22180 Tel: 703-827-0888). This novel plug-in video module is not limited to a single window (see photo). Rather, the user can create, under software control, almost any number of data-display windows, each with its own independent display.

Individual windows in the Screensplitter can be sized, labelled, and framed as desired. Furthermore, frame and window can be made to flash, display in reverse video, clear, scroll, and use any
character as a blinking or nonblinking cursor. The window package is contained in an EPROM and has 20 usercallable functions. You can, for example, run a BASIC program and display each subroutine in its own window. Or you can display different data in different windows. You can even move the windows around at will.

If you are doing assembly-language programming, one window can be used as a real-time clock, another to display run time, and others to display register contents or anything else you desire. Debugging information can be contained in its own window. For game playing, you can create as many windows as required. Too, some windows can be dedicated strictly to graphics.

The Screensplitter does not preclude operation as a single window with 40 lines of 80 characters each. Bear in mind, however, that this dense a display

The Screensplitter cangenerate almost any number of independent "windous" contingent on the needs of the user.
requires a video monitor with at least a $10-\mathrm{MHz}$ bandwidth

The Screensplitter occupies a single $\mathrm{S}-100$ bus slot. It contains its own 4 K of RAM that is memory mapped into the address space so that it can be accessed if you wish to use the window package.

Pascal Microengine. This new computer contains 64 K of RAM, two RS-232C ports, two parallel ports, and a floppy-disk controller with DMA. It features self-test diagnostics, Pascal compiler, BASIC compiler, file manager, screen-oriented editor, debugger, and graphics package. Available options include a floppy-disk subsystem, printer, and terminal. Cost at this writing is \$1995. Address: Computer Interface Technology, 2080 South Grand, Grand Center, Santa Ana, CA (Tel: 714-979-9920).

Pet S-100 Interface. The Betsi Interface/Motherboard contains all logic required for interfacing S-100 boards to the Pet microcomputer. It connects directly to the Pet's expansion connector and has four S-100 slots. It does not interfere with the Pet's parallel or IEEE ports. The board also contains a dynamic memory controller that permits use of a 32K RAM board. There are also sockets and decoding circuitry for 8 K of 2716 PROM. Price is $\$ 119.00$ for the kit, which includes one S-100 connector, or \$165.00 assembled and with four S-100 connectors. Address: Forethought Products, P.O. Box 8066, Coburg. OR 97401 (Tel: 503-485-8575).
S.100 Video Board. The new ALTR-2480 is a 24 -line by 80 -character S-10C-bus video display board. It features upper- and lower-case characters plus graphics. The system also has byte mapping (4 K by eight), built-in read/ write refresh, 2716 user-programmable EPROM, external/internal sync, normal/inverse/blink control, 500-ns access time, and direct drive for a CRT monitor. Using "Transparent Memory, the CPU can access the refresh memory at any time, the display is glitch-free, and the CPU is never interrupted. No reliance is placed on the peculiar characteristics of a particular CPU. A multiplexing technique permits nonconflicting access by both CRT controller and CPU. Price is \$295.00. Address: Matrox Electronic Systems, Ltd., 2795 Bates Rd., Montreal, Quebec, Canada H3S 1B5 (Tel: 514-481-6838/735-1182).
(continued on page 76)

You're up and running with video graphics for just $\$ 99.95$ then use low cost add-ons to create your own personal system that rivals home computers sold tor 5-times ELF II's low price!

pre recorded tape casselles.

ELF II Gives You The Power To Make Things Happen! Expanded. ELF II can give you more power to make things happen in the real world than heavily advertised home computers that sell for a lot more money. Thanks to an ongoing tommiltment to develop the RCA 1802 for home computer uss, the ELF II products-being introduced by Netronics-keep you right on the outer tringe of today's small computar lechnology. It s a pariect computer for engineering, business, industriet, scientific and personal applications.
Plug in the GIANI BDARD 10 racord and play back programs, edit and debug programs, communicate with remote devices and make things happen in the outside world. Add Kluge (prototyping) Board and you can use ELF il to solve speciaz problems such as operating a complex alarm system or controling printing press. Add at Rain Boards to write longer programs, sore mone information and solve more sophisticated problems.
ELF II add -ons already include the ELF II Light Pon and the amating ELF-BUG Monitor-two extremely recent breakthroughs that have not yet been duplicated any other manulacturer
The ELF-BUG Monitor lets you debug programs with lightening speed because the key to debugging is to know what's inside the registers of the mictoproces sor. And, with the ELF BUG Monitor. instead of single stapping through your programs, you can now display the entire contents of the registers on yout iv screen. You find out mmediatiy what's going on and can make any necessay changes.
 V screen with just a wave of the "magic wand. Netronics has also infroduced the ELF II Color Graphics \& Music System-more breakthroughs that EIF II

ELF II Tiny BASIC

Ultimately, ELF II understands only machine language-the fundamental coding equired by all computers. But, to simplify your rel. • nship with ELF II. we ve introduced an ELF II Tiny BASIC that makes communicating with ELF II a reeze.
Tiny BASIC saves you the time of having to code your individual instructions in machine language for ELF II. Instead, you simply type instiuctions on a keyboard -PRINT, RUN, LDAD, ETC. Your Tiny BASIC program automatically translares hem into machine language for ELF II. Then it ranslates ELF if's output back into simple words and symbols for you.
Now Available! Text Editor, Assembler,
Disassembler And A New Video Display Board!
The Text Editor gives you word processing ability and the ability to edrt programs or text while it is displayed on your video monitor. Lines and charac lers may be quickly inserted, deleted ar changed. Add a printer and ELF II ca type letters lor you-error tree-plus print names and addresses from your malling list!
ELF II's Assambles translates assembly language programs into hexidecimal machine code for ELF II use. The Assembler features mnemonic abbreviations ther man nomerics so har ine Anshuchons an your prograns read - thes is a big heip in catching errors.
ELF II's Disassambler takes machine code programs and produtes assembly anguage source listings. This helps you understand the programs you ar The with ELF II Yide Di.
The new ELF II Vidob Dimp eard lets you generate a sharp, protessional 32 or 64 character by 16 line upper and lower case display on your TV screen or ideo monitor-dramatically improving your unexpanded $\$ 99.95 \mathrm{ELF}$ II. When Yiu

Ask Not What Your Computer Can Do
But WHAT CAN IT DO FOR YOU?
Don't be trapped into buying an expensive dinosaur, simply beeause you can afford it. ELF il is more advenced and more fun to use thon big name computers thor cost i fot more monay. With Elf 1 you loern to wriz amd
 Order from the coupon below!

Use Quick-Wedge to fasten leads, wire in panelights, connect test equipment, install components

They do all that ordinary screwdrivers do, PLUS they hold and start the screw

Screw-holding screwdrivers Unconditionally guaranteed. BUY A SET TODAY
See your dealer or write to:
Kedman Company, P.O. Box 25667, Salt Lake City, Utah 84125
CIRCLENO. 34 ON FREEINFORMATIONCARD (2)

Best price and delivery on

Exidy Sorcerer

call us

SAVE

15% on NORTH STAR CROMEMCO and other S-100 Systems

10\% OFF RADIO SHACK TRS-80

and accessories (full warranty)
Complete line of printers and disk systems for TRS-80

- WRITE FOR FREE CATALOG

MiniMicroMart, Inc.
1618 James Street, Syracuse NY 13203
PHONE: (315) 422-6666TWX TW $710541-0431$
CIRCLENO. 38 ON FREE INFORMATIONCARD

COMPUTER BITS

(continued from page 75)
S.100 Extender Board. A 7-segment display logic probe and a pulsecatcher LED, whose brightness corresponds to the duty cycle of the pulse stream, are used in the new TB-2 Extender Board kit from Mullen. The board features a general-purpose "kluge" area for circuit development. This section is provided with its own on-board 5-volt, 1ampere regulator that also powers the logic probe. Other features include power supply links for current measurement. labelled S-100-bus edge connector, and gold-plated connector contacts. Price is $\$ 35.00$. Address: Mullen Computer Products, P.O. Box 6214, Hayward, CA 94545 (Tel: 415-783-2866).
$\mathbf{S . 1 0 0}$ to IEEE Interface. The P\&T 488 Interface Board permits the broad spectrum of S-100-bus computers to directly interface with instruments and peripherals that operate on the IEEE 488-1975 Standard Digital Interface for Programmable Instrumentation. The board comes with 488 cable assembly. Software is distributed as source code in machine-readable form. An integral "Bitwiggler" tape interface is used for reading software with a conventional cassette tape recorder. Price is $\$ 250.00$ in kit, $\$ 325.00$ in wired form. Address Pickles \& Trout, P.O. Box 1206, Goleta, CA 93017 (Tel: 805-967-9563).

New Printers In Town. The Model DP-8000 hard-copy printer from Anadex prints 80 -character lines at 112 character/second (84 lines/minute). Printing is bidirectional, via sprocket feed. Alphanumerics are formed from a 9×7 dot matrix. The complete 96-character ASCII set is available. Basic ASCII inputs include RS-232C, 20/60-mA current loop, and parallel-bit/serial character, the last synchronous at high strobe rates. Three data lines of FIFO buffer storage are available, and data can be accepted continuously or in bursts. Serial ASCII is adjustable to 9600 baud. Up to 1000 characters/second can be fed into the input. Address: Anadex, Inc., 9825 DeSoto Ave., Chatsworth, CA 91311 (Tel: 213-998-8010).

Bowmar's Model TP-3150 thermal printer requires no ribbons or ink. It has an 18 -character capacity and uses a $5 \times$ 5 solid-state dot-matrix print head. Print direction and character rotation are user

Thousands of Communications Electronics customers
OWN A BEARCAT ${ }^{\circ}$ SCANNER.
But since we've introduced the Bearcat ${ }^{*} 250$ crystalless
15,600 frequency, 50 channel synthesized scanner.
our specifications have been improved.
Sensltivity
0.4 microvolts for 12 dB SINAD on VHF bands, UHF band slightly less
Selectivity
Better than $-60 \mathrm{~dB} @ \pm 25 \mathrm{KHz}$
Audio Output
At least 2.0 Watts rms
Audio Quality
The BC-250 audio is more noise-free and sulfers less distortion than comparable models by a margin of 10 dB or more.
Image Rejection
Image Rejection
The $\mathrm{BC}-250$ rejects image frequencies by at least 8 dB better in all bands than comparable models.
This month, we've got a special price
I on the Bearcat ${ }^{*} 250$. Now, you can own this fantastic
professional monitor for only $\$ 269.00$. That's a
savings of over $\mathbf{\$ 8 0 . 0 0}$.
To start Bearcatting, Master Charge and Visa card
holders may call and order toll free 800-521.4414.
Outside the U.S. and Michigan dial 313-994-4441.
To order by mail, send $\$ 269.00$ plus $\$ 5.00$ for U.S. | U.P.S. shipping. Foreign orders invited at slightly higher cost. Mail your orders or requests for a free |catalog completely describing all Bearcat ${ }^{*}$ scanners to: Communications Electronics, Box 1002,
Dept. HF1. Ann Arbor, Michigan 48106 U.S.A.
Bearcar ${ }^{\circ}$ is a registered trademark of Masco Corporation of Indiana
CIRCLENO. 1 ON FREEINFORMATION CARD

12 East Delaware Chicago，Illinois 60611 312－664－0020
controllable．ASCII data can be synchro－ nous parallel or asynchronous serial． The printer accepts the 64 standard AS CII characters and ignores all other codes．Price is $\$ 270.00$ ．Address：Bow－ mar Instrument Corp．，Commercial Products Div．， 8000 Bluffton Rd．，Fort Wayne，IN 46809.

A bidirectional printer from Printer Terminals operates at 75 lines／minute and offers a choice of 7×9 or 9×9 dot－ matrix print capability．It can print up to four copies simultaneously．The full 96－character．upper－and－lower－case ASCII set，plus triple－wide character font，are available．The operator can choose either 80－or 132－character lines． Included are RS－232C and parallel inter－ faces and 2 K of memory for full－page dump．The printer is designed to accom－ modate roll paper，combination pin form and roll，and tractor feed．Price is $\$ 1395.00$ ．Address：Printer Terminals Corp．，P．O．Box 535．Ramona，CA 92065 （Tel：714－789－5200）．

Single－Board Microcomputer． The $90 F / \mathrm{MPS}$ microcomputer from Quay is based on the $Z 80$ and contains multidensity－DMA floppy－disk controller． It can accommodate up to 65 K of dy － namic RAM， 14 K of EPROM with pro－ grammer，and 1 K of static RAM．Up to four 8 －bit programmable $1 / O$ ports are available．There are also four pro－ grammable counter／timer channels and an RS－232C or $20-\mathrm{mA}$ serial port，the latter with selectable baud rates．A resi－ dent PROM system monitor contains debug capabilities．With 16 K of dynamic RAM and two parallel ports，price is \＄1295．00．Address：Quay Corp．，P．O． Box 386．Freehold，NJ 07728 （Tel： 201－681－8700）．

S－100／Telephone Interface．The MK－II transceiver board from MK Enter－ prises interfaces an $\mathrm{S}-100$ bus to the telephone line and uses Touch－Tone frequencies．On incoming calls，vec－ tored interrupts allow for ring detection and DTMF signalling．This permits call－ ing the computer and using the tele－ phone pushbuttons for entry．A 4－bit in－ put post allows additional data to be transferred coincident with decoded DTMF．On outgoing calls，the board op－ erates at telephone company speeds．A 4－bit output port allows supervision of trunk interface equipment（DAA）．Single tones can be generated．Price is $\$ 425.00$ ．Address：MK Enterprises， 8911 Norwick Rd．．Richmond，VA（Tel： 804－740－8380）．

BEST IN NEW ELECTRONICS BOOKS！

Design．Bld \＆Pgim Yr Own Whag Computer Sys． 308 p ．$\$ 7.95$ | Master Hobk of 1001 MORE Practical Elect．Chts 700 p．$\$ 12.95$ |
| :--- | Hicroprocessor Cookbook 266 p． 124 ॥ How To Build Your Own Working Rotot Pet 238 p. ．． 86 al． Practical Electrical－Installation．Repr \＆Rewiring 406 p ．

Radio Contiol Handtook－4th Edition 420 p．．． 315 II ． Radio Control Handtook－ 4 th Edition 420 p .315 II.
The Gıant Book of AmatueI Radio Antennas $462 \mathrm{p} . .255$ The Grant Book of Amatuer Radio Antennas 462 p ．． 255 il．$\$ 8.95$ How to Build Your Dwn Working 16 － 811 Microcomputer 96 p． 83.95
Electronic Desugner＇s Handtoook－3rd Edition 350 p． 27 il． 89.95 Electrical hdoh for RVs．Campers．Vans．Boats \＆Trailers Mahing and Using Electricity From the Sun 144 p．． 85 il． la sers．The light Fantastic 294 p． 158 II The Power Supply Handthook 420 p． 292 ＂ The Complete Handtoook of Robotics 364 p． 137 I． artificial Intellagence 252 p ． 118 I
Heth al $\quad \$ 795$
 Design \＆Build Your Own Custom IV Games $546 \mathrm{p} . .244 \mathrm{II}$ ． Computerists Handy Manual 64 p．． 39 Il
Oigital Interfacing With an Analog World $406 \mathrm{o} . .271 \mathrm{Il}$. How to Select \＆Install Your Own Speakers 238 p．． 131 in All about Telephones 192 口． 140 II．
Understanding Electronics 182 p .265 II
24 Tested．Ready To－Run Game Programs in BASIC 266 o ． p． 85.95 Direct Current Motors－Characters \＆App 252 p． 17011 \＄14．95 Design．Build．\＆Test Complete Speaker Sys 336 p ．． 189 il Radio Control Manual－ 5 ys．Circ．Constr－3rd Edd 256 p．． 197 id 5595 First Class Commercial FCC License Study Guide 3920. How to Build 2 Use Low－Cost Hydrophones 140 p．． 37 I Programs in BASIC for Electronic Eng．Tech．\＆Eiperim Illus Dictionary of Microcomputer Terminoloegy 322 p ． 18
Computerists Handy Oatabook Oictionary 96 p .42 il Computerists Handy Oatabook Oiclionary 906 p．
303 Oynamic Electronic Clircuits 308 p．． 303 l. 303 Oynamic Electronic Circuits 308 口．．． 303 II． The BASIC Cooktook 140 p． 49 II
Antenna Construction Hdth For Ham．CB \＆SWL 238 p ．． 132 Radar Detector Handy Manual $80 \mathrm{p}, 63$ It．
How to Repair Video Games 270 D． 182 H.
How to Cast Small Metal and Rutber Parts 144 p．． 132 Il TV Field \＆Bench Servicer＇s Handiook 208 p ．． 165 sl ． Cut Your Elect Bill \＆Install Your Own Emere Power System $\$ 2$. Instrument \＆Control Sys Engineering Hdbk 434 p．． 184 it．$\$ 19.95$
Beginners Guide to Oesigning／Bulding Transistor Radios $\$ 4.95$ Beginners Guide to Oesıgning／Building Iransistor Radios The Master Handhook of Electrical Wiring 406 p .289 is． Understand Sound．Video．\＆FIlm Recording 140 p． 74 Towers International FET Selector 140 p ． 97 II Beginner s Gde to Computers／Microprocessors－with pro Design \＆Buld Electronic Instrumentation 420 D． 210 II How to Repair Mowe \＆Slide Projectors 304 p． 270 il． Towers international ir ansistor Selector－2nd
Clod 200 p Build－1t Book of Solar Heatump Projects 196 p ． 111 i Solar Flare Monitor \＆Propagation Forecast Hoth 196 p ． 57 Practical Programs and Games in BASIC 210 p ． 64 Beginner＇s Guide to Microprocessors 182
Modern Electronics Math 686 p． 424 II．
Ham Radio Incentive licensing Gide－2nd Ed $154 \mathrm{p} . .70$ Hearing hid Handitoon 335 p .224 il
Programming Microprocessors 280 a ． 105 il The＂Compulator Book 322 p．． 224 il．
Mimprocessors From Calculators to Computers $192 \mathrm{p} . .67$ it Master Transistor AC Substitution Handtook 518 p．．． 165 il $\$ 7.95$ CBers Handy Manual of Base Stations 96 p. ． 5511 Complete Hdth of Public Address Sound Sys 272 p．． 148 Modern Itansistor Radios 64 p .112 n. Modern Crystal Radios（Make and Use Series） 64 p．．． 101
 ic Function locator 224 p .28 il
CBeris Handy Manual of SSB $80 \mathrm{p} . .42$ il
Beginners Guide to Making Electronic Gadgets
Fire \＆Thet Securrity Systems－2nd Edition 1 Modern Oigital Communications 308 p. ． 122 II Practical CB Radio T＇shooting／Reparr 2nd Ed． 406
Microprocessor Propramer for Computer Hobtyists Microprocessor Program for Computer Hobtyyists
Illus Dict of Broadcast．CaIv．Teiecommunications Illus Oict of Broadcast．Caiv．Teiecommunications 420 p
Hothk of Marine Electronic \＆Electral Sys 546 p． 338 ， Linear IC Applications Handbook 280 p ． 184 n ． Build－It 8ook ol Oploelectronic Propects 238 p .175 Photo Guide to $\mathrm{MM} / \mathrm{FM}$ Stereo Repari 288 p .281 II． Servicing Medical \＆Bioelectronic Equipment 350 p．， 165 il．$\$ 8$ Sold State Motor Controts 322 口． 162 II How to Use AF \＆RF Signal Generators $238 \mathrm{p} . \mathrm{c} 162$ Il Model Railr oad Electromics 308 D． 22411.
The ABC Book of H1 FI／Audio Projects 182
The ABC Book of H1 FI／Autio Projects 182 p .131 II Repalt Small Gasoline Engines．2nd Ed $392 \mathrm{p} . .251$
of Practical Op Amp Circuits You Can Buid 140 p .120 Restorme and Coliecting Antique Reed Organs 320 ． 120 it．\＄4 95 How to Bulld Metal／Treasure Localors $140 \mathrm{p} . .58 \mathrm{pl}$ ． Build－ 17 Book ol Oigital Electronic Timepieces 294 p．． 209 H .5695 C © T License Handiook．2nd Edition 448 a ． 381 il Third Class FCC license Study Guide 322 p .8811 Piactical Solid State OC Power Supplies 196 p ． 151 II
106 Easy Electronics Proy Beyond the Iransistor 244 p． 106 Easy Electronics Proy Beyond the Iransistor 244 D．
How Io Repan Home Kitchen Appliances $294 \mathrm{p} . \mathrm{Cl}$
205 II How Io Repain home krichen appliances
Iransistor Ignition 5 ystems 252 g ． 162 II
Understanding \＆sing Modern Signal Generators 294 o． Color iv Case histories Illustrated－Vol 2.352 a． 243 II Mucr ophones－How They work 5 how To Use Them 224 D Master Handiook of Oigital Logic Applications $392 \mathrm{p} . .308$ il $\$ 7.95$ Amateut Radio Nor Class Lic Stdy Gd－2nd Ed 192 p ． 25 II $\$ 595$ CBers Handybook of Simple Hobthy Piojects 168 p ． Display Electronics 252 p．． 1951 CMOS Oatabook 280 p． 270 il
LuOS Oatahook 220 p． 270 Il 305 p． 1691
Broadcast Engineerong \＆Maintenance Hobla 532 p．
Amateur Radio Gener Optoelectronics Guidebook 196 p．， 120 n.
Impedance $196 \mathrm{p} . .90$ il．
Switching Regulators \＆Power Supplies 252 p ．． 128 it， SEND MO MONEYI We II invoice you on 10 －Day fate trual cid entire ad to otder 100% quaranieed or your money refunded
TAB BOOKS
CIRCLE NO． 50 ON FREE INFORMATIONCARD
state scope basics
The incoming waveform is applied directly to pin 5 of the LM3914, where its instantaneous amplitude is detected by a voltage divider/comparator chain. Decoding logic then drives one of the LM3914 outputs low.

Any LED in the row connected to the selected output is then eligible to glow. The remaining requirement is a positive voltage at the LED's anode. This is obtained from a horizontal sweep circuit made from a 4011 quad NAND gate and a 4017 Johnson counter.

The 4011 performs two important functions, one of which is to provide a stream of clock pulses. This is accomplished by two gates connected as a free-running or astable oscillator. The frequency of oscillation

A "MATCHBOX" LED OSCILLOSCOPE

REGULAR readers of the Experimenter's Corner are by now familiar with the design of simple solid-state oscilloscopes that employ an array of LEDs for a screen. Thanks to the new LM3914 dot/ bar display driver, the design of such a scope can be simplified considerably. The result is a scope small enough to fit inside a pocket matchbox!
Figure 1 is the schematic diagram of a compact LED scope that uses only three 1 Cs and consumes only 15 mA . Operation of the circuit is fairly straightforward, especially if you're already familiar with solid-

Fig. 1. Schematic diagram of matchbox LED oscilloscope.

BY FORREST M. MIMS

Fig. 2. Photograph of the wrapped-wire prototype LED oscilloscope assembled on a small piece of perforated board about $1.2^{\prime \prime} \times 1.2^{\prime \prime}$.

Project of the Month continued

Wire-Wrapped prototype scope that I assembled on a perforated board measuring $1.2^{\prime \prime} \times 1.9^{\prime \prime}$ (about $3 \mathrm{~cm} \times 5 \mathrm{~cm}$). Notice that pins 9 and 10 of the LM 3914 extend over the lower end of the socket. The small capacitor installed in the two unused pin positions of the 4011 socket is C1. The overrange LED is installed below the 5×7 LED array. Components R1, R4 and S1 are attached to the circuit board with cyanoacrylate adhesive. I used a miniature Micro Switch ${ }^{\text {TM }}$ pushbutton switch as St because , had one on hand, but any other spsl switch is suitable

Some typical display patterns I have obtained are shown in Fig. 3. Often, the displayed pattern will bear little resemblance to the actual wave. Sometimes it's easier to visually integrate the approximate shape of a wave by switcning off the automatic trigger and adjusting R4 until the waveform slowly parades across the display

For some interesting visual effects, try connecting a radio or audio amplifier to the

Fig. 3. Some typical display patterns obtained on a 35-element LED scope. Sometimes, the pattern bears little resemblance to the actual wave.
input of the scope. Music and voice signals will stimulate a dynamic, miniaturized light show. For best results, leave the trigger switch off.

Finally. remember that it's relatively easy to expand the scope's display. You
can add a second 5×7 display or make a 10×10 display from individual LEDs or 10-element LED bars. If you're really ambitious, you can add additional LM3914's and 4017's and make a scope having $20 \times$ 20 or more LEDs.

Energy shortages tell us we have to change our driving style.

AUGUST 1979

Now! It doesn't mean we have to go back to horse and buggy days. But it does mean we have to make
every drop of gas give us the most go for our money. Anyone with horse sense knows that a well-tuned car gets better mileage and in times of fuel shortages, better mileage means a lot. The Mark Ten B Capacitive Discharge System keeps your car in better tune so it burns less gas. Using Mark Ten B is more than horse sense. It's the
smart move under the hood, helping a nation survive an energy crisis and keeping you on the road. Delta Mark Ten. The best way to go.

Radio Shack: No. 1 Parts Place Low Prices and New Items Everyday!

Top-quality devices, fully functional, carefully inspected. Guaranteed to meet all specifications, both electrically and mechanically. All are made by well-known American manufacturers, and all have to pass manufacturer's quality control procedures. These are not rejects, not fallouts, not seconds. In fact, there are none better on the market! Always count on Radio Shack for the finest quality electronic parts

FREE DATA SHEETS!

(0) Deetot Breadboarding Center Declot (3)

IN OUR EFFORTS TO KEEP YOU OUR CUS TOMERS, UP-TO.DATE; WE ARE HAPPY TO OFFER YOU FREE DATA SHEETS FORALL OFFER YOU FREE DATA SHEETS FOR ALL ICS THAT WE CARRY THESE ARE HIGH OUALITY FULL.LENGTH REPRODUCTIONS OF ORIGINAL MANUFACTURERS DATA SHEETS WE REQUEST HOWEVER THAT YOULMIT YOUR REQUESTS TO ONE DATA SHEET FOR EACH YOU PURCHASE FROM US

PINS, TERMINALS, WRAP-POSTS
 offer the complete line of all terminals that fit into $0.042^{\prime \prime}$ diamerer
available. so you do nor have

TYPE	dEschiption	material	FINISH	SMALL PACK			MEDIUM PACK			LARGE PACK			manual INSERTION TOOL
				$\begin{aligned} & \text { Poyt } \\ & \text { Pack } \end{aligned}$	CATALOG NUMBER	$\begin{aligned} & \text { Prico } \\ & \text { Prack } \end{aligned}$	$\begin{aligned} & \text { atyl } \\ & \text { Pack } \end{aligned}$	catalog number	$\begin{aligned} & \text { Price } \\ & \text { Pasch } \end{aligned}$	$\begin{aligned} & \text { Orvive } \\ & P_{\text {ruk }} \end{aligned}$	catalog number	$\begin{aligned} & \text { Pricice } \\ & \text { PPack } \end{aligned}$	
${ }_{\text {K }} \mathrm{K} 24 \mathrm{~A}$	Inbera Pirs	Prosphor Eranze	Nickel Gold	${ }_{50}^{50}$	27.24012	\$2.73	250	${ }^{22} 22.2014$	\$11.76	1000	${ }^{22.24016}$	\$37.93	
${ }_{5}^{\mathrm{K} 24 \mathrm{C}}$	Intord Pins	Prosphor Bronzo	Brioht Tin	50	22.24002	${ }^{1.53}$	250	22.24004		1000	${ }^{22-24006}$	17.84	
K26A	Inbord Pins	Ptouphor Bronzo	Nickel Gokd	50	22.28012	2.62	${ }^{250}$	${ }^{22} 27.26014$	9.56	1000	${ }^{22.28016}$	30.82	
K26C $\kappa 30 \mathrm{C}$	Intord Pins inbord Pins	${ }_{\text {Premphor }}^{\text {Pranze }}$	Brinet Tin	${ }_{50}^{50}$	22.28002	0.99	250	27.26004	3.59	1000	22.26006	11.56	
K30C	inbord Pins	Phosphor Branze	Brioht Tin	50	22.30002	2.56 1.36	250	${ }_{72}^{22.300004}$	$\frac{13.52}{5.32}$	1000	${ }^{22} 27.300006$	${ }^{43.64} 17$	
K31A	Inbord Pins	Phosphor Pronze	Nickel Gold	50	${ }^{22} 313012$	2.06	250	22-31014	7.49	1000	${ }_{22} 2.31016$	24.14	--
${ }^{\text {K312 }}$	Insord Pins	Prosphor Bronze	Briph Tin	50	22.31902	1.11	250	22-31004	4.03	1000	${ }_{22}^{22.31006}$	12.99	
к32	Wrap post " 5 P Piths	Phosphor Bronze	Brigh Tin	100	22.32003	1.79	500	22.32005	6.68	1000	${ }_{22} 2.32006$	${ }_{11.16}$	
к32-2	Werep Post " 5 " Pins	Prosphor Bronze	Bright Tin	100	2232203	2.70	500	22-32205	${ }_{10.14}^{60.68}$	1000	${ }_{22} 223206$	16.90	
${ }^{\mathrm{k} 323}$	Wrap Past "F" Pins	Prosphos Bronze	Briph Tin	100	${ }_{2}^{223303}$	2.18	500	22.32305	8.17	1000	22,32306	13.61	
	Inberd Pins	Prosphor Eranzo	Nickel Gold	50	22.38012	3.18	250	22.38014	11.59	1000	22.38016	37.37	
	Insord Pins	Prosohor Bronze	Briomt Tin	${ }^{50}$	22.38002	1.85	250	22.38004	6.74	1000	22.388006	21.73	
${ }^{832}$	Socket Pins	Bervium Copper	Gold	25	${ }^{22} 323911$	5.90	100	22.32913	21.44	1000	22.32916	${ }^{173.56}$	
R41	Soctat Plms	Benvilum Copopar	gold	50	2241012	2.11	250	22.41014	10.17	1000	22.41096	32.78	P162
${ }^{742-1}$	Mico-kilo Teiminals	Copoer Alloy	Bright Tin	100	2242103	1.54	500	22.42105	6.77	1000	-2242106	11.28	P149 or P149a
	Bitucrated Wrapeost	Copper Allor	midlat	100	2244003	2.34	500	22.44005	8.61	1000	2244006	14.35	
	Bifur cated Wiap-post	Copoes Alloy	Nickel Goid	100	2244113	3.59	500	${ }^{22} 44115$	14.76	1000	22.44116	24.60	A13
T46	Dosulie Wrap Post Pins	Phosphor fromze	Timililste	100	2246003	3.58	500	22.46005	15.63	1000	2248006	26.05	P133A
+ 46.1	Ooubie Wrap.Post Pins	Protphor Bronze	Nickel Goid	100	2746113	${ }_{650}$	500	2246115	${ }^{27} 82$	1000	${ }_{2246116}$	${ }_{46.36}$	P133A
T462.9	Doubie Wrap. Post Pins	Prosphor Bronza	Bright Tin	100	${ }^{2246203}$	2.52	500	2246205	11.94	1000	2246206	19.89	P1338
T46.24.9	Oouble Wrao.Post Pins	Phosphor Bronze	Nickel Gotd	100	${ }^{2246213}$	4.29	500	${ }^{22-46215}$	20.68	1000	2246215	34.86	Р1338
T46.3.9	Ooubie Wrap.Past: Pins	Prosemor Bronze	Bright Tin	100	22.46303	2.74	500	2246305	12.54	1000	2245306	20.90	Р1338
T46.3A 9	Double Wrau Past Pins	Phosohor Bronte	Nickel Gold	100	2246313	4.92	500	2246315	25.44	1000	2244315	${ }_{42} 2.40$	
T46-49	Doubie Wrap Post Pins	Phosphor Eronze	Bright Tin	100	22 -46403	2.64	500	2246405	10.15	1000	2246406	16.91	ค1338
T45449	Double Wrap Post Pins	Phosphor Bronzo	Nickel Gold	100	${ }_{2246413}$	4.40	500	2246415	20.30	1000	2246916	${ }^{33.83}$	P1338
T465.9	Double Wap.post Pins	Prosohor Eronze		100	${ }^{2246503}$	3.58	500	2246505	17.36	1000	2246506	28.93	${ }^{\text {P1 }}$ 133 ${ }^{\text {P }}$
T4654.9	Doubie Wrap.Poss Pins	Prosehor Bronze	Nickel Gold	100	22.46513	5.97	500	22.46515	31.16	1000	2245516	51.93	P1338
T466.9	Double wrap Past Pins	Phosphor Bronze	Bright Tin	100	2246603	3.54	500	2246605	17.13	1000	2246606	28.54	р1338
T46tiats	Double Wrep Post: Pms	Phosphor Eronze	Nickel Gold	100	2246613	5.69	500	2246615	29.89	1000	2246615	49.81	ค1338
${ }_{\text {T }}^{\text {T } 498}$	Trifucrested Klibum io posts	Phowphor Bronze	${ }^{\text {dright Tin }}$	${ }_{100}^{100}$	${ }^{22,40003}$	3.76	500 500	2249005	13.14	1000	22.49006	21.90	${ }^{\text {P15 }}$ P15
T994,	Trilurcated Killowi ap Posts	Phorotor Eronze	Nickel Godd	100	2249013	7.77	500	2249015	33.94	1000	22.49016	56.56	P156
${ }_{\text {T T49.1. }}^{\text {T }}$	Trifuraved Kliowrap Posts	Phosphor Eronza	Brightin	${ }_{100}^{100}$	${ }_{2249103}$	${ }^{3.32}$	${ }_{500}^{500}$	2249105	17.04	1000	2249106	28.40	${ }^{\text {P15 }} 15$
T494-1	Triturated Kliow-sa Poss	phosphor Emonze	Nickel Gold	100	2249113	6.25	500	2249115	31.00	1000	2249116	61.85	P156
T50	Fend.Thru Pins	Phosphor 8ronze	Brught Tin	100	22.50003	2.00	500	22.50005	7.50	1000	22.50006	12.49	P1338
${ }_{\text {T }}^{\text {T } 68.1}$	${ }^{\text {Bifurcated Kiliowba Posts }}$	Copober allor	Tintillate	100	${ }^{22868003}$	2.87	${ }_{500}$	${ }^{22} \mathbf{2} 88005$	9.84	1000	2268006	16.40	A13.1
	Bidurcated Klipwrap Posts	${ }^{\text {Coppar Allor }}$	Nickel Gotd	100	${ }_{22}^{2268013}$	${ }_{4}^{4.84}$	500	2268015	${ }^{1937}$	1000	${ }_{22}^{22.88016}$	${ }^{32.27}$	A13.1
	${ }^{\text {B ifurcated K Kipwrap Passts }}$	Copper Allov	Tintillare	100	${ }^{22} 688903$	2.34	500	${ }^{22} 68905$	8.61	1050	22.68906	14.35	A13.1
TG8A. 9	Biturcated KıpWa ${ }^{\text {a Pos }}$	Capper	Nickel	100	22689	3.99	500	22689	15.58	1000	2268915	25.96	A13.1

TYoe A13 CATALOG NO 23.01130 TVVe A13.1. CATALON NO 23.01131
TVDe P133A, CATALOG NO. 238133

$\$ 3.52$
$\$ 2.13$
"P" PATTERN MICRO-VECTORBORDS ${ }^{\text {® }}$
\qquad drill holes. The toards may be braken oft easily aliong hole lines, sheared a sawed. I.C.C offers a wirie värity of boards wilh base materials ranging from economical

53.80

THE ENTIRE LINE OF VECTOR'S MANUAL, BATTERY, AND A.C OPERATED SLIT.N.WRAP TOOLS AND ALL ASSOCIATED ACCESSORIES:

VOLUME DISCOUNT SCHEDULE	STANDARD SHIPPING CHARGES	SPECIAL SHIPPING CHARGES
Merchandise Toral OISCOUNT	If your Merchandise Totalis between	For following soeciat services. pleasse include.
s $0.00-8$ ¢ 9.99 NET	$50.00 \$ 4.99 \ldots \ldots . . . a d d$ S2.00	COD 51.00 addmonal
	S 5.00-524.99add 51.00	UPS Bue S2.00 additionai
\$ 25.00-5 99.99 LESS 10\%	\$ $25.00-5.99 .99$. add $\$ 0.75$	Postal insurances \$1.00 additional
S 100.00-S499.99 LESS 15\%	S $50.00-599.99$. add 50.50	Speciai Oefivery $\$ 1.25$ additonal
S 500.00-5999.99 LESS 20\%	S 100.00 and Up NO CHARGE	
S1000.00 amd Up LESS 25\%	The above charges inciude your choice of stripning in US wia First Class Mail or UPS	

INTERNATIONAL COMPONENTS
CORPORATION

P. O. BOX 1837
COLUMBIA, MO 65205
PHONE: $(314) 474-9485$

FAIRCHILD RED LED LAMPS
FFLV5057 Medium SIze Ciear Case RED EMITTING These are not
retested off-spec units as sold by some of our competition These tactory prime. tirst quality. new units

"THE COLOSSUS
FAIRCHILD SUPER JUMBO LED READOUT A full. 80 inch character. The biggest readout we have ever sold! Super efficient. Compare at up to $\$ 2.95$ each from others! YOUR CHOICE $\$ 149 \mathrm{EA}$
FND 847 Common Anode FND 850 Common Cathode

NATIONAL SEMICONDUCTOR
JUMBO CLOCK MODULE

$\$ 4^{95}$ $\$ 795$

REG. ${ }^{\prime} 9.95$

ADD $\$ 1.95$ FOA
AC XFMA
$7 \|$ COMPARE AT UP TO TWICE OUR PRICE!
MANUFACTURER'S CLOSEOUT!

16K DYNAMIC RAM CHIP

$16 \mathrm{~K} \times 1$ Bits 16 Pin Package Same TRS-80 OR APPLE II
16 K 1 Bits 16 Pin Package Same as Mostek $4116-4.250$ NS access 410 NS cycle lime Our best price yet for this state of the art RAM 32 K and 64 K RAM boards maior mig
mare readily avalable. These are new. fully
VERY LIMITED STOCK!
"MAGAZINE SPECIAL" - 8 For $\$ 79.50$

FAIRCHILD PNP

 2NA402 TO-92 PALastic STIICOR PND 10.50 al 150 MA FT- 150 MHz A super
BEEEED-UP Version ot the 2N3906 8 FOR $\$ 1$

FET SALE!

2N4304 Brand New
N Channel. Junction Fet BVGDO-30VIDSS-15 MA Typ 1500 UMHOS TO- 18 Plastic

Case Mtg by Teledyne 6 FOR $\$ 1$
G.I. FULL
WAVE BRIDGE

4 AMP 600 PIV $3 / 4 \mathrm{In}$. Square With Lugs, \#LM-1 75c ea. 3 For $\$ 2$

MOTOROLA POWER
TRIAC
TO-220 CASE 15 AMP 400 PRV SPECIAL $89{ }^{4}$ each

5 FOR \$3.95
EXPERIMENTER'S HEATING PLATE
Large Manufacturers Surplus. $5 \% / \times 10 / 3 \ln$ Made of $3 / 8 \mathrm{in}$. tempered glass with heating element laminated on back. Works off 120 VAC . Protected by thermostat and two thermal fuses Rated 120 Watts. Use for any heating applications Perfect for heating ferric chloride to increase $P C$ board etching efficiency. Units are brand new non-submersible WHILE THEY LAST - \$2.99 each

Digital Research: Parts
 (OF TEXAS)

GARLAND, TEXAS 75040 • (214) 271-2461

COMPLEMENTARY POWER TRANSISTORS SILICON NPN AND PNP. TO-220 CASE. VCEO - 40 V PD - 30 WATTS
FOR AUDIO POWER AMPS EIC FOR AUDIO POWER AMPS. ETC
TIP29 - NPN CHOICE TIP30-PNP 3 FOR $\$ 1$
o better serve our customers we are smeN Dinting Desearch Corp of Texas into two operating sections PARTS AND COMPUTERS We teel this Change will allow us to offer you lower prices. better service and many more
new products Continue to order parts. clock modules erc fiom D R P PO Box $40+247$ Garland TX 75040 To order computer parts and computer kits ${ }^{\text {order }} 7$ trom Dicital Research Computers PO Box 401565 Garland. TX 5040
TERMS: Add 504 postage, we pay balance. Orders under $\$ 15$ add 754 handling. No C.O.D. We accept Visa, Mastercharge, and American Express cards. Tex. Res. add 5\% Tax
Foreign orders (except Canada) add 20\% P \& H. 90 Day Foreign orders (except Canada) ad
Money Back Guarantee on all items.

ABOUT YOUR SUBSCRIPTION
 Your subscription to Pofular Electronics is maintained on one of the world's most modern, efficien

 computer systems, and if you're like 99% of our subscribers, you'll never have any reason to complain about your subscription service.We have found that when complaints do arise, the majority of them occur because people have written their names or addresses differently at different times. For example, it your subscription were listed under "William Jones, Cedar Lane, Middletown, Arizona," and you were to renew it as "Bill 'Jones, Cedar Lane, Middletown, Arizona,' ' our computer would think that two separate subscriptions were involved, and it would start sending you two copies of Popular Electronics each month. Other examples of combinations of names that would confuse the computer would include: John Henry Smith and Henry Smith; and Mrs. Joseph Jones and Mary Jones. Minor differences in addresses can also lead to difficulties. For example, to the computer, 100 Second St. is not the same as 100 2nd St.
So, please, hhen you write us about your subscription, be sure to enclose the mailing label from the cover of the magazine-or else copy your name and address exactly as they appear on the mailing label. This will greatly reduce any chance of error, and we will be able to service your request much more quickly.

H8 EXTENDER BOARD KIT
Brand new from Mullen Computer Products. This kit really takes the hassle out of testing or troubleshooting the popular Heath H8 computer. includes jumper links in supply lines for insertion
of fuses. Ammeters. current limiters, etc. $\$ \mathbf{3 9}$

MA 1003 CLOCK MODULE

 - $\$ 13.20$$20 \%$ off our very best clock module. Internal LOW POWER, FULLY STATIC COMPUTER MEMORY - NOW BANK SELECT VERSIONS! mentation, simple assembly (add 2 full documentation, simple assembly (add 2 time-set
switches and More. Matching case wi mounting hardware \& optical filter: $\$ 595$. Hurry - clock prices may never be this low again.

16K MEMORY EXPANSION

 CHIP SET §He9 $\$ 87.20$20\% off one of our all-time best sellers. For Radio Shack-80, Exidy Sorcerer, Apple com puters. 250 ns access time, low power parts, DIP shunts included, 1 year limited warranty, and easy-to-follow instructions that make memory expansion a snap.

MORE MEMORY FOR YOUR MONEY

We're offering low power 21 L02 1 K static memory chips. guaranteed to run with any
MHz system, at the very low price of $10 / \$ 9.90$ that's less than 14 per byte! Stock up now, we can't predict how much longer we ll have these prime parts avaılable for sale.

```
bypass caps pre-soldered in place. assembled and tested, or qualified under the Cortified System Component (CSC) high-reliability program Sult BANK SELECT Doards are perfect for Alpha Micro Systems. Marinchip, and similar S-100 machines. Low power, iwo independently selectable banks, charging top dollar) for over 5 years - \(\mathbf{s e \theta}\) your computer store or our flyer for more information
``` \begin{tabular}{llllll} 
S. 100 & 4 MHz & \(\$ 149\) & \(\$ 179\) & \(\$ 239\) \\
S. 100 & 4 MHz \\
\hline
\end{tabular}
 \(\begin{array}{lllllll}\text { 12K ECONORAM VI' } & \text { H8 } & 2 \mathrm{MHz} & \mathbf{S 2 0 0} & \$ 270 & \mathrm{~N} / \mathrm{A} \\ \text { 24K ECONORAM VI' } & \mathrm{S} .100 & 4 \mathrm{MHz} & \mathbf{\$ 4 4 5} & \$ 485 & \$ 605\end{array}\) \(\begin{array}{lllllll}\text { 24K ECONORAM VIU } & \text { S. } 100 & 4 \mathrm{MHz} & \mathbf{\$ 4 4 5} & \mathbf{\$ 4 8 5} & \mathbf{\$ 6 0 5} \\ \text { 32K ECONORAM IX } & \text { Dig Gro } & 4 \mathrm{MHz} & \mathbf{\$ 5 5 9} & \mathbf{\$ 6 3 9} & \mathrm{N} / \mathrm{A}\end{array}\) \(\begin{array}{llllll}\mathrm{S} \cdot 100 & 4 \mathrm{MHz} & \mathbf{\$ 5 9 9} & \mathbf{S 6 4 9} & \$ 789\end{array}\) SBC \(4 \mathrm{MHz} \mathrm{N} / \mathrm{A} \mathrm{N} / \mathrm{A} \$ 1050\)
- NEW! BANK SELECT ECONORAMS
\(\begin{array}{llllll}\text { 16K ECONORAM XII-16 } & \text { S-100 } & 4 \mathrm{MHz} & \$ 369 & \$ 419 & \$ 519 \\ \text { 24K ECONORAM XIT"- } 24 & \text { S-100 } & 4 \mathrm{MHz} & \$ 479 & \$ 539 & \$ 649\end{array}\)

under \(\$ 15\) add \(\$ 1\) handling. VISA Mastercharge call 24 hr , order

FREE FLYER: Whether you're a computer user. electronic musician. experimenter. or mad scientist. we have bargains tor you... and
theyre all listed in our tlyer fincluding lots of specials that are too provocative to put in lamily magazines such as this). Send us your name vocative to put in lamily magazines such as this) Seny

NEW! - FULL FUNCTION S-100 I/O BOARD \$189 unkit, \$249 assm

Our new I/0 board gives you unparaleied fiexibility and ooerating convenience. Includes dual LSi hardw
UARTS. precision Baud rates up to 19.2 kBaud . UARTS. precision Baud rates up 1019.2 kBaud.
operation with 2 and 4 MHz systems. and much more - at an amazingly low price. Betore you buy an 1/0 board, write for complete specs and you'll se日 why we think you'll choose ours over any other

IRCLE NO. 26 ON FREE INFORMATION CARD

ELECTRIFY YOUR BIKE!
PEDALPOWER exciting new bike drive tames tough hills. Be independent Shop when you want. Fits all Bikes. Adult Trikes. Installs in minutes. Thousands sold. Recharges overnite. Travels 100 miles for a dime.

MONEY BACK GItarantee Call toll tree 800-257.7955* Or send teday for
free ilidstrated PEDALPOWER BOOKLET
Plus free information on complete
line of Electric Cars. Electric Bikes and Trikes.
General Engines Co. Mantua Blvd.
Sewell, NJ. 08080
In N. Alaska or III Call Collect: (609) +68-02?0

\section*{MICROWDRLD}

BRINGING INFORMATION TECHNOLOGY TO YOUR DOORSTEP
\(\checkmark\) Quality Microcomputer Products \(\checkmark\) Good Delivery
\(\checkmark\) Prices You Can Afford

CIRCLE NO. 37 ON FREEINFORMATION CARD

\section*{Operation Assist} equipment - a schematic pats hist etc-another reace miaht be able: to assist Sumplesend a postcara to Operation Assist Popularelectronics, path dug Now Yoik Ny 10016 For those who cinn help reuders please espont directlv 10 them they "apprectate' "Onv those nems reqarging equpment ant awhate form normat
sources ate Dubushed

Eico model 720 amateur transmitter and universal modulator driver 730 Need operation manuals Linford Fevier. C/O Radio St Lucia, Box 660. Castres. St. Lucia

Dumont Fairchild model 766 oscilloscope with type 76.02 dual trace and lype 74-13A delayed sweep plug-ins. Schematics. Gary Montgomery, 1011 Westwood Dr . Elkview, WV 25071

Dumont type 280 oscillograph. Service manual RCA mode \#WT-509A. Data manual needed. Realistic tape deck. model \#T130. Schematic diagram and service manual needed. George Warren. 8 Danus Ct . So. Boston. MA 02127
U.S. Navy model TS-810/U digital calibralor Schematic and technical manual Joel M. Rubin, Box 819. Berkeley, CA 94701.

Marconiphone model T26A radıo Schematic and conver Sion data to 115 volts \(/ 60\) cycles needed Eddie Joseph 20701 Heef Ln. Huntington Beach. CA 92646

Heathkit receiver model AR-3 Schematic and assembly atignment manual. Davad Carpenter. 2717 E 4th St., Tuc son. AZ 85716

B\&K model 650 tube tester with model 610 and mode TC-615 adapter pánels Tube test set-up charl needed. Larry Delahooke. Box 7423, Rochester. NY 14615

Jerrold 900B sweep generator Operation and service man-

Ual needed. Henry Koll. 4140 West 58th St.. Chicago. IL 60629.

Cal Kit syntheshape oscilloscope pattern generator. P.C board. manual or schematic. R. Rerbison, Box 108, Erring ton. B.C. Can. VOR-IVO.

Channel Master model 6601 stereo Need schematic James H. Bryan, 500 Benton Dr. Mt Zion, IL 62549

Magnavox model ICV400 television camera and processor Schematic and service manual needed G Amandes, 506 Lake St. Crystal Lake, IL 60014.

Lavoie model LA545 oscilloscope. Need schematics and maintenance information. William B. Rossman, 274-28th Ave.. Longvew. WA 98632.

Zenith model L514W clock radıo. Need volume and tuning knobs and snooze alarm button. Ted Liszewski, 182 Farview Ave.. Paramus. NJ 07652

RCA model 118 AM radio. Need schematic and tubes 80. 41, 6B7, 6 D 6 and 6A7. Barry Maxfield, 431 E .500 St . Pleas ant Grove, UT 84062

Redcor 990100-200 power supply and Dynamics 504 dc micromultimeter. Instructions and schematic Jim Barcus. 12605-11th Ave.. N., Plymouth. MN 55441

RCA model V-215 Victrola. Schematic needed Craig Mas sey. RR 1. Box 205. Blue Spnngs. MO 64015.

Learadio model AMR-1 receiver. Schematic and parts lis needed. Navy Department model TN-5010/FRR502 tuner Schematic needed David Carlson. 3081 Uisula, Aurora. CO 80011.

Hallicrafters model S-120 shortwave radro Need operation manual Sean A. Devitt, 2237 Wharton Rd. Glenside. PA 19038

Bell model T-337 tape recorder. Operation manual and infor mation on parts. Don Lachey, 80 N. Frankion St . Minster OH 45865.

Webco model. EP2302-1 tape recorder. Need oscillator coll.

Geraid K. Schultz, 4616 Buffalo Trail. Amarilio. TX 79109.
Accurate Instruments model 157 tube tester. Need operat ing instructions. Steve Rubin. 4903 N. Kimball. Chicago. It 60625.

Hallicrafters model S.40 receiver. Schematic diagram needed Nathan Meyers. Box 22265. San Diego, CA 92122.

Advent model 1000A video beam profector. Honeywell hod el 333 portable DVM. Schematic and alignment instructions needed. Wolfgang S. Wiedernann, 239 Harmon Circle. Keesler AFB. MS 39531

Crosiley model 7H3 broadcast shortwave recelver. Need schematic and operating manual David Leupp, 222 W Grove Ave., Apl. 3. Rantoul, IL 61866.

Hallicrafters model S38B receiver. Need instruction manual and schematics Lonnie L. Hataway, Jr.. 21-441D Citrus Ave., Elmendorf AFB. AK 99506

Mercury model 201 tube tester. Need tube setup chart and schematic. Ken Layton. 194'久 E. State. Apt. 8C. Olympia. WA 98506.

Hallicratters model HT40 transmitter. Need schematic and instruction makluat. Vince Curtis. 226 Tremont Ave., Greensburg. PA 15601.

Trymetrics model 4000 P DVM and model 500A DVM plugin Need manual and schematic. Francis Grosz. 3620 Cana St . New Orleans, LA 70119.

Hammarlund model BC779 receiver. Operating manual service manual. parts list and schematic Mike Christodolou, 18 Lei Dr., Lexington Park, MD 20653

Scott senal \# 1052 manne radio. Need service manual and schematic. Frank B. Hawley. 253 West Rock Ave.. New Haven. CT 06515

Stromberg-Carlson C0., Ltd., type 5788 oscilloscope. Need any information. John Greenland, Box 138 , Kelligrews Newfoundland, AOA 270

Accurate instrument Co., model 154 VOM Need schemat c. Lee W. Hannahs. 4544 Barden Rd., Coleman. MI 48618.

Hickok model 550X mutual conductance mult-tester Tube chan and manual Mike Galinskı. 645 Lindsay SI., St. Laurent. Quebec. Can. H4L. 2R1

Radio Shack model EC421 calculator. Need operation instructions Leo E Smith. Box 945, Veteran's Home. Yountville, CA 94599.

Teac model A-4010SU tape deck with model RA-40SU rec ord amplifier Schematic and service information Norm Satterstrom, 212 W. Collen Dr.. \#207, Lombard. IL. 60148.

Yaesu Musen type YO- 100 monitor scope Manual, sche matic and source of information. A. C Gumaraes, Cisterna de Cima 47 Fate. Portuga

Friden model SW8 comptometer Operating and service manual. General Electric model M8635A stereo recelver. Schematics. parts list and operating instructions. Todd Carter. 2671 Greentree Ct. Jenıson. M149428.

Gonset model GR2 12 receiver. Need schematic and alignment instructions. Arthur D. Cox. 1507 Gannon Dr., Sacramento. CA 95825

Sears model 5177. chassis \#528. 62123 color TV. Need schemalic. John Baldwin. 203 6th Av, N.E. Waseca, MN 56093

Sun model 550 ignition analyzer oscilloscope. Need schematic and cables. D. Smuth. 3561 Marian Dr. Trenton, MI 48183.

RBM scanning monitor receiver Need schematic and any other information James Hall. RI 3. Box 281 A. Staunton. VA 24401

Eversonic model HA-23CB CB radio Need schematic Randy Stanley. 5317 Lawrence Dr , Wllmington, NC 28405

Dumont model \(304-\mathrm{H}\). serial \# 10416 oscilloscope Operating instructions John H. Carroll. 210 E. Lincoln Ave , McDonald. PA 15057.

Echo Fonic model 109-B echo chathber. Operation manual and schematic Philco model 18 radio Schematic and parts list needed. Nicholas I. Oshana Jr., 187 Morningside Dr. Bnstol. CT O6010.

Eico model HF-20 pre-amplifier needed W.S. Reynolds 733 Plantation Circle. Roanoke, VA 24019.

\title{
Electronics Classified
}

REGULAR CLASSIFIED: COMMERCIAL RATE: For firms or individuals offering commercial products or services, \(\$ 2.50\) per word. Minimum order \(\$ 37.50\). EX-PAND-AD" CLASSIFIED RATE: \(\$ 3.75\) per word. Minimum order \(\$ 56.25\). Frequency discount: \(5 \%\) for 6 months; \(10 \%\) for 12 months paid in advance. PERSONAL RATE: For individuals with a personal item to buy or sell, \(\$ 1.50\) per word. No minimum! DISPLAY CLASSIFIED: \(1^{\prime \prime}\) by 1 column (\(2-1 / 4\) " wide), \(\$ 300.2\) " by 1 column, \(\$ 600.00\). 3" by 1 column, \(\$ 900.00\). Advertiser to supply film positives. For frequency rates, please inquire. GENERAL INFORMATION: Ad copy must be typewritten or clearly printed. Payment must accompany copy except when ads are to be billed on credit cards - American Express, Diners Club, Master Charge, VISA (supply expiration date) - or when ads are placed by accredited advertising agencies. First word in all ads set in caps. All copy subject to publisher's approval. All advertisers using Post Office Boxes in their addresses MUST supply publisher with permanent address and telephone number before ad can be run. Advertisements will not be published which advertise or promote the use of devices for the surreptitious interception of communications. Ads are not acknowledged. They will appear in first issue to go to press after closing date. Closing Date: 1 st of the 2nd month preceding cover date (for example, March issue closes January 1st). Send order and remittance to Classified Advertising. POPULAR ELECTRONICS, One Park Avenue, New York, N.Y. 10016. For inquiries, contact Linda Lemberg at (212) 725-3924.

\section*{FOR SALE}

FREE! Bargain Catalog-I.C.'s, LED's, readouts, fiber optics calculators parts \& kits, semiconductors, parts. Poly Paks Box 942PE. Lynnfield. Mass. 01940.
GOVERNMENT and industrial surplus receivers. transmitters snooperscopes. electronic parts. Picture Catalog 25 cents Meshna. Nahant. Mass. 01908.
LOWEST Prices Electronic Parts. Contidential Catalog Free KNAPP, 4750 96th St N., St. Petersburg, FL 33708

ELECTRONIC PARTS, semiconductors, kits. FREE FLYER Large catalog \(\$ 1.00\) deposit. BIGELOW ELECTRONICS Bluftton, Onio 45817

RADIO-T.V. Tubes- 36 cents each. Send for free catalog Cornell. 4213 University. San Diego, Calif. 92105
AMATEUR SCIENTISTS. Electronics Experimenters. Science Fair Students ... Construction plans - Complete, in cluding drawings, schematics. parts list with prices and sources ... Robot Man - Psychedelic shows - Lasers Emotion/Lie Detector - Touch Tone Dial - Quadraphonic Adapter - Transistorized Ignition - Burglar Alarm - Sound Meter . . over 60 tems. Send \(\$ 1.00\) (no stamps) for complete catalog. Technical Writers Group, Box 5994 . University Station. Ralergh, N.C. 27650.
SOUND SYNTHESIZER KITS-Surf \$14.95. Wind \$14.95, Wind Chimes \(\$ 19.95\), Musical Accessories, many more Catalog free. PAIA Electronics. Box J14359. Oklahoma City. OK 73114.

HEAR POLICE , FIRE Dispatchers! Catalog shows exclusive directones of "confidential" channels, scanners. Send postage stamp. Communications. Box 56-PE, Commack, N.Y 11725.

TELETYPE EQUIPMENT: Copy Military, Press, Weather Amateur. Commercial Transmissions. Catalog \$1.00 WEATHER MAP RECORDERS: Copy Satellite Photographs National-Local Weather Maps. Learn How! \$1.00. Atlantic Sales. 3730 Nautilus Ave., Brooklyn, NY 11224. Phone: (212) 372-0349
WHOLESALE C.B., Scanners. Antennas, Catalog 25 cents Crystals: Special cut. \(\$ 4.95\). Monitor \(\$ 3.95\). Send make, model, frequency. G. Enterprises. Box 461 P. Clearfield. UT 84015.

BUILD AND SAVE TELEPHONES, TELEVISION. DETECTIVE, BROADCAST Electronics. We sell construction plans with an Engineering Service Speakiphones. Answering Machines, Carphones, Phonevision, Dialers, Col TV Con Mertrs VTR Games, \(\$ 25\) TV Camera Eiectron Microscon Special EH, Games. \(\$ 25\) TV Camera. Electron Microscope, Special Ehects Generator, Time Base Corrector. Chroma Key. Engineering Courses in Telephone. Integrated Circuits, Detective Electronics. PLUS MUCH MORE. NEW Super Hobby Catalog PLUS year's subscription to Electronic News Letter. \$1.00. Don Britton Enterprises. 6200 Wishire Biva., Los Angeles. Calif. 90048.
NAME BRAND TEST EQUIPMENT at discount prices. 72 page catalogue free. Wrte: Dept. PE, North American Electronics. 1468 West 25 th Street. Cleveland. OH 44113
UNSCRAMBLERS FOR any scanner. Several models available. Free literature. Capri Electronics, 8753T Windom, St. Louis. MO 63114.

UNSCRAMBLER KIT. Tunes all scramble frequencies. may be bult-in most scanners. 2-3/4 \(\times 2-1 / 4 \times 1 / 2 . \$ 19.95\). Factory built Code-Breaker. \$29.95. Free Catalog: KRYSTAL KITS, Box 445, Bentonville, Ark. 72712. (501) 273-5340.

B\&K Test Equipment. Free catalog. Free Shipping. Dinosaur discounts. Spacetron-AX. 948 Prospect. Elmhurst, IL 60126. BUILD THE ARTISAN ELECTRONIC ORGAN ... The 20th century successor to the classic plpe organ. Kits feature modular construction. with logic controlled stops and RAM Pre-Set Memory System. Be an ar-ti-san. Write for our free brochure AOK Manufacturing, Inc.. Box 445, Kenmore. WA 98028.

NAME BRAND Test Equipment. Up to \(50 \%\) discount. Free catalog. Salen Electronics. Box 82. Skokie. Illinois 60077.

\section*{SpeakerGuts.}

The absolute latest in advanced speaker techno ogy Wove Apercture' Drivers, the Patented Nestrovic Wooter System." raw speaker components selected to
heir exce...ence Horns, crossovers, subwooters wooters midranges. horn and dome tweeters. Over 30 in all. Build your own speaker system and we 11 provide top quanty
speakers and design information Send for FREF 48 pag olor catalog trom the largest. most expenenced speake kit manufacturer in the world DONT DELAY Writetodry

\section*{Spenkerlo' \\ Dept. APE, 735 N . Northlake Way
Seattle. Washington 98103}

POLICE,FIRE SCANNERS. crystals antennas. CBs. Radar Detectors HPR. Box 19224. Denver. CO 80219.
CB RADIOS, VHF-UHF Scanners. Crystal, Antennas. Radar Detectors. Wholesale. Southland. Box 3591. Baytown. TX 77520
UNSCRAMBLE CODED MESSAGES from Police, Fire and Medical Channels. Same day service. Satisfaction guaranteed. Don Nobles Electronics. Inc., Rt. 7, Box 265B, Hot Springs. Arkansas 71901. (501) 623-6027.
MONTHLY PICTURE FLYER Quality Surplus Electronic parts. Low Prices. Star-Tronics, Box 683. McMinnuilie. OR 97128.

PRINTED CIRCUIT supplies, chemicals, tools, artwork, plat solutions Major credit cards. Catalog \$1.00, refundable CIRCOLEX. Box 198, Marcy, NY 13403
RECONDITIONED TEST EQUIPMENT \(\$ 1.00\) for catalog WALTER'S TEST EQUIPMENT. 2697 Nickel. San Pablo. CA 94806, (415) 758-1050
NEGATIVE ION GENERATORS AND ACCESSORIES (Kits). Fascinating details--\$1.00. Golden Enterprises, Box (Kits). Fascinating details- \(1282-\mathrm{PE}\), Glendale. Arizona 85311

RECEIVE FREQUENCY ADAPTOR converts your recelver to digital readout. Davis Electronics, 636 Sheridan, Tonawanda, NY 14150. 1-716,874-5848.
PRINTED CIRCUIT BOARDS, your artwork, \(45 \not \subset\) sq. in. single sided, \(60 \not \subset \mathrm{sq}\). in. double sided. Mail your order now, or send for free details. Digitronics. P.O. Box 2494, Toledo, OH 43606.
LOW COST ELECTRONIC PARTS!! Send for FREE flyer. ALL ELECTRONICS CORP., 905 S. Vermont Ave.. Dept. F. Los Angeles. CA 90006.
DB-100-ADJACENT CHANNEL FILTER-most incredible filter ever offered to civilian market. Replaces any 455 K.C.I.F. filter to increase selectivity up to 100 DB's. Works on any receiver, transceiver. etc.. using 455 K.C.I.F. Free fact sheet, or send \(\$ 29.95\). SSB Publications. Box 960 . Hyannis. MA 02601
SCANNERS: WHOLESALE PRICES! Bearcat 220 \$329.95: Regency K500-\$329.95; Bearcat 250-\$279.95: plus 20 other models at similar discounts from the nation's scanner specialist. VISA.Mastercharge okay. Phone: (415) 573-1624. Free catalog. Write. Scanners Unlimited. 1326 EI Camıno Real. Belmont, Californa 94002.
ELECTRONIC TEST EQUIPMENT. Free cataiog. E French. PO Box 249, Aurora, IL 60507.

ROBOTS FOR SALE. Radio controlled for promotions. advertisement. etc. Send \(\$ 1.00\) for information to: Connecticut Marketng, 70 Russell Avenue. Plainville, CT 06062.
LATEST AND BEST in electronic components. books and supplies. Write for big free catalogue. TRI-TEK, 7808 N 27 Ave.. Phoenix. AZ 85021
BARGAINS GALORE! Monthly swap sheet for radio collectors, hams, experimenters, etc. Send long SASE for sample. Electronics Trader. Box 2377. Argus. CA 93562

AUDIO NOISE REDUCTION KIT - 318 SILENCER for tapes. records, FM. Free brochure. LOGICAL SYSTEMS, 3314 'H' St.. Vancouver. Washington 98663. PRINTED CIRCUIT BOARDS, double. single-sided. From schematic, sketch. finished artwork We design compute interface prototypes. WEB Printed Circuits. P.O. Box 3851 Kingsport. Tenn. 37664.

ANTENNA ACCESSORIES CATALOG for Hams. CBers and Home TV innovators has application data Send 15 stamp to: Dept. PE2. Unadilla/Reyco, Box 280. East Syracuse. NY 13057.

DOLBY DECODER now avallable assembled or as kit. Comprehensive teview. PAE integrex. Box 747. Havertown, PA 19083.
tubes

RADIO \& T.V. Tubes- 36 cents each. Send for free Catalog Cornell, 4213 University. San Diego, Calif. 92105.

TUBES: "Oldies", Latest. Supplies, components, schematics Catalog Free (stamp appreciated). Sternmetz. 7519-PE Ma plewood. Hammond. Ind. 46324

TUBES-RECEIVING, Industrial and Semiconductors Factory Boxed. Free price sheet including TV, Radio and audio parts list. Transleteronic. Inc., 1365 39th St. Brooklyn New York 11218. Telephone: (212) 633-2800. Toll free: 800-221-5802. RADIO AND TV TUBES 1938 to \(1978 \$ 1.00\) ea. PRELLER TV. Augusta. AR 72006. (501) 347-2281

\section*{PLANS AND KITS}

TOP QUALITY IMPORTED KITS, IC's. foreign transistors. Free catalog. Internatıonal Electronics. Box 567 . Williamsville. NY 14221
ELECTRONICS KITS: For information, send self addressed stamped envelope. GI Kits, Box 2329. Garland. TX 75041 .

FREE KIT Catalog contains Test and Experimenter's Equipment. Dage Scientific Instruments, Box 1054P. Livermore, CA 94550.

\section*{BUILD YOUR OWN SYMPHONY OF SOUND! \\ It's fun and easy - takes just min-
utes a day! Complete kits for utes a day! Complete kits for organs, pianos, strings, Thythms,
amplifiers. synthesizers. Also amplifiers. synthesizers, Also
factory assembled. 104 -page factory assemb
catalog \(\$ 2.00\) \\ (1)ШERG| \\ Wersi Electronics, Inc. 1720 Hempstead Road Lancaster, PA 17604}

TV-OSCILLOSCOPE CONVERTER externally adapts TV into audio frequency oscilloscope. Info. \(\$ 1.00\). Plans \(\$ 7.50\), with P.C. \(\$ 15.00\). complete kit \(\$ 60.00\) Evoluctionics. Box \(855-\mathrm{J}\). San Rafael. CA 94902.
PRINTED CIRCUIT Boards from sketch or artwork. Kit projects Free details. DANOCINTHS Inc... Box 261. Westland. MI 48185.

TELETYPEWRITER USERS: Unique solid state time delay relay. Reduces energy and mantenance costs. Information 50 . Plans \(\$ 5.00\), with P.C. \(\$ 10.00\). KEITH RYAN. Box 3103-P. Otawa, CANADA. KIP 6 H 7 . U.S. Inquiries.
TESLA COIL - \(40^{\prime \prime}\) SPARKS! Pians \(\$ 7.50\). Information 75 cents. Huntington Electronics. Box 2009-P. Huntingion. Conn.
06484 .
TAPE - SLIDE. Synchronizer, multiprojector, lap-dissolve plans, \(\$ 5.50\). Audiovisual group, \(\$ 8.50\). Millers. 1896 Maywood. S. Euclid, OH 44121.

BUILD DIGITAL DIAL for AM Broadcast Receivers. Simple Inexpensive - Accurate. Uses Standard components. Information/Schematic/Layout - \(\$ 3.95\). W.M. Whitley, 5603 Lemonwood. Austin. Texas 78731.
UNIQUE DEVICES FOR STEREO. etc. Catalog \(\$\) \$1. Lusus. 31W251 Rte 64, West Chicago, IL 60185.
WIRELESS FM MICROPHONE, electronic siren, 10 watt alarm. Kits \(\$ 5.25\) each. Electrokit, Box 568, Miltord, MA 01757.

SPEAKERPLANS - Build ANY size speakers without special tools. experience FOOLPROOF, illustrated instructions, parts sources. \(80 \%\) SAVINGS! Rush \$4. SPEAKERPLANS, 275 Main. Stirling. NJ 07980.

\section*{TELEPHONES \& PARTS}

TELEPHONES UNLIMITED, EQUIPMENT SUPPLIES. ALL TYPES, REGULAR, KEYED, MODULAR. FREE CATALOG. Call now toll free. (800) 824-7888. In California (800) 852-7777. Alaska-Hawaii (800) 824-7919. Ask for operator 738.
OMAK PHONE CENTER. All types of telephones - keyed. modular and decorator. Catalog \(\$ 1.00\) (refundable). Box 38. Beardstown, H. 62618. (217) 323-3963.

\section*{ALARMS}

QUALITY BURGLAR-FIRE ALARM EQUIPMENT at discount prices. Free Catalog! Steffens. Box 624 K , Cranford. N.J prices.
07016.

\section*{Aurglar - Firo - Srinalks Alarin Cafalpe \\ - Billions of dollars lost annually due to lack of protective warning alarms. \\ FREE CATALOG Shows you how to \(\begin{array}{ll} & \begin{array}{l}\text { protect your home, business } \\ \text { and person. Wholesale } \\ \text { prices. Do-it-yourself. Free } \\ \text { engineering service. }\end{array} \\ \text { Box } 82802 & \text { PE-089 } \\ \text { Burdea Becurity Co. }\end{array}\)}

GUIDE TO CHOOSING AND INSTALLING AUTO BURGLAR ALARMS. Send \(\$ 6.95\) to: Auto Securities. P.O. Box 22487 Honolulu. Hawan 96822.
PROFESSIONAL Quality Alarm systems for your home. For free catalogue. write: EAC, Electronics Department, Box 7881A. Colorado Springs, CO 80933.

\section*{HIGH FIDELITY}

DIAMOND NEEDLES and Stereo Cartridges at Discount prices for Shure. Pickering. Stanton. Empire, Grado and ADC Send for free catalog. LYLE CARTRIDGES, Dept. P, Box 69 Kensington Station, Brooklyn. New York 11218. For Fast Service call Toll Free 800-221-0906
LOWEST PRICES on stereo components. BOSE, SAE, DBX and more. Dynamic Sound, Box 168 (B), Starkville, MS 39759. (601) 323-0750. 1 PM - 9 PM.

\section*{WANTED}

GOLD. Silver. Platinum, Mercury. Tantalum wanted. Highest prices pard by refinery. Ores assayed. Free circular. Mercury Terminal, Norwood, MA 02062.

\section*{PERSONALS}

MAKE FRIENDS WORLDWIDE through international correspondence. illustrated brochure free. Hermes-Verlag. Box \(110660, Z . D-1000\) Berlin 11, W. Germany.

\section*{INSTRUCTION}

UNIVERSITY DEGREES BY MAIL! Bachelors, Masters, Ph.D's. Free revealing details. Counseling, Box 317-PE08, Tustin, California 92680.

LEARN WHILE ASLEEP! HYPNOTIZE! Astonishing details, strange catalog free! Autosuggestion. Box 24-zD. Olympia, Washington 98507.
INTENSIVE 5 week course for Broadcast Engineers. FCC First Class license. Student rooms at the school. Radio Engineering Inc.. 61 N . Pineapple Ave., Sarasota. FL 33577
1979 "TESTS - ANSWERS" for FCC First Class License. Plus - "Self Study Ability Test." Proven! \(\$ 9.95\) Unconditional Moneyback Guarantee. Command Productions. Box 26348-P. San Francisco, CA 94126.

RADIO BROADCASTING: Become DJ, engineer. Start your own station - investment, experience unnecessary! Receive own station - investment, experience unnecessary! Receive
free equipment, records. Free details. Broadcasting. Box tree equipment, records. Fre
130-A8. Paradise. CA 95969 .
FCC LICENSE over 1200 questions. answers, discussions, illustrations. 3rd. 2nd, 1st. phone, radar. broadcast. endorsements. \(\$ 14.95\). SPECIFIC SKILLS INTERNATIONALE Inc. P.O. Box 1233, Cocoa. Flonda 32922. Mastercharge, VISA UNIVERSITY DEGREES BY MAIL!!! Bachelor's, Master's. Doctorates Free Information. Careers. Department Education. Box 10068, Washington. DC 20018.
EARN HIGH SCHOOL DIPLOMA, spare time. Collegerecognized. Credits given for previous courses. job experience. Low tuition. Exams repeated free. Individual counseling. State registered. Cambridge Academy. Dept. PE-1, 409 E. Osceola, Stuart, Florida 33494 Toll-free 1-800-327-8103.
LOANS - Former bank execulive explans how to obtain loans from banks, other lenders. \(\$ 3.00\). Businessman's supplement \$2.00. Syivan Press, P.O. Box 18212. San Jose. CA 95158.

\section*{GOVERNMENT SURPLUS}

MANUALS for Govt Surplus radios, test sets. scopes. List 50 cents (com). Books. 7218 Roanne Drive, Washington. D.C. 20021.

JEEPS- \(\$ 59.30!\) - CARS \(-\$ 33.50!1\) - 200.000 ITEMS!! GOVERNMENT SURPLUS - Most COMPREHENSIVE DIRECTORY AVAILABLE tells how. where to buy - YOUR AREA - \(\$ 2.00\) - MONEYBACK GUARANTEE - Government Information Services, Department GE-80. Box 99249, San Francisco. California 94109
GOVERNMENT SURPLUS. Buy your Area How, where. Send \(\$ 2.00\). SURPLUS HEADQUARTERS BUILDING. Box 30177-PE. Washington. DC. 20014
"GOVERNMENT SURPLUS DIRECTORY" BuY 500.000 Items (Including Jeeps) ... low as 24 on dollar' Most complete information avalable - \(\$ 2.00\) (guaranteed). Surplus Disposal. Box 19107 -HH. Washington. DC 20036

\section*{FOR INVENTORS}

PATENT AND DEVELOP Your invention. Registered Patent Agent and Licensed Professional Engineer. Send for FREE Agent and Licensed Protessional Engineer, Send for FREE Richard L. Miller. P.E. 3612 Woolworth Building New York. Richard L. Miller. P.E., 3612 Woolworth Building. New York.
NY 10007 (212) 267.5252 NY 10007. (212) 267-5252.

\section*{INVENTIONS WANTED \\ EREE CONSULTATION - NOIDEATOO SMALL \\ }

\section*{American Inventors Corp. \\ 59 Interstate Dr Dept PE}

West Springfield. MA 01089 (413) 737.5376
UNPATENTED IDEAS AND INVENTIONS can be sent directly to companies as an external submission. If a company is interested, help with the dratting and filing of a patent application is usually given. Send \(\$ 3.00\) for: procedure outline. external submission form copies. guide for corporation addresses and interests; to: Submissions Dept., P.O Box 55 , Rochester. MN 55901
MR. INVENTOR: America's foremost development firm offers a complete service. For free details, write: Charles S . Prince Co.. Inc. Empire State Building. Suite 3308-E, N. Y.C. 10001.

\section*{BUSINESS OPPORTUNITIES}

ERASE DEBTS with little-known law-create wealth!! Details FREE-Blueprints. No. EE8. Box 900. Bronx. NY 10471. I MADE \(\$ 40,000.00\) Year by Mailorder! Helped others make money! Torrey, Box 318-NN. Ypsilanti, Michigan 48197.
NEW LUXURY CAR WITHOUT COST' Free Report CodexZZ, Box 6073, Toledo. Ohı 43614. (419) 865-5657.

MECHANICALLY INCLINED individuals desiring ownership of Small Electronics Manufacturing Business - without in vestment. Write: BUSINESSES, 92-K2 Brighton 11th, Brook lyn. New York 11235.
MILLIONS in Man!!! Free Secrets. Transworld-17, Box 6226 Toledo. OH 43614

\section*{MECYMMCAIY IMANED MDIYDUALS}

Assemble electronic devices in your home. Investment, knowledge, or experience not neces sary. Get started in spare time. Above average profits. \(\$ 300-\$ 600 / \mathrm{Wk}\) possible. Sales handled by others. Write for free details.
ELECTRONIC DEVELOPMENT LAB

\section*{Drawer 1560 PE, Pinellas Park, FL 33565,}

BEAT THE RACES! Free Booklet ' "Unlimited Lifetume income From Thoroughbreds-Harness". Elias, Box 47BB, Brooklyn. NY 11219.
EARN EXTRA MONEY - Homeworkers Needed Stuffing Envelopes! Free Detalls Write Jadeway. Box 186-ZD. Gaines. MI 48436.
FREE CATALOGS Repair ar conditioning, refrigeration. Tools, supplies. full instructions. Doolin. 2016 Canton. Dallas. Texas 75201.
\(\$ 1200.00\) MONTHLY Correcting Pupils' Lessons!! Start Immediately. Free Report. Send self-addressed stamped envelope. Home, Box 98201-SJXR, San Diego, CA 92109.
QUALITY ELECTRONICS MANUFACTURER oftering exclusive marketing areas to persons with dentalmedical, elec tronics, and/or professional background. Dealerships for sales and installation of innovative electronic products. Unlimted growth with complete factory support. Send confidential resume to Scott Ritchie, EEC. 797 Industrial Court. Bloomfield Hills. Michigan 48013.
GET RICH SLOWLY! How to operate your own prolitable service business. Years of information and experience condensed in one easy-to-understand guide. \(\$ 9.95\). ESI, 4500 East Speedway \#33. Tucson. Arizona 85712.
WIN AT FOOTBALL! We beat the pointspread an incredible \(70 \%\) last 11 years! CBS-TV called us No. 1 football prediction newsletter! Guaranteed winner! Free: game by game record last 4 years. Winners Sports. 5711-S 14th Ave., Brooklyn, NY 11219.

EARN \(\$ 1000\) STUFFING 1000 ENVELOPES! Money back guaranteed. Details \$1,00. D. Fraser, 208 S. 4TH. DeSoto. MO 63020.

BORROW \(\$ 25.000\) "OVERNIGHT." Any purpose. Keep indefinitely! Free Report! Success Research. Box 29263-GH. Indianapolis. Indiana 46229.
BECOME A CONSULTANT. Earn \(\$ 20-\$ 40 / \mathrm{hr}\) being in business for yourseff. For detailed information on starting or expanding your own engineering consuling business, wile. Dr. S. Tomczak. ST\&A. Dept. PO. Box 480530 . Los Angeles. CA 90048

\section*{EMPLOYMENT OPPORTUNITIES}

ELECTRONICS AVIONICS EMPLOYMENT OPPORTUNITIES. Report on jobs now open. Detals FREE. Aviation Employment Information Service. Box 240E. Northport. New York 11768
RADIO-TV JOBS . . Stations hiring nationwide' Free details: "Job Leads", 1680-PG Vine. Hollywood. CA 90028

ELECTRONICS INSTRUCTORS Challenging career opportunity with advancement with fully accredited electronics schools. Prefer at least 4-5 years industry experience. Very satistying environment working with young people. Send resume to: United Electronics institute. 1201 E Atlantic Blvd. Pompano Beach. Florida 33060. Or call: Mr Gold 1-800-327-1110 for national placement. Equal Opportunity Employer.

\section*{DO-IT-YOURSELF}

AUDIO/ANALOG/SYNTHESIS. Plans, parts. kits. etc tor the most exciting sound projects ever Get on our mailing list send \(25 q\) to: CFR Associates Inc., Newton. N.H. 03858.

COMPLETE LINE Security Systems for home, Business. Send self addressed, stamped envelope. Darbar. Box 1147E, San Diego, CA 92112.
ELECTRICAL: testers. books. tooks, supplies. Do It Yourself. professional. Free 108 page catalog. Blufton Products. Dept. A. Box 87, Bluftion. OH 45817

\section*{REAL ESTATE}

BIG . . FREE .. FALL CATALOG! Over 2.600 top values coast to coast! UNITED FARM AGENCY. 612-EP. West 47th, Kansas City. MO 64112

\section*{MICROCOMPUTERS}

TRS-80 MICRO COMPUTERS by Radıo Shack' at \(15 \%\) discount! Also have soltware for business systems Micro Management Systems, Carro, GA 31728. (912) 377-7120.

\section*{RUBBER STAMPS}

RUBBER STAMPS, BUSINESS CARDS. Many new products. Catalog. Jackson's. E-100. Brownsville Rd. Mt. Vernon. III. 62864.

\section*{BOOKS AND MAGAZINES}

FREE book prophet Elyah coming betore Christ Wonderful bible evidence. MEGIDDO Mission. Dept. 64, 481 Thurston Rd., Rochester. N. Y 14619.
POPULAR ELECTRONICS INDEXES For 1977 now available Prepared in cooperation with the Editors of "P, E" this index contains hundreds of references to product tests. construction projects. circuit tips and theory and is an essential companion to your magazine collection. 1977 Edition. \(\$ 1.50\) per copy. All editions from 1972 onward still available at the ser copy. All editions from \(\$.25\) per order for postage and handling. \(\$ 50\) per copy, foreign orders. INDEX. 6195 Deer Path, Manassas Va. 22110.

\section*{UNDERSTANDING
CALCULATOR MATH \\ 224 pages \(\$ 395\) Order \#LCB 3321 Check or money order Texas Instruments. P 0 Box 3640 sales tax where applicable \\ > Texas Instruments \\ \\ Texas Instruments} \\ \\ Texas Instruments}

OWNER REPAIR OF AMATEUR RADIO EQUIPMENT Book \$7.95. K6RQ. 14910 LG Blvd.. Los Gatos. CA 95030. CB TECHNICIANS - now available - SSB Engineering Practice Manual. Most comprehensive book on how to modity and expand any CB radio for maxımum performance and range. Includes the newest PLL radios. Free fact sheet or send \$14 95. SSB Publications. Box 960 . Hyannis. MA 02601

\section*{HYPNOTISM}

FREE Hypnotism. Self-Hypnosis. Sleep Learning Catalog Drawer H400, Ruidoso. New Mexico 88345.

\section*{MOTION PICTURE VIDEO FILMS}

VIDEO MOVIES: all ratings: Beta. VHS Bought. Sold. Rented VCR's. Blank tapes. Supplies: Cat. \(\$ 1.00\) (deductible) (201) 572-1222. Devoe. P.O. Box 593 . Edison. NJ 08817 DISCOUNT VIDEO TAPES. Adull movies Free price list VTR, Box 234. Herald. CA 95638. (209) 748-2616.
JUST OUT OF THIS WORLD! "Superman" (Christopher Re eves) S-8 color sound: "Buck Rogers" (Gıl Gerard) specia effects space age movies. 200 S-8 Eastman color mag snd only \(\$ 29.95\) ea: both \(\$ 57\). "Superman" also avall in 4CJ' S-8 col snd format. \(\$ 48.95\) ea special. Add \(\$ 125\) ea postage col,snd Forner's Day Git Dollars - order Altred Hitchcock's Frenzy" scenes from the big picture "Incredble Shrinking Man" (Journey into the unknown). S-8 B W 200 and \(\$ 1795\) Man (Journey into the unknown). S-8 BW 200 and \(\$ 1795\) ea + \(90 \notin\) ship. Other price selections. Abborl and Costic \(\$ 1895\) Who's On (baseball class) 200 S-8 Wi 100 footer. \(\$ 14.95\). Stay at home \& enjoy movies' Watch Wa er Mathau in "Fail Safe" \& Jimmy Stewart in "Mr. Smith Goes to Washington" 400 S-8 B W snd only \(\$ 35.95\) ea PPD Summertime Music - Thoroughly Modern Mille: Sweet Char ity. Jesus Christ Superstar. 400 color S-8 and features priced to sell out @ \$42.95 ea PPD. Limited ofter while stock lasts Mail order today! New Universal 64-pg glossy catalog, \$1.25 Columbia, Sporllte. Ring Classics. Universal order forms 40qea. SPORTLITE FILMS. Elect-8 79. Box 24-500, Speed way. IN 46224

\section*{MISCELLANEOUS}

MPG INCREASED! Bypass Pollution Devices easily. RE VERSIBLY" Free details - Posco GEE8. 453 W 256. NYC 10471.

NEW CAR FREE YEARLY! Free information! Super-Car Publications. Box \(28101-\mathrm{N}\). St. Louis. MO 63119
GASOLINE MILEAGE INCREASED DRAMATICALLY! SImplified retuning methods. Details FREE' Techneering. Box 12191 PE. Norfolk, VA 23502.

\section*{Popular Electronics}

\section*{ADVERTISERS INDEX}

\section*{SERVICE NO. ADVERTISER PAGE NO.}
Aaron-Gavin Instruments 68
4 Active Electronics Sales Corp. 81
7 American Antenna Cover 4
Ancrona Corp.
Cover 3
10 B \& F Enterprises 94
52 Cambridge International, Inc. 59
93
Cleveland Institute of Electronics, Inc. \(36,37,38,39\)
1 Communications Electronics 76
.76
13 Continental Specialties Corp. 9
Crutchfield Corp. 12
16 Delta Products, Inc. 79
Digital Research Corp. 92
15 DSI Instruments, Inc. 46
19 EICO 66
20 Electra Co. 2
21 Fluke 7
23 Formula International 91
. .8
24 Fuji Photo Film USA, Inc. 15
25 General Engines Co. 93
27 Grantham College of Engineering 66
5 Heath Co. \(63,64,65\)
28 Illinois Audio 77
30 International Components Corp 90
31 J \& R Music World 77
JS \& A National Sales Group 22
34 Kedman Company 76
35 McIntosh Laboratory, Inc 93
Micro Computer Mart
Micro Computer Mart
38 Mini Micro Mart 76
39 Netronics R \& D Ltd. 75
NRI Schools 71
19
41 Ohio Scientific Instrument 5
42 OK Machine \& Tool Corp. 43
11 onComputing 13
43 PAIA Electronics, Inc. 71
44 PAL "Firestik" Antenna Corp. 74
45 Poly Paks 84
46 Quest Electronics 80
Radio Shack 83
Sabtronics International, Inc. 69
Sharper Image, The 14
47 Shure Brothers Inc 14
. .91
48 Solid State Sales
Speakerlab, Inc. 74
Synchro Sound 68
50 Tab Books 77
36 Timeglow Company 41
51 U.S. Marine Corp \(.27,28,29\)

\title{
 WOMRI.TI Personal Electronics News
}

GM deletes "standard" radios in a settlement of the auto sound antitrust suit filed against it in March by members of the Custom Automotive Sound Association (CASA). Under terms of the settlement, General Motors will offer the delete option on the standard radios of all of its recently introduced X-body cars. Moreover, GM will permit dealers to exchange a Delco radio in these cars for credit against purchase of any GM part. (Former policy restricted exchange credit only toward purchase of another Delco radio.) GM also agreed not to standardize Delco radios in any additional models through the end of the 1983 model year. Thereafter, if GM intends to extend radio standardization, it will furnish CASA with at least four months notice.

A home energy-saving system has been developed by William Lamb (No. Hollywood, CA), pioneer in the development of silicon solar cells. It consists of a lightweight panel of 36 cells that are capable of developing 16 volts to charge a 12 -volt storage battery at a 1.5 -ampere/hr rate. Enough power is available from a single panel system to operate a low-power \(12^{\prime \prime}\) monochrome TV receiver. The glass surface of each cell is toughened and backed by a special chemical compound that makes it practically impervious to hammer blows and all kinds of weather. Virtually mainte-nance-free, the system costs nothing to operate. Also, its modular design permits quick expansion of the system at any time. Price of a 36 -cell system is \(\$ 325\).

Microwave-oven market growth could be hampered unless frequencies near 10 GHz are allocated for cooking, according to Litton Microwave Cooking. As a result, Litton will try to bypass a recent \(F C C\) ruling by taking its case to the World Administrative Radio Conference (WARC) to be held in Geneva in September. The FCC, currently considering a proposal for a common-carrier data network based in part on local \(10-\mathrm{GHz}\) radio facilities, said microwave-oven use in those bands is "incompatible with existing and planned services for both bands." Resolutions adopted at WARC will be submitted to participating governments for
approval. If the U.S. Senate approves WARC resolutions including the change Litton seeks, it would overturn the FCC ruling, since Senate approval would have treaty status.

A computer marathon record is claimed by a group of Holy Cross high-school students in San Antonio, TX. The 311 students who took part in \(8 \frac{1}{2}\)-day around-the-clock training sessions believe their accomplishment deserves mention in record books. Instructor Dennis Doose suggested the training marathon after students voluntarily began staying after class to use the school's TRS-80 microcomputer. Radio Shack, manufacturer of the TRS-80, agreed to lend the school 22 additional microcomputers for the event.

A talking Language Translator, utilizing speech synthesis and offering solid-state modules for various languages, was announced by Texas Instruments. Designed as an aid in communicating in a foreign country and for language students in learning to pronounce a foreign language, it is programmed with a vocabulary of words and phrases selected for everyday use. The translator has the ability to form thousands of spoken phrases by linking together its spoken vocabulary words. Each module will contain about 1000 words of which half will be spoken and displayed and half will be displayed only. Prices will be about \(\$ 250\) for the Language Translator and \(\$ 50\) for each language module.

The deaf can read TV dialog with a new device soon to be marketed by Sears, Roebuck and Co. Next year, \(A B C-T V, N B C-T V\), and Public Service Broadcasting will be airing about 20 hours of programs with special encoding. When decoded, dialog will appear on-screen in caption form with the aid of the decoding device. Captioning information will not appear on the screen if no decoder is used. For the past eight years, the department of Health, Education and Welfare (HEW) has paid for the research that has culminated in the development of captioned programs.

You don＇t waste a second on＂mechanics＂with A P All－Circuit Evaluators．

You figure out the circuit you want， then plug it in for testing．You decide to improve your layout，and you make your moves as quickly as you think them up．There＇s just no faster or easier way to build and test
circuits and circuit ideas． But just because breadboarding is now such a cinch，don＇t get the idea that you don＇t have electronic integrity．Our solderless plug－in tie points are made of a special non－ corroding alloy．Use them as often as you like．
How many tie points do you need？ Our smallest ACE has 728，our
largest has 3，648．And all of them accept all DIP sizes．
Everything is quality all the way． You can even see the difference in our harder，shinier plastic matrix． See for yourself．Phone（toll－free） 800－321－9668 for the address of your nearby A P Products dealer．And ask for our complete A P catalog， The Faster and Easier Book．

AP PRDDレCTS
INC口RPロRATED
Box 110 － 72 Corwin Drive
Painesville，Ohio 44077
Tel．216／354－2101
TWX：810－425－2250
Faster and Easier is what we＇re all about．

SOLD AND SERVICED EXCLUSIVELY BY 3,500 REGISTERED K40 DEALERS THROUGHOUT THE U.S. AND CANADA```

[^0]: Al-Dc-energized buzzer bell. Sonalert ${ }^{\text {tM }}$ or similar audible alarm*
 C1-0.I- $\mu \mathrm{F}, ~ \mathrm{IO}(\mathrm{O})$-voil dise ceramic
 DI.D2- 1 N 40 (O)] rectifier

 F1-Fast-blow fuse *
 K I-Dc-energised relay*
 K2-117-volt relay*
 Q1 through Q4 - 2N2222 or similar npn
 switching transistor*

[^1]: C1. ($2-0.02-\mu \mathrm{F}$ capacior
 C3-1- HF . 12-V electrolytic
 DI 18-V fener (see lext)
 D2-1N914
 ICI. KC2-1.M3914 Dot/Bar Driver (National) IC3-LM2917N 14-pin F/V Converter (Na(ional)
 IC4 10-V. $0.5-\mathrm{A}$ positive regulator LED) through I.ED20-Bright red 1 ED RI. R6 20.000-chm, $1 / 2$-W resisor R2-11(K)-ohm, 1\%, 1/2-W resistor R3—2400-ohm. 1%. $1 / 2-\mathrm{W}$ revistor R4 10-ohm resistor (see test) R5. R7-10.(M) (0)-ohm. 1/2-W resistor
 RX 470-ohm. $1 / 2$-W resistor
 R9—101,000-ohm, multi-lurn pot
 RIO-10.600-ohm, multi-turn por

[^2]: Have a problem or question in circuitry, components, parts availability, etc? Send it to the Hobby Scene Editor, popular electronics, One Park Ave.. New York, N.Y. 10016 . Though all fetters can't be answered individually, those with wide interest will be published.

