
Copyright
by

Gokhan Sayilar
2014

The Thesis Committee for Gokhan Sayilar
Certifies that this is the approved version of the following thesis:

Cryptoraptor: High Throughput Reconfigurable
Cryptographic Processor for Symmetric Key
Encryption and Cryptographic Hash Functions

APPROVED BY

SUPERVISING COMMITTEE:

Derek Chiou, Supervisor

Mohit Tiwari

Cryptoraptor: High Throughput Reconfigurable
Cryptographic Processor for Symmetric Key
Encryption and Cryptographic Hash Functions

by

Gokhan Sayilar, B.S.

THESIS

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE IN ENGINEERING

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2014

To my family and many friends...

Acknowledgments

A major research project like this is never the work of anyone alone. I

would like to extend my appreciation especially to the following.

First and foremost I offer my sincerest gratitude to my supervisor, Dr.

Derek Chiou, for his excellent guidance, caring, and patience. I would also like

to thank him for being an open person to ideas, encouraging and helping me

to shape my interest and ideas, and giving me the freedom to work in my own

way. He’s the funniest advisor and one of the smartest people I know.

Besides my advisor, I would like to thank to my second reader, Dr.

Mohit Tiwari, for his advises and insightful comments.

I am also thankful to my friends in US, Turkey, and other parts of the

World for being sources of laughter, joy, and support.

Last but not least, I would like to thank my parents and my brother for

their continuous love and unconditional support in any decision that I make.

I also want to thank to Semiconductor Research Corporation and Freescale

Semiconductor, Inc for their financial support which allowed me to undertake

this research

For any errors or inadequacies that may remain in this work, of course,

the responsibility is entirely my own.

v

Cryptoraptor: High Throughput Reconfigurable
Cryptographic Processor for Symmetric Key
Encryption and Cryptographic Hash Functions

Gokhan Sayilar, M.S.E
The University of Texas at Austin, 2014

Supervisor: Derek Chiou

In cryptographic processor design, the selection of functional primitives

and connection structures between these primitives are extremely crucial to

maximize throughput and flexibility. Hence, detailed analysis on the speci-

fications and requirements of existing crypto-systems plays a crucial role in

cryptographic processor design. This thesis provides the most comprehensive

literature review that we are aware of on the widest range of existing cryp-

tographic algorithms, their specifications, requirements, and hardware struc-

tures. In the light of this analysis, it also describes a high performance, low

power, and highly flexible cryptographic processor, Cryptoraptor, that is de-

signed to support both today’s and tomorrow’s encryption standards. To the

best of our knowledge, the proposed cryptographic processor supports the

widest range of cryptographic algorithms compared to other solutions in the

literature and is the only crypto-specific processor targeting the future stan-

dards as well. Unlike previous work, we aim for maximum throughput for all

vi

known encryption standards, and to support future standards as well. Our

1GHz design achieves a peak throughput of 128Gbps for AES-128 which is

competitive with ASIC designs and has 25X and 160X higher throughput per

area than CPU and GPU solutions, respectively.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xi

List of Figures xiii

Chapter 1. Introduction and Motivation 1
1.1 Introduction . 1
1.2 Our Contributions . 4
1.3 Thesis Outline . 5

Chapter 2. Related Work 7
2.1 Instruction Set Architecture Extensions 8
2.2 Algorithm Specific Hardware 10
2.3 Domain Independent Configurable Processors 11
2.4 Configurable Cryptographic Processors 13

Chapter 3. Cryptographic Algorithm Analysis 17
3.1 Existing Workload Characterizations 17
3.2 Algorithm Selection . 19
3.3 Analysis Methodology . 23
3.4 Detailed Analysis . 24

3.4.1 Operation Classes . 24
3.4.2 Table Lookup Structure 28
3.4.3 Bundled Operation Patterns 31
3.4.4 Special Functional Units 33
3.4.5 Processing Element Width 37

viii

3.4.6 Connection Structures 39
3.4.7 Storage Requirements 41

Chapter 4. Cryptographic Algorithm Instrumentation 43
4.1 Existing Binary Instrumentation of Cryptographic Algorithms 43
4.2 Instrumentation Methodology 45
4.3 Detailed Analysis . 47

Chapter 5. Cryptoraptor: Reconfigurable Cryptographic Pro-
cessor 51

5.1 Design Methodology . 51
5.2 Cryptoraptor . 53
5.3 Execution Tile . 54
5.4 Connection Row . 56
5.5 Processing Element Row . 59
5.6 Processing Element . 60
5.7 Functional Units . 64

5.7.1 Logical Operation Unit (LOU) 64
5.7.2 Table Lookup Unit (TLU) 67
5.7.3 Arithmetic Unit (AU) 69
5.7.4 Permutation/Expansion Unit (PEU) 71
5.7.5 Shifter/Rotator Unit (SRU) 72

Chapter 6. Processor Analysis 75
6.1 Implementation . 75
6.2 Timing Analysis . 77
6.3 Area Analysis . 79
6.4 Power Analysis . 82
6.5 Performance Analysis . 86
6.6 Resource Utilization . 93
6.7 Current Algorithm Coverage 95
6.8 Limitations . 97

ix

Chapter 7. Cryptographic Algorithm Mapping 100
7.1 Block Ciphers . 103

7.1.1 Advanced Encryption Standard (AES) 104
7.1.2 Blowfish . 107
7.1.3 Camellia . 109
7.1.4 CAST-128 . 112
7.1.5 Data Encryption Standard (DES) 115
7.1.6 GOST . 118
7.1.7 Kasumi . 119
7.1.8 Rivest Cipher 5 (RC5) 122
7.1.9 SEED . 124
7.1.10 Twofish . 126

7.2 Stream Ciphers . 129
7.2.1 Rivest Cipher 4 (RC4) 129
7.2.2 Phelix . 131

7.3 Cryptographic Hash Functions 133
7.3.1 Message Digest Algorithm-4 (MD4) 134
7.3.2 Message Digest Algorithm-5 (MD5) 136
7.3.3 Secure Hash Algorithm-1 (SHA1) 138
7.3.4 Secure Hash Algorithm-2 (SHA2) 139

Chapter 8. Future Work 143

Chapter 9. Conclusion 145

Appendices 147

Appendix A. Detailed Operation Classes Usage 148

Appendix B. Operation Clusters 153

Appendix C. Operation Bundles 155

Appendix D. Detailed Processing Element Width Usage 157

Bibliography 159

x

List of Tables

3.1 The distribution number of parallel lookup operation in cryp-
tographic algorithms . 31

3.2 The distribution of XOR and SBOX patterns in cryptographic
algorithms . 33

3.3 The distribution of Shift/rotate and logic operation patterns in
cryptographic algorithms . 33

3.4 The distribution of XOR and Arithmetic operation patterns in
cryptographic algorithms . 34

3.5 The special functional unit requirements in cryptographic algo-
rithms . 34

3.6 The modular arithmetic base distribution in cryptographic al-
gorithms . 36

4.1 Instruction Classes . 46
4.2 Instruction Class Frequencies . 47
4.3 Operation Class Frequencies . 47
4.4 Distribution of Memory Accesses 49
4.5 Distribution of Data Read/Write Granularities 49

5.1 The control structure of one PE connector 57
5.2 The input selection structure of PE connector (least significant

4 bits of 6 selection bits) . 58
5.3 The input structure of PE . 61
5.4 The output structure of PE 62
5.5 The control signal structure of PE 62
5.6 The Configurable Logic Block functionality 66
5.7 The Table Lookup Unit functionality 68
5.8 The Arithmetic Unit functionality 70
5.9 The Bit Selector control structure 72
5.10 The Shifter/Rotator Unit functionality 73

xi

5.11 The Operation Block functionality 74

6.1 The cycle time of functional units in PE 77
6.2 The cycle time comparison of functional units with bundles . . 78
6.3 The cycle time of sub-modules in Cryptoraptor 79
6.4 The area comparison between Design Compiler and CACTI . 80
6.5 The area of functional units in PE 80
6.6 The area comparison of functional units with bundles 81
6.7 The area of sub-modules in Cryptoraptor 81
6.8 The power usage comparison for memory blocks 82
6.9 The power usage of functional units in PE 83
6.10 The power usage comparison of functional units with bundles . 84
6.11 The power usage of modules in Cryptoraptor 84
6.12 Power usage comparison of GPPs 85
6.13 AES Performance comparison of ASIC solutions 88
6.14 AES Performance comparison of FPGA solutions 90
6.15 AES Performance comparison of GPP solutions 91
6.16 Performance summary of algorithms on Cryptoraptor 92
6.17 Resource utilization summary of mapped algorithms on Cryptoraptor 94
6.18 Resource utilization summary of mapped algorithms on Cryptoraptor 94
6.19 The current coverage of cryptographic algorithms 96

7.1 Algorithm summary and selection for mapping process 101
7.2 Instruction List . 102

A.1 The special functional unit requirements in cryptographic algo-
rithms . 148

B.1 Operation clusters and patterns 153

C.1 Operation patterns . 155

D.1 Operation width (PE way) . 157

xii

List of Figures

2.1 The distribution of energy dissipation in an in-order RISC pro-
cessor [92] . 12

3.1 The use of operation classes in cryptographic algorithm classes 25
3.2 The ratio of different table sizes used in cryptographic algorithms 29
3.3 The ratio of different table entry widths used in cryptographic

algorithms . 30
3.4 The distribution of logical operation patterns in cryptographic

algorithms . 32
3.5 The coverage ratio of algorithms that require modular arithmetic 37
3.6 The distribution of algorithms requires 1, 2, 4, 8 and 16-way

processing elements . 38
3.7 The trend of connection structure among processing elements

used for implementing algorithms 40

4.1 Instruction and Operation Class Distribution 48

5.1 The internal structure of Cryptoraptor 53
5.2 The high level structure of Execution Tile 55
5.3 High level unit structure of a Processing Element 60
5.4 The internal structure of LOU 65
5.5 The internal structure of TLU 67
5.6 The internal structure of AU 69
5.7 The internal structure of SRU 73

6.1 The utilization summary . 95
6.2 The distribution of supported and non-supported algorithms

based on limitations . 97

7.1 The overall structure of Feistel network and its derivations . . 104
7.2 The traditional structure of AES 105

xiii

7.3 The round function of Blowfish 108
7.4 The high level structure of Camellia 110
7.5 The internal structure of one Camellia round 111
7.6 The round function template for CAST-128 113
7.7 The round function f of DES 116
7.8 The overall structure of GOST block cipher 118
7.9 The traditional structure of Kasumi 120
7.10 Merging one odd and one even round of Kasumi as one big

operation block. 121
7.11 Two half rounds (one round) of RC5 123
7.12 The round structure of SEED block cipher 125
7.13 The overall structure of Twofish block cipher 127
7.14 One block of Phelix encryption 132
7.15 The high level structure of the Merkle-Damgard construction . 133
7.16 The round structure of MD4 134
7.17 The structure of one MD5 operation 136
7.18 The round structure of SHA-1 138
7.19 The round structure of SHA-2 140

xiv

Chapter 1

Introduction and Motivation

1.1 Introduction

As the demand for secure communication bandwidth is growing at an

unprecedented pace, efficient and high throughput cryptographic processing

becomes increasingly critical for overall system performance. Besides high

performance computing, the flexibility also becomes an essential feature of

cryptographic processors because of the numerous cryptographic algorithms

and security standards. New cryptographic algorithms are continuously being

developed, which makes existing hardware inadequate to satisfy new require-

ments. Thus, it becomes more desirable for cryptographic processors to sup-

port existing crypto-systems as well as having the potential to support future

standards.

To be to cover all cryptography domain, one must understand the whole

domain and existing requirements first. In current cryptography standards,

there are three types of algorithms: (i) symmetric-key encryption and (ii)

cryptographic hash functions, and (iii) public-key encryption.

a. Symmetric-key encryption: Symmetric-key encryption refers to a class

of cryptography algorithms where a sequence of operations is repeatedly

1

applied to the blocks of data using a single shared key to encrypt and de-

crypt. Since both parties have to share and use a single "secret" or "key"

for encryption and decryption, symmetric-key encryption is also known

as "shared key encryption" or "private key encryption". Symmetric-key

encryption algorithms exist as block and stream ciphers. While block

ciphers tend to be used for higher security, stream ciphers are known to

be fast, secure enough, easier to implement, and requires less processing

power. Advanced Encryption Standard (AES) [58], and Rivest Cipher 4

(RC4) [213] are often used examples of this algorithm class.

b. Cryptographic hash functions: Cryptographic hash functions refer to

a class of irreversible one-way functions that take an arbitrary length

message and generate a fixed-size bit sequence, message digest. Cryp-

tographic hash functions are widely used in the form of authentication

such as digital signatures and message authentication codes. Secure Hash

Algorithm-1 (SHA1) [74] and Secure Hash Algorithm-2 (SHA2) [74] are

widely used examples of this class.

c. Public-key encryption: Public-key encryption is a class of cryptography

algorithms that requires a pair of keys; one public and one private for

each user. The private key is always in the possession of the owner,

while public key is sent along with the message or publicly available.

Even though the public and private keys are entirely different, they are

mathematically linked to each other as specified in the algorithm. Since

2

the keys are used for performing opposite operations, public-key encryp-

tion is also known as "asymmetric cryptography". The security of a

public key encryption depends on the computational infeasibility of the

algorithm which generally involves (i) computing the factors of a gigan-

tic number (300 decimal digits or more) that is the product of two large

prime numbers or (ii) exponentiation of a significantly large number over

a significantly large another number in modulo p where p is a large prime.

The widely known public-key encryption algorithms are Diffie-Hellman

key exchange [98] and RSA [112].

While symmetric-key encryption algorithms and hash functions mostly

rely on primitive logical and arithmetic operations that can be computed ef-

ficiently, modular exponentiation and modular multiplication are the most

frequent operations in public-key encryption. Public-key encryption tends to

be very slow and resource intensive. They require special hardware support for

high performance since they have to deal with very large numbers (up to 2048

bits). Public-key encryption algorithms are relatively computationally expen-

sive compared to the most, if not all, symmetric-key encryption algorithms

and cryptographic hash functions; therefore, they are expensive in terms of

time, area, and power.

In this project, our studies and the proposed cryptographic processor fo-

cus on symmetric-key encryption algorithms and cryptographic hash functions

only since they rely on common structures and completely different computa-

3

tional primitives than public-key cryptography. Thus, public-key encryption

is currently beyond the scope of this work.

1.2 Our Contributions

New cryptography standards and fast implementation of existing ones

are continuously being developed. Implementations are ranging from application-

specific integrated circuits (ASICs), which are fast but inflexible, to general

purpose processor (GPP) based software, which are flexible, but slow. In this

thesis, we address the problem of having highly flexible and yet high perfor-

mance cryptographic processor.

To design a high performance configurable crypto processor, one must

first understand which functionalities must be implemented by that proces-

sor in order to support current cryptographic algorithms while providing the

capability of implementing future algorithms as required.

Our first contribution is the comprehensive literature review on crypto-

graphic algorithms and the detailed analysis on the specifications and require-

ments of various crypto-systems. To the best of our knowledge, our algorithm

analysis of 148 existing symmetric-key encryption algorithms and hash func-

tions is the first and only work that provides comprehensive information about

the algorithms and hardware structures that can efficiently implement them.

During our study, we focused on the architectural structure of cryptographic

algorithms to bridge the gap between hardware designers and cryptographic

algorithm developers. Even though each algorithm has different structures

4

and characteristics, we focused both on finding common patterns and charac-

teristics, as well as the features that differ between algorithms. Unlike other

research projects that focus on a limited set of currently popular algorithms,

our analysis relies on a wide range of cryptographic algorithms.

As the second and main contribution, we propose a high performance

and highly flexible cryptographic processor based on our analysis. It supports

a wide range of existing ciphers and cryptographic hash functions and has

high potential to support future algorithms. The proposed architecture with

its reconfigurable substrate provides a high degree of flexibility even when

implemented in an ASIC. Besides its flexibility, our design operating at 1GHz

achieves a peak throughput of 128Gbps on CTR AES-128 encryption which is

highly competitive with fully-optimized AES cores described in the literature.

Lastly, we provide a detailed timing, power, and area analysis on func-

tional primitives of cryptographic algorithms and our processor. We be-

lieve that such analysis combined with our comprehensive literature survey

on symmetric-key encryption algorithms and hash functions would help both

cryptographic algorithm developers and hardware designers to evaluate design

trade-offs during the design and implementation.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In chapter 2, we briefly

describe related research projects and other solutions found in the literature.

The chapter 3 and 4 present our detailed analysis on existing cryptographic

5

algorithms. The specifications and design rationales of our proposed crypto-

graphic processor are given in chapter 5. In chapter 6, we provide detailed

analysis of our processor in terms of performance, timing, area, power, and

algorithm coverage. The chapter 7 provides brief description about a subset of

algorithms and explains how these algorithms are mapped onto our processor.

Finally, we discuss possible future research questions and extensions to the

proposed processor in chapter 8 and 9.

6

Chapter 2

Related Work

Once a cryptographic algorithm is designed, it is relatively straightfor-

ward to implement that algorithm in software to run on a general purpose

processor (GPP). Such an implementation, however, may not provide the de-

sired performance at the desired power and computing resources. For example,

encrypting 10Gb/s of data using an Intel processor with AES instructions to-

day takes roughly one processing core, which may not be acceptable.

To drastically reduce or eliminate the processing overhead from the

GPP, one could implement encryption algorithms in a hard-wired application-

specific integrated circuit (ASIC). Doing so potentially offers the highest per-

formance at the lowest power, but requires hardware design that is expensive

and the final product is inflexible. If the ASIC does not support any of the

currently used algorithms, it is worthless and would have to be replaced, at

potentially great cost and effort. Even if a subset of the algorithms supported

is not used, there is wasted silicon and the effort; therefore, the cost to build

and deploy that ASIC may not be worthwhile. Moreover, changing standards

and algorithms could make ASIC partially or entirely useless. Thus, the inflex-

ibility of ASIC solutions is a significant negative. To eliminate the inflexibility,

7

one could implement encryption algorithms in hardware structures in a field

programmable gate array (FPGA) that can be reprogrammed at will. FP-

GAs, however, are expensive and, at least currently, roughly the same level of

difficulty to program as an ASIC (though much simpler to delay).

Another alternative is to design a special purpose programmable pro-

cessor that is optimized to execute cryptographic algorithms. Due to their

flexibility and high throughput, reconfigurable cryptographic processors are

promising alternatives for the implementation of cryptographic algorithms.

Therefore, developing a hardware architecture that provides efficient and high

throughput implementations for crypto-systems has become increasingly im-

portant.

2.1 Instruction Set Architecture Extensions

The first category that tries to achieve high throughput on crypto-

graphic applications is ISA extensions (ISEs) which are new instructions in-

troduced to support one or more cryptographic algorithms. Intel added six

SSE instructions and hardware support in their new generation CPUs to speed

up AES [4]. Even though the proposed pipeline and new instructions help to

achieve high performance by having the round latency of six cycles for one

stream in serial mode, they are useful to accelerate AES only. IBM and Or-

acle also introduced new cryptographic instructions and hardware support in

their high-end processors. IBM provided a crypto engine in IBM PowerENTM

Processor Chip [40] to accelerate a predefined set of crypto-systems: AES,

8

ARC4, DES, Kasumi, MD5, SHA-1, and SHA-2. Likewise, Oracle followed

the same strategy in the Sparc T4 Chip [84] to support a similar set of al-

gorithms: AES, DES, Kasumi, Camellia, MD5, SHA-1, and SHA-2. Both

IBM and Oracle designs consist of algorithm-specific instructions and dedi-

cated hardware units for each algorithm, which restricts their flexibility and

prevents them from supporting other existing and future algorithms.

There are several research projects [25, 44, 67, 110, 129, 193, 221] that

propose new instruction extensions to existing ISAs or hardware extensions to

GPPs; however, they are also restricted. Even though Parallel Table Lookup

[76] and Parallel Read instructions [130] are not intended to be algorithm-

specific extensions, they are not useful for the algorithms that do not have

table lookup operations and not enough to implement the full functionality

of the algorithms that have table lookup operations. The ISE proposed by

Grabher [89] accelerates a wider range of cryptographic algorithms compared

to other ISE solutions. Nevertheless, it is also limited to a subset of crypto-

systems, specifically the ones that operate on data in a bit-oriented manner

rather than word-oriented.

Even though ISE proposals improve software performance of crypto-

graphic algorithms, most of the added functionalities is limited to speeding

up AES only or a limited subset of crypto-systems. However, more generic

crypto-specific ISEs are desirable to support a wide range of algorithms and

achieve higher throughput.

9

2.2 Algorithm Specific Hardware

In addition to ISE solutions introduced in literature and commercial

products, there are countless algorithm-specific hardware implementations for

both ASIC and FPGA intended to achieve high throughput and better area

and power efficiency.

Due to large development and manufacture cost of cell-based and full

custom hardware, ASIC solutions become less attractive then FPGA-based

solutions. FPGA-based designs also have a quicker time-to-market cycle than

ASICs. Therefore, FPGA generally seems to be the ideal candidate for recon-

figurable yet high-performance implementation of cryptography algorithms.

FPGA-based designs often operate efficiently when highly pipelined. Most

of the optimized hardware implementations of cryptographic algorithms use

pipelined approaches with varying number of stages, where inner-round func-

tions are duplicated. Doing so allows to achieve a higher maximum frequency,

higher throughput, and more efficient use of hardware resources. There has

been significant amount of work done in the area of high performance imple-

mentation of crypto-systems, specifically for AES [5, 31, 49, 70, 86, 87, 99, 100,

102, 107, 109, 132, 139, 151, 171, 181, 186, 187, 204, 212, 228]. Optimized hard-

ware implementations have also been described for Camellia [60, 223], DES

[144], Twofish [124], Blowfish [70], RC4 [78], SHA-1 and SHA-2 [48].

Although hardware solutions optimized for particular algorithms do

not have the same objective as our work, they inspired us to design a more

optimized processor and helped us to map algorithms onto our processor more

10

effectively rather than following the traditional structures as described in their

specifications.

2.3 Domain Independent Configurable Processors

Besides application and domain-specific reconfigurable computing so-

lutions, there also exists research projects [126, 170] on domain independent

configurable processors to lower design effort and eliminate hardware mod-

ifications when requirements change. The main purpose of such systems is

to enable efficient high performance computing. Despite the fact that flexi-

bility and ease of design are listed as the key benefits of these systems, the

applicability of the proposed techniques has not been evaluated on more than

one application or domain. The reconfigurability of such systems only allows

the processor to integrate different hardware accelerators or configure different

functional units in execute stage based on the input.

One serious drawback of the proposed techniques is that they rely on

traditional instruction fetch and decode structures to make control decisions,

which increases the complexity of hardware, requires more area, and consumes

the majority of total energy used in the whole processor (Figure 2.1). In an

in-order Reduced Instruction Set Computer (RISC), a large fraction of energy

dissipation can be attributed to the instruction supply; 37% for fetching, 18%

for decoding, and 14% for issuing an instruction [92]. With our processor

architecture, we aim to increase energy efficiency by simplifying the front-end

structure of a conventional processor. We use a compact finite state machine

11

Memory
15%

Writeback
7%

Execute
9%

Issue
14%

Decode
18%

Fetch
37%

Figure 2.1: The distribution of energy dissipation in an in-order RISC proces-
sor [92]

representation for control flow of algorithms to reduce the energy consumption

and area requirements.

Our proposed architecture is not the first attempt to simplify the front

end of the system. BERET [92] is an energy efficient general purpose copro-

cessor that can be configured to benefit a wide range of applications. The pro-

posed approach maps users’ application to predefined sub-graphs and partially

eliminates "fetch-decode-issue" stages using trace cache for those sub-graphs.

Besides high power consumption and area requirements, generic recon-

figurable processors generally fail to achieve very high throughput due to the

lack of cryptographic algorithm-specific instructions, or they require recompi-

lation process to adapt their internal structures for a specific algorithm.

12

To the best of our knowledge, ProDFA [224] is the only domain inde-

pendent runtime reconfigurable architecture that is evaluated on symmetric-

key encryption algorithms and does not rely on traditional "fetch-decode-issue"

structure. The proposed architecture consists of several reconfigurable process-

ing units, memory units, and interconnects. Each sub-unit is self-controlled

using a finite state machine. Even though overall architecture of ProDFA is

domain independent, the functional units need to be recompiled for different

application domains.

2.4 Configurable Cryptographic Processors

Even though there are various application-specific coprocessors and

algorithm-specific hardware implementations, there are very limited attempts

to build configurable cryptographic processors with generic modules suitable

for a large set of cryptographic algorithms.

CRYPTONITE [43], a Very Long Instruction Word (VLIW) architec-

ture, is a cryptographic processor that supports various encryption and hashing

standards, e.g. AES, DES, MD5, and SHA-1. The proposed processor is a two-

cluster architecture where each bank consists of a crypto-specific arithmetic

logic unit and dedicated memory structure with vector memory addressing

mode optimized for table-based encryption functions. Even though the pro-

posed vector memory addressing scheme provides flexibility on permutations

and table lookup operations, only per-byte or smaller granularity operations

are supported.

13

CCProc [208] is a flexible cryptography co-processor for symmetric-key

encryptions. The proposed coprocessor has its own instruction set tailored to

symmetric-key encryption algorithms and an extended VLIW RISC-like data-

path structure. The design was aimed to support a wide range of symmetric-

key encryption algorithms, but only tested on AES round 2 finalists; Rijn-

dael(AES), MARS, RC6, Serpent, and Twofish. Support for other ciphers and

cryptographic hash functions has not been evaluated.

Multi-Core Crypto-Processor (MCCP) [90] is an FPGA-based reconfig-

urable and high throughput cryptographic processor to secure multi-channel

and multi-standard communication systems. It is designed as loosely coupled

multi-core system with its own crypto-specific ISA to provide a flexible and

high performance cryptography solution. However, the proposed structure is

designed to support only 128-bit block cipher algorithms. Thus, it fails to be

generic for both symmetric-key encryptions and cryptographic hash functions.

Celator [77] is another cryptographic coprocessor that supports multiple

block ciphers and cryptographic hash functions. The proposed architecture

consists of 4x4 identical processing elements, each of which can be configured

independently. A processing element is capable of performing XOR, AND,

NOT, modular arithmetic, right shift, and one AES-specific operation; xtime.

Even though proposed processor is designed for multi-algorithm support, it has

not been evaluated on algorithms other than AES, DES, SHA-1, and SHA-2,

and the processing element structure is not powerful enough to support a wide

range of algorithms efficiently.

14

Zodiac [93] is a Network Security Processor designed to provide high

performance for network security protocols; IPsec and SSL. Even though it

seems to be an application-specific processor, its architecture allows to perform

different algorithms and applications; DES, 3DES, AES, RSA, ECC, SHA-1,

pseudo random number generation, IPsec, and SSL. Like other alternatives,

the main drawback of the proposed processor is that it is restricted to a prede-

fined set of cryptographic applications due to having dedicated hardware for

each algorithm.

Cryptographic (Optimized for Block Ciphers) Reconfigurable Archi-

tecture (COBRA) [66, 68] is a reconfigurable array structure for efficient block

cipher implementations. The proposed architecture is designed after a detailed

analysis of 41 block ciphers. However, the algorithm analysis is restricted to

block ciphers that operate on plaintext with block sizes of 64 and 128 bits.

Even though it aims to support wide range of block ciphers, it fails to effi-

ciently support some most commonly known algorithms (i.e DES and IDEA);

thus, it fails to be generic even for block ciphers. The main reasons of not

being able to generic are (i) limited block size support, (ii) insufficient lookup

table structure, (iii) insufficient bit-wise permutations, and (iv) fixed modulus

in modular arithmetic units. While bitwise shifts and rotations are possi-

ble on COBRA, bit-wise permutations are extremely difficult to implement.

The main difference between COBRA and other configurable cryptographic

processors is that the datapath needs to be recompiled for each algorithm sep-

arately, resulting different clock frequency and area usage for each algorithm.

15

However, our project focuses on designing a cryptographic processor with fixed

hardware that can be reconfigurable for a wide range of existing cryptographic

processor.

Besides research projects, there exists one commercial processor in-

troduced by IBM, called IBM PCIe Cryptographic Coprocessor [103], which

provides a high-security and high throughput cryptographic subsystem with

specialized hardware to perform AES, DES, 3DES, RSA, SHA-1, and SHA-2.

The coprocessor consists of secured sub-system modules which are controlled

using sub-system control program and a cryptographic application program-

ming interface (API).

The advantages of alternative solutions described above include bet-

ter area, power and cost efficiencies, flexibility, algorithm upgradability, and

higher performance. However, existing reconfigurable crypto-processors are

still restricted to only a small set of symmetric-key encryption algorithms and

hash functions, and are far from being generic for all existing and potential

future algorithms. Moreover, the proposed solutions mostly rely on traditional

instruction fetch and decode structures to make control decisions, which po-

tentially results in high power and area consumptions.

16

Chapter 3

Cryptographic Algorithm Analysis

In this chapter, we describe our algorithm selection process and anal-

ysis methodology, and provide a detailed analysis on existing symmetric-key

encryption algorithms and cryptographic hash functions.

3.1 Existing Workload Characterizations

Designing a flexible, high performance, and resource efficient solution

for cryptographic applications requires a comprehensive literature review on

existing symmetric-key encryption algorithms and hash functions. Besides

detailed information on existing algorithms, such study also gives an insight

about potential requirements and specifications of future cryptographic algo-

rithms.

Even though there are numerous attempts to speed up cryptographic

applications, there are only few studies [77, 206, 208, 224] that present analy-

sis on functional and hardware structure of existing cryptographic algorithms.

However, since they are only supportive parts of the presented work in these

papers, these analyses only focus on a small set of cryptographic algorithms

and only categorize the operation classes. Thus, they do not provide suffi-

17

ciently detailed information about common hardware structures of existing

crypto-systems to enable the design of high performance configurable crypto

processor. On the other hand, there are some attempts [45, 47, 75] to study

workload characteristics of a set of cryptographic algorithms and profile their

software implementation. They give a good idea about the operations classes,

their usage frequencies, and required instructions. However, they are also

limited to a small set of algorithms, hence not sufficient enough to design a

highly configurable cryptographic processor. With its analysis on 41 block

ciphers, Elbirt [68] provides detailed information about their functional prim-

itives and common hardware elements so far. However, the algorithm analysis

is restricted to block ciphers that operate on plaintext with block sizes of 64

and 128 bits. Like other studies, it also does not present the relation between

functional primitives, common patterns, and connection structures. Hence, it

is far from providing a sufficiently detailed analysis.

To the best of our knowledge, our analysis on 148 existing cryptographic

algorithms is the first and only work that provides a comprehensive analysis on

symmetric-key encryption algorithms and cryptographic hash functions about

their specifications, requirements, and hardware structures. During our anal-

ysis, we mostly focused on architectural structure cryptographic algorithms,

where our aim is to bridge the gap between hardware designers and cryp-

tographic algorithm developers. We believe that such a detailed literature

survey will help both algorithm developers and researchers while designing

new cryptographic algorithms and/or standards, and hardware architects to

18

design flexible crypto-specific processors achieving high performance. Even

though each algorithm has different structures and characteristics, we focused

on finding general patterns, common characteristics, and the features that

create diversity among algorithms. Unlike previous work, instead of focusing

on algorithms and features that suit best to our needs, we provide a broader

insight about cryptographic algorithms to enable users to pick their own al-

gorithm list and configure their environments and hardware based on their

needs.

3.2 Algorithm Selection

We studied more than a hundred ciphers and hash functions from Lu-

cifer[200] (1971) to present. Our algorithm selection process was solely based

on mostly used security protocols such as IPsec, TLS/SSL, WTLS, SSH,

S/MIME, and OpenPGP, and cryptographic libraries such as OpenSSL and

GNU Crypto. However, common security protocols and libraries do not cover

a wide range of algorithms. For that reason, we crawled the literature, patents

as well as famous competitions for security standards organized by National

Institute of Standards and Technology (NIST), New European Schemes for

Signatures, Integrity and Encryption (NESSIE), eSTREAM, and European

Network of Excellence in Cryptology (ECRYPT). We analyzed not only the

winners but also all finalists and semi-finalists in these competitions. Finally,

our algorithm analysis consists of 148 cryptographic algorithms including 96

block ciphers, 26 stream ciphers, and 26 cryptographic hash functions.

19

a. Block ciphers: A block cipher is a deterministic method of encrypting

text in a way that the algorithm is applied with user’s secret key to

fixed-length groups of bits at once as a block rather than to one bit at

a time. They rely on a fixed secret key and an unvarying transforma-

tion defined by the algorithm. Many block ciphers are characterized as

a Feistel network that divides the data block into two halves where one

half operates upon the other half. Block ciphers play a crucial role in the

design of cryptographic protocols and are widely used to encrypt large

bulk data. Due to the significant number of block ciphers in the liter-

ature, they represent a huge portion of existing algorithms used in our

study. Thus, they have a serious impact on the design of our processor

as well.

The list of block ciphers that we used in our analysis is as follows;

• 3WAY [55]
• AES [58]
• Akelarre [6]
• Anubis [19]
• ARIA [123]
• BaseKing [51]
• Blowfish [188]
• Camellia [10]
• CAST-128 [2]
• CAST-256 [3]
• CIKS-1 [150]
• Cipherunicorn-A

[182]
• Cipherunicorn-E

[183]

• CLEFIA [196]
• CMEA [172]
• COCONUT98 [210]
• Crab [115]
• Cryptomeria/C2 [37]
• CRYPTON [131]
• CS-Cipher [201]
• DEAL [118]
• DES [1]
• DESX [117]
• DFC [82]
• E2 [207]
• FEAL [194]
• FEALNX [149]

• FEA-M [226]
• FOX [114]
• FROG [81]
• GOST [169]
• Grand Cru [154]
• Hasty Pudding ci-

pher [190]
• Hierocrypt-3 [166]
• Hierocrypt-L1 [165]
• ICE [122]
• IDEA [125]
• Intel Cascade Cipher

[39]
• KeeLoq [42]
• KHAZAD [20]

20

• Khufu and Khafre
[30]

• KLEIN [85]
• KN-Cipher [162]
• Ladder-DES [174]
• LED [91]
• LOKI97 [41]
• LUCIFER [200]
• M6 [116]
• M8 [164]
• MacGuffin [32]
• Madryga [135]
• MAGENTA [108]
• MARS [46]
• MBAL [120]
• Mercy [50]
• MESH [155]
• Kasumi [140]
• MMB [54]
• MULTI2 [15]

• MultiSwap [192]
• New Data Seal [22]
• NewDES [191]
• Nimbus [134]
• Noekeon [57]
• NUSH [222]
• NXT [113]
• PRESENT [35]
• PRINCE [36]
• Q [142]
• RC2 [119]
• RC5 [178]
• RC6 [180]
• REDOC III [197]
• SAFER K-128 [137]
• SAFER K-64 [136]
• SAFER+ [138]
• SC2000 [195]
• SEED [128]

• Serpent [9]
• SHACAL [95]
• SHACAL-2 [143]
• Shark [173]
• Skipjack [159]
• SMS4 [61]
• Spectr-H64 [88]
• Square [56]
• SXAL [163]
• TEA [216]
• Threefish [72]
• Twofish [189]
• UES [96]
• Xenon [209]
• Xmx [152]
• XTEA [157]
• XXTEA [225]

• Zodiac [127]

b. Stream Ciphers: A stream cipher is a deterministic method of encrypt-

ing text in which plaintext digits are combined with a pseudorandom

cipher key stream. Unlike block ciphers, stream ciphers work on smaller

chunks of data (usually one byte at a time), keep some sort of mem-

ory (called "state") while processing the plaintext, and use this state as

an input on the next stages. Stream ciphers are often used for their

speed and simplicity in applications where plaintext comes in quantities

of unknowable length like a secure wireless connection.

The list of stream ciphers that we used in our analysis is as follows;

21

• A5/1 [83]
• A5/2 [168]
• Achterbahn [79]
• DECIM [23]
• FFCSR [11]
• FISH [33]
• GRAIN [97]
• HC256 [218]
• ISAAC [111]

• MICKEY [17]
• MUGI [214]
• PANAMA [52]
• Phelix [217]
• Py [29]
• Rabbit [34]
• RC4 [213]
• Salsa20 [24]
• Scream [94]

• SEAL [184]
• Sfinks [38]
• SNOW [65]
• Trivium [59]
• Turing [185]
• VEST [167]
• WAKE [215]

• Yamb [220]

c. Cryptographic Hash Functions: Cryptographic hash functions processes

an arbitrary finite length input message to a fixed length output referred

to as the hash value. Any changes in message or data (even slight ones)

potentially result in entirely different cryptographic hash value due to

the avalanche effect that is intentionally designed in the algorithm. The

desired security level for cryptographic hash functions is that it should

be impossible (i) to find two messages with substantially similar digests,

and (ii) to infer any useful information about the data using its digest.

Secure hash functions serve data integrity, non-repudiation, and authen-

ticity of the source in conjunction with the digital signature schemes.

For that reason, an ideal cryptographic hash function should be injec-

tive. Besides cryptographic hash functions already in use, we also in-

cluded finalists and semi-finalists proposals in recent SHA3 competition

into our algorithm analysis to cover recent algorithms as well.

The list of cryptographic hash functions that we used in our analysis is

as follows;

22

• BLAKE [14]
• GOST [148]
• Groestl [80]
• HAS-160 [12]
• Haval [229]
• Hamsi [121]
• JH [219]
• Keccak [27]
• MD2 [177]

• MD4 [176]
• MD5 [175]
• MD6 [179]
• PANAMA [53]
• RadioGatÃžn [26]
• RIPEMD [62]
• RIPEMD-160 [63]
• SHA-0 [160]
• SHA-1 [64]

• SHA-2 [74]
• SHAvite3 [28]
• SipHash [13]
• Skein [73]
• Snefru [146]
• SWIFFT [133]
• TIGER [8]

• Whirlpool [21]

3.3 Analysis Methodology

We studied specifications of each cryptographic algorithm and manually

gathered detailed information about all aspects of these algorithms. During

our studies, we mainly focused on analyzing table sizes, addressing schemes,

operation classes, high-level sequence of operations, operation widths, and

connection structures of the 148 algorithms. Even though each algorithm has

different structures and characteristics, we focused on finding general pat-

terns, common characteristics, and the features that create diversity among

algorithms. The detailed results and discussions are presented in following

sections.

Besides manual analysis of 148 cryptographic algorithms, we created a

simple cryptography programming language and implemented a toolchain that

takes an algorithm, optimizes its control and data flow, generates a dataflow

graph, and cross compare of dataflows with other algorithms’ dataflow graphs

to extract common patterns and structures. Using our tools allowed us to

23

extract pure data dependencies defined by the algorithm itself rather than

tool-specific or language-specific optimizations that would arise if we started

with a high-level language like C/C++. Due to the excessive amount of time

required to implement and process the dataflow analysis of each algorithm, we

limited our analysis to the most widely used algorithms in security protocols

and cryptographic libraries. Our dataflow graph analysis included not only

individual analysis for each algorithm but also cross comparisons of sub-graphs

between algorithms’ dataflow graphs.

3.4 Detailed Analysis

In this section, we provide a comprehensive analysis on each aspect of

cryptographic algorithms’ specifications and requirements. In following sec-

tions, we describe common operation classes in cryptographic algorithms, spe-

cial requirements in these operation classes, relations between other operations,

and some special needs of particular algorithms. Besides primitive operations

used in cryptographic algorithms, we also give a detailed analysis on essential

requirements for a good cryptographic processor such as parallel functional

units, their connections, and storage requirements.

3.4.1 Operation Classes

Our analysis suggested that primitive operations used in studied cryp-

tographic algorithms can be clustered in 5 operation classes: (i) arithmetic,

(ii) logical, (iii) table lookup, (iv) shift/rotate, and (v) permutation/expan-

24

sion. The classes were determined based on which functional primitives are

used most frequently. There exists a few algorithms that require special func-

tional units; however, we didn’t include them in common operation classes

since they require special hardware and consideration and those algorithms

are not widely used. We discuss special functional units in following sections

separately. Primitive operations in each class can be summarized as follows;

Block

Ciphers

Stream

Ciphers

Hash

Functions
All

Logical Operation 96.9% 92.3% 96.2% 95.9%

Shifter/ Rotator 55.2% 88.5% 88.5% 66.9%

Table Lookup 68.8% 46.2% 34.6% 58.8%

Arithmetic Operation 42.7% 73.1% 65.4% 52.0%

Permutation /Expansion 39.6% 61.5% 38.5% 43.2%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Operation Class Distribution %

Figure 3.1: The use of operation classes in cryptographic algorithm classes

a. Arithmetic operation: The arithmetic operation class includes scalar

addition and subtraction over varying lengths. Since floating point num-

bers and operations are not used in cryptographic algorithms, hardware

support for floating point operations is not required. Even though arith-

25

metic operations can be found in all cryptographic algorithm classes,

they are mostly used in stream ciphers. While there is no division op-

eration in cryptographic algorithms, the multiplication will be analyzed

separately as a special operation in following sections.

b. Logical operations: The logical operation class consists of bitwise prim-

itive operations; XOR, AND, OR, and NOT. As shown in Figure 3.1

even though the usage frequency varies among algorithm classes, logical

operations are the top most used functions in cryptographic algorithms.

More than 95% use one or more logical operations in their datapath.

In fact, cryptographic algorithms tend to perform a sequence of logical

operations; however, we will present more detailed analysis on operation

patterns in following sections. Even though any function can be repre-

sented as a sequence logical operations, the algorithms that do not re-

quire logical operations in their traditional implementations are KLEIN,

MultiSwap, PRESENT, SWIFFT, RC4, and Turing.

c. Table Lookup: The table lookup operation, also known as SBOX lookup,

replaces runtime computation with a simpler array indexing operation.

The table lookup operation is one of the most commonly used opera-

tions in block ciphers and provides non-linearity during the encryption

process. There is a literature [101, 109, 151] that provides computational

representations instead of table lookup operations to eliminate the use

of memory, but we consider them to be table lookup operations. This

26

structure is not limited to explicit table lookup operations defined in

algorithm specifications. Some functional operations like matrix multi-

plication with a constant matrix can also be implemented as table lookup

operation using a precomputed table.

d. Shift/Rotate: Variable amount shift and rotation in both direction are

clustered in this class. Since shift and rotation operations enable chang-

ing the order of the bits in a reversible way, it is the second most com-

monly used operation class in all types of cryptographic algorithms.

e. Permutation/Expansion: Permutation/Expansion class is responsible

for any bit manipulation on up to 64-bit data. Since permutation and

expansion operations require an excessive amount of control signals, they

are not widely used. However, some portion of each algorithm class still

rely on this operation class. Some permutations, especially byte-wise,

can also be represented as a table lookup operation.

Our analysis on the use of each operation class in each crypto-system

class as well as overall distributions is summarized in Figure 3.1. A detailed

analysis on the use of functional units in cryptographic algorithms can be

found in Appendix A. More detailed information about operation clusters is

presented in Appendix B. Based on targeted cryptographic algorithm classes,

the structure and amount of functional units can be changed while designing

cryptographic processor.

27

3.4.2 Table Lookup Structure

Since table lookup is one of the most common operations, we exam-

ined each aspect of the table structure of cryptographic algorithms in detail.

We analyzed table sizes, entry widths, addressing schemes, number of different

tables, and the number of parallel tables in each algorithm. With a table struc-

ture that is too wide, resources are wasted. Additional lookups are required for

a table structure that is too narrow. Therefore, table size and entry wide are

crucial elements in the design of cryptographic processor. Our studies show

that table sizes and addressing schemes greatly vary among crypto-systems.

The table sizes used in cryptographic algorithms vary from 16 to 1024 entries

while the entry width starts from 4-bit and goes up to 64-bit. Figure 3.2 shows

that more than 70 percent of the algorithms using table lookup consist of ta-

bles with 256-entry. However, an ideal generic cryptographic processor should

support as many algorithms as possible. Thus, in the light of studied algo-

rithms, table lookup unit structures should be mostly 256-entry tables with

support for any table size up to 1024 entries.

The width of the table entry is another important consideration on

lookup table structure, since unnecessarily large entry width may cause waste

of resources while insufficient entry width may result in loss of performance.

Figure 3.3 shows that 8-bit and 32-bit are the most common entry widths

among the algorithms that use table lookup operation; 51.3% and 23.3% re-

spectively.

Our algorithm analysis shows that even though there are some outlier

28

16-entry 128-entry 256-entry 512-entry 1024-entry

Block Ciphers 15.2% 0.0% 71.2% 3.0% 1.5%

Stream Ciphers 0.0% 8.3% 66.7% 8.3% 16.7%

Hash Functions 11.1% 11.1% 66.7% 0.0% 0.0%

All 12.6% 2.3% 70.1% 3.4% 3.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

Lookup Table Size Distribution %

Figure 3.2: The ratio of different table sizes used in cryptographic algorithms

algorithms with different table sizes, the most common table structures are

256x32-bit and 256x8-bit. Since there is only one algorithm, KHAZAD [20],

which stores 64-bit data in the table, a reasonable table entry size is 32-bit,

since any table with 64-bit data entries can be divided into two parallel tables

and outputs of both lookup operations can be combined.

Moreover, our algorithm analysis suggests that there are maximum

of four parallel 1024-entry, eight parallel 512-entry, and sixteen parallel 256-

entry tables in any specific cryptographic algorithm. Therefore, the table

lookup structure of reconfigurable cryptographic processor should ideally be

capable of supporting the table size requirements of all existing algorithms

29

4-bit 8-bit 24-bit 32-bit 64-bit

Block Ciphers 24.2% 53.0% 1.5% 18.2% 1.5%

Stream Ciphers 0.0% 50.0% 0.0% 50.0% 0.0%

Hash Functions 33.3% 44.4% 0.0% 22.2% 0.0%

All 21.8% 51.7% 1.1% 23.0% 1.1%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

Lookup Table Entry Width Distribution %

Figure 3.3: The ratio of different table entry widths used in cryptographic
algorithms

for both the size of one table (4 KB), and the total size of parallel tables in

algorithm (16 KB) as well as maximum number of parallel lookup operations

(16 operations). Any structure that does not meet these requirements may

cause lower performance even though they might save some other resources

like area and power.

Table 3.1 shows the distribution of number of parallel lookup operations

in cryptographic algorithms. Even though some of the the SHA-3 candidates

such as Groestl, Hamsi, and JH use 128 and 256 parallel lookup operations in

their bit-slice implementation, we do not include them as maximum number

of parallel lookup operations.

30

Table 3.1: The distribution number of parallel lookup operation in crypto-
graphic algorithms

1 2 4 8 16+
Block Ciphers 3.0% 3.0% 22.7% 43.9% 27.3%
Stream Ciphers 16.7% 33.3% 33.3% 16.7% 0.0%
Hash Functions 0.0% 0.0% 11.1% 22.2% 66.7%
All 4.6% 6.9% 23.0% 37.9% 27.6%

3.4.3 Bundled Operation Patterns

Cryptographic algorithms process a sequence of operations on a fix-

sized block of data. Their fairly regular structures enable bundling commonly

executed sequences of operations as a single big operation block. We studied

the possibility of such bundles and examined the ratio of algorithms that use

these bundles. The result of our study gave us better insight about general

trends in cryptographic algorithms, enabling to design a better cryptographic

processors.

As we mentioned earlier, logical operators are the most commonly used

operations, and cryptographic algorithms tend to perform a sequence of logical

operations back to back. Our studies show that more than half of all crypto-

graphic algorithms process three consecutive logical operations. As shown in

Figure 3.4, 82.4% of the algorithms that we studied process two consecutive

logical operations while 58.8% process three, and 57.7% of the cryptographic

hash functions process four or more in a row.

Our algorithm and dataflow graph analysis suggest that in most of the

cryptographic algorithms table lookup operations are preceded and/or followed

31

Block Ciphers Stream Ciphers Hash Functions All

Logic Op 2 79.2% 73.1% 100.0% 81.8%

Logic Op 3 51.0% 57.7% 84.6% 58.1%

Logic Op 4+ 25.0% 30.8% 57.7% 31.8%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Logic Operation Pattern Distribution %

Figure 3.4: The distribution of logical operation patterns in cryptographic
algorithms

by an XOR operation. Table 3.2 shows that XOR-SBOX, SBOX-XOR and

XOR-SBOX-XOR operation bundles are processed in 69.0%, 71.4%, and 59.5%

of the algorithms that have table lookup operations, respectively.

Besides the pattern of XOR and SBOX operations, we also analyzed the

possibility of other bundles between other operation classes. The second most

common relation between operation classes is the pattern of shift/rotate and

logical operations. Table 3.3 summarizes that Logic-Shift/rotate, Shift/rotate-

Logic, and Logic-Shift/rotate-Logic operation bundles are processed in 44.4%,

49.5%, and 34.3% of algorithms using shift/rotate operations, respectively.

32

Table 3.2: The distribution of XOR and SBOX patterns in cryptographic
algorithms

XOR-SBOX SBOX-XOR XOR-SBOX-
XOR

Block Ciphers 76.9% 76.9% 66.2%
Stream Ciphers 27.3% 36.4% 18.2%
Hash Functions 62.5% 75.0% 62.5%
All 69.0% 71.4% 59.5%

Table 3.3: The distribution of Shift/rotate and logic operation patterns in
cryptographic algorithms

Logic Op. -
Shift/rotate

Shift/rotate -
Logic Op.

Logic Op. -
Shift/rotate -
Logic Op.

Block Ciphers 56.6% 50.9% 39.6%
Stream Ciphers 21.7% 60.9% 21.7%
Hash Functions 39.1% 34.8% 34.8%
All 44.4% 49.5% 34.3%

Due to the significant amount of XOR and arithmetic operations in

cryptographic algorithms, we analyzed the frequency of XOR and arithmetic

operation patterns. Table 3.4 shows that XOR-Arithmetic, Arithmetic-XOR,

and XOR-Arithmetic-XOR operation bundles are processed in 43.4%, 38.2%,

and 35.5% of algorithms using arithmetic operations, respectively.

3.4.4 Special Functional Units

As mentioned above, there are some cryptographic algorithms that re-

quire special functional units to achieve higher performance or even to be

supported. Even though some of those special functions can be realized by

33

Table 3.4: The distribution of XOR and Arithmetic operation patterns in
cryptographic algorithms

XOR -
Arithmetic

Op.

Arithmetic
Op. - XOR

XOR -
Arithmetic Op.

- XOR
Block Ciphers 51.2% 46.3% 41.5%
Stream Ciphers 15.8% 10.5% 10.5%
Hash Functions 56.3% 50.0% 50.0%
All 43.4% 38.2% 35.5%

other operation classes or by a logical combination of those other operation

classes, they may also require special logic or dedicated hardware. Our anal-

ysis shows that the most commonly required special operations are integer

multiplication, byte-wise rotation, and modular arithmetic.

Table 3.5: The special functional unit requirements in cryptographic algo-
rithms

Byte Rotator Multiplication Modular
Arithmetic

Block Ciphers 24.0% 13.5% 43.8%
Stream Ciphers 19.2% 3.8% 73.1%
Hash Functions 34.6% 11.5% 61.5%
All 25.0% 11.5% 52.0%

Our studies indicate that only 11.5 percent of cryptographic algorithms

that we analyzed use integer multiplication (Table 3.5). In fact, these 17 out of

148 crypto-systems are not common and not included in mostly used security

protocols or cryptographic libraries. Therefore, dedicated multiplication hard-

ware may or may not be a necessary component of cryptographic processor

34

depending on target workload. The list of algorithm that explicitly requires

multiplication is as follows;

Block Ciphers: Cipherunicorn-A [182], CLEFIA [196], DFC [82], FEA-

M [226], IDEA [125], KN-cipher [162], MESH [155], MMB [54], Mul-

tiSwap [192], Nimbus [134], RC6 [180], SC2000 [195], and Xenon

[209]

Stream Ciphers: Rabbit [34]

Hash Functions: PANAMA [53], SWIFFT [133], and TIGER [8]

As shown in Table 3.5, one-fourth of all algorithms use simple byte-

wise rotation on 32-bit data instead of a variable amount. Although byte-wise

rotation is a part of the shift/rotate operation class, hardware implementation

is less expensive and can be affordably combined with other classes. On the

other hand, a shift/rotate unit working on varying granularities is not nec-

essary since only 1% of all cryptographic algorithms require them, and any

granularity can be easily implemented using permutation/expansion class.

Our algorithm analysis suggests that modular arithmetic is one of the

most common special operation used in cryptographic algorithms, especially

among stream ciphers. Theoretically, the simple form of modular arithmetic

(addition, subtraction, and multiplication) is not a special function since it

just allows the values always staying less than a fixed number, called base or

modulus. As a general rule, we do not want the encryption process to have a

35

big affect on the size of a message. Thus, modular arithmetic allows to keep the

operation size within a chosen range. Since modular arithmetic is very well

understood in terms of algorithms over various basic operations, it became

the primary choice of operation for cryptographic algorithm developers and

included in 52% of all cryptographic algorithms (Table 3.5).

Table 3.6: The modular arithmetic base distribution in cryptographic algo-
rithms

mod(28) mod(216) mod(232) mod(264) Others
Block Ciphers 9.5% 2.4% 73.8% 7.1% 7.1%
Stream Ciphers 26.3% 5.3% 63.2% 0.0% 5.3%
Hash Functions 0.0% 0.0% 93.8% 6.3% 0.0%
All 11.7% 2.6% 75.3% 5.2% 5.2%

Any crypto-system that uses modular arithmetic can be constructed

in an analogous way with a group having certain properties under associated

group of operations. Therefore, due to the choice of the base value, a sig-

nificant portion of modular arithmetic operations can be implemented using

existing operation classes or with a logical combination of them. Table 3.6

shows that 75.3 percent of modular arithmetic operations in studied crypto-

graphic algorithms use 232 as the base value, while more than 90 percent of

modular arithmetic operations can be realized using traditional integer arith-

metic combined with an AND operation.

On the other hand, there are 5 different cryptographic algorithms that

require special hardware or logic to be supported due to their unorthodox

base choice for modular arithmetic; specifically 233 for KN-cipher [162], 232−1

36

93.8% 96.2% 96.2% 94.6%

6.3% 3.8% 3.8% 5.4%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

Block Ciphers Stream Ciphers Hash Functions All

Without New logic With New Logic

Figure 3.5: The coverage ratio of algorithms that require modular arithmetic

for MMB [54], 264 + 13 for DFC [82], 17 for PANAMA [52], and 2256 for

GOST [148]. Therefore, 94.6 percent of all cryptographic algorithms that

we analyzed can be implemented without requiring any complicated logic to

combine existing operation classes while only small portion of each algorithm

classes does require special consideration, specifically 6.3% of block ciphers,

3.8% of stream ciphers, and 3.8% of hash functions. (Figure 3.5). That is;

the choice of target algorithms has a significant impact on designing special

hardware for cryptography.

3.4.5 Processing Element Width

After examining operation classes, required special functional units,

detailed internal structure of operation classes, and their relations with each

37

other we focused on finding the optimal processor width for cryptographic al-

gorithms. Even though all algorithms can be implemented by one repeatedly

used set of functional units (FUs), where each FU implements one operation

class, multiple sets of FUs can often improve performance by exploiting par-

allelism inherent in most of the algorithms. In this thesis, each set of FUs is

called a processing element (PE). We examined how much performance gains

there would be at various numbers of PEs.

1-way 2-way 4-way 8-way 16-way

Block Ciphers 9.4% 30.2% 51.0% 7.3% 2.1%

Stream Ciphers 0.0% 23.1% 53.8% 23.1% 0.0%

Hash Functions 0.0% 23.1% 61.5% 11.5% 3.8%

All 6.1% 27.7% 53.4% 10.8% 2.0%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Processing Element Width %

Figure 3.6: The distribution of algorithms requires 1, 2, 4, 8 and 16-way
processing elements

The distribution of algorithms that require 1-, 2-, 4-, 8- and 16-way

PEs is summarized in Figure 3.6. More detailed parallel processing element

requirements of each algorithm can be found in Appendix D. Our analysis

38

shows that the majority of algorithms fully utilize four-way PEs while 87.2%

of cryptographic algorithms requires four or less parallel PEs for maximum

performance. Although 19 out of 148 algorithms benefit from eight- or sixteen-

way PEs, these algorithms can still be implemented on a four-way processor.

Therefore, only a small portion of algorithms can get a performance benefit

out of the hardware with 8- or 16-way. On the other hand, designing a 8- or

16-way crypto-processor will potentially result in underutilization of resources

for the most of the algorithms, and increase the complexity and cost of the

communication among PEs.

3.4.6 Connection Structures

As we discussed in the previous section, a significant portion of crypto-

graphic algorithms that we studied requires multiple PEs running in parallel.

Multiple parallel PEs create a need of the connection structure, which drives

us to examine the data and control flow of algorithms that use multiple parallel

PEs.

Our studies show that cryptographic algorithms tend to have regular or

slightly complex connection structure between parallel operations. In general,

algorithms work on different blocks of actual data or different bytes of one

data block. However, there exists some algorithms that have very complex or

control intensive structures due to their characteristics. As shown in Figure

3.7, more than 80 percent of the cryptographic algorithms has fairly regular

control structure, while more than 30 percent of stream ciphers require a more

39

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

Regular Normal Complex Control

Intensive

Very Complex

Block Ciphers Stream Ciphers Hash Functions All

Figure 3.7: The trend of connection structure among processing elements used
for implementing algorithms

complex structure to control their dataflow. The main reason that stream

ciphers have a more complex control structure is that they generally apply

a complex sequence of operations to the same block in various ways. Some

examples are covered in following chapters.

For a moderate reconfigurable crypto-processor, having a set of con-

nection schemes based on analysis of existing connection structure would be

sufficient. However, a generic cryptographic processor requires more flexibility

to support future standards and, therefore, needs higher connectivity.

40

3.4.7 Storage Requirements

The complex and control intensive dataflow of stream ciphers requires

frequent control switches throughout the execution of the algorithm. Our al-

gorithm analysis shows that more than half of stream ciphers and 20.9% of all

cryptographic algorithms require a structure that can control more than 40

consecutive operations for their round functions due to changing round struc-

tures or changing function length. On the other hand, most of the block ciphers

and cryptographic hash functions have very regular structures as shown in Fig-

ure 3.7. Due to their unvarying transformation structures, control signals are

expected to remain mostly constant throughout the execution of whole algo-

rithm. Since our project aims to achieve highest performance and flexibility

for a wide range of algorithms, we believe that an ideal cryptographic proces-

sor should accommodates at least the largest of control structure required for

any existing algorithm. It is obvious that analyzing existing algorithms does

not provide the information that will definitely be valid for future algorithms

as well. However, existing algorithms can give an approximate idea about

potential lengths of future algorithms.

Besides control structures, we also analyzed the register file usage of

cryptographic algorithms. Since it is expected that most algorithms have fairly

regular dataflow between pipeline stages, we only examined the explicit register

usage of the algorithms. Our studies indicate that an ideal reconfigurable

cryptographic processor should have a register file structure with 256 32-bit

entries, and should be capable of updating at least four registers in each cycle.

41

Such register file represents the smallest possible structure that will support

all the algorithms that we studied. Future standards may or may not require

more registers and/or more parallel updates.

42

Chapter 4

Cryptographic Algorithm Instrumentation

In this chapter, we describe our cryptographic algorithm implementa-

tion/verification process and how we profiled the algorithms, and provide a

detailed instrumentation results on implemented cryptographic algorithms.

4.1 Existing Binary Instrumentation of Cryptographic
Algorithms

Even though there have been numerous attempts to improve the perfor-

mance of cryptographic algorithms, only a few papers analyze cryptographic

algorithms and present a hardware-focused analysis of such algorithms [77, 206,

208, 224]. In those papers, however, algorithm analysis is limited to a small

set of cryptographic algorithms and, even then, only determine which classes

of operations should be supported. However, a detailed profiling and manual

analysis is crucial to extend existing instruction sets and more importantly to

design a high performance reconfigurable cryptographic processor.

To achieve that, there are papers that profiled the software implemen-

tations of a set of cryptographic algorithms [44, 47, 75]. Those papers give

detailed information about cryptographic operation classes, how frequently

43

each is used, and the instructions used. They are, however, also restricted to

a small set of algorithms.

Burke et al. [44] profiled eight benchmarks: Blowfish, 3DES, Mars,

RC4, RC6, IDEA, Rijndael, and Twofish to show possible hardware factors for

the performance bottlenecks such as the issue width, the number of function

units, and the computation and memory access intensive parts. They used

their analysis results to propose extended instructions such as 16-bit modular

multiplication, bit permutation, rotation, and memory table lookup.

Fiskiran [75] used the PLX toolset to perform workload analysis of the

cipher suite including DES, 3DES, RC4, Blowfish, AES, Twofish, and MARS

using RISC-like instruction set. They used the PLX RISC architecture and

divided the instructions into seven classes: Store, Load, Arithmetic, Logical,

Shift, and Branch (conditional and unconditional) and reported the ratio of

these instruction classes. Their analysis provides (i) the execution cycles used

per block of encryption, (ii) the round operations in each cipher, and (iii) the

fraction of the execution time consumed by round operations. However, their

analysis on a very limited algorithm set fails to provide sufficient insight for a

reconfigurable high performance crypto-hardware.

Chang et al. [47] performed a profiling and performance analysis on

AES, 3DES, Blowfish, IDEA, RC5, MD5, SHA1, ECC, and RSA using Intel’s

commercial products VTune and PIN tool on Intel Core i7 processor. They

clustered the instructions to seven class (binary arithmetic, bit&byte, control

transfer, data transfer, logical, shift&rotation, miscellaneous) and provided fre-

44

quency of each group in each algorithm, as well as presenting memory readwrite

accesses. They also defined and analyzed a concept called "Load-Store Block"

(LSB), which is a single basic block starting with a LOAD instruction and end-

ing with a STORE instruction. Such analysis provides a good insight about

how to construct Processor-in-Memory (PiM) architectures. Even though the

provided information is useful for cryptography community, the analysis is

still limited to nine algorithms and lacks deeper understanding and informa-

tion about useful FUs for a flexible high performance crypto-processor.

4.2 Instrumentation Methodology

Even though we analyzed the usage of operation classes in crypto-

graphic algorithms, we believe that the usage frequency of each operation

class in algorithms is an important information that may greatly help design-

ing cryptographic processor. To achieve more accurate analysis, we choose

to profile software implementation of algorithms automatically using binary

instrumentation tool.

We used Intel’s PIN [104] as our primary profiling tool. PIN is a

dynamic binary instrumentation tool that instrument compiled code to col-

lect data such as instruction mix, instruction address trace, memory reference

trace, load-store trace, etc. while the executable is running. Such information

may help us better understand cryptographic algorithms’ behaviours and the

frequency of each operation class used in those algorithms.

Due to the excessive amount of time required to implement and verify

45

each algorithm, we implemented only 79 of the 148 algorithms, consisting of 48

block ciphers, 13 stream ciphers, and 18 cryptographic hash functions. Each

algorithm is implemented in C using reference implementation or description

and verified using reference test vectors. To get more accurate results about

algorithms’ encryption structure, we profiled the algorithms by isolating the

encryption function from other structures. Doing so eliminate the bias and in-

correct information caused by data preparation, initialization, statistic print-

ing, function calls, etc. To the best of our knowledge, our study is the most

comprehensive profiling analysis on the largest algorithm set.

Table 4.1: Instruction Classes

Class Instructions
BA ADD, ADC, SUB, SBB, INC, DEC, NEG
BB SETB, SETNBE, SETNLE, SETNZ, SETZ, TEST
L AND, NOT, OR, XOR
SR ROL, ROR, SAR, SHL, SHR, SHRD, BSWAP

CT CALL_NEAR, INT, JB, JBE, JL, JLE, JMP, JNB, JNBE, JNL, JNLE,
JNS, JNZ, JP, JRCXZ, JS, JZ, LEAVE, RET_NEAR

DT

CDQE, CMOVS, CMP, CMOVB, CMOVBE, CMOVNB, CMOVNBE,
CMOVNS, CMOVNZ, CMOVZ, CMPXCHG, CLD, CWDE, MOV,
MOVSB, MOVSD, MOVSW, MOVSX, MOVZX, POP, PUSH, XADD,
XCHG, CMPSB, SCASB, STOSB, STOSD

SF DIV, IDIV, MUL, IMUL
M LEA, NOP, RDTSC

We compiled all the algorithms into IA-32 assembly instructions with

x64 using GCC v4.8.2. As shown in Table 7.2, the instructions found in the

outputs are grouped into eight classes based on their functionality: Binary

Arithmetic instructions (BA), Bit and Byte instructions (BB), Control Trans-

fer instructions (CT), Data Transfer instructions (DT), Logical instructions

46

(L), Shift and Rotate instructions (SR), Special Functional instructions (SF),

and Miscellaneous instructions (M) [203].

4.3 Detailed Analysis

In this section, we give a comprehensive analysis on different aspects of

cryptographic algorithms that we gathered from dynamic instrumentation of

cryptographic algorithms.

Table 4.2: Instruction Class Frequencies

BA BB L SR CT DT SF M
Block Ciphers 10.6% 0.8% 12.8% 7.5% 3.3% 61.6% 0.3% 2.6%
Stream Ciphers 13.6% 0.5% 7.2% 6.7% 3.2% 63.7% 0.0% 4.5%
Hash Functions 11.0% 0.2% 12.8% 7.2% 2.6% 63.0% 0.3% 1.6%
All 11.0% 0.6% 12.4% 7.3% 3.1% 62.2% 0.3% 2.5%

Table 4.3: Operation Class Frequencies

Arithmetic Logical Shift
Rotate Permutation

Block Ciphers 36.0% 38.5% 22.4% 3.1%
Stream Ciphers 49.9% 26.7% 21.6% 1.8%
Hash Functions 37.9% 41.9% 19.3% 0.8%
All 38.0% 38.1% 21.6% 2.4%

Table 4.2 and Table 4.3 shows the average usage frequency of each

instruction class as well as the usage frequency of operation classes that we

described before while Figure 4.1 shows the distribution of each class with

minimum, maximum, and the distribution around the median.

Due to profiling methodology of PIN, it is not possible to collect array

47

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Median-Quartile1 Quartile3-Median

Figure 4.1: Instruction and Operation Class Distribution

and table accesses through binary instrumentation. Thus, operation class us-

age frequencies do not include table lookup operations. Since permutation/ex-

pansion operations can also be implemented as table lookup; our results only

include explicit bit/byte instructions as permutation/expansion operations.

Our analysis shows that Data Transfer class is mostly used instruction class

in all algorithms. Binary Arithmetic and Logical instruction classes, which

defines the actual algorithm path, account for the majority of remaining in-

struction count; averaging 11.0% and 12.4% with the maximum of 30.48%

and 45.45% respectively. The Control Transfer class accounts for only 3%

of the instruction count on the average and used mainly in fixed loops for

48

round structure rather than data-dependent control flow. As mentioned be-

fore, multiplication is not a common operation in cryptographic algorithms.

Our analysis shows that Special Functional instructions, such as multiply, are

used 0.3% on the average and 3.83% of the time at most.

Table 4.4: Distribution of Memory Accesses

Data
read

Data
write

IP-
relative

read

IP-
relative
write

Stack
read

Stack
write

Block Ciphers 69.23% 88.49% 0.51% 0.12% 30.26% 11.39%
Stream Ciphers 65.51% 92.08% 0.98% 0.10% 33.51% 7.82%
Hash Functions 66.61% 89.09% 0.08% 0.00% 33.32% 10.91%
All 68.00% 89.23% 0.49% 0.09% 31.51% 10.68%

Table 4.5: Distribution of Data Read/Write Granularities

Data
read
(1B)

Data
read
(2B)

Data
read
(4B)

Data
read
(8B)

Data
write
(1B)

Data
write
(2B)

Data
write
(4B)

Data
write
(8B)

Block Ciphers 8.38% 0.61% 19.68% 15.80% 2.65% 0.32% 7.08% 3.23%
Stream Ciphers 8.04% 0.21% 18.25% 19.14% 3.47% 0.12% 6.04% 2.31%
Hash Functions 3.97% 0.14% 19.65% 20.01% 0.69% 0.07% 5.82% 5.35%
All 7.30% 0.43% 19.43% 17.33% 2.33% 0.23% 6.61% 3.56%

Even though we could not accurately analyze the table lookup fre-

quency, we analyzed the memory access types and access granularities to pro-

vide better insight about memory accesses. PIN categorizes memory accesses

as Instruction Pointer Relative (IP-relative), Stack, and Data read/write ac-

cesses, as well as 1B, 2B, 4B, and 8B granularities of data accesses. Our anal-

ysis on cryptographic algorithms shows that while Data reads/writes occupy

57.23% of memory access on the average, Stack accesses is the second heavily

49

used access type with 42.19%. The detailed distribution of access types and

access granularities is shown in Table 4.4 and Table 4.5, respectively. Even

though such information does not help us to understand table lookups better,

it may give insight for designing memory sub-structure of the processor.

50

Chapter 5

Cryptoraptor: Reconfigurable Cryptographic
Processor

In this chapter, we describe a high performance, power efficient, and

highly flexible cryptographic processor, Cryptoraptor, that supports a wide

range of existing ciphers and cryptographic hash functions as well as potential

future ones. The name of our processor is inspired by a genus of dinosaur;

meaning "secret thief". The fast and flexible nature of Cryptoraptor represents

our high throughput processor that is highly flexible for both existing and

future cryptographic algorithms. In following sections, we explain our design

methodology and provide detailed information about different aspects of our

processor.

5.1 Design Methodology

As stated earlier, the primary goal of our project is to have a complete,

flexible, and high performance cryptographic processor that can support a

wide range of symmetric-key encryption algorithms and cryptographic hash

functions. To achieve that, we started our design process by analyzing existing

cryptographic algorithms as we described in previous chapters. We believe that

51

designing high performance reconfigurable cryptographic processor depends on

such a detailed analysis of existing algorithms, which may also give an idea

about future requirements as well. For that reason, we combined the results of

both algorithm and dataflow analysis as well as our algorithm profiling results

to design our cryptographic processor.

During the design of our processor, we focused on having a flexible

architecture that can be generic for ciphers and hash functions instead of an

optimized processor that achieves higher throughput on a particular algorithm

or a predefined set of algorithms only, which makes our cryptographic processor

unique compared to related work.

We put our effort to achieve high throughput and flexibility without

optimizing our processor for area or power. The performance and reconfigura-

bility of our processor are analyzed and discussed in the following chapters.

Since achieving high performance while having high degree of flexibility

requires special considerations, we also considered both FGPA and ASIC as

implementation platforms. Even though flexibility is the key component of

FPGAs, we focused on ASIC implementations for performance while providing

flexibility within our design. The following sections provide more detailed

information on our implementation process.

52

5.2 Cryptoraptor

At a high level, the Cryptoraptor architecture consists of an Execution

Tile as the functional part that performs the bulk computation, a State Engine

(SE) that controls the Execution Tile, and a 256-entry register file. The high-

level structure is shown in Figure 5.1.

Figure 5.1: The internal structure of Cryptoraptor

The SE is a hardware state machine that is configured as part of the

initial setup and remains constant as long as the algorithm being executed does

not change. The SE consists of a state counter and a small control memory

block. By eliminating fetch and decode stages of conventional processors, the

53

majority of the area and power is consumed by the Execution Tile, yielding

higher area and power efficiency.

The Execution Tile consists of multiple identical stages, each contain-

ing a number of Processing Elements (PEs) connected to the next stage by

Connection Row (CR). As shown in Figure 5.1, it consists of a number of PEs

and CRs, and loopback connections from each stage to a register file.

The implementation details, as well as timing, area, power, and power

analysis of Cryptoraptor will be analyzed and discussed in following chapters.

Chapter 6 also discusses the algorithm coverage of our processor while example

algorithm mappings are provided in Chapter 7.

5.3 Execution Tile

As shown in Figure 5.2, the Execution Tile consists of varying number

of rows of PEs and CRs as well as loopback connections from each stage to a

register file.

Our analysis suggests that 87.2% of cryptographic algorithms require

four or less parallel PEs for maximum performance while only 19 out of 148

algorithms benefit from eight-way and sixteen-way PEs. An eight-way or

sixteen-way crypto-processor will potentially result in underutilization of re-

sources for the most of the algorithms and increase the complexity and cost

of the communication across PEs. Therefore, Cryptoraptor consists of four

parallel and independently configurable PEs in each stage, called PE row.

54

Figure 5.2: The high level structure of Execution Tile

In the light of our algorithm analysis, we decided that 20-stages of PE

rows and CRs with a 256-entry register file is the optimal configuration in

the Execution Tile . Therefore, the processor can provide up to 80 logical

stages by fully utilizing the control memory that provides four distinct stage

images. Smaller numbers of pipeline stages can be realized using register

file loopbacks and partial configuration of PEs in each stage. The flexibility

of storing intermediate results from any stage to a register file enables us

to utilize any portion of the processor for computation and to have varying

number of pipeline stages for different algorithms. Due to its independently

configurable structure, any PE individually and/or a PE row as a whole can

be turned on/off depending on the algorithm to have a better fit and further

55

power efficiency.

The Execution Tile takes 4x20 4B inputs, processes through N level of

PE and CRs (N=20 for Cryptoraptor), and update up to eight 4B registers

per cycle. As mentioned in previous sections, the cryptographic algorithms

may need up to four register updates per cycle, but we allow each PE row to

generate up to eight register update candidates to achieve a higher degree of

flexibility.

5.4 Connection Row

The Connection Row (CR) is a crossbar that connects any PE from the

previous stage to any PE in the next stage. That is, it is capable of connecting

12xN outputs in stage i to 20xN inputs in stage j, where N is the number of

parallel PEs in each stage (N=20 for Cryptoraptor). Although full crossbar

topology has a significant impact on the cycle time of our processor (analyzed

and discussed in following chapters), it increases the flexibility of our design

and allows us to support more algorithms efficiently. This unit can also be

structured with a predefined set of connection schemes between functional

units based on pattern analysis on existing algorithms. However, doing so will

potentially limit the capabilities of our processor for future algorithms.

A CR consists of four parallel PE connectors, each of which prepares all

inputs of corresponding PE in the next stage. Each PE connector is configured

using a 120-bit control signal; 6 bits for each PE input in the next stage. The

control signal structure of a PE connector is summarized in Table 5.1. Most

56

Table 5.1: The control structure of one PE connector

Control index # Output destination
control[5:0] AU operand #0
control[11:6] AU operand #1
control[17:12] AU operand #2
control[23:18] AU operand #3
control[29:24] LOU operand #0
control[35:30] LOU operand #1
control[41:36] LOU operand #2
control[47:42] LOU operand #3
control[53:48] LOU operand #4
control[59:54] LOU operand #5
control[65:60] TLU operand #0
control[71:66] TLU operand #1
control[77:72] TLU operand #2
control[83:78] TLU operand #3
control[89:84] SRU operand #0
control[95:90] SRU operand #1
control[101:96] SRU operand #3
control[107:102] SRU operand #4
control[113:108] PEU operand #0
control[119:114] PEU operand #1

significant two bits of six selection bits per PE connector to select one of the

4 PEs in the previous stage. Table 5.2 describes how the remaining four bits

select one among twelve 32-bit outputs of the selected PE in the previous

stage.

Our algorithm analysis suggests that the cryptographic algorithms may

need up to four register updates per cycle. We extended this requirement for

each PE row to provide a high degree of flexibility. Besides controlling connec-

tions between PEs, a CR is also responsible for controlling up to eight outputs

57

Table 5.2: The input selection structure of PE connector (least significant 4
bits of 6 selection bits)

CONNcontrol[3:0] Functional Unit
0000 AU out
0001 AU out (shifted)
0010 LOU out
0011 LOU out (shifted)
0100 TLU out #0
0101 TLU out #0 (shifted)
0110 TLU out #1
0111 TLU out #2
1000 TLU out #3
1001 SRU out
1010 PEU out #0
1011 PEU out #1

from all stages to be stored to the register file. By providing eight parallel

register file write port, we doubled the requirements of existing symmetric-key

encryption algorithms and hash functions. The flexibility of storing interme-

diate results from any stage enables us to utilize any portion of Cryptoraptor

and to have a different number of pipeline stages for each algorithm. Thus,

any PE individually and/or a PE row can be turned on/off as needed by the

algorithm. The control structure enables users to configure only required PEs

and corresponding PE connectors or even a small portion of a single PE and

PE connector. Since selecting 8 outputs requires 8x6-bit control signal, the

total number bits of control in CR is (8x6)+(4x120) bits, and organized as

58

follows;

control = {RegOutSLCT ||PEconnectorCTRL} where
RegOutSLCT = {OUTslct7 ||OUTslct6 || . . . ||OUTslct1 ||OUTslct0}

(5.1)

A control memory block associated with each CR. Each CR control

memory can hold up to 4 sets of control signals that are loaded at the beginning

and controlled by the central state machine of the processor. The control

interface of a CR consists of one 32-bit input for control load and a 7-bit

control signal defined as follows;

CONNcontrol = {WriteEnable ||State ||WordAddress} (5.2)

The control memory of a CR is loaded by 32-bit data chunks, and

address of each word is controlled by 2-bit State and 4-bit WordAddress.

Throughout the control loading process, the WriteEnable bit of CR state

control signal must be asserted. All other times control memory is in read-

only mode. Loading the control signals of single CR may take up to 17 cycles

depending on the amount of control signals needed to implement an algorithm.

The control structure and addressing flexibility enable users to configure only

corresponding PE connectors or even small portion of one PE connector.

5.5 Processing Element Row

The Processing Element Row is encapsulation module to organize par-

allel PEs in each level. The proposed structure contains four parallel and

59

independently configured PEs in a row. Thus, one PE row takes four sets

of 20x4B as inputs and 4x7-bit control signals to produce four sets of 12x4B

outputs. Each PE has its own control memory and is configured separately

using the same interface.

5.6 Processing Element

A Processing Element (PE) is the smallest execution element of our

cryptographic processor which includes one of each functional units: an Arith-

metic Unit (AU), a Logical Operation Unit (LOU), a Table Lookup Unit

(TLU), a Shifter-Rotator Unit (SRU), and a Permutation-Expansion Unit

(PEU).

Figure 5.3: High level unit structure of a Processing Element

Our analysis on cryptographic algorithms suggests that even though

variable amount shift and rotate operations are needed in crypto-systems, one-

fourth of the algorithms use byte-wise rotation instead. This ratio becomes

as high as 34.6 percent in cryptographic hash functions. Thus, we integrated

byte-wise rotation operation to the output of AU, LOU, and TLU without

60

adding significant overhead to the cycle time of our processor. The overhead

of having byte-wise rotation unit is further analyzed and discussed in following

chapters. Having such byte-wise rotation unit allows us to have both original

and 1, 2, or 3-byte rotated outputs, which is very desirable for some algorithms

to reduce the total number of cycles and eliminate redundant and/or duplicate

operations. Figure 5.3 shows high-level unit structure of a PE.

Table 5.3: The input structure of PE

Input # Functional Unit
0 AU operand #0
1 AU operand #1
2 AU operand #2
3 AU operand #3
4 LOU operand #0
5 LOU operand #1
6 LOU operand #2
7 LOU operand #3
8 LOU operand #4
9 LOU operand #5
10 TLU operand #0
11 TLU operand #1
12 TLU operand #2
13 TLU operand #3
14 SRU operand #0
15 SRU operand #1
16 SRU operand #2
17 SRU operand #3
18 PEU operand #0
19 PEU operand #1

Since each of these functional units can work concurrently on different

inputs, a PE takes twenty 4B inputs and produces twelve 4B outputs. Thus,

61

Table 5.4: The output structure of PE

Output # Functional Unit
0 AU out
1 AU out (shifted)
2 LOU out
3 LOU out (shifted)
4 TLU out #0
5 TLU out #0 (shifted)
6 TLU out #1
7 TLU out #2
8 TLU out #3
9 SRU out
10 PEU out #0
11 PEU out #1

the proposed PE is capable of utilizing all functional units in parallel to gen-

erate up to twelve outputs. Since each unit is independently bypassable, PEs

can also forward six different inputs to next stages. Table 5.3 and 5.4 provide

detailed information about inputs and outputs respectively.

Table 5.5: The control signal structure of PE

Control Signal Amount Functional Unit
control[3:0] 4 Arithmetic Unit
control[27:4] 24 Logical Operation Unit
control[35:28] 8 Table Lookup Unit
control[43:36] 8 Shifter/Rotator Unit
control[427:44] 384 Permutation/Expansion Unit
control[429:428] 2 Byte-wise rotator for AU
control[431:430] 2 Byte-wise rotator for LOU
control[433:432] 2 Byte-wise rotator for TLU

Each PE is configured using one 434-bit control signal; 4 bits for AU,

62

24 bits for LOU, 8 bits for TLU, 8 bits for SRU, 384 bits for PEU, and 3x2 bits

for byte-wise rotators for AU, LOU, and TLU. The control signal structure of

a PE is summarized in Table 5.5.

We placed a small memory block dedicated to each PE to store the

required control signals. Even though we expect those signals to remain mostly

constant for a given algorithm, such system gives the flexibility of storing

multiple sets of control signals that can be easily controlled by state machine

of the processor. Each PE can hold up to four sets of control signals that are

loaded in the beginning and controlled by the central state machine.

The control interface of a PE is one 32-bit input for control load and a

7-bit control signal defined as follows;

PEcontrol = {WriteEnable ||State ||WordAddress} (5.3)

The control memory of a PE is loaded by 4B data chunks, and address

of each word is controlled by 2-bit State and 4-bit WordAddress. Throughout

the control loading process, the WriteEnable bit of PE state control signal

must be asserted. All other times control memory is in read-only mode. Load-

ing the control signals of a PE may take up to 56 cycles depending on the

amount of control signals needed to implement an algorithm. The control

structure and flexibility on addressing enable users to load only required PEs

and functional units; yielding decrease in setup time.

63

5.7 Functional Units

Our processor design relies on five bypassable and independently con-

figurable functional unit structures that can work concurrently: Arithmetic

Unit (AU), Logical Operation Unit (LOU), Table Lookup Unit (TLU), Shifter-

Rotator Unit (SRU), and Permutation-Expansion Unit (PEU). The following

sections provide detailed information about the structure of each functional

unit.

5.7.1 Logical Operation Unit (LOU)

Our studies show that logical operators are the most commonly used

operations, and cryptographic algorithms tend to perform a sequence of log-

ical operations. More than 80 percent of existing cryptographic algorithms

perform two consecutive logical operations while 58.8% process three logical

operations back to back and 31.8% of the algorithms perform four or more

consecutive logical operations. That finding inspired us to separate logical op-

erations from the AU to support sequences of logical operations and to process

more operations concurrently, which enables us to achieve better utilization

of hardware while mapping the cryptographic algorithms and to get higher

throughput.

64

Figure 5.4: The internal structure of LOU

The proposed LOU structure consists of three levels of operation re-

duction tree with six independently configurable logic blocks (CLBs) as shown

in Figure 5.4.

Each CLB is capable of performing four logic primitives (AND, OR,

NOT, and XOR) on its operands as well as applying bitwise inversion to any

operand (i.e. ¬A⊕B). Each CLB is configured by using one 4-bit control

signal. The TLU operates as detailed in Table 5.6.

The LOU takes six 4B inputs, two for each CLB in the first level,

produces one 4B output by applying an user-defined logical function and is

configured by a 24-bit control signal where;

LOUcontrol = {CLB5||CLB4||CLB3||CLB2||CLB1||CLB0} (5.4)

The proposed LOU can support all functions found in common cryp-

tographic hash functions and complex logic reduction functions with up to six

65

Table 5.6: The Configurable Logic Block functionality

Control Signal Operation
0000 Forward operand #1 (A)
0001 Forward operand #1 (A)
0010 Forward operand #1 (A)
0011 Forward operand #1 (A)
0100 Forward operand #2 (B)
0101 Forward operand #2 (B)
0110 Forward operand #2 (B)
0111 Forward operand #2 (B)
1000 A ⊕ B
1001 A ∧ B
1010 A ∨ B
1011 ¬A
1100 ¬A ⊕ B
1101 ¬A ∧ B
1110 ¬A ∨ B
1111 ¬B

inputs. Let’s consider the following real life example:

F (X, Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ z) (5.5)

The Equation 5.5 is a 6-input function that is used in MD4, SHA-1, and

SHA-2. Such a simple function requires five iterations to produce the result

using a simple arithmetic logic unit. However, we can easily implement it in a

single cycle with the three-level reduction tree structure in our LOU. Besides

its functional capacity, the proposed LOU is also capable of forwarding one

output among any of its operands.

66

5.7.2 Table Lookup Unit (TLU)

The table lookup operation is one of the most commonly used oper-

ations in cryptographic algorithms to provide non-linearity to ciphers. Our

studies on cryptographic algorithms show that table sizes and addressing

schemes greatly vary among algorithms. Since more than 70 percent of the

algorithms that use table lookup use tables with 256 entries, we use that

structure as a general trend. However, there are algorithms that require larger

tables. Our algorithm analysis shows that the largest table that is used in ex-

isting cryptographic algorithms has 1024 entries. Thus, our table lookup unit

structure mostly relies on 256-entry tables while supporting any table size up

to 1024-entry.

Figure 5.5: The internal structure of TLU

To support a wider range of cryptographic algorithms, three 256-entry

tables and one 1024-entry lookup table (named as SBOX and TBOX, respec-

tively) are included in each TLU as shown in Figure 5.5. The current TLU

67

structure offers three different ways of processing a table lookup: (i) one table

lookup with up to a 10-bit address that returns a 4B output, (ii) four table

lookups with each byte of a 4B input used as one address that returns four 4B

outputs, and (iii) one table lookup with each byte of a 4B input as addresses

that outputs each byte of one 4B output. Our TLU structure and its current

limitations are solely based on our analysis of studied algorithms; however,

larger lookup tables can be supported by splitting them into multiple tables,

and using multi-stage lookup operations.

Table 5.7: The Table Lookup Unit functionality

Control Signal Operation
control[0] TBOX write enable
control[1] SBOX #0 write enable
control[2] SBOX #1 write enable
control[3] SBOX #2 write enable
control[4] XOR level 1 enable
control[5] XOR level 2 enable
control[6] TBOX out / Merge 4 lookup
control[7] Table lookup enable

Our dataflow graph analysis suggests that in most cryptographic al-

gorithms, table lookup operations are preceded and/or followed by an XOR

operation. We include by-passable XOR operations before and after each mem-

ory lookup block as shown in Figure 5.5. Doing so enables us to implement

a sequence of XOR and SBOX lookup operations in one cycle while it a take

multiple cycles without such structure.

The current TLU structure takes four 4B inputs (one for writing data

68

to tables, three for XOR and lookup operations) and generates up to four 4B

outputs, which enables one PE to process four parallel lookups. The TLU is

configured by using one 8-bit control signal and operates as summarized in

Table 5.7.

5.7.3 Arithmetic Unit (AU)

We describe the arithmetic operation class as integer addition and sub-

traction operations over varying lengths. Our analysis shows that more than

half of the algorithms uses arithmetic operations. While 73.1% of stream ci-

pher algorithms require arithmetic operations, they are also used in 42.7% of

block ciphers and 61.5% of cryptographic hash functions.

Figure 5.6: The internal structure of AU

We initially designed our AU as being capable of doing only 32-bit ad-

dition and subtraction. However, we later decided to extend our AU structure

69

to support 8 and 16-bit operation granularities due to the high demand on

modular arithmetic operations in cryptographic algorithms (Figure 5.6). As

we mentioned in algorithm analysis chapter, 75.3% of modular arithmetic op-

erations in cryptographic algorithms use 232 as the base value, while more than

90% of modular arithmetic operations use either 28, 216, or 232 as base, which

can be realized by masking the result of standard integer arithmetic with an

AND operation. Thus, we provided the flexibility of performing operations in

modulo 28 and 216 within the current AU structure as well.

Table 5.8: The Arithmetic Unit functionality

Control Signal Operation
0000 Addition (32-bit)
0001 Addition in modulo 28

0010 Addition in modulo 216

0011 Forward the 1st operand
0100 Subtraction (32-bit)
0101 Subtraction in modulo 28

0110 Subtraction in modulo 216

0111 Forward the 2nd operand
1000 (A ⊕ B) + C in modulo 232

1001 A + (B ⊕ C) in modulo 232

1010 (Output of first level) ⊕ D in modulo 232

1011 (Output of first level) ⊕ D in modulo 232

1100 (A ⊕ B) - C in modulo 232

1101 A - (B ⊕ C) in modulo 232

1110 (Output of first level) ⊕ D in modulo 232

1111 (Output of first level) ⊕ D in modulo 232

Beside modular arithmetic support for modulo bases 28 and 216, we also

introduced XOR bundles before and after performing arithmetic operations.

70

Our algorithm analysis suggests that a good fraction of algorithms use XOR

and arithmetic operations back to back. We also analyzed the timing, area,

and power overhead of these bundles and decided to integrate it into our AU

structure since it does not affect the critical path of our processor. Following

chapters provides more detailed information about or timing, area, and power

analysis. The current AU structure is configured by using one 4-bit control

signal and operates as detailed in Table 5.8.

5.7.4 Permutation/Expansion Unit (PEU)

Bit manipulation is used as the main operation in some cryptographic

algorithms like DES to provide non-linearity. The PEU provides a capability

of merging, manipulating, and expanding bits from two 4B inputs to generate

up to an 8B output or two 4B outputs. Even though it is possible to predefine

some bit manipulation schemes based on current cryptographic algorithms and

then select among them using control signals, we chose to provide full capa-

bility in our design to support not only existing algorithms but also potential

future algorithms. We believe that PEU will also help to support algorithms

that are not easily mapped onto our current design since bit manipulation can

implement complex logical operations very easily.

Each bit of the outputs is connected to an independently configurable

unit called Bit Selector (BS). Thus, PEU consists of 64 BS, each of which is

responsible for generating one particular bit of outputs. Each BS is configured

by using one 6-bit control signal. The BS operates as detailed in Table 5.9.

71

Table 5.9: The Bit Selector control structure

Control Signal Selected Bit
000000 operandA[0]
000001 operandA[1]
000010 operandA[2]

. .

. .
000011 operandA[31]
100000 operandB[0]
100001 operandB[1]

. .

. .
111101 operandB[29]
111110 operandB[30]
111111 operandB[31]

The PEU takes two 4B inputs and produces two 4B outputs by manipu-

lating the bits of the inputs according to user-defined permutation. Since each

bit of two outputs may come from any bit of inputs, the PEU is configured by

using one 384-bit control signal where;

PEUcontrol = {BS63||BS62|| . . . ||BS2||BS1||BS0} (5.6)

5.7.5 Shifter/Rotator Unit (SRU)

The Shifter/Rotator Unit supports a variable amount shift/rotate op-

eration on 32-bit data for both ways. Since shift/rotation on 8 or 16-bit data

is not common among studied cryptographic algorithms, and it can be imple-

mented within PEU, smaller granularity rotations are not supported by this

unit.

72

Figure 5.7: The internal structure of SRU

The SRU takes two 4B inputs, one as an operand and the other as

shift/rotate amount, and is controlled by one 8-bit control signal where;

LOUcontrol = {enOp2||ctrlOp2||ctrlSHFT ||enOp1||ctrlOp1} (5.7)

Our algorithm analysis suggests that more than 40% of algorithms using

shift/rotate operations also perform a logical operation before and/or after

shift/rotate operations. Thus, we introduced this flexibility into our SRU

structure, where user can specify logical operations (AND, OR, NOT, and

XOR) before and/or after shift/rotate operation (Figure 5.7).

Table 5.10: The Shifter/Rotator Unit functionality

Control Signal Operation
00 Left shift
01 Left rotate
10 Right shift
11 Right rotate

The shift/rotate functionality is controlled by 2-bit control signal and

operates as detailed in Table 5.10. Each operation block is controlled by 3-

73

Table 5.11: The Operation Block functionality

Control Signal Operation
00 XOR
01 AND
10 OR
11 NOT

bit control signal (1 bit enable and 2 bits for operation configuration). The

functional configuration of the operation block is shown in Table 5.11.

74

Chapter 6

Processor Analysis

In this chapter, we provide detailed timing, power, and area analysis of

our processor. We believe such detailed analysis on functional units might give

deeper insight about trade-offs between these metrics to both cryptographic

algorithm developers and hardware architects. We also analyzed the current

algorithm coverage of Cryptoraptor and its limitations.

6.1 Implementation

We have developed a highly modular fully configurable architecture in

Verilog HDL. Our parametrized architecture enables us to explore the design

space and study the trade-offs by changing the width and height of Execution

Tile, the number of PE rows that will fit into a pipeline stage, and even the

configuration of each functional units.

Synthesizing our RTL code into a gate level structure was done using

Synopsys Design Compiler (DC) and FreePDK45TM v1.4 45nm standard-cell

CMOS technology [202]. However, due to lack of a memory compiler, we used

register blocks to mimic the functionality of SBOX in TLU while analyzing

the maximum frequency of our design. We used "-uniquify", "-ungroup", and

75

"-flatten" DC optimizations, which removed module boundaries and synthe-

sized the design as a whole block. Our processor design achieves a maximum

frequency of 1GHz, where each pipeline stage consists of one pair of a PE

row and Connection Row. More detailed timing analysis and discussions on

sub-modules are provided in following sections. We have not yet optimized

for frequency by introducing design-related optimizations to our datapath.

We leave further optimizations and design exploration as future work. Since

compiling memory blocks using registers requires unreasonably large area and

consumes high power, we used CACTI 6.5 Memory Model [153] to get more

accurate results for our memory blocks. To get more accurate estimate for

the overall die area and the power consumption of our processor, we combined

the results from DC and the memory blocks from CACTI with an additional

10% error to derive our results. The following sections provide more detailed

analysis and discussion on area requirements and differences between DC’s

and CACTI’s area results.

Even though we are not planning to use FPGA as the platform for our

processor, we also synthesized our RTL code to Xilinx Virtex-6 FPGA using

ISE Design Suite 14.6 without introducing any FPGA-related optimizations to

the system. The only thing that we had to change was the memory block used

in TLU as Block RAM blocks (BRAMs) in FPGA. Even though the FPGA

still can be reconfigured in real time when the algorithm is changed, we keep

our design the same to enable reconfigurability without having to recompile

FPGA. Despite the fact that the excessive use of multiplexers in our design

76

has a negative impact on our cycle time on FPGA, we still managed to achieve

203.80MHz with the same configuration used in ASIC version.

6.2 Timing Analysis

We synthesized functional units in our PE separately to help determine

which functional unit or structure defines the critical path of our processor.

Such analysis also allows us to further improve the design of the functional

units which are not on the critical path.

Table 6.1: The cycle time of functional units in PE

Cycle time (ns) Cycle time with
byte-rotator (ns)

AU 0.51 0.56
LOU 0.48 0.53
TLU 0.58 0.63
SRU 0.55 -
PEU 0.23 -
Byte rotator 0.07 -
Multiplication 0.91 -

The cycle time of each functional unit in PE and their combined ver-

sions with byte rotator are summarized in Table 6.1. Due to its memory opera-

tions and complex structure, TLU is the critical path in our PE design. Since

we cannot make the PE faster than the slowest component, we augmented

the functionalities of other functional unit; yielding higher compute capabili-

ties. As we described in previous chapters, we bundled arithmetic operations

with XOR and shift/rotate operations with logical operation blocks. Table 6.2

summarizes the effects of these bundles on the cycle time our functional units.

77

Table 6.2: The cycle time comparison of functional units with bundles

Cycle time (ns) Cycle time with
byte-shifter (ns)

AU 0.42 0.46
AU (bundled) 0.51 0.56
SRU 0.30 -
SRU (bundled) 0.55 -

Considering one-fourth of the algorithms use byte-wise rotations, inte-

grating byte rotators to AU, LOU, and TLU has an insignificant effect (0.04-

0.05ns when merged) on overall cycle time. As shown in Table 6.1, a single

stage multiplication unit takes 0.91ns to multiply two 32-bit integer, which

would significantly increase the cycle time of PE; yielding lower clock frequency

for the processor. Our algorithm analysis shows that supporting multiplica-

tion would increase the algorithm coverage by 8.1 percent, but results in 25%

decrease in clock frequency. Thus, we chose not to include multiplication in

our current datapath, yielding 0.65ns cycle time for our PE structure.

Table 6.3 shows the cycle times required for each sub-structure in our

processor as well as overall cycle time of Cyrptoraptor. As we discussed before,

a full crossbar structure between levels has a significant impact on the cycle

time of our processor. The functional part of a full row accounts for only

two third of the overall cycle time. Even though one full row, which is a

merged version of one PE and Connection row, requires 0.95ns, the register

file connections and capacitance effects of all connections yields us to have

1.00ns as the cycle time of our processor.

78

Table 6.3: The cycle time of sub-modules in Cryptoraptor

Cycle time (ns)
PE 0.63
PE Row 0.63
Connection Row 0.47
Pipeline Register 0.09
One Full Row 0.95
Execute Tile 1.00
Cryptoraptor 1.00

Such a detailed analysis also shows the affect of synthesizing modules

with "-uniquify", "-ungroup", and "-flatten" optimizations. These optimizations

allow DC to flat out all design, remove module boundaries, and synthesize it

as a whole block. Thus, it makes impossible to predict the cycle time of larger

modules by just combining the cycle time of smaller ones. We will discuss

similar affects on area and power analysis in later sections.

6.3 Area Analysis

We analyzed area requirements of each functional unit and sub-modules

in our processor. Even though we used registers while doing timing analysis,

we used the CACTI 6.5 Memory Model [153] to get more accurate area anal-

ysis because compiling memory blocks using registers requires unreasonably

large area, resulting in misleading information. Table 6.4 shows the difference

between compiling memory blocks with DC and CACTI.

Ideally, the memory blocks should be compiled using Memory Compiler

and integrated into DC. However, we tried to estimate the area requirements

79

Table 6.4: The area comparison between Design Compiler and CACTI

Entry size Design Compiler
(mm2) CACTI (mm2) Ratio

SBOX 256 0.1582 0.0017 93.0
TBOX 1024 0.5731 0.0031 184.8

as accurate as possible by using CACTI.

Table 6.5: The area of functional units in PE

Area (mm2)
Area with
byte-rotator

(mm2)
AU 0.0107 0.0117
LOU 0.0080 0.0087
TLU 0.0110 0.0115
SRU 0.0093 -
PEU 0.0156 -
Byte rotator 0.0011 -
Multiplication 0.0075 -

Table 6.5 shows the area requirements of each functional unit in PE

and their combined versions with byte rotators. As opposed to discussion that

we did for timing analysis, the functional unit that has the largest area re-

quirement is PEU instead of TLU. On the other hand, Table 6.6 summarizes

the effects of our bundles (arithmetic operations with XOR, and shift/rotate

operations with logical operation blocks) on the area requirements of AU and

SRU. Even though the improved functionality increases the area, we concen-

trate more on performance and flexibility for this thesis.

As seen in Table 6.5, merging functional units with byte rotator does

not have a significant impact on the overall die area. Unlike its effects on

80

Table 6.6: The area comparison of functional units with bundles

Area (mm2)
Area with
byte-shifter

(mm2)
AU 0.0035 0.0042
AU (bundled) 0.0107 0.0117
SRU 0.0063 -
SRU (bundled) 0.0093 -

cycle time, a multiplication unit does not have a serious impact on the area.

However, since our main aim is to design a "high performance" cryptographic

processor, its effects on cycle time are the determining cause for not having a

multiplication unit in our datapath.

Table 6.7: The area of sub-modules in Cryptoraptor

Area (mm2)
PE 0.0344
PE Row 0.1448
Connection Row 0.0627
Pipeline Register 0.0221
One Full Row 0.2115
Execute Tile 4.5428
Register File 1.7816
Cryptoraptor 6.3244

The area requirements of each sub-structure in our processor, as well

as overall cycle time of Cyrptoraptor, are summarized in Table 6.7. The func-

tional and execution parts of our processor use 71.8 percent of overall die area.

With a 256-entry register file (1.78mm2), Cryptoraptor requires only 6.32mm2,

which is approximately 34X and 78X smaller than existing CPUs and GPUs,

respectively.

81

6.4 Power Analysis

Since comparing the power usage of our processor with AES-specific

cores or existing GPPs would be unfair, we provide detailed analysis for each

functional unit instead. Besides fairness, providing such comparison is quite

hard, if not impossible, due to the lack of data provided by chip vendors and

in research papers.

We believe that a detailed analysis on power usage of functional units

may give more insight to cryptographic algorithm developers about hardware

implementation of their algorithms. Combination of timing, area, and power

analysis enables both cryptographic algorithm developers to optimize their

designs in the light of these trade-offs and hardware designers to choose more

appropriate hardware structures while implementing the algorithms.

Table 6.8: The power usage comparison for memory blocks

Internal
Power
(mW)

Switching
Power
(mW)

Leakage
Power
(mW)

Dynamic
Power
(mW)

SBOX (DC) 260.4114 7.6365 0.83 268.8782
SBOX (CACTI) 11.62 3.48x10−6 0.15 11.77
TBOX (DC) 774.8735 20.2947 3.03 798.2086
TBOX (CACTI) 14.41 1.31x10−5 0.18 14.59

While providing power dissipations, we applied the same strategy that

we did for the area in the previous section. Thus, we combined the power

usage of functional parts from DC and memory blocks from CACTI with an

additional 10% for error to derive power usage of our functional units, sub-

modules, and our processor. The power usage difference for memory blocks

82

synthesized using DC and CACTI is summarized in Table 6.8.

Table 6.9: The power usage of functional units in PE

Internal
Power
(mW)

Switching
Power
(mW)

Leakage
Power
(mW)

Dynamic
Power
(mW)

AU 3.97 3.07 0.0479 7.08
LOU 2.49 2.30 0.0269 4.81
TLU 51.54 1.35 0.0399 53.55
SRU 1.90 1.84 0.0303 3.78
PEU 14.35 4.07 0.0748 18.50
AU (with BR) 4.06 3.22 0.0513 7.33
LOU (with BR) 2.62 2.41 0.0282 5.06
TLU (with BR) 51.75 1.48 0.0427 53.89
Byte rotator 0.58 0.52 0.0021 1.10
Multiplication 4.09 3.06 0.0374 7.18

Synopsys Design Compiler divides the power dissipated in a design

into four categories: leakage, dynamic, internal, and switching. The leak-

age (static) power is the power consumed by a gate when it is not switching,

and caused by currents that flow through the transistors even when they are

turned off. Dynamic power is the power dissipated when the circuit is ac-

tive i.e. performing some function. Dynamic power consists of internal and

switching components. Internal power is consumed within a cell for charging

and discharging internal cell capacitances, while switching power is dissipated

when charging and discharging the load capacitance at the cell output.

Table 6.9 provides a detailed power usage analysis of each functional

unit in PE and their combined versions with byte rotator. Our power analysis

provides not only total dynamic power per functional unit, but also internal,

switching, and leakage powers separately. As shown in Table 6.9, TLU requires

83

Table 6.10: The power usage comparison of functional units with bundles

Internal
Power
(mW)

Switching
Power
(mW)

Leakage
Power
(mW)

Dynamic
Power
(mW)

AU 1.23 0.87 0.0147 2.12
AU (bundled) 3.97 3.07 0.0479 7.08
SRU 1.86 1.82 0.0220 3.71
SRU (bundled) 1.90 1.84 0.0303 3.78

the highest dynamic power by far with 53.5mW due to its memory blocks.

However, there is also a huge gap between the power usage of PEU and other

functional units. This finding clearly shows the trade-off between the flexibility

and power usage. We also analyzed the effects of our bundled operations to the

power usage of our functional units. Table 6.10 provides a detailed analysis on

the effects of these bundles on the power usage. Even though it seems like the

bundled arithmetic and XOR operation structure has a great impact on power

usage of AU, it is negligible compared to the power usage of other functional

units and the overall system.

Table 6.11: The power usage of modules in Cryptoraptor

Internal
Power
(mW)

Switching
Power
(mW)

Leakage
Power
(mW)

Dynamic
Power
(mW)

PE 63.42 4.21 0.15 68.40
PE Row 254.37 18.35 0.60 277.17
Connection Row 1.58 0.86 0.17 2.60
Pipeline Register 288.74 3.71 1.20x10−7 292.57
One Full Row 336.20 19.35 0.96 360.37
Execute Tile 5229.32 303.75 19.96 5602.65
Register File 573.49 4.68x10−5 3.40 576.89
Cryptoraptor 5802.80 303.75 19.96 6207.04

84

The detailed power usage of each sub-structure in our processor are

summarized in Table 6.11. Our studies shows that CR between levels does not

have significant impact on power usage of the processor and majority of total

power is used by the functional parts of our processor. We realized that DC

and optimization flags make power usage unpredictable and more complicated

than a simple calculation of combining sub-modules. For example; one PE

row, CR, and pipeline registers require 277.17mW , 2.60mW , and 292.57mW

dynamic power respectively when they are synthesized separately. However,

DC reports 360.37mW dynamic power usage for one Full Row (which consists

of one pair of a PE row and CR with pipeline registers), where only 119.39mW

is attributed to pipeline registers.

Table 6.12: Power usage comparison of GPPs

Lith.
(nm)

Area
(mm2)

Max
Power

(W)

Power
per area
(W/mm2)

Core i7-2600K 32nm 216 95 0.4398
Core i7-980X 32nm 239 130 0.5439
VIA C7 90nm 30 20 0.6666
GTX 260 55nm 576 182 0.3159
GTX 285 55nm 490 204 0.4163
GTX 295 55nm 470 289 0.6148
Tesla C2050 40nm 539 238 0.4415
Cryptoraptor 45nm 6.32 6207.04 0.9777

Even though we avoid to compare the power consumption of our pro-

cessor with existing GPPs, we would like to analyze power per area (W/mm2)

metric of our processor (shown in Table 6.12). In previous chapters, we men-

tioned that a large fraction of energy dissipation can be attributed to the

85

instruction supply in an in-order RISC machine [92]. Table 6.11 shows that

90.6 percent of total power is consumed by functional and execution part of

our processor. Therefore, we can state that using a compact finite state ma-

chine representation for control flow in algorithms increase energy efficiency

by simplifying the front-end structure of a traditional processor. We can also

improve this idea by claiming such control mechanism reduces not only the

energy consumption but also area requirements of the processor.

6.5 Performance Analysis

Since we are unique in supporting a wide range of cryptographic al-

gorithms on a single cryptographic processor, there is no directly comparable

related work. As discussed earlier, most of the existing solutions are hard-

coded and hand-tuned, usually not even parameterized, for a particular cryp-

tographic algorithm.

Even though we aim to achieve high throughput for all algorithms, we

can only compare our performance on AES due to the lack of published results

for any other algorithm. The main purpose of our performance comparisons

is not to show that we achieve the highest throughput but to emphasize that

our proposed architecture has competitive performance results compared to

existing solutions. However, we should re-emphasize that we compare our

flexible processor against to the designs that are hand-tuned and specialized

specifically for AES.

The one of the biggest challenges on performance analysis is the per-

86

formance data provided by chip vendors and in research papers. Hardly any

company provides detailed performance data nor an insight into the archi-

tecture itself such as chip architecture and pipeline depth. The performance

numbers and architecture descriptions are not complete, even in resesearch

papers; making comparisons even harder.

Another obstacle for having a fair comparison is the selection of base

settings for AES. Our literature study on AES shows that there is no unifor-

mity among research papers while presenting the performance results. The

first challenge is to find a base performance metric to compare a variety of

solutions effectively. Among many other alternatives used in literature such as

bytes per cycle and bytes per area, we choose our throughput metric as gigabit

per second (Gbps) to incorporate characteristic of the algorithm (block size),

hardware design performance (frequency), and hardware design architecture

(latency) into a single metric. We studied each proposed solution in detail to

generate their throughput metrics as Gbps if they have not presented in that

form.

Our initial studies also indicate that there is no agreed mode of opera-

tion in the literature to study the performance of AES solutions. The choice of

feedback (CBC, CFB, and OFB) or non-feedback (ECB and CTR) operation

mode plays a crucial role on throughput of the design. In general, AES cores

are designed to achieve high throughput on non-feedback modes with a deep

pipeline structure and have a dramatic decrease in performance on feedback

modes.

87

Even though we believe that feedback mode throughput of an AES core

provides a better insight about the performance of a design, we find it unfair to

normalize the performance results of a core optimized for non-feedback mode

to feedback ones. For that reason, we present throughput of existing solutions

for both as well as their clock frequencies, lithographies, and pipeline depths.

We prefer not to scale the presented results to a particular technology or

device to avoid unrealistic advantages/disadvantages created by mathematical

formulas used in [132] and [126]. A comprehensive comparison of the state-of-

the-art hardware implementations of AES is summarized in Tables 6.13, 6.14,

and 6.15 for ASIC, FPGA, and GPP solutions, respectively.

Table 6.13: AES Performance comparison of ASIC solutions

Lith.
(nm)

Parallel
Stream

of
Cycles

Freq.
(MHz)

CBC
Through-

put
(Gbps)

CTR
Through-

put
(Gbps)

Saravanan [187] 180nm 1 80 333.0 0.53 10.66
Amphion [7] 180nm 1 1 200.0 25.60 25.60
EnSilica eSi-8110 [69] 65nm 1 11 500.0 5.82 64.00
Mathew [139] 45nm 4 20 2615.0 16.74 66.94
Hodjat [99] 180nm 1 41 606.0 1.89 77.57
Swankoski [205] 160nm 1 50 680.3 1.74 87.07
Ip Cores, Inc [105] 90nm 1 10 824.0 10.55 105.47
Morioka [151] 130nm 1 10 909.0 11.64 116.35
Ali [5] 180nm 1 21 1015.0 6.19 129.92
Liu [132] 65nm 1 152 1210.0 1.02 153.70
Our processor 45nm 1 20 1000.0 6.40 128.00

Table 6.13 shows that an ASIC implementation of our cryptographic

processor achieves a competitive throughput result compared to AES-specific

ASIC cores. With its outer-round pipelined structure and highly tuned data-

path, Morioka’s AES-only implementation [151] on an old 130nm technology

88

achieves a high throughput on both AES-CBC and AES-CTR, 11.64Gbps and

116.35Gbps respectively. Besides its reconfigurability, our processor achieves

peak AES throughputs of 6.40Gbps and 128Gbps, respectively. Since the num-

ber of pipeline stages has a negative impact on CBC throughput, our through-

put is roughly half of Morioka’s.

With its higher frequency, 152 pipeline stages, and its many core struc-

ture, Liu’s AES processor [132] achieves the highest AES-128-CTR throughput

of 154.88Gbps. Due to its very deep pipeline, however, it is not able to pro-

vide high performance on feedback modes. Liu’s AES processor (6.63mm2)

only supports AES while our processor (6.32mm2) is capable of supporting a

wide range of algorithms. Our processor design achieves similar throughput

per area as Liu’s many core solution, 20.25Gbps/mm2 and 23.18Gbps/mm2

respectively.

Amphion’s high performance AES core [7] running at 200MHz achieves

the highest AES-CBC throughput by processing ten rounds in a single cycle.

Even though its internal structure is not publicly available, it is obvious that

the core cannot achieve a high CBC throughput due its low clock frequency.

The 10-stage pipelined 824MHz AES core on 90nm technology introduced

by Ip Cores presents a balanced performance on both CBC and CTR mode.

Both designs clearly show the importance of the balance between the pipeline

depth and the clock frequency. Even though we are slower then the highest

throughput AES-specific ASIC cores, our highly configurable cryptographic

processor is competitive to them.

89

Table 6.14: AES Performance comparison of FPGA solutions

FPGA Family Lith.
(nm)

Num.
of Cy-
cles

Freq.
(MHz)

CBC
Through-

put
(Gbps)

CTR
Through-

put
(Gbps)

Jarvinen [109] Virtex 2 130nm 41 139.10 0.43 17.80
Swankoski [204] Virtex 2 130nm 10 147.00 1.88 18.82
Hodjat [100] Virtex 2 130nm 41 168.30 0.53 21.54
Zhang [228] Virtex 1 130nm 70 168.40 0.31 21.56
Good [87] Spartan 3 90nm 70 196.10 0.36 25.10
Iyer [107] Virtex 2 130nm 50 206.84 0.53 26.48
Good [86] Virtex 2 130nm 240 222.90 0.12 28.53
Rizk [181] Virtex 4 90nm 20 223.00 1.43 28.54
Yoo [227] Virtex 2 130nm 30 232.60 0.99 29.77
Good [86] Virtex 3 90nm 120 240.90 0.26 30.84
Fan [70] Virtex 2 90nm 50 250.00 0.64 32.00
EnSilica [69] Virtex 6 40nm 11 275.00 3.20 35.20
Ali [5] Stratix II GX 180nm 21 282.50 1.72 36.16
Wang [212] Virtex 6 40nm 66 344.12 0.67 44.05
Mercoratech [145] Virtex 6 40nm 10 357.00 4.57 45.70
Deshpande [186] Spartan 6 45nm 80 430.00 0.69 55.04
Hossain [102] Stratix II GX 90nm 23 450.05 2.50 57.61
Swankoski [205] Virtex 4 90nm 50 519.18 1.33 66.46
Soliman [198, 199] Virtex 5 65nm 40 557.00 1.78 71.30
Qu [171] Virtex 5 65nm 10 576.07 7.37 73.74
Chen [49] Virtex 4 90nm 10 645.70 8.26 82.65
Our processor Virtex 6 40nm 20 203.80 1.30 26.09

There exists a rich literature on high performance AES hardware ar-

chitectures targeting FPGAs as summarized in Table 6.14. The AES core

proposed by Chen [49] adapts outer-round pipelining scheme and is stated

to achieve a very high frequency of 645.70MHz on a Xilinx Virtex-4 FPGA,

producing the highest AES-CTR throughput of 82.65Gbps. We tried to repli-

cate the work using the source code provided by authors and synthesized

to same FPGA family with the highest speed grade with all optimizations

on, using ISE Design Suite 14.6. However, the highest clock frequency that

90

we were able to produce was 284.43MHz, yielding 36.41Gbps as opposed to

82.65Gbps. Similarly, 10-staged AES core reported by Qu [171] claims an as-

toundingly high clock frequency of 576.07MHz on Virtex-5 while Soliman’s

solution [199] achieves 557MHz clock frequency on the same FPGA even with

its deep inner-round pipelined structure.

Table 6.15: AES Performance comparison of GPP solutions

Architecture Lith.
(nm)

Config.
(core/warp
x thread)

Freq.
(MHz)

Through-
put

(Gbps)

Area
(mm2)

Through-
put per
area

(Gbps/mm2)
Nishikawa [158] Core i7-2600K 32nm 1 x 1 3400 1.90 216 0.009
Nishikawa [158] Core i7-2600K 32nm 4 x 8 3400 7.50 216 0.035
Nishikawa [158] Core i7-2600K 32nm 1 x 1 3400 25.10 216 0.116
Nishikawa [158] Core i7-2600K 32nm 4 x 4 3400 44.20 216 0.205
Akdemir [4] Core i7-980X 32nm 1 x 1 3300 6.30 239 0.026
Akdemir [4] Core i7-980X 32nm 6 x 12 3300 72.30 239 0.303
VIA Tech. [211] VIA C7 90nm 1 x 1 2000 25.00 30 0.833
Zola [161] GTX 260 55nm 27 x 256 1242 30.00 576 0.052
Iwai [106] GTX 285 55nm 60 x 512 1500 35.20 490 0.072
Nishikawa [158] GTX 285 55nm 60 x 512 1242 35.20 490 0.072
Nishikawa [158] Tesla C2050 40nm 28 x 512 1150 48.60 539 0.090
Bos [16] GTX 295 55nm 120 x 512 1240 59.60 470 0.127
Our processor ASIC 45nm 1 x 1 1000 128.00 6.32 20.253

On the other hand, even commercial high performance AES cores in-

troduced by EnSilica [69] and Mercoratech [145] achieve significantly lower

clock frequencies on a faster FPGA family with the same number of pipeline

stages. Table 6.14 clearly shows the impact of the number of pipeline stages on

AES-CTR throughput. Despite their higher frequency, while most of the AES

cores targeted FPGA has poor performance in feedback mode, they achieve

very high throughput on non-feedback mode due to their deep pipelines rang-

91

ing from 40 to 240 stages. The performance results of FPGA solutions suggest

that outer-round pipelined architecture yields better overall performance for

AES by balancing the pipeline depth and the clock frequency of the architec-

ture. Because our design is tuned for an ASIC implementation, it contains an

aggressive connection network and excessive use of multiplexers. Even though

it only runs at 203.8MHz it still achieves reasonable throughput of 1.30Gpbs

AES-CBC and 27.31Gbps.

Table 6.16: Performance summary of algorithms on Cryptoraptor

Parallel
Stream

of
Round

Block
size

(bits)

of
Cycles

CBC
Throughput

(Gbps)

CTR
Throughput

(Gbps)
Blowfish 4 16 64 48 5.33 85.33
Camellia 2 16 128 73 3.51 64.00
CAST-128 4 16 64 80 3.20 64.00
DES 2 16 64 48 2.67 42.67
GOST 4 32 64 98 2.61 51.20
Kasumi 1 6 64 64 1.00 16.00
RC5 4 12 64 48 5.33 85.33
SEED 4 16 128 152 0.84 16.00
Twofish 2 16 128 80 3.20 64.00
RC4 4 4 32 32 4.00 -
Phelix 2 1 32 10 6.40 -
MD4 2 48 128 144 1.78 -
MD5 2 64 512 254 4.03 -
SHA-1 4 80 512 225 4.55 -
SHA-2 1 64 512 320 1.60 -

With their highly parallel structures and very high clock frequencies,

current generation CPU and GPU solutions also generate very competitive

throughput results up to 72.30Gbps and 59.60Gbps respectively. It is apparent

that increasing number of threads allow to hide pipeline latency in GPPs,

yielding very high throughputs. However, current generation GPPs require

92

a very large chip footprint up to 539mm2. Even though we haven’t put any

effort to minimize the required area of our processor, we achieve one to three

order of magnitude higher throughput per area than commercial GPPs as

shown in Table 6.15. We couldn’t present a similar analysis for AES cores

targeting ASIC and FPGA due to missing or inconsistent area constraints in

the reference papers.

As we mentioned earlier, there are not many studies in the literature

on hardware implementation of other algorithms that we mapped. For that

reason, we are unable to provide such a comparison. However, the performance

of other algorithms on our processor is summarized in Table 6.16.

6.6 Resource Utilization

To provide a high degree of flexibility, we introduced some redundant

operations, units, and connections in our processor. Therefore, not all algo-

rithms can utilize all available resources in Crytoraptor. Table 6.17 summarizes

the resource utilization of the algorithms that we mapped onto Cryptoraptor,

and Table 6.18 compares the resource utilization of our manual mapping and

toolchain. The following chapter discusses the reasons of this difference. The

utilization analysis includes only functional units and PEs that are processing

some operations; thus, operand forwarding is not included in resource utiliza-

tion.

Our analysis shows that, even though the average PE utilization is

pretty high, utilization of individual FUs is significantly low on both manual

93

Table 6.17: Resource utilization summary of mapped algorithms on Cryptoraptor

Parallel
Stream LOU TLU AU SRU PEU PE

Way
per

Stream

Max.
Con-

nection
AES 1 50% 0% 50% 0% 0% 100% 4 4
Blowfish 4 33% 67% 33% 0% 0% 100% 1 1
Camellia 2 71% 0% 25% 3% 0% 71% 2 2
CAST-128 4 6% 54% 20% 20% 0% 100% 1 1
DES 2 0% 0% 33% 0% 50% 83% 2 2
GOST 4 34% 33% 33% 33% 0% 100% 1 1
Kasumi 1 25% 9% 20% 0% 5% 48% 4 4
RC5 4 0% 50% 0% 50% 0% 100% 1 1
SEED 1 14% 8% 32% 0% 0% 50% 4 4
Twofish 2 21% 40% 40% 20% 0% 81% 2 2
RC4 4 0% 38% 50% 0% 0% 100% 1 1
Phelix 2 0% 70% 0% 80% 20% 100% 2 2
MD4 2 22% 50% 0% 17% 0% 73% 2 1
MD5 2 19% 63% 0% 13% 0% 85% 2 1
SHA-1 2 18% 75% 0% 28% 0% 99% 2 2
SHA-2 1 25% 35% 0% 30% 0% 50% 3 3
Average 2.38 21% 37% 21% 18% 5% 84% 2 2

Table 6.18: Resource utilization summary of mapped algorithms on Cryptoraptor

Manual mapping Automated mapping
LOU TLU AU SRU PEU PE LOU TLU AU SRU PEU PE

AES 50% 0% 50% 0% 0% 100% 50% 0% 50% 0% 0% 100%
Blowfish 0% 67% 33% 0% 0% 100% 33% 67% 33% 0% 0% 100%
Camellia 80% 0% 20% 3% 0% 60% 71% 0% 25% 3% 0% 71%
CAST128 6% 54% 20% 20% 0% 100% 6% 54% 20% 20% 0% 100%
DES 0% 0% 17% 0% 50% 50% 0% 0% 33% 0% 50% 83%
GOST 34% 33% 33% 33% 0% 100% 34% 33% 33% 33% 0% 100%
Kasumi 25% 0% 20% 9% 5% 50% 25% 9% 20% 0% 5% 48%
RC5 0% 50% 0% 50% 0% 100% 0% 50% 0% 50% 0% 100%
SEED 13% 8% 30% 0% 0% 50% 14% 8% 32% 0% 0% 50%
Twofish 20% 40% 30% 20% 0% 90% 21% 40% 40% 20% 0% 81%
RC4 0% 38% 50% 0% 0% 100% 0% 38% 50% 0% 0% 100%
Phelix 0% 70% 0% 80% 20% 100% 0% 70% 0% 80% 20% 100%
MD4 17% 50% 0% 17% 0% 66% 22% 50% 0% 17% 0% 73%
MD5 12% 50% 0% 12% 0% 62% 19% 63% 0% 13% 0% 85%
SHA-1 17% 83% 0% 33% 0% 100% 18% 75% 0% 28% 0% 99%
SHA-2 20% 40% 0% 30% 0% 55% 25% 35% 0% 30% 0% 50%
Average: 18% 36% 19% 18% 5% 80% 21% 37% 21% 18% 5% 84%

94

and automated mappings. The redundancy that we added for the flexibility

and the unpredictability of future algorithms increase area and power con-

sumption significantly. The average utilization of FUs and PE is summarized

in Figure 6.1 with minimum, maximum values as well as 25% and 75% distri-

butions around the median.

Figure 6.1: The utilization summary

6.7 Current Algorithm Coverage

With the proposed cryptographic processor, we aim to support a wide

range of existing cryptographic algorithms and future standards. Therefore,

it is important to analyze the ratio of algorithms that can be supported by

our processor. Table 6.19 summarizes the current algorithm coverage of our

95

processor. Even though we did not implement all algorithms due to excessive

amount of time required to do so, our initial studies show that 86.5 percent

of the algorithms that we analyzed is supported by current structure of our

processor while 13.5% require additional hardware or logic to be supported.

Table 6.19: The current coverage of cryptographic algorithms

Requires
additional logic
to be supported

Supported by
current
structure

Block Ciphers 15.6% 84.4%
Stream Ciphers 3.8% 96.2%
Hash Functions 15.4% 84.6%
All 13.5% 86.5%

We also analyzed the reason behind not being able to support all ex-

isting algorithms with the current structure. Our analysis shows that the lack

of modular arithmetic support for arbitrary choice of modulus and the lack

of dedicated multiplication units prevent us to support all algorithms. The

impact of modular arithmetic and multiplication support on the algorithm

coverage is illustrated in Figure 6.2. Our initial studies show that there are a

few algorithms requiring both modular arithmetic and multiplication in their

datapath. Therefore, extending the current structure with modular arith-

metic or multiplication will not enable us to cover all algorithms. However,

multiplication unit can be a good candidate for next hardware improvement

since it will increase the algorithm coverage by 8.1%. To support all existing

algorithms, we need to add multiplication operation as a functionality and

96

Block Ciphers Stream Ciphers Hash Functions All

Not supported (Mod&Mult) 4.2% 0.0% 7.7% 4.1%

Not supported (Mod only) 2.1% 0.0% 3.8% 2.0%

Not supported (Mult only) 9.4% 3.8% 3.8% 7.4%

Supported 84.4% 96.2% 84.6% 86.5%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Algorithm Coverage %

Figure 6.2: The distribution of supported and non-supported algorithms based
on limitations

integrate the flexibility of supporting any value of modular base to our AU

structure.

6.8 Limitations

One of the main limitation of our current design is the lack of dedi-

cated multiplication unit which might be useful for some crypto-systems such

as IDEA and RC6. However, only 17 out of 148 cryptographic algorithms (13

block ciphers, 1 stream cipher, and 3 cryptographic hash functions) require

multiplication. Despite the fact that the number of algorithms using multi-

97

plication is very limited, and multiplication can be realized with a set of shift

operations and a sequence of additions, having a dedicated multiplication unit

may speed up the algorithms that are heavily depending on multiplication and

increase the flexibility of our processor for future algorithms.

Even though the most of the modular arithmetic operations can be

implemented using existing functional units, current processor design can be

extended to support varying and unorthodox modulo bases. Extending exist-

ing hardware for modular arithmetic may increase the algorithm coverage of

our processor by 2 percent while having both multiplication unit and modular

arithmetic support may increase up to 13.5 percent.

The other major limitation is limited addressing structure of our TLU.

As we mentioned earlier, TLU is capable of processing one lookup with up to

10-bit addressing or four parallel 8-bit lookup. We designed our parallel lookup

structure and the upper limit for addressing by solely analyzing existing algo-

rithms. Since it is impossible to predict the requirements of future standards

in advance, this structure and limitations may or may not block efficient imple-

mentation of future algorithms. Whereas, we believe that our highly flexible

Connection Row structure and PEU will ease the implementation of any al-

gorithm that does not easily fit into current table lookup limitations. In fact,

table lookup operation with more than 10-bit addressing can be implemented

by separating the table manually or with the help of a tool, and applying a

sequence of lookup operations instead. However, providing a better flexibility

within TLU may allow us to achieve high performance even on algorithms with

98

higher requirements. We leave further study on improving existing TLU and

other functional units as future work.

Due to our initial target application set for our processor, public key

encryption and elliptic curve cryptography are beyond the scope of this work.

We believe that after solving current limitations of our design, we may

have a complete, flexible and high throughput cryptographic processor that can

support a wide range, if not all, of symmetric key encryption algorithms and

cryptographic hash functions, and ideally public key cryptography as well.

99

Chapter 7

Cryptographic Algorithm Mapping

We mapped a total of 16 block ciphers, stream ciphers and crypto-

graphic hash functions to verify its flexibility and reconfigurability of our

cryptographic processor. During mapping process, we focused on encryption

only for each algorithm with the configurations widely used in literature or

suggested by their designers.

As we did for our algorithm analysis phase, we focused on selecting algo-

rithms based on widely used security protocols (IPsec, TLS/SSL, WTLS, SSH,

S/MIME and OpenPGP) and cryptographic libraries (OpenSSL and GNU

Crypto). We also mapped some algorithms that are not in existing protocols

and libraries to stress the flexibility of Cryptoraptor. The list of algorithms

that we mapped, the security protocols and cryptographic libraries that they

are included, and the rationale behind including these 16 algorithms in the

mapping process can be found in Table 7.1.

100

Table 7.1: Algorithm summary and selection for mapping process

Security
Protocols

Cryptographic
Libraries Speciality

AES [156] Almost all Almost all Most widely used algorithm, stresses maximum
parallel lookup table

Blowfish [188] IPsec OpenSSL Base structure for some block ciphers, example
Arithmetic-XOR pattern

Camellia [10] IPsec, TLS
Crypto++,
Cryptospecs,
OpenSSL

Example algorithm that requires special atten-
tion to achieve high performance, example byte-
wise rotator

CAST-128 [2] IPsec, PGP
Crypto++,
Cryptospecs,
OpenSSL,
GnuPG

Base structure for some block ciphers, example
changing round structures, and Arithmetic-XOR
pattern

DES [1] IPsec, SSL, TLS Almost all Example bit permutation and unorthodox oper-
ation width

GOST [169] - Crypto++,
Cryptospecs Doesn’t fit well, example Shift-Logic pattern

Kasumi [141]
as A5/3 in

UMTS, GSM,
GPRS

Cryptospecs
Data dependent and fairly complex structure
due to its unbalanced rounds and unorthodox
table sizes (7 and 9-bit addressing)

RC5 [178] S/MIME
Crypto++,
Cryptospecs,
OpenSSL

Good on software, doesn’t fit well in Cryptorap-
tor

SEED [128]
CMS, IPsec,

SSL, S/MIME,
TLS

Crypto++,
Cryptospecs,
OpenSSL

Recursive round structure, example algorithm
that requires special attention to achieve high
performance

Twofish [189] OpenPGP GnuPG Complex structure and example operation pat-
terns

RC4 [213] TLS, WEP,
WPA

Crypto++,
GnuPG,

Cryptospecs,
OpenSSL

Most widely used stream cipher, table updates,
register file usage

Phelix [217] - - Very complex structure, use of patterns

MD4 [176] PGP, S/MIME
Crypto++,
Cryptospecs,
OpenSSL

Base structure for several hash functions,
stresses LOU structure, changing round struc-
tures

MD5 [175]
IPsec, NTLM,
SSL, S/MIME,

TLS
Almost all

Base structure for several hash functions,
stresses LOU structure, changing round struc-
tures

SHA-1 [64]
IPsec, PGP,
SSH, SSL,

S/MIME, TLS
Almost all Most widely used hash function, changing round

structures

SHA-2 [74]
Bitcoin, IPsec,
PGP, SSH, SSL,
S/MIME, TLS

Almost all Complex round structure, replacing SHA-1

To enable easier implementation, more efficient and optimized algo-

rithm mapping, and higher throughput, a simple cryptography assembly lan-

guage is introduced (Table 7.2). Besides operation primitives, the proposed

language allows users to define and use variables, arrays, tables, constants,

101

and permutation tables. Instructions operate on 32-bit immediate values as

well. Since the multiplication and modular arithmetic with an arbitrary mod-

ulus are currently not supported, they are not included in the language. We

also implemented a custom toolchain which is fully aware of the underlying

processor architecture and optimizes the input mapping for high throughput.
Table 7.2: Instruction List

Operation Class Instructions

AU
ADD, ADD8, ADD16, ADDi, ADD8i,

ADD16i, SUB, SUB8, SUB16, SUBi, SUB8i,
SUB16i

LOU AND, OR, XOR, NOT, ANDi, ORi, XORi
TLU SBOX, SBOX_M, SBOX_P, STR

SRU SHR, SHL, SHRi, SHLi, ROTR, ROTL,
ROTRi, ROTLi, BROTR, BROTL

PEU PERM, PERM32_64, PERM64_32,
PERM64_64

Helper REPEAT, MOVE, SWAP

The toolchain unrolls the loops, in which the round operations are de-

fined, generates a dataflow graph, and optimizes the operation sequence for

underlying hardware. It issues the operations to available FUs as soon as their

operands are ready. Besides its own optimization process, the assembly lan-

guage and toolchain also allow users to hand-tune their implementation. Since

it finds implicit parallelism better, the automated toolchain enables achieving

throughput and resource utilization that are greater than or equal to well-

studied hand-based mapping.

Our experience leads us to believe that mapping an algorithm is straight-

forward as long as all of the necessary functional blocks are available. Multipli-

102

cation, used in 11.5% of the analyzed algorithms, is a notable exception. Our

algorithm analysis suggests that 86.5% of studied algorithms can be mapped

efficiently onto current Cryptoraptor architecture. Since even multiplication

can be performed using existing FUs and we provided more functionality than

studied algorithms require, we strongly believe that Cryptoraptor can support

all existing algorithms.

7.1 Block Ciphers

Due to the large number of block ciphers in the literature and our al-

gorithm analysis, we mapped ten block ciphers to stress the flexibility of our

processor. The following sections provide brief descriptions about those algo-

rithms and how we mapped them onto our processor. The block ciphers that

we mapped are AES, Blowfish, Camellia, CAST-128, DES, GOST, Kasumi,

RC5, SEED, and Twofish.

Most of the block ciphers may be characterized as the Feistel network

invented by Horst Feistel in 1973 [71]. Feistel network is a transforming func-

tion structure which divides the data block into two halves and applies trans-

formation function f on one half using sub-key derived from user’s secret key.

Two halves of the data block are XORed and swapped at the end of each

round. The Feistel network structure may also be generalized to larger data

blocks. Figure 7.1 shows the high-level block diagrams of block ciphers that

use original or derived version of Feistel network.

103

Figure 7.1: The overall structure of Feistel network and its derivations

7.1.1 Advanced Encryption Standard (AES)

AES is a NIST specification for the encryption and a widely used and

studied encryption algorithm. The AES algorithm is a symmetric block cipher

that processes 128-bit data blocks, called "state", using a secret key of length

128, 192, or 256 bits [58]. The cipher, which is structured as an SPN network,

executes 10, 12, or 14 rounds of transformation depending on the selected key

size. In this thesis, we focus our research and results on only encryption with

a 128-bit key and ten rounds of operation to be consistent with other papers in

the literature. In a traditional AES implementation, four operational stages

are performed during each round: SubBytes, ShiftRows, MixColumns and

AddRoundKey. The high-level structure of AES encryption is depicted in

104

Figure 7.2.

Figure 7.2: The traditional structure of AES

The SubBytes is a non-linear transformation, in which each byte from

the input state is replaced by another byte according to a predefined lookup

table. It can also be realized through calculation as the multiplicative inverse

in the finite Galois Field (GF) on 28 and a bitwise affine transformation.

The ShiftRows transformation function processes the state array by

circularly shifting the last three rows over different numbers of offsets.

The MixColumn transformation multiplies the columns of the data ma-

105

trix by a predefined matrix over GF(28). The column multiplication of the

matrix is formulated as:
b0
b1
b2
b3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

×


a0
a1
a2
a3

 (7.1)

where a is the input column, ai denotes one byte of data in the corresponding

cell, and b is the output column. All multiplications and additions used in

MixColumn is defined in GF and dependent upon the field polynomial given

as:

f(x) = x8 + x4 + x3 + x + 1; (7.2)

Even though the traditional flow of the algorithm includes an explicit

matrix multiplication operation in each round, there are some other realiza-

tions of this operation in the literature to get better performance or power and

area efficiency. While matrix multiplication can be implemented as a set of

logical operations (potentially in a pipelined structure), precalculated lookup

tables are also used since one operand of the multiplication is a constant ma-

trix.

The AddRoundKey transformation makes the relation between cipher-

text and user’s secret key by performing XOR operation with a set of sub keys

derived from the actual key.

Besides its traditional implementation, Rijndael [58] also suggested that

multiple stages of the round transformation can be combined as a single set of

106

table lookups, allowing very fast implementations on processors. Using these

combined tables, the round transformation can be expressed as:

ej = T0[a0,j]⊕ T1[a1,j+1]⊕ T2[a2,j+2]⊕ T3[a3,j+3]⊕ kj; (7.3)

where a is the round input, ai,j denotes one byte of a in row i, column j, aj

denotes the column j of state a and T0, T1, T2, and T3 are the new combined

lookup tables. Hence T-box implementation of AES takes only 4 table lookups

and 4 XORs per column per round.

Due to the PE structure of our processor, the mapping T-box imple-

mentation onto our processor is straightforward: 16 parallel lookups in even

rounds and four parallel three level XOR reductions in odd rounds. In each

round, a 128-bit data block is divided into four 32-bit words, each of which are

fed into TLU in four parallel PEs. In each TLU, each byte of a 32-bit input is

used as an address for S-boxes to generate four 32-bit outputs. After 16 paral-

lel table lookup operations, sixteen 32-bit outputs are routed to LOUs in the

next level based on Equation 7.3. Finally, four 32-bit table lookup operation

and a round key is processed through XOR tree in each LOU to generate one

32-bit word of 128-bit output. This process is repeated ten times to encrypt

128-bit plaintext; thus, AES-128 encryption process requires 20 cycles on our

processor.

7.1.2 Blowfish

Blowfish is a secret-key block cipher proposed by Bruce Schneier in

1993 [188]. Blowfish operates on a block size of 64 bits while the key can be

107

any length from 32 bits up to 448 bits. The algorithm was proposed to be an

alternative to DES and planned to be free from problems and constraints as-

sociated with other algorithms. However, it did not meet all the requirements

for a new cryptographic standard at the time.

Due to the nature of the algorithm, Blowfish is only suitable for appli-

cations where the key does not change often, as a communications link or an

automatic file encryptor. Even though it is not very common cryptographic

algorithm, Blowfish is included in IPsec and implemented in OpenSSL.

Figure 7.3: The round function of Blowfish

The algorithm iterates over a simple encryption function 16 times in

Feistel network structure. The F function of Feistel network uses four different

256-entry S-boxes, XOR and addition in modulo 232. Each byte of 32-bit input

is fed into four separate lookup tables as one address to produce four 32-bit

outputs. The outputs of S-boxes are combined using XOR operations and

an addition to generate 32-bit output as shown in Figure 7.3. The output of

the round function is XORed with the second half of the previous round and

108

swapped its place.

Blowfish utilizes both XOR-SBOX and Arithmetic-XOR bundled op-

erations. Due to its structure and capability of our functional units, Blowfish

fits perfectly onto our processor and shows the capability of Cryptoraptor to

support similar block ciphers. One round of Blowfish takes three cycles in our

processor, yielding total of 48 cycles to transform 64-bit plaintext.

7.1.3 Camellia

Camellia, developed by NTT and Mitsubishi Electric Corporation, is

a secret key block cipher working on 128-bit blocks of data using 128, 192,

and 256-bit secret key [10]. The proposed algorithm offers the same interface

specifications used in Advanced Encryption Standard. Camellia is one of the

algorithms listed in TLS and IPsec, and implemented in many cryptography

libraries.

The high-level structure of Camellia follows the Feistel network with

either 18 or 24 rounds depending on the selected key size. The overall structure

of the algorithms is shown in Figure 7.4. The round function F consists of

four different 256-entry tables with 8-bit values on each entry and apply affine

transformations and logical operations. As shown in Figure 7.5, the number

of lookup tables can be doubled to process 64-bit data at a time.

Besides its fairly complex round structure, a logical transformation

layer called "FL-function", and its inverse are applied in every six rounds. This

logical transformation layer consists of a AND, OR, XOR and left rotation by

109

Figure 7.4: The high level structure of Camellia

1. The structure of FL-function is similar to the FL-function of Kasumi [141]

that we discuss in following the section. The only difference between Kasumi

and Camellia is the addition of 1-bit rotation. FL-function and FL−1-function

transform a 64-bit input X(64) to a 64-bit output Y(64) using 64-bit sub-key

k(64) as follows;

FL− function :
YR(32) = ((XL(32) ∩ kL(32)) <<< 1)⊕XR(32)
YL(32) = (YR(32) ∪ kR(32))⊕XL(32)

(7.4)

110

Figure 7.5: The internal structure of one Camellia round

FL−1 − function :
XL(32) = (YR(32) ∪ kR(32))⊕ YL(32)
XR(32) = ((XL(32) ∩ kL(32)) <<< 1)⊕ YR(32)

(7.5)

Camellia is an excellent example algorithm that utilize both original

and rotated versions of the output on following stages. Besides the utilization

of byte shifters, it also requires changing control signal due to FL-function

and FL−1-function in every six rounds. Thus, it’s a good example algorithm

to stress the reconfigurability of our processor.

Even though the structure of Camellia algorithm seems to be fairly

complex in Figure 7.4, it can be realized as 32-bit XOR operations followed

by rotation instead of byte-wise XORs and complex connections among bytes

of 64-bit data. If we consider operation granularity as 32-bit, then P function

structure in a Camellia round becomes XOR operations between 32-bit halves

of 64-bit data while applying 1-, 2-, and 3-byte rotations in each level of XOR

111

operation respectively.

Since FL and FL−1 functions consist of logical operations and a rota-

tion, mapping them into our processor is straightforward. The longest path

in each function requires three levels to perform a logical operation first, and

then rotation, and finally the second logical operation. While mapping, our

toolchain utilizes our independently configurable FU structure, which enables

us to start to process next round as soon as one column finishes its required op-

erations in the current round. Therefore, it enables us to start calculating FL

and FL−1-functions one cycle ahead. Since FL and FL−1 can be implemented

in one cycle thanks to our SRU structure, they are processed in parallel. One

round of Camellia takes five cycles in our processor, yielding total of 80 cycles

to transform 128-bit plaintext.

7.1.4 CAST-128

CAST-128 is a symmetric-key block cipher that operates on 64-bit data

blocks using a secret key with size of 40 to 128 bits in 8-bit increments [3].

It is a member of the CAST family of ciphers, proposed by Carlisle Adams

and Stafford Tavares in 1996. CAST-128 is listed in IPsec and OpenSSL, and

included in some versions of Pretty Good Privacy (PGP) and GNU Privacy

Guard (GPG).

CAST-128 follows Feistel Network structure with 12 or 16-rounds de-

pending on selected key length. Figure 7.6 summarizes the overall structure of

CAST-128 round function. It consists of four 256-entry lookup tables where

112

Figure 7.6: The round function template for CAST-128

each entry holds 32-bit value. The round function of CAST-128 works on 32-

bit data half as input and starts with applying operation "a" using round key.

After splitting the result into four 8-bit pieces, each piece is fed into a different

lookup table. The output of lookup operations is combined using "b", "c", and

"d" operations.

A simple way to complete the definition of the CAST-128 round func-

tion is to select all operations ("a", b", "c", and "d") as XOR operations of 32-bit

quantities, although other operations or more complex structures may also be

used instead. The operations used in three different rounds of traditional

CAST-128 block cipher are as follows;

Type 1 :
I = ((Kmi + D) <<< Kri)
f = ((S1[Ia]⊕ S2[Ib])− S3[Ic]) + S4[Id]

(7.6)

113

Type 2 :
I = ((Kmi⊕D) <<< Kri)
f = ((S1[Ia]− S2[Ib]) + S3[Ic])⊕ S4[Id]

(7.7)

Type 3 :
I = ((Kmi−D) <<< Kri)
f = ((S1[Ia] + S2[Ib])⊕ S3[Ic])− S4[Id]

(7.8)

where "D" is the data input to the round function, Ia, Ib, Ic, and Id denotes

bytes of I, + and− represent addition and subtraction modulo 232, ⊕ is bitwise

XOR, and <<< represents the rotation operation. Km and Kr denotes the

derived sub-key and amount of rotation for each round. The f functions

defined above are used in a predefined order. The function f in Type 1 is used

in rounds 1, 4, 7, 10, 13, and 16 while rounds 2, 5, 8, 11, and 14 use Type 2

and rounds 3, 6, 9, 12, and 15 use Type 3.

Each of these three round functions can be implemented using only

one PE column in our processor. Due to the varying round structure, control

signals for both PEs and Connection Rows do not remain constant. However,

control structure of our processor gives us the flexibility of changing connec-

tions and functional units used in PEs since each control memory is capable of

storing four different sets of control signals. Even without such flexibility, we

could map each different round structure to separate PE columns and route

the inputs accordingly.

While manually mapping the algorithm, we found that Type 1, 2, and 3

functional structures require 5, 3, and 4 cycles, respectively, and initialization

function I requires 2, 1, and 2 cycles in each type, respectively. However, our

114

toolchain extracts more parallelism between rounds after unrolling the loops

and saves 7 more cycles per 64-bit data block. Thus, CAST-128 requires a

total of 73 cycles to transform 64-bit data block. Since only one PE column

is utilized for a given data block, Cryptoraptor enables us to process four

different data streams in parallel.

7.1.5 Data Encryption Standard (DES)

DES [1] is a secret-key block cipher designed by IBM in 1977 by de-

riving from Lucifer and submitted to National Bureau of Standards (NBS) as

a candidate for the protection of sensitive, unclassified electronic government

data. It has been widely used until theoretical weaknesses in the cipher were

demonstrated, and it was withdrawn as a standard by the NIST. DES and its

successors has been included in SSL, TLS, IPsec and implemented in almost

all security libraries.

The algorithm is designed to encipher and decipher 64-bit data blocks

under control of a 64-bit key. It takes 64-bit plaintext and transforms it

through a series of complicated operations through 16 rounds in Feistel network

structure to produce the same length ciphertext. The round function of DES,

shown in Figure 7.7, operates on one 32-bit half of data block and consists of

4 operation stages: (i) Expansion, (ii)Key mixing, (iii) Substitution, and (iv)

Permutation.

The first stage, Expansion, expands 32-bit half data block to 48 bits

using a predefined expansion permutation, denoted E in the diagram (Figure

115

Figure 7.7: The round function f of DES

7.7). The result of Expansion stage is combined with a derived sub-key using

an XOR operation, called Key mixing stage.

After making the relation with input data and user key, the output is

split into eight 6-bit pieces, and each piece is fed into separate lookup table.

DES consists of eight different S-boxes, each of which takes 6-bit block as input

and yields a 4-bit block as output. Finally, outputs of S-boxes are rearranged

using a predefined table that controls the permutation. Thus, implementation

of DES highly relies on table lookup operations and bit manipulations.

Due to heavy use of bit manipulations, our mapping structure mostly

relies on PEU unit. Besides bit manipulations, DES consists of unorthodox

granularity for both S-box address and table lookup operations, 4-bit and 6-bit

respectively. Our PEU structure helps us to handle such different granularities

116

as well.

To better utilize available resource in our processor, we slightly modify

the traditional implementation. The first level of our mapping performs the

Expansion phase of the algorithm; however, produces two 32-bit outputs in-

stead of one 48-bit result. Doing so enables us to perform eight parallel table

lookup in one cycle. Therefore, the input bits are padded in a way that each

4-bit of the data starts at byte boundaries. Since we used PEU, it’s just a mat-

ter of defining the control signals in the setup phase. We also transform the

round key into two 32-bit halves in the first level. The second level performs

XOR operation between the output of the first level and a round key and feed

each byte to S-boxes as an address. The outputs of table lookups are combined

to produce two 32-bit outputs (one per TLU). In traditional implementation,

output of S-boxes should be 8x6-bits, but we padded table entries in a way

that each 6-bit of output starts at byte boundaries. Finally, two 32-bit output

from the second level is transformed in PEU to generate one 32-bit output

(Permutation phase). The last level of our mapping implements Permutation

phase of the algorithm as well as remove any additional padding bits that we

introduced in earlier levels. Therefore, one round of DES takes three cycles in

our processor, yielding total of 48 cycles to transform 64-bit plaintext.

The mapping and implementation of DES on our processor require

architecture and manual effort to achieve higher performance. The changes to

traditional implementation are manually introduced to help the toolchain to

map it more efficiently. However, the conventional implementation can also

117

be mapped in exchange of performance.

7.1.6 GOST

The GOST block cipher is a symmetric-key cipher designed and used

by Soviet and Russian government for top secret information since 1970s, but

declassified and released to the public in 1994 [169]. It was an alternative to

the United States standard, DES, of the time.

Figure 7.8: The overall structure of GOST block cipher

GOST transforms 64-bit data block using 256-bit user key through

32 rounds in Feistel network. The round function of GOST cipher is pretty

straightforward, as shown in Figure 7.8. It takes one 64-bit data block as

input, splits it into two halves, and add a 32-bit derived sub-key in modulo

232. After modular addition, the 32-bit output is split into eight 4 bit pieces,

118

each of which is fed into 4x4 S-box for substitution. Finally, the produced

32-bit value is left rotated by 11, and XORed with the other half of the input

data block.

Due to its structure, GOST can utilize only one bundle in our processor.

However, it enables us to show that our processor is capable of supporting

algorithms even if they do not fit into mainstream operation flows. Each

operation in one round of GOST can be implemented using one PE level.

Thus, one GOST round takes three cycles for round function and hides the

extra cycle required to establish Feistel Network, yielding total of 96 cycles to

transform 64-bit data block.

7.1.7 Kasumi

The Kasumi, also known as MISTY [141], is widely used for security

in many synchronous wireless standards; UMTS, GSM, and GPRS mobile

communications systems. It is also used as A5/3 key stream generator.

Kasumi is a block cipher with eight Feistel rounds with a key of up to

128 bits and works on 64-bit plaintext blocks. Each round uses a set of derived

round keys KLi, KOi, and KIi for each round i. It processes the 64- bit word

in two 32-bit halves, and the right half is XOR’ed with the output of the round

function after which the halves are swapped in each round. The input word

is concatenation of the left and right halves of the first round. Details on

traditional implementation of Kasumi algorithm are shown in Figure 7.9.

The structure of Kasumi consists of two slightly different round trans-

119

Figure 7.9: The traditional structure of Kasumi

formations: even and odd rounds. In odd rounds, the round-function is com-

puted by applying the FL function followed by the FO function while it is in

reverse order for even rounds.

We specifically included Kasumi into our algorithm mapping discus-

sion to stress flexibility and reconfigurability of our processor with its data

dependent and fairly complex structure due to its unbalanced rounds and un-

orthodox table sizes (7- and 9-bit addressing).

120

Figure 7.10: Merging one odd and one even round of Kasumi as one big
operation block.

Even though the structure of Kasumi seems to be highly data depen-

dent, it is possible to extract parallelism if we consider the size of operation as

16 bits instead. As Balderas described [18], we merged two asymmetric (odd

and even) rounds as one big operation block to fully utilize the parallelism

between operations. After merging one pair of odd and even rounds of Ka-

sumi, we can extract the parallelism between the functions (FL, FI, FO) of

Kasumi and XOR operations in between. Figure 7.10 shows how those func-

tional blocks can be rearranged to remove false data dependencies caused by

32-bit operations, hence extract more parallelism.

121

While mapping proposed Kasumi structure onto the proposed architec-

ture, we extract even more parallelism due to four parallel processing elements

each of which has five independent highly powerful functional blocks that can

work in parallel. Even though we mostly followed the order of functions as

described in the proposed structure above, we introduced some further op-

timizations in appropriate places like redundantly calculate some operation

sequence to avoid data dependencies. Doing so enable us to save couple more

cycles in overall execution. Our current toolchain is not capable of doing such

optimizations automatically; thus we manually introduced them.

With the proposed structure, we managed to map Kasumi onto our

processor in an efficient way such that one big operation block (two rounds of

traditional Kasumi) requires 16 cycles to operate, yielding 66 cycles to encrypt

one block of plaintext.

7.1.8 Rivest Cipher 5 (RC5)

The RC5 is a secret-key block cipher proposed by Ron Rivest in 1994

[178]. It was a predecessor of the Advanced Encryption Standard candidate;

RC6. Unlike other symmetric-key ciphers, RC5 algorithm works on variable

block size (32, 64, or 128 bits) and secret key (up to 2040 bits). RC5 is imple-

mented in the OpenSSL crypto library, used in Secure/Multipurpose Internet

Mail Extensions (S/MIME) standard, and implemented in various products of

RSA Security LLC.

The encryption and decryption algorithms are exceptionally simple.

122

Figure 7.11: Two half rounds (one round) of RC5

Figure 7.11 shows the high-level structure of RC5 round function. It consists

of a sequence of XOR operations, data-dependent left rotation, and an addition

in modulo 232. Compared to other block ciphers, RC5 heavily relies on data-

dependent rotations. The rotation operations are the only non-linear operator

in RC5; there are no non-linear substitution tables or other non-linear opera-

tors. The goal behind heavy use of rotations in the algorithm was to prompt

the study and evaluation of such operations as a cryptographic primitive.

Algorithm 7.1.1: RC5encrypt(plaintext, derivedSubkeys)

(A||B) = plaintext;
A = A + derivedSubkeys[0];
B = B + derivedSubkeys[1];
for i← 1 to 12

do
{

A = ((A⊕B) <<< B) + derivedSubkeys[2 + i];
B = ((B ⊕ A) <<< A) + derivedSubkeys[2 + i + 1];

return (ciphertext)

123

Even though the algorithm is flexible on block size, key size, and the

number of rounds, the suggested configuration uses 64-bit data blocks, 128-

bit secret key, and transforms the plaintext in 12 rounds. The algorithm can

be implemented using a few lines of code in software as shown in Algorithm

7.1.1. One 64-bit data block is split into two 32-bit halves; A and B, and

the resulting ciphertext is returned after applying the transformation of XOR,

rotation and modular addition for 12 rounds.

It’s straightforward to map RC5 onto our processor, where one RC5

round requires 4 levels (4 cycles) to implement the round function and a total

of 48 cycles to encrypt 64-bit data block. The mapping RC5 clearly shows the

power of having logical operation units bundled with shift/rotate operations.

Without having such structure one RC5 round requires six levels (6 cycles)

and a total of 72 cycles. Thus, it enables us to save 24 cycles.

Similar to some previous algorithms, Cryptoraptor enables us to apply

RC5 encryption to four different data block in parallel since only one PE

column is utilized for a given data stream. Therefore, full utilization of the

available hardware can increase the effective throughput.

7.1.9 SEED

SEED [128] is a symmetric-key cipher developed by the Korea Infor-

mation Security Agency and a group of experts in 1998 and has been used

since then. SEED is a national industrial association standard and is included

in several versions of SSL, TSL, IPsec, S/MIME, and Cryptographic Message

124

Syntax (CMS).

Figure 7.12: The round structure of SEED block cipher

The high-level structure of SEED block cipher follows the Feistel net-

work through 16 rounds with 128-bit block size and a 128-bit secret key. The

round structure of the algorithm is shown in Figure 7.12. The overall structure

of SEED block cipher also has some resemblance to Kasumi in the recursive-

ness of its structure. While the overall structure is a Feistel network with

an F-function operating on 64-bit halves, the F-function is also a Feistel net-

work composed of a G-function operating on 32-bit halves as shown in Figure

7.12. The G-function takes a 32-bit half block as input, splits it into four 8-bit

pieces, passes each of them through S-boxes, and finally combines byte outputs

using a set of boolean functions such that each output bit depends on 3 of 4

input bytes. The algorithm consists of two 256 entry lookup tables with 8-bit

entries that are derived from discrete exponentiation. However, the amount of

the lookup table should be doubled to allow parallel accesses, yielding faster

125

implementation.

Even though G function shown in Figure 7.12 looks complex and re-

quires complicated communication, it is actually not. When we carefully an-

alyzed the inputs of XOR operations within G function, we realized that the

byte-wise communication can be realized using byte shift operations after table

lookup operations. To be more specific; if we rotate the outputs W3, W2, and

W1 left by 1, 2, and three respectively, four parallel byte-wise XOR trees can

be merged to one 32-bit tree. These findings enabled us to map one round of

SEED takes ten cycles (1 initial + 3x3 G functions) in our processor, yielding

total of 160 cycles to transform 128-bit plaintext. Our toolchain extracts even

more parallelism after unrolling the loops and saves 8 cycles in total execution

time of 128-bit data.

7.1.10 Twofish

Twofish [189] is a secret-key block cipher designed by Bruce Schneier,

John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels Ferguson

in 1998 by deriving from Blowfish, SAFER, and Square, and submitted to

Advanced Encryption Standard contest. It was selected as one of the five

finalists for a new standard. Twofish is one of a few ciphers included in the

OpenPGP standard and included in GNU Crypto library.

Twofish transforms 128-bit data block using a secret key up to 256

bits through 16 rounds in Feistel network with a bijective F function. The

overall structure of the algorithms is shown in Figure 7.13. The F function

126

Figure 7.13: The overall structure of Twofish block cipher

consists of four key-dependent 8x8 S-boxes, a fixed 4-by-4 maximum distance

separable (MDS) matrix over GF(28), a pseudo-Hadamard transform, bitwise

rotations, and XOR operations. For faster implementation, the number of

S-boxes is doubled and matrix multiplication, shown as MDS, is implemented

as separate lookup table. A pseudo-Hadamard transforms (PHT) is a simple

mixing operation that is defined as;

a1 = a + b mod232

b1 = a + 2b mod232 (7.9)

127

where a and b are two 32-bit inputs. That is; PHT is two parallel modular ad-

dition, one of which is operates on left shifted operand. The Figure 7.13 shows

how PHT is used within the algorithm. Due to its fairly regular and simple

datapath, implementation of Twofish is straightforward on both software and

hardware.

Even though Twofish can be mapped onto our processor as is, we in-

troduced some optimizations that enable us to fit it onto Cryptoraptor more

efficiently. The first thing we changed is the order of the rotation operation

before table lookup operations. Since it is a byte-wise rotation and the follow-

ing operation is byte-wise lookup, it is safe to change the order of S-boxes in

the loading phase, and have the rotation afterwards. Doing so enables us to

pack XOR, table lookup and rotation operation into TLU and save two redun-

dant cycles per round. Since MDS is a matrix multiplication over GF(28), we

pre-calculated a table to perform this operation in one cycle as it is done for

other algorithms that have matrix multiplication. Implementing matrix mul-

tiplication using a table lookup helps us to save a couple of cycles per round.

By using the advantage of having independently configurable functional units,

we performed XOR and rotate-by-1 operations on the second 64-bit half (two

32-bit operations shown in the right part of Figure 7.13) in parallel, which

allow us to save one extra cycle per round. Therefore, one round of Twofish

takes only five cycles in Cryptoraptor, yielding total of 80 cycles to transform

128-bit plaintext. Since Twofish can be implement using only two PE columns

for one data block, Cryptoraptor can be fully utilized with two parallel data

128

stream for higher throughput.

7.2 Stream Ciphers

The following sections briefly describe how we mapped most widely

used stream cipher, RC4, and Phelix as an additional example. We already

described how we mapped the most common block cipher, Kasumi (A5/3)

used in UMTS, GSM, and GPRS mobile communications systems to provide

confidentiality and integrity. Since A5/2 is prohibited in 2006 due to its secu-

rity weakness, and straightforward structure of A5/1 (fixed sequence of shift

and bit-wise XOR operation), we choose to implement more complex stream

cipher; Phelix. Phelix is not used in any security standard but is a good

candidate to stress the flexibility of our processor.

7.2.1 Rivest Cipher 4 (RC4)

The RC4 [178] is a secret-key stream cipher designed by Ron Rivest in

1987 and published in 1994. RC4 is the most popular stream cipher in several

security protocols and standards; TLS, WEP, and WPA for wireless cards,

and included in cryptographic libraries; OpenSSL and GNU Crypto.

RC4 is a binary additive stream cipher with a variable sized key that

can range between 8 and 2048 bits in multiples of 8 bits. Like other ciphers,

RC4 consists of two part: (i) key-scheduling and (ii) encryption. During

key scheduling process, a lookup table of 256-entry is initialized and is used

throughout the encryption process. However, unlike other ciphers mentioned

129

before, encryption phase of RC4 also make changes on the lookup table by

swapping the entries. The details of encryption phase are defined as follows.

Algorithm 7.2.1: RC4encrypt(plaintext, keyArray, ciphertext)

j = 0; for i← 0 to messageLength

do



i = (i + 1)mod256
j = (j + keyArray[i])mod256
swap(keyArray[i], keyArray[j]);
keyIndex = (keyArray[i] + keyArray[j])mod256;
ciphertext[i] = plaintext[i]⊕ keyArray[keyIndex];

One round of RC4 produces a word of the keystream and XOR it with

the plaintext to produce the ciphertext. Therefore, each round generates one

byte of keystream and ciphertext.

Compared to other algorithms, mapping RC4 onto our processor is a

bit more difficult due to frequent table lookups and table updates. For that

reason, RC4 algorithm significantly stresses the flexibility of Cryptoraptor and

our mapping process. Due to the fact that lookup tables are being updated and

indexed, it is not possible to unroll the loop over multiple PE levels, and we are

restricted to use same PE rows. We naively mapped RC4 round function and

tried to utilize operation bundles available in FUs as much as possible. One

RC4 round requires eight levels (8 cycles) to implement the round function,

and a total of (4x8xmessageLength) cycles to encrypt a given message. Even

though RC4 does not fit into our processor perfectly, we are still able to support

such a complex algorithm. Thus, like Kasumi, RC4 also provides good insight

about the flexibility of Cryptoraptor. Since RC4 is implemented using a single

130

PE column, four parallel data streams can be encrypted concurrently for higher

throughput.

7.2.2 Phelix

Phelix is a high-speed stream cipher with a built-in MAC functionality,

developed by DougWhiting, Bruce Schneier, Stefan Lucks, and Frederic Muller

for eSTREAM contest in 2004 [217]. The algorithm is a slightly modified form

of an earlier cipher, Helix, developed by the same designers in 2003.

Even though it is not included in any security protocols or standards, we

included it in our algorithm mapping process to stress our processor’s flexibility

with another complex algorithm that includes several parallel operations and

connections.

Phelix algorithm consists of a sequence of blocks and an encryption

function over each block. Figure 7.14 shows the high-level structure of Phelix

one block (two-half block) encryption. The algorithm relies on only addition in

modulo 232, XOR operation, and rotation by a pre-defined number of bits. A

single round of Phelix consists of adding (or XORing) one active state word into

the next, and rotating the first word. One full Phelix block consists of twenty

simple rounds. Each block is 160-bit, divided into five 32-bit variables denoted

as Z
(i)
0 , Z

(i)
1 , Z

(i)
2 , Z

(i)
3 , and Z

(i)
4 . While four of these five state variables are

used as input to the next block, the remaining one 32-bit variable is generated

as output at the end of the current block.

Mapping Phelix onto our processor proves the degree of complexity for

131

Figure 7.14: One block of Phelix encryption

connections between PEs and justifies the full crossbar connection structure

between the levels. One half block of Phelix requires 2 PE columns and five

levels to be implemented in our processor, yielding a total of 10 cycles to

process 32-bit of the message.

132

7.3 Cryptographic Hash Functions

In following sections, we explain how we mapped widely used crypto-

graphic hash functions; MD4, MD5, SHA-1, and SHA-2 onto our processor.

Many popular hash algorithms may be characterized as Merkle-Damgard con-

struction invented by Ralph Merkle in 1979 [147]. Merkle-Damgard construc-

tion is a method of building collision-resistant cryptographic hash functions

using collision-resistant one-way compression functions. The Figure 7.15 shows

the high-level structure of Merkle-Damgard construction.

Figure 7.15: The high level structure of the Merkle-Damgard construction

The hash functions that follow the Merkle-Damgard construction take

a message of arbitrary length as input, add padding to extend the message to

appropriate length, iteratively transform message blocks using one-way com-

pression function and an initialization vector, and finally produce fixed-length

message digest. Therefore, a good hash function consists of: (i) a collision-

resistant compression function, (ii) a padding procedure, and (iii) a good initial

vector.

133

7.3.1 Message Digest Algorithm-4 (MD4)

MD4 is a cryptographic hash function designed by Ronald Rivest in

1990 [176]. MD4 is one of the widely known hash functions and triggered

researchers to develop new attacks for cryptographic hash functions. However,

it is possible to find an another message that produces the same MD4 digest

as a given message without requiring a brute force search. The structure of

MD4 inspired and influenced other later designs such as MD5, SHA-1, and

RIPEMD, and it was replaced with its successor, MD5, due to its security

issues. MD4 has been used in Microsoft security protocol suite, NT LAN

Manager (NTLM), provides authentication, integrity, and confidentiality to

users. It is also incorporated into PGP v1.0 and S/MIME and implemented

in OpenSSL, Crypto++, and many other cryptography libraries.

Figure 7.16: The round structure of MD4

The algorithm takes a message of arbitrary length as input, transforms

134

each 128-bit block of message through 3 rounds (each of which consists of

16 inner rounds), and produces a 128-bit message digest of the input as an

output. The detailed structure of round operation is shown in Figure 7.16.

The algorithm relies on 128-bit state, divided into four 32-bit words (A, B,

C, and D) and applies a sequence of addition in modulo 232, rotation, and

a logical function F . Each one of three rounds uses different F functions as

defined below.

F (B, C, D) = (B ∧ C) ∨ ((¬B) ∧D)
G(B, C, D) = (B ∧ C) ∨ (B ∧D) ∨ (C ∧D)
H(B, C, D) = B ⊕ C ⊕D

(7.10)

Thanks to our powerful LOU, which consists of six independently con-

figurable logic blocks, we can implement any F function defined above in one

cycle. Since we can store up to four sets of control signals per PE, changing

round functions can be controlled by the state machine easily. Instead of fol-

lowing the traditional operation order, we added Mi and Ki as the first step in

parallel while processing F function. Doing so enables us to save one cycle per

round. Even though the first inner round still takes four cycles, the remaining

inner rounds (15+2*16) will take only three cycles each. Thus, processing

128-bit block of the message will be processed in total of 145 cycles. Consider-

ing hashing process will continue for other 128-bit blocks of the message; the

rounds will take only three cycles after spending four cycles at the very first

128-bit block of the message.

135

7.3.2 Message Digest Algorithm-5 (MD5)

MD5 [175] is a cryptographic hash function designed by Ronald Rivest

in 1992 to replace prior hash function, MD4. Due to the high number of rounds

and extra modular addition, MD5 is slower than MD4 but is more secure in

design. MD5 has been utilized in a wide variety of cryptographic applications

for a significant amount of time and has been commonly used to verify data

integrity. It has been included in many standards such as SSL, TLS, IPsec,

S/MIME, and NTLM, and implemented in almost all cryptography libraries.

Figure 7.17: The structure of one MD5 operation

MD5 takes a message of arbitrary length as input, splits the message

into 512-bit message blocks, and transforms message blocks to 128-bit message

digest through 4 rounds of 16 MD5 operations. As shown in Figure 7.17, the

overall structure of MD5 is very similar to MD4 with an additional modular

136

addition after rotation. The F functions used in each round are also slightly

different to provide higher security. With a given 128-bit state, divided into

four 32-bit words (A, B, C, and D), the round functions are defined as follows;

F (B, C, D) = (B ∧ C) ∨ ((¬B) ∧D)
G(B, C, D) = (B ∧D) ∨ (C ∧ (¬D))
H(B, C, D) = B ⊕ C ⊕D
I(B, C, D) = C ⊕ (B ∧ (¬D))

(7.11)

Mapping process of MD5 algorithm onto our processor is very similar

to the one for MD4. However, MD5 requires one more modular addition after

the last rotation operation. Even though the round functions used in MD5

are quite different than the ones in MD4, they also can be implemented in one

LOU. Having four different round function does not cause any issue since our

control memories for PEs are capable of storing four sets of control signals and

controlled by the state machine very easily.

Similar to MD4 mapping, we process addition operations for A, Mi,

and Ki in advance wherever we can, which allows us to save one extra cycles

per round except the very first round. Therefore, processing 512-bit message

requires a total of 257 cycles (5+63x4) in our processor. Our toolchain extracts

more parallelism with loop-unrolling optimization, which saves three cycles in

total execution time; yielding 254 cycles to process 512-bit message. Since 2

PE columns is required to implement MD5 (one for algorithm and the other

one for parallel additions), remaining 2 PE columns can be used for processing

one more message stream in parallel.

137

7.3.3 Secure Hash Algorithm-1 (SHA1)

SHA-1 is a cryptographic hash function designed by the U.S National

Security Agency in 1995 and published by the NIST as a U.S. Federal Infor-

mation Processing Standard [64]. Due to the similarity of the round structure,

it seems to be the successor of MD4 and MD5. However, the level of secu-

rity provided by SHA-1 is significantly higher than its predecessors. SHA-1 is

the world’s most popular cryptographic hash function which is included in all

important standards such as SSL, TLS, IPsec, S/MIME, SSH, and PGP, and

implemented in all cryptography libraries.

Figure 7.18: The round structure of SHA-1

SHA-1 is an iterative hash function that takes a message of length less

than 264 bits, processes 512-bit input message blocks, and produces a 160-bit

message digest of the input as an output. As shown in Figure 7.18, SHA-

1 follows a similar structure to MD4 and MD5 with slight differences. The

algorithm operates on 160-bit state, divided into five 32-bit words that are

138

denoted as A, B, C, D, and E. The state update transformation of SHA-1

consists of 4 rounds of 20 steps in each. The transformation functions used in

each round are very similar to the ones in MD4 and defined as follows;

F (t; B, C, D) = (B ∧ C) ∨ ((¬B) ∧D) (0 <= t <= 19)
F (t; B, C, D) = B ⊕ C ⊕D (20 <= t <= 39)
F (t; B, C, D) = (B ∧ C) ∨ (B ∧D) ∨ (C ∧D) (40 <= t <= 59)
F (t; B, C, D) = B ⊕ C ⊕D (60 <= t <= 79)

(7.12)

After the last step of the state update transformation, the initial state

variables (A0, B0, C0, D0, and E0) and the final state (A80, B80, C80, D80, and

E80) are combined using addition in modulo 232. The result this step is either

the final hash value or the initial value to process the next 512-bit message

block.

As we did for MD4 and MD5, we added Mi and Ki in the first level.

However, adding the state variable E and shifted version of A can also be done

in parallel in SHA-1 algorithm. Doing so, we can map one round of SHA-1 onto

our processor in 3 cycles. Thus, it takes a total of 240 cycles (80 rounds x 3) to

process 512-bit input message block. Again with the help of our toolchain, we

were able to extract the parallelism hidden between loops and save 15 cycles

in total (yielding 225 cycles) to process one 512-bit input message block.

7.3.4 Secure Hash Algorithm-2 (SHA2)

Like its predecessor, SHA-2 [74] is a cryptographic hash function de-

signed by the U.S National Security Agency in 2001 and published by the NIST

as a U.S. Federal Information Processing Standard. The new algorithm was

139

published as a set of functions (SHA-224, SHA-256, SHA-384, and SHA-512)

for varying message digest sizes; 224, 256, 384, and 512 bits. Even though

SHA-1 is still a widely used in cryptographic applications, NIST emphasizes

that applications that require collision resistance must use the SHA-2 family

of hash functions. All standards that include SHA-1 has been either replaced

the use of SHA-1 with SHA-2 or supported both at the same time.

Figure 7.19: The round structure of SHA-2

The SHA-2 hash function takes a message of arbitrary length as input,

splits the message into 512-bit message blocks, and transforms message blocks

to a message digest of 224, 256, 384, and 512 bits depending on chosen size.

SHA-2 algorithm family utilizes eight 32-bit state variables labelled as A, B,

..., H, which are initialised to pre-defined values H0-H7 at the start of the

hash function. The 32-bit values of the A to H variables are updated in each

140

round through 64 or 80 rounds, and the new values are used in the next round.

The high-level structure of SHA-2 round is shown in Figure 7.19. The round

structure and functions used in each round consist of a sequence of addition in

modulo 232, rotation, and logical primitives. The functions used in each round

is defined as follows;

Ch(E, F, G) = (E ∧ F)⊕ (: E ∧G)
Ma(E, F, G) = (E ∧ F)⊕ (E ∧G)⊕ (F ∧G)

Σ0(A) = (A >>> 2)⊕ (A >>> 13)⊕ (A >>> 22)
Σ1(E) = (E >>> 6)⊕ (E >>> 11)⊕ (E >>> 25)

(7.13)

At the end of each round, the ith intermediate hash value H i is com-

puted by adding state variables with corresponding 32-bit word of (i − 1)th

round’s output hash value H i−1, where H i is defined as {H i
0||H i

1||...||H i
7}. The

output hash value of each 64 or 80 rounds either the final hash value or the

initial value to process the next 512-bit message block.

As we did for previous cryptographic hash functions, we choose to pro-

cess the required operations in parallel by taking the advantage of multiple

parallel FUs instead of following traditional operation flow. In the first PE

level, we calculate Ch, Ma, add Mi and Ki in one PE and state variables

H and D on the other, and process rotation operations for Σ0. The second

level calculates Ch + Mi + Ki, Ma + H + D, apply XOR operations to the

outputs of rotations, and process rotation operations for Σ1. In the third level,

Ch + Mi + Ki and Σ0 are added and XOR operations to the outputs of ro-

tations are applied. The fourth level generates the new value of E by adding

Ch + Mi + Ki + Σ0 and H + D while Ch + Mi + Ki + Σ0 + Ma + H + D is

141

generated on the other PE. Finally, Σ1 is added to generate new value of state

variable A.

One round of SHA-2 requires five cycles to be mapped onto our proces-

sor. Thus, it takes a total of 320 cycles (64 rounds x 5) to process one 512-bit

input message block.

142

Chapter 8

Future Work

In previous chapters, we provided a detailed description of the current

architecture of our reconfigurable cryptographic processor. However, there

are still potential improvements for functional units as well as overall proces-

sor design to achieve a higher degree of flexibility and even higher possible

throughput for all.

The lack of dedicated multiplication units is one of the main limitations

of Cryptoraptor, which restricts the algorithm coverage of our processor for

both existing and future cryptographic algorithms. Therefore, multiplication

unit can be a good candidate for next hardware improvement; yielding 8.1%

increase in the algorithm coverage for existing algorithms. However, adding

a dedicated multiplication unit into existing PE as separate functional unit

has a significant impact on processor’s cycle time as discussed in the previous

chapter. Thus, integrating a multiplication functionality into current processor

requires either a pipelined structure or special design for multiplication unit.

Even though the most of the modular arithmetic operations can be

implemented using existing functional units, the current design can be ex-

tended to support varying and unorthodox modulo bases. Extending existing

143

hardware for modular arithmetic may increase the algorithm coverage of our

processor by 2 percent while having both multiplication unit and modular

arithmetic support may increase up to 13.5 percent.

Our current toolchain has limited capabilities and does not provide

aggressive optimizations. A more powerful automatic mapping structure for

cryptographic algorithms using a crypto-specific language or ideally high level

language like C/C++ can be developed for robust and high performance map-

ping of the algorithms. Such a toolchain might also solve the issues related to

multiplication and modular arithmetic automatically by mapping these oper-

ations to existing hardware on the fly.

Since the FU utilization of the mapped algorithm is low, we might also

develop a new synthesis toolchain which takes a set of algorithms targeted

to be supported and a set of constraints, design a new architecture using

proposed FUs and bundles, and outputs RTL code of new processor. Such

methodology will limit the flexibility of the generated processor, but it will

achieve higher performance, better area, power, and resource utilization for

the targeted algorithms.

Since we initially set the target of our processor as symmetric-key en-

cryption and cryptographic hash functions, public-key cryptography is beyond

the scope of this work. Public-key cryptography may require different func-

tional units and/or major changes on datapath due to its different structure

and requirements. We left extending our hardware support for public-key cryp-

tography as future work for the ideal and complete cryptographic processor.

144

Chapter 9

Conclusion

In this thesis, we presented the current architectural structure of our

reconfigurable cryptographic processor and the rationales that shaped our

processor design. Our first goal was to have a complete, flexible, and high

throughput cryptographic processor that can support a wide range of ciphers

and cryptographic hash functions.

We provided a comprehensive literature review on cryptographic algo-

rithms and detailed analysis on the specifications and requirements of various

crypto-systems. Such a detailed analysis might help both cryptographic al-

gorithm developers and hardware developers while designing new algorithms,

standards, and hardware implementations.

After describing our processor design and our rationales, we also pro-

vided detailed analysis of our processor in terms of performance, area, power,

and the algorithm coverage. We believe providing such detailed study, and

evaluation may enable both cryptographic algorithm developers and researchers

to explore performance, power, and area trade-offs while designing new algo-

rithms.

We are still exploring design trade-offs for functional units as well as

145

overall processor design to achieve a higher degree of flexibility and highest

possible throughput for all. To achieve that, we plan to eliminate limitations

of the current design, further improve its performance, and excessively stress

it for flexibility and throughput with more cryptographic algorithms.

We developed a highly reconfigurable cryptographic processor, Cryp-

toraptor, that supports a wide range of symmetric key encryption algorithms

and cryptographic hash functions efficiently and has high potential to sup-

port future ones. Our results show that Cryptoraptor with its 1GHz clock

frequency can compete in term of performance with high-end ASIC cores

and FPGA solutions while achieving 25X and 160X higher throughput per

area than the best CPU and GPU solutions, respectively. To the best of our

knowledge, the proposed cryptographic processor supports the widest set of

cryptographic algorithms and the only crypto-specific processor that have the

capability of supporting the future algorithms. Through this thesis, we hope

to demonstrate the potential of our processor design for high performance

cryptographic applications.

146

Appendices

147

Appendix A

Detailed Operation Classes Usage

Table A.1: The special functional unit requirements in cryptographic algo-
rithms

Algorithm Arithmetic
Op.

Table
Lookup

Logical
Op.

Shifter &
Rotator

Permutation
&

Expansion
Block Ciphers
3WAY X X

AES X X

Akelarre X X X

Anubis X X X

ARIA X X

BaseKing X X

Blowfish X X X

Camellia X X X

CAST-128 X X X X

CAST-256 X X X X

CIKS-1 X X X

Cipherunicorn-A X X X X

Cipherunicorn-E X X X X

CLEFIA X X

CMEA X X

COCONUT98 X X X X

Crab X X X X X

Cryptomeria/C2 X X X X X

CRYPTON X X X

CS-Cipher X X X

148

DEAL X X X

DES X X X

DESX X X X

DFC X X X X

E2 X X X

FEAL X X X X

FEALNX X X

FEA-M X X

FOX X X

FROG X X X

GOST X X X X

Grand Cru X X X

Hasty Pudding cipher X X X

Hierocrypt-3 X X X X

Hierocrypt-L1 X X X X

ICE X X X

IDEA X X

Intel Cascade Cipher X X X

KeeLoq X X

KHAZAD X X X

Khufu and Khafre X X

KLEIN X X

KN-Cipher X X

Ladder-DES X X X

LED X X X X

LOKI97 X X X X

LUCIFER X X X X

M6 X X X

M8 X X X X

MacGuffin X X X

Madryga X X

MAGENTA X X

MARS X X X X X

149

MBAL X X X

Mercy X X X

MESH X X

Kasumi X X X X

MMB X X

MULTI2 X X X

MultiSwap X

New Data Seal X X X

NewDES X X

Nimbus X X

Noekeon X X X

NUSH X X X

NXT X X X

PRESENT X X

PRINCE X X X X

Q X X X X

RC2 X X X

RC5 X X X X

RC6 X X X

REDOC III X X X

SAFER K-128 X X X

SAFER K-64 X X X

SAFER+ X X X

SC2000 X X X X

SEED X X X X X

Serpent X X X

SHACAL X X X

SHACAL-2 X X X

Shark X X X

Skipjack X X

SMS4 X X X

Spectr-H64 X X X

Square X X

150

SXAL X X X

TEA X X X

Threefish X X X X X

Twofish X X X X

UES X X

Xenon X X X

Xmx X

XTEA X X X

XXTEA X X X

Zodiac X X X

Hash Functions

BLAKE X X X X

GOST X X X

Groestl X X X X X

HAS-160 X X

Haval X X X

Hamsi X X

JH X X X

Keccak X X

MD2 X X X

MD4 X X X

MD5 X X X

MD6 X X X

PANAMA X X X

RadioGatÃžn X X X

RIPEMD X X X

RIPEMD-160 X X X

SHA-0 X X X

SHA-1 X X X

SHA-2 X X X

SHAvite3 X X X

SipHash X X X

Skein X X X X

151

Snefru X X X

SWIFFT X X X X

TIGER X X X

Whirlpool X X X

Stream Ciphers

A5/1 X X X X

A5/2 X X X X

Achterbahn X X X

DECIM X X X

FFCSR X X X

FISH X X X X

GRAIN X X X X

HC256 X X X X X

ISAAC X X X X

MICKEY X X X

MUGI X X X X

PANAMA X X X X

Phelix X X X

Py X X X X

Rabbit X X X

RC4 X X

Salsa20 X X X

Scream X X X X

SEAL X X X X

Sfinks X X X

SNOW X X X X

Trivium X X X X

Turing X X X X

VEST X X X X

WAKE X X X X

Yamb X X X

152

Appendix B

Operation Clusters

Table B.1: Operation clusters and patterns

Operation Classes Cryptographic algorithms

Logical, Shift/Rotate,
Table Lookup,
Arithmetic

BLAKE, CAST-128, CAST-256, Cipherunicorn-A,
Cipherunicorn-E, COCONUT98, Crab, Cryptomeria/C2,
FEAL, GOST, Groestl, HC256, MARS, Py, SC2000, Scream,
SEAL, SEED, SNOW, Threefish, Twofish, WAKE

Logical, Shift/Rotate,
Table Lookup

Anubis, Camellia, GRAIN, Grand Cru, Hasty Pudding cipher,
Hierocrypt-3, Hierocrypt-L1, Intel Cascade Cipher, Kasumi,
KHAZAD, LED, LUCIFER, MacGuffin, MUGI, Noekeon,
NXT, PRINCE, Q, REDOC III, Serpent, Shark, SHAvite3,
SMS4, Snefru, VEST, Whirlpool

Logical, Table
Lookup, Arithmetic

Blowfish, DFC, LOKI97, Mercy, SAFER K-128, SAFER K-64,
SAFER+, Yamb

Logical, Table Lookup

AES, ARIA, CRYPTON, CS-Cipher, DEAL, DES, DESX, E2,
FEALNX, FOX, FROG, ICE, JH, Khufu and Khafre, Ladder-
DES, MAGENTA, MBAL, MD2, New Data Seal, NewDES,
Skipjack, Square, SXAL, Zodiac

Logical, Shift/Rotate

3WAY, A5/1, A5/2, Achterbahn, Akelarre, BaseKing, CIKS-1,
FFCSR, FISH, Hamsi, HAS-160, Haval, HC256, ISAAC, Kec-
cak, M6, M8, Madryga, MD4, MD5, MD6, MICKEY, MULTI2,
NUSH, PANAMA, PANAMA, Phelix, Rabbit, RadioGatÃžn,
RC2, RC5, RC6, RIPEMD, RIPEMD-160, Salsa20, Sfinks,
SHA0, SHA1, SHA2, SHACAL, SHACAL-2, SipHash, Skein,
Spectr-H64, TEA, TIGER, Trivium, Xenon, XTEA, XXTEA

Logical, Arithmetic

A5/1, A5/2, Akelarre, CMEA, DECIM, FEA-M, FISH, GOST,
Haval, HC256, IDEA, ISAAC, M6, M8, MD4, MD5, MESH,
MULTI2, Nimbus, NUSH, PANAMA, Phelix, Rabbit, Radio-
GatÃžn, RC2, RC5, RC6, RIPEMD, RIPEMD-160, Salsa20,
SHA0, SHA1, SHA2, SHACAL, SHACAL-2, SipHash, Skein,
TEA, TIGER, Trivium, Xenon, XTEA, XXTEA

153

Logical, Permuta-
tion/Expansion

A5/1, A5/2, Achterbahn, CIKS-1, CLEFIA, Crab, Cryptome-
ria/C2, CRYPTON, CS-Cipher, DEAL, DECIM, DES, DESX,
DFC, E2, FFCSR, FISH, FROG, GOST, GRAIN, Groestl,
HC256, Hierocrypt-3, Hierocrypt-L1, ICE, ISAAC, JH, Ka-
sumi, KeeLoq, KN-Cipher, Ladder-DES, LED, LOKI97, LU-
CIFER, M8, MARS, MBAL, MD2, MD6, MICKEY, MMB,
MUGI, New Data Seal, PANAMA, PANAMA, PRINCE, Q,
RC5, SEED, Sfinks, Skein, Spectr-H64, SXAL, Threefish, Triv-
ium, UES, VEST, Zodiac

Shift/Rotate SWIFFT, Turing

Table Lookup KLEIN, PRESENT, RC4, SWIFFT, Turing

Arithmetic MultiSwap, RC4, SWIFFT, Turing

Permutation/Expansion KLEIN, PRESENT, SWIFFT, Turing

154

Appendix C

Operation Bundles

Table C.1: Operation patterns

Operation patterns Cryptographic algorithms

XOR - SBOX

AES, Anubis, ARIA, BLAKE, Camellia, Cipherunicorn-A,
Cipherunicorn-E, Cryptomeria/C2, CRYPTON, CS-Cipher,
DEAL, DES, DESX, E2, FEAL, FEALNX, FROG, GRAIN,
Grand Cru, Hierocrypt-3, Hierocrypt-L1, ICE, Intel Cas-
cade Cipher, Kasumi, KHAZAD, Khufu and Khafre, KLEIN,
Ladder-DES, LED, LOKI97, MacGuffin, MAGENTA, MARS,
MBAL, MD2, Mercy, MUGI, NewDES, Noekeon, NXT,
PRESENT, PRINCE, SAFER K-128, SAFER K-64, SAFER+,
SEED, Serpent, Shark, SHAvite3, Skipjack, SMS4, Snefru,
Square, SXAL, Turing, Twofish, Whirlpool, Zodiac

SBOX - XOR

AES, Anubis, ARIA, BLAKE, Camellia, CAST-128, CAST-
256, Cipherunicorn-A, Cipherunicorn-E, COCONUT98, Crab,
Cryptomeria/C2, CRYPTON, CS-Cipher, DFC, E2, FEAL,
FEALNX, FOX, FROG, GRAIN, Grand Cru, Hierocrypt-
3, Hierocrypt-L1, Intel Cascade Cipher, JH, Kasumi,
KHAZAD, Khufu and Khafre, KLEIN, LED, LOKI97, LU-
CIFER, MacGuffin, MAGENTA, MARS, MBAL, MD2, Mercy,
NewDES, Noekeon, NXT, SAFER K-128, SAFER K-64,
SAFER+, SEED, Serpent, Shark, SHAvite3, Skipjack, SMS4,
Snefru, Square, SXAL, Turing, Twofish, WAKE, Whirlpool,
Yamb, Zodiac

XOR - SBOX - XOR

AES, Anubis, ARIA, BLAKE, Camellia, Cipherunicorn-A,
Cipherunicorn-E, Cryptomeria/C2, CRYPTON, CS-Cipher,
E2, FEAL, FEALNX, FROG, GRAIN, Grand Cru, Hierocrypt-
3, Hierocrypt-L1, Intel Cascade Cipher, Kasumi, KHAZAD,
Khufu and Khafre, KLEIN, LED, LOKI97, MacGuffin, MA-
GENTA, MARS, MBAL, MD2, Mercy, NewDES, Noekeon,
NXT, SAFER K-128, SAFER K-64, SAFER+, SEED, Serpent,
Shark, SHAvite3, Skipjack, SMS4, Snefru, Square, SXAL, Tur-
ing, Twofish, Whirlpool, Zodiac

155

XOR - Arithmetic

Akelarre, BLAKE, Blowfish, CAST-128, CAST-256, CMEA,
Crab, Cryptomeria/C2, GOST, HAS-160, Haval, IDEA, M6,
MARS, MD4, MD5, MESH, MULTI2, NUSH, Phelix, SEED,
SHA0, SHA1, SHA2, SHACAL, SHACAL-2, SNOW, TEA,
TIGER, Twofish, XTEA, XXTEA, Yamb

Arithmetic - XOR

Akelarre, BLAKE, Blowfish, CAST-128, CAST-256, Crab,
Cryptomeria/C2, HAS-160, IDEA, MARS, MD4, MD5, Mercy,
MESH, MULTI2, NUSH, Phelix, SHA0, SHA1, SHA2, SHA-
CAL, SHACAL-2, SNOW, TEA, Threefish, TIGER, Twofish,
XTEA, XXTEA

XOR - Arithmetic -
XOR

Akelarre, BLAKE, Blowfish, CAST-128, CAST-256, Crab,
Cryptomeria/C2, HAS-160, IDEA, MARS, MD4, MD5, MESH,
MULTI2, NUSH, Phelix, SHA0, SHA1, SHA2, SHACAL,
SHACAL-2, SNOW, TEA, TIGER, Twofish, XTEA, XXTEA

Logic - SHIFT

3WAY, Akelarre, Anubis, BaseKing, BLAKE, Camellia, CAST-
128, CAST-256, Cipherunicorn-A, Cipherunicorn-E, Cryp-
tomeria/C2, E2, FFCSR, GOST, Hamsi, Hasty Pudding ci-
pher, HC256, Kasumi, Keccak, KHAZAD, M8, MacGuffin,
MD6, MICKEY, MUGI, MULTI2, Noekeon, NUSH, NXT,
Phelix, PRINCE, Q, RC5, RC6, Serpent, SHA2, SHACAL-2,
SHAvite3, SipHash, Skein, SMS4, Twofish, Whirlpool, XXTEA

SHIFT - Logic

3WAY, A5/1, A5/2, Achterbahn, Akelarre, Anubis, BaseK-
ing, BLAKE, Camellia, Cipherunicorn-A, Cipherunicorn-E,
DECIM, E2, FFCSR, Hamsi, HC256, Kasumi, Keccak,
KHAZAD, M6, M8, MARS, MD6, MICKEY, MUGI, MULTI2,
Noekeon, NXT, Phelix, PRINCE, RC6, Salsa20, SC2000,
SEAL, Serpent, Sfinks, SHA2, SHACAL-2, SHAvite3, SipHash,
SMS4, SNOW, Spectr-H64, Threefish, Twofish, WAKE,
Whirlpool, XTEA, XXTEA

Logic - SHIFT - Logic

3WAY, Akelarre, Anubis, BaseKing, BLAKE, Camel-
lia, Cipherunicorn-A, Cipherunicorn-E, E2, FFCSR, Hamsi,
HC256, Kasumi, Keccak, KHAZAD, M8, MD6, MICKEY,
MUGI, MULTI2, Noekeon, NXT, Phelix, PRINCE, RC6, Ser-
pent, SHA2, SHACAL-2, SHAvite3, SipHash, SMS4, Twofish,
Whirlpool, XXTEA

156

Appendix D

Detailed Processing Element Width Usage

The Table D.1 summarizes parallel processing element requirement of each algorithm.

Algorithms are clustered based on not only exact requirements but also possible performance

gain when more processing element is used.

Table D.1: Operation width (PE way)

PE Width Cryptographic algorithms

1 Blowfish, CAST-128, CAST-256, GOST, ICE, KeeLoq, Madryga,
MultiSwap, Xmx

2

Achterbahn, Camellia, Cryptomeria/C2, CS-Cipher, DEAL, DES,
DESX, Hasty Pudding cipher, Hierocrypt-L1, KN-Cipher, Ladder-
DES, LUCIFER, M6, M8, MacGuffin, MBAL, MD4, MD5, MD6,
Mercy, MICKEY, MUGI, MULTI2, Nimbus, Noekeon, NUSH,
PRINCE, Py, RC4, RC5, REDOC III, Sfinks, SHA0, SHA1, SHA-
CAL, Skipjack, Spectr-H64, SXAL, Threefish, UES, Whirlpool

4

3WAY, A5/1, A5/2, AES, Akelarre, ARIA, BaseKing, BLAKE, CIKS-
1, Cipherunicorn-E, CLEFIA, CMEA, COCONUT98, Crab, CRYP-
TON, DFC, E2, FEAL, FEALNX, FEA-M, FISH, FOX, FROG,
GOST, GRAIN, Grand Cru, Hamsi, HAS-160, HC256, Hierocrypt-
3, IDEA, Intel Cascade Cipher, ISAAC, JH, Kasumi, KHAZAD,
Khufu and Khafre, KLEIN, LED, LOKI97, MARS, MD2, MESH,
MMB, New Data Seal, NewDES, NXT, PRESENT, Q, RadioGatÃžn,
RIPEMD, RIPEMD-160, Salsa20, Scream, SEAL, SEED, Serpent,
SHA2, SHACAL-2, Shark, SHAvite3, SipHash, Skein, SMS4, Snefru,
SNOW, Square, SWIFFT, TEA, TIGER, Trivium, Twofish, VEST,
WAKE, Xenon, XTEA, XXTEA, Yamb, Zodiac

157

8
Cipherunicorn-A, DECIM, FFCSR, Groestl, Haval, MAGENTA,
PANAMA, PANAMA, Phelix, Rabbit, RC2, RC6, SAFER K-128,
SAFER K-64, SC2000, Turing

16 Anubis, Keccak, SAFER+

158

Bibliography

[1] Data encryption standard, 1977.

[2] C Adams. Rfc2144: The cast-128 encryption algorithm. Network Working Group, 1997.

[3] Carlisle Adams. Cast-256. AES submission, 1998.

[4] K. Akdemir, M. Dixon, W. Feghali, P. Fay, V. Gopal, J. Guilford, E. Ozturc, G. Worlich,

and R. Zohar. Breakthrough AES performance with Intel AES new instructions. White

paper, June, 2010.

[5] Liakot Ali, Ishak Aris, Fakir Sharif Hossain, and Niranjan Roy. Design of an ultra high

speed AES processor for next generation IT security. Comput. Electr. Eng., 37(6):1160–

1170, November 2011.

[6] Gonzalo AÌĄlvarez, Dolores De la GuiÌĄa, Fausto Montoya, and Alberto Peinado. Ake-

larre: a new block cipher algorithm. 1996.

[7] Amphion Semiconductor. CS5210-40 high performance AES encryption cores. Amphion

Semiconductor.

[8] Ross Anderson and Eli Biham. Tiger: A fast new hash function. In Fast Software

Encryption, pages 89–97. Springer, 1996.

[9] Ross Anderson, Eli Biham, and Lars Knudsen. Serpent: A proposal for the advanced

encryption standard. NIST AES Proposal, 1998.

159

[10] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho Moriai,

Junko Nakajima, and Toshio Tokita. Specification of camellia-a 128-bit block cipher,

2000.

[11] François Arnault and Thierry P Berger. F-fcsr: design of a new class of stream ciphers.

In Fast Software Encryption, pages 83–97. Springer, 2005.

[12] Telecommunications Technology Association et al. Hash function standard part 2: Hash

function algorithm standard (has-160), ttas. Technical report, KO-12.0011, 2008.

[13] Jean-Philippe Aumasson and Daniel J Bernstein. Siphash: a fast short-input prf. In

Progress in Cryptology-INDOCRYPT 2012, pages 489–508. Springer, 2012.

[14] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Raphael C-W Phan. Sha-3

proposal blake. Submission to NIST, 2008.

[15] Jean-Philippe Aumasson, Jorge Nakahara Jr, and Pouyan Sepehrdad. Cryptanalysis of

the isdb scrambling algorithm (multi2). In Fast Software Encryption, pages 296–307.

Springer, 2009.

[16] Joppe W. B., Dag A. O., and Deian S. Fast implementations of AES on various platforms.

SPEED-CC - Software Performance Enhancement for Encryption and Decryption and

Cryptographic Compilers, 2009.

[17] Steve Babbage and Matthew Dodd. The mickey stream ciphers. In New Stream Cipher

Designs, pages 191–209. Springer, 2008.

160

[18] Tomas Balderas-Contreras, Rene Cumplido, and Claudia Feregrino-Uribe. On the design

and implementation of a RISC processor extension for the KASUMI encryption algorithm.

Computer Electrical Engineering, 34(6):531–546, November 2008.

[19] PSLM Barreto and Vincent Rijmen. The anubis block cipher. Submission to the NESSIE

Project, 2000.

[20] PSLM Barreto and Vincent Rijmen. The khazad legacy-level block cipher. Primitive

submitted to NESSIE, 97, 2000.

[21] PSLM Barreto and Vincent Rijmen. The whirlpool hashing function. In First open

NESSIE Workshop, Leuven, Belgium, volume 13, page 14, 2000.

[22] Henry Beker and Fred Piper. Cipher systems: the protection of communications. North-

wood Books London, 1982.

[23] Come Berbain, Olivier Billet, Anne Canteaut, Nicolas Courtois, Blandine Debraize,

Henri Gilbert, Louis Goubin, Aline Gouget, Louis Granboulan, Cédric Lauradoux, et al.

Decim–a new stream cipher for hardware applications. ECRYPT Stream Cipher Project

Report 2005, 4, 2005.

[24] Daniel J Bernstein. Salsa20 specification. eSTREAM Project algorithm description,

http://www. ecrypt. eu. org/stream/salsa20pf. html, 2005.

[25] G.M. Bertoni, L. Breveglieri, F. Roberto, and F. Regazzoni. Speeding up AES By

extending a 32 bit processor instruction set. In International Conference on Application-

specific Systems, Architectures and Processors. ASAP’06., pages 275–282, 2006.

161

[26] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Radiogatún, a

belt-and-mill hash function. IACR Cryptology ePrint Archive, 2006:369, 2006.

[27] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. Keccak specifi-

cations. 2009.

[28] Eli Biham and Orr Dunkelman. The shavite-3 hash function. Submission to NIST, 9,

2008.

[29] Eli Biham and Jennifer Seberry. Py (roo): A fast and secure stream cipher using rolling

arrays. IACR Cryptology ePrint Archive, 2005:155, 2005.

[30] Eli Biham and Adi Shamir. Differential cryptanalysis of snefru, khafre, redoc-ii, loki and

lucifer. In Advances in CryptologyâĂŤCRYPTOâĂŹ91, pages 156–171. Springer, 1992.

[31] Alex Biryukov and Johann Grossschadl. Cryptanalysis of the full AES using GPU-like

special-purpose hardware. Fundam. Inf., 114(3-4):221–237, 2012.

[32] Matt Blaze and Bruce Schneier. The macguffin block cipher algorithm. In Fast Software

Encryption, pages 97–110. Springer, 1995.

[33] Uwe Blöcher and Markus Dichtl. Fish: A fast software stream cipher. In Fast Software

Encryption, pages 41–44. Springer, 1994.

[34] Martin Boesgaard, Mette Vesterager, Thomas Pedersen, Jesper Christiansen, and Ove

Scavenius. Rabbit: A new high-performance stream cipher. In Fast Software Encryption,

pages 307–329. Springer, 2003.

162

[35] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,

Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. Present: An ultra-

lightweight block cipher. In Cryptographic Hardware and Embedded Systems-CHES 2007,

pages 450–466. Springer, 2007.

[36] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav Knezevic,

Lars R Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar, Christian Rechberger,

et al. Prince-a low-latency block cipher for pervasive computing applications. In Ad-

vances in Cryptology–ASIACRYPT 2012, pages 208–225. Springer, 2012.

[37] Julia Borghoff, Lars R Knudsen, Gregor Leander, and Krystian Matusiewicz. Crypt-

analysis of c2. In Advances in Cryptology-CRYPTO 2009, pages 250–266. Springer,

2009.

[38] An Braeken, Joseph Lano, Nele Mentens, Bart Preneel, and Ingrid Verbauwhede. Sfinks:

A synchronous stream cipher for restricted hardware environments. In SKEW-Symmetric

Key Encryption Workshop, 2005.

[39] Ernie F Brickell and Gary L Graunke. Method and apparatus for increasing the speed

of cryptographic processing, April 5 2012. US Patent App. 13/440,624.

[40] Jeffrey D. Brown. The IBM Power Edge of NetworkT M Processor. IBM Corporation.

[41] Lawrie Brown and Josef Pieprzyk. Introducing the new loki97 block cipher. In First

AES Candidate Conference, pages 20–22, 1998.

[42] Frederick J Bruwer, Willem Smit, and Gideon J Kuhn. Microchips and remote control

devices comprising same, May 14 1996. US Patent 5,517,187.

163

[43] Rainer Buchty, Nevin Heintze, and Dino Oliva. Cryptonite - a programmable crypto

processor architecture for high-bandwidth applications. In Organic and Pervasive Com-

puting - ARCS 2004, volume 2981, pages 184–198, 2004.

[44] Jerome Burke, John McDonald, and Todd Austin. Architectural support for fast symmetric-

key cryptography. In Proceedings of the 9th International Conference on Architectural

support for programming languages and operating systems, ASPLOS IX, pages 178–189,

New York, NY, USA, 2000. ACM.

[45] Jerome Burke, John McDonald, and Todd Austin. Architectural support for fast symmetric-

key cryptography. In ASPLOS’00, pages 178–189, 2000.

[46] Carolynn Burwick, Don Coppersmith, Edward DâĂŹAvignon, Rosario Gennaro, Shai

Halevi, Charanjit Jutla, S Matyas Jr, Luke OâĂŹConnor, Mohammad Peyravian, David

Safford, et al. The mars encryption algorithm, 1999.

[47] Jed Kao-Tung Chang, Chen Liu, Shaoshan Liu, and Jean-Luc Gaudiot. Workload char-

acterization of cryptography algorithms for hardware acceleration. In ICPE ’11, pages

381–390, 2011.

[48] R. Chaves, G. Kuzmanov, L. Sousa, and S. Vassiliadis. Cost-efficient SHA hardware accel-

erators. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 16(8):999–

1008, 2008.

[49] Dong Chen, Guochu Shou, Yihong Hu, and Zhigang Guo. Efficient architecture and

implementations of AES. In 3rd International Conference on Advanced Computer Theory

and Engineering (ICACTE), volume 6, pages V6–295–V6–298, 2010.

164

[50] Paul Crowley. Mercy: A fast large block cipher for disk sector encryption. In Fast

Software Encryption, pages 49–63. Springer, 2001.

[51] Joan Daemen. Cipher and hash function design strategies based on linear and differential

cryptanalysis. Doctoral Dissertation, KU Leuven, 1995.

[52] Joan Daemen and Craig Clapp. Fast hashing and stream encryption with panama. In

Fast Software Encryption, pages 60–74. Springer, 1998.

[53] Joan Daemen and Craig Clapp. Fast hashing and stream encryption with panama. In

Fast Software Encryption, pages 60–74. Springer, 1998.

[54] Joan Daemen, Rene Govaerts, and Joos Vandewalle. Block ciphers based on modular

arithmetic. In Proceedings of the 3rd Symposium on State and Progress of Research in

Cryptography, Rome, Italy, page 418, 1993.

[55] Joan Daemen, René Govaerts, and Joos Vandewalle. A new approach to block cipher

design. In Fast Software Encryption, pages 18–32. Springer, 1994.

[56] Joan Daemen, Lars Knudsen, and Vincent Rijmen. The block cipher square. In Fast

Software Encryption, pages 149–165. Springer, 1997.

[57] Joan Daemen, Michaël Peeters, Gilles Van Assche, and Vincent Rijmen. Nessie proposal:

Noekeon. In First Open NESSIE Workshop, 2000.

[58] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. In First Advanced Encryp-

tion Standard (AES) Conference, 1998.

165

[59] Christophe De Canniere. Trivium: A stream cipher construction inspired by block cipher

design principles. In Information Security, pages 171–186. Springer, 2006.

[60] D. Denning, J. Irvine, and M. Devlin. A high throughput FPGA Camellia implemen-

tation. In Research in Microelectronics and Electronics, volume 1, pages 137–140 vol.1,

2005.

[61] Whitfield Diffie and George Ledin. Sms4 encryption algorithm for wireless networks.

IACR Cryptology ePrint Archive, page 329, 2008.

[62] Hans Dobbertin. Ripemd with two-round compress function is not collision-free. Journal

of Cryptology, 10(1):51–69, 1997.

[63] Hans Dobbertin, Antoon Bosselaers, and Bart Preneel. Ripemd-160: A strengthened

version of ripemd. In Fast Software Encryption, pages 71–82. Springer, 1996.

[64] Donald Eastlake and Paul Jones. Us secure hash algorithm 1 (sha1), 2001.

[65] Patrik Ekdahl and Thomas Johansson. Snow-a new stream cipher. In Proceedings of

First Open NESSIE Workshop, KU-Leuven, 2000.

[66] Adam J. Elbirt. Reconfigurable computing for symmetric-key algorithms, 2002.

[67] A.J. Elbirt. Fast and efficient implementation of AES via instruction set extensions.

In 21st International Conference on Advanced Information Networking and Applications

Workshops, AINAW’07., volume 1, pages 396–403, 2007.

166

[68] A.J. Elbirt and C. Paar. An instruction-level distributed processor for symmetric-key

cryptography. Parallel and Distributed Systems, IEEE Transactions on, 16(5):468–480,

2005.

[69] EnSilica. eSi-8110 product brief. EnSilica.

[70] Chih-Peng Fan and Jun-Kui Hwang. Implementations of high throughput sequential

and fully pipelined AES processors on FPGA. In International Symposium on Intelligent

Signal Processing and Communication Systems. ISPACS’07, pages 353–356, 2007.

[71] Horst Feistel. Cryptography and computer privacy. Scientific american, 228:15–23,

1973.

[72] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi

Kohno, Jon Callas, and Jesse Walker. The skein hash function family (2008). Submitted

to SHA-3 Competition.

[73] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug Whiting, Mihir Bellare, Tadayoshi

Kohno, Jon Callas, and Jesse Walker. The skein hask function family. 2009.

[74] NIST FIPS. 180-2: Secure hash standard (shs). Technical report, Technical report,

National Institute of Standards and Technology (NIST), 2001.

[75] A. Murat Fiskiran and Ruby B. Lee. On-chip lookup tables for fast symmetric-key

encryption. In ASAP’05, ASAP’05, pages 356–363, 2005.

[76] A.M. Fiskiran and R.B. Lee. On-chip lookup tables for fast symmetric-key encryption.

In 16th IEEE International Conference on Application-Specific Systems, Architecture Pro-

cessors, ASAP’05, pages 356–363, 2005.

167

[77] D. Fronte, A. Perez, and E. Payrat. Celator: A multi-algorithm cryptographic co-

processor. In Reconfigurable Computing and FPGAs, 2008. ReConFig ’08. International

Conference on, pages 438–443, 2008.

[78] M.D. Galanis, P. Kitsos, G. Kostopoulos, N. Sklavos, O. Koufopavlou, and C.E. Goutis.

Comparison of the hardware architectures and FPGA implementations of stream ciphers.

In Proceedings of the 11th IEEE International Conference on Electronics, Circuits and

Systems, ICECS’04, pages 571–574, 2004.

[79] Berndt M Gammel, Rainer Göttfert, and Oliver Kniffler. The achterbahn stream cipher.

Submission to eSTREAM, 2005.

[80] Praveen Gauravaram, Lars R Knudsen, Krystian Matusiewicz, Florian Mendel, Chris-

tian Rechberger, Martin Schläffer, and Søren S Thomsen. Grøstl–a sha-3 candidate.

Submission to NIST, 2008.

[81] Dianelous Georgoudis, Damian Leroux, and Billy Simon Chaves. The âĂĲfrogâĂİ en-

cryption algorithm. NIST AES Proposal, 1998.

[82] Henri Gilbert, Marc Girault, Philippe Hoogvorst, Fabrice Noilhan, Thomas Pornin, Guil-

laume Poupard, Jacques Stern, and Serge Vaudenay. Decorrelated fast cipher: an aes

candidate. In Extended Abstract.) In Proceedings from the First Advanced Encryption

Standard Candidate Conference, National Institute of Standards and Technology (NIST),

1998.

[83] Jovan Dj. Golic. Cryptanalysis of alleged a5 stream cipher. In Proceedings of the 16th

Annual International Conference on Theory and Application of Cryptographic Techniques,

168

EUROCRYPT’97, pages 239–255, Berlin, Heidelberg, 1997. Springer-Verlag.

[84] Robert Golla and Paul Jordan. T4: a highly threaded server-on-a-chip with native

support for heterogeneous computing, August, 2011. Slides of a talk given at Hot Chips:

A Symposium on High Performance Chips.

[85] Zheng Gong, Svetla Nikova, and Yee Wei Law. Klein: a new family of lightweight block

ciphers. In RFID. Security and Privacy, pages 1–18. Springer, 2012.

[86] T. Good and M. Benaissa. Pipelined AES on FPGA with support for feedback modes

(in a multi-channel environment). Information Security, IET, 1(1):1–10, 2007.

[87] Tim Good and Mohammed Benaissa. AES on FPGA from the fastest to the smallest. In

JosyulaR. Rao and Berk Sunar, editors, Cryptographic Hardware and Embedded Systems

- CHES’05, volume 3659, pages 427–440, 2005.

[88] Nick D Goots, Alexander A Moldovyan, and Nick A Moldovyan. Fast encryption al-

gorithm spectr-h64. In Information Assurance in Computer Networks, pages 275–286.

Springer, 2001.

[89] Philipp Grabher, Johann Grossschadl, and Dan Page. Light-weight instruction set ex-

tensions for bit-sliced cryptography. In Proceedings of the 10th international workshop

on Cryptographic Hardware and Embedded Systems, CHES ’08, pages 331–345, 2008.

[90] M. Grand, L. Bossuet, G. Gogniat, B. Le Gal, J.-P. Delahaye, and D. Dallet. A re-

configurable multi-core cryptoprocessor for multi-channel communication systems. In

Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW), 2011 IEEE

International Symposium on, pages 204–211, 2011.

169

[91] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The led block cipher.

In Cryptographic Hardware and Embedded Systems–CHES 2011, pages 326–341. Springer,

2011.

[92] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and D. August. Bundled execution of recurring

traces for energy-efficient general purpose processing. In Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture, pages 12–23. ACM, 2011.

[93] Wang Haixin, Bai Guoqiang, and Chen Hongyi. Zodiac: System architecture imple-

mentation for a high-performance network security processor. In Application-Specific

Systems, Architectures and Processors, 2008. ASAP 2008. International Conference on,

pages 91–96, 2008.

[94] Shai Halevi, Don Coppersmith, and Charanjit Jutla. Scream: A software-efficient stream

cipher. In Fast Software Encryption, pages 195–209. Springer, 2002.

[95] Helena Handschuh, H Helena, and David Naccache. Shacal (-submission to nessie-).

2000.

[96] Helena Handschuh and Serge Vaudenay. A universal encryption standard. In Selected

Areas in Cryptography, pages 1–12. Springer, 2000.

[97] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for constrained

environments. International Journal of Wireless and Mobile Computing, 2(1):86–93,

2007.

[98] Martin E Hellman, Bailey W Diffie, and Ralph C Merkle. Cryptographic apparatus and

method, April 29 1980. US Patent 4,200,770.

170

[99] A. Hodjat and I. Verbauwhede. Speed-area trade-off for 10 to 100 Gbits/s throughput

AES processor. In Conference Record of the Thirty-Seventh Asilomar Conference on

Signals, Systems and Computers, volume 2, pages 2147–2150 Vol.2, 2003.

[100] A. Hodjat and I. Verbauwhede. A 21.54 Gbits/s fully pipelined AES processor on FPGA.

In 12th Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

FCCM’04, pages 308–309, 2004.

[101] A. Hodjat and I. Verbauwhede. Area-throughput trade-offs for fully pipelined 30 to 70

gbits/s aes processors. Computers, IEEE Transactions on, 55(4):366–372, April 2006.

[102] F.S. Hossain, M.L. Ali, and M.A. Al Abedin Syed. A very low power and high through-

put AES processor. In 14th International Conference on Computer and Information

Technology (ICCIT), pages 339–343, 2011.

[103] IBM Corporation. IBM 4765 PCIe Cryptographic Coprocessor. IBM.

[104] Intel Coorporation. Pin - A Dynamic Binary Instrumentation Tool, 2012.

[105] IP cores, Inc. AES-GCMMACsec (IEEE 802.1AE) and FC-SP Cores GCM1/GCM2/GCM3,

2013. http://www.ipcores.com/macsec_802.1ae_gcm_aes_ip_core.htm [Online; ac-

cessed 22-October-2013].

[106] Keisuke Iwai, Naoki Nishikawa, and Takakazu Kurokawa. Acceleration of AES encryp-

tion on CUDA GPU. International JOURNAL of Networking and Computing, 2(1), 2012.

[107] N.C. Iyer, P.V. Anandmohan, D.V. Poornaiah, and V. D. Kulkarni. High throughput, low

cost, fully pipelined architecture for AES crypto chip. In Annual IEEE India Conference,

pages 1–6, 2006.

171

[108] MJ Jacobson Jr and Klaus Huber. The magenta block cipher algorithm. NIST AES

Proposal, 1998.

[109] Kimmo U. Järvinen, Matti T. Tommiska, and Jorma O. Skyttä. A fully pipelined memo-

ryless 17.8 Gbps AES-128 encryptor. In Proceedings of ACM/SIGDA 11th International

Symposium on Field Programmable Gate Arrays, FPGA ’03, pages 207–215, 2003.

[110] Christipher Jenkins, Michael Schulte, and John Glossner. Instruction set extensions for

the advanced encryption standard on a multithreaded software defined radio platform.

International Journal on High Performance System Architecture, 2(3/4):203–214, August

2010.

[111] Robert J Jenkins Jr. Isaac. In Fast Software Encryption, pages 41–49. Springer, 1996.

[112] J Jonsson and B Kaliski. Rfc 3447: Public-key cryptography standards (pkcs)# 1: Rsa

cryptography specifications version 2.1. Request for Comments (RFC), 3447, 2003.

[113] P Junod and S Vaudenay. âĂŹidea-nxt specifications, version 1.2,âĂŹ. Technical report,

EPFL Technical Report IC/2004/75, 15-04-2005, 2005.

[114] Pascal Junod and Serge Vaudenay. Fox: a new family of block ciphers. In Selected Areas

in Cryptography, pages 114–129. Springer, 2005.

[115] Burton S Kaliski Jr and Matthew JB Robshaw. Fast block cipher proposal. In Fast

Software Encryption, pages 33–40. Springer, 1994.

[116] John Kelsey, Bruce Schneier, and David Wagner. Mod n cryptanalysis, with applications

against rc5p and m6. In Fast Software Encryption, pages 139–155. Springer, 1999.

172

[117] Joe Kilian and Phillip Rogaway. How to protect des against exhaustive key search. In

Advances in CryptologyâĂŤCRYPTOâĂŹ96, pages 252–267. Springer, 1996.

[118] Lars Knudsen. Deal-a 128-bit block cipher. complexity, 258:2, 1998.

[119] Lars R Knudsen, Vincent Rijmen, Ronald L Rivest, and Matthew JB Robshaw. On the

design and security of rc2. In Fast Software Encryption, pages 206–221. Springer, 1998.

[120] Kunio Kobayashi and Kazumaro Aoki. On linear cryptanalysis of mbal ciphers. Electron-

ics and Communications in Japan (Part III: Fundamental Electronic Science), 82(10):1–8,

1999.

[121] Özgül Küçük. The hash function hamsi. Submission to NIST (updated), 33:167, 2009.

[122] Matthew Kwan. The design of the ice encryption algorithm. In Fast Software Encryp-

tion, pages 69–82. Springer, 1997.

[123] Daesung Kwon, Jaesung Kim, Sangwoo Park, Soo Hak Sung, Yaekwon Sohn, Jung Hwan

Song, Yongjin Yeom, E-Joong Yoon, Sangjin Lee, Jaewon Lee, et al. New block cipher:

Aria. In Information Security and Cryptology-ICISC 2003, pages 432–445. Springer,

2004.

[124] Xuejia Lai. On the design and security of block ciphers. ETH SERIES in Information

Processing. Hartung Gorre Verlag, v.1 edition, 1992.

[125] Xuejia Lai and James L Massey. A proposal for a new block encryption standard. In

Advances in CryptologyâĂŤEUROCRYPTâĂŹ90, pages 389–404. Springer, 1991.

173

[126] I. Lebedev, S. Cheng, A. Doupnik, J. Martin, C. Fletcher, D. Burke, M. Lin, and

J. Wawrzynek. MARC: a many-core approach to reconfigurable computing. In Inter-

national Conference on Reconfigurable Computing and FPGAs (ReConFig), pages 7–12.

IEEE, 2010.

[127] C Lee, K Jun, M Jung, S Park, and J Kim. Zodiac version 1.0 (revised) architecture and

specification. In Standardization Workshop on Information Security Technology, Korean

Contribution on MP18033, ISO/IEC JTC1/SC27 N, volume 2563, page 2000, 2000.

[128] Jaeil Lee, Jongwook Park, Sungjae Lee, and Jeeyeon Kim. The seed encryption algo-

rithm. SEED, 2005.

[129] R.B. Lee, Z. Shi, and X. Yang. Efficient permutation instructions for fast software

cryptography. Micro, IEEE, 21(6):56–69, 2001.

[130] Ruby B. Lee and Yu-Yuan Chen. Processor accelerator for AES. In Proceedings of the

IEEE 8th Symposium on Application Specific Processors (SASP), SASP ’10, pages 16–21.

IEEE Computer Society, 2010.

[131] Chae Hoon Lim. Crypton: A new 128-bit block cipher. NIsT AEs Proposal, 1998.

[132] Bin Liu and Bevan M. Baas. Parallel AES encryption engines for many-core processor

arrays. IEEE Transactions on Computers, 62(3):536–547, 2013.

[133] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. Swifft: A

modest proposal for fft hashing. In Fast Software Encryption, pages 54–72. Springer,

2008.

174

[134] Alexis Warner Machado. The nimbus cipher: A proposal for nessie. NESSIE Proposal,

September, 2000.

[135] WE Madryga. A high performance encryption algorithm. In Proceedings of the 2nd

IFIP international conference on Computer security: a global challenge, pages 557–569.

North-Holland Publishing Co., 1984.

[136] James L Massey. Safer k-64: A byte-oriented block-ciphering algorithm. In Fast Software

Encryption, pages 1–17. Springer, 1994.

[137] James L Massey. Safer k-64: One year later. In Fast Software Encryption, pages 212–241.

Springer, 1995.

[138] James L Massey, Gurgen H Khachatrian, and Melsik K Kuregian. Nomination of safer+

as candidate algorithm for the advanced encryption standard (aes). NIST AES Proposal,

1998.

[139] Sanu Mathew, Farhana Sheikh, Michael E. Kounavis, Shay Gueron, Amit Agarwal, Steven

Hsu, Himanshu Kaul, Mark Anders, and Ram Krishnamurthy. 53 gbps native gf(2 4)

2 composite-field aes-encrypt/decrypt accelerator for content-protection in 45nm high-

performance microprocessors. J. Solid-State Circuits, 46(4):767–776, 2011.

[140] Mitsuru Matsui. New block encryption algorithm misty. In Fast Software Encryption,

pages 54–68. Springer, 1997.

[141] Mitsuru Matsui. New block encryption algorithm MISTY. Fast Software Encryption,

1267:54–68, 1997.

175

[142] L McBride. Q: A proposal for nessie v2.00. In First NESSIE Workshop, Leuven,

Belgium, 2000.

[143] M McLoone. Hardware performance analysis of the shacal-2 encryption algorithm. In

Circuits, Devices and Systems, IEE Proceedings-, volume 152, pages 478–484. IET, 2005.

[144] M. McLoone and J.V. McCanny. High-performance FPGA implementation of DES using

a novel method for implementing the key schedule. IEEE Proceedings of Circuits, Devices

and Systems, 150(5):373–8–, 2003.

[145] Mercora Technologies. AES ultra fast ip core for Xilinx FPGAs . Mercora Technologies.

[146] Ralph C Merkle. A fast software one-way hash function. Journal of Cryptology, 3(1):43–

58, 1990.

[147] Ralph Charles Merkle. Secrecy, authentication, and public key systems. 1979.

[148] Markus Michels, David Naccache, and Holger Petersen. Gost 34.10âĂŤa brief overview

of russia’s dsa. Computers & Security, 15(8):725–732, 1996.

[149] Shoji Miyaguchi. The feal cipher family. In Advances in Cryptology-CRYPT0âĂŹ90,

pages 628–638. Springer, 1991.

[150] Alexander A Moldovyan and Nick A Moldovyan. A cipher based on data-dependent

permutations. Journal of Cryptology, 15(1):61–72, 2002.

[151] S. Morioka and A. Satoh. A 10 Gbps full-AES crypto design with a twisted-BDD S-

Box architecture. In IEEE International Conference on Computer Design: VLSI in

Computers and Processors, pages 98–103, 2002.

176

[152] David MâĂŹRaÏhi, David Naccache, Jacques Stern, and Serge Vaudenay. Xmx: A

firmware-oriented block cipher based on modular multiplications. In Fast Software En-

cryption, pages 166–171. Springer, 1997.

[153] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing nuca

organizations and wiring alternatives for large caches with cacti 6.0. In MICRO’07. 3-14.

[154] Ghulam Murtaza, Azhar Ali Khan, Syed Wasi Alam, and Aqeel Farooqi. Fortifica-

tion of aes with dynamic mix-column transformation. IACR Cryptology ePrint Archive,

2011:184, 2011.

[155] Jorge Nakahara Jr, Vincent Rijmen, Bart Preneel, and Joos Vandewalle. The mesh block

ciphers. In Information Security Applications, pages 458–473. Springer, 2004.

[156] National Institute of Standards and Technology (NIST). Advanced encryption standard

(AES). Federal Information Processing Standards (FIPS) Publication, 197, November

2001.

[157] Roger M Needham and David J Wheeler. Tea extensions. computer laboratory, cam-

bridge university, england (1997).

[158] Naoki Nishikawa, Keisuke Iwai, and Takakazu Kurokawa. High-performance symmetric

block ciphers on multicore CPU and GPUs. IJNC, 2(2):251–268, 2012.

[159] NIST. Skipjack and kea algorithm speciïňĄcation,. NIST Technical Report, 1998.

[160] Secure Hash Standard NIST and NIST FIPS PUB. 180. Secure hash standard, National

Institute of Standards and Technology, US department of Commerce, DRAFT, 1993.

177

[161] W.M. Nunan Zola and L.C.E. De Bona. Parallel speculative encryption of multiple AES

contexts on GPUs. In Innovative Parallel Computing (InPar), pages 1–9, 2012.

[162] Kaisa Nyberg and Lars Ramkilde Knudsen. Provable security against a differential

attack. Journal of Cryptology, 8(1):27–37, 1995.

[163] Register of Cryptographic Algorithms. Iso/iec9979-0012 register entry, 1995.

[164] Register of Cryptographic Algorithms. Iso/iec9979-0020 register entry, 1995.

[165] K Ohkuma, H Muratani, F Sano, M Motoyama, and S Kawamura. ; security and

performance evaluations for the block ciphers hierocrypt-3 and hierocrypt-l1. IEIC

Technical Report (Institute of Electronics, Information and Communication Engineers),

100(324):71–100, 2000.

[166] Kenji Ohkuma, Hirofumi Muratani, Fumihiko Sano, and Shinichi Kawamura. The block

cipher hierocrypt. "Lecture Notes in Computer Science", 2012:72, 2001.

[167] Sean O’Neil, Benjamin Gittins, and Howard A Landman. Vest hardware-dedicated

stream ciphers. IACR Cryptology ePrint Archive, 2005:413, 2005.

[168] Slobodan Petrovic and Amparo Fuster-Sabater. Cryptanalysis of the a5/2 algorithm.

IACR Cryptology ePrint Archive, 2000:52, 2000.

[169] Josef Pieprzyk and Leonid Tombak. Soviet encryption algorithm. preprint, pages 94–10,

1993.

[170] T. Pionteck, T. Staake, T. Stiefmeier, L.D. Kabulepa, and M. Glesner. Design of a

reconfigurable AES encryption/decryption engine for mobile terminals. In Proceedings of

178

the 2004 International Symposium on Circuits and Systems, ISCAS’04., volume 2, pages

545–556. IEEE, 2004.

[171] Shanxin Qu, Guochu Shou, Yihong Hu, Zhigang Guo, and Zongjue Qian. High through-

put, pipelined implementation of AES on FPGA. In International Symposium on Infor-

mation Engineering and Electronic Commerce. IEEC’09, pages 542–545, 2009.

[172] James A Reeds III. Cryptosystem for cellular telephony, October 27 1992. US Patent

5,159,634.

[173] Vincent Rijmen, Joan Daemen, Bart Preneel, Antoon Bosselaers, and Erik De Win. The

cipher shark. In Fast Software Encryption, pages 99–111. Springer, 1996.

[174] Terry Ritter. Ladder-des: A proposed candidate to replace des, appeared in the usenet

newsgroup sci. crypt, 1994.

[175] Ronald Rivest. Rfc 1321: The md5 message-digest algorithm, april 1992. Status:

INFORMATIONAl.

[176] Ronald Rivest. The md4 message-digest algorithm, rfc 1320, 1992.

[177] Ronald Rivest. Rfc 1319: The md2 message digest algorithm, 1992.

[178] Ronald L Rivest. The rc5 encryption algorithm. In Fast Software Encryption, pages

86–96. Springer, 1995.

[179] Ronald L Rivest, Benjamin Agre, Daniel V Bailey, Christopher Crutchfield, Yevgeniy

Dodis, Kermin Elliott Fleming, Asif Khan, Jayant Krishnamurthy, Yuncheng Lin, Leo

179

Reyzin, et al. The md6 hash function–a proposal to nist for sha-3. Submission to NIST,

2:3, 2008.

[180] Ronald L Rivest, MJB Robshaw, Ray Sidney, and Yiqun Lisa Yin. The rc6 block cipher.

In First Advanced Encryption Standard (AES) Conference, 1998.

[181] M. R M Rizk and M. Morsy. Optimized area and optimized speed hardware implementa-

tions of AES on FPGA. In 2nd International Design and Test Workshop. IDT’07., pages

207–217, 2007.

[182] MJB Robshaw. A cryptographic review of cipherunicorn-a. 2001.

[183] MJB Robshaw. A cryptographic review of cipherunicorn-e. 2001.

[184] Phillip Rogaway and Don Coppersmith. A software-optimized encryption algorithm. In

Fast Software Encryption, pages 56–63. Springer, 1994.

[185] Gregory G Rose and Philip Hawkes. Turing: A fast stream cipher. In Fast Software

Encryption, pages 290–306. Springer, 2003.

[186] Leelavathi G. Sagar D. Design and implementation of extended version of AES algorithm

with DSP units. In International JOURNAL of Engineering and Advanced Technology

(IJEAT), volume 2-6, pages 360–364, 2013.

[187] P. Saravanan, N. Renuka Devi, G. Swathi, and Dr. P. Kalpana. A high-throughput

ASIC implementation of configurable advanced encryption standard (AES) processor.

IJCA Special Issue on Network Security and Cryptography, NSC(3):1–6, December 2011.

Published by Foundation of Computer Science, New York, USA.

180

[188] Bruce Schneier. Description of a new variable-length key, 64-bit block cipher (blowfish).

In Fast Software Encryption, pages 191–204. Springer, 1994.

[189] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and Niels Fergu-

son. Twofish: A 128-bit block cipher. NIST AES Proposal, 15, 1998.

[190] Rich Schroeppel. Hasty pudding cipher specification. NIST AES Proposal, 1998.

[191] Robert Scott. Wide-open encryption design offers flexible implementations. Cryptologia,

9(1):75–91, 1985.

[192] Beale Screamer. MicrosoftâĂŹs digital rights management scheme–technical details (oc-

tober 2001).

[193] Z. Shi and R.B. Lee. Bit permutation instructions for accelerating software cryptography.

In IEEE International Conference on Application-Specific Systems, Architectures, and

Processors, pages 138–148, 2000.

[194] Akihiro Shimizu and Shoji Miyaguchi. Fast data encipherment algorithm feal. In

Advances in CryptologyâĂŤEUROCRYPTâĂŹ87, pages 267–278. Springer, 1988.

[195] Takeshi Shimoyama, Hitoshi Yanami, Kazuhiro Yokoyama, Masahiko Takenaka, Kouichi

Itoh, Jun Yajima, Naoya Torii, and Hidema Tanaka. The block cipher sc2000. In Fast

Software Encryption, pages 312–327. Springer, 2002.

[196] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata. The 128-bit

blockcipher clefia. In Fast software encryption, pages 181–195. Springer, 2007.

[197] Ken Shirriff. Differential cryptanalysis of redoc iii.

181

[198] M.I. Soliman and G.Y. Abozaid. Performance evaluation of a high throughput crypto

coprocessor using VHDL. In International Conference on Computer Engineering and

Systems (ICCES), pages 231–237, 2010.

[199] Mostafa I. Soliman and Ghada Y. Abozaid. FastCrypto: parallel AES pipeline extension

for general-purpose processors. Neural, Parallel Sci. Comput., 18(1):47–58, March 2010.

[200] Arthur Sorkin. Lucifer, a cryptographic algorithm. Cryptologia, 8(1):22–42, 1984.

[201] Jacques Stern and Serge Vaudenay. Cs-cipher. In Fast Software Encryption, pages

189–204. Springer, 1998.

[202] J.E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W.R. Davis, P.D. Franzon,

M. Bucher, S. Basavarajaiah, Julie Oh, and R. Jenkal. Freepdk: An open-source

variation-aware design kit. In IEEE International Conference on Microelectronic Sys-

tems Education, MSE ’07, pages 173–174, 2007.

[203] Sun Microsystems. x86 Assembly Language Reference Manual, 2012.

[204] E. J. Swankoski, R.R. Brooks, V. Narayanan, M. Kandemir, and M.J. Irwin. A parallel

architecture for secure FPGA symmetric encryption. In Proceedings of 18th International

Parallel and Distributed Processing Symposium, pages 132–, 2004.

[205] Eric Swankoski and Vijaykrishnan Narayanan. Dynamic high-performance multi-mode

architectures for AES encryption. In Intenational Conference on Military and Aerospace

Programmable Logic Devices, pages 1–9, 2005.

182

[206] R. Reed Taylor and Seth Copen Goldstein. A high-performance flexible architecture for

cryptography. In Proceedings of the Workshop on Cryptographic Hardware and Embedded

Systems 1999 (CHES99), pages 231–245, August 1999.

[207] Nippon Telegraph. Telephone corporation,âĂĲspecification of e2âĂŤa 128-bit block

cipher,âĂİ 1999.

[208] Dimitris Theodoropoulos, Alexandros Siskos, and Dionisis Pnevmatikatos. Ccproc: A

custom vliw cryptography co-processor for symmetric-key ciphers. In Reconfigurable

Computing: Architectures, Tools and Applications, pages 318–323. Springer, 2009.

[209] Toshio Tokita and Mitsuru Matsui. Linear cryptanalysis of block cipher xenon. IE-

ICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer

Sciences, 86(1):13–18, 2003.

[210] Serge Vaudenay. Provable security for block ciphers by decorrelation. In STACS 98,

pages 249–275. Springer, 1998.

[211] VIA Technologies, Inc. VIA C7 processor, 2013. http://www.via.com.tw/en/products/processors/c7/

[Online; accessed 22-October-2013].

[212] Yi Wang and Yajun Ha. FPGA-based 40.9-Gbits/s masked AES with area optimization

for storage area network. IEEE Transactions on Circuits and Systems II: Express Briefs,

60(1):36–40, 2013.

[213] Rick Wash. Lecture notes on stream ciphers and rc4. Reserve University, pages 1–19,

2001.

183

[214] Dai Watanabe, Soichi Furuya, Hirotaka Yoshida, Kazuo Takaragi, and Bart Preneel. A

new keystream generator mugi. In Fast Software Encryption, pages 179–194. Springer,

2002.

[215] David J Wheeler. A bulk data encryption algorithm. In Fast Software Encryption, pages

127–134. Springer, 1994.

[216] David J Wheeler and Roger M Needham. Tea, a tiny encryption algorithm. In Fast

Software Encryption, pages 363–366. Springer, 1995.

[217] Doug Whiting, Bruce Schneier, Stefan Lucks, and Frédéric Muller. Fast encryption

and authentication in a single cryptographic primitive. ECRYPT Stream Cipher Project

Report, 27(200):5, 2005.

[218] Hongjun Wu. A new stream cipher hc-256. In Fast Software Encryption, pages 226–244.

Springer, 2004.

[219] Hongjun Wu. The hash function jh. Submission to NIST (round 3), 2011.

[220] HongjunWu and Bart Preneel. Distinguishing attack on stream cipher yamb. eSTREAM

The ECRYPT Stream Cipher Project, (2005/043), 2005.

[221] L. Wu, C. Weaver, and T. Austin. CryptoManiac: a fast flexible architecture for secure

communication. In Proceedings of 28th Annual International Symposium on Computer

Architecture, pages 110–119, 2001.

[222] Wenling Wu and Dengguo Feng. Linear cryptanalysis of nush block cipher. Science in

China Series F: Information Sciences, 45(1):59–67, 2002.

184

[223] P. Yalla and J. Kaps. Compact FPGA implementation of Camellia. In International

Conference on Field Programmable Logic and Applications, FPL’09., pages 658–661, 2009.

[224] Ming Yan, Ziyu Yang, Lei Liu, and Sikun Li. Prodfa: Accelerating domain applications

with a coarse-grained runtime reconfigurable architecture. In Parallel and Distributed

Systems (ICPADS), 2012 IEEE 18th International Conference on, pages 834–839. IEEE,

2012.

[225] Elias Yarrkov. Cryptanalysis of xxtea. IACR Cryptology ePrint Archive, 2010:254, 2010.

[226] Xun Yi, Chik How Tan, Chee Kheong Slew, and M Rahman Syed. Fast encryption for

multimedia. Consumer Electronics, IEEE Transactions on, 47(1):101–107, 2001.

[227] Seong-Moo Yoo, Deen Kotturi, W. David Pan, and John Blizzard. An AES crypto chip

using a high-speed parallel pipelined architecture. Microprocessors and Microsystems,

29(7):317–326, 2005.

[228] Xinmiao Zhang and K.K. Parhi. High-speed VLSI architectures for the AES algorithm.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(9):957–967, 2004.

[229] Yuliang Zheng, Josef Pieprzyk, and Jennifer Seberry. Haval-a one-way hashing algorithm

with variable length of output. In Advances in CryptologyâĂŤAUSCRYPT’92, pages 81–

104. Springer, 1993.

185

