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Abstract
Until not so long ago, Antarctica was considered to be a polar region practically pristine. The Antarctic Peninsula has the
highest concentration of scientific stations from different countries. Anthropogenic activity has caused alterations in the
Antarctic ecosystems directly affecting terrestrial vegetation. This fact requires the finding of biomarkers in native plants to
estimate the effects of human impact. Deschampsia antarctica Desv. (Poaceae) is the unique native grass described so far for
Antarctica and was used for multiple investigations. In this study, plants were collected on Carlini scientific station, 25 de
Mayo (King George) Island, Potter Peninsula, South Shetland Islands. Thus, the main objective planned consists of the
evaluation of leaf stomata-related parameters as pollution biomarkers. The results of the stomatic index (SI), density (SD),
and area (SA) were shown at sites with different levels of human impact (close and far away from the scientific station). It
was found that the correlation between SD and SI, on the adaxial side of the leaves, resulted in a good biomarker for
estimating the degree of anthropogenic impact in each studied area.
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Highlights
● Deschampsia antarctica leaves reflect anthropogenic impact.
● No differences in the structure or size of the stomatal pores on either side of the leaves were found
● Correlation between SD and SI on the adaxial side of the leaves could be a good biomarker.

Introduction

The Antarctic flora consists of mosses, lichens, and only
two vascular plants: Colobanthus quitensis (Kunth) Bartl
and Deschampsia antarctica due to the harsh climatic
conditions in the area (Parnikoza et al., 2011).

If only the two vascular plant species are considered,
Deschampsia antarctica Desv. (Poaceae) is the only native
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grass described so far for Antarctica, with a distribution
mainly centered on the Antarctic Peninsula (Komárková
et al., 1990; Convey, 1996; Montiel et al., 1999; Barci-
kowski et al., 2001, 2003; Bravo et al., 2001; Chwe-
dorzewska et al., 2008; Vera, 2011; Casanova-Katny and
Cavieres, 2012). This species is abundant in ice-free zones,
areas that in general also coincide with the scientific stations
´ settlements, both permanent and temporary, where diverse
foci of pollutionas solid waste, organics and non-organic
pollutants, oil spills, traffic (foot or mechanized), trampling,
aerosols, tourism, were among the most well established
and known Antarctic anthropogenic impacts (Mishraa et al.,
(2004); Tin et al. 2009; Molina-Montenegro et al., (2019);
Gao et al. 2021).

D. antarctica has been the subject of several studies on
eco-physiological and genetic analyses, association with
endophytes, pharmaceutical formulations, and climate
change bioindicators (Bennett et al., 1982; Lewis Smith,
1994; Alberdi et al., 2004; Rosa et al., 2009; Parnikoza
et al., 2011; Navrotska et al., 2014; Domaciuk et al., 2016;
Gonzalez et al., 2016; Köhler et al., 2017; Malvicini et al.,
2018; Zamarrón et al., 2019).

The effects or early signs of exposure to the con-
taminants can be estimated via biomarkers, which can be
used for risk assessment from the molecular level down to
the level of populations and communities (Ernst and
Peterson, 1994; Sandermann HJr (2000); Pastor et al., 2003;
Ferrat et al., 2003; Ratola et al., 2014; Mena Torres et al.,
2017). Moreover, exposure to xenobiotics was reported to
produce direct, measurable, and quantifiable effects on
plants (Ellis, 1979; Meister and Bolhàr Nordenkampf,
2003). The responses of plants to stress are reflected in
morphological variations and show insufficient adaptation
to changing environmental conditions. Generally, these
responses can be caused by natural processes: volcanic
eruptions, floods, salt dispersion (Oosting, 1945; Collins,
1969; Grimoldi et al., 1998; Hotes et al., 2004; Pardos,
2004; Dale et al., 2005; Jiménez et al., 2013; Sakagami
et al., 2020; Shao et al., 2020) or by anthropogenic activities
(Bacci and Gaggi, 1987; Sandermann, 1992; García et al.,
2006; Collins et al., 2011; Burden et al., 2020).

Leaves are the plant organs that best reflect the changes
in environmental conditions (Mooney et al., 1991; Pedrol
et al., 2000; Abbruzzese et al., 2009; Huang et al., 2011;
Lázaro Nogal et al., 2015; Jumrani et al., 2017; Idris et al.,
2018). In the presence of adverse conditions, most plants
commonly respond with premature loss of leaves or mod-
ification of their color, which usually varies from pale green
to yellow (chlorosis) or from yellowish to brown (necrosis)
(Ernst WHO (2003)). Alterations in leaf morphology and
leaf structures are reliable as stress’ biomarkers (Pastor et al.
2003; Dimitrova and Yurukova 2005; Kardel et al. 2010;
Komolafe et al. 2015; Idaszkin et al. 2019). Stomata are

often used to detect the effects of environmental variations
(Salas et al., 2001; Bruno et al., 2007; Rivera et al., 2013;
Ganem et al., 2014; Naizaque et al., 2014).

Stomata are essential for the homeostasis of plants, and
their number can vary among plant species (Evert, 2006;
Ernst WHO (2003)). The opening and closing of stomata is
primarily a mechanical function that depends on environ-
mental factors and O2 requirements of the leaf (Meidner
and Mansfield 1965; Lösh and Tenhunen 1981; Feller 2006;
Lawson et al. 2014; Woolfenden et al. 2018). Stomatal
development on the other hand, is genetically regulated and
differ from species to species (Willmer, Fricker (1996);
Bergmann et al., 2004; Casson and Gray, 2008; Casson and
Hetherington, 2010; Araújo et al., 2011; Doheny-Adams
et al., 2012; Zoulias et al., 2018; Wu et al., 2019).

Biotic parameters such as plant age, and abiotic para-
meters such as drought, UV-B radiation, presence of metals,
or excess potassium, can modify the stomatic density SD
(Ernst WHO (2003)). Several studies have described and
characterized the stomata of D. antarctica (Romero et al.,
1999; Barcikowski et al., 2003; Alberdi et al., 2004; Gieł-
wanowska et al., 2005; Parnikoza et al., 2007).

The present work aimed to determine and evaluate the
stomatal index (SI), their density (SD), and area (SA) as
biomarkers of exposure to pollution in leaves of D.
antarctica.

Material and methods

Plants of Deschampsia antarctica were collected during the
southern summer of 2017 in and around the Argentine
Carlini Research Station, Potter Peninsula, 25 de Mayo
Island (King George), South Shetlands, Antarctica (Fig. 1A,
B). For each sampled site, 15 individuals from 7 tussocks
(with a small amount of substrate) were randomly chosen.
The sampled sites were located in zones of high and low
anthropogenic impact. Areas of high impact were the
Supply Area (loading and unloading of fuel and supplies)
(Fig. 1C), the lateral area adjacent to the Electric Power
Station (Fig. 1D), and the area of Fuel Tanks (Fig. 1E). The
sampling site with low impact was Peñón VII (62°15′9.82
“S, 58°40′23.05 “W) which is within an Antarctic Specially
Protected Area (ASPA 132) an area considered free of
anthropogenic activity (Fig. 1F). At the Argentinean
laboratory of the Carlini Station, 2 leaves from each plant
were taken and stained with Feulgen (Dopchiz and Poggio,
1999). To analyse the stomata structures, we photographed
the leaves on both sides, using an Olympus® BX53 pho-
tomicroscope with a blue filter. In addition, we observed
and classified the coloration of the leaves.

The other collected plants were transported to the Ant-
arctic Institute laboratories (Buenos Aires, Argentina), in
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small containers to preserve the natural conditions of
environmental humidity and environmental temperature. In
the laboratories, a cold chamber to maintain the temperature
conditions, with irrigation and photoperiod suitable for each
time of the year, was conditioned.

Two fully developed leaves (the 2nd and 3rd leaves) with
less than 10 cm in length were selected from each plant. To
estimate stomatal density (SD) and stomatal index (SI),
impressions were taken from both leaf sides with transpar-
ent adhesive tape. Then, from each leaf, 25 fields per side
were randomly and systematically analyzed. Stomata
counting was performed on a Motic® BA310R optical

microscope, using the 40X objective lens corresponding to
a leaf area of 0.188 mm2. Stomatal area (SA) was measured
from photomicrographs taken with a Leica® DM 2500
photomicroscope. Fifty stoma pores were measured per leaf
and, in each of them, the major axis (MA) and minor axis
(ma) were determined. The ImageJ 1.51 k software (Ras-
band, 2017) was used to take the measurements. The SD
was calculated as the number of stomata per leaf area.

The stomatal index (SI) was estimated, per leaf, as
SI= (NS/ (NS+ EC)) x 100, where NS= number of sto-
mata and EC= number of other epidermal cells. The sto-
matal area (SA) was estimated as the ratio between MA and

Fig. 1 Sampling sites at Potter Peninsula, 25 de Mayo Island (King
George Island), South Shetland Islands, Antarctica. A Carlini Statio-
n.and Peñón VII (pristine zone) are highlighted in red B Location of

the Carlini´s buildings. Locations of sampling sites are highlighted in
red. C Peñón VII area. D Supply area. E Electric power station area.
F Fuel tanks area
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ma (SA=MA/ma). Comparisons were made between the
SD means of both faces among the four sites. The SI of the
abaxial and adaxial faces was also calculated. For each leaf
face, the SD, SI, and SA variables were correlated con-
sidering each sampling site.

Statistical analysis The results are presented as means ±
standard error (SE). The differences in SD and SI between
the faces of the leaf, and among the studied sites were
performed using the Infostat program (Di Rienzo et al.,
2020). Statistical significance was analysed by one-way
analysis of variance (ANOVA) and Scheffe’s method at 5%
significance to compare differences between means (Sokal
and Rohlf 1995). To assess the relationship between SD and
SI in each face of the leaf, we carried out Pearson correla-
tion tests by sampling site.

Results

The leaves of Deschampsia antarctica were found to be
amphistomatic. The stomatal complex was paracytic
(Prabhakar, 2004; Evert, 2006). The stoma was formed by
a pair of guard cells with bulbous ends and filiform nuclei.
The subsidiaries cells were shaped like a dome (Fig. 2). At
each sampled site, no differences were found in the
structure or size of the stomatal pores on either side of the
leaves, nor were there particles observed obstructing the
stomatal pore.

The ANOVA of SD showed significant differences
among the sites studied for the abaxial side (F= 4.896,

p < 0.05) but not for the adaxial side (F= 2.612, p > 0.05).
On the other hand, the ANOVA of SI showed no significant
differences for the abaxial side (F= 1.519, p > 0.05) but
significant differences for the adaxial side (F= 3.38,
p < 0.05). Mean SD of the abaxial side from leaves collected
at Fuel tanks was significantly higher than at the Supply
Area and Peñón VII, whereas no significant differences
were detected between mean SD at the Fuel Tanks and
Electric Power Station (Table 1). The adaxial side SD
values as well as the both leaf sides SI and SA mean values
did not show significant differences (p > 0.05) (Table 1).
There were consistent positive correlations between SD and
SI of the abaxial side at all sampling sites (Table 2). Cor-
relations between SD and SI of the adaxial side were het-
erogenous among sampling sites; there was a strong
positive correlation at the Peñón VII, moderate positive at
the Supply Area, and very weak at both the Fuel Tanks and
the Electric Power Station.

Green leaf cushions were observed at Peñón VII, while
the cushions at all other sites studied were light green to
yellowish (Table 1).

Discussion

Deschampsia antarctica leaves have paracytic stomata, a
structure that is common in Poaceae (Abid et al., 2007;
López and Devesa, 1991; Sanchez Anta et al., 1988;
Dahlgren et al., 1985; Finot et al., 2006; Zarinkamar, 2006).
Previous works on this species have shown that the leaves

Fig. 2 The leaf of Deschampsia antarctica. General view: A Abaxial
side. Section of the side with stomata. B Adaxial side. Face showing a
lower number of stomata. C Detail of paracytic stoma. GC guard cells,

LSC lateral subsidiary cell, N nucleus of the lateral subsidiary cell, FN
filiform nucleus, SP stoma pore, TW thickened wall. Scale bar: A and
B 20 µm, C 50 µm

Table 1 Deschampsia antarctica: stomatal density (SD) and stomatal index (SI) for each sampled site

Sampled
area

SD (per 0.188 mm2) SI (%) SA

AB AD AB AD AB AD

Peñón VII (G) 57.88 ± 21.71 a(7264) 16.05 ± 8.79(1572) 16.34 ± 4.48 2.53 ± 1.76 a 0.08 ± 0.01 0.06 ± 0.02

Electric Power Station (Y) 60.35 ± 20.20 ab(6627) 20.20 ± 12.09(1391) 17.25 ± 3.82 1.51 ± 1.15 b 0.06 ± 0.01 0.09 ± 0.02

Supply Area (Lg) 66.50 ± 25.59 a(6750) 16.26 ± 10.87(1357) 18.25 ± 4.5 2.66 ± 1.75 a 0.05 ± 0.01 0.07 ± 0.01

Fuel Tanks (Y) 81.94 ± 27.82 b(4715) 11.62 ± 8.32(605) 18.77 ± 5.21 1.49 ± 0.85 b 0.06 ± 0.003 0.06 ± 0.01

Values are expressed as means ± standard error. The number of replicates (plants) per site is n= 7. The total numbers of observations are between
brackets. Different letters means significate differences (p < 0.05)

AB abaxial side, AD adaxial side
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of D. antarctica are susceptible to factors such as snow
cover, soil type, and increased temperature (Gielwanowska,
Szczuka (2005); Lewis Smith, 1994; Nuzhyna et al.
2019, 2021; Parnikoza et al., 2007, 2011; Romero et al.,
1999). In all the studied sites, our observations showed that
the stomata were distributed on both sides of the leaves
(amphystomatic condition), with high numbers on the
adaxial side as were observed by Romero et al. (1999) and
Giełwanowska et al. (2005) in plants from different sites of
the Antarctic Peninsula. However, in some sampled areas,
plants showed leaves with stomata only present on the
adaxial side (Barcikowski et al., 2003).

The results obtained in the Peñón VII plants (Table 2)
differ from those observed by studies developed in other
areas of the Antarctic Peninsula, for example, on Robert
Island the SD number of the adaxial side was: 170.10
(number of stomata per mm2) while in the abaxial side was:
382.50 (number of stomata per mm2) (Alberdi et al. 2004);
in the vicinity of the Polish Station Arctowski (Admiralty
Bay, 25 de Mayo Island), the SD in the adaxial was: 5.56
(number of stomas per mm2) (Barcikowski et al. 2003).
These differences could be since populations and sub-
populations are found in the Antarctic land, a particular
scenery that has small slopes that can “play a special role in
the creation of microclimates” (Parnikoza et al., 2011)
giving rise to microhabitats (Chwedorzewska et al., 2008).
In these microhabitats, leaves develop adaptations such as
variation in epidermal cell size, cuticle thickness, or the
number of stomata (Ruhland and Day, 2000; Barcikowski
et al. 2001; Giełwanowska et al. 2005, Park et al. 2013).
Therefore, it was considered that SD values should only be
used as a reference for the studied sites. Morales Rodríguez
et al. (2016) observed that the decrease in SD was related to
the expansion of the leaf during its aging. Because Peñón
VII is an area free of anthropogenic impact, leaves can age
and expand showing a low SD. The plants located in the
Carlini Station area were exposed to different types of stress
(fuel, vapors, trampling) and, as a form of protection, their
leaves were less expanded (Cornejo Toledo 2019, Giełwa-
nowska et al. 2005).

Our results showed a clear trend towards an increase in
SD on the abaxial side of the leaves from Peñon VII
(pristine area) to fuel tanks (most impacted area) (Table 1).
Increased stomata could lead to a loss of leaf protection by
rendering leaves more susceptible to disease due to the
pathogens´ entry as has been reported for Solanum

tuberosum L. (Morales Rodríguez et al., 2016), Datura
innoxia Mill, Ligustrum lucidum Aiton f. and Quercus ilex
L. (Husen and Iqbal, 1999; Bruno et al., 2007; Fusaro et al.,
2015). The morphological differences observed among the
plant leaves from the different sites, would not be of genetic
origin, since the populations and subpopulations had a low
rate of genetic differentiation and were distinguished using
specific molecular markers (Holderegger et al., 2003;
Chwedorzewska et al., 2004, 2008; Rabokon et al., 2019).
In summary, the variation in SD among the impacted sites
would be a plastic response to stress conditions (Alberdi
et al., 2004; Giełwanowska et al., 2005).

The increase in SD recorded in the plant leaves collected
at the Supply Area was due to the effect of continuous
trampling through periods of unloading food and fuel,
during the summer months, a fact that occurred every year
since the establishment of the Carlini (Jubany) Scientific
Station in 1953. This effect was similar to that observed by
Lewis Smith (1988) on Signy Island (South Orkney) in
response to trampling by a natural biological agent, the Sea
Lion Arctocephalus gazella. Moreover, Jägerbrand and
Alatalo (2015) reported that trampling, even with low fre-
quency, produces alterations in the ecosystem. In the pre-
sent study, as a result of the trampling, the vegetation cover
has disappeared in the supply area. Besides, the effect of the
melting snow further erodes this transit area. Exposure to
anthropogenic activity produced effects on plants that are
reflected in altered SD and SI values, which depend on leaf
age, plant type, and species, also (Pourkhabbaz et al., 2010;
Kardel et al., 2010). Occasional fuel spills, which may
occur mainly when the Scientific Station is restocked,
would be directly responsible for the damage caused on the
leaves. Therefore, an increase in SD, chlorosis and the
formation of small mats was observed in the leaves, but
without epidermal rupture or reduction in the size of the
stomata, as was observed in other species such as Sorghum
bicolor L. (Komolafe et al., 2015).

We did not find significant differences in SI among all
the sampled sites so it would not be a good biomarker per se
(Table 1). This parameter would be influenced by the
incidence of sunlight during leaf development (Schoch
et al., 1980) and, therefore, was not affected by anthro-
pogenic impact. Although leaf size was not measured, the
high positive correlation between SD and SI (r= 0.92,
p < 0.00) recorded in Peñón VII, indicated that leaves were
large in that area. Then, the decrease in correlation at the

Table 2 Pearson’s correlation
coefficients between the
variables: Stomatic Density (SD)
and Stomatic Index (SI) for each
sampling site

Peñón 7 Supply Area Electric Power Station Fuel Tanks

DE ab/ IE ab r= 0.7, p < 0.0001 r= 0.8, p < 0001 r= 0.7, p < 0.0001 r= 0.8, p < 0.0001

DE ad/ IE ad r= 0.9, p < 0.0001 r= 0.5, p < 0.0043 r= 0.4, p < 0.001 r= 0.08, p < 0.00

Consider the variables: Stomatal Density (SD) and Stomatal Index (SI) for each site. ab abaxial side, ad
adaxial side. Only significant results were reported
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impacted sites would be associated with a decrease in leaf
size which would provide an adaptive advantage in D.
antarctica by protecting its leaves from non-specific cell
damage (Ferriol et al., 2004).

The present work showed that the correlation between
SD and SI on the adaxial side of the leaves could be a good
biomarker for the anthropogenic impact estimation. It was
important to note that stomata did not experience morpho-
logical modifications in the studied sites of the present
work, a fact that was, also, observed in other sites of the
Antarctic Peninsula (Romero et al. 1999; Alberdi et al.
2004; Giełwanowska et al. 2005; Parnikoza et al. 2007;
Nuzhyna et al. 2019). Thus, the developed methodology
appeared good for applying wherever anthropogenically
impacted areas.
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