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Abstract 39 

 40 

Aim: To assess whether beta diversity varies with geographic scale, disentangle the contribution of 41 

historical and ecological processes to this variation across land plants, and test the hypothesis that extant 42 

ecological conditions mostly account in explaining species turnover in spore-producing lineages, 43 

whereas historical factors and geographical isolation prevail in spermatophytes.   44 

Location: Macaronesia 45 

Taxon: bryophytes, pteridophytes, spermatophytes 46 

Methods: Species turnover and nestedness were compared within and among archipelagos across 47 

taxonomic groups. The relationship between species turnover and nestedness, climatic, geological and 48 

geographic factors was analysed using generalised dissimilarity models.  49 

Results: Species turnover, but not nestedness, increased from intra- to inter-archipelago levels. This 50 

increment decreased from spermatophytes, pteridophytes, and bryophytes, wherein the median turnover 51 

was less than half that in spermatophytes. Bryophytes exhibited a significantly higher nestedness than 52 

spermatophytes, and the reverse trend was observed for species turnover. Extant climatic conditions 53 

better explained turnover in bryophytes and pteridophytes than in spermatophytes. Island age exhibited 54 

the reverse trend. Spermatophyte floras clustered by archipelago, whereas the clustering patterns in 55 

pteridophyte and bryophyte floras reflect macroclimatic conditions. 56 

Main Conclusions: The lower increment of species turnover with spatial scale and the higher 57 

nestedness in bryophytes and pteridophytes than in spermatophytes reflect the variation in dispersal 58 

capacities and distributions ranges among land plant lineages. Accordingly, extant climatic conditions 59 

contributed more to explain turnover in bryophytes and pteridophytes than in spermatophytes, whereas 60 
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factors associated with dispersal limitations, including island age, geographic distance, and archipelago 61 

adscription, exhibited the reverse trend. The differences in beta diversity patterns, caused by different 62 

responses of Macaronesian land plant lineages to the main factors shaping their community 63 

composition, explain their different biogeographic affinities. These differences reflect distinct 64 

mechanisms of origin and speciation among Macaronesian land plant lineages and archipelagos.   65 

 66 

Keywords: beta diversity, species turnover, nestedness, geographic scale, oceanic islands, 67 

spermatophytes, pteridophytes, bryophytes, Macaronesia, Generalized Dissimilarity Model 68 

 69 

Introduction 70 

How spatial, historical and ecological processes drive diversity patterns, and how area, elevation and 71 

isolation influence community composition, are two of the main foci of island biogeography (Patiño et 72 

al., 2017). In this context, beta diversity, the variation of biological communities across space or time, 73 

appears as a useful framework to measure changes in community composition along environmental, 74 

spatial and temporal gradients (Soininen et al., 2018). This metric can be partitioned into two process-75 

related components: species replacement (turnover) and richness difference (nestedness) (Baselga, 76 

2010). Species turnover characterizes changes in species composition along gradients of geographical 77 

and/or ecological distance (Qian et al., 2020), whereas nestedness occurs when a set of species at one 78 

site is a subset of the species at a richer site, which has typically been interpreted in terms of ordered 79 

extinction events (Baselga, 2010). 80 

Beta diversity varies depending on both extrinsic (environmental) and intrinsic (biological) factors 81 

related to species niche breadth and dispersal capacities. For instance, species turnover is expected to 82 

be inversely proportional to species dispersal capacities (Soininen et al., 2018; Varzinczak et al., 2019). 83 

In land plants, this hypothesis is in line with the steeper slope of the species-area relationship reported 84 

in spermatophytes than in pteridophytes and bryophytes explained by the production of smaller, wind-85 

dispersed diaspores in the two latter groups (Patiño, Weigelt et al., 2014). Furthermore, since nestedness 86 

can only arise for areas that share a common source pool, a high nestedness at large scales is expected 87 

in organisms with high dispersal capacities (Greve et al., 2005). 88 

Beta diversity also varies depending on geographic scale (Soininen et al., 2018). If an increase in species 89 

turnover with geographic scale due to the greater dispersal limitation and stronger environmental 90 

filtering over larger environmental gradients has been recurrently documented (Soininen et al., 2018; 91 

Gusmao et al., 2020; Qian et al., 2020), the relationship between nestedness and geographic scale has 92 

been more controversial. Nestedness is expected to peak at a small scale if local variations of habitat 93 

quality and availability lead to variation in species richness within habitats among sites (Gusmao et al., 94 
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2020). In contrast, high nestedness at large scales is expected when extinctions vary depending on major 95 

geographic gradients (Soininen et al., 2018). Typically,  nestedness should be greater for regions located 96 

at higher latitudes along latitudinal diversity gradients (Batista, de Lima & Lima, 2021; Soininen et al., 97 

2018).  98 

Oceanic islands offer an ideal framework to investigate the variation of species turnover and nestedness 99 

across geographic scales and to determine the relative contribution of contemporary climatic factors 100 

and dispersal limitations associated with geographic isolation. Oceanic islands are readily 101 

geographically circumscribed (Whittaker & Fernández-Palacios, 2007), offering naturally isolated and 102 

often replicated Operational Geographic Units (OGUs). Furthermore, because they were colonized de 103 

novo, oceanic islands accumulate species from continental or alternative insular sources at rates 104 

depending on connectivity and in situ speciation (Whittaker & Fernández-Palacios, 2007) that vary with 105 

geographic isolation, environmental complexity, island age and species dispersal capacities (Heaney, 106 

2000). In particular, the three northern archipelagos of the Macaronesian region (the Azores, Madeira, 107 

and Canary Islands) have long been identified as an excellent model for hypothesis testing in 108 

biogeography (Florencio et al., 2021). In fact, these archipelagos vary in terms of geographic isolation 109 

and macroclimatic conditions, so that their floras exhibit sharply different distribution patterns. In the 110 

Canarian spermatophyte flora, single-island endemics (SIEs) are much more frequent than multiple-111 

island endemics (MIEs), whereas the reverse pattern prevails in the Azores (Carine & Schaefer, 2010). 112 

This, together with the sharper ecological gradients in the Canaries (and to some extent in Madeira), 113 

has led to the idea that speciation in the Canaries is primarily driven by ecological radiations, whereas 114 

allopatric speciation prevails in the Azores among islands that are more distant among each other and 115 

from continental sources than in the Canaries (Carine & Schaefer, 2010; Price et al., 2018). Spore-116 

producing plants exhibit a lower proportion of SIEs and a higher proportion of Macaronesian regional 117 

endemics (i.e., taxa that are endemic to two or more Macaronesian archipelagos) than spermatophytes 118 

(Vanderpoorten et al., 2011), owing to their higher dispersal capacities, allopatric speciation modes and 119 

ecological affinities (Patiño, Carine et al., 2014). Therefore, biogeographic relationships across 120 

Macaronesia vary among major land plant groups. The assemblage of the spermatophyte flora mostly 121 

follows the structure of archipelagos (de Nicolás et al., 1989), whereas floristic analyses at the 122 

archipelago level revealed conflicting relationships among spore-producing floras (Vanderpoorten, 123 

Rumsey & Carine, 2007).  124 

Building on previous analyses on the drivers of the spatial variation of plant species richness (Aranda 125 

et al., 2014; Hobohm, 2000) on the one hand, and on the partitioning of beta diversity in Macaronesian 126 

vascular floras (Chiarucci et al., 2010) on the other, we examine how the components of beta diversity 127 

vary across spatial scales among the four main lineages of land plants, namely liverworts, mosses, 128 

pteridophytes and spermatophytes, and identify what are the main drivers of this variation. In this 129 

framework, we address the following questions and test the following hypotheses:  130 
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- How does beta diversity vary across taxa and archipelagos? We expect that species turnover 131 

increases from intra- to inter-archipelago comparisons (H1a). Given the higher proportion 132 

of shared species among archipelagos in spore-producing plants, we expect this increase to 133 

be significantly lower for the latter than for spermatophytes (H1b).  134 

- Does nestedness decrease with increasing spatial scale and do the patterns differ for 135 

different groups? We test the hypothesis that nestedness decreases from intra to inter-136 

archipelago comparisons (H2a). We expect that this decrease is stronger from 137 

spermatophytes to ferns, and then, bryophytes (H2b), due to the presumed higher dispersal 138 

capacities and, hence, higher proportion of shared species across archipelagos in spore-139 

producing plants.  140 

- What are the drivers of beta diversity, and how do they vary among taxa? We expect that 141 

climatic variation is more important than geographical isolation and island age in 142 

explaining species turnover for bryophytes and pteridophytes, and that geographical 143 

isolation does not correlate with bryophyte and pteridophyte nestedness, whereas we expect 144 

the reverse patterns for spermatophytes (H3).  145 

- How do biogeographic affinities within and among archipelagos vary among land plants? 146 

Following De Nicolas et al. (1989) and del Arco Aguilar & Rodríguez Delgado (2018), we 147 

expect that islands cluster primarily by archipelago in spermatophytes, but not in spore-148 

producing plants, wherein islands are expected to cluster depending on climatic similarity, 149 

irrespective of the archipelago in which they are found (H4). 150 

 151 

Materials and Methods 152 

Study area  153 

Macaronesia (Figure 1) is a biogeographic region located in the Atlantic Ocean between 15.8 and 40.8° 154 

N (Florencio et al., 2021). We focused here on the Azores, Madeira (including Madeira, Porto Santo, 155 

and the Desertas islands) and the Canary Island archipelagos. Within the latter, we tested the impact of 156 

the inclusion of the islets of Isla de Lobos, Montaña Clara, Alegranza, and Graciosa, whose size and 157 

elevation are, respectively, more than 95 and 6 times lower than that the main Canarian islands. The 158 

Desertas include Deserta Grande, Chão and Bugio. Due to their very small size, close proximity to each 159 

other, connection during the Last Glacial Maximum, and very low species richness, these islands are 160 

treated as a single unit in available species lists, a position that we also adopted here. We excluded Cabo 161 

Verde, whose cryptogamic flora clearly belongs to sub-Saharan Africa (Vanderpoorten et al., 2007), 162 

and the Selvagens, whose very limited flora and number of islands did not warrant inclusion in the 163 

present analyses.  164 

 165 
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Data collection and matrices 166 

Lists of moss, liverwort, pteridophyte, and spermatophyte species per island were retrieved from a 167 

review of the literature and personal unpublished observations of the authors (Appendix 1). Sub-species, 168 

whose circumscription is typically associated with a restricted geographic range (Mallet, 2013), and are 169 

hence potentially informative in spatial analyses of taxonomic composition among operational 170 

geographic units (OGUs), were included. Due to the very low number of hornwort species (6), the latter 171 

were included within the liverworts, to which they are the most similar in terms of morpho-anatomy 172 

and life-history traits. Nomenclature was standardized following Hodgetts et al. (2020) for mosses and 173 

liverworts, Hassler (2018) for pteridophytes and Euro+Med (2006-) for spermatophytes. In bryophytes, 174 

Isothecium interludens, Racomitrium affine, Lophocolea coadunata, and Frullania tamarisci agg., 175 

which have recently been raised at species level, were not distinguished pending for a critical re-176 

assessment of their distributions. Bryoxiphium madeirense was considered as a synonym of B. 177 

norvegicum based on phylogenetic evidence (Patino et al., 2016). 178 

Introduced species were excluded from the analysis as they lead, at the geographic scale of entire 179 

islands, to a substantial human-induced homogenization of their floras (Otto et al., 2020). Assessing the 180 

native status of a taxon is challenging, and this status may further vary for the same taxon among 181 

archipelagos (e.g., Clethra arborea, Madeiran endemic invasive in the Azores), or even among islands 182 

from the same archipelago (e.g., Echium nervosum introduced from Madeira to Porto Santo), preventing 183 

us from defining a global list of introduced species across Macaronesia. We therefore relied on the 184 

status defined for each taxon by the most recent databases (Appendix1) for each archipelago. As a 185 

matter of fact, however, many widespread Mediterranean species considered as native in the Canary 186 

Islands and Madeira, such as Helminthotheca echioides, Hypochaeris radicata, and Trifolium spp., are 187 

considered as introduced in the Azores, whereas they thrive in the same kinds of habitats across 188 

archipelagos. We thus performed a second set of analyses, wherein all species considered as introduced 189 

in the Azores, and for which unambiguous evidence of a native status was missing in the Canary Islands 190 

and Madeira is missing, were excluded.  191 

Altogether, the data matrices (available at https://figshare.com, DOI 10.6084/m9.figshare.17099840) 192 

included 226 liverwort & hornwort species, 516 moss species, 83 pteridophytes species and 1810 193 

spermatophyte species. These matrices were employed to compute, for each of the four lineages 194 

considered, the species turnover (βsim) and nestedness (βsne) components of Sørensen dissimilarity 195 

among all possible pairs of islands using the package betapart (Baselga et al., 2021) in R version 4.2.1. 196 

(R Core Team, 2022). 197 

Environmental variables included climatic conditions (annual mean temperature, minimum annual 198 

temperature range, annual precipitation and minimum coefficient of variation in monthly precipitation), 199 

geographic distance among islands, area, elevation, distance to the closest main land, and age of each 200 

https://figshare.com/
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island. The first nine variables were recorded from Weigelt, Jetz & Kreft (2013) while island age was 201 

obtained from Torre et al. (2019).  202 

 203 

Data analysis  204 

Comparing turnover (βsim) and nestedness (βsne) among islands within and among archipelagos (H1a, 205 

H2a, Figure 1) involves the inclusion of the same observation multiple times (the same occurrence of a 206 

species on an island serving to compute βsim and βsne both within and among archipelagos), violating 207 

the assumption that the observations are independent from each other. We therefore computed, for each 208 

island, the average βsim and βsne values with all the other islands from the same archipelago (βintra, 209 

Figure 1). Then, we computed, for each island, the average βsim and βsne values with each island from 210 

the other archipelagos (βinter, Figure 1). The average β values within archipelagos were then compared 211 

to those among archipelagos. Although the data were homoscedastic (Fisher test = 1 for all lineages), 212 

departure from normality for the turnover of spermatophytes and for the nestedness of all lineages 213 

(Shapiro test, p < 0.01) led us to apply paired Wilcoxon rank tests.  214 

To assess the variation of β from intra- to inter-archipelago comparisons (H1b and H2b, Figure 1), we 215 

computed, for each island, the difference (Δβ) of the average β between that island and all other islands 216 

from the same archipelago (βintra) and the average beta between that island and all other islands from 217 

different archipelagos (βinter) (Figure 1). Δβ values were not normally distributed in the case of 218 

turnover for spermatophytes, and in the case of nestedness for mosses, ferns, and spermatophytes. 219 

Therefore, non-parametric Friedman's and post-hoc Nemenyi tests, applying Bonferroni correction on 220 

the p-value, were implemented with the package PMCMRplus (Pohlert, 2021) to search for significant 221 

differences of Δβ values per island among lineages. In order to assess, for each lineage, differences of 222 

nestedness and turnover among archipelagos, we implemented Kruskal-Wallis and posthoc Dunn tests, 223 

applying Bonferroni correction for multiple comparisons, with the package PMCMRplus (Pohlert, 224 

2021). 225 

To determine how beta diversity varies depending on geographic distance (both among islands and 226 

between islands and nearest continents) and variation in climatic conditions, age, area, and elevation 227 

across taxa and archipelagos (H3), Generalized Dissimilarity Model (GDM, Ferrier et al., 2007) was 228 

employed using the gdm R package (Fitzpatrick et al., 2021) for each of the four lineages independently. 229 

To control for the archipelago structure of the data, we assigned each pair of islands from the same 230 

archipelago a distance of 0, and each pair of islands from different archipelagos a distance of 1, and 231 

then treated this binary distance measure in the same manner as geographical distance (Ferrier et al., 232 

2007). To avoid multicollinearity, we computed Pearson correlation coefficients among each pair of 233 

predictors and kept one predictor among any pair with a correlation coefficient > 0.75. As annual mean 234 
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temperature, annual precipitation, distance to the closest main land, distance among islands and 235 

minimum coefficient of variation in monthly precipitation were strongly correlated, we kept only the 236 

latter, hereafter referred to as ‘precipitation’. This approach allowed us to identify a set of six predictors, 237 

including area, elevation, minimum annual temperature range, island age, precipitation and archipelago. 238 

We implemented stepwise backward variable elimination as implemented in the gdm.varImp function 239 

of the package gdm (Fitzpatrick et al., 2021) until all variables had a p-value < 0.05.  240 

To address hypothesis H4, a cluster analysis of islands as a function of their taxonomic composition 241 

was performed using Ward’s algorithm based on a total beta diversity matrix derived from Sørensen 242 

distances. The optimal number of clusters for each lineage was determined with the NbClust package 243 

(Charrad et al., 2014) using 30 indexes (i.e., all indices except GAP, Gamma, Gplus and Tau). To help 244 

visualizing the groupings, a Classical (Metric) Multidimensional Scaling (MDS) based on the Sørensen 245 

distance matrix was performed. All the analyses were repeated twice, with and without the Canarian 246 

islets, to examine the impact of the latter on the explanatory power of the models and the clustering 247 

patterns.  248 

 249 
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Figure 1 Study area and statistical framework to calculate beta diversity (β) and its two components, turnover (βsim) 250 

and nestedness (βsne) between islands within (intra) and between (inter) archipelagos (Azores: Azo, 9 islands labelled 251 

as a1-a9, Canary Islands: Cana, 7 islands labelled as c1-c7, and Madeira: Mad, 3 islands labelled as m1-m3) among 252 

land plant lineages (spermatophyte: S, pteridophyte: P, moss: M, and liverwort: L). 253 

 254 

 255 

Results 256 

 257 

For all lineages, paired Wilcoxon tests showed a significant increase of turnover among islands from 258 

intra to inter-archipelago comparisons (Figure 2). No significant variation from intra to inter- 259 

archipelago comparisons was observed for nestedness (Table S1 in Supporting Information). The 260 

difference in turnover between intra and inter-archipelago comparisons (Δβsim) was significantly 261 

higher in spermatophytes (0.57 ± 0.12) than in bryophytes and pteridophytes (Friedman test, p-262 

value < 0.01). Δβsim in pteridophytes (0.34 ± 0.08) was significantly higher than in mosses 263 

(0.25 ± 0.08) but not than in liverworts (0.28 ± 0.07). Among bryophytes, Δβsim did not differ 264 

significantly.   265 

 266 

 267 

Figure 2 Box-plots (showing the 1st and 3rd quartiles (upper and lower bounds), 2nd quartile (centre), 1.5* 268 

interquartile range (edges of the box)) of the difference of turnover (Δβsim) of liverwort, moss, pteridophyte and 269 

spermatophyte communities among islands within (intra) and among (inter) archipelagos in Macaronesia (see Table 270 

S1 in Supporting Information for actual values). Letters above each box-plot indicate which comparisons significantly 271 
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differ (see Table S2 in Supporting Information for the p-values of the posthoc Friedman Nemenyi tests), identical letters 272 

being used for lineages whose turnover does not significantly differ from each other. 273 

The turnover among islands within archipelagos did not significantly vary among archipelagos for 274 

mosses and liverworts (Figure 3a). Turnover was significantly higher in the Canary Islands than in the 275 

Azores and Madeira in pteridophytes. For spermatophytes, turnover in the Canary Islands was 276 

significantly higher than in the Azores. Nestedness among islands within archipelagos was consistently 277 

higher in Madeira than in the Azores and the Canary Islands across lineages (Figure 3b). Probably due 278 

to the low statistical power associated with the low number of islands in Madeira (3), the difference of 279 

turnover between Madeira and the Canaries, and of nestedness between Madeira and the Azores were, 280 

however, not significant for spermatophytes (Table S3-S4 in Supporting Information).  281 
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 282 

Figure 3 Box-plots (showing the 1st and 3rd quartiles (upper and lower bounds), 2nd quartile (centre), 1.5* 283 

interquartile range (edges of the box)) of turnover and nestedness of liverwort, moss, pteridophyte and spermatophyte 284 

communities among islands from the same archipelago in Macaronesia. Letters indicate, for each lineage, the 285 

archipelagos among which turnover and nestedness significantly differs (see Table S3 and S4 in Supporting 286 
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Information for p-values of the posthoc Kruskal-Wallis Dunn tests), a same letter indicating non-significantly different 287 

average values between the archipelagos considered. 288 

 289 

The variation in species turnover and nestedness within archipelagos among lineages is illustrated in 290 

Figure 4. Turnover was significantly higher in mosses and spermatophytes than in pteridophytes and 291 

liverworts. Mosses, liverworts and pteridophytes exhibited a significantly higher nestedness than 292 

spermatophytes.  293 

 294 

 295 

 296 

Figure 4 Box-plots (showing the 1st and 3rd quartiles (upper and lower bounds), 2nd quartile (centre), 1.5* 297 

interquartile range (edges of the box)) of the turnover and nestedness of liverwort, moss, pteridophyte and 298 

spermatophyte communities among islands within archipelagos in Macaronesia. Letters indicate the lineages among 299 

which turnover significantly differs, a same letter indicating non-significantly different average values between the 300 

lineages considered. 301 

 302 

The GDM explained 69%, 63%, 81% and 92% of the deviance of liverwort, moss, pteridophyte and 303 

spermatophyte turnover, respectively.  Precipitation was the variable most contributing to the model for 304 
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bryophytes and pteridophytes and island age was most contributing in spermatophytes (Table 1). The 305 

factor ‘archipelago’ was selected only in spermatophytes.  306 

The GDM explained less than 50% of nestedness in liverworts, mosses and spermatophytes and 68% 307 

in pteridophytes. Elevation and temperature were selected in all models, but the contribution of the 308 

former was about three times higher than that of the latter. Area was selected for spermatophytes while 309 

island age was selected for all the spore-producing plants (Table S5 in Supporting Information). 310 

Table 1 Summary statistics of the generalized dissimilarity model (GDM) used to analyse the drivers of species turnover 311 

in Macaronesian land plants. Predictor importance for each variable is measured as the percent decrease in deviance 312 

explained between the full model and a model wherein that variable was randomized.  313 

 Predictor importance  Deviance  

Liverworts    

Precipitation 

Island age 

67.71 

7.38 

NULL Deviance:  

Model Deviance:   

Percent Deviance Explained:    

33.50  

11.01 

67.15% 

Mosses    

Precipitation 

Island age 

67.60 

8.28 

NULL Deviance:  

Model Deviance:   

Percent Deviance Explained:    

30.46  

11.67 

61.71% 

Pteridophytes    

Precipitation 

Island age 

Temperature 

74.15 

3.18 

0.15 

NULL Deviance:  

Model Deviance:   

Percent Deviance Explained:    

39.69  

7.98 

79.91% 

Spermatophytes    

Precipitation 

Island age 

Temperature 

Archipelago 

12.90 

5.30 

0.10 

0.04 

 

NULL Deviance:  

Model Deviance:   

Percent Deviance Explained:    

 

71.09 

5.60 

92.12% 

 314 
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The groups resulting from the clustering analyses of islands as a function of their species composition 315 

in each lineage are shown on the first plane of the NMDS of islands depending on the floristic distance 316 

among them (Figure 5). The stress values, a goodness-of-fit statistic that is minimized in MDS and 317 

characterizes the extent to which the actual floristic dissimilarities among islands are well represented 318 

on the plot, were 0.032 for liverworts, 0.030 for mosses, 0.032 for pteridophytes and 0.052 for 319 

spermatophytes, indicating good to excellent fit. In spermatophytes, the three clusters identified 320 

correspond to the Azores, the Canary Islands and Madeira. In liverworts, the Azorean islands clustered 321 

together, the Canarian islands of Fuerteventura and Lanzarote, and the Desertas of Madeira archipelago, 322 

formed a second cluster, while Madeira clustered with Porto Santo and the remaining Canary Islands. 323 

The grouping observed with the moss floras was almost identical, except that Porto Santo clustered with 324 

Fuerteventura and Lanzarote and the Desertas. In pteridophytes, Madeira clustered with the Azores 325 

while Porto Santo and the Desertas (Madeira archipelago), Lanzarote and Fuerteventura (Canary 326 

Islands) formed a second cluster, and the western and central Canary Islands formed a third final cluster. 327 
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 328 

Figure 5 MDS ordination of the Macaronesian islands depending on their floristic composition (spermatophytes, 329 

pteridophytes, mosses and liverworts), based on Sørensen matrix. Colours represent the clusters identified using 330 

Ward’s clustering algorithm and correspond to the optimal number of clusters obtain by the consensus of 30 indexes.  331 

The results of the analyses including Isla de Lobos, Montaña Clara, La Graciosa and Alegranza in the 332 

Canary archipelago are described in S6-S14 in Supporting Information. The most important differences 333 

with the analyses on the main islands include (i) an increase of the average nestedness among the 334 

Canarian islands in spermatophytes and mosses from 0.116 to 0.236 and from 0.233 to 0.564 (Table 335 

S4, Table S9 in Supporting Information); (ii) a decrease of the deviance explained by the GDM for the 336 

turnover in mosses (33% vs 62%) and pteridophytes (30% vs 80%), while no significant model was 337 

obtained for liverworts nor spermatophytes (Table S12 in Supporting Information); and (iii) the 338 

clustering of the islets independently from the main Canarian islands (Figure S14 in Supporting 339 

Information). 340 
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The results of the analyses excluding the 172 species considered as introduced in the Azores and for 341 

which unambiguous evidence of a native status was missing in the Canary Islands and Madeira are 342 

described in S16-S23 in Supporting Information. The only difference which is nevertheless very futile 343 

concerns the intra-turnover. The intra-turnover of Madeira becomes greatest while the one of the Azores 344 

is similar to the Canaries once. Other than this, no other changes are noticeable. 345 

 346 

Discussion 347 

Our analyses on the spatial patterns of variation in plant beta diversity components across Macaronesia 348 

revealed that turnover, but not nestedness, significantly increased from intra to inter-archipelago 349 

comparisons. The increase of turnover with the extent of the geographic scale is in line with our 350 

hypothesis H1a, based on theoretical and empirical evidence pointing to the role of stronger dispersal 351 

limitation and environmental filtering owing to stronger environmental gradients and larger geographic 352 

distances across larger spatial scales (Soininen, Lennon & Hillebrand, 2007; Soininen et al.,  2018; 353 

Menegotto, Dambros & Netto, 2019). In contrast with our second hypothesis (H2), our analyses showed 354 

no significant variation of nestedness with scale (Menegotto et al., 2019). Nestedness arises when 355 

species-poor sites represent subsets of the biota occurring in species-rich sites (Cantor et al., 2017; 356 

Baselga, 2010). In Macaronesian bryophytes and pteridophytes, species richness patterns are similar 357 

across archipelagos, so that no clear nested pattern is apparent. Differences in species richness among 358 

archipelagos are more evident in spermatophytes, with 1398, 684 and 165 native species (out of 1810 359 

in total in Macaronesia) in the Canarian, Madeiran and Azorean floras (TableS15), which is reflected 360 

by the near-significance of the difference in nestedness for within- and among- archipelago 361 

comparisons.  362 

In line with our expectations H1b and H2b, the extent to which species turnover increased at large 363 

spatial scales varied, however, among lineages, being larger in spermatophytes than in pteridophytes, 364 

and then, mosses and liverworts, wherein the median turnover was less than half that in spermatophytes. 365 

In turn, nestedness was significantly higher in mosses, liverworts and pteridophytes than in 366 

spermatophytes. The progressive decrease of turnover and increase of nestedness from spermatophytes 367 

to bryophytes reflects their differences in dispersal capacities, pteridophytes producing bigger spores 368 

(30-50µm on average) than bryophytes (10-20µm on average). It also reflects major differences of 369 

speciation modes between these groups, with some spectacular radiations in the spermatophyte flora, 370 

whereas island bryophytes and ferns typically fail to radiate (Patiño, Carine et al., 2014). These 371 

differences of dispersal capacities and speciation modes are themselves reflected in differences of 372 

distribution patterns and especially, patterns of endemism. For instance, the 0.7%, 1.7% and 5% of 373 

Canarian endemic liverwort, moss and pteridophyte species, 0, 33.3% and 0 of which are SIEs, pale by 374 
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comparison with the 47%, Canarian endemic spermatophyte species that include 64% of SIEs (Table 375 

S15). 376 

Patterns of turnover also varied among archipelagos in pteridophytes and spermatophytes, but not in 377 

bryophytes. The higher turnover observed in the Canaries for spermatophytes and pteridophytes, despite 378 

the shorter mean distance between islands than in the Azores, reflects the steeper altitudinal floristic 379 

gradients, as well as, globally, greater heterogeneity in climate, islands age and habitat types between 380 

the Canarian islands than between the Azorean islands (del Arco Aguilar & Rodríguez Delgado, 2018; 381 

Triantis et al., 2012). These differences are well reflected in the distribution of endemism among 382 

archipelagos, with the bulk of Canarian endemics being SIEs (64% of Canarian endemic 383 

spermatophytes), whereas Azorean endemics tend to be MIEs (88% of Azorean endemic 384 

spermatophytes) (Table S15), often widespread across the archipelago (Schaefer et al., 2011; Carine & 385 

Schaefer, 2010). The similarity of turnover among archipelagos in bryophyte floras is, at first sight, 386 

more striking. Indeed, large differences in bryophyte species composition would have been expected, 387 

due to poikilohydric condition of the group, between islands as different from each other as the Canary 388 

Islands. In reality, the specialized xerophytic floras of the eastern Canary Islands, characterized by low 389 

elevation and dry climates and dominated by thalloid liverworts (Riccia spp.) and annual mosses 390 

(especially of the family Funariaceae and Pottiaceae), can also be found at low elevation in the western 391 

Canary Islands. As a result, Canarian bryophyte communities are more nested than Canarian 392 

spermatophyte communities.   393 

Differences of nestedness among archipelagos revealed a recurrent pattern across lineages, according 394 

to which nestedness in Madeira was higher than in other archipelagos. The archipelago of Madeira was 395 

represented in our analyses by Madeira, Porto Santo and the Desertas. The latter two exhibit much lower 396 

elevation, and much drier climates than Madeira, so that their species richness is comprised of the most 397 

drought-tolerant elements of the Madeiran flora, resulting in a strong nested pattern that correlates with 398 

variation in climatic conditions.  399 

Variation in turnover and nestedness among land plant lineages depending on their dispersal capacities 400 

was paralleled by differences in their drivers. In agreement with the idea that spore-producing plants 401 

exhibit higher dispersal capacities than spermatophytes, and hence, that their distributions are better 402 

explained by extant environmental conditions than by historical factors associated with dispersal 403 

limitations (H3), extant climatic factors accounted more to bryophyte and pteridophyte turnover than to 404 

spermatophyte turnover. In contrast, island age contributed more to explain variation of turnover among 405 

islands in spermatophytes than in bryophytes and pteridophytes. Island age can be interpreted as a 406 

composite variable that accounts for time per se, but also, and most importantly, for the environmental 407 

heterogeneity during the life-cycle of oceanic islands, and especially, elevation and topographic 408 

complexity. Hence, island age does not necessarily reflect the amount of time available for colonisation 409 
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as in fact, the extant composition of the Macaronesian flora largely reflects dynamic interchanges with 410 

continental sources in both spore-producing lineages (Vanderpoorten et al., 2007) and spermatophytes 411 

(García-Verdugo et al., 2019; Hooft van Huysduynen et al., 2021). Instead, island age characterizes 412 

opportunities for speciation depending on habitat heterogeneity and availability, which peak as islands 413 

reach their highest elevation (Whittaker, Triantis & Ladle, 2008; Patiño et al., 2013). In this context, 414 

speciation plays a much more important role in the extant diversity of spermatophyte than of bryophyte 415 

and pteridophyte species, as evidenced by the striking difference in endemism rates per archipelago 416 

among lineages, of <8% in bryophytes and pteridophytes and >45% in spermatophytes. In bryophytes 417 

and pteridophytes in fact, endemic species are typically ‘isolated’ in their genus (“anagenesis”, Stuessy 418 

et al., 2006), whereas in Macaronesian spermatophytes, the ratio between the number of genera 419 

including endemic species and the number of endemic species ranges between 1.5 and 3 (Patiño et al., 420 

2014).  421 

Differences in dispersal capacities, and hence, endemism patterns among the main land plant lineages, 422 

were further evidenced by the selection of the factor ‘archipelago structure’ in the model for species 423 

turnover in spermatophytes, but not in bryophytes and pteridophytes. The relevance of archipelago 424 

structure in spermatophytes, but not spore-producing plants, again mirrors patterns of endemism among 425 

those groups, with 0.7-2%, 1.7-2%, 5-8% and 21-47% of archipelago endemics in liverworts, mosses, 426 

pteridophytes, and spermatophytes, respectively.  427 

In turn, area, one of the main drivers of species richness on islands due to decreased extinction rates, 428 

but most importantly, increased chances of colonization by airborne propagules (target area effect, 429 

Whittaker & Fernández-Palacios, 2007) and of speciation (Kissel & Barraclough, 2010), was never 430 

selected as a significant driver of species turnover. This was, at first sight, surprising because taxa with 431 

high dispersal capacities are expected to require larger areas to speciate than taxa with low dispersal 432 

capacities (Kissel & Barraclough, 2010), which should be reflected in higher levels of endemism on 433 

large islands, and hence, larger differences in species turnover among islands of different sizes. One of 434 

the main reasons why area did not play a role in the observed patterns of turnover is that all 435 

Macaronesian islands are much larger than the minimal area, < 10 km2, required for neutral genetic 436 

differentiation in spermatophytes (Kissel & Barraclough, 2010). In addition, Macaronesian bryophytes 437 

typically failed to speciate in situ (Vanderpoorten et al., 2011; Patiño, Carine et al., 2014). Even in 438 

genera that include several Macaronesian endemics, endemic species do not form a monophyletic group 439 

and each speciation event follows a long-distance dispersal event from continental sources (Patiño & 440 

Vanderpoorten, 2015). Unlike sympatric speciation, allopatric speciation depends on geographic 441 

isolation from sources, and not island size, contributing to the lack of relationship between island area 442 

and beta diversity patterns in spore-producing plants. Pteridophytes failed to radiate in Macaronesia as 443 

well. In fact, most Macaronesian ferns genera include only one endemic species that evolved by 444 
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allopolyploidisation (Vanderpoorten et al., 2011), a mechanism that is typically independent from area 445 

(Kissel & Barraclough, 2010).  446 

It is worth noting that, when the four Canarian islets were included in the analysis, no significant model 447 

was obtained for liverwort and spermatophyte turnover and the percentage of explained deviance 448 

dropped of 29 and 50% in mosses and pteridophytes, respectively. Such an impact of small islands is 449 

reminiscent of the small-island effect, an anomalous pattern of the species–area relationship that 450 

predicts the existence of a threshold area, below which species richness varies independently of island 451 

area. The small-island effect is mostly driven by the decoupling of area and environmental heterogeneity 452 

on small islands (Chen et al., 2020; Matthews et al., 2020). The drop of explained deviance in our 453 

models similarly suggests that, beyond a certain threshold area, the factors affecting species 454 

composition change. As for the link between species richness and area (Yu et al., 2020), this effect 455 

varies among taxonomic groups, being most obvious in bryophytes and pteridophytes, whose floras are 456 

extremely depauperate on the Canarian islets.  457 

In line with differences in beta diversity patterns among land plant lineages, caused by different 458 

responses of turnover to variation of climatic conditions and geographic distance, and with our 459 

hypothesis H4, spermatophyte floras clustered by archipelago, whereas pteridophyte and bryophyte 460 

floras did not. Fuerteventura, Lanzarote, Desertas and Porto Santo host similar cryptogrammic floras of 461 

low-elevation, dry islands, whereas the western Canary Islands and Madeira, which share typical laurel 462 

forest floras, formed another cluster. In spermatophytes, this signal is erased by the predominance of 463 

the endemic element at the archipelago level (see above), so that the turnover between islands from 464 

different archipelagos is substantially higher in spermatophytes (0.74 ± 0.07) than in pteridophytes (0.41 465 

± 0.08), mosses (0.40 ± 0.10) and liverworts (0.37 ± 0.10). The inclusion of the Canarian islets slightly 466 

changed the pattern, as, for all the taxonomic lineages and as previously reported (Torre et al., 2019), 467 

these islets clustered together, independently of their archipelagic adscription. 468 

The differences of beta diversity patterns among Macaronesian land plant lineages illustrate two major 469 

evolutionary differences among those groups depending on their dispersal capacities. First, 470 

spermatophytes speciate in situ at much faster rates than spore-producing plants, wherein allopatric 471 

speciation following long-distance dispersal is the rule (Patiño et al., 2014). Second, the higher dispersal 472 

capacities of spore-producing plants explains the striking tropical affinities of Macaronesian endemic 473 

spore-producing plants (Vanderpoorten et al., 2011), which contrasts with the predominantly 474 

Mediterranean origin of Macaronesian endemic spermatophytes (Carine et al., 2004). Combined with 475 

the differences in beta diversity reported here, these observations point to different assemblage 476 

mechanisms in terms of origin, timing and mode of colonization among Macaronesian land plant 477 

lineages. These differences in the mechanisms of assembly among land plant in Macaronesia call for a 478 

comparative analysis of the geographic origin of these floras in an explicit time-frame. 479 
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 480 

Data availability 481 

The matrices of species distributions for liverworts, mosses and spermatophytes are available at 482 

https://figshare.com, DOI 10.6084/m9.figshare.17099840. 483 
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Appendix 1. Data sources 632 

 633 

Azores 634 

Bryophytes 635 

We employed the most recent databases (Borges et al., 2018; azoresbioportal.uac.pt/2019) combined 636 

with subsequent floristic publications (Dirkse et al., 2018; Gabriel et al., 2019; Hanusch et al., 2020; 637 

Coelho et al., 2021). The inclusion or exclusion of a series of species, for which available information 638 

is conflictual, is justified in Table S0.  639 

Table S0. Critical re-assessment of the occurrence of some bryophyte species from Azores, for which available 640 

information is conflictual, and position adopted here.  641 

Species Comment Position adopted here 

Species reported from the Azores in azoresbioportal.uac.pt/2019 but considered as doubtful by 

Hodgetts & Lockhart (2020) 

Radula 

complanata (L.) 

Dumort. 

Reported from São Jorge by Claro (2008) but 

impossible to tell apart morphologically from R. 

lindenbergiana when sterile. All specimens from this 

group from Macaronesia in the molecular 

phylogeography of Laenen et al. (2011) belong to R. 

lindenbergiana 

Excluded 

Lepidozia reptans 

(L.) Dumort. 

Several records of this species for the Azores by R. 

Gabriel, some of which were identified by the late R. 

Schumacker 

(https://herbarium.nrm.se/specimens/B16236)   

Included 

Rhynchostegiella 

curviseta (Brid.) 

Limpr. 

All Azorean Rhynchostegiella specimens sequenced 

to date belong to R. azorica, which is 

morphologically extremely difficult to separate from 

other species (Patino et al., 2017).  

Excluded 

Serpoleskea 

confervoides 

(Brid.) Loeske 

Reported by Gonzalez-Mancebo et al. (1991) and 

Coehlo et al. (2021) 

Included  
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Thamnobryum 

maderense 

(Kindb.) Hedenäs 

A species of doubtful taxonomic status (Olsson et al., 

2009), but confirmed in the Azores (Hedenäs, 

1992a).  

Included 

Rhynchostegiella 

litorea (De Not.) 

Limpr. 

All Azorean Rhynchostegiella specimens sequenced 

to date belong to R. azorica, which is 

morphologically extremely difficult to separate from 

other species (Patino et al., 2017).  

Excluded 

Entosthodon 

fascicularis 

(Hedw.) 

Müll.Hal. 

Reported from the Azores by Dias (1986) but 

subsequently considered as doubtful  

Excluded 

Entosthodon 

muhlenbergii 

(Turner) Fife 

Reported from the Azores by Armitage (1931), 

Allorge & Allorge (1952) and von Hübschmann 

(1974). Re-examination of the material collected by 

Allorge suggests that this material was wrongly 

identified (C. Sérgio, pers. comm.) 

 

Excluded 

Exsertotheca 

crispa (Hedw.) 

S.Olsson, Enroth 

& D.Quandt  

All Macaronesian material, except for one collection 

from Madeira, belongs to other species (Hedenäs, 

1992b) 

 

Excluded 

Grimmia incurva 

Schwägr. 

Old records (Allorge & Allorge, 1946, 1952) not 

subsequently confirmed despite recent intensive 

field surveys 

Excluded 

Grimmia montana 

Bruch & Schimp. 

Old records (Barros 1958) not subsequently 

confirmed 

  

Excluded 

Hygroamblystegi

um humile 

(P.Beauv.) 

Vanderp., 

Old records (Allorge & Allorge, 1948) not 

subsequently confirmed 

 

Excluded 
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Goffinet & 

Hedenäs  

Leucodon 

canariensis 

(Brid.) Schwägr. 

Doubtful occurrence in the Azores (Hedenäs, 1992b; 

Ros et al., 2013; Gonzalez-Mancebo et al., 2009)  

 

Excluded 

Plagiothecium 

succulentum 

(Wilson) Lindb. 

Reported from São Jorge by Claro (2008) Tentatively excluded 

pending from 

publication of the results 

Pleuridium 

subulatum 

(Hedw.) Rabenh. 

Old records (Silveira Moniz, 1937; Allorge & 

Allorge, 1952) not subsequently confirmed 

 

Excluded 

Pohlia andalusica 

(Höhn.) Broth. 

Old records (Allorge & Allorge, 1952) not 

subsequently confirmed 

Excluded 

Pohlia cruda 

(Hedw.) Lindb. 

Old records (Richards, 1936; Allorge & Allorge, 

1952) not subsequently confirmed despite recent 

intensive field surveys  

Excluded 

Schistidium 

agassizii Sull. & 

Lesq. 

Reported from Pico (Sjögren, 2005) and Flores 

(Allorge & Persson, 1938).  

Included 

Schistidium 

rivulare (Brid.) 

Podp. 

Reported from Pico (Sjögren, 2005) and Flores 

(Allorge & Persson, 1938). 

Included 

 642 

Species reported from the Azores by Hodgetts & Lockhart (2020) but not included in 

azoresbioportal.uac.pt/2019 

Entosthodon convexus 

(Spruce) Brugués 

Reported from the Azores by Allorge & Allorge (1952) 

and von Hübschmann (1974) but subsequently excluded 

by Sjögren (2001). Re-examination of the material 

collected by Allorge suggests that this material was 

wrongly identified (C. Sérgio, pers. comm.) 

Excluded 

 643 
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Species reported from the Azores by Hodgetts & Lockhart (2020), included in 

azoresbioportal.uac.pt/2019, but without any distribution data 

Atrichum androgynum 

(Müll.Hal.) A.Jaeger  

Reported from São Jorge by Sérgio et al. (2010),  Included (São 

Jorge) 

Fissidens monguillonii 

Thér. 

Reported from Santa Maria by Allorge & Allorge 

(1952) 

Included 

(Santa Maria) 

Grimmia hartmanii 

Schimp. 

Reported from São Jorge by Claro (2008) Tentatively 

excluded 

pending from 

publication of 

the results 

Grimmia meridionalis 

(Müll.Hal.) E.Maier  

Tentatively included in the Azores by Ros et al. (2013) 

but possible confusion with G. lisae 

Excluded 

Hydrogonium 

bolleanum (Müll.Hal.) 

A.Jaeger  

Reported from São Miguel by Frahm (2011),  Included (São 

Miguel) 

Hygroamblystegium 

fluviatile (Hedw.) 

Loeske  

Reported from Flores by Blockeel et al. (2009) Included 

(Flores) 

Ptychostomum kunzei 

(Hornsch.) J.R. Spence 

Reported from Flores by Allorge & Allorge (1946, 

1952)  

Included 

(Flores) 

Tortella fragilis 

(Drumm.) Limpr. 

Reported from São Jorge (Claro, 2008). Tentatively 

excluded 

pending from 

publication of 

the results 

Tortella inflexa (Bruch) 

Broth. 

Reported from São Jorge (Claro, 2008). Tentatively 

excluded 

pending from 

publication of 

the results 
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Tortella tortuosa 

(Schrad. ex Hedw.) 

Limpr. 

Reported from São Jorge (Claro, 2008). Tentatively 

excluded 

pending from 

publication of 

the results 

Zygodon rupestris 

Schimp. ex Lorentz 

This species was mentioned from several islands by 

different authors including Allorge, Schwab and 

Sjögren. 

Tentatively 

excluded 

pending actual 

evidence based 

on specimen 

examination 

 644 

Species reported from the Azores in azoresbioportal.uac.pt/2019 but not by Hodgetts & 

Lockhart (2020) 

Bryum gemmiferum 

R.Wilczeck & Demaret 

Reported from Terceira (Aranda et al., 2015) as ‘record 

to be confirmed’ 

Excluded 

Dicranella varia 

(Hedw.) Schimp. 

Reported from São Jorge (Claro, 2008). Tentatively 

excluded 

pending from 

publication of 

the results 

Neckera pumila Hedw. This species was included in the Moss Register of the 

Swedish Museum of Natural History (2006) based on 

collections by H. Persson (1937). 

Included 

Philonotis tomentella 

Molendo 

Reported from São Jorge (Claro, 2008). Tentatively 

excluded 

pending from 

publication of 

the results 

 645 

Species reported from the Azores in azoresbioportal.uac.pt/2019 and Hodgetts & Lockhart 

(2020) but requiring revision 
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Homalothecium 

sericeum (Hedw.) 

Schimp. 

According to Hedenäs et al. (2014), H. mandonii, and 

not H. sericeum, occurs in the Azores 

Excluded 

 646 

Pteridophytes 647 

Borges et al. (2005, 2018) 648 

Spermatophytes  649 

Borges et al. (2005, 2018), with updates and amendments from Schäfer (2003), Bateman, Rudall & 650 

Moura (2013), Hay et al. (2014), Moura et al. (2015a, b), Banasiak et al. (2016), Durán et al. (2020), 651 

Galán de Mera et al. (2017), Fontinha, Andrade & Pinheiro de Carvalho (2020), Uotila (2020), 652 

Frankiewicz (2021), Míguez et al. (2021) and Schäfer (2021) and authors personal observations. 653 

Madeira 654 

Bryophytes 655 

Borges et al. (2008) with updates and amendments from Dirkse et al. (2018), Ellis et al. (2011, 2014, 656 

2017, 2018), Fontinha et al. (2020), Hanusch et al. (2020), Hodgetts & Lockhart (2020), Kürschner et 657 

al. (2008a, b), Lobo (2008), Luis et al. (2008, 2010), Patiño et al. (2017), Sim-Sim et al. (2010, 2017).  658 

Pteridophytes and Spermatophytes  659 

Borges et al. (2008) with updates and amendments from Menezes de Sequeira et al. (2011), Galán de 660 

Mera, Linares Perea & Vicente-Oerellana (2017), Matzke-Hajek, Gonçalves Silva & Paz Fontinha 661 

(2017), Andrade & Pinheiro De Carvalho (2020), Hernández (2020), Jardim & Menezes de Sequeira, 662 

2020.  663 

Canary Islands 664 

Bryophytes 665 

Canary Island Biodiversity Database (https://www.biodiversidadcanarias.es/, last access on 666 

03/03/2021).  667 

Pteridophytes and Spermatophytes  668 

Canary Island Biodiversity Database (https://www.biodiversidadcanarias.es/, last access on 669 

03/03/2021) with updates and amendments from Izquierdo et al. (2001), Caujapé-Castells et al. (2008), 670 

Banasiak et al. (2016), Galán de Mera, Linares-Perea & Vicente-Orellana (2017), García-Aloy et al. 671 

https://www.biodiversidadcanarias.es/
https://www.biodiversidadcanarias.es/
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(2017), Uotila (2020), Arango Toro (2021), Frankiewicz (2021), Míguez et al. (2021), Rodríguez 672 

Rodríguez et al. (2022 ) and authors’ personal observation. 673 
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Gutaker, R., Czarnocka-Cieciura, A., Kosmala-Grzechnik, S., & Spalik, K. (2016). Phylogeny of 692 

Apiaceae subtribe Daucinae and the taxonomic delineation of its genera. Taxon, 65(3), 563–585. 693 

Banco del Inventario Natural de Canarias. Online resource available at 694 

https://www.biodiversidadcanarias.es/ (last access on 01/06/2022).  695 

Bateman, R.M., Rudall, P.J., & Moura, M. (2013). Systematic revision of Platanthera in the Azorean 696 

archipelago: not one but three species, including arguably Europe’s rarest orchid. PeerJ, 1, e218. 697 

Barros, G. (1958). Contribuição para o estudo de musgos nos Açores. Notas briológicas IV. Boletim da 698 

Sociedade Broteriana, Série 2, 32, 204–210.  699 

Blockeel, T.L., Bednarek-Ochyra, H., Ochyra, R., Cykowska, B., Esquivel, M. G., Lebouvier, M., Luís, 700 

https://www.biodiversidadcanarias.es/


 32 

L., Martins, S., Müller, F., Németh, Cs., Papp, B., Plášek, V., Pócs, T., Sabovljević, M., Sérgio, 701 

C., Sim-Sim, M., Stech, M., Váňa, J., & Yayintas, O.T. (2009). New national and regional 702 

bryophyte records, 22. Journal of Bryology, 31, 139–142.  703 

Borges, P.A.V., Cunha, R., Gabriel, R., Martins, A.M.F., Silva, L., & Vieira, V. (2008). A list of the 704 

terrestrial fauna (Mollusca and Arthropoda) and flora (Bryophyta, Pteridophyta and 705 

Spermatophyta) from the Azores. Horta, Angra do Heroísmo and Ponta Delgada: Direcção 706 

Regional de Ambiente and Universidade dos Açoress.  707 

Borges, P.A.V., Abreu, C., Aguiar, A.M.F., Carvalho, P., Jardim, R., Melo, I., Oliveira, P., Sérgio, C., 708 

Serrano, A.R.M., & Vieira, P. (eds.) (2008). A list of the terrestrial fungi, flora and fauna of 709 

Madeira and Selvagens archipelagos. Direcção Regional do Ambiente da Madeira and 710 

Universidade dos Açores, Funchal and Angra do Heroísmo.   711 

Borges, P. A. V., Gabriel, R., Arroz, A. M., Costa, A., Cunha, R., Silva, L., Mendonça, E., Martins, A. 712 

F., Reis, F., & Cardoso, P. (2018). Azorean Biodiversity Portal. v1.1. Universidade dos Açores. 713 

Online resource available at https://azoresbioportal.uac.pt  714 
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