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General Introduction 

Forest ecosystems consist of the interaction of two subsystems, belowground 

decomposition subsystem and aboveground plant subsystem (Takeda 1994). The function of 

the decomposition subsystems includes the recycling of essential nutrients available to plant 

roots and the formation of soil organic matters that retain the nutrients (Swift et al. 1979). 

Litter decomposition in the decomposition subsystem has been studied for the understanding 

of the mechanism of maintenance of functioning and biodiversity in forest ecosystems 

(Takeda 1994). 

Chemical aspects of litter decomposition processes have been studied intensively. 

The rates of litter decomposition is reviewed in Takeda et al. (1987) and Takeda (1998). The 

dynamics of nitrogen, one of essential elements that limit not only plant growth but also 

growth of decomposer microbes, is well described (Berg 1986; Takeda et al. unpublished; 

Osono and Takeda unpublished). Leaching, immobilization and mobilization of nitrogen in 

decomposing litter have been related to the availability of organic chemical energy sources to 

decomposers (Melillo et al. 1989; Aber et al. 1990; Osono and Takeda unpublished). In 

temperate forests, the availability of organic molecules to decomposers decreased as freshly 

fallen litter transformed to soil organic matter due to selective degradation of holocellulose 

(Aber et al. 1990). On the other hand, a few studies have been carried out to relate the ecology 

and functioning of decomposer organisms to organic chemical and nutrient dynamics during 

litter decomposition. 

Fungi play an important role in litter decomposition than other decomposer 

organisms. This is because: (i) fungi contribute about 70% of total respiration of soil 

organisms (Anderson and Domsch 1975; Parkinson et al. 1978; Kj011er and Struwe 1982; 

Bewley and Parkinson 1985; Alphei et al. 1995; Zhang and Zak 1998); (ii) fungi can attack 

the lignocellulose matrix in litter which other organisms are unable to assimilate (Frankland et 

al. 1982; Cooke and Rayner 1984); and (iii) fungi consist of filamentous cells called hyphae 
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that can easily penetrate into three dimensional litter structure. Fungal populations cause the 

chemical changes of litter by the production of extracellular enzymes, but there has been no 

study that relate the ecology and functioning of fungal community to the organic chemical 

and nutrient dynamics during litter decomposition. 

Ecological studies of litter decomposing fungi have been focused on successional 

patterns of occurrence during decomposition (Hudson 1968). Some authors examined the 

functional role of fungi in litter decomposition (Kj0ller and Struwe 1980, 1987, 1992; 

Sinsabaugh et al. 1991; Sinsabaugh 1994) and demonstrated the importance of the 

Basidiomycota in lignocellulose decomposition in litter (Lindeberg 1946; Saito 1957, 1965; 

Hintikka 1970). However, in nature, leaf litter usually follows a different decay pattern from 

those litter colonized by the Basidiomycota, because their mycelia are often unevenly 

distributed, especially because of their tendency to develop as fairy-rings and to form a 

mosaic of individuals in forest floors (Hintikka 1970, 1982; Swift 1982). Furthermore, litter is 

colonized by a wide variety of fungi, including not only the Basidiomycota but also the 

Ascomycota and the Zygomycota (Hudson 1968). Therefore, functional biodiversity of fungi 

should be examined to evaluate the functioning of fungal community in litter decomposition. 

The purpose of this study is to clarify the mechanism of fungal decomposition of leaf 

litter of Japanese beech. The dynamics of organic matter and nutrients was related to the 

successive colonization of fungal populations in a litter decomposition experiment in the field. 

Then, the functional roles of fungi populations were verified with pure culture decomposition 

tests. 

In Chapter 1, methodology of fungal isolation from beech leaf litter was developed. 

In the following two chapters, mycological survey was carried out for species composition of 

microfungi (mostly the Zygomycota and the Ascomycota) on individual leaf (Chapter 2) and 

for that of macrofungi (the Basidiomycota) on forest floor (Chapter 3). In Chapter 4, fungal 

ingrowth and succession during litter decomposition was directly related to changes in 

organic chemical constituents and nutrients over a 3 year period using the litter-bag method. 
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The relationship between fungal colonization and decay phases of litter was evaluated. In 

Chapter 5, functional biodiversity of fungi on beech litter were investigated and their litter 

decomposition potentialities were verified with pure culture decomposition test with special 

reference to their ability to decomposer lignocellulose. In Chapter 6, functional species 

responsible for litter decomposition were inoculated to not only freshly fallen litter but also 

partly decomposed litter that were different in substrate quality to assess the ability to attack 

residual recalcitrant substances in partly decomposed litter. In General Discussion, these 

results were summarized and the mechanism of fungal decomposition of beech leaf litter and 

its implication for soil humus accumulation were discussed. 
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Material and study site 

Japanese beech (Fagus crenata Bl.) was chosen as the material because: (i) beech is 

a dominant tree species in cool temperate regions in Japan and Fagus forests are major 

components of terrestrial ecosystems on the earth (Hara 1996); (ii) beech leaves follows 

decomposition pattern typical of temperate tree species and its slowly decomposing leaves are 

suitable for a long term study (Anderson 1973; Gosz et al. 1973; Melillo et al. 1982; Takeda 

et al. 1987; Wise and Schaefer 1994; Rutigliano et al. 1998; Zeller et al. 2000, 2001); and (iii) 

a variety of fungal taxa occur as decomposers (Saito 1956; Hogg and Hudson 1968; 

Tokumasu and Tubaki 1982; Kloidt et al. 1987; Kj0ller and Struwe 1990; Chasseur and 

Beguin 1990; Chasseur 1992; Osono and Takeda 1999b, 200lb). 

A cool temperate deciduous forest was chosen as the study site in the Ashiu 

Experimental Forest of Kyoto University (35°18'N, 135°43'E) at Miyama town, Kita-kuwata 

county, Kyoto prefecture, Japan. Mean annual temperature is about 10°C and mean monthly 

temperature ranged from O.4°C in January to 25.5°C in August. The mean annual precipitation 

over a 56 year period is 2495 mm. The study area was covered with snow during the winter 

period from December to April. 

Beech is distributed along forest slopes in the site (Group for the study on ecology of 

natural forest 1972). Upper and lower parts of slopes show moder and mull soils, respectively 

(Takeda and Kaneko 1988). The upper and lower sites were used in fruit body observation of 

the Basidiomycota (Chapter 3) and decomposition experiment of leaf litter (Chapter 4). It has 

been commonly recognized that the litter decomposition rate is faster in mull soil than in 

moder and mor soils (Bocock et al. 1960; Bocock 1964; Swift et al. 1979; Takeda et al. 1987). 

The soil property of the upper and lower sites is shown in Table 1.2. The vegetation 

of the study site is shown in Table 1.3. The vegetation of the upper site is mostly characterized 

by F. crenata, Clethra barvinervis, /lex macropoda, Magnolia salidfolia, and Lyonia 

ovalifolia, while that of the lower site is mostly characterized by F. crenata, Q. mongolica var. 
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grosseserrata, Acer mono var. marmora tum, Carpinus laxiflora, and Acer palmatum subsp. 

amoenum. 

In this site, decomposition of leaf litter have already been studied for various tree 

species in terms of decomposition rate and organic chemical and nutrient dynamics (Takeda 

et al. 1987; Takeda et al. unpublished; Osono and Takeda unpublished). 

Table 1.2 Soil characteristics of the upper and lower sites. 

(after Tateno et al., unpublished). 

UEEer Lower 

pH (KCI) 3.1 3.6 

pH (H2O) 4.1 4.4 

Carbon % 6.5 9.1 

Nitrogen % 0.35 0.68 

C/N 18.5 13.4 

Calcium (ppm) 2.9 34.6 

Magnesium (ppm) 5.3 9.1 

Potassium (ppm) 2.5 6.0 

Water content % 49.1 71.9 

Bulk density (g dry soil cm-3
) 0.60 0.30 

Pool size of inorganic nitrogen 0.74 1.02 

Net mineralization 2.45 7.29 

Nitrification 0.01 2.85 

% nitrification 0.3 47.9 
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Table 1.3 Species composition of tree species (diameter at breast height >5cm) in the study 

site! after Tateno et aI., unEublished2. BA, basal area! cm2
} 

Tree sEecies Number Number% BA BA% 

Fagus crenata Blume 35 9.6 20109 27.23 

Quercus mongolica var. grosseserrata (Blume) 7 1.9 11508 15.59 

Rehder et Wilson 

Acer mono subsp. marmora tum (Nichol.) Kitamura 8 2.2 6390 8.65 

Acer sieboldianum Miq. 26 7.1 4735 6.41 

Clethra barvinervis Sieb. et Zucco 100 27.4 4663 6.32 

Carpinus laxiflora (Sieb. et Zucc.) Blume 11 3.0 4040 5.47 

Carpinus tschonoskii Maxim. 7 1.9 3828 5.18 

Lyonia ovalifolia subsp. neziki Hara 23 6.3 2521 3.41 

Sorbus alnifolia (Sieb. et Zucc.) 10 2.7 2316 3.14 

Acanthopanax sciadophylloides Fr. et Sav. 8 2.2 1804 2.44 

Comus controversa Hemsl. 2 0.5 1374 1.86 

Fraxinus sieboldiana Blume 10 2.7 1364 1.85 

flex macropoda Miq. 12 3.3 1204 1.63 

Acer nipponicum Hara 12 3.3 1171 1.59 

Pieris japonica (Thunb.) D. Don 25 6.8 1005 1.36 

Magnolia salicifolia (Sieb. et Zucc.) 16 4.4 785 1.06 

Sorbus americana subsp.japonica (Maxim.) 7 1.9 734 0.99 

Kitamura 

Lindera umbellata Thunb. 1 0.3 607 0.82 

Pterostyrax hispida Sieb. et Zucco 3 0.8 562 0.76 

Hamamelis japonica subsp. obutusata (Matsumura) 6 1.6 439 0.59 

Sugimoto 

Evodiopanax innovans (Sieb. et Zucc.) Nakai 3 0.8 438 0.59 

Acer palmatum subsp. amoenum (Carr.) Hara 5 1.4 412 0.56 

Styrax obassia Sieb. et Zucco 2 0.5 384 0.52 

Aseculus turbinata Blume 1 0.3 373 0.51 

/lex leucoclada (Maxim.) Makino 5 1.4 260 0.35 

Acer japonicum Thunb. 4 1.1 161 0.22 

Wisteria floribunda (Wild)DC. 2 0.5 153 0.21 

Comus kousa Buerger ex Hance 6 1.6 146 0.20 

Malus tschonoskii (Maxim.) C. K. Schneider 1 0.3 129 0.17 

Rhus trichocarpa Miq. 2 0.5 91 0.12 

Viburnum plica tum f. tomentosum (Thunb.) Rehder 2 0.5 46 0.06 

Prunus incisa subsp. kinkiensis (Koudz.) Kitamura 1 0.3 31 0.04 

SchizoJ!..hragma hy"drangeoides Sieb. et Zucco 1 0.3 30 0.04 

Sum 365 100 73836 100 

6 



Chapter 1 

A methodological survey on isolation and incubation of fungi on leaf litter 

Introduction 

Methodological development is important for ecological studies of decomposer fungi 

on leaf litter. As direct observation of fungal hyphae provides few information about 

identification, indirect methods that isolate fungi from incubated litter have been commonly 

used (Tokumasu 1980, 1982). The incubation is defined as the manipulation by which the 

germination of resting structures and the growth of hyphae are stimulated under suitable 

conditions of moisture and nutrients or enemy-free environment (Aoshima et al. 1983). The 

isolation is defined as the manipulation by which pure culture of fungi is obtained without 

contamination (Tubaki 1990). 

In earlier works, successional changes in fungal populations on decomposing litters 

were investigated by the dilution plating method (Saito 1956; Ishii 1968; Deka and Mishra 

1982; Kuter 1986; Singh et al. 1990). Most fungi isolated by this method are, however, 

derived from dormant spores attached to the litter surface (Warcup 1955; Christensen 1969). 

Hence, the relationship between litter decomposition processes and fungal succession 

described was unclear. Alternatively, to detect the function of fungal species in decomposition, 

a surface sterilization method that isolates fungi present within leaf tissues (Kinkel and 

Andrews 1988; Hata 1997) and a washing method that removes propagules on the surface and 

isolates actively growing mycelia (Harley and Waid 1955; Tokumasu 1980) have been 

developed and assured of their usefulness on several litter types (Kendrick and Burges 1962; 

Macauley and Thrower 1966; Tokumasu 1996, 1998a, 1998b). 

Nutrient media and incubation period affect the isolation of fungi from litter 

(Aoshima et al. 1983; Tubaki 1990). For example, nutrient-rich media result in selective 
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isolation of fast-growing species, overlooking slow-growing species if present (Farrow 1954); 

short incubation period may overlook slow-growing and slow-sporulating species; on the 

other hand, contamination of fungi and mites may occur if the incubation period is too long. 

Tokumasu (1980) found that one-month incubation and weekly observation were successful 

for the observation of fungi on pine needle litter, but there have been few methodological 

survey on isolation and incubation of fungi on other leaf litter. 

The present study adopted the surface sterilization method and the washing method 

for the description of mycobiota on beech leaves. In this chapter, a suitable methodology was 

explored for incubation of fungi on beech leaf litter by these methods. The effectiveness of 

surface sterilization and washing procedures was evaluated and the effect of nutrient media 

and incubation period on number of species and species composition is investigated. 
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Materials and Methods 

Fungal isolation 

A surface sterilization method (Kinkel and Andrews 1988; Hata 1997) and a 

modified washing method (Harley and Waid 1955; Tokumasu 1980) were used for the 

isolation of fungi from beech leaf litter. Leaf samples were collected from the Ashiu 

Experimental forest of Kyoto University (see Material and Study Site). Decomposing litters in 

litter bags (Chapter 4) collected on November 1997 (the 11th month) were used for surface 

sterilization method and on September 1997 (the 9th month) for washing method. The 

collected bags were placed in paper bags and taken to the laboratory. Fungal isolation was 

carried out within 8 hours after sampling. On each sampling occasion, a total of twenty leaf 

disks were punched from twenty leaves in the litter bags with a sterile cork borer (5.5 mm in 

diameter) from the central part of leaves, avoiding the primary vein. 

For surface sterilization, leaf disks were submerged in 70% ethanol (v/v) for 1 min to 

wet the surface, then surface sterilized for 30 seconds in a solution of 15% hydrogen peroxide 

(v/v), and then submerged for 1 min in another 70% ethanol. The disks were rinsed with 

sterile distilled water, transferred to sterile filter paper in Petri dishes (9 cm in diameter), and 

dried for 24 h to suppress vigorous bacterial growth after plating (Widden and Parkinson 

1973). 

Imprints of leaf disks were made on LcA (Miura and Kudo 1970) and potato dextrose 

agar (PDA) for 3 leaf types: (i) surface sterilized disks treated with hydrogen peroxide; (ii) 

water control disks treated with sterile distilled water instead of hydrogen peroxide; and (iii) 

untreated control (Kinkel and Andrews 1988). Imprinted plates were incubated for one week 

at a room temperature. LcA and PDA were representative of nutrient-poor and nutrient-rich 

media, respectively. LeA contains glucose 0.1 %, KH2P04 0.1 %, MgS04 • 7H20 0.02%, KCl 

0.02%, NaN03 0.2%, yeast extract 0.02%, and agar 1.3% (w/V). PDA (Nihon Suisan, Tokyo, 

Japan) contains glucose 2%, potato extract 0.4%, and agar 1.5% (w/v). 
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Fungi growing actively on the surface were isolated by the washing method. Leaf 

disks were washed in a sterile test tube using a vertical type shaker at 2000 rpm for 1.5 min. 

The disks were washed serially in five changes of 0.005% Aerosol-OT (Di-2-etylhexyl 

sodium sulfosuccinate) solution (w/v) and rinsed with sterile distilled water five times. The 

disks were transferred to sterile filter paper in Petri dishes (9 em in diameter) and dried for 24 

h to suppress vigorous bacterial growth after plating. The disks were then placed on 9 cm Petri 

dishes containing LeA or PDA, two disks per plate. 

The petri dishes were sealed with parafilms (Hata 1997) and incubated at 20°C in 

darkness for 8 weeks and observed at three days and at 6 to 9 day interval. Any fungal hyphae 

or spores appearing on the plates were transferred to fresh LeA agar plates for isolation and 

identification. 

Number of colony forming unit (CFU) within the washing detergents was counted to 

ensure the effectiveness of spores removal from leaf surface by the washing method. The 1st, 

4th, 7th, and 10th washings (1 ml) were mixed with 20 ml of molten malt agar (MA) medium 

(Hawksworth et al. 1995) in five Petri dishes. The plates were incubated for one week at 25°C 

in darkness. Any fungal colonies appearing on the plates were counted. 
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Results and discussion 

Effectiveness of surface sterilization 

Figure 1.1 shows leaf imprints of hydrogen peroxide treated, water control, and 

untreated disks. Hydrogen peroxide (15% solution, 30 seconds) was highly effective in 

eradicating fungi from leaf surfaces. An additional experiment indicated that longer 

immersion periods in the hydrogen peroxide excluded not only leaf surface microbes but also 

interior colonizers. This is especially the case for well decomposed litters as the sterilant can 

easily penetrate into porous litter structure. The immersion for 30 seconds is thus considered 

successful for the isolation of fungi from the inside of beech leaf litter. 

Effectiveness of leaf washing 

Table 1.1 shows number of colony forming unit (CFU) in one ml of washing 

detergents. The washing is regarded as effective when CFU in the washing is less than 10 

(Tokumasu 1980). The number of CFU. decreased as the washing to be less than 10 in the 

10th washing. The result indicates that the washing procedure adopted in this study removed 

spores successfully from the litter surface. 

Fig. 1.1 Imprints of hydrogen peroxide treated (left), water control 

(middle), and untreated (right) leaf disks on PDA (top row) and LeA 

(bottom row). Five imprints per plate. 
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Table 1.1 Number of colony forming unit 

iCFU) in one ml of washings 

1st 4th 7th 10th 

Upper site 24.0 11.8 7.2 7.4 

Lower site 43.6 11.8 10.4 8.4 

Effect of medium and incubation period 

Number of species isolated per leaf disk was 3.5+0.4 (mean + s.e., n=20) on LeA 

(nutrient-poor medium) and 2.3 +0.2 on PDA (nutrient-rich medium). The number of species 

was significantly higher on LeA than on PDA (p<0.01, t-test). The decrease of number of 

species on PDA is ascribed to the overgrowth of fast-growing species in Mucor and 

Trichoderma that suppress the growth and sporulation of less frequent, slow-growing species 

(Fig. 1.2). The result that number of species was higher in nutrient-poor medium than in 

nutrient-rich medium is consistent with Farrow (1954), Tokumasu (1980, 1982), and Kj01ler 

and Struwe (1990). In addition, LeA effectively induces sporulation and is useful for 

identification (Tokumasu 1983). The LeA is thus successful for the isolation and observation 

of fungi on beech leaf litter. 

Figure 1.3 shows cumulative number of species in relation to incubation period. The 

values were percentages of the cumulative number of species to the total number of species 

Fig. 1.2 Agar plates incubated for one month. 

Top row = PDA, bottom row = LeA. 
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isolated during 2 month period. In the first week 24 (75%) of total 32 species and 16 (89%) of 

total 18 species were isolated on LeA and PDA, respectively. More than 90% of species were 

isolated in the third week on both media. The result indicated that two-month incubation was 

successful for the observation of fungi on beech leaf litter. 

. These results demonstrated the effectiveness of surface sterilization and washing 

methods for the isolation of fungi. Isolation on the nutrient-poor medium (LeA) for 2 months 

was proved successful for the incubation of fungi on beech leaf litter. In addition to nutrient 

media and incubation period, incubation temperature (Carreiro and Koske 1992) and sample 

size of inoculum (Baath 1988) may also affect the number of species and deserve further 

investigation. 
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Fig. 1.3 Cumulative number of species in relation to 

incubation period. 0 = LeA, 0 = PDA. 
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Introduction 

Chapter 2 

Phyllosphere fungi on leaf litter: 

occurrence, colonization, succession, and bleaching 

The phyllosphere is the living leaf as a whole and includes the interior and surface 

(Carroll et aI. 1977) and is colonized by a variety of micro-organisms (Fokkema and van den 

Heuvel1986;Andrews and Hirano 1991). Phyllosphere fungi include endophytes and epiphytes 

that colonize the interior and surface of the phyllosphere, respectively, occupying two distinct 

habitats in the leaf (petrini 1991). They have been studied intensively in terms of their ecological 

relationships with living plants (Clay 1987; Andrews and Hirano 1991; Carroll 1995). In contrast, 

the ecology of phyllosphere fungi on leaf litter has received little attention (Andrews 1991), even 

though they occur on various litters at initiaI stages of decomposition (Kendrick and Burges 

1962; Dickinson 1965; Hogg and Hudson 1966; Ruscoe 1971a; Watson et al. 1974; Soma and 

Saito 1979; Wildman and Parkinson 1979; Mishra and Dickinson 1981; Cabral 1985; Kuter 

1986; Stone 1987;Aoki et al. 1990, 1992; Osorio and Stephan 1991; Nakagiri et al. 1997; Okane 

et aI. 1998; Miiller et al. 2001). 

Fungi persisting in dead leaves from the phyllosphere have the advantage of gaining 

access to readily available energy sources, such as non-lignified holocellulose and soluble 

carbohydrate abundant in freshly fallen leaves, prior to fungi that colonize after litter fall (Hudson 

1968, 1971; Stone 1987). Thus, it has been considered that persistence is important for 

phyllosphere fungi during the initial stage of litter decomposition (Hudson 1968). However, 

some epiphytes have been isolated from sterilized leaf litter placed on litter layers (Tubaki and 

Yokoyama 1971, 1973a, 1973b; Kuter 1986), indicating that some phyllosphere fungi can 

colonize fallen litter directly by hyphae or spores from surrounding litter or the air. Experiments 

are needed to evaluate the ability of phyllosphere fungi to infect litter directly after litter fall. 

Successional trends of phyllosphere fungi in decomposing leaf litter have been reviewed 
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by Hudson (1968). Primary saprophytes and parasites originating from the phyllosphere were 

considered to be important members in decomposer fungal associations on freshly fallen leaves 

but they disappeared as decomposition progressed. This general statement was largely based 

upon qualitative descriptive studies, and more detailed studies are needed to clarify the 

successional patterns of endophytes and epiphytes on leaf litter. 

Phyllosphere fungi produce extracellular enzymes to utilize plant substrates; these 

enzymes are necessary not only for the colonization of living plant tissues but also for 

saprophytic growth in dead tissues (Hogg 1966; Hudson 1968, 1971; Carroll and Petrini 1983; 

Petrini et al. 1991; Sieber-Canavesi et al. 1991; White et al. 1991; Petrini et al. 1992; Bettucci and 

Saravay 1993). Xylariaceous endophytes in particular show a broad range of substrate utilization 

capabilities including ligninolytic and cellulolytic activity (Carroll and Petrini 1983) and are 

common in early decomposer communities in the sapwood of angiosperm trees (Boddy and 

Griffith 1989). Bleached litter in which brown litter color changed to bright yellow is a useful 

material to evaluate the possible effect of xylariaceous endophytes on litter decomposition, as the 

bleaching is associated with the decomposition of lignin and polyphenols (Hintikka 1970; Rihani 

et al. 1995; Osono and Takeda 1999b). Micromorphological observation of the bleached leaf 

tissues also provide useful information about the bleaching activity of endophytic fungi 

(Reisinger et al. 1978; Ponge 1991; Rihani et al. 2001). 

This study examined the succession of phyllosphere fungi (endophytes and epiphytes) 

in living, senescent, freshly fallen, and decomposing leaves and the colonization of sterilized 

freshly fallen leaves by phyllosphere fungi to test their ability to infect litter directly after litter fall. 

Fungi were also isolated from the bleached and the non-bleached portions of the decomposing 

leaves. The chemical composition of the portions were then investigated to obtain the field 

evidence for lignocellulose decomposition by phyllosphere fungi. Japanese beech (Fagus 

crenata Blume) was chosen for the study because it has already been used in studies evaluating 

endophytic mycobiota and colonization of living leaves (Sahashi et al. 1999, 2000; Kaneko and 

Kakishima 2001) and in studies of the functional roles of litter decomposing fungi during the 

decomposition processes (050no and Takeda 1999b, 2001a, 200lb, 2002a, 2002b). 
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Materials and methods 

Sample collection 

Samples were collected in the Ashiu Experimental Forest of Kyoto University (see 

Material and Study Site). Four types of beech leaves were collected at the study site during May 

1999 - April 2000: living leaves, senescent leaves, freshly fallen leaves, and decomposing 

leaves. 

Sixty living leaves were collected at monthly intervals from May to October 1999. On 

each sampling occasion, 10 leaves were cut from two branches at about 12 m height from each of 

two arbitrarily selected trees. 

Thirty senescent leaves were collected on 4 November 1999 from two branches at about 

12 m height from each of six arbitrarily selected trees. 

One hundred and twenty freshly fallen leaves were collected on 2 November 1999 from 

the surface of the litter layer; 60 of these leaves were autoclaved at 120°C for 20 min (denoted as 

sterilized leaves) and the remaining 60 were not sterilized (denoted as unsterilized leaves). The 

freshly fallen leaves were then placed on the litter layer on 4 November 1999. The 120 leaves 

were attached with pieces of vinyl thread to the petiole and attached to 10 metal pins (12 leaves 

per pin). A total of eighty of the leaves were retrieved at weekly intervals during November -

December 1999 until snow fell, and another 40 leaves were retrieved on 28 April 2000 when 

snow had melted. Prior to the experiments, the sterilized leaves were placed on 2% malt extracted 

agar. After 8 weeks of incubation at 20°C, no microbial colonies had developed on the plates. 

Thus, the effectiveness of the sterilization method was assured. 

Finally, 60 decomposing leaves were collected at monthly intervals from May to 

October 1999 at the same time as the living leaves. On each sampling occasion, 10 leaves were 

collected from the litter layer. 

Fungal isolation 

For the isolation of fungi, a surface sterilization method (Kinkel and Andrews 1988; 

Hata 1997) and a modified washing method (Harley and Waid 1955; Tokumasu 1980) were used. 
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Two leaf disks were punched from each single leaf with a sterile cork borer (5.5 mm in diameter) 

from the central part of leaves, avoiding the primary vein. One disk was used for the surface 

sterilization method and the other for the washing method. Fungal isolation was carried out 

within six hours of sampling. The methods are described in Chapter 1. The exception was that 

the disks from living and senescent leaves were washed serially in two changes of Aerosol-OT 

solution and rinsed with sterile distilled water four times. The surface sterilized and washed disks 

were placed on 9 em Petri dishes containing LCA, one disk per plate. 

(bservation of bleached leaves 

The number of bleached leaves and the bleached area present on litter were estimated on 

May to June 2001. All beech litters included in 10 cores (20 x 20 em) that were arbitrarily placed 

on forest floor was collected and taken to the laboratory. Bleached leaves were photocopied and 

scanned with a photos canner (EPSON GT-8000). By the image analysis performed on a 

Macintosh computer using public domain NIH image software (written by Wayne Rasband, US 

NIH. Email: < zippy.nimh.hih.gov», area of bleached portions on the litter was measured 

(Osono and Takeda 1998). 

Bleached leaves collected on August and September 1999 were cut into bleached and the 

non-bleached portions and used for fungal isolation and chemical analyses. Two bleached and 

two non-bleached leaf disks were punched out from each of twenty leaves and a total of 80 disks 

were used for fungal isolation by the surface sterilization and the washing methods as described 

above. Fungal isolation was carried out within six hours of sampling. Organic chemical and 

element contents of the bleached and the non-bleached portions were analyzed according to the 

method described below. 

Bleached leaves collected on July 2002 were air -dried and prepared for thin sectioning. 

The leaves were embedded in polyethylene glycol #4000 (Nacalai Tesque Inc., Kyoto, Japan) 

which was heated to 80°C and poured on the sample until it was no longer absorbed. The 

samples were then returned to a refrigerator at 4 °C to harden. The hardened samples were 

attached to a small wooden block (3 x 2 x 1 em) using melted polyethylene glycol #4000 and 

sliced to the thickness of 30 !-lm by a sliding microtome (Daiwa Machinery Co., Saitama, Japan). 
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The thin sections of the leaves were then observed at 100 X magnification. 

Chemical analyses 

Leaf samples were ground in a laboratory mill (0.5 mm screen). The amount of lignin in 

samples was estimated by gravimetry using hot sulfuric acid digestion (King and Heath 1967). 

Each sample was extracted with alcohol-benzene at room temperature and the residue treated with 

72% sulfuric acid (v/v) for 2 h at room temperature with occasional stirring. The mixture was 

then diluted with distilled water to make a 2.5% sulfuric acid solution and autoclaved at 120°C for 

60 min. After cooling, the residue was filtered and washed with water through a porous crucible 

(G4), dried at 105°C, and weighed as acid insoluble residue. The fIltrate (autoclaved sulfuric acid 

solution) was used for total carbohydrate analysis as described below. 

The amount of total carbohydrate in the fIltrate was estimated by the phenol-sulfuric acid 

method (Dubois et al. 1956). Five percent phenol (v/v) and 98% sulfuric acid (v/v) were added to 

the fIltrate. The optical density of the solution was then measured by a spectrophotometer at 490 

nm using known concentrations of D-glucose as standards. 

Soluble carbohydrate and polyphenol were extracted from the sample with 50% 

methanol (v/v) at 75°C for 60 min. Soluble carbohydrate content was estimated by the phenol

sulfuric acid method. Polyphenol content was estimated by the Folin-Ciocalteau method 

(Waterman and Mole 1994). The extract was added with Folin-Ciocalteau reagent (Nacalai 

Tesque, Kyoto, Japan) and aqueous sodium carbonate. The optical density of the solution was 

then measured at 760 nm using the known concentrations of tannin acid as a standard. 

Holocellulose fraction was not determined by direct analysis but was calculated as a difference 

between the total carbohydrate and the soluble carbohydrate. 

The term 'lignin' is commonly used for the material as determined by the sulfuric acid 

digestion method. 'Lignin' fraction contains not only true lignin but lignin-like materials 

(secondary compounds and humic substances) produced during decomposition. In this study the 

term ''lignin'' includes both substances for the sake of simplicity. 

Total carbon and total nitrogen contents were estimated by automatic gas 

chromatography (NC analyzer, Sumitomo Chemical Co., Osaka, Japan). 
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Definition and data reduction 

The frequency of all species was calculated as a percentage of the number of disks with 

the species of the total number of disks tested in each leaf type. When the frequency of a species 

on any leaf type was significantly (P<O.05) higher than zero by Fisher'S exact probability test, 

the species was regarded as frequent. When comparing the frequency of a species between leaf 

types, Fisher's exact probability test on 2 x 2 contingency tables was used, because data were in 

the form of proportions. 

In this study, phyllosphere denotes the interior and surface of living and senescent 

leaves. Fungi isolated from living, senescent, freshly fallen, and decomposing leaves were 

categorized into three groups: endophytes, epiphytes, and others. Endophytes were frequent 

species isolated from the phyllosphere by the surface sterilization method. Epiphytes were 

frequent species isolated from the phyllosphere by the washing method. The relative frequency of 

endophytes, epiphytes, and others was calculated as a percentage of the sum of frequencies of 

fungi in the group of the total frequency of all fungi in each leaf type. 
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Table 2.1 Frequency (%) of fungi in the interior of Fagus crenata leaves. 

Living Senescent Freshly fallen leaves Decom-
Fungus leaves leaves Unsteril- Sterilized posing 

ized leaves 

Geniculosporium sp.1 33.3 26.7 18.3 16.7 28.3 

Ascochyta sp. 13.3 56.7 28.3 0.0 5.0 

Xylaria sp. (anamorph) 10.0 10.0 6.7 6.7 33.3 

White sterile 5LS12 6.7 26.7 6.7 3.3 10.0 

White sterile S1R 5.0 3.3 3.3 5.0 1.7 

White sterile 8LS81 3.3 10.0 16.7 0.0 6.7 

White sterile 7LS81 3.3 0.0 1.7 0.0 6.7 

Coelomycete 7GS101 1.7 3.3 0.0 0.0 0.0 

Nodulisporium sp.1 1.7 0.0 0.0 0.0 0.0 

White sterile 7LS63 1.7 3.3 0.0 0.0 0.0 

Ascomycete 8GS51 1.7 0.0 0.0 0.0 0.0 

Aureobasidium pullulans 1.7 0.0 0.0 0.0 0.0 

Coelomycete lOGS61 1.7 0.0 0.0 0.0 0.0 

Coelomycete 7GS92 1.7 0.0 0.0 0.0 0.0 

Discosia sp. 0.0 0.0 18.3 1.7 0.0 

Ascomycete 8BS71 0.0 0.0 6.7 6.7 0.0 

Dactylaria obtriangularia 0.0 3.3 10.0 3.3 0.0 

Dark sterile DIM 0.0 0.0 13.3 0.0 1.7 

Nodulisporium sp.3 0.0 20.0 0.0 1.7 1.7 

Phoma sp.1 0.0 0.0 11.7 0.0 1.7 

Eupenicillium sp. 0.0 0.0 1.7 5.0 1.7 

Alternaria alternata 0.0 0.0 6.7 0.0 0.0 

Geniculosporium sp.2 0.0 0.0 0.0 0.0 5.0 

Arthrinium sp. 0.0 3.3 1.7 1.7 0.0 

Discula sp. 0.0 0.0 5.0 0.0 0.0 

Phomopsis sp. 0.0 0.0 3.3 0.0 0.0 

Chaetomium globosum 0.0 0.0 1.7 0.0 3.3 

Colletotrichum sp.1 0.0 3.3 1.7 0.0 0.0 

White sterile 2CS63 0.0 0.0 3.3 0.0 0.0 

Coelomycete 6CS51 0.0 0.0 1.7 1.7 0.0 

Gliocladium roseum 0.0 0.0 1.7 0.0 1.7 

Nodulisporium sp.2 0.0 0.0 0.0 1.7 1.7 

White sterile 7LS63 0.0 0.0 0.0 1.7 1.7 

Cladosporium tenuissimum 0.0 0.0 1.7 0.0 0.0 

Coelomycete 3CSll 0.0 0.0 1.7 0.0 0.0 

20 



Table 2.1 Continued. 
Coelomycete 3CS71 0.0 0.0 1.7 0.0 0.0 
Hyphomycete 2CS72 0.0 0.0 1.7 0.0 0.0 
Nigrospora state of Khuskia 0.0 0.0 1.7 0.0 0.0 
oryzae 

Ulocladium sp. 0.0 0.0 1.7 0.0 0.0 
Arthrinium phaeospermum 0.0 0.0 0.0 1.7 0.0 
Cladosporium cladosporioides 0.0 0.0 0.0 1.7 0.0 
Nigrospora sphaerica 0.0 0.0 0.0 1.7 0.0 
Acrogenospora sp. (?) 0.0 0.0 0.0 0.0 1.7 
Coelomycete 10LS71 0.0 0.0 0.0 0.0 1.7 
Coelomycete 5LS51 0.0 0.0 0.0 0.0 1.7 
Coelomycete WWF 0.0 0.0 0.0 0.0 1.7 

Number of species 14 12 28 16 20 
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Table 2.2 Frequency (%) of fungi on the surface of Fagus crenata leaves. 

Living Senescent Freshly fallen leaves Decom-
Fungus leaves leaves Unsteril- Sterilized posing 

ized leaves 

Ascochyta sp. 60.0 76.7 16.7 10.0 3.3 
Phoma sp.1 43.3 30.0 45.0 46.7 20.0 

Cladosporium cladosporioides 30.0 53.3 26.7 20.0 15.0 
Pestalotiopsis sp.1 23.3 6.7 0.0 0.0 0.0 

Phomopsis sp. 20.0 0.0 1.7 0.0 0.0 
Pestalotiopsis sp.3 15.0 16.7 13.3 3.3 11.7 
Gliocladium roseum 13.3 46.7 16.7 15.0 51.7 
Pestalotiopsis sp.2 10.0 60.0 20.0 23.3 11.7 
Arthrinium sp. 8.3 6.7 33.3 30.0 15.0 
Coelomycete WWF 8.3 0.0 0.0 0.0 0.0 
Trichoderma viride 5.0 6.7 13.3 8.3 33.3 
Unidentified BC 5.0 0.0 3.3 6.7 0.0 
Aureobasidium pullulans 5.0 3.3 1.7 3.3 1.7 
Pestalotiopsis spA 5.0 3.3 0.0 1.7 3.3 
Alternaria alternata 3.3 20.0 21.7 3.3 3.3 
Volutella ciliata 3.3 6.7 11.7 13.3 3.3 
Penicillium thomii 3.3 0.0 3.3 1.7 10.0 

Discula sp. 3.3 3.3 3.3 3.3 0.0 
Coniothyrium sp. 3.3 0.0 1.7 3.3 0.0 
Cladosporium sp. 3.3 0.0 1.7 1.7 0.0 
Cladosporium sphaeospermum 3.3 3.3 0.0 0.0 0.0 
Dark sterile 5GW72 3.3 0.0 0.0 0.0 0.0 
White sterile 5GW21 3.3 0.0 0.0 0.0 0.0 
Fusarium graminearum 1.7 0.0 3.3 6.7 6.7 
Epicoccum nigrum 1.7 0.0 5.0 5.0 0.0 
Paecilomyces sp.2 1.7 0.0 0.0 1.7 5.0 
Paecilomyces sp.1 1.7 3.3 0.0 1.7 1.7 
Penicillium oxalicum 1.7 0.0 0.0 0.0 1.7 
Phialophora sp. 1.7 0.0 0.0 1.7 0.0 
Coelomycete 3CS71 1.7 0.0 0.0 0.0 0.0 
Coelomycete 5GW52 1.7 0.0 0.0 0.0 0.0 
Curvularia lunata 1.7 0.0 0.0 0.0 0.0 
Hyphomycete 7GW24 1.7 0.0 0.0 0.0 0.0 

Trichoderma hamatum 0.0 0.0 16.7 15.0 43.3 
Trichoderma koningii 0.0 0.0 8.3 6.7 33.3 
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Table 2.2 Continued. 
M ortierella ramanniana var. 0.0 0.0 5.0 3.3 30.0 
ramanniana 

Trichoderma sp.1 0.0 0.0 0.0 3.3 13.3 

Penicillium citrinum 0.0 6.7 0.0 3.3 18.3 

M ortierella isabellina 0.0 0.0 3.3 1.7 15.0 

Mucor hiemalis 0.0 0.0 3.3 1.7 11.7 
Mucor racemosus 0.0 0.0 0.0 1.7 15.0 
Cladosporium herbarum 0.0 10.0 10.0 6.7 0.0 
Dark sterile DIM 0.0 0.0 15.0 0.0 1.7 

Mortierella globulifera 0.0 0.0 0.0 0.0 15.0 

Trichoderma longibrachiatum 0.0 0.0 1.7 3.3 3.3 

Fusarium solani 0.0 0.0 1.7 1.7 3.3 
Coelomycete AKA 0.0 0.0 1.7 6.7 0.0 

Phoma sp.2 0.0 3.3 3.3 1.7 1.7 

Trichoderma atroviride 0.0 3.3 0.0 0.0 6.7 

Trichoderma sp.2 0.0 0.0 1.7 1.7 5.0 
Absidia glauca 0.0 0.0 0.0 0.0 8.3 

M ortierella verticillata 0.0 0.0 0.0 0.0 8.3 
Penicillium miczynskii 0.0 0.0 0.0 0.0 3.3 
Verticillium psalliotae 0.0 0.0 1.7 0.0 3.3 
Trichoderma polysporum 0.0 0.0 0.0 1.7 5.0 
Penicillium velutinum 0.0 0.0 0.0 0.0 3.3 
Gliocladium virens 0.0 0.0 0.0 0.0 3.3 
Acremonium sp. 0.0 10.0 0.0 0.0 1.7 
Penicillium sclerotiorum 0.0 3.3 3.3 0.0 1.7 
Penicillium glabrum 0.0 0.0 3.3 0.0 0.0 
Dactylaria obtriangularia 0.0 0.0 1.7 5.0 0.0 
Verticillium cf. suchlasporium 0.0 0.0 1.7 0.0 1.7 
Nigrospora state of K. oryzae 0.0 10.0 0.0 0.0 0.0 
M onochaetia sp. 0.0 3.3 0.0 3.3 0.0 
White sterile 3SW91 0.0 0.0 0.0 5.0 0.0 
Mucor sp. 0.0 0.0 0.0 0.0 1.7 
Geniculosporium sp.3 0.0 6.7 0.0 0.0 0.0 
Colletotrichum sp.1 0.0 3.0 0.0 1.7 0.0 
Cladosporium oxysporum 0.0 3.0 0.0 0.0 1.7 
Mortierella sp.1 0.0 0.0 1.7 1.7 0.0 
White sterile 5SW61 0.0 0.0 1.7 1.7 0.0 
Trichoderma harzianum 0.0 0.0 1.7 0.0 0.0 
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Table 2.2 Continued. 
Mortierella wuyshanensis 0.0 0.0 1.7 0.0 1.7 
Nigrospora sphaerica 0.0 0.0 0.0 1.7 1.7 
Penicillium janthinellum 0.0 0.0 0.0 0.0 1.7 
Mucor circinelloides 0.0 0.0 0.0 0.0 3.3 
Geniculosporium sp.l 0.0 3.3 0.0 0.0 0.0 
Penicillium sp. 0.0 3.3 0.0 0.0 0.0 
Pestalotiopsis sp.5 0.0 3.3 0.0 0.0 0.0 
Cladosporium macrocarpum 0.0 0.0 1.7 0.0 0.0 
Colletotrichum sp.2 0.0 0.0 1.7 0.0 0.0 
Fusarium avenaceum 0.0 0.0 1.7 0.0 0.0 
Fusarium oxysporum 0.0 0.0 1.7 0.0 0.0 
Hyphomycete 3CW24 0.0 0.0 1.7 0.0 0.0 
Hyphomycete 4CW31 0.0 0.0 1.7 0.0 0.0 
Phialophora verrucosa 0.0 0.0 1.7 0.0 0.0 
Trichoderma piluliferum 0.0 0.0 1.7 0.0 0.0 
Ulocladium sp. 0.0 0.0 1.7 0.0 0.0 
Coelomycete lSW42 0.0 0.0 0.0 1.7 0.0 
Coelomycete 4SW26 0.0 0.0 0.0 1.7 0.0 
Cyliruirocarpon state of N ectria 0.0 0.0 0.0 1.7 0.0 
radicicola 

Phialophora cycalminis 0.0 0.0 0.0 1.7 0.0 
Calcarisporium arbuscula 0.0 0.0 0.0 0.0 1.7 
Eupenicillium sp. 0.0 0.0 0.0 0.0 1.7 
M ortierella alpina 0.0 0.0 0.0 0.0 1.7 

Number of species 33 30 48 48 52 
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Table 2.3 Frequency (%) of phyllosphere fungi in the interior and on the surface of living, senescent, freshly fallen (unsterilized), and 

decomposing leaves of Fagus crenata. These fungi were divided into three groups according to the frequency on freshly fallen and decomposing 

leaves (see text). 

Fungus EndoEh~te / eEiEh~te GrouE Living leaves Senescent leaves Freshl~ fallen leaves DecomEosing leaves 

Interior 
Geniculosporium sp.1 endophyte I 33 27 18 28 

Xylaria sp. (anamorph) endophyte I 10 10 7 33 

White sterile mycelium 5LS12 endophyte I 7 27 7 10 

Ascochyta sp. endophyte/epiphyte II 13 57 28 5 

Nodulisporium sp.3 endophyte III 0 20 0 2 

Phoma sp.1 epiphyte * 0 0 12 2 

Surface 
N Phoma sp.1 epiphyte I 43 30 45 20 
Ul 

Cladosporium cladosporioides epiphyte I 30 53 27 15 

Pestalotiopsis sp.3 epiphyte I 15 17 13 12 
Gliocladium roseum epiphyte I 13 47 17 52 

Pestalotiopsis sp.2 epiphyte I 10 60 20 12 

Arthrinium sp. epiphyte I 8 7 33 15 

Ascochyta sp. endophyte/epiphyte II 60 77 17 3 

Alternaria alternata epiphyte II 3 20 22 3 

Pestalotiopsis sp.1 epiphyte III 23 7 0 0 
Phomopsis sp. epiphyte III 20 0 2 0 

Coelom~cete WWF eEiEh~te III 8 0 0 0 

* Phoma sp.1 was an epiphytic species in Group I but was also frequent in the interior of freshly fallen leaves. 
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Fig. 2.1 Frequency of phyllosphere fungi in the interior and on the surface of 

sterilized (S) and unsterilized (US) freshly fallen leaves of Fagus crenata. *** -

P<O.OOI; ** = P<O.OI; * = P<0.05; n.s. = non significant. 
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Results 

Phyllosphere fungi and their occurrence on leaf litter 

Eighteen fungal species were isolated from the interior and 47 from the surface of the 

phyllosphere (living and senescent leaves) of beech (Tables 2.1 and 2.2). 

Fifteen species were recorded as phyllosphere fungi (Table 2.3). Five species in the 

interior were regarded as endophytes and eleven species on the surface were regarded as 

epiphytes. Ascochyta sp. was frequent in both habitats. These phyllosphere fungi were divided 

into three groups according to their frequency on freshly fallen and decomposing leaves. Group I 

included nine species (three endophytes and six epiphytes) that were frequent on decomposing 

leaves or on both freshly fallen and decomposing leaves. Phoma sp.l was an epiphyte but was 

also frequent in the interior of freshly fallen leaves. Group II included two species, Ascochyta sp. 

and Alternaria alternata, which were frequent in freshly fallen leaves but not so on 

decomposing leaves. Group III included four species (one endophyte and three epiphytes) that 

were not frequent on either freshly fallen or decomposing leaves. 

Colonization of sterilized litter by phyllosphere fungi 

Figure 2.1 shows frequency of 10 phyllosphere fungi belonging to Groups I and II on 

sterilized freshly fallen leaves in comparison with unsterilized leaves. The results for Xylaria sp. 

(anamorph) and a white sterile mycelium coded 5LS12 in Group I and four species in Group III 

were excluded from Fig. 2.1, as they were not frequent on freshly fallen leaves. The frequencies 

of Ascochyta sp. and Phoma sp.l in the interior were significantly lower on sterilized leaves 

than on unsterilized leaves, but on the surface the differences were not significant. The 

frequencies of A It. alternata and Pestalotiopsis sp.3 on the surface were significantly lower on 

sterilized leaves than on unsterilized leaves. 

Succession of phyllosphere fungi on leaf litter 

Figure 2.2 shows sum of frequencies, the relative frequency, and number of species 
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Fig. 2.2 Sum of frequencies, relative frequencies, and numbers of species of 

endophytes, epiphytes, and other species in the interior and on the surface of living 

(LL) , senescent (SL), freshly fallen (unsterilized) (FFL), and decomposing leaves 

(DL) of Fagus crenata. Values indicate numbers of species. 

of endophytes, epiphytes, and other species on the interior and surface of living, senescent, 

freshly fallen (unsterilized), and decomposing leaves. Endophytes as a group accounted for 73% 

and 84% of the total frequency in the interior of living and senescent leaves, respectively. The 

sum of frequencies and the relative frequency of endophytes decreased temporarily on freshly 
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fallen leaves while the sum of frequencies and the relative frequency of epiphytes and other 

species increased. The sum of frequencies and the relative frequency of endophytes then 

increased on deromposing leaves while the sum of frequencies and the relative frequency of 

epiphytes and other species decreased. 

Epiphytes as a group accounted for 79% and 75% of the total frequency on the surface 

of living and senescent leaves, respectively. The sum of frequencies and the relative frequency of 

epiphytes decreased as decomposition progressed from freshly fallen to decomposing leaves 

while the sum of frequencies and the relative frequency of other species increased. 

Bleached leaf litter 

Four hundred and twenty two (80%) of 530 leaves examined suffered bleaching (an 

example of bleached leaf litter is shown in Fig. 2.3). However, the bleached portion consisted of 

6.3% of the total leaf area on mean with the standard deviation of 5.1 % (n=10). 

A total of 39 isolates in 8 species were isolated from the interior and a total of 186 

isolates in 43 species were isolated from the surface of the bleached and the non-bleached 

portions (Tables 2.4 and 2.5). Two xylariaceous species Xy/aria sp. (anarnorph) and 

Geniculosporium sp.1 were frequent in the interior of both portions (Table 2.4). The frequency 

of Xy/aria sp. (anamorph) was significantly higher in the bleached portion than in the non

bleached portion, while no significant differences were found in the frequencies of the other 

species in the interior and on the surface between the portions. 

2 3 4 5 6 7 8 

Fig. 2.3 A bleached leaf litter of Fagus crenata collected from the field. 
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Table 2.4 Frequency of occurrence (%) of fungi isolated by surface sterilization method from 
bleached and non-bleached portions of Fagus crenata leaf litter. n.s. = no significant. 

Fungus Bleached portion Non-bleached portion P 

Xylaria sp. (anamorph) 60 20 0.01 

Geniculosporium sp.1 25 35 n.s. 

White sterile 5LS12 

Geniculosporium sp.2 

Hyphomycete 8BS31 

Ascomycete 8BS71 

Nodulisporium sp.1 

Phomopsis sp. 

Number of species 

15 

5 

0 

0 

0 

0 

4 

10 n.s. 

0 n.s. 

10 n.s. 

5 n.s. 

5 n.s. 

5 n.s. 

7 

Table 2.5 Frequency of occurrence (%) of fungi isolated by washing method from 
bleached and non-bleached portions of Fagus crenata leaf litter. n.s. = no significant. 

Fungus Bleached portion Non-bleached portion P 

Trichoderma sp.1 40 60 n.s. 

Gliocladium roseum 35 40 n.s. 

Trichoderma viride 25 45 n.s. 

Trichoderma hamatum 25 35 n.s. 

Mucor hiemalis 25 20 n.s. 

M ortierella ramanniana 20 35 n.s. 

Cladosporium cladosporioides 20 20 n.s. 

Mucor racemosus 20 20 n.s. 

M ortierella isabellina 15 40 n.s. 

Penicillium citrinum 15 30 n.s. 

Arthrinium sp.a) 15 25 n.s. 

Trichoderma koningii 15 0 n.s. 

Coelomycete 8WW71 10 5 n.s. 

Penicillium glabrum 10 0 n.s. 

Verticillium psalliotae 10 0 n.s. 

Penicillium velutinum 5 10 n.s. 

Pestalotiopsis sp.3 5 10 n.s. 

Dark sterile DIM 5 5 n.s. 

M ortierella globurifera 5 5 n.s. 

Mucor sp. 5 5 n.s. 

Pestalotiopsis sp.2 5 5 n.s. 
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Table 2.5 Continued. 

Trichoderma Zongibrachiatum 5 5 n.s. 

Chaetomium gZobosum 5 0 n.s. 

Epicoccum nigrum 5 0 n.s. 

GliocZadium viride 5 0 n.s. 

MortiereZZa sp. 5 0 n.s. 

Penicillium janthineZZum 5 0 n.s. 

Phoma sp. 5 0 n.s. 

Trichoderma atroviride 5 0 n.s. 

Trichoderma sp.2 5 0 n.s. 

Penicillium miczynskii 0 20 n.s. 

Fusarium soZani 0 15 n.s. 

GZiocZadium virens 0 15 n.s. 

Penicillium thomii 0 15 n.s. 

Absidia spinosa 0 10 n.s. 

Colomycete AKA 0 10 n.s. 

PaeciZomyces carneus 0 10 n.s. 

VerticiZZium cf. suchZasporium 0 10 n.s. 

VoZuteZZa ciliata 0 10 n.s. 

Absidia gZauca 0 5 n.s. 

M ortiereZZa verticiZZata 0 5 n.s. 

Trichoderma harzianum 0 5 n.s. 

Trichoderma poZysporum 0 5 n.s. 

Number of sEecies. 30 32 
a) Anamorphic state of Apiospora montagnei. 
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Table 2.5 shows organic chemical and element contents in the bleached and the non

bleached portions. In the bleached portion, lignin and polyphenol concentrations were lower, 

while holocellulose and soluble carbohydrate concentrations were higher, than in the non

bleached portion. Carbon concentration was lower while nitrogen concentration was higher in the 

bleached portion than in the non-bleached portion. 

Figure 2.4 shows section of freshly fallen leaves and bleached and non-bleached 

portions of decomposing leaves. In the bleached portions, intracellular brown pigmentation was 

cleared and cell walls were thinned in palisade and spongy tissues. 

Table 2.5 Organic chemical and element concentration (%) of bleached 

and non-bleached portions of Fagus crenata leaf litter 

Property Bleached portion Non-bleached portion 

Organic chemical 
Lignin 34.8 41.8 
Holocellulose 30.2 25.2 
Polyphenol 0.7 1.1 
Soluble carbohydrate 2.9 2.6 
Element 
Carbon 44.9 46.5 
Nitrogen 2.3 2.1 
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UJ 

Fig. 2.4 Vertical thin sections of beech leaf litter. A = freshly fallen leaves, B = bleached 
portion of decomposing leaves, C = non-bleached portion of decomposing leaves, D = 
bleached and non-bleached portion. Bar indicates 30 J1 m 



Discussion 

Of the fI.fteen species recorded as phyllosphere fungi, eleven occurred frequently on 

freshly fallen and (or) decomposing leaves. Xylariaceous endophytes were predicted to occur in 

leaf litter (Carroll and Petrini 1983; Petrini and Petrini 1985), but only two previous studies found 

circumstantial evidence to support this (Bills and Polishook 1994; LaessQ)e and Lodge 1994). The 

present study is therefore the first to demonstrate the frequent occurrence of xylariaceous 

endophytes, Geniculosporium sp.1, Xylaria sp. (anamorph), and a white sterile 5LS12, on leaf 

litter. Preliminary DNA analysis indicated 5LS12 also belongs to the Xylariaceae. 

The frequencies of A It. altemata andAscochyta sp. classified in Group II were low on 

decomposing leaves compared to the frequencies of fungi classified in Group I. This difference 

may be explained by differences in competitive abilities, life history characteristics, or energy 

requirements between fungi classified in Groups I and II. The latter explanation is probable as 

previous studies indicated that freshly fallen leaves are richer in readily available energy sources 

such as non-lignified holocellulose and soluble carbohydrate than are decomposing leaves 

(Osono and Takeda 2001b) and that these fungi in Group II had a higher requirement for these 

sources (Osono and Takeda 2002a). 

Four species classified in Group III that were infrequent on freshly fallen and 

decomposing leaves may be non saprophytic; these fungi may fail to develop mycelia and be 

excluded at leaf death. 

Phyllosphere fungi may persist in leaf litter from the phyllosphere and (or) infect leaves 

directly after litter fall. In this study, colonization of sterilized freshly fallen leaves was 

investigated to test their ability to infect litter directly after litter fall. The decrease in frequencies 

ofAscochyta sp. and Phoma sp.1 in the interior and Alt. altemata and Pestalotiopsis sp.3 on 

the surface of sterilized leaves suggested that persistence was more important than direct infection 

for these species. The frequent occurrence ofAscochyta sp. and Phoma sp.1 on the surface of 

sterilized leaves indicated that habitat differences between the interior and surface affected the 

infection processes of these species; direct infection to the surface was intensive but persistence 

in the interior was a crucial process. The dependence upon persistence of Alt. altemata and 
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Ascochyta sp. in Group II may be related to their high requirement for readily available resources 

in freshly fallen leaves as discussed above, suggesting that the infection strategy of phyllosphere 

fungi would be associated with the degree of energy requirement for each species. 

On the other hand, the frequencies of Arthrinium sp., Geniculosporium sp.1, C 

cladosporioides, Gl. roseum, and Pestalotiopsis sp.2 did not differ significantly between 

sterilized and unsterilized leaves, indicating these fungi were able to infect litter directly. Tubaki 

and Yokoyama (1971, 1973a, 1973b) and Kuter (1986) also reported high densities of 

Cladosporium and Gliocladium species on sterilized leaf litter as well as on unsterilized litter. 

Colonization of sterilized litter suggested that these phyllosphere fungi can infect fallen litter 

directly by hyphae or spores from surrounding litter or the air. Immigration may playa significant 

role in the population dynamics of some phyllosphere fungi on freshly fallen leaves. Similarly, 

Kinkel et al. (1989) and Kinkel (1991) found in a study of fungal colonization of surface

sterilized living leaves that immigration was quantitatively important in the population processes 

of phylloplane fungi. 

Analyses of the sum of frequencies and the relative frequency of endophytes, epiphytes, 

and other species revealed successional trends during decomposition from freshly fallen to 

decomposing leaves. The temporary decrease in frequency of endophytes on freshly fallen leaves 

may be due to competition with epiphytes and other species for readily available energy sources 

in the mesophyll. Asimilar situation was found on leaves of Eucalyptus viminalis Labill., where, 

at the time of leaf death, epiphytes colonized the interior while the frequency of the original 

endophytes decreased (Cabral 1985). The decrease in epiphytes in the interior of decomposing 

leaves is probably due to the consumption and exhaustion of readily available resources of plant 

origin during decomposition (Osono and Takeda 2002a). The ability of the xylariaceous 

endophytes in Group I to decompose the residual lignocellulose matrix may allow them to persist 

in decomposing, leaves (Osono and Takeda 2001b, 2002a). On the other hand, the sum of 

frequencies and the relative frequency of epiphytes on the surface decreased as decomposition 

progressed from freshly fallen to decomposing leaves. Osono and Takeda (2001b) found that the 

decrease in the frequencies of epiphytes during decomposition was related to the decrease in 

readily available resources on which they depend for their growth. The successional pattern 
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observed on the surface of beech litter was similar to that reviewed by Hudson (1968) on 

decomposing litter of several tree species. 

Xylaria sp. (anamorph) and Geniculosporium sp.1 were frequent in the interior of the 

bleached portions in which cell walls were thinned and intracellular brown pigments were 

removed in palisade and spongy tissues and in which lignin concentration was lower than in the 

non-bleached portion. The removal of cell wall components and condensed protoplasmic 

residues by white rot fungi has already reported by Reisinger et al. (1978) and Rihani et al. 

(2001). As these xylariaceous bleached the litter and decomposed lignin in pure culture test 

(08ono and Takeda 2002a), these fungi took part in the selective delignification in the bleached 

portion under field condition. Furthermore, the frequency of Xylaria sp. (anamorph) was 

significantly higher in the bleached portion than in the non-bleached portion, indicating that some 

strains of Xylaria sp. (anamorph) had a prominent role in lignin decomposition of the litter. 

O8ono and Takeda (2002a) found a strain of this species caused marked delignification in pure 

culture decomposition test. 

Xylaria sp. (anamorph) decomposed not only lignin but also holocellulose to some 

extent during the selective delignification process. This was due to that lignin decomposition 

depends on the availability of carbohydrate energy sources (Kirk et al. 1976). Higher 

concentration of soluble carbohydrate in the bleached portion may be due to the release of 

reducing sugars from the holocellulose fraction during the selective delignification (Saito 1960). 

The bleached portions, however, consisted of only a small part of the total leaf area (6.3 %) and 

the majority of the leaves was the non-bleached portions in which holocellulose was 

preferentially attacked over lignin. This is consistent with the result of Osono and Takeda 

(2001b) that reported these xylariaceous fungi were frequent during the immobilization phase of 

nitrogen and phosphorus in which holocellulose was decomposed preferentially over lignin. 

The roles of phyllosphere fungi in litter decomposition have been investigated 

previously (08ono and Takeda 1999b, 2001a, 2001b, 2002a). Endophytes have different 

functions than epiphytes: xylariaceous endophytes Geniculosporium sp.1, Xylaria sp. 

(anamorph), and 5LS12 are functional species decomposing the lignocellulose matrix and 

regulating nutrient dynamics, whereas epiphytes and other endophytes are associated species 
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whose growth depends upon holocellulose and (or) soluble carbohydrate of plant origin. The 

absence of basidiomycetous fungi on freshly fallen and decomposing leaves is probably due to 

the isolation methodology adopted in this study. Fungal biomass estimation by a direct 

observation technique revealed that biomass of the Basidiomycota was negligible on freshly 

fallen leaves and increased as decomposition progressed (Osono and Takeda 2001b). 
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Chapter 3 

Species composition and abundance of litter-decomposing Basidiomycota 

with reference to bleaching activity 

Introduction 

In forest ecosystems, the Basidiomycota have central roles in litter decomposition 

and in symbiotic uptake of plant nutrients (Frankland et al. 1982; Cooke and Rayner 1984; 

Smith and Read 1997). Hyphae of these fungi are distinguished from those of others based on 

the presence of clamp connection at septa. Mycelia of the Basidiomycota (as clamp bearing 

hyphae) consist of up to 70% of total fungal mycelium in forest soil (Frankland 1982; Kj0ller 

and Struwe 1982). However, observations of hyphae gave no information about the 

identification of species. Hence, species composition has been investigated from observation 

of fruit bodies or molecular analyses of the hyphae. 

Ecology of litter decomposing Basidiomycota has been studied from several aspects 

including species composition (Hering 1966; Okabe 1986; Miyamoto et al. 2000), vertical and 

horizontal distribution of mycelia on forest floors (Swift 1982; Newell 1984a, b), autecology 

(Frankland 1984; Frankland et al. 1995), population dynamics (Murphy and Miller 1993, 

1997), colonization of decomposing litter (Osono and Takeda 2001b), degradation of lignin 

and humic acid and ligninolytic enzymatic activity (Blondeau 1989; Steffen et al. 2000), and 

litter decomposing activity in vitro (Lindeberg 1944, 1946, Mikola 1956, Saito 1960, Hering 

1967, 1972, De-Boois 1976, Dix and Simpson 1984, Kuyper and Bokeloh 1994, Osono and 

Takeda 1999b, 2002a) and in vivo (Harris 1945; Saito 1957; Hintikka 1970). These aspects 

were studied separately and a pilot study that follows these aspects simultaneously is needed 

to clarify the role of the Basidiomycota in litter decomposition. 

The purpose is to investigate species composition and mycelial abundance of the 

Basidiomycota with reference to bleaching activity of these fungi. The bleaching of litter is 

analogous to white rot of wood that is due to removal of lignin as well as cellulose. 
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Materials and Methods 

Study area 

The study was carried out in the Ashiu Experimental Forest of Kyoto University (see 

Material and Study Site). Two study sites were chosen that were located on a west facing 

slope about 200 m long. One site was located on the upper part of the slope and the other on 

the lower part. A study plot of 50 x 10 m in area (500 m2
) was laid out in each site and was 

divided into 5 subplots of 10 x 10 m. The study area of 500 m2 was enough to describe species 

composition of macrofungi in temperate forests according to Okabe (1986). The subplots 

were divided into 25 grids of 2 x 2 m to make a total of 125 grids per site. 

Fruit body collection 

Fruit body of the Basidiomycota was collected from the plots 9 times during May to 

November 2001. At each sampling, all fruit bodies encountered on the surface of forest floor 

were recorded excepting obviously immature or rotting ones. Records kept of species and of 

grid number and soil horizons (L, F, A layer) from which the fruit body was emerged. Fruit 

bodies occurring on logs, twigs, or roots that were fallen or buried were not recorded. 

Ascomycota were omitted. Identification was mainly made : after Imazeki et al. (1988), 

Imazeki and Hongo (1987, 1989), and Hongo (1994). The fungi were divided into two groups, 

litter decomposing fungi and mycorrhizal fungi, according to these publications. Frequency of 

a species was calculated as a percentage of the number of grids with the species to the total 

number of grids examined in each site (125). 

Collection of forest floor and mineral soil materials 

Forest floor and mineral soil materials were collected from each of 10 subplots four 

times on May, July, September, and November 2001 and used for fungal biomass estimation. 

Materials from L, F, and A layers were collected using a core of 20 x 20 cm. The materials 
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were preserved in vinyl bags and taken to the laboratory. L layer materials on November were 

divided into two portions, freshly fallen litter and previously partly decomposed litter. F layer 

materials on the lower site were sampled only when these were recognized, as the 

development of F layer was poor on the lower site (Takeda and Kaneko 1988). Samples were 

preserved in a refrigerator at 4°C until use and processed within 48 h after sampling. L layer 

materials were fragmented by a blender, and F and A layer materials were passed through a 2 

mm sieve to exclude plant roots and coarse fragments, before a portion of the sample was 

used for the homogenization. 

Fungal biomass estimation 

Fungal biomass was measured by the method of Jones and Mollison (1948) as 

modified by Ono (1998). Samples of 1 g (fresh weight) were homogenized in a blender at 

10000 rev min·1 in 49 ml of distilled water for 3 min. The suspension (20 ml) was diluted with 

20 ml of molten agar solution (final concentration 1.5%) and mixed at low speed on a 

magnetic stirring plate. Agar films were prepared from each suspension in a haemocytometer 

(0.1 mm depth), transferred to glass slides, and dried for 24 hours. 

The films were dual-stained with fluorescent brightener (FB) and acridine orange 

(AO), each for 1 h. FB binds to chitin in fungal cell walls (West 1988) to visualize all hyaline 

hyphae that are live or ghost (empty). AD binds to nucleic acids in live fungal cells (Rost 

1992) to visualize live hyphae. The dual staining method was used because this method 

allows both total (live plus empty) hyphallength and live hyphallength to be counted in the 

same microscopic field to estimate the proportion of live hyphallength to total hyphallength 

accurately. Three agar films were prepared for each sample. 

The stained films were mounted between slides and coverslips with one drop of 

immersion oil (type DF, Cargille Laboratories, inc., Cedar Grove, N.J.,_ USA) and examined 

with a Nikon Microphot-SA epifluorescent microscope equipped with a high-intensity 

mercury light source. A Nikon UV -lA filter cube was used for examination of FB-stained 
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hyphae, and a Nikon B-2H filter cube was used for AO-stained hyphae. Dark-pigmented 

hyphae that were not stained with FB, were observed by bright field microscopy. Microscope 

fields were selected randomly and 25 fields were observed for each slide at 1000 X 

magnification. This magnification yields larger values for hyphallength than magnifications 

below 1000 X (Newell 1992). Hyphallengths were estimated using an eye-piece grid and a 

grid-intersection method (Olson 1950) and were scored into six nominal diameter classes 

«0.8,0.8-2.4,2.4-4.0,4.0-5.6,5.6-7.2, and >7.2 ~m). Fungal biomass was calculated using a 

measured mean hyphallength and diameter for each subsample at each sampling occasion, 

considering fungal hyphae to be cylinders. A density of 1.1 g cm-3 (Saito 1955) and a dry 

weight content of 15% (Baath and Soderstrom 1977) were used. 

Total fungal biomass was calculated as the sum of FB-stained biomass and the dark

pigmented biomass. Hyphae with clamp connections were classified into the Basidiomycota. 

It is recognized, however, that the fungal biomass of the Basidiomycota may have been 

underestimated because the frequency of clamp formation varies between species. AO-stained 

hyphae were regarded as living (Ono 1998). Separate litter samples were dried at 105°C for 

one week to determine water content and convert fresh weight to dry weight. 

B leached litter 

Litter materials that suffered bleaching by basidiomycetous fungi were qualitatively 

collected from forest floors of the study area. These materials are denoted as 'bleached litter' . 

At the same time, litter materials surrounding the bleached litter but suffered no bleaching 

were collected as a control and denoted as 'non-bleached litter'. Hyphallength, water content, 

chemical property, and fungal species composition were investigated for the bleached and 

non-bleached litter. 

Hyphal length was estimated for litter samples collected on December 2000 by the 

method of Jones and Mollison (1948) as modified by Ono (1998). The method is described 

above, except that 6 agar films were prepared for each sample. 
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Water content and chemical analyses were measured for litter samples collected on 

December 1999 and December 2000. The litter samples were dried at 40°C for 7 days to 

determine field water content. Concentrations of lignin, holocellulose, soluble carbohydrate, 

and polyphenol were measured according to the methods described in Chapter 2. 

Concentrations of nitrogen, phosphorus, potassium, calcium, and magnesium were measured 

according to the methods described in Chapter 4. Nitrogen transformation rates were 

determined by aerobic laboratory incubation. About 5 g from each litter sample were incubate 

for 28 days at 30°C during which the initial water content was maintained. Additional litter 

samples were dried at 105°C to determine field moisture content. Both incubated and 

unincubated samples were extracted using 2 M KCI. NH4-N concentrations were measured by 

the indophenol blue method and N03-N concentrations were measured colorimetrically 

following Zinc reduction rather than Cadmium reduction (Keeney and Nelson 1982). Net 

mineralization rates were calculated by subtracting initial inorganic N (NH4-N + N03-N) 

concentrations from final concentrations. Net nitrification rate was calculated by subtracting 

initial N03-N concentration from final N03-N concentration. Percent (%) nitrification 

represents the percentage of net nitrification rate to net mineralization rate. 

Isolation of fungi was carried out for bleached litter collected on November 1999. A 

total of sixty litter fragments (approx. 5 x 5 mm), thirty bleached litter and thirty non

bleached litter, were processed with the washing method. Fungal isolation was carried out 

within 8 hours after sampling. The methods are described in Chapter 2, except that two disks 

were placed on the surface of each LeA plate. Frequency of a species is calculated as a 

percentage of the number of disks with the species to the total number of disks tested in each 

litter type (30). When comparing the frequency of a species between litter types, Fisher's 

exact probability test on 2 x 2 contingency tables was used, because data were in the form of 

proportions. 

42 



Table 3.1 Frequency (%) of fruit bodies ofthe Basidiomycota 

Fungus Ueeer Lower Soil horizon 

Mycena filopes 29.6 60.0 LA 

Mycena polygramma 13.6 15.2 L 

Mycena sp. 4.0 8.0 LA 

Collybia peronata 4.0 0.8 L 
Collybia sp. 4.0 L 

Hydnum repandum 2.4 A 

Stropharia aeruginosa 1.6 0.8 L 

Hygrocybe cantharellus 1.6 L 

M arasmius sp. 0.8 0.8 LA 

Lepiota jusciceps 0.8 F 
Naematoloma sublateritium 0.8 A 

Lycoperdon perla tum 12.8 LA 

Mycenapura 10.4 L 

Mycena amicta 4.0 L 

Psathyrella candolleana 4.0 LA 

Mycena crocata 2.4 L 
Mycena luteopallens 2.4 L 
Unidentified B2 2.4 L 

Unidentified B6 2.4 L 

Agaricus praeclaresquamosus 1.6 L 

Clitocybe sp. 1.6 L 
Pseudoclitocybe cyathiformis 1.6 L 

Lepiota cf. pseudogranulosa 0.8 L 

Lepiota cygnea 0.8 L 

Lepiota sp. 0.8 A 

M arasmius puZcherUpes 0.8 L 
Mycena cf. osmundicola 0.8 L 
Psathyrella piluliformis 0.8 L 
Volvariella speciosa var. gloiocephala 0.8 L 

Unidentified sEecies 1.6 3.2 L 

Number of species 13 28 

Litter decomEosing fungi (total} 64.8 140.0 

M~corrhizal fungi (total} 53.6 1.6 

Fruit bodies were collected from 500 m2 in upper and lower sites for 9 times from May to 

November 2001. Frequency = number of grid (2 x 2m) with the fruit body / total number of 
grid (125) x 100. 
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Fig. 3.1 Frequency distribution of soil horizons from which fruit body 

of litter decomposing fungi were emerged 

Results 

Fruit body observations 

Table 3.1 shows frequency of fruit bodies of the Basidiomycota in upper and lower 

sites. In both sties, litter decomposing fungi occurred more frequently than mycorrhizal fungi. 

A total of 35 species was collected for litter decomposing fungi. Total frequency and number 

of species of litter decomposing fungi were higher in lower site than in upper site. The most 

frequent species of litter decomposing fungi were Mycena Jilopes and M. polygramma in both 

sites. Total frequency of mycorrhizal fungi was higher in upper site than in lower site. The 

occurrence of mycorrhizal fungi was very low in lower site. 

Figure 3.1 shows frequency distribution of soil horizons from which fruit body of 

litter decomposing fungi was emerged. Of 45 cases of the fruit body occurrence, 36 cases 

(80%) emerged from the L layer. Only one species (Lepiota fusciceps) occurred from F layer 

in upper site. 

Figure 3.2 shows seasonal pattern of occurrence of fruit body. In the upper and lower 

sites, phenology of fruit body of litter decomposing fungi had two peaks: the first peak during 

late-May to late-June and the second peak during mid-September to early November. 

44 



40 

~30 
~ -~ 
~ 

~ 20 
l1 ..... 
o 
§ 
ttl 10 

.......- Litter-decomposing fungi, upper 

-B- Mycorrhizal fungi, upper 

--e- Litter-decomposing fungi, lower 

-e- Mycorrhial fungi, lower 

5/25 6/22 
6/4 

7/24 8/28 9/29 
9/14 

1117 
10/24 

Fig. 3.2 Seasonal pattern of occurrence of fruit body 

Table 3.2 Fungal biomass in soil horizons. Standard errors in Earenthesis. 

Total Clamp-bearing % clamp-bearing 

(mg/g dry material} (mg/g dry material} to total 

Upper 

L 5.9 (0.6) 1.0 (0.3) 14 (3) 

F 4.2 (0.5) 0.5 (0.2) 9 (3) 

A 0.9 (0.1) 0.0 (0.0) 1 (1) 

Lower 

L 4.3 (0.3) 0.4 (0.1) 9 (2) 

F 1.4 (0.2) 0.1 (0.1) 3 (3) 

A 0.5 {0.12 0.0 {0.02 o {02 

n 

25 

.20 

18 

25 

5 

18 

Phenology of fruit body of mycorrhizal fungi in upper site also had two peaks: the first peak 

on late-July and the second on mid-September. 

Fungal biomass in soil horizons 

Table 3.2 shows fungal biomass in soil horizons in upper and lower sites. In both 

sites, total fungal biomass was L > F > A layers in order. In both sites, clamp-bearing fungal 

biomass was L > F > A layers in order. Clamp-bearing biomass was negligible at A layer. 
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Fig. 3.3 Seasonal changes in fungal biomass at L (open box), F 

(black circle), and A (black triangle) layers in upper (left) and lower 

(right) sites. (Nov.) indicates the freshly fallen litter collected on 

November 2001. Bars indicate standard errors (n=3 to 5). 

Clamp-bearing biomass was higher in upper site than in lower site. Proportion of clamp-

bearing biomass to total biomass was L > F > A layers in order. 

Figure 3.3 shows seasonal changes in fungal biomass in L, F, and A layers. In upper 

site at L layer on November, total fungal biomass, clamp-bearing fungal biomass, and 

percentage of clamp-bearing biomass to total biomass were significantly (ANOVA, P<O.05, 

Scheffe test) lower in freshly fallen litter than in partly decomposed litter. In upper site, total 

fungal biomass at A layer also varied seasonally. Total biomass on May was significantly 

(ANOVA, P<0.05, Scheffe test) lower than that on June. In upper site, clamp-bearing fungal 
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Fig. 3.4 Bleached litter associated with fruit body of Clitocybe sp. (September 2001) 

biomass and its percentage to total biomass at A layer varied seasonally and were significantly 

(ANOVA, P<0.05, Scheffe test) higher on November than those on the other months. No 

significant seasonal trend was found in total fungal biomass, clamp-bearing fungal biomass, 

and its percentage to total biomass at F layer in upper site and at L and A layers in lower site. 

The ANOVA was not applied to F layer in lower site because of low sample number. 

B leached litter 

In the study site, litter materials that suffered bleaching by the Basidiomycota were 

observed during September to December. The bleached litter occurred sparsely on forest floor, 

but occasionally encountered on lower to bottom part of forest slopes. The bleached litter was 

commonly found on thin layer between L layer and mineral soil. In most cases, the bleached 

litter was associated with fruit body of the Basidiomycota, mostly Clicocybe sp. and less 

frequently Collybia peronala and Mycena poiygramma. An example of bleached litter 
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Table 3.3 Hyphallength, water content, and chemical property of bleached litter produced by Clitocybe sp. in comparison 

with surrounding, non-bleached litter. Standard deviations in parenthesis. nd, not determined. 

1999 (n=3) 2000 (n=5) 
Bleached litter Non-bleached litter Bleached litter Non-bleached litter 

Hyphallength (mig dry material) 37484 (5217) 6927 (473) nd nd 
Water content (%) 186 (18) 243 (18) 371 (60) 342 (27) 
Organic chemical constituents 

Lignin 32.4 (1.2) 42.2 (0.6) 35.5 (3.8) 45.5 (1.1) 
Holocellulose 22.9 (1.2) 20.2 (2.1) 16.8 (2.1) 16.3 (0.5) 
Soluble carbohydrate 2.9 (0.1) 1.9 (0.1) 3.7 (0.5) 2.2 (0.1) 
Polyphenol 0.7 (0.1) 0.7 (0.0) 0.9 (0.2) 0.9 (0.1) 

~ Nutrients 

Nitrogen 2.45 (0.04) 2.21 (0.08) 2.23 (0.10) 2.01 (0.13) 
Phosphorus 0.15 (0.01) 0.10 (0.00) 0.11 (0.01) 0.08 (0.00) 
Potassium 0.10 (0.01) 0.08 (0.02) 0.26 (0.03) 0.19 (0.03) 
Calcium 0.86 (0.06) 0.62 (0.17) 0.69 (0.15) 0.52 (0.11) 

Magnesium 0.16 (0.00) ._~J2{0.01l _ 0.!3 (0.01) _ 0.10 (0.01) 



Table 3.4 Inorganic-N pool size and mineralization and nitrification rates in bleached and 

non-bleached humus. Standard errors in parenthesis. T -test was used for the comparison. 

NH4-N (mglkg) 

N03-N (mglkg) 

Net mineralization rate (mg N/kg/30d) 

Net nitrification rate (mg N/kg/30d) 

Bleached litter Non-bleached litter Probability 

416 (185) 109 (16) P<0.05 
8 (1) 3 (0) P<O.OOl 

4655 (2065) 1128 (273) P<0.05 
14 (7) 5 (2) P=0.05 

produced by Clitocybe sp. is shown in Fig. 3.4. 

Table 3.3 shows hyphal length, water content, and chemical property of bleached 

litter produced by Clitocybe sp. in comparison with surrounding, non-bleached litter. Hyphal 

length was about 5 time higher at the bleached litter than at the non-bleached litter. Water 

content was lower at the bleached litter than at the non-bleached litter in 2000 but was similar 

in 2001. Lignin concentration was lower and concentrations of holocellulose and soluble 

carbohydrate were higher at the bleached litter than at the non-bleached litter. Polyphenol 

concentration was similar at both litter types. Concentration of nutrients (nitrogen, 

phosphorus, potassium, calcium, and magnesium) was higher at the bleached litter than at the 

non-bleached litter. 

Table 3.4 shows inorganic-N pool size and. mineralization and nitrification rates in 

bleached and non-bleached litter. The NH4-N and N03-N pool sizes were significantly higher 

at the bleached litter than at the non-bleached litter. The net mineralization rate was four times 

higher at the bleached litter than at the non-bleached litter and the difference was significant. 

The net nitrification rate was also higher at the bleached litter than at the non-bleached litter. 

Table 3.5 shows frequency of microfungi on bleached and non-bleached litter. A total 

of 114 isolates in 34 species was isolated from the bleached litter, while a total of 207 isolates 

in 43 species was isolated from the non-bleached litter. Trichoderma hamatum and 

Penicillium citrinum were frequent on both litters. Frequencies of T. koningii, Chaetomium 

globosum, P. miczynskii, and Geniculosporium serpens were significantly higher at the 

bleached litter than at the non-bleached litter. Frequencies of Trichoderma sp.1, Mucor 
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hiemalis, Mortierella verticillata, T. viride, G. roseum, M. ramanniana var. ramanniana, 

Absidia glauca, Cladosporium cladosporioides, P. velutinum, Mortierella cf. zicae, and M. 

wuyshanensis were significantly lower at the bleached litter than at the non-bleached litter. 

Clitocybe sp. was isolated from the bleached litter with the frequency of 3.3%. 

Table 3.5 Frequency ~%} of micro fungi on bleached and non-bleached litter. 

Fungus Bleached Non-bleached Probability 

litter litter 

Trichoderma hamatum 50.0 53.3 0.20 

Trichoderma koningii 53.3 33.3 0.06 * 

Chaetomium globosum 23.3 0.0 0.01 *** 

Penicillium miczynskii 20.0 3.3 0.05 ** 

Geniculosporium serpens 13.3 0.0 0.06 * 

Trichoderma sp.1 20.0 66.7 0.00 **** 

Mucor hiemalis 0.0 56.7 0.00 **** 

Mortierella verticillata 0.0 46.7 0.00 **** 

Trichoderma viride 30.0 46.7 0.09 * 

Gliocladium roseum 10.0 46.7 0.00 *** 

Mortierella ramanniana var. ramanniana 16.7 43.3 0.02 ** 

Absidia glauca 0.0 33.3 0.00 **** 

Cladosporium cladosporioides 0.0 26.7 0.00 *** 

Penicillium velutinum 0.0 20.0 0.01 ** 

Mortierella cf. zicae 0.0 16.7 0.03 ** 

Mortierella wuyshanensis 0.0 13.3 0.06 * 

Penicillium citrinum 13.3 16.7 0.26 

Mucor racemosus 13.3 6.7 0.24 
Gliocladium virens 10.0 13.3 0.29 

Gliomastix felina 10.0 3.3 0.25 

Mortierella isabellina 6.7 20.0 0.10 

Penicillium sclerotiorum 6.7 10.0 0.32 

Trichoderma pseudokoningii 6.7 10.0 0.32 
Caicarisporium arbuscula 6.7 6.7 0.39 
Trichoderma harzianum 6.7 6.7 0.39 
Verticillium cf. suchlasporium 6.7 6.7 0.39 
Mortierella sp.1 6.7 3.3 0.38 

Pestaiotiopsis sp.1 6.7 0.0 0.25 
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Paecilomyces carneus 3.3 6.7 0.38 

Acremonium sp. 3.3 3.3 0.51 

Arthrinium state of Apiospora montagnei 3.3 3.3 0.51 

Table 3.5 Continued. 

Fungus Bleached Non-bleached Probability 

litter litter 

Mucor piriformis 3.3 3.3 0.51 

Phoma sp. 3.3 3.3 0.51 

Verticillium psalliotae 3.3 3.3 0.51 

Acremonium sp. 3.3 0.0 0.50 

Arthrinium phaeospermum 3.3 0.0 0.50 

Clitocybe sp. 3.3 0.0 0.50 

Mortierella globurifera 0.0 10.0 0.12 
Penicillium waksmanii 0.0 10.0 0.12 

Penicillium thomii 0.0 6.7 0.25 

M ortierella ramanniana var. angulispora 0.0 3.3 0.50 
Penicillium chrysogenum 0.0 3.3 0.50 

Penicillium glabrum 0.0 3.3 0.50 
Penicillium janthinellum 0.0 3.3 0.50 
Penicillium verrucosum 0.0 3.3 0.50 
Scedosporium sp. 0.0 3.3 0.50 

Trichoderma polysporum 0.0 3.3 0.50 
Hyphomycete SH2-3-7 0.0 3.3 0.50 
Zygorrhynchus heterogamus 0.0 3.3 0.50 

White sterile mycelia 13.3 0.0 

Number of sEecies 34 43 

The result of Fisher's exact probability test is shown. * P<0.10, ** P<0.05, *** P<O.Ol, **** 
P<O.OOl. 
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Discussion 

Clitocybe, Collybia, Marasmius, and Mycena are the most representative genera of 

litter-decomposing Basidiomycota in forest soils (Hering 1982; Cooke and Rayner 1984). In 

this study site, Mycena spp. and Collybia spp. were frequent in terms of the number of fruit 

bodies and Clitocybe sp. was associated with the bleaching of litter. The proportion of clamp

bearing biomass to total fungal biomass in soil horizons was 0% to 14% that was within the 

range of previous reports (Ruscoe 1971b; Baath and Soderstrom 1977; Nelson and Visser 

1978; Frankland 1982; Kj(2l11er and Struwe 1982). Most of the fruit bodies of litter

decomposing Basidiomycota emerged from L layer and clamp-bearing biomass was abundant 

on L layer, indicating that these fungi were active colonizers of L layer materials. The 

bleached litter also occurred frequently on lower part of L layer. These results are contrast 

with some previous studies that reported the biomass was highest at F layer (Saito 1956; 

Frankland 1982). In upper site, one-third of the biomass of the Basidiomycota distributed at F 

layer but few fruit bodies of litter-decomposers emerged from this layer. This result suggested 

that the mycelia within F layer might belong to mycorrhizal species. However, their mycelia 

are difficult to be separated from those of litter-decomposers. 

There have been a few reports that compared species composition of litter

decomposing Basidiomycota between different sites. The result of the present study contrasts 

with Hering (1967) that reported the number and production and fruit body was lower at mull 

site than at moder site in England, but is consistent with Rastin et al. (1990) that reported the 

production of fruit body was higher at lower slope than at upper slope in a spruce forest in 

Germany. Seasonal patterns of the Basidiomycota was also reported. Hering (1967) reported 

the seasonal peak of fruiting. Ruscoe (1971b) found the length of basidiomycete hyphae in H 

layer increased in Autumn. 

There has been no data on the mycelial abundance of the Basidiomycota between 

different sites. In the present study, clamp-bearing biomass was higher in upper site than in 
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lower site. However, this did not necessarily indicate the activity of litter-decomposing 

Basidiomycota was higher in upper site than in lower site. Clamp-bearing biomass in upper 

site increased rapidly on November, but this increase is difficult to be ascribed to mycelia of 

litter-decomposing species too, because whether these mycelia belonged to litter

decomposing fungi or mycorrhizal fungi was unclear. 

Therefore, these results indicated that the activity of litter-decomposing 

Basidiomycota was highest at L layer. However, the site difference and seasonal change of 

their activity were difficult to evaluate. This is because occurrence of fruit bodies is a poor 

guide to the activity and because the mycelia of litter-decomposing species are impossible to 

be separated from those of mycorrhizal species unless the production of antibody specific to a 

litter-decomposing species (Frankland et al. 1981; Hitchcock et al. 1997). 

On the other hand, bleaching of forest litter represents litter-decomposing activity of 

the Basidiomycota. The occurrence of bleached litter around their fruit bodies has already 

reported by Harris (1945), Saito (1966), and Hintikka (1970). In the study site, the bleached 

litter was mostly associated with Clitocybe sp. and less frequently with Collybia peronata and 

Mycena polygramma. In Japan, Marasmius species such as M. purrcherius and M. maximus 

also bleach leaf litter (Koide 2002, Osono personal observation). In addition, Hintikka (1970) 

reported species in Clavaria, Cudonia, Cystoderma, Lepiota, Psalliota, Rhodocybe, and 

Spathularia as bleaching fungi in Finland. Hintikka (1970) estimated the amount (% cover) of 

bleached litter to be 0.4% to 11.3% of the surface of forest floor. 

Lower lignin concentration and higher net N mineralization rate in bleached litter 

compared to non-bleached litter indicated the selective delignification was associated with N 

mineralization in litter. This is consistent with Osono and Takeda (2001b) that reported N 

mineralization from beech litter was coincided with the decomposition phase of lignin-N 

complex by basidiomycetous fungi. The 'lignin' fraction in partly decomposed litter 

contained not only true plant lignin but also secondary lignin-like humic substances 

synthesized during decomposition. The Basidiomycota are able to attack humic acids by 
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ligninolytic enzyme system (Blondeau 1989). Therefore, delignification by the Basidiomycota 

was associated with nitrogen mineralization from the litter. 

A variety of fungi were isolated from bleached litter and the frequency of Clitocybe 

sp. was only 3.3%. This was due to the isolation method was selective for fast-growing 

species such as Trichoderma spp. (Osono and Takeda 1998). This did not mean that Clitocybe 

sp. had little effect on the production of bleached litter. Rather, Clitocybe sp. produced the 

dominant effects, as the fungus brought about similar changes when inoculated to litter in 

pure culture while other microfungi frequent on bleached litter caused a limited decomposing 

ability (Chapter 6). 

Species composition of microfungi on bleached litter was different from that on non

bleached litter. Most of the late occurring species of beech leaf litter, denoted as 'secondary 

sugar fungi' in Osono and Takeda (2001b), were also frequent on non-bleached litter but 

decreased their frequencies on bleached litter. Instead, Chaetomium globosum, Penicillium 

miczynskii, and Geniculosporium serpens that were rare or absent on non-bleached litter 

increased their frequencies on bleached litter. These change in species composition may be 

ascribed to the increase of the availability of readily available resources such as delignified 

holocellulose and soluble carbohydrates during the delignification process by Clitocybe sp. 

According to Hintikka (1970), fungi with bleaching activity showed a preference for 

the thick litter layers but bleached litter seemed to be connected with mull formation in brown 

forest soils in deciduous forests. Hintikka (1970) concluded that the bleaching activity cannot 

be directly correlated with the type of humus layer. From the result of the present study, the 

bleaching activity was difficult to relate to the development of moder and mull soils on upper 

and lower parts of forest slopes. However, the observation that the bleached litter occasionally 

encountered on mull soil at lower to bottom part of forest slopes suggested a possible 

relationship between the bleaching activity of the Basidiomycota and mull soil formation. The 

amount of bleached litter should be compared quantitatively to evaluate the relationship. 
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Chapter 4 

Organic chemical and nutrient dynamics in decomposing leaf litter 

in relation to fungal ingrowth and succession 

Introduction 

In forest ecosystems, decomposition of plant litter is an important factor controlling 

nutrient cycling and soil humus formation. The litter decomposition processes are regulated 

by the resource availability for decomposer organisms such as organic and nutrient chemistry 

of the litter and by the environmental factors that affect the activity of the decomposers such 

as temperature and moisture (Swift et al. 1979; Heal et al. 1997). The study of the relationship 

between chemical and biological changes during the litter decomposition is thus important in 

understanding organic matter and nutrient dynamics in soil systems (Takeda 1994). 

Nitrogen and phosphorus are essential elements that limit not only plant growth but 

growth of microbial populations in the soil systems (Beever and Bums 1980; Jennings 1989). 

Nitrogen and phosphorus dynamics in decomposing litter show leaching, immobilization, and 

mobilization phases (Berg and Staaf 1981; Staaf and Berg 1982) and have been related to the 

availability of organic chemical energy sources to the decomposers (Berg 1986; Melillo et al. 

1989; Aber et al. 1990) and the ingrowth of fungal populations (Berg and Soderstrom 1979; 

Hasegawa and Takeda 1996). Net release (i.e. mineralization) of nitrogen and phosphorus 

begins at critical carbon to nutrient ratios (Takeda 1998) or when the amount of lignin starts 

decreasing (Berg and McClaugherty 1989). Potassium, calcium, and magnesium are also 

essential nutrients necessary for plant growth. Potassium leached out quickly from 

decomposing litters, calcium decreased as carbon loss during litter decomposition, and 

magnesium often showed an intermediate release pattern (Gosz et al. 1973; Staaf and Berg 

1982; Blair 1988; Hasegawa and Takeda 1996). 
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Lignin and holocellulose in the litter structure are major energy sources available to 

decomposer organisms, constituting 70-80% of fresh organic material (Swift et al. 1979). 

Lignin is less readily available to the decomposers than holocellulose and often retards litter 

decomposition (Fogel and Cromack 1977; Berg et al. 1982; Takeda et al. 1987) because: (i) 

lignin, an aromatic compound made up of phenylpropane-based monomers linked via a 

variety of bonds, is highly refractory and persistent and the delignification depends on the 

availability of non-lignified carbon energy sources (Kirk et al. 1976); (ii) lignin forms a 

resistant shield around holocellulose to form lignocellulose in plant cell walls (Cooke and 

Whipps 1993) and, as a consequence, most of the holocellulose in litter must be delignified 

for carbohydrate assimilation; and (iii) lignin decomposition products may form stable 

nitrogenous compounds making nitrogen less readily available to decomposer organisms 

(Berg 1988). Lignocellulose index (LCI) , relative availability of holocellulose in 

lignocellulose matrix, is thus suggested as a useful index of availability of carbon energy 

sources to decomposer organisms (Berg et al. 1984; Melillo et al. 1989; Aber et al. 1990). 

Among the decomposer organisms, fungi play an important role in litter 

decomposition (see General Introduction). There have been two approaches to evaluate the 

function of the fungal community in litter decomposition. In the first approach, decomposer 

microbial community is considered as 'functional black box' and total fungal biomass (Berg 

and Soderstrom 1979; Berg and Wessen 1984; Berg 1991; Osono et al. submitted) or total 

enzymatic activity (Sinsabaugh et al. 1991; Sinsabaugh 1994) are estimated and related to 

organic chemical and nutrient dynamics during litter decomposition, component fungal 

species being left out of consideration. In the second approach, fungal species composition on 

litters is investigated first and the functional role of each species is then evaluated by substrate 

utilization tests (Kj¢ller and Struwe 1980, 1987, 1990; Rosenbrock et al. 1995; Dilly et al. 

2001) or by in vitro decomposition tests (Lindeberg 1946; Saito 1960; Hering 1967; Kuyper 

and Bokeloh 1994; Osono and Takeda 1999b; Miyamoto et al. 2000; Osono and Takeda 

2002a). A few studies has been, however, carried out to relate the function of component 
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fungal species to organic chemical and nutrient dynamics during litter decomposition. 

Fungal succession during litter decomposition has been observed on several litters of 

forest tree species (Hudson 1968; Swift 1976). In earlier works, successional changes in 

fungal populations were investigated by dilution plating method (Saito 1956; Ishii 1968; Deka 

and Mishra 1982; Kuter 1986; Singh et aL 1990). Most fungi isolated by this method are, 

however, derived from dormant spores attached to litter surface (Warcup 1955; Christensen 

1969). Hence the relationship between litter decomposition processes and fungal succession 

described was unclear. To detect the function of fungal species in the decomposition 

processes, alternatively, a surface sterilization method that isolates fungi present within 

internal tissues (Kinkel and Andrews 1988; Hata 1997) and a washing method that removes 

propagules on the surface and isolates actively growing mycelia (Harley and Waid 1955; 

Tokumasu 1980) have been developed and assured of their usefulness on several litter types 

(Kendrick and Burges 1962; Macauley and Thrower 1966; Tokumasu 1996; Osono and 

Takeda 1999b, 2001a). 

Based on these methods, fungal succession has been investigated during litter 

decomposition. Recent studies using the litter bag method have reported that colonization of 

fungal populations was related to particular stages in decomposition (Hering 1965; Slapokas 

and Granhall 1991; Attili and Tauk-Tomisielo 1994; Robinson et al. 1994; Pasqualetti et al. 

1999). More detailed studies are thus required to evaluate the effect of chemical changes on 

fungal succession on decomposing litter. Furthermore, most of the previous studies covered 

less than a one year period and few studies have been carried out during long term 

decomposition processes. Beech leaves follows decomposition pattern typical of temperate 

tree species and its slowly decomposing leaves are suitable for a long term study (see General 

Introduction). 

The purposes of this study are to evaluate: (i) the function of fungal populations in 

the organic chemical and nutrient dynamics; and (ii) the effect of resource quality on the 

fungal succession on decomposing beech leaf litter. Litter bag experiments were thus 
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performed to follow the changes in carbon, nutrient (N, P, K, Ca, Mg) and organic chemical 

constituents (lignin, holocellulose, soluble carbohydrate, polyphenol) in the litter. 

Concurrently, the changes in total and live fungal biomass, clamp-bearing fungal biomass 

(biomass of basidiomycetous fungi) and the fungal succession were investigated and related 

to the changes in litter chemistry. 
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Materials and methods 

Study area 

The study was carried out in the Ashiu Experimental Forest of Kyoto University (see 

Material and Study Site). Two study sites were chosen that were located on a northwest facing 

slope about 200 m long. One site was located on the upper part of the slope and the other on 

the lower part (Chapter 1). A study plot of 20 x 10 m in area was laid out in each site and was 

divided into 10 subplots of 4 x 5 m for the survey of litter weight and chemical changes. An 

additional 3 subplots of 4 x 5 m were laid out within each plot for fungal investigation. 

Litter bag method 

Decomposition processes of beech leaf litter were studied by a litter bag method 

(Crossley and Hoglund 1962). Freshly fallen leaves of beech were collected from forest floors 

in the study area during November 1996, the peak period of litter fall (Takeda and Kaneko 

1988). The leaves were taken to the laboratory and oven-dried at 40°C for one week. The litter 

(3 g) was enclosed in a litter bag (15 x 15 cm) made of polypropylene shade cloth with a 

mesh size of approximately 2 mm. A total of 260 bags was prepared. Initial samples (approx. 

10 g) were preserved for chemical analyses. 

The decomposition study covered over a 35 month period from December 1996 to 

November 1999. Litter bags were placed on the litter layer, 10 sets in each of 26 subplots, on 

December 1996. The litter bags were attached to the forest floor by metal pins to prevent 

movement and to ensure a good contact between the bags and the litter layer. Sampling of the 

bags took place 10 times, at 5 (May 1997), 7 (July 1997),9 (September 1997), 11 (November 

1997), 16 (April 1998), 19 (June 1998), 21 (September 1998), 23 (November 1998), 29 (May 

1999), and 35 month (November 1999) after the placement. On each sampling occasion, 26 

bags were collected from 26 subplots, placed in paper bags, and taken to the laboratory. 

Foreign plant remains attached to the outside the bags were carefully removed with 
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forceps. The losses of dry weight were determined after drying the samples in 20 bags to a 

constant weight at 40°C and mean values of weight loss were calculated for each sampling. 

The samples were then combined, ground in a laboratory mill to pass a 0.5 mm screen, and 

used for chemical analyses as described below. The other six bags were used for fungal 

biomass estimation and fungal isolation. 

Decomposition rate of the litter was calculated by Olson's k (Olson 1963) according 

to the following equation: 

Wt = Wo x exp (-kt) 

where Wt is the litter weight after a given period, Wo is the original litter weight, k is the 

decomposition rate, and t is the year. 

Chemical analyses 

The amount of lignin in the samples was estimated by gravimetry according to a 

standardized method using hot sulfuric acid digestion (King and Heath 1967). Total 

carbohydrate content was estimated by the phenol-sulfuric acid method (Dubois et al. 1956) 

according to the method described in Fukui (1969). Soluble carbohydrate and polyphenol 

were extracted from the sample with 50% methanol (v/v) at 75°C for 60 min. Soluble 

carbohydrate content was estimated by the phenol-sulfuric acid method. Polyphenol content 

was estimated by the Folin-Ciocalteau method (Waterman and Mole 1994). The methods are 

described in Chapter 2. 

Total carbon and total nitrogen contents were measured by automatic gas 

chromatography (NC analyzer SUMIGRAPH NC-900, Sumitomo Chemical Co., Osaka, 

Japan). After an acid wet oxidation in HN03 + HCI04, the following analyses were 

performed; molybdate-ascorbic acid method for phosphorus (Olsen and Sommers 1982), 

flame photometry for potassium and atomic absorption for calcium and magnesium (Atomic 
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absorption spectrophotometer 170-30S, Hitachi Ltd., Tokyo, Japan). 

Carbon to nutrient (N, P, K, Ca, Mg) ratios and lignin to nutrient ratios are useful 

indices of the litter chemical quality (Takeda 1998) and are calculated according to the 

following equations: 

C/nutrient = carbon conc. (%) / nutrient conc. (%) 

L/nutrient = lignin conc. (%) / nutrient conc. (%) 

Lignocellulose index (LCI) is a useful index of availability of carbon energy sources to 

decomposer organisms (Berg et al. 1984; Mellilo et al. 1989; Aber et al. 1990) and is 

calcul~ted according to the following equations: 

LCI = holocellulose conc. (%) / (lignin conc. (%) + holocellulose conc. (%)) 

Fungal biomass estimation 

Fungal biomass was measured by the method of Jones and Mollison (1948) as 

modified by Ono (1998). The method is described in Chapter 3, except that litter (1 g, fresh 

weight) from each of 6 litter bags were used; Six agar films were prepared for each sample. 

Mean diameters were 2.0 and 2.1 ~m for the total hyphae, 1.8 and 1.7 ~m for the live hyphae 

and 3.1 and 2.8 ~m for the clamp-bearing hyphae in the upper and the lower site, respectively. 

Fungal isolation 

A surface sterilization method (Kinkel and Andrews 1988; Hata 1997) and a 

modified washing method (Harley and Waid 1955; Tokumasu 1980) were used for isolation 

of fungi. The surface sterilization was carried out only for beech leaves in litter bags collected 

at November 1997 (11th month). Fungal isolation was carried out within 8 hours after 

sampling. At each sampling occasion, 60 leaf disks were punched out with a sterile cork borer 

61 



(5.5 mm in diameter) from the central part of the leaves in 6 bags. The methods are described 

in Chapter 2, except that two disks were placed on the surface of each plate. 

Frequency of a species is calculated as a percentage of the number of disks with the 

species to the total number of disks tested in each site at each sampling occasion. Species with 

frequency more than 20% in each sample are arbitrarily regarded as frequent. 

Statistical analyses 

Analysis of variance (Systat 1992) was used to determine differences between mean 

values of total, live, and clamp-bearing fungal biomass of 10 sampling occasions during 

decomposition. The Tukey's Honestly significant difference (HSD) test was used for multiple 

comparisons. Colonization patterns of fungal species during decomposition were classified 

using cluster analysis. Cluster analysis results in a hierarchical dendrogram showing species

linkages in a criterion similarity (Pearson's correlation coefficient). In this study, the group 

average method was used. 
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Results 
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Fig. 4.1 Changes in remaining weight of beech leaf litter during decomposition. 

Bars indicate standard deviations (n=10). 0 = upper, • = lower. 

Carbon and nutrient dynamics 

Figure 4.1 shows changes in remaining weight of leaf litter during decomposition. 

About 53% and 57% of the original litter weight remained at the end of the study period. The 

decomposition rates (Olson's k) over a 35 month period were 0.222 and 0.193 in the upper 

and the lower site, respectively. 

Figure 4.2 shows changes in remaining weight and concentration of carbon and 

nutrients during decomposition. Weight changes are presented as the percentage to the initial 

weight. Changes in carbon weight were similar to those in the litter weight. Carbon 

concentration decreased during decomposition. Carbon dynamics were similar between the 

sites. 

Nutrients were categorized into two types according to the dynamics in the 

decomposing litter. The first type includes nitrogen and phosphorus. Weight changes in 

nitrogen and phosphorus were characterized by two phases: (i) immobilization in the first 21 

months; and (ii) mobilization from the 21st to the 35th month. The initial net immobilization 

phase was characterized by an absolute increase of nitrogen and phosphorus weights due to 
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Fig. 4.2 Changes in remaining weight and concentration of carbon and nutrients during decomposition. 0 = upper, • = lower. 



the incorporation into the litter from the surrounding. Nitrogen and phosphorus concentrations 

increased during the immobilization phase and were constant during the mobilization phase in 

both sites. The second type includes potassium, calcium, and magnesium. Weight and 

concentration of potassium were variable throughout the study period in both sites. Calcium 

weight increased in the first 5 month and then decreased thereafter in both sites. Calcium 

concentration increased in the first 16 month and 21 month in the upper and the lower site, 

respectively, and then decreased thereafter. Magnesium weight decreased in the first 5 and 7 

month in the upper and the lower site, respectively, and was then variable thereafter. 

Magnesium concentration decreased in the first 5-7 month and then increased thereafter. The 

rate of loss of these nutrients after 35 months was N < P < Mg < Ca < K in the upper site and 

P < N < K < Mg < Ca in the lower site in order. Dynamics of these nutrients were similar 

between the sites except that remaining weight and concentration of phosphorus were higher 

in the lower site than in the upper site. 

Carbon to nutrient ratio and lignin to nutrient ratio 

Figure 4.3 shows changes in carbon to nutrient ratios during decomposition. CIN was 

initially 55.2 and decreased to 26.9 and 26.6 during the immobilization phase in the upper and 

the lower site, respectively. The decreases were then slowed down during the mobilization 

phase to approach asymptotes. The final CIN was 24.9 and 24.1 in the upper and the lower 

site, respectively. CfP was initially 1335 and decreased to 764 and 610 during the 

immobilization phase in the upper and the lower site, respectively. The decreases were then 

slowed down during the mobilization phase to approach asymptotes. The final CfP was 679 

and 540 in the upper and the lower site, respectively. C/K was variable throughout the study 

period in both sites. C/Ca was relatively constant during decomposition in both sites. C/Mg 

increased in the first 5-7 months and then decreased in both sites. The changes in carbon to 

nutrient ratios were similar between the sites except that CfP was lower in the lower site than 

in the upper site. 

Figure 4.4 shows changes in lignin to nutrient ratios during decomposition. LIN was 
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Fig. 4.3 Changes in carbon to nutrient ratios during decomposition. 

o = upper, • = lower. 

36 

initially 44.7 and decreased to 25.9 and 27.9 during the immobilization phase in the upper and 

the lower site, respectively. The decreases were then slowed down during the mobilization 

phase to approach asymptotes. The final LIN was 25.9 and 26.3 in the upper and the lower site, 

respectively. LIP was initially 1080 and decreased to 736 and 640 during the immobilization 

phase in the upper and the lower site, respectively. The decreases were then slowed down 

during the mobilization phase to approach asymptotes. The final LIP was 703 and 589 in the 

upper and the lower site, respectively. L/K was variable throughout the study period in both 

sites. L/Ca was gradually increased during decomposition in both sites. L/Mg increased in the 
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Fig. 4.4 Changes in lignin to nutrient ratios during decomposition. 

o = upper, • = lower. 

first 5 month and then decreased in both sites. The changes in lignin to nutrient ratios were 

similar between the sites. 

Organic chemical changes 

Figure 4.5 shows changes in remaining weight and concentration of organic chemical 

constituents during decomposition. At the end of the study period, 62% and 64% of the 

original lignin weight, 36% and 39% of the original holocellulose weight, 20% and 19% of 

the original soluble carbohydrate weight, and 17% and 14% of the original polyphenol weight 
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Fig. 4.5 Changes in remaining weight and concentration of organic constituents 

during decomposition. 0 = upper, • = lower. 
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remained in the upper and the lower site, respectively. The rate of loss of these constituents 

after 35 months was lignin < holocellulose < soluble carbohydrate < polyphenol in both sites 

in order. Lignin concentrations increased during the immobilization phase of nitrogen and 

phosphorus and were relatively constant during the mobilization phase. Holocellulose 

concentrations decreased during the immobilization phase and were relatively constant during 

the mobilization phase. Concentrations of soluble carbohydrate and polyphenol decreased 

quickly during the first 5 months and decreased constantly thereafter. Dynamics of these 

organic chemical constituents were similar between the sites. 

Figure 4.6 shows changes in LCI during decomposition. LCI was initially 0.45 and 

decreased to 0.34 and 0.35 in the first 24 month in the upper and the lower site, respectively, 

due to the fast decomposition of holocellulose compared to lignin. The decrease was then 

slowed down to reach asymptotes during the mobilization phase when the disappearance of 

holocellulose and lignin proceeded at a similar rate. The final LCI was 0.33 and 0.34 in the 

upper and the lower site, respectively. The changes in LCI were significantly correlated to the 

changes in nitrogen and phosphorus concentrations during decomposition (Fig. 4.7). The 

changes in LCI were thus characterized by two phases that corresponded to the 

immobilization phase and the mobilization phase of nitrogen and phosphorus. 
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Changes in total, live and clamp-bearing fungal biomass 

Table 4.1 shows changes in total, live, and clamp-bearing fungal biomass during 

decomposition. During the first year from the 5th month to the 11th month, total fungal 

biomass increased significantly (p<0.05, ANaVA) in both sites. The increase was positively 

correlated to the increase in nitrogen and phosphorus concentrations (r=0.987 and r=0.874 for 

nitrogen and r=0.842 and r=0.761 for phosphorus in the upper and the lower site, respectively, 

n=4). During the same period, live fungal biomass increased significantly (p<0.05, ANaVA) 

in the lower site but the difference was not significant in the upper site. Total fungal biomass 

and live fungal biomass then decreased and fluctuated over the rest of the study period. The 

mean percentage of the live biomass to the total biomass was 5.0% and 4.0% in the upper and 

the lower site, respectively. Dynamics of total fungal biomass and live fungal biomass were 

similar between the sites. 

Analysis of variance indicates no significant changes in clamp-bearing fungal 

biomass (biomass of the Basidiomycota) during decomposition, but its percentage to total 

biomass increased as the decomposition proceeded, with rapid increases at the 11th month and 
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Table 4.1 Changes in total fungal biomass, live fungal biomass, percentage of living biomass to 

total biomass, clamp-bearing fungal biomass, and percentage of clamp-bearing biomass to total 

biomass in beech leaf litter during decomposition. 

Time Total Live % Clamp-bearing % 

(month) fungal biomass fungal biomass living fungal biomass clamp 

Upper 

5.0 5.09 (0.98) b 0.51 (0.18) abc 10.0 0.11 (0.07) a 2.2 

7.2 9.21 (1.32) ab 0.35 (0.09) abc 3.8 0.87 (0.39) a 9.4 

9.2 13.53 (3.45) a 0.73 (0.12) a 5.4 0.86 (0.43) a 6.3 

11.2 13.73 (1.64) a 0.60 (0.09) ab 4.4 3.50 (3.39) a 25.5 

16.4 7.58 (0.72) ab 0.16 (0.05) be 2.2 0.72 (0.31) a 9.5 

18.6 5.41 (0.23) b 0.18 (0.02) be 3.3 0.82 (0.29) a 15.2 

21.0 4.25 (0.86) b 0.31 (0.11) abc 7.4 0.49 (0.37) a 11.6 

23.3 8.80 (2.20) ab 0.55 (0.06) abc 6.2 1.38 (0.62) a 15.7 

29.4 3.67 (0.16) b 0.12 (0.05) c 3.3 0.61 (0.32) a 16.6 

35.7 6.26 (0.28) ab 0.27 (0.08) abc 4.2 1.36 (0.47) a 21.7 

Lower 
5.0 4.48 (0.28) d 0.22 (0.04) be 4.8 0.13 (0.06) a 2.9 

7.2 16.28 (1.50) a 0.52 (0.04) abc 3.2 0.67 (0.44) a 4.1 

9.2 14.98 (0.77) ab 0.88 (0.15) a 5.9 0.24 (0.09) a 1.6 

11.2 13.17 (1.68) abc 0.59 (0.14) ab 4.5 0.84 (0.42) a 6.4 

16.4 4.61 (1.32) d 0.21 (0.03) be 4.6 0.28 (0.27) a 6.1 

18.6 6.46 (1.39) cd 0.13 (0.02) c 2.1 1.01 (0.44) a 15.6 

21.0 8.23 (2.38) bed 0.25 (0.03) be 3.0 2.83 (2.04) a 34.5 

23.3 9.00 (0.88) bed 0.50 (0.11) abc 5.5 1.20 (0.40) a 13.3 

29.4 6.01 (1.44) cd 0.11 (0.03) c 1.8 1.13 (0.45) a 18.8 

35.7 7.17 (1.73j cd 0.36 (O.l1j be 5.0 1.15 (0.88j a 16.0 
ANaVA was used to determine differences betweeen mean values of the biomasses in each 

site. Standard error within parenthesis (n=3). The same letters are not significantly different at 

5% level by Tukey's HSD test. 
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Fig. 4.8 Changes in clamp-bearing biomass and non-clamp-bearing biomass 

during decomposition. 0 = upper, • = lower. 

at the 21st month in the upper and the lower site, respectively (Table 4.1, Fig. 4.8). No 

significant relationship was found between the percentage of clamp-bearing fungal biomass 

and LeI. However, when the result of the rapid increases at the 11th month and at the 21st 

month was excluded in the analysis in the upper and the lower site, respectively, the 

percentage of clamp-bearing fungal biomass was significantly correlated to LCI (Fig. 4.9). 

The proportion of non-basidiomycetous fungi (i.e. total biomass minus clamp-bearing 

biomass) was initially about 100% and decreased during decomposition in both sites (Fig. 

4.8). 

Fungal populations 

A total of 75 isolates in 14 taxa was isolated by the surface sterilization method from 

beech leaf litter in litter bags collected in November 1997 (11th month) (Table 4.2), including 

72 



35 @ 
If 30 ....... 

.... ~ 
@ «' ~ 25 § .9 

..... .0 0 
·I} 20 • Q) ..... 

.0 .... 15 
~~ 

.... 0 It.) _ 

10 ..... IT.I 
o ~ 
.9 S 
~ 9 5 1:t::C 

0 
0.3 0.35 0.4 0.45 

Lignocellulose index (LCI) 
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8 taxa in the Ascomycota and its anamorphs other than the Xylariaceae (denoted as the other 

Ascomycota), 3 in the xylariaceous Ascomycota, one in the Zygomycota, and 2 in sterile 

mycelia. Geniculosporium sp.1, an anamorphic state of Xylaria sp. (the xylariaceous 

Ascomycota) and white sterile mycelia were frequent in the upper site. Geniculosporium sp.1, 

Xylaria sp. (anamorph), and Arthrinium phaeospermum (Corda) Ellis (the other Ascomycota) 

were frequent in the lower site. 

A total of 2027 isolates in 104 taxa was isolated by the washing method from leaf 

litter during decomposition (Table 4.3), including 81 taxa in the other Ascomycota, 20 in the 

Zygomycota, one (Geniculosporium sp.2) in the xylariaceous Ascomycota, and 2 in sterile 

mycelia. Figure 4.10 shows changes in number of species during decomposition. Number of 

species was variable during the immobilization phase and increased at the 35th month in both 
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Fig. 4.10 Changes in number of species isolated by the washing method 

during decomposition. 0 = upper, • = lower. 

Twenty-one species in the other Ascomycota and the Zygomycota were frequent on 

the litter in the upper or the lower site, or in both sites, viz. Arthrinium sp. (anamorph of 

Apiospora montagnei Saccardo), Cladosporium cladosporioides (Fresenius) de Vries, 

Fusarium solani (Martius) Appel et Wollenweber, Gliocladium roseum (Link) Thom, 

Penicillium glabrum (Wehmer) Westling, P. citrinum Thom, Pestalotiopsis spp., Phoma spp., 

Trichoderma hamatum (Bonorden) Bainier aggr., T. harzianum Rifai aggr., T. koningii 

Oudemans aggr., T. viride Persoon ex SF. Gray aggr., Trichoderma sp.1, Verticillium 

psalliotae Treschow (the other Ascomycota), Absidia glauca Hagem, Mortierella globurifera 

Rostrup, M. isabellina Oudemans et Koning, M. ramanniana (Moller) Linneman (var. 

ramanniana), M. verticillata Linneman, Mucor hiemalis Wehmer, and M. racemosus 

Fresenius (the Zygomycota). 

A successional trend was observed in species composition of 21 species in the other 

Ascomycota and the Zygomycota during decomposition (Fig. 4.11), and the similarities of 

their occurrence patterns were examined by cluster analysis (Fig. 4.12). Three large groups 

are identified and were termed Group I, II, and III. The decomposition stage was more 

important for this grouping than the site. Group I included 6 species: Pestalotiopsis spp., C. 
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Table 4.2 Frequency (%) of fungi isolated by surface sterilization method 
from beech leaf litter in litter bags collected at November 1997 (11th month). 

Fungus Upper Lower 

Geniculosporium sp.1 26.7 43.3 

Xylaria sp. 16.7 46.7 

White sterile mycelia 30.0 10.0 

Arthrinium phaeospermum 6.7 20.0 

Eupenicillium sp. 3.3 6.7 

Ascochyta sp. 3.3 3.3 

Coelomycete S4R171 3.3 0.0 

Dactylaria obtriangularia 3.3 0.0 

Discula sp. 3.3 0.0 

Nodulisporium sp. 3.3 0.0 

Dark sterile DIM 0.0 6.7 

Mortierella globurifera 0.0 6.7 

Coelomycete S4Bl44 0.0 3.3 

Penicillium sp.4 0.0 3.3 

Table 4.3 Mean frequency (%) of fungi isolated by washing method from 
beech leaf litter during the decomposition (n=10). 

Fungus Upper Lower 

Trichoderma koningii 29.0 42.3 

Mortierella ramanniana var. ramanniana 22.3 35.7 

Trichoderma hamatum 28.3 20.0 

Gliocladium roseum 24.0 22.7 

Pestalotiopsis spp. 31.7 14.0 

Mucor hiemalis 12.3 23.7 

Penicillium citrinum 14.7 18.3 

Trichoderma sp.1 13.0 15.7 

Trichoderma viride 14.0 13.7 

Cladosporium cladosporioides 12.3 7.7 

Mortierella globurifera 6.0 10.7 

Mortierella isabellina 6.7 9.0 

Mucor racemosus 6.0 5.7 

Verticillium psalliotae 5.7 4.3 

Phoma spp. 4.7 7.3 

Penicillium glabrum 4.0 5.7 
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Table 4.3 Continued. 

Arthrinium state of Apiospora montagnei 5.3 4.0 

Mortierella verticillata 2.7 6.0 

Absidia glauca 4.7 4.0 

Fusarium solani 2.0 6.3 

Trichoderma harzianum 2.3 6.0 

Penicillium thomii 3.3 10.7 

Trichoderma pseudokoningii 5.7 6.0 

Gliocladium virens 5.0 2.7 

Trichoderma polysporum 4.3 2.3 

Rhizopus ct. rhizopodiJormis 3.0 0.3 

Acremonium sp.2 2.7 2.3 

Chaetomium globosum 2.7 0.3 

Aspergillus sp. 2.7 0.3 

Penicillium velutinum 2.3 5.0 

Aspergillus japonicus 2.0 2.7 

Epicoccum nigrum 2.0 1.0 

Cladosporium herbarum 2.0 0.3 

Mortierella ramanniana var. angulispora 1.7 3.0 

Paecilomyces carneus 1.7 1.3 

Verticillium cf. suchlasporium 1.3 4.0 
Mucoraceae 1 1.3 0.7 

Penicillium melinii 1.3 0.7 

Coniothyrium sp. 1.0 2.0 

Gliocladium viride 1.0 1.7 

Alternaria alternata 1.0 1.3 

Verticillium chlamydosporium 1.0 1.0 

Penicillium chrysogenum 1.0 0.3 

Scedosporium sp. 1.0 0.0 

Mucor sp. 0.7 1.3 

Acremonium sp.3 0.7 0.7 

Cladosporium sp. 0.7 0.7 

Colletotrichum sp. 0.7 0.3 

Acremonium sp.1 0.7 0.0 

Trichoderma sp.2 0.3 1.7 

Volutella ciliata 0.3 1.7 

Penicillium montanense 0.3 1.3 
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Table 4.3 Continued. 

Mortierella sp.1 0.3 1.0 

Cladosporium oxysporum 0.3 0.7 

Coelomycete AKA 0.3 0.7 

Fusarium graminearum 0.3 0.3 

Phialophora sp. 0.3 0.3 

Absidia spinosa 0.3 0.0 

Acremonium strictum 0.3 0.0 

Arthrinium phaeospermum 0.3 0.0 

Cladosporium erratum 0.3 0.0 

Coelomycete 1OR372 0.3 0.0 
Coelomycete SR112 0.3 0.0 

Discula sp. 0.3 0.0 

Fusarium oxysporum 0.3 0.0 

Fusarium sp. 0.3 0.0 

Gliomastix felina 0.3 0.0 
Hypomycete 3R362 0.3 0.0 
Mucoraceae 2 0.3 0.0 

Penicillium citreonigrum 0.3 0.0 

Penicillium sclerotiorum 0.3 0.0 

Penicillium sp.1 0.3 0.0 

Phialophora verrucosa 0.3 0.0 

Phomopsis sp. 0.3 0.0 

Penicillium janthinellum 0.0 2.0 

Aspergillus kanagawensis 0.0 1.3 

Mortierella sp.2 0.0 1.0 

Fusarium cf. redo lens 0.0 0.7 

M ortierella minutissima 0.0 0.7 

M ortierella wuyshanensis 0.0 0.7 

Penicillium lividum 0.0 0.7 

Absidia cylindrospora 0.0 0.3 

Acremonium sp.4 0.0 0.3 

Ascochyta sp. 0.0 0.3 
Ascomycete 3B37S 0.0 0.3 

Caicarisporium arbuscula 0.0 0.3 

Chaetomium sp. 0.0 0.3 

Chrysosporium sp. 0.0 0.3 
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Table 4.3 Continued. 

Coelomycete IBl101 0.0 0.3 

Geniculosporium sp.2 0.0 0.3 

Hyphomycete 2B153 0.0 0.3 

M ortierella autotrophica 0.0 0.3 

Mucor plumbens 0.0 0.3 

Paecilomyces farinosus 0.0 0.3 

Paecilomyces sp.2 0.0 0.3 

Penicillium corylophilum 0.0 0.3 

Penicillium miczynskii 0.0 0.3 

Penicillium sp.2 0.0 0.3 

Penicillium sp.3 0.0 0.3 

Rhizopus sp. 0.0 0.3 

Trichocladium asperm 0.0 0.3 

Trichoderma piluliferum 0.0 0.3 

Dark sterile mycelia 0.7 0.0 

White sterile mycelia 2.3 1.0 
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Fig. 4.11 Changes in frequency of 21 species in the other Ascomycota than the Xylariaceae 

and in the Zygomycota isolated by the washing method from beech leaf litter during 

decomposition. Groups are shown in the cluster analysis. 0 = upper, • = lower. 
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Table 4.4 Correlation coefficients for linear relations between LeI and soluble carbohydrate 

concentration of beech leaf litter and frequency 21 frequent fungi during decomposition (n=l1). 

LeI Soluble carbohydrate 

Fungus Upper Lower Upper Lower 

Group I 

Pestalotiopsis spp. 0.454 0.572 0.736** 0.489 

Cladosporium cladosporioides 0.500 0.036 0.415 -0.036 

Phoma spp. 0.735** 0.609* 0.554 0.501 

Penicillium glabrum 0.191 0.735* 0.317 0.792** 

Arthrinium sp. 0.708* 0.852*** 0.571 0.893*** 

Trichoderma harzianum 0.116 0.505 0.083 0.461 

Group II 

Trichoderma koningii -0.447 0.131 -0.457 0.240 

Mucor racemosus -0.112 -0.334 -0.172 -0.337 

Fusarium solani -0.289 -0.161 -0.427 0.061 

Group III 

Mortierella ramanniana -0.626* -0.794** -0.677* -0.687* 

Mucor hiemalis -0.806** -0.784** -0.604* -0.741 ** 

Mortierella isabellina -0.477 -0.616* -0.464 -0.671 * 

Trichoderma hamatum -0.870*** -0.621* -0.837** -0.810** 

Gliocladium roseum -0.674* -0.473 -0.768** -0.617* 

Penicillium citrinum -0.496 -0.675* -0.726* -0.815** 

Trichoderma sp.l -0.447 -0.818** -0.616* -0.896*** 

Trichoderma viride -0.544 -0.489 -0.715* -0.791 ** 

Mortierella globurifera -0.792** -0.724* -0.908*** -0.839** 

Verticillium psalliotae -0.402 -0.728* -0.551 -0.731 * 

M ortierella verticillata -0.621 * -0.701 * -0.780** -0.831 ** 

Absidia ~lauca -0.781 ** -0.620* -0.786** -0.560 
Groups are shown in the cluster analysis. Frequency was arcsin-transformed and used for 

calculation. 

* = p<0.05, ** = p<O.Ol, *** = p<O.OOl. LeI = lignocellulose index. 
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cladosporioides, Phoma spp., P. glabrum, Arthrinium sp., and T. harzianum. They were the 

early occurring species whose frequency was high during the immobilization phase and then 

decreased as the decomposition progressed. Group II included 3 species: T. koningii, M. 

racemosus, and F. solani. They occurred constantly throughout the decomposition. Group III 

included 12 species: M. ramanniana, M. hiemalis, M. isabellina, T. hamatum, G. roseum, P. 

citrinum, Trichoderma sp.1, T. viride, M. globurifera, V. psalliotae, M. verticillata, and A. 

glauca. They were the late occurring species whose frequency increased during the 

mobilization phase. 

Table 4.4 shows correlation coefficients for linear relations between LeI and soluble 

carbohydrate concentration of beech leaf litter and frequency of 21 species. They showed 

different responses to LeI and soluble carbohydrate concentration of the litter between the 

groups. Frequencies of Pesta lotio psis spp., Phoma spp., P. glabrum, and Arthrinium sp. in 

Group I were significantly (p<O.05) and positively related to LeI andlor soluble carbohydrate 

concentration in the upper or the lower site, or in both sites. Frequencies of C. cladosporioides 

and T. harzianum in Group I and frequencies of three species in Group II were not 

significantly related to the resource quality in both sites. Frequencies of 12 fungi in Group III 

were significantly (p<O.05) and negatively related to LeI and/or soluble carbohydrate 

concentration in the upper or the lower site, or in both sites. 
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Discussion 

In cool temperate deciduous forests in Japan, moder and mull humus develops on the 

upper and lower part of forest slopes, respectively (Takeda and Kaneko .1988). Takeda et al. 

(1987) reported that litter decomposition rate is higher in mull humus than in moder humus, 

as in the central Europe deciduous forests where mull humus often develops in calcareous 

soils and mor or moder humus develops in acidic sandy soils (Swift et al. 1979). In this study, 

however, decomposition rates of beech leaf litter were similar between the sites. This result is 

consistent with Kaneko (1995) who reported the decomposition processes of beech leaf litter 

were similar between the sites. As is pointed out by Kaneko (1995), this may be because of 

the use of the litter bags of fine mesh which inhibited a colonization of macrofaunal 

decomposers into the litter bags. The litter bags used in this study thus provided a similar 

habitat for decomposer fungal populations live in different soil types. 

Decomposition processes of beech leaf litter showed two phases: (i) nitrogen and 

phosphorus immobilization (0-21 months); and (ii) mobilization (21-35 months). Net increase 

in nitrogen and phosphorus weights during the immobilization phase can be ascribed to high 

initial lignin content and low initial nitrogen and phosphorus content of beech leaf litter 

according to Aber and Melillo (1982). Net weight loss of nitrogen and phosphorus occurred 

when C/N and C/P approached to asymptotes during the mobilization phase. Takeda et al. 

(unpublished) have already found that, irrespective of the initial values, C/N of leaf litter of 

18 tree species converged at 20-30 (25 on the mean) during a 20 month decomposition period 

and that net nitrogen mobilization started at the critical C/N values. The result that 

immobilization of phosphorus was higher in the lower site than in the upper site may be due 

to high exogenous phosphorus supply to the decomposing beech leaf litter in the lower site 

compared to the upper site (Melillo and Aber 1984). Weight changes in potassium, calcium, 

and magnesium showed only mobilization phase. This is consistent with previous studies on 

needle litters (Staaf and Berg 1982; Hasegawa and Takeda 1996) and broad-leaved litters 

(Gosz et al. 1973; Blair 1988). 
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The order of loss of organic chemical constituents was lignin < holocellulose < 

soluble carbohydrate < polyphenol in order. Berg et al. (1982) also reported that water soluble 

components showed faster weight losses than structural components such as holocellulose and 

lignin. The result that the changes in LCI during decomposition were characterized by two 

phases is consistent with Berg et al. (1984) and Melillo et al. (1989). The changes in LCI were 

significantly correlated to the changes in nitrogen and phosphorus concentrations during 

decomposition, indicating that nitrogen and phosphorus dynamics were related to the changes 

in relative availability of holocellulose in lignocellulose matrix. During the immobilization 

phase, high availability of holocellulose leads to the rapid fungal ingrowth during the first 

year that contributed to nitrogen and phosphorus immobilization. There have been two 

explanations for the mechanism of fungal immobilization of nitrogen and phosphorus. The 

first is that a major part of the total nitrogen and total phosphorus in the litter should be 

retained by fungal biomass. This does not, however, appear to apply here, because even when 

the fungal biomass in the litter was highest, the amount of nitrogen bound in the fungal 

biomass only made up 1.5% (upper site, 11th month) and 1.8% (lower site, 7th month) of the 

total litter nitrogen and that of phosphorus made up 7.5% (upper) and 7.8% (lower) of the 

total litter phosphorus, assuming nitrogen content of 3.7% and phosphorus content of 0.7% of 

fungal biomass (Baath and Soderstrom 1979). Berg and Soderstrom (1979) also reported that 

the increase of nitrogen bound in fungal biomass is not enough to explain the increase in total 

nitrogen amount in decomposing pine needle litter. The second is that fungal ingrowth may 

cause nitrogen to be retained in the litter as recalcitrant compounds such as protein-lignin 

complexes (Berg 1986, 1988). This hypothesis is supported by our unpublished finding 

(Osono et al. unpublished) that content and absolute amount of nitrogen in lignin fraction of 

beech litter increased during the immobilization phase. In the mobilization phase, on the other 

hand, LCI reached asymptotes and the decomposition processes may be controlled by the 

availability of carbon sources derived from the decomposition of refractory compounds such 

as lignin, lignin-like nitrogenous humic substances, and lignified holocellulose. Concurrently, 

fungal ingrowth decreased. With the low availability of carbon energy sources to fungal 
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populations, thus, the mobilization of nitrogen and phosphorus may exceed the 

immobilization and these elements were released from the litter during the mobilization 

phase. 

Lignin to nutrient ratios followed a similar pattern to carbon to nutrient ratios. LIN 

decreased as the immobilization of nitrogen into litter during the first 21 months and then 

nitrogen started to be released from the litter when LIN reached at about 26-27. This indicates 

that nitrogen can be incorporated into lignin until the lignin is saturated with nitrogen at the 

ratio of about 25. Aber and Melillo (1982) also reported total nitrogen immobilization into 

litter was expressed as a function of its lignin content. Osono and Takeda (unpublished) found 

the critical values of LIN of 14 tree species converged at 20 on mean irrespective of the initial 

values. 

The proportion of clamp-bearing fungal biomass to total fungal biomass increased as 

the decomposition proceeded. Some authors also reported that the density of basidiomycetous 

mycelia was higher in the F layer than in the upper L layer (Saito 1956; Baath and Soderstrom 

1977; Frankland 1982). The negative relationship between LeI and the percentage of clamp

bearing fungal biomass indicate that basidiomycetous fungi preferentially colonized on the 

litter with the low availability of carbon energy sources. The ability of the Basidiomycota to 

decompose lignin is the highest among litter decomposing fungi (Lindeberg 1944, 1946; Saito 

1960; Hering 1967, 1982; Miyamoto et al. 2000; Osono and Takeda 2002a). They 

decomposed lignin and lignin-like humic substances vigorously in forest soils to produce 

"white-rot humus" (Harris 1945; Saito 1957; Hintikka 1970, 1982). Furthermore, 

concentration of exchangeable NH4+ and nitrogen mineralization rate during the laboratory 

incubation were higher in the white-rot humus than in the surrounding humus (Hintikka 1970). 

These suggested that litter inhabiting basidiomycetous fungi played functional roles in the 

simultaneous decomposition of lignin and related humic substances and lignified 

holocellulose and the release of nitrogen and phosphorus in the beech litter during the 

mobilization phase. 

During the immobilization phase in the first 21 months, on the other hand, growth of 
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basidiomycetous hyphae was relatively low, while Geniculosporium sp.1 and Xylaria sp. 

(anamorph) were frequent in the 11th month litter. The predominance of the Ascomycota in 

the interior of litter in earlier stages of decomposition has been reported on several tree 

species (Hudson 1968; Tokumasu 1996). Osono and Takeda (1999b, 2001a) have already 

found that these xylariaceous species took part in lignocellulose decomposition in beech leaf 

litter. We thus suggested that these xylariaceous species may be major functional 

decomposers during the immobilization phase, decomposing holocellulose in preference to 

lignin and growing rapidly. This is supported by Osono and Takeda (2002a) that reported 

these xylariaceous species attack holocellulose in preference to lignin in beech leaf litter in 

vitro. 

Whether Geniculosporium sp.1 and Xylaria sp. (anamorph) persisted until the 

mobilization phase and took part in litter decomposition is unclear. However, our data 

indicate that Geniculosporium sp.1 and Xylaria sp. (anamorph) caused low and negligible 

weight loss, respectively, when inoculated under laboratory condition to 'mobilization phase' 

beech litter (LCI=O.34) compared to freshly fallen beech litter (LCI=0.45) (see Chapter 5). 

We thus considered that the litter decomposing activity of Geniculosporium sp.1 and Xylaria 

sp. (anamorph) would be lower and/or they would be less frequent during the mobilization 

phase than the immobilization phase. It is thus speculated that selective holocellulose 

decomposition by these xylariaceous species changed the resource quality that was unsuitable 

for themselves but suitable for the Basidiomycota, leading to the successive replacement of 

the functional group from the Xylariaceae to the Basidiomycota. 

A successional trend was observed in the composition of 21 frequent species in the 

other Ascomycota and the Zygomycota during decomposition. The successional pattern is 

similar to that reviewed in Hudson (1968) on decomposing litter of several tree species. These 

species were classified into 3 groups based on their occurrence patterns. As these species had 

a limited ability to attack lignin and depended on non-lignified holocellulose or soluble 

carbohydrate for their growth (Osono and Takeda 2002a), the changes in their frequencies 

were related to the changes in LCI and soluble carbohydrate concentration during 
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decomposition. 

The decrease of frequency of 4 species in Group I was significantly correlated to the 

decrease in LeI and soluble carbohydrate concentration. This suggested that they depended 

on non-lignified holocellulose or soluble carbohydrate of plant origin for their growth. They 

are regarded as 'primary saprophytes' sensu Hudson (1968) persisting from the phyllosphere 

of beech leaves (Osono 2002) and gaining first access to these resources. 

Frequencies of 3 species in Group II were not significantly related to the resource 

quality in both sites. They were considered as 'litter inhabitants' colonizing the litter of various 

resource availability. Factors other than the resource availability such as temperature or 

moisture may affect the occurrence of these species on the decomposing litter. 

Twelve fungi in Group III were the late occurring species whose frequency increased 

as the decrease in LeI and soluble carbohydrate concentration, suggesting that they depend 

for their growth on sugars released from the holocellulose fraction by ligninolytic activity of 

functional species in the Basidiomycota and the Xylariaceae. Saito (1965) and Hudson (1968) 

called these fungi 'secondary sugar fungi' that occurred in association with lignocellulose 

decomposers. 

In conclusion, the organic chemical, nitrogen, and phosphorus dynamics during 

decomposition of beech leaf litter were related to the ingrowth, substrate utilization, and 

succession of lignocellulose decomposers in the Xylariaceae and the Basidiomycota (Table 

4.5). These species are thus regarded as functional species that decompose holocellulose and 

lignin in the litter structure and play a major role in beech litter decomposition. Twenty-one 

species in the other Ascomycota and the Zygomycota, on the other hand, are regarded as 

associated species that depend for their growth on non-lignified holocellulose or soluble 

carbohydrate that constitute only a small portion of beech litter and play only a minor role in 

litter weight loss. Mycelial abundance of these species may be low regardless of their high 

frequencies. They were classified into three groups based on their occurrence patterns: 

primary saprophytes, litter inhabitants, and secondary sugar fungi. They showed different 

responses to LeI and soluble carbohydrate concentration of the litter between the groups. 
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The present study illustrates the importance of understanding the effects and 

interactions of specific functional groups, rather than assumptions about the functional 

competence of diverse communities, on the process of litter decomposition. Cox et al. (2001) 

reached at the similar conclusion who studied the effects of fungal inoculation on the 

decomposition of lignin and polysaccharides in Pinus litter. 
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Table 4.5 Relation of fungal ingrowth and succession with characters of two phases. 

Decomposition phase Immobilization phase Mobilization phase 

Time (months) 0-21 21-35 

Nitrogen and 
phosphorus 

C/N 

CIP 

LCI 

Fungal ingrowth 

Fungal succession 
i) functional species: 
lignocelulose 
decomposers 
- Function 

ii) associated species: 
cellulose 
decomposers 
and sugar fungi 

- Function 

immobilization mobilization 

55 -> 26 26-> 24 

1340 -> 760 (ridge) 760 -> 680 (ridge) 
610 (bottom) 610 -> 540 (bottom) 

0.45 -> 0.34 0.34 -> 0.33 

high low 

Xylariaceous Ascomycota Basidiomycota 
Geniculosporium sp.1 mainly Mycena spp. 
Xylaria sp. 
- Selective holocellulose - Simultaneous 
decomposition decomposition of 

holocellulose and lignin 

Other Ascomycota & Zygomycota 
'Primary saprophytes' 
(Group I) 
Pestalotiopsis spp. 
Phoma spp. 
Penicillium glabrum 
Arthrinium sp. 
Cladosporium 
cladosporioides 
Trichoderma harzianum 

'Secondary sugar fungi' 
(Group III) 
M ortierella ramanniana 
Mucor hiemalis 
M ortierella isabellina 
Trichoderma hamatum 
Gliocladium roseum 
Penicillium citrinum 
Trichoderma sp.1 
Trichoderma viride 
Mortierella globurifera 
Verticillium psalliotae 

'Litter inhabitants' 
(Group II) 
Trichoderma koningii 
Mucor racemosus 
Fusarium solani 

- Decomposition of non-lignified holocellulose and soluble 
carbohydrate 

The immobilization phase from 0 to 21 month and the mobilization phase from 21 to 35 month, 
in terms of nitrogen and phosphorus state, C/N, C(P, and lignocellulose index (LCI). 
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ChapterS 

Comparison of litter decomposing ability among diverse fungi 

Introduction 

Fungi play fundamental roles in decomposition processes of leaf litter within forest 

ecosystems (Swift et al. 1979; Cooke and Rayner 1984). Fungal species composition and 

successional changes during the decomposition process have been qualitatively investigated 

on several litter types (Hudson 1968), but the frequency of occurrence of individual species is 

a poor guide to their importance in the decomposition processes. Pure culture decomposition 

tests have been therefore carried out to assess the decomposing abilities and the substrate 

utilization patterns of fungi (Lindeberg 1944, 1946; Mikola 1956; Saito 1960; Hering 1967; 

1972; De-Boois 1976; Dix and Simpson 1984; Kuyper and Bokeloh 1994; Osono and Takeda 

1999b). 

Lignin and holocellulose are structural components that constitute 70-80% of fresh 

organic material and major energy sources in plant tissues that are available to fungi (Swift et 

al. 1979). Many studies have reported that the Basidiomycota account for most of the 

lignocellulose decomposition in leaf litter (Lindeberg 1944, 1947; Hering 1967; Dix and 

Simpson 1984; Miyamoto et al. 2000; Steffen et al. 2000). In addition, Osono and Takeda 

(1999b) reported that fungi in the Xylariaceae (Ascomycota) that colonize the interior of leaf 

tissues have the ability to decompose lignin and carbohydrate in beech litter. Because 

decomposition of lignin and holocellulose are key factors controlling litter decomposition 

rates (Aber et al. 1990), it is important to evaluate the lignin and cellulose decomposing 

ability of fungi occurring on litter in order to understand their roles in decomposition 

processes (Lindeberg 1946; Saito 1960; Hering 1967; Kuyper and Bokeloh 1994; Osono and 

Takeda 1999b; Miyamoto et al. 2000). However, in contrast to wood decomposition (e.g. 

Otjen et al. 1987; Rayner and Boddy 1988; Nilsson et al. 1989; Tanesaka et al. 1993; Worrall 
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et al. 1997), few surveys have been carried out comparing the leaf litter decomposing ability 

of diverse fungi. 

Nitrogen and phosphorus dynamics in decomposing litter show leaching, 

immobilization and mobilization phases, while potassium, calcium and magnesium released 

from litter, showing no net immobilization phase (Berg and Staaf 1981; Staaf and Berg 1982; 

Osono and Takeda 2001b). Immobilization indicates the retention, or net increase, of nutrients 

in the litter and mobilization indicates the net release of nutrients. Meanwhile, studies on 

fungal succession during the litter decomposition have shown that colonization of fungal 

populations is related to these phases (Deka and Mishra 1982; Slapokas and Granhall1991; 

Robinson et al. 1994; Osono and Takeda 200lb). Nutrient analyses in litter decomposed by 

each fungal species under a pure culture condition will provide useful information for the 

understanding of the role of each fungal population in nutrient dynamics during litter 

decomposition. However, few studies have been carried out to assess nutrient contents in litter 

decomposed in vitro by diverse fungal species. 

I investigated and compared the ability of 79 fungal isolates (41 genera, 60 species) 

in the Basidiomycota, the Ascomycota (Xylariaceae and others), and the Zygomycota to 

decompose beech leaf litter under laboratory conditions. Fungi were isolated either from fruit 

bodies on leaf litter, twigs, cupules, or wood; from green leaves, leaf litter, or twigs of beech; 

or from mineral soils. Isolates from green leaves were used to examine litter decomposing 

ability because some of these fungi persisted after litter fall and occurred as litter 

decomposers (Osono 2002). In addition, nutrient contents (N, P, K, Ca, Mg) were measured 

for the litter decomposed by 19 selected isolates in 15 species in the Basidiomycota and the 

Ascomycota (Xylariaceae and others). 
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Materials and Methods 

Fungi 

The 79 fungal isolates used in the decomposition test, date, source, and method of 

isolation are listed in Table 5.1. The isolates were qualitatively collected on several occasions 

during a 21-month period from October 1996 to June 1998 from the Ashiu Experimental 

Forest of Kyoto University (see Material and Study Site). Isolation were made either from 

mass basidiospores, a single ascospore, or mass ascospores discharged from fruit bodies on 

leaf litter, twigs, cupules, or wood; from green leaves, leaf litter, or twigs of beech, with the 

surface sterilization or the washing method (Osono and Takeda 1999b); or from mineral soils 

with dilution plating method (Osono and Takeda 2000). All fungal isolates were maintained 

on slants of a modified malt-yeast-soytone agar (Kinugawa 1988) at a room temperature (ca. 

15-20°C) in darkness. Malt-yeast-soytone agar contains malt extract 0.35%, soy tone 0.05%, 

yeast extract 0.025%, and agar 1.5% (w/v). 

Decomposition test 

The ability of isolates to decompose beech leaf litter was assessed by the pure culture 

decomposition test (Osono and Takeda 1999b). Leaf litter used in the test was collected from 

the study area by litter-traps in autumn 1997. Leaf disks, including the primary vein, were 

punched out with a cork borer (20 mm in diameter). A subsample of seven disks were air

dried at 40°C for 4 days and weighed to obtain the original weight of the leaf disks. 

Leaf disks were pressed in moistened paper towels between the base and lid of a 

Petri dish, then autoclaved at 120°C for 20 min. The sterilized disks were placed on surfaces 

of Petri dishes containing 20 mL 2% plain agar. Inocula for each assessment were cut out of 

the margin of the growing colonies on 2% malt extract agar (Hawksworth et al. 1995) with a 

sterile cork borer (5.5 mm in diameter) and placed on the center of the plates including a 

subsample of seven disks around the inoculum. Plates were incubated for 8 weeks at 20°C in 

darkness. 
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Mter 8 weeks leaf disks were collected, oven dried for 4 days at 40°C, and weighed. 

Observations were made of the external appearance of the decomposed litter, and bleaching 

(Le. change in color from brown to white) was observed under a binocular microscope with a 

magnification of 20x. Weight loss of the leaf disks was determined as a percentage of the 

original weight. Ten plates were prepared for each strain. A portion of the sample leaves were 

used for chemical analyses as described below. 

Chemical analyses 

The amount of lignin in samples was estimated by gravimetry using hot sulfuric acid 

digestion (King and Heath 1967). Total carbohydrate was estimated by the phenol-sulfuric 

acid method (Dubois et al. 1956) according to the method described in Fukui (1969). The 

methods are described in Chapter 2. 

Mean concentrations of lignin and carbohydrate in the initial litter were 39.6% and 

34.2%, respectively. Weight losses of lignin and carbohydrate were expressed as percentage 

of the original weights. 

Lignin/weight loss ratio (L/W) and lignin/carbohydrate loss ratio (LlC) are useful 

indices of the substrate utilization pattern of each fungal isolate (Worrall et al. 1997). L/W 

and LlC of an isolate are calculated according to the following equations: 

L/W = weight loss of lignin (% original weight of lignin) / weight loss of litter (% 

original weight of litter) 

LlC = weight loss of lignin (% original weight of lignin) / weight loss of 

carbohydrate (% original weight of carbohydrate) 

Total nitrogen content was measured by automatic gas chromatography (NC analyzer 

SUMIGRAPH NC-900, Sumitomo Chemical Co., Osaka, Japan). Mter an acid wet oxidation 

in HN03 + HCI04, the following analyses were performed; molybdate-ascorbic acid method 

for phosphorus (Olsen and Sommers 1982), flame photometry for potassium and atomic 
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absorption for calcium and magnesium (atomic absorption spectrophotometer 170-30S, 

Hitachi Ltd., Tokyo, Japan). 

Analysis of variance (Systat 1992) was used to determine the differences between 

mean values of nutrient contents among the taxa. The least significant difference test was used 

for multiple comparisons. 
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Results 

Weight loss 

Weight loss of beech leaf litter ranged from 0.1 % to 57.6% (Table 5.1, Figs. 5.1 and 

5.2). High weight losses were caused by six isolates in the Basidiomycota (Lentinula edodes, 

Microporus vernicipes, Mycena polygramma, Mycena sp., Naematoloma sublateritium, and 

Panellus serotinus) and ranged from 15.1% to 57.6%, whereas Guepiniopsis sp. and 

Xylobolus Jrustulatus caused weight losses of 4.2% and 4.3%, respectively. The mean weight 

loss of the Basidiomycota was 25.5%. Xylaria spp. and Geniculosporium spp. also caused 

high weight losses ranging from 4.8% to 14.4% and a mean weight loss for this group was 

7.6%. Other Ascomycota (including anamorphs) caused weight losses ranging from 0.1% to 

6.5% and a mean weight loss of 2.6%. Fungi in the Zygomycota caused weight losses ranging 

from 1.1% to 4.9% and a mean weight loss of 2.7%. Sterile mycelia caused weight losses 

ranging from 1.4% to 8.8% and a mean weight loss of 5.0%. 

Bleaching was noticeable in leaf litter decomposed by six isolates in the 

Basidiomycota, all 14 isolates in the Xylariaceae, and two isolates of white sterile 5LS12 

(Table 5.1). Mean weight loss of only bleached litter was 14.4% + 2.9% (mean + s.e.) 

and was significantly (p<O.Ol, T -test) higher than that of the non-bleached litter (2.6% + 

0.2%). 

Chemical changes and substrate utilization 

Weight losses of lignin and carbohydrate were measured for the litters decomposed 

by 13 isolates (six in the Basidiomycota, five in the Xylariaceae, and two white sterile 5LS12) 

that were representative of 22 isolates with the bleaching activity. Preliminary DNA analysis 

indicated the white sterile 5LS12 isolate belonged to the Xylariaceae, therefore decomposition 

results are subsumed under the Xylariaceae in the analysis. 

Weight loss of lignin ranged from 6.5% to 59.8% and from 2.0% to 12.2%, in the 
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Table 5.1 Isolates used in the litter-decomposing test, date, source, and method, bleaching activity, and weight loss after 8 weeks 

(mean ± SE). 

ISQlatiQn 

Taxaa Date Sourceb M th de Bleaching Weight loss 
e 0 activityd (% original weight) 

BASIDIOMYCOTA 
Guepiniopsis sp. Nov. '97 B(W) SD 4.2 ± 0.9 

Lentinula edodes (Berk.) Pegler Apr. '98 B(W) SD + 57.6 ± 1.6 

Microporus vernicipes (Berk.) O. Kuntze Nov. '97 B(T) SD + 15.1 ± 0.6 
Mycena polygramma (Bull.: Fr.) S.F. Gray Nov. '97 B(L) SD + 36.6 ± 1.6 

Mycena sp. Nov. '97 B(L) SD + 24.0 ± 1.3 

Naematoloma sublateritium (Fr.) Karst. Nov. '97 B(W) SD + 23.9 ± 0.9 

Panellus serotinus (Pers.: Fr.) KUhn. Nov. '97 B(W) SD + 38.1 ± 1.7 
1.0 Xylobolus Jrustulatus (Pers.: Fr.) Boidin Nov. '97 B(W) SD 4.3 ± 0.3 0'\ 

ASCOMYCOTA (XYLARIACEAE) 
Geniculosporium sp.1 Oct. '96 L SS + 7.3 ± 0.3 

Geniculosporium sp.1 Oct. '96 L SS + 11.2 ± 0.4 

Geniculosporium sp.2 Oct. '96 L SS + 4.8 ± 0.2 

Xylaria carpophila (Pers.) Fr. Aug. '97 A (C) SD + 14.4 ± 0.9 

Xylaria carpophila (Pers.) Fr. Jui. '97 A (C) SSI + 4.0 ± 0.6 
Xyiaria sp. Oct. '96 L SS + 9.9 ± 0.8 
Xylaria sp. Oct. '96 L SS + 8.2 ± 0.4 

Xylaria sp. Oct. '96 L SS + 7.8 ± 0.5 

Xylaria sp. Oct. '96 L SS + 7.5 ± 0.5 

Xylaria sp. Aug. '97 L SS + 7.0 ± 0.4 

Xvlqria sp. Oct. '96 L SS + 6.5 ± 0.3 



Table 5.1 Continued. 

Xylaria sp. Aug. '97 G SS + 6.1 ± 0.4 
Xylaria sp. Oct. '96 L SS + 5.6 ± 0.6 

Xylaria sp. Oct. '96 L SS + 5.5 ± 0.4 
ASCOMYCOTA (others) 

Acremonium sp. Sept. '97 L W 1.2 ± 0.3 

Alternaria alternata (Fr.) Keissler Jui. '97 L DP 1.7 ± 0.3 

Arthrinium state of Apiospora montagnei Sacco Oct. '96 L W 4.1 ± 0.2 
Arthrinium state of Apiospora montagnei Sacco Oct. '97 L DP 3.4 ± 0.2 

Arthrinium phaeospermum (Corda) M.B. Ellis Nov. '97 L SS 0.1 ± 0.2 
Ascochyta sp. Oct. '96 G SS 4.7 ± 0.1 
Ascochyta sp. Oct. '96 L SS 2.7 ± 0.3 
Ascochyta sp. Oct. '96 L SS 2.3 ± 0.3 

Ascochyta sp. Oct. '96 L SS 0.6 ± 0.4 
'-0 
-l Aspergillus kanagawensis Nehira May '98 S DP 2.2± 0.3 

Aspergillus japonicus Saito Nov. '97 L W 2.0 ± 0.3 
Chaetomium globosum Kunze ex Steud. Nov. '97 L SS 2.4 ± 0.2 
Chaetomium sp. May '97 L W 2.0 ± 0.2 
Cladosporium cladosporioides (Fres.) de Vries Oct. '96 L W 1.2 ± 0.2 

Colletotrichum sp. Nov. '97 L W 2.5 ± 0.3 

Coniothyrium sp. Sept. '97 L W 0.7 ± 0.2 

Discosia sp. Oct. '96 L W 6.5 ± 0.5 

Discula sp. Oct. '96 L W 4.6 ± 0.2 
Discula sp. Oct. '96 L SS 0.6 ± 0.4 
Epicoccum nigrum Link ex Link May '97 L W 2.5 ± 0.3 

Fusarium sp.1 Oct. '96 G W 3.0 ± 0.3 

Fusarium sp.2 Oct. '96 L W 2.6 ± 0.3 

Gliocladium roseum Bain. Oct. '96 L W 3.2 ± 0.3 



Table 5.1 Continued. 

Glicladium virens Miller, Giddens & Foster Oct. '97 G W 4.7 ± 0.2 

Gliocladium virens Miller, Giddens & Foster Oct. '96 L W 3.1 ± 0.3 

Lachnum virgineum (Batsch.: Fr.) Karsten. Apr. '98 A (C) SD 1.1±0.3 

M ammaria echinobotryoides Ces. JuI. '97 L DP 4.3 ± 0.2 

Nigrospora state of Khuskia oryzae H. Hudson Oct. '97 G DP 5.0 ± 0.2 

Penicillium thomii Maire Sept. '97 L W 1.1 ± 0.1 

Penicillium citrinum Thorn Oct. '97 L DP 2.4 ± 0.3 

Penicillium citrinum Thorn Nov. '97 L W 1.7 ± 0.3 

Penicillium velutinum van Beyrna May '98 S DP 1.1±0.2 

Pestaiotiopsis sp. Oct. '96 L W 5.5 ± 0.3 

Pestalotiopsis sp. Oct. '96 G W 3.8 ± 0.2 

Phoma sp. Oct. '96 L W 0.3 ± 0.1 

Phoma sp. Oct. '96 G W 1.8 ± 1.2 
\0 

Phomopsis sp. Aug. '97 T SS 3.8 ± 0.2 00 

Trichoderma hamatum (Bonord.) Bain. Oct. '96 L W 4.6 ± 0.1 

Trichoderma harzianum Rifai Oct. '96 G W 3.3 ± 0.2 

Trichoderma koningii Oudern. Oct. '96 L W 1.4 ± 0.4 

Trichoderma longibrachiatum Rifai Oct. '96 L W 0.2 ± 0.3 

Trichoderma polys porum (Link ex Pers.) Rifai JuI. '97 L W 4.5 ± 0.5 

Trichoderma viride Pers. ex Gray Oct. '96 L W 3.9 ± 0.3 

Verticillium chlamydosporium Goddard Sept. '97 L W 2.0 ± 0.4 
Unknown GSD1 (Hyphornycetes) Oct. '96 G SS 1.1 ± 0.3 
Unknown B1 (Discomycetes) May '98 A(L) SD 2.1 ± 0.3 
Unknown DS (Pyrenornycetes) Jun. '98 A (1) SD 1.1 ± 0.5 

ZYGOMYCOTA 
Absidia glauca Hagern Jun. '98 L W 1.9 ± 0.2 

Mortierella isabellina Oudern. Oct. '97 L DP 2.8 ± 0.3 



Table 5.1 Continued. 

Mortierella ramanniana var. angulispora (Naumov) 
Linnem. 

Mortierella ramanniana (Moller) Linnem. var. 
ramanniana 

M ortierella wuyshanensis Chen 
Mucor hiemalis Wehmer 

STERILE MYCELIA 
White sterile SLS12 

White sterile SLS12 

White sterile GSN2 
White sterile GSR1 

Jui. '97 

Sept. '97 

Oct. '96 
Oct. '97 

Oct. '96 

Oct. '96 

Oct. '96 
Oct. '96 

L DP 4.9 ± 0.2 

L DP 2.3 ± 0.3 

L W 3.1 ± 0.3 
L DP 1.1±0.3 

L SS + 8.8 ± 0.6 
G SS + 6.2 ± 0.3 
G SS 3.6 ± 0.4 
G SS 1.4 ± 0.2 

aThe classification follows Hawksworth et ai. (1995). In this study, the Ascomycota was divided into two groups, Xylariaceae 
\0 and others. The groups include their anamorphs. 
\0 bSource. B, basidiospores; L, leaf litter; A, ascospore(s); G, green leaf; S, soil; T, twig. Substratum in parenthesis. W, wood; 

T, twig; L, leaf litter; C, cupule. 
cMethod. SD, spore discharge; SS, surface sterilization; SSI, single spore isolation; W, washing; DP, dilution plating. 
dBleaching activity. +, present; -, absent. 
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Table 5.2 Weight loss of lignin and carbohydrate, lignin/litter weight loss ratio (L/W), and 

lignin/carbohydrate weight loss ratio (UC) during decomposition of beech leaves after 8 weeks by fungi 

that exhibit bleaching activity. 

Taxa Weight loss (% original weight) UW UC 
Lignin Carbohydrate 

BASIDIOMYCOTA 

Lentinula edodes 59.8 66.6 1.0 0.9 

M icroporus vernicipes 6.5 30.0 0.4 0.2 

Mycena polygramma 33.2 47.8 0.9 0.7 

Mycena sp. 27.0 30.2 1.1 0.9 

Naematoloma sublateritium 16.3 46.0 0.7 0.4 

"""" Panellus serotinus 35.9 42.3 0.9 0.9 0 

"""" ASCOMYCOTA (XYLARIACEAE) 

Geniculosporium sp.1 3.6 19.9 0.5 0.2 

Geniculosporium sp.1 5.0 19.9 0.8 0.3 

Xylaria carpophila 3.9 29.1 0.3 0.1 

Xylaria sp. 7.2 16.0 0.7 0.4 

Xylaria sp. 12.2 7.6 1.5 1.6 

STERILE MYCELIA 
White sterile 5LS12 2.0 23.6 0.2 0.1 

White sterile 5LS12 7.6 21.5 0.7 0.4 



1 A: B: LIe 
P=0.05 P<0.05 

0.5 

o 
BASIDIOMYCOTA ASCOMYCOTA BASIDIOMYCOTA ASCOMYCOTA 

(xyLARIACEAE) (XYIARIACEAE) 

Fig. 5.3 Comparison of L/W (A) and L/C (B) between the Basidiomycota and the 

Xylariaceae. The result of Xylaria sp. which caused marked delignification was 

excluded in the analysis. Bars indicate standard errors. 

Basidiomycota and in the Xylariaceae, respectively (Table 5.2). Weight loss of carbohydrate 

ranged from 30.0% to 66.6% and from 7.6% to 29.1 %, respectively. L/W ranged from 0.4 to 

1.1 and from 0.2 to 1.5, and LlC ranged from 0.2 to 0.9 and from 0.1 to 1.6, respectively. 

Variation in L/W and LlC was higher in the Xylariaceae than in the Basidiomycota, because a 

strain of Xylaria sp. showed marked delignification and high L/W and Lie. 

L/w and LlC were compared between the Basidiomycota and the Xylariaceae. L/W 

were 0.9 + 0.1 (mean + s.e.) and 0.7 + 0.2, respectively, and LlC were 0.7 + 0.2 and 

0.4 + 0.2, respectively. No significant differences were found between two groups in L/W 

and LlC. However, when the result of Xylaria sp. that showed marked de lignification was 

excluded in the analysis, significant differences were found in L/W (p=0.05, T-test) and LlC 

(p<0.05, T test) (Fig. 5.3). 

Nutrient content 

Table 5.3 shows weight loss and nutrient contents (N, P, K, Ca, Mg) of beech leaf 

litter decomposed by 19 isolates in Basidiomycota (litter B), xylariaceous Ascomycota (litter 

102 



XA) and other Ascomycota (litter OA). The nitrogen content was 1.30% in the initial litter, 

1.29% in the control litter, 1.13% - 1.38% in litter B, 1.24% - 1.31% in litter XA and 1.11%-

1.25% in litter OA. The phosphorus content was 0.062% in the initial litter, 0.023% in the 

control litter, 0.037% - 0.053% in litter B, 0.030% - 0.075% in litter XA and 0.032% -

0.050% in litter OA. The potassium content was 0.504% in the initial litter, 0.023% in the 

control litter, 0.040% - 0.093% in litter B, 0.028% - 0.075% in litter XA and 0.032% -

0.071 % in litter OA. The calcium content was 0.59% in the initial litter, 0.78% in the control 

litter, 0.65% - 0.99% in litter B, 0.67% - 0.89% in litter XA and 0.61% - 0.79% in litter OA. 

The magnesium content was 0.130% in the initial litter, 0.075% in the control litter, 0.028% -

0.054% in litter B, 0.073% - 0.109% in litter XA and 0.067% - 0.083% in litter OA. 

Figure 5.4 shows a comparison of nutrient contents (N, P, K, Ca, Mg) in litters B, 

XA and OA. The mean N content in litter B was not significantly different from that in litter 

XA, but was significantly higher than that in litter OA. The mean P concentration in litter XA 

was significantly higher than that in litters Band OA. The mean Mg concentration in litter B 

was significantly lower than that in litters XA and OA. No significant differences were found 

in the mean K and Ca concentrations among the litters. 
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Table 5.3 Nutrient contents (N, P, K, Ca, Mg) of beech leaf litter decomposed by 19 isolates 

in Basidiomycota and Ascomycota (Xylariaceae and others). Weight losses represent means 

of ten reElicates. Nutrient concentrations reEresent sin~le anall:ses of bulked reElicates. 

Taxa Concentration (%) 

N P K Ca Mg 

Initial litter 1.30 0.062 0.504 0.59 0.130 

Control litter 1.29 0.023 0.023 0.78 0.075 

Basidiomycota 
Panellus serotinus 1.38 0.053 0.075 0.73 0.028 

Microporus vernicipes 1.27 0.037 0.040 0.75 0.054 

Naematoloma sublateritium 1.36 0.053 0.087 0.67 0.029 

Lentinula edodes 1.33 0.052 0.093 0.99 0.029 

Mycena polygramma 1.33 0.046 0.080 0.84 0.030 

Mycena sp. 1.13 0.039 0.060 0.65 0.047 

Xylariaceous Ascomycota 
Xylaria carpophila 1.18 0.075 0.072 0.72 0.093 

Xylaria sp. 1.26 0.056 0.058 0.76 0.088 

Xylaria sp. 1.31 0.066 0.075 0.89 0.109 

Geniculosporium sp.1 1.24 0.073 0.075 0.75 0.083 

Geniculosporium sp.1 1.25 0.030 0.028 0.67 0.073 

White sterile 5LS12 1.24 0.065 0.066 0.81 0.084 

White sterile 5LS12 1.27 0.071 0.067 0.88 0.092 

Other Ascomycota 
Discosia sp. 1.22 0.050 0.067 0.62 0.080 

Trichoderma hamatum 1.18 0.032 0.032 0.72 0.082 

Ascochyta sp. 1.25 0.046 0.071 0.76 0.076 

Ascochyta sp. 1.11 0.033 0.058 0.79 0.079 

Pestalotiopsis sp. 1.23 0.034 0.044 0.63 0.083 

Nigrospora oryzae 1.19 0.035 0.051 0.61 0.067 
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Fig. 5.4 Comparison of nutrient contents (N, P, K, Ca, Mg) in beech leaf litter 

decomposed by fungi in the Basidiomycota (B, n=6), Xylariaceous 

Ascomycota (XA, n=7) and other Ascomycota (OA, n=6). Bars indicate 
standard errors. The same letters indicate lack of significant difference at 5% 
level by least significant difference test. 
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Discussion 

Weight loss and chemical changes 

Some litter decomposing ability occurs in many groups of fungi. However, a marked 

decomposing ability was limited to members in the Basidiomycota and in the Xylariaceae. 

These fungi also had bleaching activity that was associated with lignin and carbohydrate 

decomposition, and were regarded as lignocellulose decomposers. 

High weight losses of the litter with lignin and carbohydrate decomposition were 

caused by six isolates in the Basidiomycota, i.e. Mycena polygramma, Mycena sp., Lentinula 

edodes, Microporus vernicipes, Naematoloma sublateritium, and Panellus serotinus. Mycena 

spp. were known as vigorous decomposers of lignin and cellulose in leaf litter (Lindeberg 

1946), and the others as white-rotters of wood (Imazeki and Hongo 1987, 1989; Tanesaka et 

al. 1993). Mycena polygramma and Mycena sp. decomposed lignin and carbohydrate in beech 

leaf litter as intensively as the wood fungi. 

On the other hand, Guipiniopsis sp. and Xylobolus frustulatus caused lower weight 

losses and showed no bleaching of the litter, suggesting that some fungi in the Basidiomycota 

are not vigorous decomposers of beech leaf litter. Mikola (1956) also reported that 

decomposing abilities of basidiomycetous fungi were highly variable among species. 

Fungi in the Xylariaceae caused the second highest weight loss of beech litter and 

lignin and carbohydrate decomposition. Xylariaceous species are known to be lignin and 

cellulose decomposers of wood (Merrill et al. 1964; Rogers 1979; Sutherland and Crawford 

1981; Nilsson et al. 1989; Whalley 1996; Worrall et al. 1997). There have been a few studies 

on leaf litter decomposition by xylariaceous fungi (Osono and Takeda 1999b), but the present 

study showed that they caused substantial decomposition of lignin and carbohydrate. A field 

evidence of their bleaching activity associated with lignocellulose decomposition has already 

presented on the beech litter (Osono and Takeda 2001a). These thus indicate that 

Xylariaceous'species are major decomposers of lignin and cellulose in beech leaf litter. 

Other species within the Ascomycota and in the Zygomycota had low weight losses 
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on mean and had no bleaching activity. Among them, Discosia sp. and Trichoderma hamatum 

caused 22.7% and 9.3% loss of carbohydrate in the litter, respectively, and were regarded as 

cellulose decomposers (Osono and Takeda 1999b). Hence, some isolates that caused litter 

weight loss of 3.0% to 6.0%, such as Pestalotiopsis sp. and Nigrospora state of Khuskia 

oryzae may be considered as cellulose decomposing fungi. The growth of other fungi that 

caused weight losses below 3.0% in the test may rely mainly on readily available energy 

sources and be regarded as sugar fungi (Hudson 1968), as beech litter contained about 3.0% 

of soluble carbohydrate that fungi might consume without destroying cell wall polymers. 

Substrate utilization patterns 

Lignin/weight loss ratio (LfW) and lignin/carbohydrate loss ratio (UC) are useful 

indices of the substrate utilization pattern of fungi. In this study, mean L/W were 0.9 and 0.7, 

and mean L/C were 0.7 and 0.4 for the Basidiomycota and the Xylariaceae, respectively. 

There has been only one comparable study of L/W and L/C of litter decomposers. In the 

decomposition of Fagus sylvatica litter by 26 basidiomycetous fungi, Lindeberg (1946) 

reported mean values of L/W (1.8 + 0.5, mean + s.d.) and L/C (1.4 + 1.2) that were 

significantly (p<0.01, T -test) higher than those recorded in the present study. This difference 

is probably due to the difference in the fungal strains used and/or in the incubation method 

utilized. 

Mean L/W and L/C of fungi in the Basidiomycota were significantly higher than in 

the Xylariaceae when the result of Xylaria sp. that caused marked delignification was 

excluded in the analysis. The difference in L/W and L/C between these two groups was also 

found in studies on decomposition of birch wood block (Otjen et a1. 1987; Nilsson et a1. 1989; 

Worrall et a1. 1997). Thus, it is suggested that L/W and UC were higher in the Basidiomycota 

than in the Xylariaceae in the litter decomposition and that the Xylariaceae decomposed 

holocellulose in preference to lignin more so than in the Basidiomycota. A strain of Xylaria sp. 

caused marked delignification. As Xylaria sp. occurred most frequently on bleached portions 

of beech litter with frequency of 60%, some strains in this species may be important in lignin 
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decomposition of beech litter in the study site (Osono and Takeda 2001a). 

This difference may reflect the anatomical and chemical characteristics of plant cell 

wall decomposition by these fungi (Rayner and Boddy 1988). In the white-rot process by 

basidiomycetous fungi, all cell wall constituents were decomposed in the secondary wall and 

middle lamella (Blanchette 1995) anellor lignin was selectively removed (Otjen and 

Blanchette 1986). On the other hand, xylariaceous fungi caused soft-rot type decomposition 

by formation of cavities within the secondary wall along the microfibrillar axis or of cell wall 

erosion towards the middle lamella (Blanchette 1995), in which carbohydrates were 

preferentially attacked (Nilsson et al. 1989; Worrall et al. 1997). 

Nutrient content 

The nutrient dynamics of decomposing beech litter were categorized into two types 

(Osono and Takeda 2001b). The first type includes N and P whose weight changes were 

characterized by immobilization and mobilization phases. The second type includes K, Ca and 

Mg whose weight changes were mostly characterized by mobilization. Immobilization and 

mobilization dynamics of N and P were related to changes in the relative amount of lignin and 

holocellulose and to succession of lignocellulose decomposers (Osono and Takeda 2001b). 

Higher P contents in litter XA than in litter B is consistent with the trend that the xylariaceous 

species were dominant at the immobilization phase while basidiomycetous fungal biomass 

increased at the mobilization phase (Osono and Takeda 200lb). The lack of a significant 

difference in N contents between litters Band XA suggests that the organic chemical 

composition influenced more strongly N dynamics during litter decomposition than species 

composition of the decomposer fungi. It is interesting to note that the Mg contents differed 

significantly between litters Band XA in spite of the small fungal effect on Mg dynamics in 

decomposing litter (Osono and Takeda 2001b). 

The difference in N, P and Mg contents among litters B, XA and OA is difficult to 

explain. These differences may be ascribed to the heterogeneous distribution of these 

elements within dead plant tissues and to difference in mode of tissue attack specific to each 
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taxon, i.e., the Basidiomycota caused the white-rot type decomposition while the Xylariaceae 

caused the soft-rot type decomposition (Rayner and Boddy 1988). 

The decrease in P, K, and Mg contents from the initial litter to control litter is 

probably due to the leaching of elements during autoclaving and leaching during incubation 

on plain agar. Loss of K was most noticeable because of its high mobility. Other sterilization 

methods that impose less artificial alteration than autoclaving, such as gas sterilization or 

gamma irradiation, should be used for more reliable measurement of nutrient contents in litter 

decomposed in vitro by fungi. 
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Chapter 6 

Fungal decomposition of leaf litter with ditTerent substrate quality 

and under ditTerent nutritional conditions 

Introduction 

In temperate regions, holocellulose in litter structure was preferentially utilized over 

lignin during the initial decomposition processes (Berg 1986; Mellilo et al. 1989; Aber et al. 

1990). As a result, lignin and lignin-like recalcitrant substances remained in litter that are not 

readily available to most decomposer organisms. The exception is litter decomposing 

Basidiomycota that have an ability to lignin as well as cellulose (Lindeberg ·1944, 1947; 

Hering 1967; Miyamoto et al. 2000) by the production of laccases and Mn-peroxidases 

(Steffen et al. 2000). These fungi can also attack the humus-like substances with the 

ligninolytic enzymes (Blondeau 1989). Experiments are needed to assess the ability of the 

Basidiomycota and other fungi to attack lignin and related recalcitrant substances remaining 

in previously partly decomposed litter 

Phyllosphere fungi include those fungi that colonize the interior and surface of living 

leaves (Petrini 1991). Mycological studies have found that phyllosphere fungi also occur on 

fallen leaves of various plant species at the initial stage of decomposition (Hudson 1968; 

Osono 2002). Functionally some phyllosphere fungi, called 'primary saprophytes' by Hudson 

(1968), utilize readily available carbohydrates, and others such as xylariaceous endophytes 

degrade cellulose more selectively than lignin (Osono and Takeda 2002a). According to the 

resource utilization by phyllosphere fungi, litter decomposition progressed along with fungal 

succession on the litter (Hudson 1968; Osono and Takeda 2001b). The successive change 

from phyllosphere species to litter and soil mycobiota during decomposition suggests that the 

changes in litter quality due to prior colonization and consumption of available resources by 

phyllosphere fungi affected the growth, substrate utilization, and litter decomposition by 
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succeeding fungi. Especially white rot species in the Basidiomycota, vigorous decomposers of 

lignocellulose, may be physiologically adapted to the effective removal of lignin and related 

recalcitrant substances remaining in litter previously partly decomposed by phyllosphere 

fungi. The effects of pretreatment of wood by wood-inhabiting fungi on its subsequent 

decomposition by another fungus have been reported (Tanaka et al. 1988). However, such 

effects have not been investigated for litter-inhabiting fungi. 

Prior decomposition by fungi altered organic the availability of carbon and nitrogen 

to succeeding fungi. Regulatory effects of carbon and nitrogen nutrition on lignin 

decomposition have been extensively studied in wood decomposing fungi. Most of 

polysaccharides in wood are protected from enzymatic attack by lignification and must be 

delignified for carbohydrate assimilation. This delignification depends on the availability of 

non-lignified carbon energy sources (Kirk et al. 1976; Reid 1991). In addition, nitrogen 

represses lignin decomposition, directly by interference with synthesis of ligninolytic enzyme 

system (Keyser et al. 1978), and indirectly by stimulating carbohydrate consumption which 

results in a rapid exhaustion of non-lignified carbohydrates necessary for lignin 

decomposition (Reid 1991). Comparative information was, however, rare on the effects of 

organic chemical quality and inorganic nitrogen addition on lignin decomposition by leaf 

litter decomposing fungi. 

Three laboratory experiments were carried out to investigate the decomposition of 

leaf litter with different substrate quality and under different nutritional conditions. In the first 

experiment, the decomposition of freshly fallen litter and partly decomposed litter of beech 

was evaluated. In the second experiment, the effect of prior decomposition of leaf litter by 

phyllosphere fungi on substrate utilization by saprophytic fungi in the Basidiomycota, the 

Ascomycota, and the Zygomycota, was examined. In the third experiment, the effects of litter 

organic chemical quality and exogenous inorganic nitrogen addition on lignin decomposition 

were investigated. 
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Materials and Methods 

Experiment 1: Decomposition of litter in different decay stages 

Source of fungi and litters 

Eight fungal species were used in this experiment: Clitocybe sp., Mycena 

polygramma, Geniculosporium sp.1, Xylaria sp. (anamorph), G. serpens, Chaetomium 

globosum, Calcarisporium arbuscula, and Mortierella ramanniana var. ramanniana. These 

fungi were collected from the Ashiu Experimental Forest of Kyoto University (see Material 

and Study Site). Clitocybe sp. and M. polygramma caused bleaching on litter materials on 

forest floor (Chapter 3). Geniculosporium sp.1 and Xylaria sp. were phyllosphere fungi that 

produced bleaching spots on beech leaves (Chapter 2). G. serpens and C. globosum were 

isolated frequently and exclusively from the bleached litter produced by Clitocybe sp. 

(Chapter 3). C. arbuscula and M. ramanniana were isolated from the bleached and non

bleached litter (Chapter 3). 

Decomposition test 

An in vitro decomposition test was carried out to assess the decomposing activity of 

fungi. Two litter types were used in the test: (i) freshly fallen leaves of beech collected from 

forest floor in autumn 1999 and (ii) partly decomposed litter exposed to natural microbial 

decomposition for 2 to 3 years in a litter bag (Osono and Takeda 2001b). 

Inocula for each assessment were cut out of the margin of the growing colonies on 

2% malt extract agar with a sterile cork borer (5.5mm diam) and placed on the center of Petri 

dishes (9 cm diam) containing 20 ml 2% plain agar. One gram of litter sample, cracked into 

approx 5 x 5 mm, was sterilized with ethylene oxide gas at 60°C for 3 hours and placed on the 

surface of the agar. The plates were incubated at 20°C for 16 wks in darkness. After the 

incubation, leaves were collected, oven-dried at 40°C for 4 days, and weighed. Three plates 

were prepared for each species. The leaves were then combined and used for chemical 

analyses. Weight loss of the leaves was determined as a percentage of the original weight. T-
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test was used to determine differences between mean values of weight losses of freshly fallen 

litter and partly decomposed litter. 

Chemical analyses 

Leaf samples were ground in a laboratory mill (0.5 mm screen) for chemical analyses. 

The amount of lignin in samples was estimated by gravimetry using hot sulfuric acid 

digestion (King and Heath 1967). The amount of total carbohydrate was estimated by the 

phenol-sulfuric acid method (Dubois et al. 1956). The methods are described in Chapter 2. 

Lignin/weight loss ratio (L/W) and lignin/carbohydrate loss ratio (UC) are useful 

indices of substrate utilization pattern of each fungal species (Osono and Takeda 2002a). L/W 

and UC of each fungal species are calculated according to the following equations: 

L/W = weight loss of lignin (% of original lignin weight) I weight loss of litter (% of 

original litter weight) 

LIC = weight loss of lignin (% of original lignin weight) I weight loss of 

carbohydrate (% of original carbohydrate weight) 

Experiment 2: Effects of prior decomposition by phyllosphere fungi 

Source of fungi and litters 

Twelve fungal species were used in this experiment: Mycena sp., M. polygramma 

(Basidiomycota), Xylaria sp. (anarnorph) (xylariaceous Ascomycota), Alternaria alternata, 

Ascochyta sp., Cladosporium cladosporioides, Epicoccum nigrum, Gliocladium roseum, 

Trichoderma koningii, Penicillium citrinum (Ascomycota other than Xylariaceae), Mucor 

hiemalis, and Mortierella ramanniana var. ramanniana (Zygomycota). Xylaria sp. and 

Ascochyta sp. were phyllosphere species on beech. A. alternata, C. cladosporioides, E. 

nigrum, G. roseum were epiphytic phyllosphere fungi. Mycena sp., M. polygramma, T. 

koningii, P. citrinum, M. hiemalis, and M. ramanniana were litter fungi (Osono 2002). Details 

of sources and method of isolation were described in Osono and Takeda (2002a). The detail 
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of collection and isolation of these fungi are described in Chapter 5. Beech litters used in the 

decomposition tests were collected by litter-traps in autumn 1997 at the study site. 

Decomposition test 

An in vitro decomposition test was carried out to assess the effect of prior 

decomposition by two phyllosphere fungi on substrate utilization by twelve fungal species 

(Osono and Takeda 2002a). Xylaria sp. and Ascochyta sp. were used as prior decomposers. 

Three litter types were used in the test: (i) control litter without fungal inoculation (litter C), 

(ii) litter previously partly decomposed by Xylaria sp. (litter X), and (iii) litter previously 

partly decomposed by Ascochyta sp. (litter A). 

In the decomposition test of litter C, the disks were exposed to each of 12 fungi for 8 

wks without pretreatment by the phyllosphere fungi according to the method described in 

Chapter 5. Ten plates were prepared for each species. In the decomposition test of litters X 

an? A, the disks were exposed to each of the phyUosphere fungi for 8 wks, then autoclaved 

and transferred to the plates inoculated with each of 12 fungi and incubated for another 8 wks, 

according to the same method described above. 

Weight loss of the leaf disks was determined as a percentage of the original weight. 

When analyzing the weight loss of leaf litter, the arcsin transformation was used because the 

data were in the form of proportions. Analysis of variance (Systat 1992) was used to 

determine differences among mean values of weight losses of litters C, X, and A. Tukey's 

honestly significant difference (HSD) test was used for multiple comparisons. T -test was used 

for M. polygramma to determine differences between mean values of weight losses of litters C 

and X, instead of ANOVA, because no data were obtained from the experiment with M. 

polygramma on litter A due to contamination. Part of the results have already been presented 

by Osono and Takeda (1999b, 2002a). 

Chemical analyses 

The amount of lignin in samples was estimated by gravimetry using hot sulfuric acid 
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digestion (King and Heath 1967). The amount of total carbohydrate was estimated by the 

phenol-sulfuric acid method (Dubois et al. 1956). The methods are described in Chapter 2. 

Lignin/weight loss ratio (L/W) and lignin/carbohydrate loss ratio (L/C) are useful 

indices of substrate utilization pattern of each fungal species (Osono and Takeda 2002a). L/W 

and L/C of each fungal species are calculated according to the equations as described above. 

Experiment 3: Effect of organic chemical quality and inorganic N addition 

The ability of a strain (code GS1-1) of Xylaria sp. (anamorph) to decompose leaf 

litters was assessed by the pure culture decomposition test according to the method described 

in Chapter 5. Leaf litters of 4 tree species were used, Le.Acer mono Maxim. var. marmora tum 

Rara, Sorbus alnifolia (Sieb. et Zucc.) C. Koch, Quercus mongolica var. grosseserrata, and 

Fagus crenata. In some tests, (NH4)2S04 or NaN03 was incorporated into the agar (denoted as 

NH4 and N03 treatment, respectively) at a concentration of 11. 76mM N equivalent which is 

equal to the nitrogen amount in the leaf disks. Weight loss of the leaf disks was determined as 

a percentage of the original weight. When analyzing the weight loss of leaf litter, the arcsin 

transformation was used because the data were in the form of proportions. Ten plates were 

prepared for each test. 

The amount of lignin in samples was estimated by gravimetry using hot sulfuric acid 

digestion (King and Heath 1967). The amount of total carbohydrate was estimated by the 

phenol-sulfuric acid method (Dubois et al. 1956). The methods are described in Chapter 2. 

Relative amount of holocellulose in lignocellulose matrix is a useful index of litter 

chemical quality. Lignocellulose index (LCI) of litter type is calculated according to the 

following equation: 

LCI = holocellulose conc. / (holocellulose conc. + lignin conc.) 
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Fig. 6.1 Weight loss (% original weight) of freshly fallen litter 

(open box) and partly decomposed litter (black circle). 
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Fig. 6.2 L/W and LlC of fungi inoculated on freshly fallen litter 

(open box) and partly decomposed litter (black circle). 

Results 

Decomposition of litter in different decay stages 

Freshly fallen litter initially contained 42.8% of lignin and 23.9% of carbohydrate, 

while partly decomposed litter initially contained 48.2% of lignin and 20.8% of carbohydrate. 

Figure 6.1 shows weight loss of freshly fallen litter and partly decomposed litter. 

Clitocybe sp. caused weight loss of partly decomposed litter significantly (p=0.06) higher than 
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Table 6.1 Weight loss of lignin and carbohydrate, L/W and LIC during decomposition 

Fungus Litter type Weight loss 

(% original weight) 

Lignin Carbohydrate L/W LIC 

BASIDIOMYCOTA 
Mycena polygramma Freshly fallen 8.1 13.2 0.8 0.6 

Partly decomposed 7.0 15.9 1.2 0.4 

Clitocybe sp. Freshly fallen 25.0 11.1 2.8 2.3 

Partly decomposed 43.7 10.4 2.4 4.2 
ASCOMYCOTA (XYIARIACEAE) 
Xylaria sp. Freshly fallen 6.2 30.8 0.7 0.2 

r-' Partly decomposed 5.0 7.2 nd 0.7 r-' 
-....} 

Geniculosporium sp.1 Freshly fallen 9.2 32.4 0.9 0.3 

Partlx decomEosed 4.6 12.3 1.3 0.4 

nd L/W of Xylaria sp. was not calculated because weight loss of litter was negligible. 



that of freshly fallen litter. Mycena polygramma, Geniculosporium sp., and Xylaria sp., on the 

other hand, caused weight loss of partly decomposed litter significantly (p<0.05) lower than 

that of freshly fallen litter. 

Figure 6.2 and Table 6.1 show weight loss of lignin and carbohydrate, L/W, and L/C 

of 4 species incubated on freshly fallen litter and partly decomposed litter. Clitocybe sp. 

caused marked delignification in partly decomposed litter. L/W and LlC of M. polygramma 

and Geniculosporium sp.1 were similar on both litters. 

Effects of prior decomposition by phyllosphere fungi 

Table 6.2 shows initial chemical composition of litters C, X, and A. Nitrogen 

concentration was similar among the litters. Concentration of soluble carbohydrate was lower 

at litters X and A than at litter C. Concentrations of lignin and total carbohydrate were similar 

between litters C and X, and concentration of lignin was higher and that of total carbohydrate 

was lower at litter A than at litters C and X. Weight losses (% original weight) of litters X and 

A for the first 8 wks were 8.2% and 4.7%, respectively. 

Figure 6.3 shows weight loss (% original weight) of litters C, X, and A decomposed by the 12 

fungal species. Weight loss was higher in the 2 species of the Basidiomycota, Mycena 

polygramma and Mycena sp., than in the other 10 species. Mycena sp. caused significantly 

higher weight loss at litter X than at litters C and A. Xylaria sp., Ascochyta sp., Gliocladium 

roseum, Penicillium citrinum, Epicoccum nigrum, Alternaria alternata, Cladosporium 

Table 6.2. Concentrations (%) of nitrogen, soluble carbohydrate, lignin, and total 

carbohydrate in three litter types used in the decomposition test. 

Treatment Code Nitrogen Soluble Lignin Total 

carbohydrate 

Control, no fungal inoculation Litter C 1.30 2.9 
Xylaria sp. inoculation* Litter X 1.26 1.1 

Ascochyta sp. inoculation* Litter A 1.25 0.9 

* Litters were incubated for 8 weeks at 20°C with each fungus. 
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Mycena polygramma 

Mycenasp. 

a 
Xylaria sp. (anamorph) 

a 
Ascochyta sp. 

a 
Gliocladium roseum 

a 
Penicillium citrinum 

a 
Trichoderma koningii a 

a 
Epicoccum nigrum Litter C 

Alternaria alternata D Litter X 

Cladosporium 
Litter A 

cladosporioides 

a 
Mortierella ramanniana 

Mucor hiemalis 

0 10 20 30 40 
Weight loss (% original weight) 

Figure 6.3. Weight loss (% original weight) of litters C, X, and A 

decomposed by 12 fungal species. For litters C, X, and A, see Table 1. Bars 

indicate standard errors. The same letters are not significantly different at the 

5% level by Tukey's HSD test. NT, not tested. 
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Table 6.3 Weight loss (% original weight) of leaf litter, lignin, and carbohydrate and L/W and 

LlC of litters C, X, and A decomposed by Mycena sp. and Mycena polygramma. For litters C, 

X, and A, see Table 1. 

Weight loss (% original weight) 

Fungus Litter type Litter Lignin Total carbohydrate L/W L/C 

Mycena sp. Litter C 24.0 27.0 30.2 1.1 0.9 

Mycena sp. Litter X 29.0 48.4 13.2 1.7 3.7 

Mycena sp. Litter A 23.8 34.8 22.1 1.5 1.6 

Mycena polygramma Litter C 36.6 33.2 47.8 0.9 0.7 

My-cena l!.olygramma Litter X 36.5 56.1 23.6 1.5 2.4 

cladosporioides, and Mucor hiemalis caused significantly lower weight losses at litter X 

and/or litter A than litter C. Mycena polygramma, Trichoderma koningii, and Mortierella 

ramanniana caused weight losses that were not significantly different among litters C, X, and 

A. 

Table 6.3 shows weight loss (% original weight) of leaf litter, lignin, and 

carbohydrate and L/W and L/C of litters C, X, and A decomposed by Mycena sp. and M. 

polygramma. Mycena sp. caused weight loss of lignin higher and that of total carbohydrate 

lower at litters X and A than at litter C. L/W and L/C were higher at litters X and A than at 

litter C. M. polygramma caused weight loss of lignin higher and that of total carbohydrate 

lower at litter X than at litter C. L/W and L/C were higher at litter X than at litter C. 

Effect of organic chemical quality and inorganic N addition 

Table 6.4 shows weight loss of leaf litter, weight loss of lignin and holocellulose in 

the litter, and lignin/carbohydrate loss ratio of 4 tree species by the decomposition of Xylaria 

sp. Litter weight loss was highest in Acer litter and lowest in Fagus litter. Weight losses of 

lignin and holocellulose were highest in Acer litter and lowest in Quercus litter. Initial LCI 

was significantly related to weight loss of lignin (p<0.05, r=0.978, n=4) and holocellulose 

(p<0.05, r=0.951, n=4). 

Figure 6.4 shows lignin/carbohydrate loss ratio (LlC) of Xylaria sp. as a function of 

initial litter LCI. LlC ofXylaria sp. (anamorph) was significantly related to initial litter LCI 
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Table 6.4 Weight loss (% original weight) of leaf litter and those of lignin and holocellulose 

in the litter of 4 tree species decomposed by Xylaria sp. Values for litter weight loss indicate 
means + standard errors (n=10). The same letters show no significant difference at 5% level 

by Tukey' s HSD test. 

Litter type Leaf litter Lignin Holocellulose 

Acer mono 30.6+0.Sa 20.1 45.8 

Sorbus alnifolia 22.7+0.8b 11.8 25.9 

Quercus mongolica 10.3 + 1.3c 6.0 3.8 

Fagus crenata 8.2+0.4c 

....... 2 
D 
:J ........ 
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~ 
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r=-0.883 
n=4 

P<O.OS 
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0.4 0.45 0.5 

Initial LeI 

Fig. 6.4 Relationship between initial LeI and lignin/carbohydrate loss 
ratio (Lie) of Xylaria sp. for 4 litter types. AM Acer mono, Fe Fagus 

crenata, QM Quercus mongolica, SASorbus alnifolia. 

(p<O.OS, r=-0.967, n=4). The lignin/litter loss ratio (L/W) was not significantly related to 

initial litter LeI (r=-0.09S). 

Table 6.5 shows weight loss of beech leaf litter and those of lignin and holocellulose 

in the litter in NH4 and N03 treatments. In the NH4 treatment, weight loss of litter was 

significantly (p<O.OS) lower than in the control. Weight loss of lignin was not detected in the 

NH4 treatment, while weight loss of holocellulose was higher than in the control. In the N03 

treatment, weight loss of litter was significantly (p<O.OS) higher than in the control. Weight 

loss of lignin was lower in the N03 treatment than in the control, while weight loss of 

holocellulose was higher than in the NH4 treatment and in the control. 
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Table 6.5 Weight loss (% original weight) of leaf litter and those of lignin and holocellulose 

in the litter of Fagus crenata decomposed by Xylaria sp. in NH4 and N03 treatments. Values 

for litter weight loss indicate means + standard errors (n=10). The same letters show no 

significant difference at 5% level by Tukey's HSD test. In the Control treatment, the fungus 

was inoculated to leaf litter without addition of inorganic nitrogen. Weight loss of lignin in 

NH4 treatment was not detectable. 

Treatment Leaf litter Lignin Holocellulose 

NH4 4.4 + O.4c 22.4 

N03 12.9+0.3a 7.8 28.4 

Control 8.2 + O.4b 10.0 7.1 
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Discussion 

Decomposition of litter in different decay stages 

Clitocybe sp. caused higher weight loss of litter and lignin on partly decomposed 

litter than on freshly fallen litter, indicating that the fungus physiologically adapted for 

selective delignification in partly decomposed litter. This is consistent with the field 

observation that Clitocybe sp. caused marked bleaching and lignin decomposition on partly 

decomposed litter materials rather than on freshly fallen litter. Freshly fallen litter contained 

more carbohydrate and less lignin was energetically suitable substrata for fungi than partly 

decomposed litter, but Clitocybe sp. caused lower weight loss on freshly fallen litter than on 

partly decomposed litter. This contradiction may be ascribed to the reduction of hyphal 

growth by suppressive agents such as phenolic compounds (Dix 1979) that are richly 

contained in freshly fallen leaves (Osono and Takeda 2001b). M. polygramma, one of the 

most frequent species in the study site (Chapter 3), removed lignin and holocellulose 

simultaneously in freshly fallen litter and partly decomposed litter. 

Litter decomposition by two xylariaceous fungi, Geniculosporium sp. and Xylaria. sp., 

was reduced on partly decomposed litter compared to freshly fallen litter. As the degree of 

selective delignification and litter decomposing ability of Xylaria sp. was dependent on ratio 

of lignin to total carbohydrate within the substrata (Osono and Takeda 2001a), partly 

decomposed litter that has higher lignin to carbohydrate ratio was less suitable for the growth 

of these xylariaceous fungi than freshly fallen litter. The result supports the suggestion of 

Osono and Takeda (2001b) that litter decomposing activity of these fungi would be lower 

during the mobilization phase of nitrogen and phosphorus when LCI decreased (Le., the ratio 

of lignin to carbohydrate increased). 

The weight loss of freshly fallen litter by M. polygramma was lower than the 

previous report (Osono and Takeda 2002a, Chapter 5). The previous and present experiments 

differed in terms of sterilization method of litter (autoc1aving vs gas sterilization), incubation 
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Table 6.6 Effect of sterilization method on weight loss of litter (% original weight) during 

in vitro decomposition 

Autoc1aving Gas sterilization ( ethylene oxide) Probability 

Mycena polygramma 23.1 (0.1) 13.6 (1.2) P<O.OS 

Xylaria sp. 9.6 (0.8) 6.S (0.3) P=O.lO 

Beech litter cut into 1 cm width was inoculated with fungi and incubated at 20°C for 16 

wks in darkness. Standard errors in parenthesis (n=3). 

period (8 wks vs 16wks), and litter sample preparation (leaf disk with diameter of 20 mm vs 

fragmented litter of approx S x S mm). Of these differences, the method of litter sterilization 

was considered as important, because the autoc1aving U?der high temperature and pressure 

may cause significant alteration of litter chemistry. The preliminary experiments assessed the 

effect of sterilization method indicated that decomposition was faster on litter autoc1aved than 

litter sterilized with ethylene oxide gas (Table 6.6). Hering (1967) and De-Boois (1976) also 

reported that decomposition was enhanced when litter was sterilized with autoc1aving rather 

than gamma irradiation. 

Effects of prior decomposition by phyllosphere fungi 

The prior decomposition by two phyllosphere fungi retarded litter decomposition or 

had no significant effect on subsequent decomposition by Xylaria sp. and the 9 other species 

in the Ascomycota and the Zygomycota. The decrease in weight losses in litters X and A 

compared to litter C is probably ascribable to the prior consumption of non-lignified 

holocellulose and soluble carbohydrates by Xylaria sp. and Ascochyta sp., as soluble 

carbohydrate content in litters X and A was lower than in litter C. Furthermore, the weight 

losses decreased when Xylaria sp. and Ascochyta sp. were inoculated to litters previously 

decomposed by themselves, indicating that litter decomposition by phyllosphere species made 

the substratum unsuitable for themselves. Therefore, by consuming the readily available 

resources in litter, phyllosphere fungi may affect the colonization of competitors that have a 

similar requirement for these resources. This is consistent with the suggestion of Osono and 

Takeda (2001b) that the competitive interactions between fungal colonizers may be one of the 
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important factors causing the fungal succession on decomposing litter. 

The prior decomposition by two phyllosphere fungi affected the substrate utilization 

patterns of two Mycena species, shifting from simultaneous removal of lignin and 

carbohydrates (L/W and LlC nearly equal to one) to selective delignification (LIW and L/C 

more than one). This suggests that some litter inhabiting species in the Basidiomycota may be 

physiologically adapted to the selective removal of lignin and related recalcitrant substances 

remaining in litters previously partly decomposed by phyllosphere fungi. 

The change of the substrate utilization pattern of Mycena spp. on the previously 

decomposed litters is difficult to explain. A possible explanation is the regulatory effects of 

carbon and nitrogen nutrition on the degree of selective delignification, which have been 

reported in some cases. For example, lignin decomposition by wood decay fungi depends on 

the availability of non-lignified carbohydrates (Kirk et al. 1976); Xylaria sp. decomposed 

lignin more selectively in litter that had a higher lignin to carbohydrate ratio (Osono and 

Takeda 2001a). This explanation can be applied to litter A in which the lignin to carbohydrate 

ratio was higher than in litter C, but seems to be inappropriate for litter X that has similar 

lignin to carbohydrate ratio to litter C. 

Effect of organic chemical quality and inorganic N addition 

Initial LCI of litter showed a regulatory effect on lignin decomposition by Xylaria sp. 

under the incubation condition. LCI of litter is an index of relative availability of 

holocellulose in lignocellulose matrix to the fungus. In litters with higher LCI, amount of 

holocellulose bounded to lignin is relatively low and non-lignified holocellulose is relatively 

high. As fungal delignification requires a growth substrate such as non-lignified cellulose or 

glucose (Kirk et al. 1976), Xylaria sp. decomposed lignin and holocellulose faster in these 

litters with higher LCI. On the other hand, in litters with lower LCI, more holocellulose is 

protected by lignification and available holocellulose necessary for lignin decomposition is 

relatively low (Reid 1991). As a result, lignin and holocellulose decomposition rate by 

Xylaria sp. was lower in these litters. 
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Relative utilization pattern of lignin and holocellulose by Xylaria sp. (anamorph), 

expressed as lignin/carbohydrate loss ratio (Lie), was related to litter LeI for 4 litter types. 

This indicates that the Lie of the fungus was typically changed in relation to the relative 

availability of lignin and holocellulose in the litter: the fungus decomposed holocellulose in 

preference to lignin in litters with higher LeI more so than in litters with low LeI. This result 

is, however, based on a limited number of observations (only one fungus and 4 litter types 

were used) and further study is needed to assess whether the finding can be applied to other 

fungal species and other litter types that have wide range of LeI. 

Exogenous inorganic nitrogen addition showed a regulatory effect on leaf litter, 

lignin and holocellulose decomposition by Xylaria sp., and the effect of NH4 and N03 was 

similar on the suppression of lignin decomposition and the stimulation of holocellulose 

decomposition but its extent was different. There can be two explanations for this difference. 

Firstly, nitrogen additions caused a biochemical suppression of enzymes associated with 

lignin decomposition (Fenn et al. 1981) and N03 would be less effective than NH4. Secondly, 

stimulated holocellulose consumption by nitrogen additions resulted in a rapid exhaustion of 

available carbohydrates necessary for lignin decomposition (Reid 1991). In N03 assimilation, 

the fungus converts N03 to NH4 for protein production. This conversion requires more energy 

than direct NH4 assimilation. Thus the fungus should decompose lignocellulose matrix in 

addition to non-lignified holocellulose to obtain energy necessary for N03 assimilation. 
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General Discussion and Conclusion 

This study demonstrated the ecology and functioning of fungal community on 

decomposing litter of Japanese beech. Firstly, the methodology of fungal isolation was 

developed (Chapter 1). Then, the mycological survey was carried out for microfungi on 

individual leaf (Chapter 2) and for macrofungi on forest floor (Chapter 3). Field evidences 

were obtained from the bleached leaves and litters that indicated these fungi participated in 

litter decomposition (Chapters 2 and 3). These results provided the basis to evaluate the 

relationship between fungal succession and chemical changes during decomposition (Chapter 

4) and the functional biodiversity of fungi (Chapters 5 and 6). In this chapter, I discuss the 

mechanism of fungal decomposition of leaf litter and the implication for soil humus 

accumulation. 

Methodology of decomposer fungal community 

Ecologically, litter-inhabiting fungi are divided into two groups, component

restricted fungi and component-non-restricted fungi (Cooke and Rayner 1984). Component

restricted fungi are limited in extent by the physical boundaries of the substrata they occupy. 

On the other hand, component-non-restricted fungi often have large mycelia that are 

unrestricted by the spatial limitations of individual substrata. For component-non-restricted 

fungi, it is the entire litter system, not its individual components, which provides a habitat, 

and their proper study requires sampling methods to be scaled up accordingly. Thus, different 

methods are needed for each of these groups to investigate the role of fungal community in 

litter decomposition, as both component-restricted and component-non-restricted fungi take 

part in decomposition. Hering (1965, 1966, 1972) and Saito (1956, 1957, 1966) successfully 

applied this approach for the study of fungal decomposition on leaf litter. The present study 

also confirmed the importance and usefulness of applying different methods to each of 

component-restricted and component-non-restricted fungi to follow the mechanism of fungal 

decomposition of leaf litter. 
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Table D.1 Relation of fungal succession with characters of decomposition phases of beech leaf litter: a summary. 

...... 
tv 

Decomposition phase 

Time (month) 

Nitrogen dynamics 

C/N 

LIN 

Lignocellulose index (LCI) 

Function of fungi 

00 Fungal ingrowth 

Fungal succession 

- Functional group 

- Associated group 

Leaching phase 

0-5 

Leaching 

Rapid exhaustion of soluble 

carbohydrates 

Xylariaceous endophytes, 

Immobilization phase 

5-21 

Immobilization 

55 -? 26 

45 -? 27 

0.45 -? 0.34 

Selective holocellulose 

decomposition 

High 

Xylariaceous endophytes 

Epiphytes or primary saprophytes (Ascomycota) 

(Ascomycota) 

Litter inhabitants (Ascomycota, 

Zygomycota) 

Mobilization phase 

21-35 

Mobilization 

26 -? 24 

27 -? 26 

0.34 -? 0.33 

Simultaneous decomposition of 

holocellulose and lignin 

Low 

Litter-decomposing Basidiomycota 

Xylariaceous endophytes 

(Ascomycota) 

Litter inhabitants, Secondary sugar 

fungi (Ascomycota, Zygomycota) 



Litter decomposition and fungal community dynamics 

Table D.1 shows relationship between fungal succession and organic chemical 

changes and nitrogen dynamics in beech litter during 3 year decomposition. Decomposition of 

freshly fallen leaves was carried out by epiphytic phyllosphere fungi that colonized on not 

only the surface but the interior of freshly fallen leaves. Hudson (1968) called these epiphytic 

fungi as 'primary saprophytes' because they depend their growth on soluble carbohydrate 

richly contained in freshly fallen leaves. Soluble carbohydrates were quickly utilized by 

epiphytes and exhausted in the litter. 

The loss of soluble carbohydrate caused by not only fungal metabolism but leaching. 

The contribution of microbial activity and leaching to litter weight loss was unclear in beech 

leaf litter. There has been only one such estimation on oak litter that lost 9.3% of its initial dry 

weight during the first 6 weeks (Tietema and Wessel 1994). About 64% of this weight loss 

was attributed to microbial respiration and 21 % to leaching of dissolved organic compounds. 

Epiphytes (or primary saprophytes) disappeared as the exhaustion of soluble 

carbohydrate. Instead, xylariaceous endophytes such as Xylaria sp. and Geniculosporium sp. 

increased their abundance and frequency on decomposing litter because of their ability to 

utilize residual structural components such as lignin and holocellulose. Therefore, the survival 

of epiphytes and endophytes on beech leaf litter was associated with their energy requirement. 

Organic chemical changes during decomposition were related to ingrowth and 

succession of xylariaceous fungi and basidiomycetous fungi. These fungi differed in their 

substrate utilization efficiency. The Xylariaceae had the priority due to not only their 

endophytic colonization of living or senescent leaves but also their effective utilization of 

holocellulose over lignin. The xylariaceous Ascomycota attacked holocellulose preferentially 

over lignin and increased their biomass. However, this resulted in the increase of lignin and 

related substances in litter making the resource quality unsuitable for themselves. The low 

litter LeI (i.e., relative amount of holocellulose over lignin plus holocellulose) resulted in the 

increase in their lignocellulose utilization efficiency and in the decrease of decay rate of lignin 

and holocellulose. 
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Conversely, the decreased litter LCI was suitable for the Basidiomycota because of 

high lignocellulose utilization efficiency. Litter-decomposing Basidiomycota had the 

extensive ability to decompose lignin and secondary lignin-like substances synthesized during 

decomposition. These fungi attacked lignin and holocellulose simultaneously or removed 

lignin selectively. These fungi gradually increased their abundance as the decrease ofLCI and 

replaced the Xylariaceae at later stage of litter decomposition. 

Another pattern of fungal succession from primary saprophytes to litter inhabitants 

and soil fungi was observed on litter surface. This succession had little effects on the litter 

decomposition, because these fungi had limited ability to attack lignin and lignified 

holocellulose and depended for their growth on non-lignified holocellulose or soluble 

carbohydrate. Therefore, the succession of these fungi was difficult to relate to decomposition 

of lignin and holocellulose in litter. The majority of mycological study has focused on this 

fungal succession, making it difficult to relate the functioning of fungal community to litter 

decomposition .. 

Nitrogen dynamics 

Nitrogen (N) dynamics was regulated by fungal decomposition of lignin and 

holocellulose during 3-year decomposition of beech leaf litter. Nitrogen dynamics showed 

two phases, immobilization and mobilization phases during decomposition. In a typical case, 

nitrogen shows leaching, immobilization, and mobilization phases (Staaf and Berg 1982). In 

this study, the litter bags set in December were under snow cover over a 5 months. The 

leaching process occurred on freshly fallen leaves during the winter period or at the snow 

melting in Spring (Takeda et al. 1987). Epiphytes were not crucial for the N leaching in spite 

of their frequent occurrence on the freshly fallen leaves because the leaching is a physical 

process. 

Nitrogen immobilized in decomposing litter from 6th to 21st months as the growth of 

xylariaceous fungi. Immobilization of N occurred until lignin to nitrogen ratio (LIN) reached 

at about 25. The chemical background of N immobilization in litter is still unclear. Nitrogen 
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bounded in fungal biomass as chitin and proteins accounted for only 1.5% to 1.8% of total 

litter N. These values were too small to explain the N immobilization in litter. On the other 

hand, it has been assumed that N is incorporated into the recalcitrant secondary substances 

(Berg 1986). The result of present study suggested holocellulose hydrolysis and partial lignin 

modification by xylariaceous fungi caused the binding of N to lignin to produce a presumable 

lignin-N complex. The critical value of LIN at which N mineralization occurred supported the 

view that the formation of lignin-N complex is the major process of N immobilization. Osono 

and Takeda (unpublished) found that critical values of LIN of 14 tree species converged to 

about 25 during 3 year decomposition in the study site, irrespective of their initial values. 

Furthermore, the presence of lignin-N complex was supported by the finding that 

decomposition of lignin and related humic substances by the Basidiomycota was associated 

with N mineralization. The bleached litter produced by Clitocybe sp. was a typical case 

demonstrating the correspondence between highly selective delignification and rapid N 

mineralization. 

Fungal decomposition and soil humus accumulation 

The selective decomposition of holocellulose by the Ascomycota resulted in the 

accumulation of recalcitrant lignin-N complex in forest soils, whereas the delignification by 

the Basidiomycota resulted in the mineralization of carbon and nitrogen bounded in the 

recalcitrant forms. A similar result was obtained in a pure culture decomposition test using 

Larix needle litter (Osono et al. submitted). Therefore, it is suggested the relative importance 

of the Ascomycota and the Basidiomycota in decomposer fungal community may determine 

the type of organic matter accumulation in forest soils. 

However, decomposition rates, organic chemical and nutrient dynamics of beech 

litter, and pattern of fungal succession were similar over 3-year period between moder and 

mull soils. This result suggested the initial phase of litter decomposition up to 3 year period 

had negligible effect on the development of moder and mull soils. Instead, a possible 

relationship between bleaching of partly decomposed litter by the Basidiomycota and mull 
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soil formation is suggested in Chapter 3. This suggestion is supported by the finding of 

Gourbiere (1982) that white rot fungi caused litter weight loss when the decay rate slowed 

down and the litter reached at Fb layer at the 9th year after litter fall. Previous works that 

suggested the importance of soil animals on soil humus accumulation (Bal 1982), and the 

present study proposed a possible importance of fungi in the soil humus development. 

Conclusion 

The decomposition of lignin and holocellulose and immobilization and mobilization 

of nitrogen were driven by the successive colonization and substrate utilization of the 

xylariaceous Ascomycota and the Basidiomycota that had different substrate utilization 

efficiencies. A possible importance of fungi in the soil humus development was proposed, but 

more studies are needed to relate the fungal decomposition of leaf litter to the accumulation of 

soil organic matters in forest soils. 
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Summary 

Litter decomposition is an important process for the maintenance of functioning and 

biodiversity in forest ecosystems. Chemical aspects of the decomposition processes have been 

studied intensively while the role of decomposer fungi has been paid little attention. There has 

been no study that relates the ecology and functioning of fungal community to the organic 

chemical and nutrient dynamics during litter decomposition. The purpose is to clarify the 

mechanism of fungal decomposition of leaf litter of Japanese beech (Fagus crenata). The 

study was carried out in a cool temperate forest in Kyoto, Japan. Firstly, methodology of 

fungal isolation was developed (Chapter 1). Then, mycological survey was carried out for 

microfungi on individual leaf (Chapter 2) and for macrofungi on forest floor (Chapter 3). 

Based on these results, the relationship between fungal succession and chemical changes 

during 3 year decomposition was investigated (Chapter 4). Litter decomposition potentialities 

of the fungi were verified with pure culture decomposition tests (Chapters 5 and 6). These 

results indicated the decomposition of lignin and holocellulose and immobilization and 

mobilization of nitrogen in litter were driven by the successive colonization and substrate 

utilization of the Xylariaceae and the Basidiomycota that had different substrate utilization 

efficiencies. 

Chapter 1 

A methodological survey was carried out on the effects of nutrient media and 

incubation period on number of species and species composition of fungi on beech leaf litter. 

Leaf litter was incubated on nutrient poor (LeA) and nutrient rich (PDA) media. Fungi 

isolated were tested their growth rates on LeA and PDA. Significantly larger numbers of 

species were obtained on LeA than on PDA. On PDA, fast-growing fungi were isolated 

selectively. Ninety percent of total species were isolated during 3-week incubation. Therefore, 

the incubation on the nutrient poor medium (LeA) for two months was successful for the 

description of mycobiota on beech leaf litter. 
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Chapter 2 

Phyllosphere fungi occur on various litters but the ecology of these fungi on leaf 

litter has received little attention. To investigate the occurrence, colonization, and succession 

of phyllosphere fungi and their bleaching activity on beech leaf litter, fungi were isolated 

from living, senescent, freshly fallen, and decomposing leaves and from bleached leaves by 

surface sterilization and washing methods. A total of 18 and 47 fungal species were isolated 

from the interior and surface of living and senescent leaves, respectively, and fifteen frequent 

species were regarded as phyllosphere fungi. These phyllosphere fungi were divided into 

three groups according to their frequency on freshly fallen and decomposing leaves. Nine 

species (Group I) occurred frequently on decomposing leaves, two species (Group II) on 

freshly fallen leaves only, and four species (Group III) were frequent on living or senescent 

leaves only. Colonization of sterilized freshly fallen leaves by phyllosphere fungi was 

investigated to test their ability to infect litter directly after litter fall. Frequencies of four 

species were lower on sterilized leaves than on unsterilized leaves, whereas frequencies of 

other species did not differ between sterilized and unsterilized leaves. Successional trends of 

endophytes and epiphytes were observed during decomposition from freshly fallen to 

decomposing leaves. The sum of frequencies of endophytes decreased temporarily on freshly 

fallen leaves and increased on decomposing leaves. The sum of frequencies of epiphytes 

decreased from freshly fallen to decomposing leaves. 

Mycobiota and chemical composition of bleached and non-bleached portions were 

studied on decomposing litter. By surface sterilization method, two phyllosphere species in 

the Xylariaceae Xylaria sp. (anamorph) and Geniculosporium sp.1 were frequently isolated in 

both portions. Frequency of Xylaria sp. (anamorph) was significantly higher in the bleached 

portion than in the non-bleached portion. In the bleached portion, lignin concentration was 

lower than in the non-bleached portion, indicating that Xylaria sp. (anamorph) and 

Geniculosporium sp.1 took part in lignocellulose decomposition. 
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Chapter 3 

Species composition and mycelial abundance of the Basidiomycota were investigated 

on upper (moder) and lower (mull) sites of a forest slope with reference to bleaching activity. 

The bleaching of leaf litter is analogous to white rot of wood that is due to removal of lignin 

as well as cellulose. Frequency of fruit body and number of species of litter decomposing 

fungi were higher in lower site than in upper site. The most frequent species were Mycena 

Jilopes and M. polygramma in both sites. Eighty percent of fruit body collected emerged from 

the L layer. Phenology of fruit body had two peaks: the first peak during late-May to late-June 

and the second peak during mid-September to early November. Total and clamp-bearing 

fungal biomass was highest at L layer in both sites. Clamp-bearing biomass in upper site 

increased rapidly on November. The bleached litter was mostly encountered on L layer and 

associated with fruit body of Clitocybe sp. Hyphal length in the bleached litter was about 5 

time higher than in surrounding non-bleached litter. Concentration of lignin was lower and 

those of nutrients (N, P, K, Ca, Mg) were higher at the bleached litter than at the non-bleached 

litter. Inorganic nitrogen pool sizes and net N mineralization rate were higher at the bleached 

litter than at the non-bleached litter. Although a variety of fungi were isolated from the 

bleached litter by washing method, Clitocybe sp. produced the dominant effects as this fungus 

brought about similar changes when they decomposed litter in pure culture. A possible 

relationship between the bleaching activity of the Basidiomycota and soil humus 

accumulation was suggested. 

Chapter 4 

Decomposition processes of beech leaf litter were studied with the litter bag method 

over a 3 year period. Organic chemical and nutrient dynamics and fungal ingrowth and 

succession were followed on upper (moder) and lower (mull) sites of a forest slope. Litter 

decomposition rates were similar between the sites. Nutrients were categorized into 2 types 

according to their dynamics in the decomposing litter: nitrogen and phosphorus showed two 

phases, the immobilization (0-21 month) and the mobilization phases (21-35 month), while 

135 



potassium, calcium, and magnesium showed only the mobilization phase. The rate of loss of 

organic chemical constituents was lignin < holocellulose < soluble carbohydrate < polyphenol 

in order. Changes in lignocellulose index (LCI), the ratio of holocellulose in lignin and 

holocellulose, were significantly correlated to changes in concentrations of nitrogen and 

phosphorus during decomposition. During the immobilization phase, increase in total fungal 

biomass contributed to the immobilization of nitrogen and phosphorus. The proportion of 

clamp-bearing fungal biomass (biomass of the Basidiomycota) to total fungal biomass 

increased as the decomposition proceeded and was significantly correlated with LCI. Two 

species in the xylariaceous Ascomycota were frequently isolated by surface sterilization 

method from decomposing litter collected at the 11th month. The organic chemical, nitrogen, 

and phosphorus dynamics during decomposition were related to the ingrowth, substrate 

utilization, and succession of the Xylariaceae and the Basidiomycota. Twenty-one species in 

the other Ascomycota and the Zygomycota isolated by washing method were classified into 

three groups based on their occurrence patterns: primary saprophytes, litter inhabitants, and 

secondary sugar fungi. These species showed different responses to LCI and soluble 

carbohydrate concentration of litter between the groups. 

Chapter 5 

The litter decomposing ability of 79 fungal isolates (41 genera, 60 species) was 

assessed with pure culture decomposition test. The isolates were collected qualitatively during 

a 21-month period. Loss of original weight of sterilized litter ranged from 0.1 % to 57.6%. Six 

isolates in the Basidiomycota caused high weight losses ranging from 15.1% to 57.6%. 

Fourteen isolates in Xylaria and Geniculosporium (the Xylariaceae and its anamorph) also 

caused high weight losses ranging from 4.0% to 14.4%. Other isolates in the Ascomycota and 

associated anamorphs and in the Zygomycota caused low weight losses on mean. Six fungi in 

the Basidiomycota, and all in the Xylariaceae showed a bleaching activity of litter and caused 

lignin and carbohydrate decomposition. Mean lignin/weight loss ratios (LIW) and 

lignin/carbohydrate loss ratios (LlC), were 0.9 and 0.7 for the Basidiomycota and 0.7 and 0.4 
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for the Xylariaceae, respectively. Significant differences were found in L/W and LIC between 

the two groups when the result of Xylaria sp. that showed marked delignification was 

excluded. These differences in lignin and carbohydrate utilization patterns were discussed in 

relation to the structural and the chemical properties of the decomposed litter and to the 

implication to organic chemical changes during litter decomposition. 

Nutrient contents (N, P, K, Ca, Mg) of leaf litter decomposed by selected 19 fungal 

isolates (6 of the Basidiomycota, 7 of the xylariaceous Ascomycota and 6 of the other 

Ascomycota) were compared among the taxonomical groups. The mean N concentration in 

litter decomposed by Basidiomycota fungi (litter B) was not significantly different from that 

decomposed by the xylariaceous Ascomycota (litter XA) but was significantly higher than 

that decomposed by the other Ascomycota (litter OA). The mean P concentration of litter XA 

was significantly higher than that of litters B and ~A. The mean Mg concentration of litter B 

was significantly lower than that of litters XA and ~A. No significant differences were found 

in the mean K and Ca concentrations among the litters. These results were discussed in 

relation to the role of these fungi in nutrient dynamics during litter decomposition. 

Chapter 6 

The ability of 4 species to decompose freshly fallen litter and partly decomposed 

litter of beech was assessed. The partly decomposed litter was exposed to natural microbial 

decomposition for 2 to 3 years in litter bags. Clitocybe sp. caused weight loss of partly 

decomposed litter higher than that of freshly fallen litter. Mycena polygramma, 

Geniculosporium sp., and Xylaria sp. caused weight loss of partly decomposed litter lower 

than that of freshly fallen litter. Clitocybe sp., Geniculosporium sp., and Xylaria sp. caused 

more selective delignification on partly decomposed litter than on freshly fallen litter. M. 

polygramma removed lignin and holocellulose simultaneously on both litters. 

Changes in litter quality due to pretreatment of leaf litter by phyllosphere fungi may 

affect its subsequent decomposition by succeeding fungi. The purpose is to clarify the effects 

of prior decomposition of leaf litter by two phyllosphere fungi of beech, Xylaria sp. and 
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Ascochyta sp., on substrate utilization of 12 fungal species in the Basidiomycota, the 

Ascomycota, and the Zygomycota, was investigated in a laboratory experiment. Mycena sp. 

caused significantly higher weight loss in litter previously partly decomposed by Xylaria sp. 

than in control litter without fungal inoculation and litter previously partly decomposed by 

Ascochyta sp., while prior decomposition retarded litter decomposition or had no significant 

effect on 11 other species. Prior decomposition by phyllosphere fungi affected the substrate 

utilization patterns of two Mycena species in the Basidiomycota, shifting from simultaneous 

removal of lignin and carbohydrates to selective delignification. 

The effects of organic chemical quality of litters and exogenous inorganic nitrogen 

(NH4 + and N03") addition were investigated on the ability of Xylaria sp. to decompose lignin 

and carbohydrate in vitro. Lignocellulose index (LCI) was significantly related to weight loss 

of lignin and lignin/carbohydrate loss ratio (LlC) for 4 litter types tested. In NH4 and N03 

addition treatments, lignin decomposition was completely and partially suppressed, 

respectively. 
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