MILLA, SUSANA RITA. Relationships and utilization of Arachis germplasm in peanut improvement. (Under the direction of Thomas G. Isleib and H. Thomas Stalker.)

Cultivated peanut, Arachis hypogaea L., is a tetraploid ($2 n=4 x=40$) species considered to be of allopolyploid origin. Its closest relatives are the diploid $(2 n=2 x=20)$ annual and perennial species included with it in section Arachis. An understanding of taxonomic relationships among those species may allow for more efficient utilization of alien germplasm in applied peanut improvement. A total of 108 accessions, representing 26 species in section Arachis were genotyped with AFLP markers. Cluster and principal component analyses of the data supported previous taxonomic classifications and genome designations. Based on genetic distances and cluster analysis, "A" genome accessions 30029 (A. helodes), and 36009 (A. simpsonii), and "B" genome accession 30076 (A. ipaensis) were the most closely related to both A. hypogaea suggesting their involvement in the evolution of the tetraploid species.

Accession 10602 of A. diogoi possesses resistance to TSWV. Associating molecular markers with resistance would greatly aid in the transfer of resistance into high performing A. hypogaea backgrounds. In an attempt to find markers associated with TSWV resistance, a genetic linkage map was constructed for an F_{2} population of A. kuhlmannii x A. diogoi. The map consisted of 102 AFLP markers grouped into 12 linkage groups and spanning 1068.1 cM . The map allowed the evaluation of the Arachis genome for associations between response to TSWV infection and the AFLP markers. Five markers, all located in the same linkage group (LG V) were closely associated $(0.0009<$ $\mathrm{P}<0.0021$) with TSWV resistance as well as several other associations believed to be
linked with minor genes conferring resistance. These markers will be studied for utilization in peanut breeding with marker-assisted selection.

Development of cultivars with moderate to high levels of field resistance to tomato spotted wilt virus (TSWV) is the most promising means of managing spotted wilt of peanuts. Breeding efficiency can be maximized by choosing parents based on their potential to produce superior progeny. Best Linear Unbiased Prediction (BLUP) is a method for estimating the breeding value of a parent based on its own performance as well as that of its relatives. The method was used in the present study to identify lines with superior ability to transmit TSWV field resistance to their progeny. BLUPs for yield, meat content, crop value, and pod brightness also were calculated. Six different weighting schemes were designed and used for index selection in order to pick lines with superior breeding values for a combination of all traits analyzed. Thirteen lines were selected with at least four of the six weighting schemes suggesting that these lines should be able to transmit to their progenies not only reduced TSWV incidence, but also increased yields and improved quality traits.

RELATIONSHIPS AND UTILIZATION OF ARACHIS GERMPLASM IN PEANUT IMPROVEMENT

by SUSANA RITA MILLA

A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

CROP SCIENCE

Raleigh
2003

APPROVED BY:

BIOGRAPHY

Susana Rita Milla Comitre was born in Lima, Peru on Mother's Day in May, 1973. Being born the youngest and only girl of a conservative family of five children, her parents decided the best education she could obtain was to attend a private, Catholic, girls-only school run by German nuns. After 11 years of living in a bubble, she graduated from Santa Ursula School in December 1989. In April 1991, having passed the entrance exam for both the agricultural university (Universidad Agraria La Molina) and one of the best bio-medical schools in the country (Universidad Peruana Cayetano Heredia), the faculty at La Molina went on strike and she had no other choice than to attend Cayetano. After deciding she didn't want to wait long to start her graduate studies she obtained her bachelors degree in biological sciences a year early, in December 1994. In January 1995, she started working at the International Potato Center (CIP) in the Genetic Resources Department. Despite the lack of pay and the dreadful food at the cafeteria, she still considers her time at CIP as one of the best experiences of her life. In July 1996, she was accepted as a Master of Science student in the Crop Science Department at North Carolina State University. A month later she packed her whole life in two suitcases and moved to the U.S. She worked in tobacco genetics and breeding on the identification of RAPD markers linked to blue mold resistance in tobacco. Upon completion of her masters' degree in December 1998, she determined she wasn't ready to face the real world yet and decided to continue with her graduate studies. In January 1999, she began working towards a Ph.D. degree in the peanut breeding and genetics programs. Not having found it complicated enough to have one advisor during her
masters degree, she decided to enlist Drs. Tom Isleib and Tom Stalker as co-advisors for her Ph.D., a decision that was proven especially brilliant during the preparation of this manuscript. After $41 / 2$ years of work, Susana is finally ready to become "la doctora Milla." Upon completion of her degree, she will stay at NCSU for a while longer working for Dr. Isleib in a post-doc position.

ACKNOWLEDGEMENTS

First of all I would like to thank my advisors, Drs. Tom Isleib and Tom Stalker for giving me the opportunity to join their programs. I have learned a great deal from both of them and for that, I will always be thankful to them.

I would also like to thank the other members of my committee, Drs. Arthur Weissinger, Jack Bailey and Barbara Shew for their advice and suggestions. I am grateful to Dr. Major Goodman for his advice on the analysis of the taxonomy data. I am also grateful to Dr. Jim Holland for tips and suggestions on how to analyze the mapping data. The help of Jack Liu with using Fitch Tree, and that of Dr. Brian Wiegmann with running and understanding PAUP is also appreciated.

I extend my gratitude to all the professors who have taught me through my years at NCSU. No matter how much or how little I enjoyed your courses, I have learned a lot from all of you.

I am especially thankful to my "Method Road Family": Susan Copeland, Shyam Tallury, R.W. Mozingo, Phillip Rice, Peggy Brantley, Neal Robertson, and Ryan Contreras. I'm indebted to you not only for your help, but more than anything, for your love and friendship and for making my stay at Method so much fun. I have truly enjoyed working with each one of you. I have to thank Susan and Shyam in particular for all their advice and suggestions, for being so patient in dealing with me, for the mountains of support they have given me, for being such great friends, for all the time we spent together (yeah, even having to rate Sclerotinia in the rain!), and for so many other things. Your friendship means the world to me.

I am very thankful to all my friends at NCSU. I especially want to mention Terry Molnar, Goran Srnic, Wendy Pline, Lizz Johnson, Nando Hintze, Maryanne Wolff, Amy Johnson, Juan Carlos Cabrera, Gissella Vasquez, Luis Carrasco and Lilian Miranda. You turned Raleigh into "a home away from home" for me and made my stay here so much more enjoyable.

I cannot forget to mention my old friends from home: Diego Fajardo, Patricia Gil, Valvanera Martinez, Angela Velasco, Armando Valdés, and Beatriz Meiggs. Somehow we have managed to keep the bonds strong throughout the years and in spite of the distance. Your support by email and by phone has been crucial in keeping me sane.

I am very thankful to my parents for their love and support. I know how hard it was to let your little girl go. In spite of that you respected my decision and gave me the freedom to go spread my wings. I can only hope I have made you proud. Thanks also to all my family, you all are a big part of who I am. I want to give special thanks to my brother Marcos and my sister Maria. They have been there for me through my years in grad school listening and giving advice, being role models, supporting me, keeping me whole. You are my anchor.

Last but not least, to Ramsey Lewis for walking this long road with me ... holding my hand during the dark parts ... I don't think I would have been able to go through this without you. It is in large part because of your encouragement during the hard times and your faith in me that I'm finishing this degree.

TABLE OF CONTENTS

Page
LIST OF TABLES ix
LIST OF FIGURES xi
LITERATURE REVIEW 1
Production and Economic Importance 1
History 2
Biosystematics and Taxonomy 4
Botany and Reproduction 5
Centers of Origin and Diversity 6
Evolution and Genome Donors 7
Utilization of Wild Species 11
Literature Cited 13
I. TAXONOMIC RELATIONSHIPS AMONG ARACHIS SPECIES AS REVEALED BY AFLP MARKERS 19
Abstract 20
Introduction 21
Materials and Methods 24
Plant Material and DNA Extraction 24
AFLP Analysis 24
Digestion of DNA 24
Adaptor Ligation 25
Pre-amplification 25
Selective Amplification and Polyacrylamide Gel Electrophoresis 25
Data Analysis 26
Results 27
AFLP Analysis 27
Genetic Distance Matrix and Cluster Analysis 28
Principal Component Analysis 29
Genome Donors 30
Discussion 31
References 36

TABLE OF CONTENTS (cont.)

Page
II. IDENTIFICATION OF MOLECULAR MARKERS ASSOCIATED WITH TOMATO SPOTTED WILT VIRUS (TSWV) RESISTANCE IN A GENETIC LINKAGE MAP OF ARACHIS KUHLMANNII x ARACHIS DIOGOI 54
Abstract 55
Introduction 56
Materials and Methods 59
Plant Material and DNA Extraction 59
TSWV Inoculations 60
AFLP Analysis 60
Digestion of DNA 61
Adaptor Ligation 61
Pre-amplification 61
Selective Amplification and PAGE 62
Scoring of Data and Marker Nomenclature 62
Data Analysis 63
Results 64
Analysis of AFLP Markers 64
Segregation Distortion 64
Linkage Analysis and Map Coverage 65
TSWV Evaluations 65
Discussion 66
References 70
III. BEST LINEAR UNBIASED PREDICTION OF BREEDING VALUE FOR TOMATO SPOTTED WILT VIRUS (TSWV) INCIDENCE IN VIRGINIA-TYPE PEANUTS 80
Abstract 81
Introduction 83
Materials and Methods 86
Experimental Materials 86
Evaluations 87
Statistical Analysis 87
Heritability Estimates 89
Selection Schemes 90
Results and Discussion 90
Heritability Estimates and their Effect on BLUP Values 90
Correlation Between BLUP Values and Means 91
Variation of BLUP Values 92

TABLE OF CONTENTS (cont.)

PageIndependent Culling 93
Index Selection 94
Application in Breeding Programs 95
References 97
APPENDICES 119

LIST OF TABLES

Page

I. TAXONOMIC RELATIONSHIPS AMONG ARACHIS SPECIES AS REVEALED BY AFLP MARKERS

Table 1. Number of chromosomes and genome designation of 108 accessions representing 26 species of section Arachis analyzed for AFLP variation.49

Table 2. Combinations of primers used for AFLP analysis of 108 Arachis accessions50

Table 3. Estimated genetic distance values between (upper triangle) and within (diagonal) the different species of section Arachis based on mean character differences between individuals51

Table 4. Genetic distances between the tetraploid Arachis sect. Arachis species and their most closely related accessions.52

II. IDENTIFICATION OF MOLECULAR MARKERS ASSOCIATED WITH TOMATO SPOTTED WILT VIRUS (TSWV) RESISTANCE IN A GENETIC LINKAGE MAP OF ARACHIS KUHLMANNII x ARACHIS DIOGOI

Table 1. Primer combinations used and polymorphism rates for AFLP analysis of $179 \mathrm{~F}_{2}$ individuals from the cross Arachis kuhlmannii x A. diogoi77

Table 2. Distribution of genetic markers along the twelve linkage groups of the Arachis kuhlmannii \times A. diogoi map .78

III. BEST LINEAR UNBIASED PREDICTION OF BREEDING VALUE FOR TOMATO SPOTTED WILT VIRUS (TSWV) INCIDENCE IN VIRGINIA-TYPE PEANUTS

Table 1. List of entries analyzed, including number of tests and
years they were evaluated ... 107
Table 2. Weighting schemes utilized for index selection 110

LIST OF TABLES (cont.)

PageTable 3. Correlations among BLUPs of breeding values for TSWV incidence, yield, meat content, extra large kernels, pod brightness and crop value estimated at different heritability values.111
Table 4. Best linear unbiased predictors (BLUPs) of breeding values with standard errors for TSWV incidence, pod yield, meat content, percent extra large kernels, pod brightness, and crop value.112
Table 5. Summary statistics for BLUPs of breeding value for TSWV incidence, yield, meat content, extra large kernels, pod brightness, and crop value at their estimated heritabilities115
Table 6. Correlations among BLUPs of breeding value for TSWV incidence, yield, meat content, extra large kernels, pod brightness, and crop value at their estimated heritabilities
Table 7. Correlations and rank correlations among weighting schemes used to select lines with superior breeding values for TSWV incidence in combination with agronomic traits
Table 8. Coefficients of coancestry among lines identified as superior with at least four of the six weighting schemes

LIST OF FIGURES

Page

I. TAXONOMIC RELATIONSHIPS AMONG ARACHIS SPECIES AS REVEALED BY AFLP MARKERS

Figure 1. AFLP fingerprint generated from genomic DNA isolated from 108 genotypes of section Arachis using primer combination E-ACT/M-CAC.43

Figure 2. Dendrogram of Arachis genotypes based on AFLP polymorphisms.45

Figure 3. Principal component plot of 108 genotypes for two principal components estimated with 239 AFLP markers using the variance-covariance matrix of the data47

Figure 4. Approximate geographical locations of original collection sites for several accessions of wild Arachis species48

II. IDENTIFICATION OF MOLECULAR MARKERS ASSOCIATED WITH TOMATO SPOTTED WILT VIRUS (TSWV) RESISTANCE IN A GENETIC LINKAGE MAP OF ARACHIS KUHLMANNII x ARACHIS DIOGOI

Figure 1. Genetic linkage map based on 179 individuals from an F2 population of the interspecific cross Arachis kuhlmannii x Arachis diogoi.

III. BEST LINEAR UNBIASED PREDICTION OF BREEDING VALUE FOR TOMATO SPOTTED WILT VIRUS (TSWV) INCIDENCE IN VIRGINIA-TYPE PEANUTS

Figure 1. Best linear unbiased predictors (BLUPs) of breeding value vs. least square means for tomato spotted wilt virus (TSWV) incidence in Virginia-type peanuts101

Figure 2. Best linear unbiased predictors (BLUPs) of breeding value for TSWV incidence vs. yield for Virginia-type peanuts102

Figure 3. Best linear unbiased predictors (BLUPs) of breeding value: for TSWV incidence vs. meat content for Virginia-type peanuts.

LIST OF FIGURES (cont.)

Page
Figure 4. Best linear unbiased predictors (BLUPs) of breeding value for TSWV incidence vs. extra large kernels (ELK) for Virginia-type peanuts.104

Figure 5. Best linear unbiased predictors (BLUPs) of breeding value for TSWV incidence vs. pod brightness for Virginia-type peanuts105

Figure 6. Best linear unbiased predictors (BLUPs) of breeding value for TSWV incidence vs. crop value for Virginia-type peanuts

LITERATURE REVIEW

Production and Economic Importance of Peanut

The cultivated peanut (Arachis hypogaea L.) is a major crop in most tropical and subtropical regions of the world (Stalker and Moss 1987). Peanut seeds are of high value because of their high contents of oil (43-54\%) and protein (25-30\%). Peanuts are grown in six continents; however, Asia, America and Africa are by far the biggest producers. Although India is the world leader in area under peanut cultivation, China produces more than any other country in the world. The leading countries in production are China, India, and the USA, each producing more than a million tons of peanuts annually.

Around the world, almost every part of the peanut plant is used in some way. While the seeds are used for human consumption, plant residues are valuable as fodder for cattle in many African and Asian countries. Furthermore, the roots left behind after harvest add valuable nutrition to the soil, which is especially important in less developed countries where the crop is grown under low inputs.

In the U. S., peanuts bring more than $\$ 4$ billion into the country's economy each year. Unlike other countries where the bulk of the peanut production goes into manufacturing of oil and cake, in the U.S. the primary market for peanuts is edible consumption. Only 15% of U.S. production is crushed for oil. The largest single use of U.S. peanuts (40\%) is manufacturing of peanut butter. About 10% of the nation's production is sold as in-shell or snack peanuts and about 25% is used by the confectionary industry for manufacturing of different types of candy. It is estimated that

Americans eat more than 600 million pounds of peanut seeds and about 700 million pounds of peanut butter each year (Peanut Council, 2003).

In North Carolina, peanuts constitute a multimillion-dollar industry. The state is the $4^{\text {th }}$ largest peanut producer in the nation with above 300 million pounds produced in 2001 (FDA, 2003). Peanuts ranked $13^{\text {th }}$ among all commodities and $5^{\text {th }}$ among crops in total cash receipts from major farm commodities in the state (NCDA, 2003). Peanut revenues for the year 2001 totaled $\$ 88$ million. Approximately 100,000 acres of the state's farmland are planted under peanuts (NCCES, 2002).

History

The South American origin of cultivated peanut was proven by the unearthing of terracotta jars containing preserved peanuts in the prehistoric cemetery of Ancón on the Peruvian coast north of Lima (Hammons, 1982). Specimens recovered from these graves date back to the period of 500 to 750 B.C. Paleobotanical artifacts discovered by Bird $(1948,1949)$ near the Chicama Valley have given the best dates for the occurrence of peanuts in Perú. These findings suggested the introduction of peanut associated with the first pottery dating approximately from 1200 to 1500 B.C. (Hammons, 1982). The Incas cultivated peanuts, which the Indians called ynchic, throughout the coastal regions of Perú (Hammons, 1994).

By the time the Spanish began their colonization of the New World, peanuts were grown as far north as Mexico. From the early stages of this colonization, exotic American plants were often collected and introduced into Europe. Although there are no records of the first introduction of peanuts, it is probable that they were carried to Europe early in
the $16^{\text {th }}$ century (Hammons, 1982). During the mid 1500 's, Spanish and Portuguese traders and explorers brought peanuts to Africa and Asia. In Africa peanuts were commonly grown in the western tropical region. Later on, during the slave trade, peanuts were introduced from Africa in North America and slaves planted them across the southern states of the U.S.

It was not until after the American Revolution that peanuts became a commercial product, when they were sold by small farmers for local consumption. In 1833, the first important peanut market in the U.S. opened in Wilmington, NC. Subsequently, listing of the market value of peanut in the Wilmington newspaper was initiated. Southern farmers began export trading of the crop into northern cities (Johnson, 1964). During the Civil War there was a large increase in the consumption of peanuts. Soldiers on both sides used them as food because of their rich nutritional content and their ease of storage and transport (Johnson, 1964). During the last half of the $19^{\text {th }}$ century, commercial production of peanuts grew quickly (Hammons, 1994). Peanuts became a popular snack and they were sold freshly roasted by street vendors (McGill, 1973).

In the early 1900s three main events promoted the expansion of the peanut industry. First, the invention of the first mechanic picker allowed for more efficient harvesting of the crop which in turn permitted farming of larger areas. Secondly, George Washington Carver's research on peanuts at the Tuskeegee Institute lead him to the discovery of more than 300 uses for peanuts and therefore, promoted the cultivation and consumption of the crop. Finally, the destruction of the cotton crop by the boll weevil prompted farmers to look at peanut as an alternative crop. Peanut production in the U.S. grew rapidly during both World Wars due to the need for oil products (Johnson, 1964).

Later on, the development of the peanut combine allowed for further expansion of the peanut industry (Hammons, 1982).

Biosystematics and Taxonomy

Arachis hypogaea is a member of the family Leguminosae, subfamily Fabaceae, tribe Aeschynomeneae, subtribe Stylosanthenae. The cultivated peanut belongs to the genus Arachis, which comprises 69 diploid and tetraploid species native to South America (Krapovickas and Gregory, 1994). The genus has been divided into nine sections based on morphology, geographic distribution, and cross-compatibility. Sections Caulorrhizae, Erectoides, Extranervosae, Heteranthae, Procumbentes, Trierectoides, and Triseminatae contain only diploid species $(2 n=20)$ (Stalker and Simpson, 1995). The more evolutionarily advanced tetraploids $(2 n=40)$ have evolved independently only in sections Arachis and Rhizomatosae (Smartt and Stalker, 1982).

Based on differences in branching pattern and in the presence of reproductive nodes on the mainstem, A. hypogaea is subdivided into two subspecies: subsp. hypogaea and subsp. fastigiata Waldron (Krapovickas and Rigoni, 1960). Subspecies hypogaea has alternate branching pattern, no reproductive nodes on the mainstem, spreading or erect growth habit, a longer maturation period and fresh-seed dormancy. This subspecies is subdivided into botanical varieties hypogaea (Virginia and Runner U.S. market types) and hirsuta Köhler (not grown commercially in the U.S., but also known as Peruvian humpback or Chinese dragon type). Subspecies fastigiata has a sequential branching pattern, reproductive nodes on the mainstem, erect growth habit, earlier maturity and little or no seed dormancy. The two botanical varieties within subspecies fastigiata are
var. fastigiata (Valencia U.S. market type) and var. vulgaris Harz (Spanish U.S. market type). Krapovickas and Gregory (1994) later revised the classification of cultivated peanut to include the two botanical varieties peruviana Krapov. and W.C. Gregory (Valencia type) and aequatoriana Krapov. and W.C. Gregory (Zaruma type), which are classified with vars. fastigiata and vulgaris within subspecies fastigiata.

Botany and Reproduction

Peanut is an allotetraploid ($2 n=4 x=40$), self-pollinated, annual legume. Perhaps its most striking characteristic is geocarpy, i.e. its flowers develop above ground, but its fruit and seeds are produced below the soil level. The species is typically self-pollinated; however, natural hybridization may also occur at low levels (Stalker and Moss, 1987). Flowers resemble spikes and range in color from light yellow to deep orange. Inflorescences are located in the leaf axils of primary and secondary branches, but never at the same node as vegetative branches (Gregory et al., 1973). The first flowers appear 4 to 6 weeks after planting with maximum flower production occurring 2 to 4 weeks thereafter. The flower contains five petals including a yellow to orange standard, two yellow to orange wings, and two petals fused to form a pale yellow keel. There are 10 anthers, two of which are not fully developed, and an elongated calyx tube containing the style attached at the base of the ovary. The stigma and anthers are enclosed in the keel, which promotes self-pollination. The stigma becomes receptive 24 hours before to 12 hours after the flower opens, while pollen becomes mature 1-8 hours before flower opening. Anthesis and pollination usually occur at about the time of sunrise.

The flower withers 5 to 7 hours after opening. Within 1 week after fertilization, a needlelike structure, called the peg, starts developing and elongates quickly. The ovary containing the fertilized ovules is located behind the tip of the peg, but distal to the peg meristem. The positively geotropic peg grows into the soil and once it reaches a depth of $2-7 \mathrm{~cm}$ it loses its geotropism. Subsequently, the tip orients itself horizontally and pod growth begins (Rao and Murty, 1994). Seed development occurs over three stages. The first stage is characterized by rapid growth with marked increases in both fresh and dry weight. During the second stage energy reserves are accumulated and moisture content decreases. In the third or ripening stage, moisture is lost with little or no change in dry weight (Coolbear, 1994). The mature pod contains one to five seeds. The dry pericarp of the mature pod is reticulate. The endocarp recedes as the fruit grows becoming progressively thinner as the seeds reach maturity (Coffelt, 1989). The number of days from planting to crop maturity varies depending on the cultivar and planting conditions. Runners take about 150 days, Virginias between 130 and 150 days, and Spanish types approximately 100 to 120 days to mature (Coolbear, 1994).

Centers of Origin and Diversity

The center of origin for the genus Arachis is the Matto Grosso region of Brazil (Gregory et al., 1980). Wild species are found in South America, in a large region bound by the Amazon River to the north, the Río de la Plata to the south, the Andes mountains to the west, and the Atlantic Ocean to the east (Valls et al., 1985). Because considerable overlaps in distribution occur between species in several sections of the genus, species most likely diverged early in the evolutionary history of the genus (Valls et al., 1985).

The center of origin of the cultivated peanut is believed to be on the eastern slopes of the Andes of southern Bolivia and northern Argentina because its putative progenitor species have been found only in this region (Krapovickas, 1968). Seven primary centers of diversity have been described for cultivated peanut: (1) Guaraní region (ParaguayParaná river basins and southwestern Brazil) for var. fastigiata and var. vulgaris; (2) Goiás and Minas Gerais region of Brazil (Jocantis-São Francisco river basin) also for var. fastigiata and var. vulgaris; (3) Rondonia and northwestern Matto Grosso region of Brazil (headwaters of the Amazon River) for var. hypogaea; (4) Bolivian region (eastern slopes of the Andes) for var. hypogaea; (5) Peruvian region (upper Amazon and west coast) for vars. hirsuta, fastigiata and peruviana; (6) northeastern Brazil for var. fastigiata; and (7) Ecuadorian region for var. aequatoriana (Gregory and Gregory, 1976; Stalker and Simpson, 1995).

Africa has been described as a secondary center of diversity for cultivated peanut by Gibbons et al. (1972). Natural hybridization among types introduced to Africa from Brazil followed by selection is thought to be responsible for the variation in the African collection (Gibbons et al., 1972).

Evolution and Genome Donors

Little is known about the origin and subsequent domestication of peanut (Kochert et al., 1996). The identity of the progenitor species of the cultivated peanut has been one of the questions that captured the attention of peanut scientists during most of the last century. In 1936, Husted observed the presence of two pairs of chromosomes that could be easily differentiated from the others: one pair (A) that was conspicuously small and
another pair (B) that had an unusually long secondary constriction. It was also observed that chromosome association at meiosis was usually of 20 bivalents with an occasional multivalent. Based on these findings, Husted proposed that A. hypogaea was an allopolyploid which had arisen through the natural hybridization of two distinct but related species. However, the possibility that A. hypogaea could be an autotetraploid formed by chromosome doubling followed by the fragmentation or loss of some chromosomes was not discarded (Husted, 1936).

Breeding experiments established that A. hypogaea and A. monticola Krapov. and Rigoni belonged essentially to the same biological species, the former being domesticated and the latter its wild counterpart (Hammons, 1970). The close biological relationship between the two species suggests that they descended from the same progenitor species. Gregory and Gregory (1976) hypothesized that an interspecific hybrid between a perennial (such as A. cardenasii Krapov. and W.C. Gregory) and an annual (such as A. duranensis Krapov. and W.C. Gregory) species of section Arachis would have a karyotype similar to that of A. hypogaea-monticola. They postulated that A. hypogaea originated through the chromosome doubling of such a hybrid.

Smartt et al. (1978) studied mitotic chromosome preparations of several Arachis wild species. Their results indicated that there were several potential donor species of the A genome, while only A. batizocoi Krapov. and W.C. Gregory could be the donor of the B genome because it was the only species within section Arachis that lacked the small A chromosome pair. Based on morphological and phytogeographical considerations, A. cardenasii was proposed as the most likely contributor of the A genome. In crosscompatibility studies of crosses between A. batizocoi and several other diploid species of
section Arachis, a low frequency of bivalents and a high frequency of univalents were found (Singh and Moss, 1984). These supported the hypothesis that among diploid species of the section Arachis, A. batizocoi was the only species with a unique genome (B).

Subsequent research on hybrids between A. hypogaea and inter- (AB) and intracluster (AA) amphidiploids showed that mean bivalent associations were significantly higher in A. hypogaea x AABB amphidiploids than those from A. hypogaea x AAAA amphidiploids (Singh, 1988). These results supported the hypothesis of an amphidiploid origin of A. hypogaea involving two diploid species, one with A and the other with B genomes.

Arachis correntina Krapov. and W.C. Gregory was also used to develop hybrids with A. hypogaea (Murty and Jahnavi, 1986). Pachytene chromosome morphology of A. correntina corresponded well with the A genome of A. hypogaea. Therefore, they proposed A. correntina as a possible donor of the A genome. Krishna and Mitra (1988) analyzed total seed protein profiles and based on arachin patterns, concluded that A. hypogaea and A. monticola were closely related to A. cardenasii, A. duranensis, and A. batizocoi. Moreover, A. duranensis showed the highest number of similar bands to A. monticola than any other A genome species.

Stalker et al. (1990) were the first to contradict the hypothesis that A. batizocoi was the donor of the B genome. Their analysis of isozymes led to the conclusion that this species was too distantly removed from all other species in section Arachis, and therefore it was not likely to have been involved in the evolution of A. hypogaea. Seed storage
protein (Bianchi-Hall et al., 1993) and additional isozyme (Lu and Pickersgill, 1993; Stalker et al., 1994) studies confirmed these results.

With the development of RFLPs, RAPDs and other high throughput molecular marker systems, large amounts of molecular data have been generated which has allowed researchers to make more precise comparisons among diploid and tetraploid genomes. Kochert et al. (1991) analyzed RFLP patterns of diploid and tetraploid Arachis species and found that A. ipaensis Krapov. and W.C. Gregory, A. duranensis, and A. spegazzinii (name changed to A. duranensis by Krapovickas and Gregory, 1994) were the species which more consistently shared bands with A. monticola. Furthermore, when they attempted to reconstruct the tetraploid RFLP banding pattern based on combinations of diploid patterns, the combinations A. ipaensis x A. duranensis and A. ipaensis $\mathrm{x} A$. spegazzinii were the ones that most often reconstituted the tetraploid genome. Similar results were obtained by Hilu and Stalker (1995), who used RAPD markers to study inter- and intraspecific variation among nine species of section Arachis and reported close relationship between A. duranensis and A. hypogaea-A. monticola. Fernandez and Krapovickas (1994) also conducted extensive cytological analysis of several wild peanut species. According to their results based on karyotype, morphology, and geographical distribution, A. duranensis and A. ipaensis were the most probable ancestors of A. hypogaea.

Kochert et al. (1996) were the first to combine cytological and molecular marker data to study evolution in the genus Arachis. The two genomes (A and B) in A. hypogaea were found to be different enough to be distinguished by RFLP patterns specific for each genome. When these patterns were compared with those of the diploid species, A.
ipaensis emerged as the species most closely related to the B genome of the cultivated peanut. Next, RFLP patterns from other accessions were examined in order to find the ones that, when combined with those of A. ipaensis, would reconstitute patterns characteristic of A. hypogaea. Arachis duranensis was found to be the most likely donor of the A genome. To support this evidence, a hybrid between A. duranensis and A. ipaensis was produced. RFLP patterns from this hybrid were indistinguishable from those of peanut. The chloroplast restriction fragment pattern of A. duranensis was found to be identical to that of A. hypogaea, while that of A. ipaensis showed three differences, which indicated that A. duranensis was the female parent. The karyotype of A. ipaensis was found to possess those characteristics that had previously supported A. batizocoi as the donor of the B genome. Based on molecular marker and cytological data, A. duranensis and A. ipaensis were proposed as the present-day species most closely related to the progenitors of domesticated peanut (Kochert et al., 1996).

Utilization of Wild Species for Peanut Improvement

The section Arachis includes cross-compatible diploid annual and perennial species and only two tetraploid species: the cultivated peanut (A. hypogaea) and its putative wild progenitor (A. monticola) (Gregory and Gregory, 1976). Wild species of Arachis are important sources of genes of interest for cultivar improvement. Several Arachis species have significantly higher levels of resistance to disease and insect pests than those found in the cultivated species (Stalker and Moss, 1987). High levels of resistance or immunity to early leafspot (Cercospora arachidicola Hori), late leafspot (Cercosporidium personatum Deighton), Cylindrocladium black rot (Cylindrocladium
parasiticum Crous, M.J. Wingfield, \& Alfenas), rust (Puccinia arachidis Speg.), corn earworm (Helicoverpa zea Bodie), fall armyworms (Spodoptera frugiperda J. E. Smith), lesser cornstalk borer (Elasmopalpus lignosellus Zeller), potato leafhoppers (Empoasca fabae Harris), nematodes (Meloidogyne spp.), mites (Tetranychus spp.), tobacco thrips (Frankliniella fusca Hinds), groundnut rosette virus, tomato spotted wilt virus, peanut mottle virus, and peanut stunt virus have been reported in Arachis species (see Stalker and Moss, 1987; Lynch and Mack, 1995; Stalker and Simpson, 1995). In addition to insect and disease resistances, other traits for which Arachis wild species would be valuable sources of novel alleles include protein and oil composition and drought resistance (Stalker and Moss, 1987). However, cross-incompatibilities that restrict gene transfer have precluded the widespread use of Arachis wild species in cultivar development. There are several strategies that can be used for introgression of genes from wild relatives into A. hypogaea. Direct hybridization is possible between A. hypogaea and diploid species in the secondary gene pool. The resulting triploid hybrids $(2 n=3 x=$ 30) are highly sterile, but fertility can be restored by doubling the number of chromosomes $(2 n=6 x=60)$ with colchicine. The hexaploid hybrids can then be selfed for several generations until tetraploidy is eventually restored by spontaneous elimination of chromosomes (Stalker, 1992). An alternate strategy for gene introgression is to bring wild diploid species to the same ploidy level as cultivated peanut prior to hybridization by either doubling their chromosome number to produce autotetraploids or by doubling the chromosomes of $\mathrm{AA} \times \mathrm{BB}$ interspecific hybrids, backcrossing allotetraploids to the cultigen (Simpson, 1991).

LITERATURE CITED

Bianchi-Hall CM, Keys RD, Stalker HT, Murphy JP (1993) Diversity of seed storage protein patterns in wild peanut (Arachis, Fabaceae) species. Pl Syst Evol 186:115.

Bird JB (1948) America's oldest farmers. Natural History (New York) 57:296-303, 334335.

Bird JB (1949) The archeological background. In: Whitaker TW and Bird JB (eds.) Identification and Significance of the Cucurbit Materials from Huaca Prieta, Peru. Amer Museum Novitates 15:1-7.

Coolbear P (1994) Reproductive biology and development. In: Smartt J (ed.) The Groundnut Crop: A Scientific Basis for Improvement. Chapman and Hall, London, pp. 138-172.

Coffelt TA (1989) Peanut. In: Röbbelen G, Downey RK and Ashri A (eds.) Oil crops of the World: Their Breeding and Utilization. McGraw-Hill, New York, pp. 319338.

Fernandez A, Krapovickas A (1994) Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8:187-220.

Gibbons RW, Bunting AH, Smartt J (1972) The classification of varieties of groundnut (Arachis hypogaea L.). Euphytica 21:78-85.

Gregory WC, Gregory MP (1976) Groundnuts. In: NW Simmonds (Ed.), Evolution of Crop Plants. Longman Group Ltd., London, pp.151-154.

Gregory WC, Gregory MP, Krapovickas A, Smith BW, Yarbrough JA (1973) Structures and genetic resources of peanuts. In: Peanuts - Culture and Uses. Amer Peanut Res Educ Soc, Stillwater, OK, pp. 47-133.

Gregory WC, Krapovickas A, Gregory MP (1980) Structure, variation, evolution and classification in Arachis. In: Summerfield RJ and Bunting AH (eds.) Advances in Legume Sciences. Royal Botanical Gardens, Kew, pp. 469-481.

Hammons RO (1970) Registration of Spancross peanuts. Crop Sci 10:459.
Hammons RO (1982) Origin and early history of the peanut. In: Pattee HE and Young CE (eds.) Peanut Science and Technology. Amer Peanut Res Educ Soc. Yoakum, TX, pp. 1-20.

Hammons RO (1994) The origin and history of the groundnut. In: Smartt J (ed.) The Groundnut Crop: A Scientific Basis for Improvement. Chapman and Hall, London.

Hilu KW, Stalker HT (1995) Genetic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae): Evidence from RAPDs. Pl Syst Evol 198:167178.

Husted L (1936) Cytological studies of the peanut Arachis. II. Chromosome number, morphology and behavior and their application to the origin of cultivated forms. Cytologia 7:396-423.

Johnson FR (1964) The Peanut Story. Johnson Publishing Co., Murfreesboro.
Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565-570.

Kochert G, Stalker HT, Gimenes M, Galgaro L, Romero-Lopes C, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Amer J Bot 83(10):12821291.

Krapovickas A (1968) The origin, variability and spread of the groundnut (Arachis hypogaea). In: Ucko PJ and Falk IS (eds.) The Domestication and Exploitation of Plants and Animals. Duckworth, London, pp. 424-441.

Krapovickas A, Rigoni VA (1960) La nomenclatura de las subspecies y variedades de Arachis hypogaea L. Revista de Investigaciones Agrícolas 14:197-228.

Krapovickas A, Gregory WC (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1-186.

Krishna TG, Mitra R (1988) The probable genome donors to Arachis hypogaea L. based on arachin seed storage protein. Euphytica 37:47-52.

Lu J, Pickersgill B (1993) Isozyme variation and species relationships in peanut and its wild relatives (Arachis L. - Leguminosae) Theor Appl Genet 85:550-560.

Lynch RE, Mack TP (1995) Biological and biotechnical advances for insect management in peanut. In: Pattee HE and Stalker HT (eds.) Advances in Peanut Science. Amer Peanut Res Educ Soc, Stillwater, OK, pp. 95-159.

Mc Gill F (1973) Economic importance of peanuts. In: Peanuts - Culture and Uses. Amer Peanut Res and Educ Soc, Stillwater, OK, pp. 3-15.

Murty UR, Jahnavi MR (1986) The 'A' genome of Arachis hypogaea L. Cytologia 51:241-250.

Rao VR, Murty UR (1994) Botany - Morphology and anatomy. In: Smartt J (ed.) The Groundnut Crop: A Scientific Basis for Improvement. Chapman and Hall, London, pp. 43-89.

Simpson CE (1991) Pathways fro introgression of pest resistance into Arachis hypogaea L. Peanut Sci. 18:22-26.

Singh AK (1988) Putative genome donors of Arachis hypogaea (Fabaceae), evidence from crosses with synthetic amphidiploids. Pl Sys Evol 160:143-151.

Singh AK, Moss JP (1984) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. 5. Genome analysis in section Arachis and its implications in gene transfer. Theor Appl Genet 68:355-364.

Smartt J, Stalker HT (1982) Speciation and cytogenetics in Arachis. In: Pattee HE and Young CE (eds.) Peanut Science and Technology. Amer Peanut Res Educ Soc, Yoakum, OK, pp. 21-49.

Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665-675.

Stalker HT (1992) Utilizing Arachis germplasm resources. In: Groundnut - A Global Perspective: Proceedings of an International Workshop. 25-29 November 1991, ICRISAT Center, India, pp. 281-295.

Stalker HT, Moss JP (1987) Speciation, cytogenetics, and utilization of Arachis species. Adv Agron 41:1-40.

Stalker HT, Simpson CE (1995) Germplasm resources in Arachis. In: Pattee HE and Stalker HT (eds.) Advances in Peanut Science. Amer Peanut Res Educ Soc. Stillwater, OK, pp. 14-53.

Stalker HT, Jones TM, Murphy JP (1990) Isozyme variability among Arachis species. Amer Peanut Res Educ Soc 22:50 (Abstr.).

Stalker HT, Phillips TD, Murphy JP, Jones TM (1994) Variation of isozyme patterns among Arachis species. Theor Appl Genet 87:746-755.

Valls JFM, Rao VR, Simpson CE, Krapovickas A (1985) Current status of collection and conservation of South American groundnut germplasm with emphasis on wild species of Arachis. In: Moss JP (ed.) Proceedings of the International Workshop on Cytogenetics of Arachis. International Crops Research Institute for the SemiArid Tropics, Patancheru, India, pp. 15-33.

I. TAXONOMIC RELATIONSHIPS AMONG ARACHIS SPECIES AS REVEALED BY AFLP MARKERS

Formatted for: Theoretical and Applied Genetics.

Abstract

Cultivated peanut, Arachis hypogaea L., is a tetraploid ($2 n=4 x=40$) species considered to be of allopolyploid origin. Its closest relatives are the diploid $(2 n=2 x=20)$ annual and perennial species included with it in section Arachis. Species in section Arachis represent an important source of novel alleles for the improvement of cultivated peanut. The AFLP technique was used to determine intra- and inter-specific relationships among and within 108 accessions of 26 species of this section. A total of 1328 fragments were generated with 8 primer combinations. From those, 239 unambiguous bands ranging in size from 65 to 760 bp were scored as binary data. Genetic distances among accessions ranged from 0 to 0.50 . Average distances among diploid species (0.30) were much higher than that detected between tetraploid species (0.05). Cluster analysis using different methods and principal component analysis were performed. The resulting grouping of accessions and species supports previous taxonomic classifications and genome designations. Based on genetic distances and cluster analysis, "A" genome accessions KG 30029 (A. helodes), and KSSc 36009 (A. simpsonii), and "B" genome accession KGBSPSc 30076 (A. ipaensis) were the most closely related to both A. hypogaea and A. monticola suggesting their involvement in the evolution of the tetraploid species.

INTRODUCTION

Genus Arachis L. is comprised of 69 diploid and tetraploid species native to South America, including the cultivated peanut, Arachis hypogaea L. (Krapovickas and Gregory, 1994). The genus has been divided into nine sections based on morphology, geographic distribution, and cross-compatibility. Section Arachis is of special interest because it includes A. hypogaea and its putative wild progenitor, A. monticola Krapov. and Rigoni (Gregory and Gregory, 1976). Cultivated peanuts can be crossed with other species in section Arachis but not with species in other sections (Gregory and Gregory, 1979). Therefore, biosystematic information for species in section Arachis would be useful for germplasm utilization (Stalker et al., 1991).

Section Arachis is distinguished from other sections of the genus by having taproots, no rhizomes, vertical pegs, and flowers with no red veins in the back of the standard (Gregory et al., 1973). The section includes 25 cross-compatible diploid annual and perennial species and the two tetraploid species, A. hypogaea and A. monticola. Wild species in this section are widely distributed in central and southern Brazil, Argentina, Bolivia, Paraguay and Uruguay (Valls et al., 1985). On the basis of cytological evidence, three different genomes have been designated in section Arachis. The "A" genome is characterized by the presence of a distinctly small chromosome pair (Husted, 1936) and is represented by most of the diploid species (Smartt et al., 1978). The "B" genome lacks the small A chromosome pair, possesses a chromosome pair with a secondary constriction (Husted, 1936), and is represented by only a few species. The "D" genome presents a unique karyotype and is known only in A. glandulifera (Stalker, 1991).

Little is known about the origin of domesticated peanut. Domesticated peanut is an allotetraploid (AABB) considered to have originated from a single hybridization event between two diploids (Husted, 1936). Based on morphological, cytological, crosscompatibility and molecular marker evidence, A. cardenasii Krapov. and W.C. Gregory (Smartt et al., 1978; Singh and Moss 1982), A. villosa Benth. (Kirti et al. 1983; Raina and Mukai 1999), A. correntina Krapov. and W.C. Gregory (Murty and Jahnavi 1986) and A. duranensis Krapov. and W.C. Gregory (Seetharam et al. 1973; Gregory and Gregory 1976; Singh 1988; Kochert et al. 1991; Singh et al. 1996; Kochert et al. 1996) have been proposed as the donor of the A genome. Arachis batizocoi Krapov. and W.C. Gregory (Smartt et al. 1978; Singh and Moss 1984; Singh 1988; Klosova et al. 1983) and A. ipaensis Krapov. and W.C. Gregory (Kochert et al. 1991, 1996; Fernandez and Krapovickas 1994) have been proposed as possible B genome donors. The single hybridization event that gave rise to A. hypogaea isolated it reproductively from their genome donors and other species in the section. As a consequence of this reproductive isolation, cultivated peanut possesses a narrow genetic base. Low levels of genetic polymorphism for biochemical and molecular markers have been found within the species in a series of studies (Halward et al. 1991, 1992; Kochert et al. 1991; Paik-Ro et al. 1992; Bianchi-Hall 1993; Lu and Pickersgill 1993; Singh et al. 1994; Stalker et al. 1994; Hilu and Stalker 1995; He and Prakash 1997). On the other hand, extensive polymorphism occurs in the closely related Arachis species. Several agronomically useful characters including resistance and tolerance to pests and diseases, have been found in species of section Arachis (Stalker and Simpson 1995). Successful gene introgression from wild to cultivated crop species relies on the development of hybrids with genomic
configurations that promote exchange of genetic material through pairing of homoeologous chromosomes (Nagpal et al. 1996). The level of speciation and phylogenetic relationships among diploid species of section Arachis remains unclear (Raina et al. 2001). A better understanding of these relationships is crucial for the use of desirable traits from the wild species in peanut improvement programs.

A variety of molecular marker techniques have been used to determine taxonomic relationships and genetic variation of crop species and their wild relatives. Among these methods, the amplified fragment length polymorphism (AFLP) method (Zabeau and Vos 1993; Vos et al. 1995) has been successfully used to analyze inter- and intra-specific genetic diversity in a wide range of crop species (Hill et al. 1995; Powell et al. 1996). The major advantage of the AFLP technique over other marker technologies is that it enables simultaneous analysis of a large number of marker loci throughout the genome (Powell et al. 1996). Other benefits of the technique include high reproducibility, high levels of polymorphism detection, and no prior knowledge of the genome being studied is required (Prabhu and Gresshoff 1994; Lu et al. 1996). Consequently, AFLPs are ideally suited for the study of genetic diversity within gene pools of Arachis species for which little information currently exists (Tomkins et al. 2001).

In the present study we have examined accessions from almost all species in section Arachis in order to (1) determine the extent of inter- and intra-specific variation and infer phylogenetic relationships, (2) gain information on the genomic origin of cultivated peanut by evaluating genetic distances, and (3) determine the potential of AFLP markers to discriminate between species and accessions.

MATERIALS AND METHODS

Plant Material and DNA Extraction

A total of 108 genotypes representing 26 species of section Arachis were evaluated in this study (Table 1). Seeds of peanut cultivars and wild species were obtained from the Arachis germplasm collection maintained at North Carolina State University. Entries representing botanical varieties were obtained from the USDA/ARS Plant Genetic Resources Conservation Unit (Griffin, GA).

Two to three young unopened leaves were collected from two plants of each accession, bulked, and used for DNA extraction using the CTAB method of Afanador et al. (1993) with the modification that a Fast Prep FP120 (Thermo Savant, Holbrook, NY) machine was used to grind the tissue. DNA was quantified using a Hoefer fluorometer (Hoefer Scientific Instruments, San Francisco, CA).

AFLP Analysis

AFLP fingerprinting was performed as described by Myburg and Remington (2000). All primers and adaptors were obtained from Sigma Genosys (The Woodlands, TX) with the exception of the labeled primers. Labeled primers were obtained from LICOR Inc. (Lincoln, NE).

Digestion of DNA. Approximately 500 ng of DNA was simultaneously digested with EcoRI and MseI at $37^{\circ} \mathrm{C}$ for 1.5 hr using 12U EcoRI, 8 U MseI, and $6 \mu \mathrm{l}$ of 5 X restriction-ligation buffer (50 mM Tris-acetate, 50 mM magnesium acetate, 250 mM
potassium acetate, 25 mM DTT, and $250 \mathrm{ng} / \mu \mathrm{BSA}$) in a final volume of $30 \mu \mathrm{l}$. DNA was run on a 0.8% agarose gel to check for complete digestion.

Adaptor Ligation. Adaptor ligation was performed by adding 5 pmol EcoRI adaptor, 50 pmol MseI adaptor, 10 mM ATP, 0.5 U of T4 DNA ligase, and $1 \mu \mathrm{I} 5 \mathrm{X}$ restriction-ligation buffer to $20 \mu \mathrm{l}$ of each double-digested DNA sample ($25 \mu \mathrm{l}$ final volume) and incubating overnight at $37^{\circ} \mathrm{C}$.

Pre-amplification. A pre-amplification step was performed with primers complementary to the adaptor sequences carrying an additional selective nucleotide. A 1:10 dilution of the digested and adapter-ligated DNA was used as a template for this step. PCR reactions were carried out in a total volume of $20 \mu \mathrm{l}$ containing $2 \mu \mathrm{l}$ of 10X PCR buffer (100 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.3,15 \mathrm{mM} \mathrm{MgCl} 2,500 \mathrm{mM} \mathrm{KCl}), 2.5 \mathrm{mM}$ of each dNTP, 30 ng primer E01-A, 30 ng primer M02-C, 1.2 U Taq DNA polymerase (Qiagen, Valencia, CA), and $5 \mu 1$ of DNA. PCR amplifications were carried out in a PTC-100 programmable thermal controller (MJ Research Inc., Reno, NV) using the following temperature profile: 28 cycles of 15 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $60^{\circ} \mathrm{C}$, and $60 \mathrm{~s}+1 \mathrm{~s} /$ cycle of extension at $72^{\circ} \mathrm{C}$; followed by one cycle of 2 min at $72^{\circ} \mathrm{C}$. Upon completion of amplification, $15 \mu \mathrm{l}$ of each sample were diluted $1: 20$ with low TE (10 mM Tris- HCl pH 8.0 and 0.1 mM EDTA). The remaining $5 \mu \mathrm{l}$ of each sample were checked on a 0.8% agarose gel where a smear was visible.

Selective Amplification and Polyacrylamide Gel Electrophoresis (PAGE).

For the selective amplification, primers with three selective nucleotides were used (Table 2). EcoRI primers were labeled with a fluorescent near-infrared group (IRD-700 or IRD-
800). The PCR amplification mixture ($20 \mu \mathrm{l}$ final volume) was comprised of $2 \mu \mathrm{l}$ of 10 X PCR buffer, 2.5 mM of each dNTP, 30 ng unlabeled $\mathrm{Mse} \mathrm{I}+3$ primer, 5 ng labeled EcoRI+3 primer, 1.2 U Taq DNA polymerase, and 5μ l of diluted pre-amplification product. Selective amplification was carried out in a PTC-100 programmable thermal controller using the following temperature profile: 13 cycles of 10 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $65^{\circ} \mathrm{C}$ $-0.7^{\circ} \mathrm{C} /$ cycle after the first cycle, and 60 s at $72^{\circ} \mathrm{C}$; followed by 25 cycles of 10 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $56^{\circ} \mathrm{C}$, and $60 \mathrm{~s}+1 \mathrm{~s} /$ cycle of extension at $72^{\circ} \mathrm{C}$; followed by one cycle of 2 \min at $72^{\circ} \mathrm{C}$. After amplification, samples were denatured by adding $10 \mu \mathrm{l}$ of loading dye (95% deionized formamide, 20 mM EDTA, and $0.8 \mathrm{mg} / \mathrm{ml}$ bromophenol blue), heating at $94^{\circ} \mathrm{C}$ for 3 min , and chilling on ice. AFLP fragments were separated by PAGE on a LICOR 4200 DNA Analyzer Sequencer on 25 cm gels using 8\% denaturing polyacrylamide gels (7 M ultra pure Urea, 0.8 X TBE, and 8% Long Ranger acrylamide (BioWhittaker Molecular Applications, Rockland, ME)). Near-infrared labeled size standards (LI-COR Inc.) were loaded on each gel for sizing of the AFLP fragments.

Data Analysis

The AFLP-Quantar 1.0 (Keygene Products B.V., Wageningen, The Netherlands) software package was used to score only distinct, major, reproducible bands. Presence or absence of each AFLP fragment was scored as a binary unit character (present $=1$, absent $=0$). A genetic distance matrix was obtained using the computer program PAUP* 4.0b2a (Swofford 1998) and subsequently used to construct dendrograms using both the unweighted pair group method average (UPGMA; Sokal and Michener 1958) and the
neighbor-joining (NJ; Saitou and Nei 1987) clustering procedure. In addition, genetic distances were estimated based on the \log of the shared allele coefficient (Jin and Chakraborty 1993). The generated matrix was then analyzed using the Fitch clustering procedure of PHYLIP 1.0 package (Felsenstein 1993). The robustness of the phylogenetic trees was evaluated by comparing dendrograms obtained from different methods and by bootstrap analysis (Felsenstein 1985) with 1000 replicates using PAUP* 4.0b2a. Principal component analysis was performed based on the variance-covariance matrix of the data using the PRINCOMP procedure of SAS 8.2.

RESULTS

AFLP analysis

A total of 1328 AFLP bands were generated using eight primer combinations. From these fragments, 239 unambiguous bands ranging in size from 65 to 760 bp were scored (Fig. 1). The number of scored loci amplified by each primer varied from 14 to 47 with an average of 30 per reaction.

To evaluate the reproducibility of the banding patterns, two completely independent AFLP fingerprints were generated for 10 samples. Mean reproducibility values (calculated as the percentage of bands that were identical in the two repeats) were very high and ranged from 96% to 100% for the eight primer combinations used (Table 2).

Genetic Distance Matrix and Cluster Analysis

Estimates of genetic distance among the 108 accessions ranged from 0 to 0.50 . Average genetic distances among diploid species (0.30) were much higher than that detected between tetraploid species (0.05) (Table 3). Differences between diploid species were substantial. Among them, A. benensis and A. helodes shared the greatest distance (with an average of 0.42), and A. palustris and A. praecox shared the shortest distance (with an average of 0.09). The mean genetic distance among accessions within each species was 0.16 for A genome species, 0.13 for B genome species and 0.07 for the only D genome species. The tetraploid species showed not only the shortest distance between species (0.05), but also the shortest distances within species with 0.01 for A. hypogaea and 0.02 for A. monticola.

Dendrograms were produced with different methods and each had the same eleven main clusters. The species relationships obtained from the NJ method (Fig. 2) were similar to those obtained using the UPGMA and the Fitch methods except for minor differences in branch lengths and a few inconsequential topological rearrangements. The taxa fell into eleven groups that, for the most part, are consistent with previously defined cytogenetic genome groups and inter-species relationships.

Cluster I contains accessions of nine of the A genome species and is divided into six subclusters. Sub-cluster 1 contains accessions of A. kuhlmannii and A. stenosperma. Subcluster 2 includes accessions of A. kuhlmannii and A. helodes. Sub-cluster 3 contains accessions of A. kempff-mercadoi, A. kuhlmannii, and A. herzogii, but also accessions of A. diogoi and A. helodes. Sub-cluster 4 consists of A. villosa. Sub-cluster 6 contains
accessions of A. cardenasii, A. correntina and A. diogoi. Sub-cluster 5 includes two accessions of A. cardenasii and two accessions of A. correntina.

Cluster II is composed of all accessions of A genome species A. duranensis, one of A. kuhlmannii and one of A. magna. Cluster III contains four sub-clusters where subcluster 1 contains tetraploid (AABB) species A. monticola and A. hypogaea, and one accession of A genome species A. helodes. Sub-cluster 2 consists only of one accession of B genome species A. ipaensis. Sub-cluster 3 is comprised of B genome species A. williamsii, A. magna and A. valida. Sub-cluster 4 consists of one accession of A genome species A. simpsonii. Cluster IV includes only accessions of B genome species A. hoehnei (bootstrap value of 100%). In cluster V are all accessions of the 18 chromosome A genome species A. decora, A. praecox and A. palustris (bootstrap value of 100%), with the exception of accession 9953 of A. decora which is included by itself in cluster VI. Cluster VII is made up of A genome species A. trinitensis and A. benensis and one accession of A. diogoi (bootstrap value of 100\%). Cluster VIII contains B genome species A. cruziana and A. batizocoi (bootstrap value of 100\%). Cluster IX consists of three accessions of D genome species A. glandulifera. The remaining accession of A. glandulifera is by itself in cluster X. One accession of A. batizocoi comprises cluster XI. The A. helodes, A. magna, A. kuhlmannii and A. cardenasii accessions were highly variable, showing large amounts of intraspecific variation.

Principal Component Analysis

The 239 band scores were subjected to principal component analysis to visualize genetic relationships among the species studied (Fig. 3). The first three PCs accounted for
42% of the total variation observed and separated the different genomic groups. The first PC clearly discriminated diploid from tetraploid species. The second PC separated, for the most part, A from B genome species. A plot generated with the first two PCs showed that most of the accessions clustered into four well-defined groups: a tight cluster of tetraploid species, a cluster of B and D genome species, a cluster of A genome species, and a cluster of accessions of A. hoehnei and of 18-chromosome A genome species. The tight grouping of the tetraploid accessions reflects the lack of variation present among these accessions, which was also revealed with the cluster analysis. Plotting of the third PC did not add clarification in the separation of the data (data not shown).

Genome Donors

As an approach to elucidate the most probable genome donors to the tetraploid species, the average distance between each diploid accession and all tetraploid accessions as a group was calculated (Table 4). Average distances were then compared in order to find the accessions most closely related to the group of tetraploid accessions. Accessions $30029($ A. helodes, distance $=0.09), 36009($ A. simpsonii, distance $=0.24)$, and $30067($ A. duranensis, distance $=0.27$) ranked first, second and third, respectively, among all A genome accessions. Accession 30076 (A. ipaensis, distance $=0.21$) ranked first among all B genome accessions. Based on the cluster analysis, accessions 30029 and 30076 grouped tightly with the tetraploid accessions. Moreover, clustering of 30029 with the tetraploid accessions was strongly supported by bootstrap analysis (100\%).

DISCUSSION

Despite the lack of polymorphism observed in the tetraploid species, the AFLP technique was useful in assessing genetic diversity and relationships among accessions in section Arachis. The presence of unique AFLP markers among various Arachis species indicated the usefulness of the approach for fingerprinting purposes. Moreover, the repeatability of the technique was very high, ranging from 96 to 100%. AFLPs have been recognized as an efficient marker system that is as reliable as RFLP and SSR at a lower cost, and more reliable than RAPD markers (Powell et al. 1996).

Both cluster and principal component analyses showed well-defined groupings of the species, and provided additional support for previous groupings based on taxonomic classification and genome designations. Results from this experiment indicate that the AFLP technique provides increased resolution over the approach of Stalker (1990), which was based on morphological data. Discrepancies in clustering can be explained by differences resulting from the observation of morphological characters vs. genetic characters. Changes in the DNA sequence and changes in morphological characters do not exhibit a one-to-one correlation (Futuyma 1986). Furthermore, our results indicate that the AFLP technique is more robust than the RAPD technique used by Halward et al. (1992) and Raina et al. (2001). Some of the discrepancies in clustering between RAPD and AFLP analyses may have resulted from the difference in number of accessions included in each of these studies. The larger number of accessions analyzed in our experiments allows for the closing up of "gaps" in the branching pattern, which results in
minor modifications in the clusters generated and slight differences in the estimates of relatedness among species.

Significant amounts of variation were observed both between and within species. Inter-specific variation was higher than intra-specific variation for most species. B genome species showed less interspecific variation than A genome species. Interestingly, 18-chromosome A genome species showed less inter- and intra-specific variation than their 20-chromosome counterparts. Moreover, these species seem to be as closely related to B and D genome species (average distance 0.29 and 0.28 , respectively) as to the $20-$ chromosome A genome species (average distance 0.30). These results pose a question about their true genomic identity.

For species A. helodes, A. diogoi, and A. magna, intraspecific variation was high and as a result, not all accessions of these species clustered together. This result is not surprising for A. helodes given the fact that accessions exhibit a high degree of morphological variability (Stalker, 1990). Arachis magna accessions 30092 and 30093 were described as a separate species based on morphological traits (Krapovickas and Gregory, 1994). However, our results found these accessions were not only very different but accession 30092 clustered tightly with A. duranensis accessions (clustering supported by a bootstrap value of 80%). This discrepancy was previously observed by Kochert et al. (1996). Possibilities such as introgression from other species caused by cross-pollination or adaptation to a new environment as a result of selection pressure may account for these results. A similar pattern was observed for A. batizocoi accession 9484, which was removed from other accessions of this species. Because this accession was collected in the 1950's and maintained in nurseries for the past 45 years, it seems likely that selection
has occurred for adaptation to its new environment, which resulted in detectable genetic change. This issue raises the question of how much and what kind of selection pressure is being exerted on wild species accessions maintained through decades in U.S. collections.

In general, the AFLP data grouped accessions into similar species groups or species-species associations. For example, A. kuhlmanni clustered with A. kempffmercadoi, A. cardenasii with A. correntina, and A. benensis with A. trinitensis. Crosses between these pairs of species show high levels of chromosome pairing (), implying that they are closely related. Additional data on cross-compatibility, geographical distribution, and climatic adaptation may provide added insight into these relationships.

Because A. glandulifera has a D genome, it was expected to form a discrete genetic cluster apart from both A and B genome species. Although the first two principal components did not provide separation between the B and D genomes in the PC analysis, cluster analysis showed D accessions clearly removed from other accession in the section. D genome accessions were supported as the outgroup by a bootstrap value of 100%

The AFLP profiles for accessions of A. monticola were almost identical to those for accessions of A. hypogaea (correlation 88%, genetic distance 0.05). These findings support the hypothesis that both tetraploid species originated by hybridization of the same two progenitor species and that A. monticola is either the direct ancestor of cultivated peanut or a weedy escape from cultivation. The average distance for A genome species to A. hypogaea was 0.39 , for B species this distance was 0.37 , and for D genome species 0.42 .

The A genome and B genome species seemed to be almost equally related to the cultivated peanut. This result is expected because A. hypogaea is believed to be an amphidiploid produced by the hybridization of an A genome species and a B genome species, and A. glandulifera is not believed to have been involved in its evolution (Stalker, 1991). B genome accessions 30076 (A. ipaensis) and 1118 (A. williamsii), and A genome accessions 30029 (A. helodes), 30067 (A. duranensis) and 36009 (A. simpsonii) were most closely associated with A. hypogaea. Arachis ipaensis has been previously proposed as the B genome donor (Fernandez and Krapovickas 1994; Kochert et al. 1996) and A. duranensis as the A genome donor to the tetraploid Arachis species. Although accessions of A. williamsii, A. helodes and A. simpsonii may be closely associated with A. hypogaea, geographic distribution of these three species (Fig. 4) does not support their involvement in the evolution of cultivated peanut. Arachis helodes and A. simpsonii were collected from Mato Grosso, Brazil, and A. williamsii from Beni, Bolivia, locations removed from the hypothesized center of origin of A. hypogaea in southern Bolivia (Krapovickas, 1968).

Information on genetic relatedness would be extremely useful in terms of which species to use for peanut improvement. For example, A. helodes accession 30029 appears to be closely related to A. hypogaea. Transfer of specific genes from this accession into cultivated peanut should be more easily achieved than that from other more distantly related species. On the other hand, the primers used in this study revealed unique banding patterns for most species, indicating the wide genetic base of the Arachis species. Accessions with the most distinct DNA profiles are likely to contain the greatest number of novel alleles. Estimates of genetic relatedness can be useful for management of
germplasm for conservation of genetic resources, selection of parents for hybridization, and reducing the number of accessions needed to ensure sampling a broad range of genetic variability in breeding programs.

REFERENCES

Afanador LK, Haley SD, Kelly JD (1993) Adoption of a "mini prep" DNA extraction method for RAPD marker analysis in common bean (Phaseolus vulgaris L.). Annu Rep Bean Improv Coop 36:10-11.

Bianchi-Hall CM, Keys RD, Stalker HT, Murphy JP (1993) Diversity of seed storage protein patterns in wild peanut (Arachis, Fabaceae) species. Plant Syst Evol 186:1-15.

Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.

Felsenstein J (1993) Documentation for PHYLIP (Phylogeny Inference Package) Version 3.5C. University of Washington, Seattle, WA.

Fernandez A, Krapovickas A (1994) Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8:187-220.

Futuyma DJ (1986) Evolutionary Biology. Sinauer Associates Inc., Sunderland, MA (1986).

Gregory WC, Gregory MP (1976) Groundnuts. In: Simmonds NW (ed) Evolution of Crop Plants. London, pp 151-154.

Gregory WC, Gregory MP (1979) Exotic germplasm of Arachis L.: Interspecific hybrids. J Hered 70:185-193.

Gregory WC, Gregory MP, Krapovickas A, Smith BW, Yarbrough JA (1973) Structures and genetic resources of peanuts. In: Am Peanut Res Ed Assoc (ed) Peanut: Culture and Uses. Stillwater, OK, pp 47-133.

Halward T, Stalker HT, LaRue EA, Kochert G (1991) Genetic variation detectable with molecular markers among unadapted germplasm resources of cultivated peanut and related wild species. Genome 34:1013-1020.

Halward T, Stalker HT, LaRue EA, Kochert G (1992) Use of single primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol 18:315-325.

He G, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanuts (Arachis hypogaea L.). Euphytica 97:143-149.

Hill M, Witsenboer H, Zabeau M, Vos P, Kesseli R, Michelmore R (1995) PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theor Appl Genet 93:1202-1210.

Hilu KW, Stalker HT (1995) Genetic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae): Evidence from RAPDs. Plant Syst Evol 198:167-178.

Husted L (1936) Cytological studies of the peanut Arachis. II. Chromosome number, morphology, and behavior and their application to the origin of cultivated forms. Cytologia 7:396-423.

Jin L, Chakraborty R (1993) Estimation of genetic distance and coefficient of gene diversity from single-probe multilocus DNA fingerprinting data. Mol Biol Evol 11:120-127.

Kirti PB, Bharati M, Murty UR, Rao NGP (1983) Chromosome morphology in three diploid species of Arachis and its bearing on the genomes of groundnut (Arachis hypogaea L.). Cytologia 48:139-151.

Klosova E, Turkova V, Smartt J, Pitterova K, Svachulova J (1983) Immunochemical characterization of seed proteins of some species of the genus Arachis L. Biologia Plantarum 25:201-208.

Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565-570.

Kochert G, Stalker HT, Gimenes M, Galgaro L, Romero-Lopes C, Moore K (1996) RFLP and cytogenetic evidence on the origin and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Amer J Bot 83:12821291.

Krapovickas A (1968) The origin, variability and spread of the groundnut (Arachis hypogaea). In: Ucko PJ and Falk IS (eds.) The Domestication and Exploitation of Plants and Animals, London, pp 427-441.

Krapovickas A, Gregory WC (1994) Taxonomia del genero Arachis (Leguminosae). Bonplandia 8:1-186.

Lu J, Pickersgill B (1993) Isozyme variation and species variation in peanut and its wild relatives (Arachis L.; Leguminosae). Theor Appl Genet 85:550-560.

Lu J, Knox MR, Ambrose MJ, Brown JKM, Ellis THN (1996) Comparative analysis of genetic diversity in pea assessed by RFLP and PCR based methods. Theor Appl Genet 93:1103-1111.

Murty UR, Jahnavi MR (1986) The 'A' genome of Arachis hypogaea L. Cytologia 51:241-250.

Myburg AA, Remington DL (2000) Protocol for High-throughput AFLP Analysis Using LI-COR IR^2 Automated Sequencers. North Carolina State Forest Biotechnology AFLP Protocol.

Nagpal R, Raina SN, Sodhi YS, Mukhopadhyay A, Arumugam N, Pradhan AK, Pental D (1996) Transfer of Brassica tournefortii (TT) genes to allotetraploid oil seed Brassica species (B. juncea AABB, B. napus AACC, B. carinata BBCC): Homoeologous pairing is more pronounced in the three genomic hybrids (TACC, TBAA, TCBB) as compared to allodiploids (TA, TB, TC). Theor Appl Genet 92:566-571.

Paik-Ro OG, Smith RL, Knauft DT (1992) Restriction fragment length polymorphism evaluation of six peanut species within the Arachis section. Theor Appl Genet 84:201-208.

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP, and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225-238.

Prabhu RR, Gresshoff RM (1994) Inheritance of polymorphic markers generated by DAN amplification fingerprinting and their use as genetic markers in soybean. Plant Mol Biol 26:105-116.

Raina SN, Mukai Y (1999) Genomic in situ hybridization in Arachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. Pl Sys Evol 214:251-262.

Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44:763-772.

Saitou M, Nei N (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-425.

Seetharam A, Nayar KMD, Sreekantaradhya R, Achar DKT (1973) Cytological studies on the interspecific hybrid of Arachis hypogaea x Arachis duranensis. Cytologia 38:277-280.

Singh AK (1988) Putative genome donors of Arachis hypogaea (Fabaceae), evidence from crosses with synthetic amphidiploids. Pl Sys Evol 160:143-151.

Singh AK, Moss JP (1982) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. 2. Chromosome complements of species in section Arachis. Theor Appl Genet 61:305-314.

Singh AK, Moss JP (1984) Utilization of wild relatives in genetic improvement of Arachis hypogaea L. 5. Genome analysis in section Arachis and its implication in gene transfer. Theor Appl Genet 68:355-364.

Singh AK, Gurtu S, Jambunathan R (1994) Phylogenetic relationships in the genus Arachis on seed protein profiles. Euphytica 74:219-225.

Singh KP, Raina SN, Singh AK (1996) Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39:890-897.

Smartt J, Gregory WC, Gregory MP (1978) The genomes of Arachis hypogaea. 1. Cytogenetic studies of putative genome donors. Euphytica 27:665-675.

Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 28:1409-1438.

Stalker HT (1990) A morphological appraisal of wild species in section Arachis of peanuts. Peanut Sci 17:117-122.

Stalker HT (1991) A new species in section Arachis with a D genome. Am J Bot 78:630637.

Stalker HT, Simpson CE (1995) Genetic resources in Arachis. In: Pattee HE and Stalker HT (eds.) Advances in Peanut Science, Am Peanut Res Educ Soc, Stillwater, OK, pp. 14-53.

Stalker HT, Dhesi JS, Parry DC, Hahn JH (1991) Cytological and inter-fertility relationships of Arachis section Arachis. Am J Bot 78:238-246.

Stalker HT, Phillips TD, Murphy JP, Jones TM (1994) Variation in isozyme patterns among Arachis species. Theor Appl Genet 87:746-755.

Swofford DL (1998) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, MS.

Tomkins JP, Wood TC, Barnes LS, Westman A, Wing RA (2001) Evaluation of genetic variation in the daylily (Hemerocallis spp.) using AFLP markers. Theor Appl Genet 102:489-496.

Valls JFM, Rao VR, Simpson CE, Krapovickas A (1985) Current status of collection and conservation of South American groundnut germplasm with emphasis on wild species of Arachis. In: Moss JP (ed.) Proceedings of the International Workshop on Cytogenetics of Arachis. International Crops Research Institute for the SemiArid Tropics, Patancheru, India, pp. 15-33.

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Fritjers A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res 223:4407-4414.

Zabeau M, Vos P (1993) Selective restriction fragment amplification: A general method for DNA fingerprinting. European Patent Application number: 92402629.7, Publication Number EP 0534858.

Figure 1: AFLP fingerprint generated from genomic DNA isolated from 108 genotypes of section Arachis using primer combination E-ACT/M-CAC. Arrows indicate fragments scored. Standard band sizes appear on the left.

Figure 2: Dendrogram of Arachis genotypes based on AFLP polymorphisms. Phenetic relationships were derived from pairwise genetic distance estimates between 108 genotypes. Cluster analysis was performed using the neighbor-joining method. The names of the genotypes are given next to their branches starting with the accession number followed by an abbreviation for the species name. Numbers in parenthesis indicate bootstrap values (\%) obtained from 1000 replicate analyses.

Figure 3: Principal Component plot of 108 Arachis genotypes for two principal components estimated with 239 AFLP markers using the variance-covariance matrix of the data. Genome designations and chromosome numbers are indicated.

Figure 4: Approximate geographical locations of original collection sites for several accessions of wild Arachis species.

Table 1. Number of chromosomes and genome designation of 108 accessions representing 26 species of section Arachis analyzed for AFLP variation.

Species	Chrom \#	Genome	Accessions
A. batizocoi	20	B	9484, 30079, 30081, 30082, 30083
A. benensis	20	A	860, 35005, 35006, 35007
A. cardenasii	20	A	10017, 36015, 36019, 36032, 36035
A. correntina	20	A	7830, 7897, 9530, 19616, 36000
A. cruziana	20	B	36024
A. decora	18	A	9953, 9955, 12900
A. diogoi	20	A	10602, 30001, 30005, 30106
A. duranensis	20	A	$\begin{aligned} & 7988,10038,15101,21763,21766 \\ & 21767,30060,30064,30067,30069 \\ & 30070,30072,30074,30077,36002 \\ & 36005,36006,36036 \end{aligned}$
A. glandulifera	20	D	30091, 30098, 30099, 30100
A. helodes	20	A	6331, 30029, 30031
A. herzogii	20	A	36029
A. hoehnei	20	B	9094, 9140, 9146, 30006
A. ipaensis	20	B	30076
A. kempff-mercadoi	20	A	30084, 30085, 30088, 30089, 35001
A. kuhlmanni	20	A	$\begin{aligned} & 6404,7639,8888,8916,9214, \\ & 9470,30008,30034 \end{aligned}$
A. magna	20	B	30092, 30093
A. monticola	40	AB	7264, 21768, 21769, 30062, 30063
A. palustris	18	A	6536, 13023
A. praecox	18	A	6416
A. simpsonii	20	A	36009
A. stenosperma	20	A	$\begin{aligned} & 408,7377,7762,9017,10309 \\ & 12575,13256,13672,13796 \end{aligned}$
A. trinitensis	20	A	1117
A. valida	20	B	9153, 9157, 30011
A. villosa	20	A	862, 22585
A. williamsii	20	B	1118
A. hypogaea var. aequatoriana	40	AB	Grif 12518, PI 497615
var. fastigiata			PI 339960, NM Valencia C
var. hirsuta			PI 501296
var. hypogaea			PI 339954, NC 4
var. peruviana			PI 590455, A1
var. vulgaris			PI 261924

Table 2. Combinations of primers used for AFLP analysis of 108 Arachis accessions.

Primer Combination	TB $^{\mathbf{a}}$	PB $^{\mathbf{b}}$	PPB $^{\mathbf{c}}$	SB $^{\mathbf{d}}$	SRSB $^{\mathbf{e}}$	$\mathbf{R}^{\mathbf{f}}$
E-AAC + M-CAT	197	180	0.91	14	$375-625$	0.98
E-ACG + M-CAA	168	156	0.93	29	$160-635$	0.98
E-ACT + M-CAA	183	172	0.94	39	$180-760$	0.97
E-ACT + M-CAC	160	152	0.95	47	$065-655$	0.96
E-ACT + M-CAG	156	149	0.96	17	$085-680$	1.00
E-ACT + M-CAT	175	161	0.92	32	$145-625$	0.97
E-AGT + M-CTA	162	150	0.93	29	$170-615$	0.99
E-ATC + M-CGC	127	117	0.92	32	$125-695$	0.99

${ }^{a}$ TB: total number of bands
${ }^{\mathrm{b}}$ PB: number of polymorphic bands
${ }^{\text {c }}$ PPB: percentage of polymorphic bands
${ }^{\mathrm{d}}$ SB: number of scored bands
${ }^{\mathrm{e}}$ SRSB: size range of scored bands
${ }^{\mathrm{f}}$ R: repeatability

Table 3: Estimated genetic distance values between (upper triangle) and within (diagonal) the different species of section Arachis based on mean character differences between individuals.

Genome	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	B	B	B	B	B	B	B	D	AB	AB	
Chromosome \#	20	20	20	18	20	20	20	20	20	20	18	18	20	20	20	20	20	20	20	20	20	20	20	20	40	40	0
Species	$\begin{aligned} & \tilde{\omega} \\ & \text { I } \\ & \tilde{\Xi} \\ & \hline \end{aligned}$	$\begin{aligned} & : \underset{y}{3} \\ & \text { O} \\ & \text { U } \\ & \text { U } \end{aligned}$	$\begin{aligned} & \text { I } \\ & \text { I } \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { o } \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \tilde{0}_{0} \\ & 80 \\ & \stackrel{0}{8} \end{aligned}$	$\begin{aligned} & n \\ & \vdots \\ & \tilde{n} \\ & \tilde{0} \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{3}{2} \\ & \frac{0}{2} \\ & 2 \end{aligned}$	$$			$\begin{aligned} & \text { In } \\ & \text { In } \\ & \text { and } \\ & \hline \end{aligned}$	$$			$\begin{aligned} & \text { n } \\ & \text { IN } \\ & \text { In } \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{0}{x} \\ & \underset{I}{2} \end{aligned}$	O 0 N 0 0	$\begin{aligned} & \text { I } \\ & \text { B } \\ & \text { N } \\ & \text { B } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { I } \\ & \text { U } \\ & \text { I } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \stackrel{0}{5} \\ & \stackrel{0}{60} \\ & \stackrel{1}{i} \end{aligned}$	$\frac{8}{8}$	$: \sqrt{3}$	glandulifera	$$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	
benensis	0.06	0.39	0.39	0.30	0.31	0.42	0.42	0.40	0.38	0.37	0.33	0.34	0.38	0.37	0.11	0.39	0.39	0.35	0.34	0.35	0.34	0.32	0.33	0.34	0.48	0.47	0.36
cardenasii		0.19	0.19	0.28	0.24	0.24	0.28	0.25	0.24	0.23	0.29	0.29	0.29	0.23	0.38	0.21	0.39	0.38	0.30	0.33	0.28	0.35	0.30	0.35	0.38	0.36	0.30
correntina			0.16	0.29	0.22	0.26	0.27	0.21	0.21	0.21	0.30	0.30	0.33	0.21	0.38	0.17	0.39	0.37	0.28	0.33	0.29	0.37	0.33	0.34	0.40	0.38	0.30
decora				0.18	0.28	0.31	0.35	0.29	0.27	0.27	0.15	0.17	0.31	0.29	0.29	0.27	0.33	0.33	0.26	0.30	0.27	0.30	0.26	0.28	0.44	0.42	0.29
diogoi					0.26	0.30	0.31	0.24	0.23	0.24	0.30	0.30	0.33	0.25	0.30	0.24	0.40	0.37	0.29	0.33	0.29	0.34	0.32	0.34	0.41	0.39	0.30
duranensis						0.11	0.32	0.33	0.28	0.26	0.32	0.33	0.28	0.28	0.37	0.25	0.42	0.39	0.30	0.38	0.26	0.37	0.33	0.37	0.33	0.31	0.32
helodes							0.34	0.26	0.27	0.27	0.36	0.36	0.32	0.28	0.40	0.25	0.40	0.38	0.36	0.31	0.32	0.37	0.32	0.37	0.30	0.30	0.33
herzogii									0.18	0.21	0.30	0.30	0.36	0.25	0.39	0.21	0.39	0.41	0.32	0.36	0.34	0.36	0.36	0.38	0.40	0.39	0.32
kempff-merc.									0.17	0.20	0.28	0.28	0.29	0.22	0.35	0.20	0.37	0.36	0.28	0.32	0.29	0.34	0.32	0.35	0.39	0.37	0.29
kuhlmannii										0.20	0.28	0.28	0.29	0.21	0.35	0.19	0.38	0.36	0.26	0.34	0.28	0.35	0.31	0.34	0.39	0.37	0.29
palustris											0.05	0.09	0.31	0.30	0.32	0.27	0.32	0.30	0.27	0.31	0.26	0.30	0.26	0.28	0.45	0.43	0.30
praecox												.$^{\text {c }}$	0.31	0.30	0.32	0.27	0.32	0.28	0.26	0.33	0.27	0.30	0.28	0.29	0.45	0.44	0.30
simpsonii													c	0.31	0.36	0.29	0.35	0.33	0.30	0.23	0.25	0.30	0.24	0.33	0.26	0.22	0.30
stenosperma														0.09	0.33	0.20	0.37	0.36	0.28	0.34	0.28	0.37	0.33	0.33	0.41	0.39	0.30
trinitensis																0.36	0.41	0.35	0.31	0.33	0.31	0.31	0.31	0.31	0.45	0.43	0.34
villosa																0.10	0.36	0.35	0.26	0.33	0.27	0.35	0.30	0.31	0.38	0.36	0.28
batizocoi																	0.22	0.21	0.35	0.34	0.35	0.33	0.30	0.28	0.46	0.45	0.36
cruziana																			0.32	0.31	0.32	0.30	0.27	0.30	0.44	0.43	0.34
hoehnei																			0.11	0.34	0.29	0.34	0.29	0.32	0.43	0.42	0.31
ipaensis																					0.27	0.24	0.16	0.29	0.22	0.21	0.30
magna																					0.31	0.28	0.23	0.31	0.33	0.31	0.29
valida																						0.08	0.22	0.28	0.39	0.38	0.33
williamsii																								0.26	0.30	0.28	0.29
glandulifera																								0.07	0.42	0.41	0.33
hypogaea																									0.01	0.05	0.38
monticola																										0.02	0.36

${ }^{c}=$ Species for which only one accession was analized

Table 4. Genetic distances between the tetraploid Arachis sect. Arachis species and their most closely related accessions.

$\xrightarrow{\text { accession }}$	species	genome	to monticola ${ }^{\text {a }}$		to hypogaea ${ }^{\text {b }}$		to both species ${ }^{\text {c }}$	
			distance ${ }^{\text {d }}$	rank ${ }^{\text {e }}$	distance ${ }^{\text {d }}$	rank ${ }^{\text {e }}$	distance ${ }^{\text {d }}$	rank ${ }^{\text {e }}$
30067	duranensis	A	0.2659	4	0.2761	4	0.2710	4
30069	duranensis	A	0.2669	5	0.2891	5	0.2780	5
30072	duranensis	A	0.2964	8	0.3205	9	0.3085	8
30074	duranensis	A	0.2976	9	0.3303	11	0.3139	11
36002	duranensis	A	0.2701	6	0.2916	6	0.2809	6
30029	helodes	A	0.0899	1	0.0908	1	0.0903	1
30092	magna	A	0.3030	11	0.3193	8	0.3111	9
36009	simpsonii	A	0.2237	3	0.2609	3	0.2423	3
30076	ipaensis	B	0.2074	2	0.2228	2	0.2151	2
1118	williamsii	B	0.2850	7	0.2975	7	0.2912	7

${ }^{\text {a }}$ includes accessions 7264, 21768, 21769, 30062, 30063
${ }^{\mathrm{b}}$ includes accessions PI339954, NC4, PI501296, PI339960, NMValC, PI261924, Grif12518, PI497615, PI590455, A1
${ }^{c}$ includes all accesions in ${ }^{\text {a }}$ and ${ }^{b}$
${ }^{\text {d }}$ calculated as the average distance between each diploid accession and the tetraploid accessions as a group
${ }^{\mathrm{e}}$ rank over all 108 accessions analyzed

II. IDENTIFICATION OF MOLECULAR MARKERS ASSOCIATED WITH TOMATO SPOTTED WILT VIRUS (TSWV) RESISTANCE IN A GENETIC

LINKAGE MAP OF ARACHIS KUHLMANNII x ARACHIS DIOGOI

Formatted for: Theoretical and Applied Genetics.

Abstract

Arachis diogoi Hoehne is a wild relative of peanut (A. hypogaea L.) of special interest to breeders because accession GKP 10602 of this species possesses resistance to several diseases of peanut, including tomato spotted wilt virus (TSWV). In an attempt to associate markers with TSWV resistance, a genetic linkage map was constructed using an F_{2} population of A. kuhlmannii Krapov. and W. C. Gregory x A. diogoi. A total of 13 EcoRI/MseI primer combinations were used to screen 179 individuals. The map consisted of 102 AFLP markers grouped into 12 linkage groups and spanning 1068.1 cM . Markers were randomly distributed throughout the genome with an average distance between adjacent markers of 13.7 cM . The map allowed us to scan the Arachis genome for associations between response to TSWV infection and the AFLP markers. Five markers, all located in the same linkage group (LG V) were closely associated $(0.0009<\mathrm{P}<$ 0.0021) with TSWV resistance. Another 10 markers were also associated with resistance although at a lower significance level $(\mathrm{P} \leq 0.05)$. All these markers will be studied for utilization in peanut breeding with marker-assisted selection.

Keywords: AFLP, mapping, TSWV resistance, Arachis diogoi, peanut.

INTRODUCTION

Tomato spotted wilt virus (TSWV) is the causal agent of spotted wilt of peanuts (Arachis hypogaea L.). The disease has been progressively increasing in severity since the mid 1980s and is currently a major limiting factor to peanut production in the U.S. TSWV infection has been shown to dramatically reduce seed weight and yield (Culbreath et al. 1992). In cases of severe epidemics, yield reductions of as high as 95% have been observed (Black 1987, Black et al. 1986). Pod and seed production are affected by the growth stage in which the plant becomes systemically infected. Infection early during the growing season often results in severe stunting, wilting and seedling death (Culbreath et al. 1992). On the other hand, infection later in the season usually results in poor quality seeds that must be crushed for oil because they are not suitable for the edible market.

TSWV is vectored in nature only by thrips, of which tobacco thrips (Frankliniella fusca Hinds) and western flower thrips (F. occidentalis Pergande) are the primary vectors in peanuts in the U.S. Tobacco thrips are mostly responsible for transmission early in the season, while western flower thrips are the primary vector late in the growing season (Reed and Sukamto 1995). TSWV has the ability to replicate within the vector, allowing it to be transmitted for long periods of time (Ullman et al. 1993). Therefore, adult viruliferous thrips can infect large numbers of plants during their lifespan.

Although TSWV is vectored only by thrips, chemical control of thrips usually has not resulted in a reduction of spotted wilt incidence (Todd et al. 1994). There are few effective cultural and chemical practices for management of the disease (Culbreath et al. 1994). Although several factors have been shown to provide some suppression, no single
measure by itself has been effective under heavy disease pressure. Cultivar selection is the most important component for reducing the risk of spotted wilt (Hurt et al. 2003). Therefore, breeding for resistant cultivars appears to have the most potential for minimizing the risk of losses to spotted wilt (Culbreath et al. 1999, 2000). Several cultivars with field resistance to TSWV have been released; however, none possess true resistance to the virus per se (Hoffman et al. 1998). As opposed to resistance in A. hypogaea, high levels of resistance to TSWV have been identified in several of the wild diploid Arachis relatives of peanut in artificial inoculations (Lyerly et al. 2002). These recently identified sources of resistance can ultimately be used for the incorporation of resistance genes into improved peanut cultivars. Accession GKP 10602 of A. diogoi Hoehne has high levels of resistance to different isolates of TSWV and represents a possible donor of TSWV resistance for cultivar imrpovement (Lyerly et al. 2002). The utilization of the genetic variation present in A. diogoi for applied peanut breeding is feasible due to its cross compatibility with peanut (Smartt and Gregory 1967).

Genetic linkage maps may be useful tools for localizing genes controlling both simple and complex traits. When the map position of a gene is known, the presence of that gene can be determined by nearby molecular markers rather than waiting for gene expression (Paterson et al. 1991a). Marker-assisted selection (MAS), is especially effective where markers co-segregate with the trait(s) of interest and can be used to introgress a specific gene(s) into a desired genetic background. Moreover, markers can increase the probability of obtaining a suitable recovery of the recurrent parent genome and decrease the time required to achieve that recovery (Openshaw et al. 1994). A persistent problem in plant breeding is the linkage of desirable traits to undesirable genes.

Backcrossing results in the transfer of not only the gene(s) of interest, but also additional linked genes (a phenomenon known as linkage drag) (Tanksley et al. 1989). Furthermore, information on linkage maps allows the identification of recurrent parent and donor parent markers. Selection for the former and against the latter allows for a more efficient recovery of the portion of the recurrent parent genome that is not linked to the gene(s) of interest.

Biotechnological developments have expanded the range of plant DNA polymorphism assays for linkage mapping, gene targeting, and assisted breeding (see Powell et al. 1996). These techniques include randomly amplified polymorphic DNA (RAPD) (Williams et al. 1990), simple sequence repeats (SSR or microsatellites) (Tautz 1989), and amplified fragment length polymorphisms (AFLP) (Vos et al. 1995). The last is especially advantageous because it has the capacity to inspect a greater number of loci than other PCR-based techniques. Moreover, the AFLP technique does not require prior knowledge of sequence information, which makes its application relatively easy. Genetic linkage maps based on AFLP markers have been constructed for several species, for example Allium (van Heusden et al. 2000), peach (Lu et al. 1998), lettuce (Jeuken et al. 2001), and alfalfa (Barcaccia et al. 1999). The objectives of the present study were to (1) construct a linkage map based on AFLP markers in an F_{2} population of A. kuhlmannii x A. diogoi, and (2) identify markers associated with resistance to TSWV.

MATERIALS AND METHODS

Plant Material and DNA Extraction

Arachis diogoi accession GKP 10602 (PI 276235) was used as the pollen parent in crosses with A. kuhlmannii accession VRGeSv 7639 (Grif 7571) (Lyerly, 2000). Accession 7639 was chosen as the maternal parent due to its high susceptibility to the TSWV virus. Hybrids were made in a greenhouse during 1999 and an F_{1} plant (coded 1C) from this cross was propagated vegetatively in order to obtain a sufficient number of F_{2} seed to analyze in this study. For this purpose, twenty cuttings were taken from the plant, dipped in rooting hormone (Rootone, Dragon Corp., Roanoke, VA), inserted into flats filled with sand, and placed under a mist system for 4 to 6 weeks to develop roots. The cuttings were then transplanted into 10 plant space-isolated plots at the Sandhills Research Station at Jackson Springs, NC in the summer of 2002 and seeds harvested by hand-sifting soil the following fall.

A total of 200 seeds of the A. kuhlmannii x A. diogoi F_{2} population were planted during the winter of 2002-03, of which 179 germinated. Plants were grown in the greenhouse in plastic pots containing potting mix Metro Mix (Scuffs-Sierra Horticultural Co., Marysville, OH). Approximately four weeks after planting, two or three young unopened leaves were collected from each plant and used for DNA extraction using the CTAB method of Afanador et al. (1993) with the modification that a Fast Prep FP120 (Thermo Savant, Holbrook, NY) machine was used to grind the tissue. DNA was quantified by fluorometry using a Hoefer fluorometer (Hoefer Scientific Instruments, San Francisco, CA).

TSWV Inoculations

The virus isolate (TSWV 10) used in this study was obtained from J. Moyer, Dept. of Plant Pathology, North Carolina State University. The isolate was originally collected from naturally infected peanut plants during 1991 by staff in the Plant Pathology Department. Emilia sonchifolia L. was used for maintenance of the isolate and Nicotiana benthamiana Domin. Was used to increase the virus load prior to plant inoculations. All inoculations were carried out in ice-cold Tris buffer (0.01 M Tris with $0.01 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{3}$ and 0.01% cysteine HCl added immediately before use). Grinding materials and buffer were kept on ice before and during inoculation. Approximately $3-5 \mathrm{~g}$ of symptomatic tissue was collected from infected plants (E. sonchifolia plants for N. benthamiana inoculation, and N. benthamiana plants for peanut inoculation) and ground in inoculation buffer with a mortar and pestle. After grinding the tissue, silicon carbide (carborundrum, 600-800 mesh) was added to the suspension to facilitate wounding in order to provide an entryway for the virus into the plant tissue. The inoculum was then rubbed on two leaves of each plant with a cotton swab. Plants were subsequently rinsed with water. Six plants of A. diogoi and A. kuhlmannii were included in each set of inoculations as resistant and susceptible checks, respectively. Inoculated plants were monitored for 4-6 wk for symptom development. Plants were classified as having systemic infection (1) or no systemic infection (0).

AFLP Analysis

AFLP fingerprinting was performed as described by Myburg and Remington (2000). All primers and adaptors were obtained from Sigma Genosys (The Woodlands,

TX) with the exception of the labeled primers, which were obtained from LI-COR Inc. (Lincoln, NE).

Digestion of DNA. Approximately 500 ng of DNA was simultaneously digested with EcoRI and MseI at $37^{\circ} \mathrm{C}$ for 1.5 hours using 12U EcoRI, 8 U MseI, and $6 \mu \mathrm{l}$ of 5X restriction-ligation buffer (50 mM Tris-acetate, 50 mM magnesium acetate, 250 mM potassium acetate, 25 mM DTT, and $250 \mathrm{ng} / \mu \mathrm{l} \mathrm{BSA}$) in a final volume of $30 \mu \mathrm{l}$. DNA was run on a 0.8% agarose gel to check for complete digestion.

Adaptor Ligation. Adaptor ligation was performed by adding 5 pmol EcoRI adaptor, 50 pmol MseI adaptor, 10 mM ATP, 0.5 U of T4 DNA ligase, and $1 \mu \mathrm{l} 5 \mathrm{X}$ restriction-ligation buffer to 20μ l of each double-digested DNA sample ($25 \mu \mathrm{l}$ final volume) and incubating overnight at $37^{\circ} \mathrm{C}$.

Pre-amplification. A pre-amplification step was performed with primers complementary to the adaptor sequences carrying an additional selective nucleotide. A 1:10 dilution of the digested and adapter-ligated DNA was used as a template for this step. PCR reactions were carried out in a total volume of $20 \mu \mathrm{l}$ containing: $2 \mu \mathrm{l}$ of 10 X PCR buffer (100 mM Tris- $\mathrm{HCl} \mathrm{pH} 8.3,15 \mathrm{mM} \mathrm{MgCl} 2,500 \mathrm{mM} \mathrm{KCl}), 2.5 \mathrm{mM}$ of each dNTP, 30 ng primer E01-A, 30 ng primer M02-C, 1.2 U Taq DNA polymerase (Qiagen, Valencia, CA), and $5 \mu 1$ of DNA. PCR amplifications were carried out in a PTC-100 programmable thermal controller (MJ Research Inc., Reno, NV) using the following temperature profile: 28 cycles of 15 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $60^{\circ} \mathrm{C}$, and $60 \mathrm{~s}+1 \mathrm{~s} /$ cycle of extension at $72^{\circ} \mathrm{C}$; followed by one cycle of 2 m at $72^{\circ} \mathrm{C}$. Upon completion of amplification, $15 \mu \mathrm{l}$ of each sample were diluted 1:20 with low TE (10 mM Tris- HCl pH
8.0 and 0.1 mM EDTA). The remaining $5 \mu \mathrm{l}$ of each sample were checked on a 0.8% agarose gel where a smear was visible.

Selective Amplification and PAGE. For the selective amplification primers with three selective nucleotides were used (Table 1). EcoRI primers were labeled with a fluorescent near-infrared group (IRD-700 or IRD-800). The PCR amplification mixture (20 $\mu \mathrm{l}$ final volume) was comprised of: $2 \mu \mathrm{l}$ of 10X PCR buffer, 2.5 mM of each dNTP, 30 ng unlabeled $\mathrm{Mse} \mathrm{I}+3$ primer, 5 ng labeled EcoRI+3 primer, 1.2 U Taq DNA polymerase, and $5 \mu 1$ of diluted pre-amplification product. Selective amplification was carried out in a PTC-100 programmable thermal controller using the following temperature profile: 13 cycles of 10 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $65^{\circ} \mathrm{C}-0.7^{\circ} \mathrm{C} /$ cycle after the first cycle, and 60 s at $72^{\circ} \mathrm{C}$; followed by 25 cycles of 10 s at $94^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $56^{\circ} \mathrm{C}$, and $60 \mathrm{~s}+1$ $\mathrm{s} /$ cycle of extension at $72^{\circ} \mathrm{C}$; followed by one cycle of 2 m at $72^{\circ} \mathrm{C}$. After amplification, samples were denatured by adding $10 \mu \mathrm{l}$ of loading dye (95% deionized formamide, 20 mM EDTA, and $0.8 \mathrm{mg} / \mathrm{ml}$ bromophenol blue), heating at $94^{\circ} \mathrm{C}$ for 3 m , and chilling on ice. AFLP fragments were separated by PAGE on a LI-COR 4200 DNA Analyzer Sequencer on $25 \mathrm{~cm} 8 \%$ denaturing polyacrylamide gels [7 M ultra pure Urea, 0.8 X TBE, and 8\% Long Ranger acrylamide (BioWhittaker Molecular Applications, Rockland, ME)]. Near-infrared labeled size standards (LI-COR Inc., Lincoln, NE) were loaded on each gel for sizing of the AFLP fragments.

Scoring of Data and Marker Nomenclature. Primer combinations were selected on the basis of the level of polymorphism and the quality of amplification when analyzing the two parents and a set of $30 \mathrm{~F}_{2}$ individuals from the population developed by

Lyerly (2000) (data not shown). All the AFLP markers were scored as either presence (1) or absence (0) of clear and unambiguous polymorphic bands, using the AFLP-Quantar 1.0 (Keygene Products B.V., Wageningen, The Netherlands) software package. The AFLP marker name was designated according to the primers used to amplify the DNA: E followed by two numbers refers to the EcoRI primer and M followed by two numbers refers to the MseI primer, e.g., E38M59. Scored markers were numbered in descending order of molecular weight; therefore, the last one or two numbers of the marker code refer to the fragment position in the gel.

Data Analysis

Linkage analysis and ordering of the AFLP loci were done using MAPMAKER 3.0/EPX (Lander et al. 1987). Initially, a minimum LOD score of 3.0 and a maximum recombination frequency of 0.25 were established as thresholds for grouping markers. Subsequently, marker loci within each linkage group were ordered using the 'Compare' and 'Try' functions. The 'Ripple' function was then used to confirm the final order of the marker loci. Recombination fractions were converted to map distances in cM using the Kosambi mapping function (Kosambi 1944). Chi square goodness of fit tests were used to compare single locus segregation against the expected 3:1 ratio. Additionally, tests of independence were performed in order to evaluate the null hypothesis that there were no significant differences in TSWV infection (S, R) between the two genotypes $(0,1)$ at each marker locus.

RESULTS

Analysis of AFLP Markers

A total of 13 primer combinations were used to analyze $179 \mathrm{~F}_{2}$ individuals of the A. kuhlmannii x A. diogoi hybrid. The number of bands generated per primer combination ranged from 34 to 122 with an average of 79 (Table 1). The number of polymorphic bands ranged from 26 to 96 , which resulted in an average degree of polymorphism of 74%. Although many detectable polymorphic products were observed, many of these showed overlapping banding patterns and were difficult to score. Therefore, only 179 of the fragments were scored in the progeny and included in the analyses.

Segregation Distortion

Chi-square tests $($ d.f. $=1)$ were performed to test the null hypothesis of a $3: 1$ segregation of the markers. At the 1\% significance level, 84 (47\%) AFLP markers had aberrant segregation ratios. These markers were excluded from linkage analysis with the exception of seven markers, which were significantly associated with TSWV resistance. When the significance level was lowered to $5 \%, 16$ additional markers showed segregation distortion. These markers were retained for linkage analysis. Most of the AFLP markers showing significant deviations $(0.01<\mathrm{P}<0.05)$ were skewed towards the A. kuhlmannii parent. Loci with distorted segregation patterns were generally scattered among linkage groups. However, 25% of markers with significant segregation distortion remained unassigned to any linkage group.

Linkage Analysis and Map Coverage

A total of 102 AFLP markers were used to construct a genetic linkage map using MAPMAKER (V3.0) software of which 80 were placed in 12 linkage groups using a LOD score of 3.0 and a maximum recombination value of 0.25 (Fig. 1). These markers covered 1068.1 cM of the Arachis genome, with an average interval of 13.7 cM between adjacent markers (Table 2). Two of the linkage groups were classified as 'minor' since they contained only two markers each. The other linkage groups contained from 4 to 15 markers and ranged in distance from 49.9 to 292.7 cM . The number of markers within each linkage group should be directly correlated with the length of the group if the markers are randomly distributed throughout the genome (Foisset et al. 1996). The correlation between the size of the linkage groups and their number of loci for our data was extremely high $(r=0.94)$, which is in agreement with the previous statement.

Twenty-two markers remained unassigned to any linkage group. Unlinked markers are either artifacts segregating in Mendelian ratios by chance, or they represent regions with very few markers (Cervera et al. 2001).

The structure of the linkage groups was confirmed by running MAPMAKER only with markers showing Mendelian segregation. The assignment of the Mendelian markers was identical to that obtained when loci with biased segregation were included in the analysis. The order of the Mendelian markers remained relatively unchanged.

TSWV Evaluations

Based on our observations, levels of resistance varied across plants of A. diogoi accession 10602. Symptoms in this accession included slightly wrinkled or misshapen
leaves and the appearance of tiny brown spots. However, compared with cultivated varieties of peanut, A. diogoi exhibited greatly reduced symptoms. Out of the 179 progeny inoculated with the virus, 68 did not develop any symptoms. On the other hand, $108 \mathrm{~F}_{2}$ plants showed symptoms ranging from the characteristic chlorotic spots or ringspots to stunting of the emerging leaves, wrinkled leaves, and defoliation.

Genomic segments exhibiting a significant difference ($\mathrm{P} \leq 0.05$) in TSWV inoculation response between alternate marker classes were identified in five different linkage groups (14 total) (Fig. 1). The most significant effect was on LG V. Interestingly, all five markers showing the strongest association with TSWV resistance $(\mathrm{P}=0.01)$ fell into this group within a distance of 62.7 cM . All of these markers, with the exception of E32M61-5, originated from A. diogoi.

DISCUSSION

Using only 13 primer combinations, we obtained 1023 selectively amplified fragments. Of those, 61-86\% were polymorphic between the two parents. One of the most important advantages of the AFLP technique is the high number of loci that can be screened per experiment. Many more polymorphic DNA markers can be found with this technique than with any of the other PCR-based marker systems (Vos et al. 1995; Zabeau and Vos 1993). AFLPs have a clear advantage over RAPDs and microsatellite markers in terms of the number of sequences amplified per reaction and their reproducibility.

The genetic linkage map of A. kuhlmannii x A. diogoi comprises 102 markers. There are six large linkage groups of at least 60 cM , six smaller linkage groups ranging from 18.6 to 56.5 cM , and 22 unlinked markers. Two of the linkage groups (LG VIII and LG XI) are quite small, containing only two markers each. These groups may eventually come together with one of the larger linkage groups as additional markers are added to the map. Once the map is completed, it should consist of 10 linkage groups corresponding to the haploid chromosome number of diploid Arachis species.

A high rate of segregation distortion, affecting 48% of the loci, was found among the AFLP markers in this study. The frequency of distorted markers is much larger than that observed in other interspecific F_{2} populations in Arachis (Halward et al. 1993). Hybrid disgenesis and segregation distortion have been observed in mapping experiments involving interspecific hybrids in other genera (Korol et al. 1994; Riesberg and Linder 1999). For instance, skewed segregation has been reported in many interspecific crosses of tomato, with the degree of skewness being greater in wider crosses than in those between closely related species, and also greater in F_{2} than in backcross populations (Chen and Foolad 1999; Patterson et al. 1991b). There may be several biological explanations for segregation distortion; however, chromosomal non-homologies are the most likely explanation in our case. The relatively low levels of fertility in the hybrids (Lyerly 2000) and the occurrence of plants with aberrant morphology, such as severe stunting and deformed leaves, provide some evidence to support this hypothesis. The problem of including markers with segregation distortion is that they increase the chance of Type I errors of false linkage. Moreover, estimates of map distance for distorted markers may be inaccurate (Cloutier et al. 1997). Although we included only markers
that deviated at the 5% and not at the 1% level for linkage analysis, it is important to note that distances displayed in the map may not be completely accurate.

The observed segregation ratio of resistant to susceptible plants for our F_{2} population was skewed toward the A. kuhlmannii parent. Moreover, it did not fit the expected ratio for the two major resistance genes conditioning resistance as proposed by Lyerly (2000). These observations suggest the involvement of minor genes in the control of TSWV resistance in A. diogoi accession 10602. Significant associations between genetic markers and TSWV resistance were detected on five of the twelve linkage groups (LG V, LG VII, LG VIII, LG IX, and LG X). Given the threshold significance of some of the associations, it is likely that a few of these could have occurred simply by chance. However, it is worth noting that LG V not only has more than half of the markers associated with TSWV resistance, but also includes all five markers exhibiting the strongest association ($0.0009<\mathrm{P}<0.0021$). This linkage group has the most significant effect on TSWV resistance, and is therefore, a likely hot spot for the detection of genes conditioning TSWV resistance. These markers will aid in transferring the TSWV resistance present in A. diogoi accession 10602 into cultivated peanut.

The genetic linkage map produced in this study constitutes a basic framework for adding other markers and for tagging major genes and QTLs controlling traits of interest in Arachis. Although the map was constructed using a population derived from the cross between two wild Arachis species, it should be also a useful tool for applied peanut breeding programs. For genera in which a species was domesticated, the largest amount of genetic variation exists not between cultivated types but among their wild counterparts. However, breeders have been somewhat hesitant to use wild species
because in the transfer of traits from wild species into cultivars desirable genes are often linked to undesirable, deleterious ones, a phenomenon referred to as linkage drag (Tanksley et al. 1989). Even after several generations of backcrossing followed by selection, the genes of interest can remain linked to DNA segments large enough to carry hundreds of undesirable genes (Young and Tanksley 1989). Molecular linkage maps have provided a method to monitor and facilitate interspecific gene transfer while reducing linkage drag (Tanksley et al. 1989; de Vicente and Tanksley 1993). In the case of peanut where diploid x tetraploid hybrids are sterile and ploidy levels need to be manipulated to restore fertility and recover tetraploid progenies, markers will be highly useful to insure that target genes are incorporated into the A. hypogaea genome. The map produced in this study will serve as the basis for future work to develop a saturated linkage map of peanut. The development of a complete linkage map in Arachis would greatly assist breeders to tag and follow the introgression of specific chromosome segments carrying desirable genes from wild species into breeding lines of peanut.

REFERENCES

Afanador LK, Haley SD, Kelly JD (1993) Adoption of a "mini prep" DNA extraction method for RAPD marker analysis in common bean (Phaseolus vulgaris L.) Annu Rep Bean Improv Coop 36:10-11.

Barcaccia G, Albertini E, Tavoletti S, Falcinelli M, Veronesi F (1999) AFLP fingerprinting in Medicago spp.: Its development and application in linkage mapping. Plant Breed 118:335-340.

Black MC (1987) Pathological aspects of TSWV in South Texas. Proc Am Peanut Res Educ Soc 19:66 (Abstr.).

Black MC, Lummus PF, Smith DH, Demski JW (1986) An epidemic of spotted wilt disease in South Texas peanuts in 1985. Proc Am Peanut Res Educ Soc 18:66 (Abstr.).

Cervera MT, Storme V, Ivens B, Gusmāo J, Liu BH, Hostyn V, van Slycken J, van Montagu M, Boerjan W (2001) Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra, and P. trichocarpa) based on AFLP and microsatellite markers. Genetics 158:787-809.

Chen FQ, Foolad MR (1999) A molecular linkage map of tomato based on a cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94-103.

Cloutier S, Cappadocia M, Landry BS (1997) Analysis of RFLP mapping inaccuracy in Brassica napus L. Theor Appl Genet 95:83-91.

Culbreath AK, Todd JW, Demski JW (1992) Productivity of Florunner peanut infected with tomato spotted wilt virus. Peanut Sci 19:11-14.

Culbreath AK, Todd JW, Branch WD, Brown SL, Demski JW, Beasly JP Jr. (1994) Effect of new peanut cultivar Georgia Browne on epidemics of spotted wilt. Plant Dis. 78:1185-1189.

Culbreath AK, Todd JW, Gorbet DW, Brown SL, Baldwin JA, Pappu HR, Holbrook CC, Shokes FM (1999) Response of early, medium, and late maturing peanut breeding lines to field epidemics of tomato spotted wilt. Peanut Sci. 26:100-106.

Culbreath AK, Todd JW, Gorbet DW, Brown SL, Baldwin JA, Pappu HR, Shokes FM (2000) Reaction of peanut cultivars to spotted wilt. Peanut Sci. 27:35-39. de Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585-596.

Foisset N, Delourme R, Barret P, Hubert N, Landry RS, Renard M (1996) Molecularmapping analysis in Brassica napus using isozyme, RAPD and RFLP markers on a doubled-haploid progeny. Theor Appl Genet 93:1017-1025.

Halward T, Stalker HT, Kochert G (1993) Development of an RFLP linkage map in diploid peanut species. Theor Appl Genet 87:379-384.

Hoffman K, Geske SM, Moyer JW (1998) Pathogenesis of tomato spotted wilt virus in peanut plants dually infected with peanut mottle virus. Plant Dis 82:610-614. Hurt C, Brandenburg R., Jordan D, Shew BB, Isleib TG, Linker M, Herbert A, Phipps P, Swann C, Mozingo W (2003) Managing tomato spotted wilt virus in peanuts in North Carolina and Virginia. North Carolina Coop Ext Serv Bull.

Jeuken M, van Wijk R, Peleman J, Lindhout P (2001) An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa x L. saligna F_{2} populations. Theor Appl Genet 103:638-647.

Korol AB, Preygel IA, Preygel SI (1994) Recombination variation and evolution. Chapman and Hall, London.

Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172-175.

Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) Mapmaker: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174-181.

Lu ZX, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to rootknot nematodes in peach rootstocks. Genome 41:199-207.

Lyerly JH (2000) Evaluation of Arachis species for resistance to tomato spotted wilt virus. Masters thesis. North Carolina State University.

Lyerly JH, Stalker HT, Moyer JW, Hoffman K (2002) Evaluation of Arachis species for resistance to tomato spotted wilt virus. Peanut Sci 29:79-84

Myburg AA, Remington DL (2000) Protocol for High-throughput AFLP Analysis using LI-COR IR^2 Automated Sequencers. North Carolina State Forest Biotechnology AFLP Protocol, Raleigh, NC.

Openshaw SJ, Jarboe SG, Beavis WD (1994) Marker-assisted selection in backcross breeding. In: Proceedings of the Symposium on Analysis of Molecular Marker Data. Cornvallis, Oregon Aug 5-6, 1994. Joint Plant Breeding Symposia Series.

American Society for Horticultural Science/ Crop Science Society of America, pp. 41-43.

Paterson AH, Tanksley SD, Sorrells ME (1991a) DNA markers in plant improvement. Adv Agron 46:39-90.

Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991b) Mendelian factors underlying quantitative traits in tomato: Comparison across species, generations and environments. Genetics 127:181-197.

Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalsky A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225-238.

Reed JT, Sukamto S (1995) Thrips and tomato spotted wilt virus in a Mississippi peanut field. In: BL Parker, M Skinner, T Lewis (eds.) Thrips biology and management. New York, NY. pp. 171-173.

Riesberg LH, Linder CR (1999) Hybrid classification: Insights from genetic map-based studies of experimental hybrids. Ecology 80:361-370.

Smartt J, Gregory WC (1967) Interspecific cross-compatibility between the cultivated peanut Arachis hypogaea L. and other members of the genus Arachis. Oléagineux 22:455-459.

Tanksley SD, Young ND, Patterson AH, Bonierbale MW (1989) RFLP mapping in plant breeding: New tools for an old science. Bio/tech 7:257-264.

Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucl Acids Res 17:6463-6471.

Todd JW, Culbreath AK, Rogers D, Demski JW (1994) Contraindications of insecticide use relative to vector control for spotted wilt disease in peanut. Proc Am Peanut Res Educ Soc 26:42 (Abstr.).

Ullman, DE, German TL, Sherwood JL, Westcot DM, Cantone FA (1993) Tospovirus replication in insect vector cells: Immunocytochemical evidence that the nonstructural protein encoded by the S RNA of tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathology 83:456-463.
van Heusden AW, van Ooijen JW, Vrielink-van Ginkel R, Verbeek WHJ, Wietsma WA, Kik C (2000) A genetic map of an interspecific cross in Allium based on amplified fragment length polymorphism (AFLP ${ }^{\mathrm{TM}}$) markers. Theor Appl Genet 100:118126.

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Fritjers A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: A new technique for DNA fingerprinting. Nucleic Acid Res 23:4407-4414.

Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl Acids Res 18:6531-6535.

Young ND, Tanksley SD (1989) Restriction fragment length polymorphism and the concept of graphical genotypes. Theor Appl Genet 77:95-101.

Zabeau M, Vos P (1993) Selective restriction fragment amplification: A general method for DNA fingerprinting. European patent application 92402629.7 (Publication number: 0534858 A1)

Figure 1. Genetic linkage map based on 179 individuals from an F_{2} population of the interspecific cross Arachis kuhlmannii x Arachis diogoi. Linkage groups were produced by MAPMAKER (V3.0) software with a minimum LOD score of 3.0 and a maximum recombination frequency of 0.25 . AFLP markers are indicated on the right and genetic distance estimates in centimorgans are indicated on the left. The extensions * and ** represent markers associated with TSWV resistance at $\mathrm{P}=0.05$ and $\mathrm{P}=0.01$, respectively.

Table 1. Primer combinations used and polymorphism rates for AFLP analysis of 179 F_{2} individuals from the cross Arachis kuhlmannii x A. diogoi.

Primer combination	TB^{a}	PB^{b}	$\mathrm{PPB}^{\mathrm{c}}$	SB^{d}	SRSB $^{\mathrm{e}}$
E-AAC/M-CTG	98	60	61	19	$92-521$
E-AAG/M-CGC	78	60	77	34	$63-539$
E-AAG/M-CGG	53	44	83	29	$72-512$
E-ACC/M-CCA	83	57	69	44	$58-476$
E-ACC/M-CCT	74	55	74	25	$69-532$
E-ACG/M-CCC	34	26	76	20	$60-500$
E-ACT/M-CCG	41	34	83	11	$96-379$
E-ACT/M-CTA	88	58	66	28	$106-480$
E-AGG/M-CAG	64	45	70	18	$44-502$
E-AGG/M-CCC	64	55	86	16	$67-322$
E-ATG/M-CAC	117	86	74	28	$60-517$
E-ATT/M-CAA	122	96	79	20	$218-597$
E-ATT/M-CAG	107	76	71	30	$109-421$
TOTAL	1023	752	74	322	$44-597$

${ }^{\text {a }}$ TB: total number of bands
${ }^{\mathrm{b}}$ PB: number of polymorphic bands
${ }^{c}$ PPB: percentage of polymorphic bands
${ }^{\mathrm{d}}$ SB: number of scored bands
${ }^{e}$ SRSB: size range of scored bands

Table 2. Distribution of genetic markers along the twelve linkage groups of the Arachis kuhlmannii x A. diogoi map.

Linkage group	NL^{a}	Size $^{\mathrm{b}}$	AI^{c}	correl $^{\mathrm{d}}$
I	5	56.5	11.3	
II	15	292.7	19.5	
III	6	33.4	5.6	
IV	2	18.6	-	
V	13	224.5	17.3	
VI	4	49.9	12.5	
VII	4	60.8	15.2	
VIII	6	62.9	10.5	
IX	12	131.2	10.9	
X	4	54.6	13.7	
XI	5	64.1	12.8	
XII	2	18.9	-	0.94
TOTAL	78	1068.1	13.7	

${ }^{\mathrm{a}} \mathrm{NL}=$ number of loci
${ }^{\mathrm{b}}$ Size $=$ length in cM
${ }^{c} \mathrm{AI}=$ average interval between adjacent markers
${ }^{\mathrm{d}}$ Correlation between number of loci in the group and length of the group
III. BEST LINEAR UNBIASED PREDICTION OF BREEDING VALUE FOR TOMATO SPOTTED WILT VIRUS (TSWV) INCIDENCE IN VIRGINIA-TYPE PEANUTS

Abstract

Spotted wilt, caused by the tomato spotted wilt virus (TSWV) has progressively become more prevalent in the Virginia-Carolina peanut (Arachis hypogaea L.) production area. Management tactics for control of spotted wilt are limited. Development of cultivars with moderate to high levels of field resistance to TSWV is the most promising means of managing the disease. Breeding efficiency can be maximized by choosing parents based on their potential to produce superior progeny. Best linear unbiased prediction (BLUP) is a method for estimating the breeding value of a parent based on its own performance as well as that of its relatives. BLUP was used to identify lines with superior ability to transmit TSWV field resistance to their progeny. The data set used included 118 breeding lines, 12 cultivars and one hirsuta-type (A. hypogaea subsp. hypogaea var. hirsuta Köhler) accession. Data on TSWV incidence were obtained from trials representing three locations and six years and on agronomic traits from trials at three locations and 13 years. Because only estimates of broad-sense heritability (H) were available, BLUPs were computed using a range of estimates for narrow sense heritability $\left(h^{2}\right)$. BLUPs obtained with different estimates of h^{2} were highly correlated (r >0.85), indicating that BLUPs are not critically affected by inaccurate estimates of h^{2}. Breeding values predicted by BLUP were moderately correlated ($0.54<\mathrm{r}<0.83$) with line means estimated from a fixed-effect model. Specific lines with high breeding values for TSWV resistance included a set of lines resistant to early leafspot (Cercospora arachidicola Hori) and the hirsuta accession, PI 576636. BLUPs for yield, meat content, crop value, and pod brightness were also calculated. Six different weighting schemes

used for index selection in order to pick lines with superior breeding values for a combination of all traits analyzed. Thirteen lines were selected with at least four of the six weighting schemes, suggesting that these lines should be able to transmit to their progenies not only reduced TSWV incidence, but also increased yields and improved quality traits.

Keywords: Arachis hypogaea L., BLUP, breeding value, TSWV incidence.

INTRODUCTION

Spotted wilt of peanut, caused by the tomato spotted wilt virus (TSWV), is currently one of the major limiting factors in peanut production in the U.S. In the Virginia-Carolina growing region, spotted wilt has been gradually increasing in severity since the mid 1990s. Incidence and damage in peanuts was the highest in both states during 2002 (Hurt et al., 2003).

Symptoms of spotted wilt in peanut vary from severe stunting to elaborate concentric ring spots on individual leaflets, and even plant death. The first symptoms of the virus usually appear a few weeks after planting, and newly symptomatic plants emerge thereafter for the remainder of the growing season. The growth stage at which the plant is infected determines the degree of yield reduction (Culbreath et al., 1992). Plants that are infected early in the season are the most affected, showing severe stunting and producing very few or no seed. However, reductions in both quantity and quality of pods and seed are also observed in plants infected at later growth stages (Culbreath et al., 1992).

TSWV is vectored in nature by several species of thrips (Thysanoptera). The virus is acquired by immature thrips feeding on infected host plants and then transmission occurs primarily through feeding activities of adults. TSWV has the ability to replicate within the vector, allowing it to transmit the virus for long periods of time. Therefore, viruliferous adult thrips are capable of infecting many plants (Ullman et al., 1993). Even though TSWV is vectored only by thrips, control of thrips with insecticide applications has proved ineffective in reducing the incidence of spotted wilt (Todd et al., 1994). There
are few effective cultural and chemical practices for management of the disease (Culbreath et al., 1994). Although several factors have been shown to provide some suppression, no single measure by itself has been effective under heavy disease pressure. From all known factors that can be manipulated to reduce the risk of spotted wilt including peanut cultivar, planting date, plant population, in-furrow insecticide application, and tillage practices, cultivar selection appears to have the most potential for minimizing the risk of losses to spotted wilt (Culbreath et al., 1999, 2000; Hurt et al., 2003). None of the virginia cultivars released to date have a high level of field resistance and they may suffer significant damage under extremely intense epidemics. Cultivars with higher levels of resistance would be of great benefit across the Virginia-Carolina growing region. Moreover, cultivars are needed that combine TSWV resistance with good yield and quality.

Parent selection for the development of populations with high expected mean performance and which have genetic variation for desirable traits has been a problem historically faced by plant breeders. Identification of parental combinations that meet those two criteria increases the probability of recovering superior genotypes for cultivar development. The conventional method of selecting parents is based on their own performance. Observed performances are then used to calculate midparent values (MPV), or the mean of the parental means, to predict cross combination means. This method of parental selection poses some obvious disadvantages such as performance estimate biases when not all genotypes are evaluated or when data is missing in some environments (Panter and Allen, 1995b). Moreover, the efficiency of phenotypic selection in discriminating among superior individuals is reduced as the heritability decreases, and
becomes very inefficient for traits with low heritability values (Falconer, 1989). Furthermore, performance testing of new genetic material is one of the most important and also most expensive aspects of plant breeding programs. Selecting superior lines is usually accomplished by testing a large group of lines across several locations and years. Statistical methods that maximize the accuracy of the estimate of performance of a line from fewer environments would be extremely useful for plant breeders (Panter and Allen, 1995b).

Henderson (1975) described the use of a mixed model to calculate the best linear unbiased predictions (BLUP) of breeding values of potential parents based on observed data and the known variance-covariance structure among fixed and random effects. Genetic effects are considered to be random in the model while environmental effects are considered to be fixed. Henderson's method uses the genetic relationships among individuals as the variance-covariance among genetic effects, and assumes that correlation between data on different individuals is caused only by additive genetic variance (Henderson, 1975). By using genetic relationships among individuals, related individuals contribute to the predicted values for one another. Information from relatives can contribute to the predicted breeding value for an individual for which there is little or no data. Moreover, the magnitude of that contribution is dependent on the extent of the relationship between the two individuals (Panter and Allen, 1995a).

The BLUP procedure could be widely applicable in crop breeding programs because no additional experiments are required for obtaining the predictions. Instead, they are made from data that is routinely generated in a breeder's testing program, including performance data and estimates of genetic relationship among lines (Bernardo,

1996b). Best linear unbiased prediction has been widely used in livestock breeding (Henderson, 1975) and to a lesser degree, in forest tree breeding (White and Hodge, 1988). Among crop species, BLUPs have been useful to estimate breeding values to identify superior cross combinations in maize (Bernardo, 1994, 1995, 1996a, b, c), soybean (Panter and Allen, 1995a, b), peach (de Souza et al., 1998a, b, 2000), sugarcane (Chang and Milligan, 1992), peanut (Pattee et al., 2001), and oil palm (Purba et al., 2001). The objective of this study is to investigate the use of BLUP for selection of lines with superior ability to transfer decreased TSWV incidence in combination with five other important agronomic and quality traits in peanut.

MATERIALS AND METHODS

Experimental Materials

The material analyzed included 118 breeding lines from the North Carolina State University peanut breeding program, 12 virginia type cultivars and one var. hirsuta (A. hypogaea subsp. hypogaea var. hirsute Köhler) accession (Table 1). Plants were grown and harvested under standard recommended procedures for peanut production in North Carolina. TSWV trials were conducted using wide plant spacing ($25-51 \mathrm{~cm}$ between seeds) and no insecticide.

Evaluations

Spotted wilt was evaluated using a disease incidence rating where the number of severely stunted, chlorotic, wilted or dead plants was counted for each plot two times during the growing season. That number was then converted to a percentage of the total number of plants per plot. For TSWV incidence, genotypes were evaluated over 18 tests in 7 year-by-location combinations. Not all genotypes were included in all tests, so replication ranged from 1 to 15 tests with a mean of 3 .

Data on yield $\left(\mathrm{lbA}^{-1}\right)$, meat content ($\%$ of kernels from 500 g of clean unshelled pods), extra large kernels (\% of extra large kernels, i.e. seeds that ride a $8.4 \times 19.0 \mathrm{~mm}$ slotted screen, based on the 2002 federal grade sheet for virginia-type peanuts, from 500 g of clean unshelled pods), pod brightness (Hunter L scale), and crop value ($\$ \mathrm{~A}^{-1}$) were compiled. These data consisted of the lines' means from each test in which the line occurred. Because some lines had been tested for yield and quality more extensively than others, there was a wide range in the number of records for each line (Table 1). In total, genotypes were evaluated for yield and quality over 84 tests in 30 year-by-location combinations.

Statistical Analysis

The mixed model procedure (PROC MIXED) in SAS (SAS Institute, 2001b) was used for the analysis of the unbalanced data set to calculate means for genotypes adjusted to a common environmental effect. The following additive genetic mixed model was used to predict the additive genetic effect for each individual:

$$
\begin{equation*}
Y=\mu+X \beta+Z \alpha+\varepsilon \tag{Eq.1}
\end{equation*}
$$

Where,
Y is a vector of observations,
β is a vector of fixed effects,
α is a vector of additive genetic effects,
ε is a vector of error terms, and
X and Z are incidence matrices that associate specific effects with individual observations.

The variance-covariance matrix for the random effects and error terms is

$$
\operatorname{Var}\left(\left[\begin{array}{l}
\alpha \tag{Eq.2}\\
\varepsilon
\end{array}\right]\right)=\left[\begin{array}{ll}
G & 0 \\
0 & R
\end{array}\right] \sigma^{2}
$$

where $\alpha=G \sigma^{2}$ is the additive variance-covariance matrix for the lines. G can be calculated as $2 \mathrm{Ch}^{2} /\left(1-h^{2}\right)$, where C is the matrix of coancestries among lines and h^{2} is the narrow sense heritability of the trait (Pattee et al., 2001). Genetic relationships among parents and progeny are expressed in terms of Malécot's (1948) coefficient of coancestry (θ), which is the probability that, at a given locus, two lines have alleles that are identical by descent, i.e., mitotic/meiotic copies of the same ancestral allele. Coefficients of coancestry were calculated using pedigree information on the lines obtained from published records and from personal communications with individual breeders records. Rules for calculation of coancestry are well known (Falconer, 1989). Coancestries among lines derived from the same cross were calculated following the modifications described by Cockerham (1983). Lines that could be traced to different F_{2} plants were considered to have the same degree of relatedness as full sibs. However, lines tracing to the same F_{3} (or
later generation) plant were considered to be more closely related than full sibs. When no information was available on the commonality of two lines derived from the same cross, it was assumed that the lines traced to different F_{2} selections. Because peanut is a highly self-pollinated species and most cultivars are highly homozygous inbred lines, it was assumed that each cultivar, line or introduction in the breeding population had an inbreeding coefficient (F) of 1.

The standard BLUP solutions were obtained from the following equation

$$
\left[\begin{array}{c}
\hat{\beta} \tag{Eq.3}\\
\hat{\alpha}
\end{array}\right]=\left[\begin{array}{cc}
X^{\prime} R^{-1} X & X^{\prime} R^{-1} Z \\
Z^{\prime} R^{-1} X & Z^{\prime} R^{-1} Z+G^{-1}
\end{array}\right]^{-1}\left[\begin{array}{c}
X^{\prime} R^{-1} Y \\
Z^{\prime} R^{-1} Y
\end{array}\right]
$$

The interactive matrix language procedure (PROC IML) in SAS (SAS Institute, 2001a) was used to perform all calculations to compute BLUP estimates.

Heritability Estimates

Narrow-sense heritability (h^{2}) estimates were not available for the overall breeding population for any of the six traits studied. However, it is known from quantitative genetics theory that the broad-sense heritability is the upper boundary for the narrow-sense heritability. Estimates of broad-sense heritability (H) were calculated based on variance estimates obtained by restricted maximum likelihood estimation using PROC MIXED in SAS (SAS Institute, 2001b). BLUPs were calculated for a range of values around our estimates of H to assess the sensitivity of the method to inaccuracy in the estimation of narrow-sense heritability.

Selection Schemes

To select lines with superior breeding values for a combination of traits, independent culling and index selection were used as selection methods. For independent culling, a threshold value was chosen so that only the best $28-43 \%$ of the lines would be selected. For index selection, six different weighting schemes based on assigned importance of disease resistance vs. yield vs. agronomic and quality traits were designed (Table 2). Subsequently, BLUPs were scaled as

$$
\begin{equation*}
I_{i j}=\frac{\left(v_{i j}-v_{\text {worst }}\right)}{\left(v_{\text {best }}-v_{\text {worst }}\right)} \tag{Eq.4}
\end{equation*}
$$

and the index was then calculated as the geometric mean of the weighted variables

$$
\begin{equation*}
I_{i}=\left\{\left(I_{i 1}\right)^{a}\left(I_{i 2}\right)^{b}\left(I_{i 3}\right)^{c}\left(I_{i 4}\right)^{d}\left(I_{i 5}\right)^{e}\left(I_{i 6}\right)^{f}\right\} \frac{1}{a+b+c+d+e+f} \tag{Eq.5}
\end{equation*}
$$

where a, b, c, d, e, and f are the weights to be assigned to each trait.

RESULTS AND DISCUSSION

Heritability Estimates and their Effect on BLUP Values

The additive variance-covariance matrix needed for BLUP estimation is based on estimates of narrow-sense heritability $\left(\mathrm{h}^{2}\right)$. Only estimates of broad-sense heritability (H) were available for the six traits analyzed in this study. Only the additive variance is accounted for in h^{2}, while H reflects all genotypic variance. Given that h^{2} must be less than or equal to H, BLUPs were calculated for a range of values around our estimates of

H (Table 3). Subsequently, correlations among BLUPs calculated at different values of H were computed in order to investigate the sensitivity of the technique to variation in the heritability estimate. Correlations ranged from high to extremely high depending on the trait ($\mathrm{r}=0.85$ for TSWV incidence, $\mathrm{r}>0.90$ for all other traits). These results suggest that best linear unbiased prediction is relatively insensitive to inaccuracy in the estimation of narrow-sense heritability. Therefore, broad-sense heritability estimates can be used as substitutes without much loss in the estimation precision when estimates of narrow-sense heritability are not available (Pattee et al., 2001).

Correlation between BLUP Values and Means

The use of phenotypic values to select parents should be effective in cases where the narrow-sense heritability is high (Falconer, 1989). However, for traits with low narrow-sense heritability values, breeding values (BV) would give a better ranking of the genetic value of the parents than would their genotypic values, and, therefore, selection efficiency would be enhanced (de Souza et al., 2000). In this study, meat content, extra large kernels (ELK), and pod brightness had moderate broad-sense heritabilities of 0.20 , 0.42 , and 0.18 , respectively. The predicted BVs of these three traits were well correlated ($0.88,0.96$, and 0.93 , respectively) with observed phenotypic values (Table 3). On the other hand, TSWV incidence, yield, and crop value, had very low broad-sense heritabilities ($0.05,0.02$, and 0.05 , respectively) and showed poor correlations between predicted BVs and observed phenotypic values ($0.66,0.53$, and 0.65 , respectively). For TSWV incidence, the plot of predicted BVs vs. means supports the low correlation
between these parameters (Fig. 1). Therefore, TSWV seems to be an ideally suited trait for parental selection based on BLUP estimation of BVs.

Variation of BLUP Values

Best linear unbiased prediction was used to predict BVs of parents for TSWV incidence, yield, meat, content, ELK, pod brightness, and crop value (Table 4). The predicted BV ranged from -6.29 to $+8.04 \%$ for TSWV incidence, -262 to $+142 \mathrm{lb} \mathrm{A}^{-1}$ for yield, -2.4 to $+3.0 \%$ for meat content, -20.8 to $+10.0 \%$ for ELK, -1.4 to +1.6 Hunter L units for pod brightness, and -272 to $+166 \$ \mathrm{~A}^{-1}$ for crop value (Table 5). Predicted BVs suggest that not only is there genetic potential to develop lines with increased field resistance to spotted wilt, but also that agronomic and quality traits can be improved.

Based on the BLUPs, several lines had superior BVs for TSWV incidence. A group of lines from our leafspot breeding program had negative BVs for TSWV incidence, indicating that progenies from these lines would have reduced incidence of spotted wilt. Of the cultivars included in this study, none had negative BVs for TSWV incidence. Georgia Green and Wilson had the lowest positive values. Hirsuta accession PI 576636, a genotype with high field resistance to TSWV that was used as a resistant check in all tests, had the lowest BV for TSWV incidence among all genotypes analyzed. However, BVs for this accession might not be accurate due to its complete lack of genetic relationship to any other line in the data set.

For each agronomic and quality trait, several lines possessed an extremely high BV. However, no line had the best BV for all the traits combined. Predicted BVs for TSWV incidence were plotted against those for yield to select lines that would combine
negative BVs for TSWV incidence and positive BV for yield (Fig. 2). A set of leafspot and TSWV lines was found to possess superior BV for both traits. An important point to highlight is how the BVs for cultivar Gregory for these two traits compare to those of other cultivars. Although its BV for TSWV incidence is slightly inferior to that of resistant cultivar Georgia Green, its BV for yield is considerably higher than that of any other cultivar.

BLUPs of BV for meat content and pod brightness were highly correlated ($\mathrm{r}=$ 0.85) (Table 6). Plots of predicted BVs for these two traits against those for TSWV incidence indicate that only two lines, N96076L and N99133CSm, combine desirable BVs for meat content and TSWV incidence (Fig. 3); and only one line, N99027L, combines desirable BVs for pod brightness and TSWV incidence (Fig. 5). For ELK and crop value, several lines combined negative BVs for TSWV incidence and positive BVs for these traits (Figs. 4 and 6).

Independent Culling

To select lines that would combine superior BVs for all traits analyzed, threshold values were selected that would pick the top 28-43\% percent of the lines (top 28% for TSWV, top 41% for yield, top 43% for meat content, top 38% for ELK, top 35% for pod brightness, and top 28% for crop value). Subsequently, lines that had been picked for TSWV incidence, yield and at least one of the four other traits were selected. Ten lines were selected including three (N99122CSm, N99132CSm, and N99133CSm) belonging to the Sclerotinia blight-CBR resistance breeding program, two (N99027L, and N00022L) to the early leafspot resistance breeding program, and five (N01009T,

N01010T, N01011T, N01014T, and N01015T) to the TSWV resistance breeding program. These lines should transmit to their progenies not only reduced TSWV incidence, but also increased yields and improved quality traits.

Index selection

Weights of the different index selection schemes were based on assigned importance of disease resistance vs. yield vs. agronomic and quality traits (Table 2). The first scheme considered all traits to be equally important. Schemes II and VI emphasized TSWV and yield. Schemes III and V were reciprocal: III emphasized agronomic and quality traits, while V emphasized disease resistance. Scheme IV gave more importance to yield than to any of the other traits. Lines were ranked based on their index values. Subsequently, lines that had been ranked among the top 18 with at least four of the six weighting schemes were selected. Index values obtained using different weighting schemes were highly correlated $(0.78<\mathrm{r}<0.97)$ with the exception of schemes II and III $(\mathrm{r}=0.68)$ and V and III $(\mathrm{r}=0.61)($ Table 7). Rank correlations were also found to be high (Table 7).

Thirteen lines were selected under each of four weighting schemes: N97085, N00033, N00090ol, N00091ol, N00098ol, N00099ol, N99133CSm, N99027L, N01001T, N01011T, N01014T, N01015T and Gregory. Of these, eight were selected under five weighting schemes and only one under all six schemes (Table 8). High oleic lines N00090ol, N00091ol, N00098ol, and N00099ol had excellent BVs for meat content and ELK. Moreover, N00098ol and N00099ol also had extremely high BVs for crop value. Although their BVs for TSWV incidence were positive, they were not large (Table 4).

Likewise, TSWV lines N01001T, N01011T, N01014T, and N01015T had moderate positive BVs for TSWV incidence and good BVs for crop value. Leafspot line N99027L and CBR line N99133CSm had highly desirable BVs for TSWV incidence, but their BVs for agronomic and quality traits were not very high. Therefore, it would be valuable to utilize lines from the first set in crosses with lines from the second one to develop progenies that combine superior values for all traits. In doing so it is important to consider the degree of relationship between the lines to be crossed in order to have enough genetic variability in hybrid populations to allow additional improvement. Coefficients of coancestry among selected lines are presented in Table 8.

Surprisingly, none of the cultivars studied was chosen among the top 18 genotypes with any of the weighting schemes used with the exception of Gregory, which was the only genotype from the 131 analyzed to be selected with all six schemes (Table 8). These results indicate that Gregory would be an excellent choice as a parent for an array of traits. This cultivar has the ability to transfer to its progeny good TSWV incidence, superior yield, and good values for meat content, ELK, pod brightness and crop value.

Application in Breeding Programs

The BLUP approach used in this study is the only procedure proven effective to predict single-cross performance (Bernardo, 1996a, b, c). Therefore, BLUP estimation proves useful in identifying superior single crosses prior to making the actual crosses and evaluating them in disease and/or yield trials. Perhaps the most attractive feature of BLUP estimation is that no special experiments are required to obtain the predictions.

Instead, the predictions are obtained by using data that is routinely generated in a breeder's testing program. Moreover, as more lines are tested in disease and/or yield trials each year, the effectiveness of the predictions will increase due to the larger number of observations that went into their estimation (Bernardo, 1996a).

REFERENCES

Bernardo, R. 1994. Prediction of maize single cross performance using RFLPs and information from related hybrids. Crop Sci. 34:20-25.

Bernardo, R. 1995. Genetic models for predicting maize single-cross performance in unbalanced yield trial data. Crop Sci. 35:141-147.

Bernardo, R. 1996a. Best linear unbiased prediction of maize single-cross performance. Crop Sci. 36:50-56.

Bernardo, R. 1996b. Best linear unbiased prediction of maize single-cross performance given erroneous inbred relationships. Crop Sci. 36:862-866.

Bernardo, R. 1996c. Best linear unbiased prediction of the performance of crosses between untested maize inbreds. Crop Sci. 36:872-876.

Chang, Y. S., and S. B. Milligan. 1992. Estimating the potential of sugarcane families to produce elite genotypes using bivariate prediction methods. Theor. Appl. Genet. 84:633-639.

Cockerham, C. C. 1983. Covariances of relatives from self-fertilization [Inbreeding, genetic components]. Crop Sci. 23:1177-1180.

Culbreath, A. K., J. W. Todd, and J. W. Demski. 1992. Productivity of Florunner peanut infected with tomato spotted wilt virus. Peanut Sci. 19:11-14.

Culbreath, A. K., J. W. Todd, W. D. Branch, S. L. Brown, J. W. Demski, and J. P. Beasly Jr. 1994. Effect of new peanut cultivar Georgia Browne on epidemics of spotted wilt. Plant Dis. 78:1185-1189.

Culbreath, A. K., J. W. Todd, D. W. Gorbet, S. L. Brown, J. A. Baldwin, H. R. Pappu, C. C. Holbrook, and F. M. Shokes. 1999. Response of early, medium, and late maturing peanut breeding lines to field epidemics of tomato spotted wilt. Peanut Sci. 26:100-106.

Culbreath, A. K., J. W. Todd, D. W. Gorbet, S. L. Brown, J. A. Baldwin, H. R. Pappu, and F. M. Shokes. 2000. Reaction of peanut cultivars to spotted wilt. Peanut Sci. 27:35-39.
de Souza, V. A. B., D. H. Byrne, and J. F. Taylor. 1998a. Heritability, genetic and phenotypic correlations, and predicted selection response of quantitative traits in peach: I. An analysis of several reproductive traits. J. Amer. Soc. Hort. Sci. 123:598-603.
de Souza, V. A. B., D. H. Byrne, and J. F. Taylor. 1998b. Heritability, genetic and phenotypic correlations, and predicted selection response of quantitative traits in peach: II. An analysis of several fruit traits. J. Amer. Soc. Hort. Sci. 123:604-611. de Souza, V. A. B., D. H. Byrne, and J. F. Taylor. 2000. Predicted breeding values for nine plant and fruit characteristics of 28 peach genotypes. J. Amer. Soc. Hort. Sci. 125:460-465.

Falconer, D. S. 1989. Introduction to Quantitative Genetics. $3^{\text {rd }}$ ed. Longman Sci. and Technol., London.

Henderson, C. R. 1975. Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423-447.

Hurt, C., R. Brandenburg, D. A. Jordan, B. B. Shew, T. G. Isleib, M. Linker, A. Herbert, P. Phipps, C. Swann, and R. W. Mozingo. 2003. Managing tomato spotted wilt
virus in peanuts in North Carolina and Virginia. North Carolina Coop. Ext. Serv. Bull.

Malécot, G. 1948. Les Mathémathiques de l'Hérédité. Masson et Cie, Paris.
Panter, D. M. and F. L. Allen. 1995a. Using best linear unbiased predictions to enhance breeding for yield in soybean: I. Choosing parents. Crop Sci. 35:397-405.

Panter, D. M. and F. L. Allen. 1995b. Using best linear unbiased predictions to enhance breeding for yield in soybean: II. Selection of superior crosses from a limited number of yield trials. Crop Sci. 35:405-410.

Pattee, H. E., T. G. Isleib, D. W. Gorbet, F. G. Giesbrecht, and Z. Cui. 2001. Parent selection in breeding for roasted peanut flavor quality. Peanut Sci. 28:51-58.

Purba, A. R., A. Flori, L. Baudouin, and S. Hamon. 2001. Prediction of oil palm (Elaeis guineensis Jacq.) agronomic performances using the best linear unbiased predictor (BLUP). Theor. Appl. Genet. 102:787-792.

SAS Institute. 2001a. SAS/IML User's Guide, Version 8. SAS Institute Inc. Cary, NC.
SAS Institute. 2001b. SAS/STAT User's Guide, Version 8 volumes 1, 2, and 3. SAS Institute Inc. Cary, NC.

Todd, J. W., A. K. Culbreath, D. Rogers, and J. W. Demski. 1994. Contraindications of insecticide use relative to vector control of spotted wilt disease in peanut. Proc. Amer. Peanut Res. Educ. Soc. 26:42 (abstr.).

Ullman, D. E., T. L. German, J. L. Sherwood, D. M. Westcot, and F. A. Cantone. 1993. Tospovirus replication in insect vector cells: Immunocytochemical evidence that the nonstructural protein encoded by the S RNA of tomato spotted wilt tospovirus is present in thrips vector cells. Phytopathology 83:456-463.

White, T. L., and G. R. Hodge. 1988. Best linear prediction of breeding values in a forest tree improvement program. Theor. Appl. Genet. 76:719-727.

Figure 1. Best linear unbiased predictors (BLUPs) of breeding values vs. least square means for tomato spotted wilt virus (TSWV) incidence in virginia peanuts.

Figure 2. Best linear unbiased predictors (BLUPs) of breeding value for TSWV incidence vs. yield for virginia-type peanuts.

Figure 3. Best linear unbiased predictors (BLUPs) of breeding value for TSWV incidence vs. meat content in virginia-type peanuts.

Figure 4. Best linear unbiased predictors (BLUPs) of breeding value for TSWV incidence vs. extra large kernels (ELK) in virginia-type peanuts.

Figure 5. Best linear unbiased predictors (BLUPs) of breeding value for TSWV incidence vs. pod brightness in virginia-ttype peanuts.

Figure 6. Best linear unbiased predictors (BLUPs) of breeding value for TSWV incidence vs. crop values in virginia-type peanuts.

Table 1. List of entries analyzed, including number of tests and years they were evaluated.

Entry	Program ${ }^{\text {a }}$	TSWV incidence		Agronomic traits	
		Tests	Years	Tests	Years
N91003E	Yield and grade	3	3	39	11
N92025	Yield and grade	3	3	26	10
N96029	Yield and grade	5	5	17	6
N97068	Yield and grade	4	4	5	3
N97085	Yield and grade	4	4	18	5
N98001	Yield and grade	4	3	16	5
N98002	Yield and grade	3	3	11	4
N98003	Yield and grade	3	3	11	4
N98022	Yield and grade	3	3	13	4
N98023	Yield and grade	3	3	11	4
N98028	Yield and grade	3	3	11	4
N98032	Yield and grade	3	3	15	4
N98033	Yield and grade	4	3	15	4
N99051	Yield and grade	2	2	8	3
N99073	Yield and grade	1	1	6	3
N00001	Yield and grade	1	1	5	2
N00033	Yield and grade	1	1	6	2
N00049	Yield and grade	1	1	6	2
N00052	Yield and grade	1	1	6	2
N00053	Yield and grade	1	1	6	2
N00054	Yield and grade	1	1	6	2
N00055	Yield and grade	1	1	6	2
N00058	Yield and grade	1	1	6	2
N00060	Yield and grade	1	1	6	2
N00061	Yield and grade	1	1	6	2
N00062	Yield and grade	1	1	6	2
N00064	Yield and grade	1	1	8	2
N99100ol	High oleic acid	2	2	8	3
N99103ol	High oleic acid	2	2	8	3
N99109ol	High oleic acid	2	2	8	3
N99113ol	High oleic acid	2	2	8	3
N00087ol	High oleic acid	1	1	6	2
N00088ol	High oleic acid	1	1	6	2
N00089ol	High oleic acid	1	1	6	2
N00090ol	High oleic acid	1	1	6	2
N00091ol	High oleic acid	1	1	6	2
N00095ol	High oleic acid	1	1	6	2
N00098ol	High oleic acid	1	1	6	2
N00099ol	High oleic acid	1	1	8	2
N00102ol	High oleic acid	1	1	6	2
N97053J	Jumbo pods	1	1	11	6
N99066J	Jumbo pods	1	1	5	3
N99067J	Jumbo pods	1	1	5	3
N99068J	Jumbo pods	1	1	5	3
N99079J	Jumbo pods	1	1	5	3

Table 1 (cont'd).

Entry	Program	TSWV incidence		Agronomic traits	
		Tests	Years	Tests	Years
N99080J	Jumbo pods	1	1	5	3
N99085J	Jumbo pods	1	1	8	3
N00002J	Jumbo pods	1	1	4	2
N00034J	Jumbo pods	1	1	4	2
N00035J	Jumbo pods	1	1	4	2
N00065J	Jumbo pods	1	1	4	2
N99057F	Jumbo pods	2	2	8	3
N92054C	$\mathrm{CBR}^{\mathrm{b}} / \mathrm{SB}^{\text {c }}$ resistance	6	6	20	10
N94040C	CBR / SB resistance	6	6	19	8
N95025C	CBR / SB resistance	6	6	19	8
N96006C	CBR / SB resistance	5	5	17	6
N96009C	CBR / SB resistance	5	5	17	6
N97122C	CBR / SB resistance	4	4	14	5
N97129C	CBR / SB resistance	4	4	15	5
N97131C	CBR / SB resistance	4	4	10	5
N97135C	CBR / SB resistance	4	4	13	5
N97137C	CBR / SB resistance	4	4	10	5
N97138C	CBR / SB resistance	4	4	13	5
N97140C	CBR / SB resistance	4	4	16	5
N97142C	CBR / SB resistance	4	4	16	5
N98048CSm	CBR / SB resistance	3	3	10	4
N98052C	CBR / SB resistance	3	3	10	4
N99121CSm	CBR / SB resistance	2	2	6	3
N99122CSm	CBR / SB resistance	2	2	7	3
N99128CSm	CBR / SB resistance	2	2	9	3
N99129CSm	CBR / SB resistance	2	2	10	3
N99130CSm	CBR / SB resistance	2	2	6	3
N99131CSm	CBR / SB resistance	2	2	3	3
N99132CSm	CBR / SB resistance	2	2	3	3
N99133CSm	CBR / SB resistance	2	2	6	3
N99137CSm	CBR / SB resistance	2	2	6	3
N99138CSm	CBR / SB resistance	2	2	6	3
N00076CSm	CBR / SB resistance	1	1	2	2
N00077CSm	CBR / SB resistance	1	1	2	2
N92066L	ELS ${ }^{\text {d }}$ resistance	7	6	25	10
N92068L	ELS resistance	5	5	26	10
N93003L	ELS resistance	5	5	31	10
N93007L	ELS resistance	7	6	24	10
N94015L	ELS resistance	5	5	19	8
N96074L	ELS resistance	5	5	16	6
N96076L	ELS resistance	6	5	16	6
N97104L	ELS resistance	4	4	10	5
N97106L	ELS resistance	4	4	7	5
N97109L	ELS resistance	4	4	12	5
N99027L	ELS resistance	2	2	3	3

Table 1 (cont'd).

Entry	Program	TSWV incidence		Agronomic traits	
		Tests	Years	Tests	Years
N99034L	ELS resistance	1	1	3	3
N00009L	ELS resistance	1	1	2	2
N00010L	ELS resistance	1	1	2	2
N00011L	ELS resistance	1	1	2	2
N00012L	ELS resistance	1	1	2	2
N00019L	ELS resistance	1	1	2	2
N00020L	ELS resistance	1	1	2	2
N00022L	ELS resistance	1	1	2	2
N00023L	ELS resistance	1	1	2	2
N00024L	ELS resistance	1	1	2	2
N97064NT	TSWV ${ }^{\mathrm{e}}$ resistance	7	6	5	3
N01001T	TSWV resistance	1	1	6	2
N01002T	TSWV resistance	1	1	6	2
N01003T	TSWV resistance	1	1	6	2
N01004T	TSWV resistance	1	1	6	2
N01005T	TSWV resistance	1	1	6	2
N01006T	TSWV resistance	1	1	6	2
N01007T	TSWV resistance	1	1	6	2
N01008T	TSWV resistance	1	1	6	2
N01009T	TSWV resistance	1	1	6	2
N01010T	TSWV resistance	1	1	6	2
N01011T	TSWV resistance	1	1	6	2
N01012T	TSWV resistance	1	1	6	2
N01013T	TSWV resistance	1	1	6	2
N01014T	TSWV resistance	1	1	6	2
N01015T	TSWV resistance	1	1	6	2
N01016T	TSWV resistance	1	1	6	2
N01017T	TSWV resistance	1	1	6	2
NC 7	Cultivar	13	6	80	13
NC 9	Cultivar	15	6	58	11
NC 10C	Cultivar	7	6	47	11
NC-V 11	Cultivar	14	6	46	11
NC 12C	Cultivar	14	6	58	13
Gregory	Cultivar	15	6	56	11
Perry	Cultivar	13	6	46	11
VA-C 92R	Cultivar	8	6	47	11
VA 93B	Cultivar	5	4	16	8
VA 98R	Cultivar	7	4	22	6
Wilson	Cultivar	1	1	7	3
Georgia Green	TSWV Disease check	8	4	.	.
PI 576636	TSWV Disease check	13	6	.	

a "Program" indicates trait(s) for which lines are being bred.
${ }^{\mathrm{b}} \mathrm{CBR}=$ Cylindrocladium black rot (Cylindrocladium parasiticum)
${ }^{\text {c }}$ SB $=$ sclerotinia blight (Sclerotinia minor)
${ }^{\mathrm{d}}$ ELS $=$ Early leafspot (Cercospora arachidicola)
${ }^{\mathrm{e}}$ TSWV $=$ tomato spotted wilt virus

Table 2. Weighting schemes utilized for index selection. Assigned weights were based on given importance of disease resistance vs. yield vs. quality traits.

Scheme	TSWV $^{\text {a }}$	Yield	Meat content	Extra large kernels	Pod brightness	Crop value
I	1	1	1	1	1	1
II	5	5	1	1	1	1
III	1	5	5	5	5	5
IV	1	5	1	1	1	1
V	5	1	1	1	1	1
VI	2	3	1	1	1	1

${ }^{\mathrm{a}}$ TSWV $=$ tomato spotted wilt virus

Table 3. Correlations among BLUPs of breeding values for TSWV incidence, yield, meat content, extra large kernels, pod brightness and crop value estimated at different heritability values.

TSWV Incidence								Yield							
H	0.01	$0.05{ }^{\text {a }}$	0.10	0.15	0.20	0.25	Mean	H	0.01	0.02	0.03	0.04	0.05	0.06	Mean
0.01	1.00	0.98	0.94	0.91	0.88	0.85	0.55	0.01	1.00	1.00	0.99	0.97	0.96	0.95	0.48
0.05	0.98	1.00	0.99	0.97	0.96	0.94	0.66	0.02	1.00	1.00	1.00	0.99	0.98	0.97	0.53
0.10	0.94	0.99	1.00	1.00	0.99	0.98	0.73	0.03	0.99	1.00	1.00	1.00	0.99	0.99	0.57
0.15	0.91	0.97	1.00	1.00	1.00	0.99	0.78	0.04	0.97	0.99	1.00	1.00	1.00	1.00	0.60
0.20	0.88	0.96	0.99	1.00	1.00	1.00	0.81	0.05	0.96	0.98	0.99	1.00	1.00	1.00	0.63
0.25	0.85	0.94	0.98	0.99	1.00	1.00	0.84	0.06	0.95	0.97	0.99	1.00	1.00	1.00	0.65
Mean	0.55	0.66	0.73	0.78	0.81	0.84	1.00	Mean	0.48	0.53	0.57	0.60	0.63	0.65	1.00

Meat Content (\%)

H	0.10	$\mathbf{0 . 2 0}$	0.30	0.40	0.50	0.60	Mean
0.10	1.00	0.99	0.97	0.95	0.93	0.91	0.81
$\mathbf{0 . 2 0}$	0.99	1.00	1.00	0.99	0.97	0.96	0.88
0.30	0.97	1.00	1.00	1.00	0.99	0.98	0.91
0.40	0.95	0.99	1.00	1.00	1.00	0.99	0.94
0.50	0.93	0.97	0.99	1.00	1.00	1.00	0.96
0.60	0.91	0.96	0.98	0.99	1.00	1.00	0.97
Mean	0.81	0.88	0.91	0.94	0.96	0.97	1.00

Pod Brightness (Hunter L score)

H	0.05	0.10	0.15	$\mathbf{0 . 1 8}$	0.25	0.30	Mean
0.05	1.00	0.99	0.98	0.97	0.96	0.95	0.84
0.10	0.99	1.00	1.00	0.99	0.99	0.98	0.89
0.15	0.98	1.00	1.00	1.00	1.00	0.99	0.92
$\mathbf{0 . 1 8}$	0.97	0.99	1.00	1.00	1.00	1.00	0.93
0.25	0.96	0.99	1.00	1.00	1.00	1.00	0.94
0.30	0.95	0.98	0.99	1.00	1.00	1.00	0.95
Mean	0.84	0.89	0.92	0.93	0.94	0.95	1.00

Extra Large Kernels (ELK) (\%)

H	0.10	0.20	0.30	$\mathbf{0 . 4 2}$	0.50	0.60	Mean
0.10	1.00	0.99	0.97	0.95	0.94	0.92	0.86
0.20	0.99	1.00	1.00	0.98	0.98	0.96	0.91
0.30	0.97	1.00	1.00	1.00	0.99	0.98	0.94
$\mathbf{0 . 4 2}$	0.95	0.98	1.00	1.00	1.00	1.00	0.96
0.50	0.94	0.98	0.99	1.00	1.00	1.00	0.97
0.60	0.92	0.96	0.98	1.00	1.00	1.00	0.98
Mean	0.86	0.91	0.94	0.96	0.97	0.98	1.00

Crop Value (\$ ha ${ }^{-1}$)

H	0.01	0.02	0.03	0.04	$\mathbf{0 . 0 5}$	0.06	Mean
0.01	1.00	1.00	0.99	0.98	0.96	0.95	0.53
0.02	1.00	1.00	1.00	0.99	0.98	0.98	0.57
0.03	0.99	1.00	1.00	1.00	0.99	0.99	0.60
0.04	0.98	0.99	1.00	1.00	1.00	1.00	0.63
$\mathbf{0 . 0 5}$	0.96	0.98	0.99	1.00	1.00	1.00	0.65
0.06	0.95	0.98	0.99	1.00	1.00	1.00	0.68
Mean	0.53	0.57	0.60	0.63	0.65	0.68	1.00

${ }^{\text {a }}$ Bold values indicate estimates of H calculated from out data.

Table 4. Best linear unbiased predictors (BLUPs) of breeding values with standard errors for TSWV incidence, pod yield, meat content, percent extra large kernels, pod brightness, and crop value.

Entry	TSWV	Pod yield	Meat content	Extra large kernels	Pod brightness	Crop value
	\%	lb/A	\%	\%	Hunter L	\$/A
N91003E	$+3.80 \pm 0.14^{* *}$	$+24 \pm 55$	$+1.5 \pm 0.4^{* *}$	$+6.6 \pm 1.3^{* *}$	$+0.34 \pm 0.26$	$+131 \pm 25^{* *}$
N92025	$+4.98 \pm 0.14{ }^{* *}$	$+57 \pm 56$	$+0.9 \pm 0.4^{\dagger}$	$+1.3 \pm 1.4$	$+0.16 \pm 0.28$	$+122 \pm 26^{* *}$
N96029	$+3.71 \pm 0.14^{* *}$	-54 ± 56	$+2.2 \pm 0.5^{* *}$	$+4.0 \pm 1.5^{* *}$	$+0.16 \pm 0.30$	$+38 \pm 27$
N97068	$+2.01 \pm 0.14^{* *}$	-11 ± 57	$+0.9 \pm 0.5^{\dagger}$	$+5.8 \pm 1.6^{* *}$	$+0.56 \pm 0.32^{\dagger}$	$+29 \pm 27$
N97085	$+2.93 \pm 0.13^{* *}$	$+90 \pm 54^{\dagger}$	$+1.1 \pm 0.4^{*}$	$+7.2 \pm 1.4^{* *}$	$+0.42 \pm 0.28$	$+166 \pm 25^{* *}$
N98001	$+4.29 \pm 0.13^{* *}$	$+44 \pm 54$	$+2.2 \pm 0.4^{* *}$	$+4.3 \pm 1.4^{* *}$	$+1.56 \pm 0.28{ }^{* *}$	$+115 \pm 25^{* *}$
N98002	$+4.28 \pm 0.13^{* *}$	$+45 \pm 54$	$+2.3 \pm 0.4^{* *}$	$+4.6 \pm 1.4^{* *}$	$+1.58 \pm 0.28{ }^{* *}$	$+117 \pm 25^{* *}$
N98003	$+4.29 \pm 0.13^{* *}$	$+44 \pm 54$	$+2.3 \pm 0.4^{* *}$	$+4.6 \pm 1.4^{* *}$	$+1.57 \pm 0.28^{* *}$	$+116 \pm 25^{* *}$
N98022	$+4.44 \pm 0.13^{* *}$	$+49 \pm 54$	$+1.3 \pm 0.4^{* *}$	-2.0 ± 1.4	$+0.93 \pm 0.28^{* *}$	$+99 \pm 25^{* *}$
N98023	$+4.44 \pm 0.13^{* *}$	$+49 \pm 54$	$+1.3 \pm 0.4^{* *}$	-1.9 ± 1.4	$+1.00 \pm 0.28{ }^{* *}$	$+100 \pm 25^{* *}$
N98028	$+5.69 \pm 0.13^{* *}$	$+13 \pm 57$	$+2.0 \pm 0.5^{* *}$	$+1.2 \pm 1.6$	$+1.28 \pm 0.32^{* *}$	$+67 \pm 27^{*}$
N98032	$+5.10 \pm 0.14^{* *}$	-25 ± 57	$+0.6 \pm 0.5$	-1.6 ± 1.5	$+0.66 \pm 0.31^{*}$	$+9 \pm 28$
N98033	$+4.99 \pm 0.13^{* *}$	$+28 \pm 58$	$+1.2 \pm 0.6^{*}$	$+0.2 \pm 1.8$	$+0.61 \pm 0.35^{\dagger}$	$+80 \pm 28^{* *}$
N99051	$+2.32 \pm 0.15^{* *}$	$+30 \pm 64$	-0.7 ± 0.6	$-5.4 \pm 1.7^{* *}$	$+0.07 \pm 0.37$	$+31 \pm 32$
N99073	$+5.18 \pm 0.14^{* *}$	-21 ± 58	$+1.1 \pm 0.5^{*}$	$+4.3 \pm 1.7^{*}$	$+0.49 \pm 0.34$	$+34 \pm 28$
N00001	$+0.58 \pm 0.15^{* *}$	$+38 \pm 65$	$+0.2 \pm 0.6$	$+4.1 \pm 1.9^{*}$	-0.46 ± 0.40	$+64 \pm 33^{*}$
N00033	$+3.62 \pm 0.13^{* *}$	$+58 \pm 55$	$+1.3 \pm 0.5^{*}$	$+7.2 \pm 1.6^{* *}$	$+0.83 \pm 0.32^{*}$	$+119 \pm 27^{* *}$
N00049	$+6.43 \pm 0.13^{* *}$	$+69 \pm 55$	$+1.9 \pm 0.5^{* *}$	$+3.3 \pm 1.6^{*}$	$+0.80 \pm 0.29^{* *}$	$+151 \pm 26^{* *}$
N00052	$+6.45 \pm 0.13^{* *}$	$+67 \pm 54$	$+2.0 \pm 0.5^{* *}$	$+2.9 \pm 1.5^{\dagger}$	$+0.77 \pm 0.29^{* *}$	$+147 \pm 25^{* *}$
N00053	$+6.43 \pm 0.13^{* *}$	$+66 \pm 54$	$+1.9 \pm 0.5^{* *}$	$+2.6 \pm 1.5^{\dagger}$	$+0.80 \pm 0.29^{* *}$	$+144 \pm 25^{* *}$
N00054	$+6.45 \pm 0.13^{* *}$	$+68 \pm 54$	$+1.8 \pm 0.5^{* *}$	$+2.4 \pm 1.5$	$+0.76 \pm 0.29^{* *}$	$+147 \pm 25^{* *}$
N00055	$+6.46 \pm 0.13^{* *}$	$+69 \pm 54$	$+1.9 \pm 0.5^{* *}$	$+2.5 \pm 1.5$	$+0.78 \pm 0.29^{* *}$	$+149 \pm 25^{* *}$
N00058	$+6.40 \pm 0.13^{* *}$	$+63 \pm 55$	$+1.9 \pm 0.5^{* *}$	$+2.2 \pm 1.6$	$+0.88 \pm 0.29^{* *}$	$+139 \pm 26^{* *}$
N00060	$+6.49 \pm 0.13^{* *}$	$+68 \pm 54$	$+2.0 \pm 0.4^{* *}$	$+2.2 \pm 1.5$	$+0.79 \pm 0.28^{* *}$	$+150 \pm 25^{* *}$
N00061	$+6.49 \pm 0.13^{* *}$	$+69 \pm 54$	$+2.0 \pm 0.4^{* *}$	$+2.0 \pm 1.5$	$+0.78 \pm 0.28^{* *}$	$+151 \pm 25^{* *}$
N00062	$+6.49 \pm 0.13^{* *}$	$+67 \pm 54$	$+2.0 \pm 0.4^{* *}$	$+2.3 \pm 1.5$	$+0.80 \pm 0.28{ }^{* *}$	$+148 \pm 25^{* *}$
N00064	$+4.58 \pm 0.14^{* *}$	$+2 \pm 59$	$+0.4 \pm 0.5$	$+4.5 \pm 1.7^{* *}$	$+0.78 \pm 0.34^{*}$	$+61 \pm 29^{*}$
N99100ol	$+6.53 \pm 0.13^{* *}$	$+29 \pm 55$	$+0.6 \pm 0.5$	$-5.8 \pm 1.6^{* *}$	$+1.25 \pm 0.31^{* *}$	$+34 \pm 26$
N99103ol	$+6.42 \pm 0.13{ }^{* *}$	$+23 \pm 55$	$+1.1 \pm 0.5^{*}$	$-5.7 \pm 1.6^{* *}$	$+1.35 \pm 0.31^{* *}$	$+30 \pm 26$
N99109ol	$+5.10 \pm 0.14^{* *}$	$-118 \pm 57^{*}$	$+0.9 \pm 0.5^{\dagger}$	$-17.0 \pm 1.6^{* *}$	$+0.67 \pm 0.32^{*}$	$-128 \pm 27^{* *}$
N99113ol	$+5.04 \pm 0.14^{* *}$	$-123 \pm 57^{*}$	$+0.1 \pm 0.5$	$-15.7 \pm 1.6^{* *}$	$+0.97 \pm 0.32^{* *}$	$-147 \pm 27^{* *}$
N00087ol	$+2.89 \pm 0.13^{* *}$	$-108 \pm 54^{*}$	$+0.8 \pm 0.5^{\dagger}$	$-9.7 \pm 1.5^{* *}$	$+0.12 \pm 0.28$	$-71 \pm 25^{* *}$
N00088ol	$+2.63 \pm 0.13^{* *}$	$-98 \pm 54^{\dagger}$	$+1.3 \pm 0.4^{* *}$	$-2.6 \pm 1.5^{\dagger}$	-0.25 ± 0.28	$-44 \pm 25^{\dagger}$
N00089ol	$+2.62 \pm 0.13^{* *}$	$-104 \pm 54^{\dagger}$	$+1.0 \pm 0.4^{*}$	-0.8 ± 1.5	-0.20 ± 0.28	$-56 \pm 25 *$
N00090ol	$+1.98 \pm 0.12^{* *}$	$+0 \pm 49$	$+2.2 \pm 0.4^{* *}$	$+8.7 \pm 1.4^{* *}$	$+0.06 \pm 0.25$	$+101 \pm 22^{* *}$
N00091ol	$+1.99 \pm 0.12^{* *}$	-1 ± 49	$+2.3 \pm 0.4^{* *}$	$+8.9 \pm 1.4^{* *}$	$+0.03 \pm 0.25$	$+98 \pm 22^{* *}$
N00095ol	$+5.87 \pm 0.13^{* *}$	$+47 \pm 53$	$+2.0 \pm 0.5^{* *}$	$+4.4 \pm 1.5^{* *}$	$+0.30 \pm 0.28$	$+118 \pm 24^{* *}$
N00098ol	$+2.46 \pm 0.13^{* *}$	$+83 \pm 52$	$+1.0 \pm 0.4^{*}$	$+5.5 \pm 1.5^{* *}$	$+0.37 \pm 0.28$	$+137 \pm 24^{* *}$
N00099ol	$+2.45 \pm 0.13^{* *}$	$+82 \pm 52$	$+0.7 \pm 0.4$	$+6.0 \pm 1.5^{* *}$	$+0.40 \pm 0.27$	$+131 \pm 24^{* *}$
N00102ol	$+3.36 \pm 0.14^{* *}$	$-230 \pm 59^{* *}$	$+1.7 \pm 0.5^{* *}$	$-5.1 \pm 1.7^{* *}$	$+0.18 \pm 0.33$	$-224 \pm 29^{* *}$
N97053J	$+2.30 \pm 0.15^{* *}$	$-105 \pm 61^{\dagger}$	$-1.6 \pm 0.5^{* *}$	$+6.3 \pm 1.7^{* *}$	$-1.19 \pm 0.33^{* *}$	$-114 \pm 30^{* *}$
N99066J	$+2.83 \pm 0.14^{* *}$	$+8 \pm 58$	$+0.6 \pm 0.5$	$+5.3 \pm 1.8^{* *}$	$+0.18 \pm 0.35$	$+58 \pm 28^{*}$
N99067J	$+4.03 \pm 0.13^{* *}$	$+50 \pm 55$	$+1.7 \pm 0.5^{* *}$	$+4.3 \pm 1.7^{*}$	$+0.53 \pm 0.33$	$+107 \pm 27^{* *}$
N99068J	$+4.07 \pm 0.14^{* *}$	-50 ± 59	$+0.6 \pm 0.6$	$+5.7 \pm 1.9^{* *}$	$+0.21 \pm 0.36$	$+6 \pm 29$
N99079J	$+5.16 \pm 0.14^{* *}$	-20 ± 58	$+1.1 \pm 0.5^{*}$	$+4.1 \pm 1.7^{*}$	$+0.49 \pm 0.34$	$+34 \pm 28$

Table 4 (cont'd).

Entry	TSWV	Pod yield	Meat content	Extra large kernels	Pod brightness	Crop value
	\%	1b/A	\%	\%	Hunter L	\$/A
N99080J	$+5.17 \pm 0.14^{* *}$	-19 ± 58	$+1.0 \pm 0.5^{\dagger}$	$+3.9 \pm 1.7^{*}$	$+0.51 \pm 0.34$	$+35 \pm 28$
N99085J	$+3.08 \pm 0.14^{* *}$	$+28 \pm 57$	$+0.3 \pm 0.5$	$+5.8 \pm 1.6^{* *}$	$+0.51 \pm 0.33$	$+85 \pm 28^{* *}$
N00002J	$+0.49 \pm 0.15{ }^{* *}$	$+45 \pm 65$	$+0.7 \pm 0.7$	$+6.9 \pm 2.0^{* *}$	-0.39 ± 0.42	$+89 \pm 33^{* *}$
N00034J	$+3.58 \pm 0.13^{* *}$	$+60 \pm 56$	$+0.7 \pm 0.5$	$+3.1 \pm 1.8^{\dagger}$	$+0.76 \pm 0.33^{*}$	$+114 \pm 27^{* *}$
N00035J	$+3.53 \pm 0.13^{* *}$	$+55 \pm 56$	$+0.7 \pm 0.5$	$+5.4 \pm 1.8^{* *}$	$+0.86 \pm 0.33^{*}$	$+110 \pm 27^{* *}$
N00065J	$+5.73 \pm 0.14{ }^{* *}$	$+27 \pm 57$	$+1.1 \pm 0.6^{\dagger}$	$+3.0 \pm 1.9$	$+0.81 \pm 0.36{ }^{*}$	$+80 \pm 28{ }^{* *}$
N99057F	$+2.25 \pm 0.15^{* *}$	$+51 \pm 64$	$-1.8 \pm 0.6^{* *}$	$-6.7 \pm 1.7^{* *}$	$+0.67 \pm 0.37{ }^{\dagger}$	$+40 \pm 32$
N92054C	$+2.34 \pm 0.14^{* *}$	-79 ± 58	$+1.1 \pm 0.5^{*}$	$+2.1 \pm 1.4$	-0.25 ± 0.29	$-45 \pm 27^{\dagger}$
N94040C	$+1.38 \pm 0.14^{* *}$	-59 ± 65	-0.6 ± 0.8	-1.3 ± 2.7	$+0.16 \pm 0.48$	$-66 \pm 34^{\dagger}$
N95025C	$+4.13 \pm 0.14^{* *}$	$+87 \pm 58$	$+1.4 \pm 0.5^{* *}$	$+1.0 \pm 1.5$	$+0.61 \pm 0.31^{*}$	$+157 \pm 28^{* *}$
N96006C	$+5.07 \pm 0.14{ }^{* *}$	-12 ± 58	$+1.8 \pm 0.5^{* *}$	-0.9 ± 1.5	$+0.61 \pm 0.30^{*}$	$+44 \pm 28$
N96009C	$+6.00 \pm 0.13^{* *}$	-2 ± 55	$+2.5 \pm 0.5^{* *}$	$-8.7 \pm 1.4^{* *}$	$+0.34 \pm 0.29$	$+45 \pm 26^{\dagger}$
N97122C	$+5.52 \pm 0.14^{* *}$	-2 ± 58	$+1.2 \pm 0.5^{*}$	$+1.5 \pm 1.5$	$+1.02 \pm 0.31^{* *}$	$+33 \pm 28$
N97129C	$+6.54 \pm 0.14^{* *}$	$+13 \pm 58$	$+1.9 \pm 0.5^{* *}$	$+1.6 \pm 1.5$	$+0.93 \pm 0.31^{* *}$	$+59 \pm 28^{*}$
N97131C	$+4.56 \pm 0.14^{* *}$	-20 ± 59	$+0.8 \pm 0.5$	$+2.6 \pm 1.6$	$+0.32 \pm 0.34$	$+14 \pm 29$
N97135C	$+5.22 \pm 0.13{ }^{* *}$	$+16 \pm 55$	$+1.9 \pm 0.5^{* *}$	-1.7 ± 1.5	$+0.32 \pm 0.29$	$+86 \pm 26^{* *}$
N97137C	$+5.18 \pm 0.13^{* *}$	$+9 \pm 56$	$+2.1 \pm 0.5^{* *}$	-1.2 ± 1.5	$+0.23 \pm 0.30$	$+79 \pm 26^{* *}$
N97138C	$+5.37 \pm 0.13^{* *}$	$+23 \pm 56$	$+2.7 \pm 0.5^{* *}$	-2.4 ± 1.5	$+0.47 \pm 0.30$	$+114 \pm 27^{* *}$
N97140C	$+4.84 \pm 0.13{ }^{* *}$	$+29 \pm 56$	$+2.9 \pm 0.5^{* *}$	$+0.7 \pm 1.4$	$+0.29 \pm 0.29$	$+135 \pm 26^{* *}$
N97142C	$+4.91 \pm 0.13^{* *}$	$+24 \pm 56$	$+2.9 \pm 0.5^{* *}$	$+2.4 \pm 1.4^{\dagger}$	$+0.41 \pm 0.29$	$+128 \pm 26^{* *}$
N98048CSm	$+3.58 \pm 0.14^{* *}$	-16 ± 61	$+1.8 \pm 0.5^{* *}$	$-9.3 \pm 1.6^{* *}$	$+0.17 \pm 0.35$	$+35 \pm 30$
N98052C	$+3.62 \pm 0.14^{* *}$	-8 ± 63	$+1.8 \pm 0.6^{* *}$	-0.0 ± 2.0	-0.07 ± 0.41	$+51 \pm 32$
N99121CSm	$+1.14 \pm 0.15^{* *}$	$+42 \pm 62$	$+1.4 \pm 0.6^{*}$	$+2.1 \pm 1.8$	-0.43 ± 0.37	$+52 \pm 31^{\dagger}$
N99122CSm	$+1.29 \pm 0.15^{* *}$	$+83 \pm 62$	$+0.9 \pm 0.6$	$+6.5 \pm 1.8^{* *}$	$-0.64 \pm 0.37^{\dagger}$	$+82 \pm 31^{* *}$
N99128CSm	$+2.49 \pm 0.14^{* *}$	$+39 \pm 60$	$+0.4 \pm 0.5$	$-3.1 \pm 1.7^{\dagger}$	$+0.51 \pm 0.34$	$+27 \pm 29$
N99129CSm	$+4.35 \pm 0.14^{* *}$	$+21 \pm 57$	$+2.2 \pm 0.5^{* *}$	$+7.3 \pm 1.6^{* *}$	$+0.39 \pm 0.31$	$+108 \pm 27^{* *}$
N99130CSm	$+4.31 \pm 0.14^{* *}$	$+17 \pm 57$	$+2.1 \pm 0.5^{* *}$	$+8.5 \pm 1.7^{* *}$	$+0.36 \pm 0.33$	$+98 \pm 28^{* *}$
N99131CSm	$+0.23 \pm 0.15$	$+61 \pm 64$	-0.5 ± 0.7	$+1.6 \pm 2.2$	-0.68 ± 0.42	$+33 \pm 33$
N99132CSm	$+0.93 \pm 0.15{ }^{* *}$	$+68 \pm 64$	-0.1 ± 0.7	$+3.8 \pm 2.3$	-0.57 ± 0.44	$+49 \pm 33$
N99133CSm	$+0.01 \pm 0.15$	$+78 \pm 63$	$+0.8 \pm 0.6$	$+10.0 \pm 1.8^{* *}$	-0.48 ± 0.38	$+80 \pm 31^{*}$
N99137CSm	$+2.25 \pm 0.14^{* *}$	-27 ± 61	$+0.2 \pm 0.6$	$+2.8 \pm 1.7$	-0.07 ± 0.35	-20 ± 30
N99138CSm	$+2.18 \pm 0.14^{* *}$	-22 ± 61	$+0.2 \pm 0.6$	$+4.7 \pm 1.7^{* *}$	-0.24 ± 0.35	-11 ± 30
N00076CSm	$+2.85 \pm 0.14^{* *}$	$+13 \pm 62$	$+0.6 \pm 0.7$	$+2.5 \pm 2.3$	$+0.28 \pm 0.42$	$+29 \pm 31$
N00077CSm	$+2.25 \pm 0.15^{* *}$	-33 ± 63	$+0.8 \pm 0.7$	$+4.2 \pm 2.2^{\dagger}$	-0.23 ± 0.42	-13 ± 32
N92066L	$+3.07 \pm 0.14^{* *}$	$+70 \pm 57$	$+0.8 \pm 0.4^{\dagger}$	$-2.5 \pm 1.4^{\dagger}$	$-0.73 \pm 0.28^{*}$	$+52 \pm 27^{\dagger}$
N92068L	$-0.33 \pm 0.14^{*}$	81 ± 56	$-0.8 \pm 0.4^{\dagger}$	$-8.9 \pm 1.4^{* *}$	$-1.27 \pm 0.28^{* *}$	$+30 \pm 26$
N93003L	$-0.67 \pm 0.13^{* *}$	$36 \pm 53^{*}$	$-1.6 \pm 0.4^{* *}$	-1.8 ± 1.3	$-1.24 \pm 0.26^{* *}$	$+64 \pm 24^{* *}$
N93007L	$-0.88 \pm 0.13^{* *}$	$49 \pm 54^{* *}$	$-2.4 \pm 0.4^{* *}$	$-3.0 \pm 1.4^{*}$	$-1.09 \pm 0.28^{* *}$	$+61 \pm 25^{*}$
N94015L	$+2.75 \pm 0.14^{* *}$	$+142 \pm 59^{*}$	$-2.3 \pm 0.5^{* *}$	$-2.9 \pm 1.4^{*}$	$-1.17 \pm 0.30^{* *}$	$+83 \pm 28^{* *}$
N96074L	-0.04 ± 0.14	-52 ± 58	-0.2 ± 0.5	$-10.3 \pm 1.4^{* *}$	$-1.39 \pm 0.29^{* *}$	$-59 \pm 27^{*}$
N96076L	$-0.63 \pm 0.14^{* *}$	-66 ± 58	$+0.4 \pm 0.5$	$-3.8 \pm 1.4 * *$	$-1.41 \pm 0.29^{* *}$	$-71 \pm 27^{* *}$
N97104L	$+0.71 \pm 0.14^{* *}$	$+50 \pm 60$	-0.7 ± 0.5	$+3.0 \pm 1.6^{\dagger}$	$-0.60 \pm 0.34^{\dagger}$	$+69 \pm 29^{*}$
N97106L	$+1.51 \pm 0.14^{* *}$	-47 ± 63	$+0.4 \pm 0.6$	-0.7 ± 1.8	$-0.66 \pm 0.38^{\dagger}$	$-55 \pm 31{ }^{\dagger}$
N97109L	$+1.47 \pm 0.14^{* *}$	$+21 \pm 61$	$+0.1 \pm 0.5$	-3.8 ± 1.6 *	$+0.18 \pm 0.33$	$+34 \pm 30$
N99027L	$-1.38 \pm 0.15^{* *}$	61 ± 62	-0.1 ± 0.7	$+6.9 \pm 2 .{ }^{* *}$	$+0.11 \pm 0.42$	$+89 \pm 32^{* *}$

Table 4 (cont'd).

Entry	TSWV	Pod yield	Meat content	Extra large kernels	Pod brightness	Crop value
	\%	1b/A	\%	\%	Hunter L	\$/A
N99034L	$+2.05 \pm 0.15^{* *}$	$+52 \pm 64$	-0.3 ± 0.7	$-4.2 \pm 2.2^{\dagger}$	-0.30 ± 0.43	$+22 \pm 33$
N00009L	$-0.28 \pm 0.15^{\dagger}$	54 ± 64	$-1.8 \pm 0.6^{* *}$	-8.8 $\pm 2.1^{* *}$	$-1.12 \pm 0.41^{* *}$	$+4 \pm 33$
N00010L	$-0.35 \pm 0.15^{*}$	58 ± 64	$-1.9 \pm 0.6^{* *}$	$-8.7 \pm 2.0^{* *}$	$-1.06 \pm 0.41^{* *}$	$+10 \pm 32$
N00011L	$-0.33 \pm 0.15^{*}$	57 ± 64	$-1.9 \pm 0.6^{* *}$	$-8.9 \pm 2.0^{* *}$	$-1.09 \pm 0.41^{* *}$	$+8 \pm 32$
N00012L	-0.23 ± 0.15	58 ± 65	$-1.4 \pm 0.7^{\dagger}$	$-4.1 \pm 2.4^{\dagger}$	$-1.11 \pm 0.45^{*}$	$+18 \pm 34$
N00019L	$+1.79 \pm 0.15^{* *}$	-12 ± 65	-0.2 ± 0.7	$-6.8 \pm 2.4^{* *}$	-0.19 ± 0.46	$+5 \pm 34$
N00020L	$+2.38 \pm 0.15^{* *}$	-30 ± 65	-0.9 ± 0.7	$-10.8 \pm 2.4 * *$	-0.19 ± 0.46	-30 ± 34
N00022L	$-0.27 \pm 0.15^{\dagger}$	63 ± 64	-0.5 ± 0.7	$+3.3 \pm 2.3$	-0.42 ± 0.44	$+30 \pm 33$
N00023L	-0.18 ± 0.15	60 ± 64	$-1.5 \pm 0.7^{*}$	$-8.4 \pm 2.1^{* *}$	-0.66 ± 0.42	+14 ± 32
N00024L	-0.15 ± 0.15	60 ± 64	$-1.5 \pm 0.7^{*}$	$-8.4 \pm 2.1^{* *}$	-0.65 ± 0.42	$+15 \pm 32$
N97064NT	$-1.28 \pm 0.14^{* *}$	50 ± 62	$-1.3 \pm 0.6^{*}$	$+2.3 \pm 1.9$	$-0.87 \pm 0.38^{*}$	$+8 \pm 31$
N01001T	$+0.58 \pm 0.14^{* *}$	$+52 \pm 59$	$+0.4 \pm 0.6$	$+2.6 \pm 2.2$	$+0.27 \pm 0.39$	$+86 \pm 29^{* *}$
N01002T	$+1.17 \pm 0.14^{* *}$	$+52 \pm 59$	$+0.4 \pm 0.6$	$+2.6 \pm 2.2$	$+0.27 \pm 0.39$	$+86 \pm 29 * *$
N01003T	$+1.47 \pm 0.14^{* *}$	$+52 \pm 59$	$+0.4 \pm 0.6$	$+2.1 \pm 2.0$	$+0.25 \pm 0.38$	$+85 \pm 29^{* *}$
N01004T	$+1.38 \pm 0.14^{* *}$	$+52 \pm 59$	$+0.4 \pm 0.6$	$+2.0 \pm 2.0$	$+0.24 \pm 0.38$	$+84 \pm 29^{* *}$
N01005T	$+1.44 \pm 0.14^{* *}$	$+52 \pm 59$	$+0.4 \pm 0.6$	$+2.0 \pm 2.0$	$+0.24 \pm 0.38$	$+84 \pm 29^{* *}$
N01006T	$+1.56 \pm 0.14^{* *}$	$+52 \pm 59$	$+0.4 \pm 0.6$	$+2.6 \pm 2.2$	$+0.27 \pm 0.39$	$+86 \pm 29^{* *}$
N01007T	$+1.86 \pm 0.14^{* *}$	$+53 \pm 59$	$+0.5 \pm 0.6$	$+3.2 \pm 2.1$	$+0.29 \pm 0.39$	$+88 \pm 30^{* *}$
N01008T	$+1.84 \pm 0.14^{* *}$	$+53 \pm 59$	$+0.5 \pm 0.6$	$+3.2 \pm 2.1$	$+0.29 \pm 0.39$	$+88 \pm 30^{* *}$
N01009T	$+1.36 \pm 0.14^{* *}$	$+53 \pm 59$	$+0.5 \pm 0.6$	$+3.2 \pm 2.1$	$+0.29 \pm 0.39$	$+88 \pm 30^{* *}$
N01010T	$+1.34 \pm 0.14^{* *}$	$+53 \pm 59$	$+0.5 \pm 0.6$	$+3.2 \pm 2.1$	$+0.29 \pm 0.39$	$+88 \pm 30^{* *}$
N01011T	$+1.40 \pm 0.14^{* *}$	$+53 \pm 59$	$+0.5 \pm 0.6$	$+3.8 \pm 2.2^{\dagger}$	$+0.31 \pm 0.40$	$+90 \pm 30^{* *}$
N01012T	$+1.59 \pm 0.14^{* *}$	$+53 \pm 59$	$+0.5 \pm 0.6$	$+3.2 \pm 2.1$	$+0.29 \pm 0.39$	$+88 \pm 30^{* *}$
N01013T	$+1.56 \pm 0.14^{* *}$	$+53 \pm 59$	$+0.5 \pm 0.6$	$+3.2 \pm 2.1$	$+0.29 \pm 0.39$	$+88 \pm 30^{* *}$
N01014T	$+0.34 \pm 0.14^{*}$	$+53 \pm 59$	$+0.5 \pm 0.6$	$+3.2 \pm 2.1$	$+0.29 \pm 0.39$	$+88 \pm 30^{* *}$
N01015T	$+0.44 \pm 0.14^{* *}$	$+53 \pm 59$	$+0.5 \pm 0.6$	$+3.2 \pm 2.1$	$+0.29 \pm 0.39$	$+88 \pm 30^{* *}$
N01016T	$+1.83 \pm 0.14^{* *}$	$+53 \pm 59$	$+0.5 \pm 0.6$	$+3.8 \pm 2.2^{\dagger}$	$+0.31 \pm 0.40$	$+90 \pm 30^{* *}$
N01017T	$+3.57 \pm 0.15^{* *}$	$+10 \pm 63$	$+0.8 \pm 0.7$	-0.1 ± 2.5	$+0.32 \pm 0.45$	$+41 \pm 32$
NC 7	$+2.02 \pm 0.12^{* *}$	-2 ± 47	$+2.4 \pm 0.4^{* *}$	$+8.3 \pm 1.2^{* *}$	$+0.02 \pm 0.22$	$+99 \pm 21^{* *}$
NC 9	$+8.04 \pm 0.12^{* *}$	$+29 \pm 49$	$+0.3 \pm 0.4$	$-7.0 \pm 1.2^{* *}$	$+1.00 \pm 0.23{ }^{* *}$	$+18 \pm 22$
NC 10C	$+5.65 \pm 0.13{ }^{* *}$	$-149 \pm 53^{* *}$	$-0.8 \pm 0.4^{*}$	$-20.8 \pm 1.3^{* *}$	$+0.90 \pm 0.25^{* *}$	$-188 \pm 24^{* *}$
NC-V 11	$+2.95 \pm 0.13^{* *}$	$-109 \pm 53^{*}$	$+0.9 \pm 0.4^{*}$	$-8.0 \pm 1.3^{* *}$	$+0.19 \pm 0.25$	$-68 \pm 24^{* *}$
NC 12C	$+5.71 \pm 0.12^{* *}$	$+58 \pm 51$	$+2.4 \pm 0.4^{* *}$	$+4.4 \pm 1.2^{* *}$	$+0.33 \pm 0.23$	$+146 \pm 23^{* *}$
Gregory	$+1.93 \pm 0.12^{* *}$	$+90 \pm 50^{\dagger}$	$+1.2 \pm 0.4^{* *}$	$+7.9 \pm 1.2^{* *}$	$+0.23 \pm 0.23$	$+154 \pm 22^{* *}$
Perry	$+4.77 \pm 0.12^{* *}$	-27 ± 53	$+2.2 \pm 0.4^{* *}$	-2.1 ± 1.3	$+0.34 \pm 0.25$	$+45 \pm 24^{\dagger}$
VA-C 92R	$+2.74 \pm 0.13^{* *}$	$-107 \pm 52^{*}$	$+1.3 \pm 0.4^{* *}$	$-2.4 \pm 1.2^{\dagger}$	-0.23 ± 0.24	-54 ± 23 *
VA 93B	$+3.52 \pm 0.14^{* *}$	$-262 \pm 58^{* *}$	$+1.2 \pm 0.5^{*}$	$-4.7 \pm 1.5^{* *}$	$+0.51 \pm 0.30^{\dagger}$	$-272 \pm 28^{* *}$
VA 98R	$+2.77 \pm 0.14^{* *}$	$-246 \pm 58^{* *}$	$+1.7 \pm 0.5^{* *}$	$-5.8 \pm 1.4^{* *}$	$+0.40 \pm 0.29$	$-237 \pm 27^{* *}$
Wilson	$+1.17 \pm 0.16^{* *}$	-9 ± 64	-0.5 ± 0.6	$-7.8 \pm 1.8^{* *}$	$+1.22 \pm 0.39^{* *}$	-22 ± 32
Georgia Green	$+0.71 \pm 0.14^{* *}$	-55 ± 66	$+0.1 \pm 0.8$	$-15.8 \pm 2.7^{* *}$	$+0.16 \pm 0.49$	$-73 \pm 35 *$
PI 576636	$-6.29 \pm 0.13^{* *}$	$+0 \pm 67$	$+0.0 \pm 0.8$	$+0.0 \pm 2.7$	$+0.00 \pm 0.51$	$+0 \pm 36$

${ }^{\dagger}$, ,** Denote significance at the $10 \%, 5 \%$, and 1% levels of probability, respectively, by t-test.

Table 5. Summary statistics for BLUPs of breeding value for TSWV incidence, yield, meat content, extra large kernels, pod brightness, and crop value at their estimated heritabilities.

			Meat	Extra large	Pod	Crop
	TSWV	Yield	content cornels $h^{2}=0.05$	$\mathrm{~h}^{2}=0.02$	$\mathrm{~h}^{2}=0.20$	$\mathrm{~h}^{2}=0.42$

Table 6. Correlations among BLUPs of breeding value for TSWV incidence, yield, meat content, extra large kernels, pod brightness, and crop value at their estimated heritabilities.

	$\begin{gathered} \text { TSWV } \\ \mathrm{h}^{2}=0.05 \end{gathered}$	$\begin{gathered} \text { Yield } \\ \mathrm{h}^{2}=0.02 \end{gathered}$	$\begin{gathered} \text { Meat } \\ \text { content } \\ \mathrm{h}^{2}=0.20 \end{gathered}$	Extra large kernels $h^{2}=0.42$	Pod brightness $h^{2}=0.18$	$\begin{gathered} \text { Crop } \\ \text { value } \\ \mathrm{h}^{2}=0.05 \\ \hline \end{gathered}$
	\%	lb/A	\%	\%	Hunter L	\$/A
TSWV ($\mathrm{h}^{2}=0.05$)	1.00	-0.12	0.64	0.02	0.69	0.20
Yield ($\mathrm{h}^{2}=0.02$)	-0.12	1.00	-0.15	0.38	-0.06	0.85
Meat content $\left(\mathrm{h}^{2}=0.20\right)$	0.64	-0.15	1.00	0.37	0.60	0.33
ELK ($\mathrm{h}^{2}=0.42$)	0.02	0.38	0.37	1.00	0.13	0.61
Pod brightness ($\mathrm{h}^{2}=0.18$)	0.69	-0.06	0.60	0.13	1.00	0.26
Crop value ($\mathrm{h}^{2}=0.05$)	0.20	0.85	0.33	0.61	0.26	1.00

Table 7. Correlations and rank correlations among weighting schemes used to select lines with superior breeding values for TSWV incidence in combination with agronomic traits.

Weighting	Correlation					
Scheme	I	II	III	IV	V	VI
I^{a}	1.00	0.82	0.97	0.95	0.78	0.96
II^{b}	0.82	1.00	0.68	0.87	0.96	0.94
$\mathrm{III}^{\mathrm{c}}$	0.97	0.68	1.00	0.92	0.61	0.88
IV^{d}	0.95	0.87	0.92	1.00	0.76	0.97
$\mathrm{~V}^{\mathrm{e}}$	0.78	0.96	0.61	0.76	1.00	0.88
VI $^{\mathrm{f}}$	0.96	0.94	0.88	0.97	0.88	1.00

Weighting	Rank Correlation					
Scheme	I	II	III	IV	V	VI
I^{a}	1.00	0.72	0.86	0.93	0.70	0.94
II^{b}	0.72	1.00	0.34	0.72	0.96	0.88
$\mathrm{III}^{\mathrm{c}}$	0.86	0.34	1.00	0.84	0.29	0.70
IV^{d}	0.93	0.72	0.84	1.00	0.63	0.93
$\mathrm{~V}^{\mathrm{e}}$	0.70	0.96	0.29	0.63	1.00	0.84
VI^{f}	0.94	0.88	0.70	0.93	0.84	1.00

${ }^{\mathrm{a}} \mathrm{I}=1,1,1,1,1,1=$ equal weights assigned to all traits.
${ }^{\mathrm{b}} \mathrm{II}=5,5,1,1,1,1=$ stronger weight assigned to TSWV incidence and yield.
${ }^{\mathrm{c}}$ III $=1,5,5,5,5,5=$ stronger weight assigned to all agronomic traits.
${ }^{\mathrm{d}} \mathrm{IV}=1,5,1,1,1,1=$ stronger weight assigned only to yield.
${ }^{\mathrm{e}} \mathrm{V}=5,1,1,1,1,1=$ stronger weight assigned only to TSWV incidence.
${ }^{\mathrm{f}} \mathrm{VI}=2,3,1,1,1,1=$ slightly stronger weight assigned to TSWV incidence and yield.

Table 8．Coefficients of coancestry among lines identified as superior with at least four of the six selection schemes．

Entry	$\begin{array}{r} \text { i} \\ 0 . \\ 0.0 \\ \hline 0 . \\ \hline \end{array}$	$\begin{aligned} & \text { 승 } \\ & \text { 人̀ } \\ & \text { O} \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{\circ}{\hat{Q}} \\ & \hat{Z} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & 8 \\ & 8 \\ & \mathbf{Z} \end{aligned}$	E 乞े n ñ z．	$\stackrel{1}{8}$ 8 8 8 8	E \vdots 0 \vdots	$$	$\begin{aligned} & \text { 合 } \\ & 0 \\ & 0 \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \text { oे } \\ & 8 \\ & 8 \\ & \mathbf{Z} \end{aligned}$	$\begin{aligned} & \overline{0} \\ & \frac{0}{8} \\ & 8 \\ & \mathbf{z} \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & 0 \\ & 0 . \\ & \hline 8 \\ & \mathbf{Z} \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \text { O} \\ & 0 \\ & 0 \\ & \mathbf{Z} \\ & \hline \end{aligned}$	̇
Gregory＊＊＊	1.00	0.50	0.67	0.67	0.23	0.59	0.59	0.59	0.59	0.55	0.55	0.93	0.93	0.64
N99027L＊＊	$0.50{ }^{\text {a }}$	1.00	0.34	0.34	0.11	0.29	0.29	0.29	0.29	0.27	0.27	0.47	0.47	0.37
N97085＊＊	0.67	0.34	1.00	0.67	0.28	0.59	0.59	0.59	0.59	0.55	0.55	0.64	0.64	0.59
N00033＊	0.67	0.34	0.67	1.00	0.23	0.59	0.59	0.59	0.59	0.55	0.55	0.64	0.64	0.59
N99133CSm＊＊	0.23	0.11	0.28	0.23	1.00	0.17	0.17	0.17	0.17	0.22	0.22	0.22	0.22	0.26
N01001T＊	0.59	0.29	0.59	0.59	0.17	1.00	0.56	0.56	0.56	0.41	0.41	0.55	0.55	0.53
N01011T＊	0.59	0.29	0.59	0.59	0.17	0.56	1.00	0.50	0.50	0.41	0.41	0.55	0.55	0.52
N01014T＊＊	0.59	0.29	0.59	0.59	0.17	0.56	0.50	1.00	0.88	0.41	0.41	0.55	0.55	0.54
N01015T＊＊	0.59	0.29	0.59	0.59	0.17	0.56	0.50	0.88	1.00	0.41	0.41	0.55	0.55	0.54
N00090ol＊	0.55	0.27	0.55	0.55	0.22	0.41	0.41	0.41	0.41	1.00	0.97	0.49	0.49	0.52
N00091ol＊	0.55	0.27	0.55	0.55	0.22	0.41	0.41	0.41	0.41	0.97	1.00	0.49	0.49	0.52
N00098ol＊＊	0.93	0.47	0.64	0.64	0.22	0.55	0.55	0.55	0.55	0.49	0.49	1.00	0.93	0.62
N00099ol＊＊	0.93	0.47	0.64	0.64	0.22	0.55	0.55	0.55	0.55	0.49	0.49	0.93	1.00	0.62
Mean	0.65	0.38	0.59	0.59	0.26	0.53	0.52	0.54	0.54	0.52	0.52	0.62	0.62	0.53

＊，＊＊，＊＊＊denotes lines selected with 4,5 and 6 weighting schemes，respectively．
${ }^{\text {a }}$ Dotted squares identify undesirable combinations due to their degree of relatedness．

APPENDICES

Appendix 1. SAS program for principal component analysis of AFLP data for 108 individuals.

```
data a; infile 'a:\pca data B genome.txt' LRECL=550;
input code $ species $ accession $ m1-m239;
proc sort; by m1-m239;
proc princomp cov out=prin ;
var m1-m239;
proc print;
run;
proc plot;
plot prin2*prin1=accession;
title 'Plot of Principal Components';
run;
```

Appendix 2. Genetic distances between the tetraploid Arachis sect. Arachis species and 91 accessions representing 24 diploid species of the same section.

Accession	Species	Genome	to monticola ${ }^{\text {a }}$		to hypogaea ${ }^{\text {b }}$		to both species ${ }^{\text {c }}$	
			distance ${ }^{\text {d }}$	rank	distance	rank	distance	rank
35005	benensis	A	0.66285	91	0.67248	90	0.66767	90
35006	benensis	A	0.65154	89	0.66432	88	0.65793	89
35007	benensis	A	0.65625	90	0.68235	91	0.6693	91
860	benensis	A	0.61671	84	0.64179	85	0.62925	85
10017	cardenasii	A	0.52212	64	0.54924	62	0.53568	64
36015	cardenasii	A	0.42672	25	0.46453	25	0.44562	25
36019	cardenasii	A	0.44748	28	0.46985	26	0.45866	26
36032	cardenasii	A	0.46325	33	0.48063	28	0.47194	32
36035	cardenasii	A	0.45144	29	0.48742	33	0.46943	29
19616	correntina	A	0.53918	71	0.56532	69	0.55225	70
36000	correntina	A	0.49842	54	0.54201	59	0.52022	57
7830	correntina	A	0.48337	38	0.49426	36	0.48882	37
7897	correntina	A	0.45928	31	0.48064	29	0.46996	30
9530	correntina	A	0.48749	42	0.50044	38	0.49396	40
12900	decora	A	0.55213	74	0.5937	76	0.57291	75
9953	decora	A	0.57483	80	0.62139	82	0.59811	82
9955	decora	A	0.52068	62	0.54924	62	0.53496	62
10602	diogoi	A	0.46203	32	0.47795	27	0.46999	31
30001	diogoi	A	0.48475	40	0.51925	45	0.502	45
30005	diogoi	A	0.61993	86	0.66108	87	0.64051	87
30106	diogoi	A	0.46718	35	0.51298	43	0.49008	39
10038	duranensis	A	0.3964	15	0.43048	15	0.41344	15
15101	duranensis	A	0.40264	19	0.43435	21	0.4185	20
21763	duranensis	A	0.40264	19	0.43113	19	0.41688	19
21766	duranensis	A	0.3964	15	0.43048	15	0.41344	15
21767	duranensis	A	0.41523	24	0.44997	24	0.4326	24
30060	duranensis	A	0.40264	19	0.43564	22	0.41914	21
30064	duranensis	A	0.3865	14	0.41769	13	0.4021	14
30067	duranensis	A	0.31635	4	0.32724	3	0.3218	4
30069	duranensis	A	0.32319	5	0.34541	5	0.3343	5
30070	duranensis	A	0.40134	18	0.43049	18	0.41592	18
30072	duranensis	A	0.36703	10	0.38642	8	0.37672	9
30074	duranensis	A	0.36211	8	0.40506	11	0.38359	11
30077	duranensis	A	0.40638	22	0.43306	20	0.41972	22
36002	duranensis	A	0.32784	6	0.34897	6	0.33841	6
36006	duranensis	A	0.38644	13	0.41769	13	0.40207	13
36036	duranensis	A	0.3964	15	0.43048	15	0.41344	15
7988	duranensis	A	0.36816	11	0.39259	10	0.38038	10
30029	helodes	A	0.16249	1	0.14666	1	0.15458	1

Appendix 2 (cont.).

Accession	Species	Genome	to monticola ${ }^{\text {a }}$		to hypogaea ${ }^{\text {b }}$		to both species ${ }^{\text {c }}$	
			distance ${ }^{\text {d }}$	rank	distance	rank	distance	rank
30031	helodes	A	0.51517	61	0.54057	58	0.52787	60
6331	helodes	A	0.51089	58	0.51366	44	0.51227	49
36029	herzogii	A	0.51229	59	0.52208	47	0.51719	54
30084	kempff-merc.	A	0.44737	27	0.48742	34	0.4674	28
30085	kempff-merc.	A	0.48076	37	0.52067	46	0.50072	43
30088	kempff-merc.	A	0.46348	34	0.51228	42	0.48788	35
30089	kempff-merc.	A	0.5137	60	0.55651	66	0.53511	63
35001	kempff-merc.	A	0.49594	53	0.53488	53	0.51541	52
30008	kuhlmannii	A	0.52073	63	0.558	67	0.53936	65
30034	kuhlmannii	A	0.40648	23	0.43956	23	0.42302	23
7639	kuhlmannii	A	0.48628	41	0.52704	48	0.50666	46
8888	kuhlmannii	A	0.44356	26	0.48609	32	0.46482	27
8916	kuhlmannii	A	0.49433	49	0.50391	40	0.49912	41
9214	kuhlmannii	A	0.52937	66	0.58468	74	0.55703	72
9470	kuhlmannii	A	0.50529	56	0.53629	54	0.52079	58
13023	palustris	A	0.56425	76	0.61517	81	0.58971	78
6536	palustris	A	0.57148	78	0.61053	79	0.59101	80
6416	praecox	A	0.5773	81	0.61053	79	0.59392	81
36009	simpsonii	A	0.27284	3	0.32784	4	0.30034	3
10309	stenosperma	A	0.49307	48	0.54634	60	0.51971	56
12575	stenosperma	A	0.49161	45	0.53057	49	0.51109	48
13256	stenosperma	A	0.4917	46	0.53845	57	0.51507	51
13672	stenosperma	A	0.53357	67	0.55359	65	0.54358	66
13796	stenosperma	A	0.48891	44	0.53057	49	0.50974	47
408	stenosperma	A	0.525	65	0.56678	71	0.54589	68
7377	stenosperma	A	0.49574	51	0.53843	56	0.51708	53
7762	stenosperma	A	0.49173	47	0.5363	55	0.51401	50
9017	stenosperma	A	0.49574	51	0.54637	61	0.52106	59
1117	trinitensis	A	0.56979	77	0.60896	78	0.58938	77
22585	villosa	A	0.45925	30	0.48606	31	0.47266	33
862	villosa	A	0.47255	36	0.50323	39	0.48789	36
30079	batizocoi	B	0.62606	87	0.64339	86	0.63473	86
30081	batizocoi	B	0.61524	83	0.6339	83	0.62457	83
30082	batizocoi	B	0.6467	88	0.66596	89	0.65633	88
30083	batizocoi	B	0.61985	85	0.63546	84	0.62766	84
9484	batizocoi	B	0.53786	70	0.55216	64	0.54501	67
36024	cruziana	B	0.58317	82	0.58538	75	0.58428	76
30006	hoehnei	B	0.57306	79	0.60825	77	0.59065	79
9094	hoehnei	B	0.5467	73	0.57273	72	0.55971	73
9140	hoehnei	B	0.54369	72	0.56534	70	0.55451	71
9146	hoehnei	B	0.53378	68	0.53061	52	0.5322	61

Appendix 2 (cont.).

			to monticola a										${\text { to } \text { hypogaea }^{b}}^{2}$			to both species $^{\text {c }}$
Accession	Species	Genome	distance $^{\mathrm{d}}$	rank	distance	rank	distance	rank								
30076	ipaensis	B	0.25076	2	0.26046	2	0.25561	2								
30092	magna	B	0.36351	9	0.38891	9	0.37621	8								
30093	magna	B	0.37918	12	0.41514	12	0.39716	12								
30011	valida	B	0.48757	43	0.48198	30	0.48478	34								
9153	valida	B	0.48353	39	0.49424	35	0.48889	38								
9157	valida	B	0.50266	55	0.49563	37	0.49914	42								
1118	williamsii	B	0.34091	7	0.35732	7	0.34911	7								
30091	glandulifera	D	0.53504	69	0.56531	68	0.55018	69								
30098	glandulifera	D	0.50816	57	0.53059	51	0.51938	55								
30099	glandulifera	D	0.56255	75	0.58166	73	0.57211	74								
30100	glandulifera	D	0.49437	50	0.50948	41	0.50192	44								

${ }^{\mathrm{a}}$ includes accessions 7264, 21768, 21769, 30062, 30063.
${ }^{\mathrm{b}}$ includes accessions PI 339954, NC 4, PI 501296, NM Valencia C, PI 261924, Grif 12518, PI 497615, PI 590455, A1.
${ }^{\mathrm{c}}$ includes all accessions in a and b.
${ }^{\mathrm{d}}=$ average distance between each accession and the tetraploid accessions as a group.

Appendix 3. SAS program for BLUP estimation of breeding values for yield.

```
data a ; infile "d:\1991-2000 Yield trial database.txt" ;
input env $ & 1-8 year 1-2 loc $ 4 test $ 6-8 entry $ & 14-28 fm 29-32
ls 34-37 ok 39-42 ss 44-47 fs 49-52 jumbo 54-57 fancy 59-62 elk 64-67
smk 69-72 meat 74-77 seed 79-83 pod 85-89 price 91-95 yield 97-100
value 102-105 jumbo_l 107-111 jumbo_a 113-117 jumbo_b 119-123 fancy_l
125-129 fancy_a 131-135 fancy_b 137-141 avg_l 143-147 defol 149-152 ;
if year<80 then year=year+2000 ; else year=year+1900 ;
fmpct=0 ;
if fm>4 then fmpct=fm-4 ;
fmpen=0.05*fmpct ;
if fmpen=. then fmpen=0 ;
spva=0.43985 ; sprun=0.43120 ; spelk=0.0175 ; spok=0.07 ; spls=0.07 ;
price=(spva*smk)+(spok*ok)+(spelk*elk)-fmpen ;
if fs<40 then price=(sprun*smk)+(spok*ok)-fmpen ;
lspen=0.01*ls*yield ; if ls=. then lspen=0 ;
value=((price*(yield-lspen))+(spls*lspen))/100 ;
drop fmpct fmpen spva sprun spelk spok spls lspen ;
if test='LAU' or test='LSU' then delete ;
proc sort data=a ; by entry ;
run ;
data b ; infile "d:\sas\Name list.txt" ;
input entry $ & 1-14 xlcode 16-18 procode 20-22 ;
proc sort data=b ; by entry ;
data a ; merge a b ; by entry ; if procode=. then delete ;
y=meat ;
mu=1 ; if y=. then do ; y=0 ; mu=0 ; end ;
t1=0 ; if env='89 L EAE' then t1=1 ; if env='01 W AYT' then t1=-1 ;
t2=0 ; if env='90 L EAE' then t2=1 ; if env='01 W AYT' then t2=-1 ;
t3=0 ; if env='91 L AYT' then t3=1 ; if env='01 W AYT' then t3=-1 ;
t4=0 ; if env='91 L EAE' then t4=1 ; if env='01 W AYT' then t4=-1 ;
t5=0 ; if env='91 L EAL' then t5=1 ; if env='01 W AYT' then t5=-1 ;
t6=0 ; if env='91 L LSS' then t6=1 ; if env='01 W AYT' then t6=-1 ;
t7=0 ; if env='91 L UPT' then t7=1 ; if env='01 W AYT' then t7=-1 ;
t8=0 ; if env='91 W AYT' then t8=1 ; if env='01 W AYT' then t8=-1 ;
t9=0 ; if env='92 L AYT' then t9=1 ; if env='01 W AYT' then t9=-1 ;
t10=0 ; if env='92 L CAT' then t10=1 ; if env='01 W AYT' then t10=-1 ;
t11=0 ; if env='92 L EAE' then t11=1 ; if env='01 W AYT' then t11=-1 ;
t12=0 ; if env='92 L EAL' then t12=1 ; if env='01 W AYT' then t12=-1 ;
t13=0 ; if env='92 L LSS' then t13=1 ; if env='01 W AYT' then t13=-1 ;
t14=0 ; if env='92 L UPT' then t14=1 ; if env='01 W AYT' then t14=-1 ;
t15=0 ; if env='92 W AYT' then t15=1 ; if env='01 W AYT' then t15=-1 ;
t16=0 ; if env='93 L AYT' then t16=1 ; if env='01 W AYT' then t16=-1 ;
```

```
t17=0 ; if env='93 L CAT' then t17=1 ; if env='01 W AYT' then t17=-1 ;
t18=0 ; if env='93 L EAE' then t18=1 ; if env='01 W AYT' then t18=-1 ;
t19=0 ; if env='93 L EAL' then t19=1 ; if env='01 W AYT' then t19=-1 ;
t20=0 ; if env='93 L LSS' then t20=1 ; if env='01 W AYT' then t20=-1 ;
t21=0 ; if env='93 L UPT' then t21=1 ; if env='01 W AYT' then t21=-1 ;
t22=0 ; if env='93 W AYT' then t22=1 ; if env='01 W AYT' then t22=-1 ;
t23=0 ; if env='94 L AYT' then t23=1 ; if env='01 W AYT' then t23=-1 ;
t24=0 ; if env='94 L CAT' then t24=1 ; if env='01 W AYT' then t24=-1 ;
t25=0 ; if env='94 L EAE' then t25=1 ; if env='01 W AYT' then t25=-1 ;
t26=0 ; if env='94 L EAL' then t26=1 ; if env='01 W AYT' then t26=-1 ;
t27=0 ; if env='94 L LSS' then t27=1 ; if env='01 W AYT' then t27=-1 ;
t28=0 ; if env='94 L UPT' then t28=1 ; if env='01 W AYT' then t28=-1 ;
t29=0 ; if env='94 W AYT' then t29=1 ; if env='01 W AYT' then t29=-1 ;
t30=0 ; if env='95 L AYT' then t30=1 ; if env='01 W AYT' then t30=-1 ;
t31=0 ; if env='95 L CAT' then t31=1 ; if env='01 W AYT' then t31=-1 ;
t32=0 ; if env='95 L EAE' then t32=1 ; if env='01 W AYT' then t32=-1 ;
t33=0 ; if env='95 L EAL' then t33=1 ; if env='01 W AYT' then t33=-1 ;
t34=0 ; if env='95 L LSS' then t34=1 ; if env='01 W AYT' then t34=-1 ;
t35=0 ; if env='95 L UPT' then t35=1 ; if env='01 W AYT' then t35=-1 ;
t36=0 ; if env='95 R AYT' then t36=1 ; if env='01 W AYT' then t36=-1 ;
t37=0 ; if env='95 W AYT' then t37=1 ; if env='01 W AYT' then t37=-1 ;
t38=0 ; if env='96 L AYT' then t38=1 ; if env='01 W AYT' then t38=-1 ;
t39=0 ; if env='96 L CAT' then t39=1 ; if env='01 W AYT' then t39=-1 ;
t40=0 ; if env='96 L EAE' then t40=1 ; if env='01 W AYT' then t40=-1 ;
t41=0 ; if env='96 L EAL' then t41=1 ; if env='01 W AYT' then t41=-1 ;
t42=0 ; if env='96 L JST' then t42=1 ; if env='01 W AYT' then t42=-1 ;
t43=0 ; if env='96 L LSS' then t43=1 ; if env='01 W AYT' then t43=-1 ;
t44=0 ; if env='96 L UPE' then t44=1 ; if env='01 W AYT' then t44=-1 ;
t45=0 ; if env='96 L UPL' then t45=1 ; if env='01 W AYT' then t45=-1 ;
t46=0 ; if env='96 R AYT' then t46=1 ; if env='01 W AYT' then t46=-1 ;
t47=0 ; if env='96 R JST' then t47=1 ; if env='01 W AYT' then t47=-1 ;
t48=0 ; if env='96 W AYT' then t48=1 ; if env='01 W AYT' then t48=-1 ;
t49=0 ; if env='97 L AYT' then t49=1 ; if env='01 W AYT' then t49=-1 ;
t50=0 ; if env='97 L CAT' then t50=1 ; if env='01 W AYT' then t50=-1 ;
t51=0 ; if env='97 L JST' then t51=1 ; if env='01 W AYT' then t51=-1 ;
t52=0 ; if env='97 L LSS' then t52=1 ; if env='01 W AYT' then t52=-1 ;
t53=0 ; if env='97 L UPE' then t53=1 ; if env='01 W AYT' then t53=-1 ;
t54=0 ; if env='97 L UPL' then t54=1 ; if env='01 W AYT' then t54=-1 ;
t55=0 ; if env='97 R AYT' then t55=1 ; if env='01 W AYT' then t55=-1 ;
t56=0 ; if env='97 R JST' then t56=1 ; if env='01 W AYT' then t56=-1 ;
t57=0 ; if env='97 W AYT' then t57=1 ; if env='01 W AYT' then t57=-1 ;
t58=0 ; if env='98 L AYT' then t58=1 ; if env='01 W AYT' then t58=-1 ;
t59=0 ; if env='98 L JST' then t59=1 ; if env='01 W AYT' then t59=-1 ;
t60=0 ; if env='98 L LAS' then t60=1 ; if env='01 W AYT' then t60=-1 ;
```

```
t61=0 ; if env='98 L SAT' then t61=1 ; if env='01 W AYT' then t61=-1 ;
t62=0 ; if env='98 R AYT' then t62=1 ; if env='01 W AYT' then t62=-1 ;
t63=0 ; if env='98 R JST' then t63=1 ; if env='01 W AYT' then t63=-1 ;
t64=0 ; if env='98 W AYT' then t64=1 ; if env='01 W AYT' then t64=-1 ;
t65=0 ; if env='99 L AYT' then t65=1 ; if env='01 W AYT' then t65=-1 ;
t66=0 ; if env='99 L LAS' then t66=1 ; if env='01 W AYT' then t66=-1 ;
t67=0 ; if env='99 L SAT' then t67=1 ; if env='01 W AYT' then t67=-1 ;
t68=0 ; if env='99 L UPE' then t68=1 ; if env='01 W AYT' then t68=-1 ;
t69=0 ; if env='99 R AYT' then t69=1 ; if env='01 W AYT' then t69=-1 ;
t70=0 ; if env='99 R JAT' then t70=1 ; if env='01 W AYT' then t70=-1 ;
t71=0 ; if env='00 L AYT' then t71=1 ; if env='01 W AYT' then t71=-1 ;
t72=0 ; if env='00 L JAT' then t72=1 ; if env='01 W AYT' then t72=-1 ;
t73=0 ; if env='00 L LAS' then t73=1 ; if env='01 W AYT' then t73=-1 ;
t74=0 ; if env='00 L SAT' then t74=1 ; if env='01 W AYT' then t74=-1 ;
t75=0 ; if env='00 R AYT' then t75=1 ; if env='01 W AYT' then t75=-1 ;
t76=0 ; if env='00 R JAT' then t76=1 ; if env='01 W AYT' then t76=-1 ;
t77=0 ; if env='00 W AYT' then t77=1 ; if env='01 W AYT' then t77=-1 ;
t78=0 ; if env='01 L AYT' then t78=1 ; if env='01 W AYT' then t78=-1 ;
t79=0 ; if env='01 L JAT' then t79=1 ; if env='01 W AYT' then t79=-1 ;
t80=0 ; if env='01 L LAS' then t80=1 ; if env='01 W AYT' then t80=-1 ;
t81=0 ; if env='01 L SAT' then t81=1 ; if env='01 W AYT' then t81=-1 ;
t82=0 ; if env='01 R AYT' then t82=1 ; if env='01 W AYT' then t82=-1 ;
t83=0 ; if env='01 R JAT' then t83=1 ; if env='01 W AYT' then t83=-1 ;
array z (i) z1-z132 ;
do over z ; z=0 ; if i=procode then z=1 ; end ;
proc sort data=a ; by entry loc year test ;
proc print data=a ; var env t1-t83 ;
run ;
```

proc mixed data=a covtest ; class env entry ;
model yield = ;
random env entry ;
run ;
proc mixed data=a covtest ; class entry ;
model yield = ;
random entry ;
run ;
data d ; infile "d:\sas\Coancestry matrix.txt" lrecl=13100 ;
input v1-v131 ;
proc iml ;
use a ;
use d ;

```
setin a ;
read all var {y} into y ;
read all var {mu
                    t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
                    t11 t12 t13 t14 t15 t16 t17 t18 t19 t20
                    t21 t22 t23 t24 t25 t26 t27 t28 t29 t30
                    t31 t32 t33 t34 t35 t36 t37 t38 t39 t40
                    t41 t42 t43 t44 t45 t46 t47 t48 t49 t50
                    t51 t52 t53 t54 t55 t56 t57 t58 t59 t60
                    t61 t62 t63 t64 t65 t66 t67 t68 t69 t70
                    t71 t72 t73 t74 t75 t76 t77 t78 t79 t80
                    t81 t82 t83} into x ;
read all
    var {z1 z2 z3 z4 z5 z6 z7 z8 z9 z10
        z11 z12 z13 z14 z15 z16 z17 z18 z19 z20
        z21 z22 z23 z24 z25 z26 z27 z28 z29 z30
        z31 z32 z33 z34 z35 z36 z37 z38 z39 z40
        z41 z42 z43 z44 z45 z46 z47 z48 z49 z50
        z51 z52 z53 z54 z55 z56 z57 z58 z59 z60
        z61 z62 z63 z64 z65 z66 z67 z68 z69 z70
        z71 z72 z73 z74 z75 z76 z77 z78 z79 z80
        z81 z82 z83 z84 z85 z86 z87 z88 z89 z90
        z91 z92 z93 z94 z95 z96 z97 z98 z99 z100
        z101 z102 z103 z104 z105 z106 z107 z108 z109 z110
        z111 z112 z113 z114 z115 z116 z117 z118 z119 z120
        z121 z122 z123 z124 z125 z126 z127 z128 z129 z130
        z131} into z ;
setin d ;
read all
    var {v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
        v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26
        v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39
        v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 v51 v52
        v53 v54 v55 v56 v57 v58 v59 v60 v61 v62 v63 v64 v65
        v66 v67 v68 v69 v70 v71 v72 v73 v74 v75 v76 v77 v78
        v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v89 v90 v91
        v92 v93 v94 v95 v96 v97 v98 v99 v100 v101 v102 v103 v104
        v105 v106 v107 v108 v109 v110 v111 v112 v113 v114 v115 v116 v117
        v118 v119 v120 v121 v122 v123 v124 v125 v126 v127 v128 v129 v130
        v131} into c ;
cn={"BLUP" "SE"} ;
h=0.0195397182639442 ; print "Solutions for H=0.0195397182639442" ;
```

```
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h))))))*((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h))!)!)) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.01 ; print "Solutions for H=0.01" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h)))))*((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h)))!)!) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.02 ; print "Solutions for H=0.02" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h))))))*((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h))!)!)) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.03 ; print "Solutions for H=0.03" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h))))))*((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h))!)!)) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.04 ; print "Solutions for H=0.04" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h))))))*((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h))!)!)) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.05 ; print "Solutions for H=0.05" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h))))))*((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h)))!)!) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.06 ; print "Solutions for H=0.06" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
h))))))*((x`*y)//(z`*y)) ;
```

```
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c#(h/(1-
```

h)))!)!) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.9999999 ; print "Solutions for $\mathrm{H}=1.00$ " ;
b=inv(((x`x)||(x`z))//((z`x)||((z`z)+inv(c\#(h/(1-
h))))) * (($x^{`}$ *y)//(z`*y)) ; se=sqrt(vecdiag(inv(((x`*)||(x`z))//((z`*x)||((z`z)+inv(c\#(h/(1-
h))!)!)) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
run ;

Appendix 4. SAS program for BLUP estimation of breeding values for TSWV incidence.

```
data a; infile "d:\sas\tswv without x lines.txt";
input env $ 1-4 test $ 6-8 genotype $ 14-30 dis 6.4;
```

```
data b ; infile "d:\sas\Name list.txt" ;
```

data b ; infile "d:\sas\Name list.txt" ;
input genotype \$ \& 1-14 xlcode 16-18 procode 20-22 ;
proc sort data=a ; by genotype ;
proc sort data=b ; by genotype ;
data c ; merge a b ; by genotype ;
if dis=. or procode=. then delete ;
mu=1 ;
t1=0 ; if env='96 G' and test='SMS' then t1=1 ; if env='01 L' and
test='DST' then t1=-1 ;
t2=0 ; if env='96 L' and test='CIR' then t2=1 ; if env='01 L' and
test='DST' then t2=-1 ;
t3=0 ; if env='97 L' and test='ALT' then t3=1 ; if env='01 L' and
test='DST' then t3=-1 ;
t4=0 ; if env='97 L' and test='CIR' then t4=1 ; if env='01 L' and
test='DST' then t4=-1 ;
t5=0 ; if env='97 L' and test='TAT' then t5=1 ; if env='01 L' and
test='DST' then t5=-1 ;
t6=0 ; if env='97 L' and test='TWT' then t6=1 ; if env='01 L' and
test='DST' then t6=-1 ;
t7=0 ; if env='98 L' and test='ALT' then t7=1 ; if env='01 L' and
test='DST' then t7=-1 ;
t8=0 ; if env='98 L' and test='TAT' then t8=1 ; if env='01 L' and
test='DST' then t8=-1 ;
t9=0 ; if env='98 L' and test='TWT' then t9=1 ; if env='01 L' and
test='DST' then t9=-1 ;
t10=0 ; if env='99 L' and test='ALT' then t10=1 ; if env='01 L' and
test='DST' then t10=-1 ;
t11=0 ; if env='99 L' and test='TAT' then t11=1 ; if env='01 L' and
test='DST' then t11=-1 ;
t12=0 ; if env='00 L' and test='ALT' then t12=1 ; if env='01 L' and
test='DST' then t12=-1 ;
t13=0 ; if env='00 L' and test='TAT' then t13=1 ; if env='01 L' and
test='DST' then t13=-1 ;
t14=0 ; if env='00 L' and test='TWT' then t14=1 ; if env='01 L' and
test='DST' then t14=-1 ;
t15=0 ; if env='01 L' and test='ALT' then t15=1 ; if env='01 L' and
test='DST' then t15=-1 ;
t16=0 ; if env='01 L' and test='TAT' then t16=1 ; if env='01 L' and
test='DST' then t16=-1 ;

```
```

t17=0 ; if env='01 L' and test='TWT' then t17=1 ; if env='01 L' and
test='DST' then t17=-1 ;
array z (i) z1-z132 ;
do over z ; z=0 ; if i=procode then z=1 ; end ;
proc sort data=c ; by env test genotype ;
proc print data=c ; var env test t1-t17 ;
run ;
proc glm data=c ; class env test procode ;
model dis=test(env) procode ;
lsmeans procode / stderr ;
run ;
proc mixed data=c covtest ;
class env test genotype ;
model dis= ;
random env test(env) genotype genotype*env ;
run ;
proc glm data=c ; class env test genotype ;
model dis= env test(env) genotype ;
lsmeans genotype / stderr ;
run ;
data d ; infile "d:\sas\Coancestry matrix.txt" lrecl=13100 ;
input v1-v131 ;
proc iml ;
use c ;
use d ;
setin c ;
read all var {dis} into y ;
read all var {mu t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16
t17} into x ;
read all

var	\{z1	z2	z3	z4	z5	z6	z7	z8	z9	z10	z11	z12	z13
	z14	z15	z16	z17	z18	z19	z20	z21	z22	z23	z24	z25	z26
	z27	z28	z29	z30	z31	z32	z33	z34	z35	z36	z37	z38	z39
	z40	z41	z42	z43	z44	z45	z46	z47	z48	z49	z50	z51	z52
	z53	z54	z55	z56	z57	z58	z59	z60	z61	z62	z63	z64	z65
	z66	z67	z68	z69	z70	z71	z72	z73	z74	z75	z76	z77	z78
	z79	z80	z81	z82	z83	z84	z85	z86	z87	z88	z89	z90	z91
	z92	z93	z94	z95	z96	z97	z98	z99	z100	z101	z102	z103	z104
	z105	z106	z107	z108	z109	z110	z111	z112	z113	z114	z115	z116	z117
	z118	z119	z120	z121	z122	z123	z124	z125	z126	z127	z128	z129	z130
	z131												

```
```

 into z ;
 setin d ;
read all
var {v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13
v14 v15 v16 v17 v18 v19 v20 v21 v22 v23 v24 v25 v26
v27 v28 v29 v30 v31 v32 v33 v34 v35 v36 v37 v38 v39
v40 v41 v42 v43 v44 v45 v46 v47 v48 v49 v50 v51 v52
v53 v54 v55 v56 v57 v58 v59 v60 v61 v62 v63 v64 v65
v66 v67 v68 v69 v70 v71 v72 v73 v74 v75 v76 v77 v78
v79 v80 v81 v82 v83 v84 v85 v86 v87 v88 v89 v90 v91
v92 v93 v94 v95 v96 v97 v98 v99 v100 v101 v102 v103 v104
v105 v106 v107 v108 v109 v110 v111 v112 v113 v114 v115 v116 v117
v118 v119 v120 v121 v122 v123 v124 v125 v126 v127 v128 v129 v130
v131} into c ;
cn={"BLUP" "SE"} ;
h=0.051764257104711 ; print "Solutions for H=0.051764257104711" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h))))) *(((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h)))!))!) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.01 ; print "Solutions for H=0.01" ;
b=inv(((\mp@subsup{x}{}{`*}x)||(x`*z))/ / ((z`*x)||((z`*z)+inv(c\# (h/ (1-
h))))))*((x`*y)/ /(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h))))!))) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.1 ; print "Solutions for H=0.10" ;
b=inv(((\mp@subsup{x}{}{`*}x)||(x`*z))/ /((\mp@subsup{z}{}{`*}x)||((\mp@subsup{z}{}{`}*z)+inv(c\#(h/(1-
h))))))*((x`*y)/ /(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h))))!))) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.15 ; print "Solutions for H=0.15" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\# (h/ (1-
h))))))*((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h))!))!)) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;

```
```

h=0.2 ; print "Solutions for H=0.20" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h))))))*((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h))!)!)) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.25 ; print "Solutions for H=0.25" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h))))))*((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h))!)!)) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.3 ; print "Solutions for H=0.30" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h))))))*((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h)))))**)) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
h=0.9999999 ; print "Solutions for H=1.00" ;
b=inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h))))))*((x`*y)//(z`*y)) ;
se=sqrt(vecdiag(inv(((x`*x)||(x`*z))//((z`*x)||((z`*z)+inv(c\#(h/(1-
h))!))**)) ;
b_and_se=b||se ; print b_and_se [colname=cn] ;
run ;

```

Appendix 5. Ranking of lines based on their index values in each of the six weighting schemes.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Index} & \multicolumn{6}{|c|}{Rank} & \multicolumn{5}{|c|}{Top 18 lines} \\
\hline Entry & I & II & III & IV & V & VI & I & II & III & IV & V & VI & I & & III IV & V V & V VI \\
\hline N91003E & 0.57 & 0.50 & 0.63 & 0.62 & 0.44 & 0.55 & 21 & 51 & 20 & 35 & 50 & 41 & & & & & \\
\hline N92025 & 0.52 & 0.45 & 0.60 & 0.61 & 0.37 & 0.52 & 50 & 70 & 35 & 38 & 82 & 53 & & & & & \\
\hline N96029 & 0.50 & 0.43 & 0.54 & 0.50 & 0.41 & 0.47 & 74 & 81 & 76 & 95 & 65 & 79 & & & & & \\
\hline N97068 & 0.60 & 0.54 & 0.63 & 0.60 & 0.52 & 0.58 & 8 & 36 & 21 & 51 & 16 & 31 & * & & & & * \\
\hline N97085 & 0.62 & 0.58 & 0.68 & 0.71 & 0.50 & 0.63 & 2 & 16 & 1 & 2 & 33 & 4 & * & * & * & * & * \\
\hline N98001 & 0.58 & 0.50 & 0.66 & 0.64 & 0.42 & 0.56 & 15 & 54 & 7 & 16 & 58 & 37 & * & & & * & \\
\hline N98002 & 0.59 & 0.50 & 0.67 & 0.65 & 0.43 & 0.57 & 13 & 52 & 3 & 13 & 54 & 34 & * & & & * & \\
\hline N98003 & 0.59 & 0.50 & 0.66 & 0.64 & 0.42 & 0.56 & 14 & 53 & 5 & 15 & 57 & 36 & * & & & * & \\
\hline N98022 & 0.50 & 0.46 & 0.55 & 0.59 & 0.38 & 0.50 & 76 & 66 & 72 & 63 & 77 & 61 & & & & & \\
\hline N98023 & 0.50 & 0.46 & 0.55 & 0.59 & 0.38 & 0.51 & 73 & 65 & 71 & 61 & 76 & 59 & & & & & \\
\hline N98028 & 0.50 & 0.40 & 0.60 & 0.56 & 0.32 & 0.47 & 68 & 103 & 37 & 71 & 103 & 76 & & & & & \\
\hline N98032 & 0.49 & 0.40 & 0.56 & 0.52 & 0.35 & 0.46 & 81 & 100 & 69 & 87 & 96 & 90 & & & & & \\
\hline N98033 & 0.51 & 0.44 & 0.59 & 0.58 & 0.36 & 0.50 & 53 & 79 & 50 & 64 & 86 & 62 & & & & & \\
\hline N99051 & 0.41 & 0.48 & 0.41 & 0.51 & 0.41 & 0.46 & 100 & 59 & 102 & 90 & 66 & 88 & & & & & \\
\hline N99073 & 0.50 & 0.40 & 0.58 & 0.54 & 0.35 & 0.47 & 65 & 95 & 56 & 82 & 95 & 82 & & & & & \\
\hline N00001 & 0.52 & 0.57 & 0.52 & 0.59 & 0.52 & 0.56 & 51 & 26 & 81 & 58 & 17 & 40 & & & & & \\
\hline N00033 & 0.61 & 0.54 & 0.68 & 0.67 & 0.46 & 0.60 & 5 & 37 & 2 & 6 & 44 & 13 & * & & * & * & * \\
\hline N00049 & 0.50 & 0.38 & 0.63 & 0.61 & 0.28 & 0.47 & 64 & 106 & 19 & 43 & 112 & 75 & & & & & \\
\hline N00052 & 0.50 & 0.37 & 0.64 & 0.61 & 0.28 & 0.47 & 62 & 107 & 17 & 45 & 114 & 77 & & & * & & \\
\hline N00053 & 0.50 & 0.37 & 0.63 & 0.60 & 0.28 & 0.47 & 69 & 109 & 22 & 49 & 113 & 81 & & & & & \\
\hline N00054 & 0.50 & 0.37 & 0.63 & 0.60 & 0.27 & 0.47 & 72 & 110 & 24 & 47 & 116 & 83 & & & & & \\
\hline N00055 & 0.50 & 0.37 & 0.63 & 0.61 & 0.27 & 0.47 & 67 & 108 & 18 & 44 & 115 & 78 & & & * & & \\
\hline N00058 & 0.51 & 0.38 & 0.64 & 0.61 & 0.28 & 0.47 & 60 & 105 & 16 & 46 & 110 & 73 & & & * & & \\
\hline N00060 & 0.49 & 0.37 & 0.63 & 0.60 & 0.27 & 0.47 & 77 & 112 & 25 & 52 & 119 & 85 & & & & & \\
\hline N00061 & 0.49 & 0.37 & 0.62 & 0.60 & 0.27 & 0.46 & 80 & 113 & 27 & 54 & 121 & 87 & & & & & \\
\hline N00062 & 0.49 & 0.37 & 0.62 & 0.60 & 0.27 & 0.47 & 78 & 111 & 26 & 53 & 118 & 86 & & & & & \\
\hline N00064 & 0.53 & 0.45 & 0.59 & 0.57 & 0.39 & 0.50 & 48 & 76 & 40 & 67 & 73 & 60 & & & & & \\
\hline N99100ol & 0.41 & 0.32 & 0.50 & 0.51 & 0.24 & 0.40 & 104 & 121 & 88 & 92 & 124 & 108 & & & & & \\
\hline N99103ol & 0.41 & 0.33 & 0.50 & 0.51 & 0.25 & 0.40 & 102 & 119 & 86 & 93 & 123 & 107 & & & & & \\
\hline N99109ol & 0.23 & 0.25 & 0.24 & 0.27 & 0.22 & 0.25 & 124 & 123 & 121 & 122 & 125 & 122 & & & & & \\
\hline N99113ol & 0.30 & 0.28 & 0.32 & 0.31 & 0.26 & 0.30 & 116 & 122 & 111 & 121 & 122 & 121 & & & & & \\
\hline N00087ol & 0.34 & 0.35 & 0.33 & 0.35 & 0.35 & 0.35 & 110 & 116 & 109 & 120 & 97 & 119 & & & & & \\
\hline N00088ol & 0.44 & 0.41 & 0.45 & 0.42 & 0.42 & 0.42 & 95 & 88 & 96 & 110 & 61 & 102 & & & & & \\
\hline N00089ol & 0.46 & 0.41 & 0.47 & 0.43 & 0.42 & 0.43 & 89 & 87 & 90 & 109 & 56 & 98 & & & & & \\
\hline N00090ol & 0.61 & 0.56 & 0.65 & 0.62 & 0.53 & 0.59 & 4 & 31 & 11 & 33 & 10 & 16 & * & & * & & * \\
\hline N00091ol & 0.61 & 0.56 & 0.65 & 0.62 & 0.53 & 0.59 & 3 & 32 & 9 & 34 & 9 & 17 & * & & * & & * \\
\hline N00095ol & 0.51 & 0.40 & 0.61 & 0.59 & 0.31 & 0.48 & 58 & 99 & 30 & 56 & 107 & 67 & & & & & \\
\hline N00098ol & 0.61 & 0.59 & 0.65 & 0.69 & 0.51 & 0.62 & 7 & 11 & 8 & 3 & 27 & 5 & * & * & * & * & * \\
\hline N00099ol & 0.60 & 0.58 & 0.64 & 0.68 & 0.50 & 0.61 & 9 & 15 & 14 & 4 & 31 & 6 & * & * & * & * & * \\
\hline N00102ol & 0.32 & 0.21 & 0.31 & 0.18 & 0.32 & 0.23 & 114 & 124 & 113 & 124 & 104 & 124 & & & & & \\
\hline N97053J & 0.34 & 0.37 & 0.33 & 0.35 & 0.36 & 0.35 & 109 & 114 & 110 & 119 & 84 & 118 & & & & & \\
\hline N99066J & 0.55 & 0.51 & 0.59 & 0.59 & 0.47 & 0.55 & 38 & 44 & 45 & 60 & 40 & 44 & & & & & \\
\hline N99067J & 0.59 & 0.51 & 0.66 & 0.65 & 0.44 & 0.57 & 11 & 46 & 6 & 9 & 51 & 32 & * & & * & * & \\
\hline N99068J & 0.52 & 0.43 & 0.57 & 0.52 & 0.40 & 0.48 & 52 & 82 & 62 & 88 & 69 & 68 & & & & & \\
\hline
\end{tabular}

Appendix 5 (cont.).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Index} & \multicolumn{6}{|c|}{Rank} & \multicolumn{6}{|c|}{Top 18 lines} \\
\hline Entry & I & II & III & IV & V & VI & I & II & III & IV & V & VI & I & II & III & IV & V & \\
\hline N99079J & 0.51 & 0.41 & 0.59 & 0.54 & 0.35 & 0.48 & 54 & 92 & 42 & 79 & 92 & 72 & & & & & & \\
\hline N99080J & 0.51 & 0.41 & 0.59 & 0.54 & 0.35 & 0.47 & 59 & 93 & 48 & 80 & 93 & 74 & & & & & & \\
\hline N99085J & 0.57 & 0.52 & 0.61 & 0.62 & 0.46 & 0.56 & 29 & 41 & 31 & 36 & 42 & 38 & & & & & & \\
\hline N00002J & 0.57 & 0.60 & 0.58 & 0.64 & 0.55 & 0.60 & 20 & 8 & 57 & 25 & 6 & 11 & & * & & & * & * \\
\hline N00034J & 0.56 & 0.52 & 0.61 & 0.64 & 0.44 & 0.57 & 33 & 42 & 29 & 22 & 49 & 35 & & & & & & \\
\hline N00035J & 0.59 & 0.53 & 0.65 & 0.66 & 0.46 & 0.58 & 12 & 39 & 10 & 7 & 47 & 25 & * & & * & * & & \\
\hline N00065J & 0.50 & 0.40 & 0.59 & 0.57 & 0.32 & 0.48 & 70 & 101 & 38 & 66 & 105 & 71 & & & & & & \\
\hline N99057F & 0.32 & 0.44 & 0.31 & 0.45 & 0.35 & 0.40 & 113 & 80 & 114 & 106 & 94 & 109 & & & & & & \\
\hline N92054C & 0.46 & 0.44 & 0.47 & 0.45 & 0.43 & 0.45 & 87 & 78 & 91 & 105 & 52 & 95 & & & & & & \\
\hline N94040C & 0.45 & 0.47 & 0.45 & 0.47 & 0.46 & 0.46 & 92 & 64 & 97 & 101 & 48 & 89 & & & & & & \\
\hline N95025C & 0.53 & 0.50 & 0.59 & 0.64 & 0.41 & 0.55 & 45 & 48 & 41 & 17 & 64 & 43 & & & & * & & \\
\hline N96006C & 0.41 & 0.38 & 0.46 & 0.48 & 0.31 & 0.42 & 99 & 104 & 92 & 99 & 106 & 105 & & & & & & \\
\hline N96009C & 0.42 & 0.35 & 0.50 & 0.50 & 0.27 & 0.41 & 97 & 118 & 89 & 97 & 117 & 106 & & & & & & \\
\hline N97122C & 0.50 & 0.40 & 0.59 & 0.55 & 0.33 & 0.47 & 71 & 102 & 46 & 76 & 100 & 84 & & & & & & \\
\hline N97129C & 0.50 & 0.35 & 0.64 & 0.56 & 0.27 & 0.45 & 63 & 117 & 13 & 70 & 120 & 94 & & & * & & & \\
\hline N97131C & 0.46 & 0.41 & 0.50 & 0.51 & 0.36 & 0.45 & 90 & 89 & 85 & 94 & 89 & 93 & & & & & & \\
\hline N97135C & 0.46 & 0.40 & 0.52 & 0.54 & 0.33 & 0.46 & 88 & 98 & 79 & 81 & 101 & 91 & & & & & & \\
\hline N97137C & 0.49 & 0.41 & 0.57 & 0.55 & 0.34 & 0.48 & 79 & 86 & 63 & 75 & 98 & 70 & & & & & & \\
\hline N97138C & 0.48 & 0.41 & 0.56 & 0.56 & 0.33 & 0.47 & 82 & 91 & 68 & 74 & 99 & 80 & & & & & & \\
\hline N97140C & 0.53 & 0.45 & 0.60 & 0.59 & 0.37 & 0.51 & 47 & 72 & 33 & 57 & 79 & 55 & & & & & & \\
\hline N97142C & 0.54 & 0.45 & 0.62 & 0.60 & 0.38 & 0.52 & 43 & 75 & 28 & 55 & 78 & 54 & & & & & & \\
\hline N98048CSm & 0.41 & 0.42 & 0.43 & 0.48 & 0.37 & 0.43 & 101 & 84 & 101 & 100 & 80 & 97 & & & & & & \\
\hline N98052C & 0.48 & 0.45 & 0.51 & 0.53 & 0.40 & 0.48 & 83 & 69 & 83 & 84 & 71 & 69 & & & & & & \\
\hline N99121CSm & 0.54 & 0.57 & 0.55 & 0.61 & 0.51 & 0.57 & 44 & 27 & 73 & 40 & 22 & 33 & & & & & & \\
\hline N99122CSm & 0.55 & 0.59 & 0.56 & 0.65 & 0.52 & 0.59 & 41 & 9 & 67 & 10 & 20 & 18 & & * & & * & & * \\
\hline N99128CSm & 0.53 & 0.53 & 0.56 & 0.60 & 0.47 & 0.55 & 46 & 40 & 70 & 48 & 39 & 42 & & & & & & \\
\hline N99129CSm & 0.56 & 0.48 & 0.63 & 0.61 & 0.41 & 0.54 & 34 & 60 & 23 & 42 & 63 & 47 & & & & & & \\
\hline N99130CSm & 0.57 & 0.48 & 0.64 & 0.61 & 0.42 & 0.54 & 26 & 58 & 15 & 41 & 59 & 46 & & & * & & & \\
\hline N99131CSm & 0.45 & 0.56 & 0.44 & 0.56 & 0.49 & 0.52 & 93 & 30 & 99 & 72 & 35 & 52 & & & & & & \\
\hline N99132CSm & 0.51 & 0.58 & 0.51 & 0.61 & 0.50 & 0.56 & 57 & 20 & 82 & 39 & 32 & 39 & & & & & & \\
\hline N99133CSm & 0.60 & 0.64 & 0.60 & 0.68 & 0.58 & 0.64 & 10 & 3 & 34 & 5 & 3 & 2 & * & * & & * & * & * \\
\hline N99137CSm & 0.50 & 0.49 & 0.52 & 0.53 & 0.46 & 0.51 & 61 & 55 & 80 & 83 & 46 & 58 & & & & & & \\
\hline N99138CSm & 0.52 & 0.50 & 0.54 & 0.55 & 0.47 & 0.52 & 49 & 50 & 74 & 77 & 38 & 51 & & & & & & \\
\hline N00076CSm & 0.55 & 0.51 & 0.58 & 0.59 & 0.46 & 0.55 & 42 & 45 & 55 & 59 & 45 & 45 & & & & & & \\
\hline N00077CSm & 0.51 & 0.49 & 0.53 & 0.53 & 0.46 & 0.51 & 55 & 56 & 77 & 85 & 43 & 57 & & & & & & \\
\hline N92066L & 0.36 & 0.45 & 0.36 & 0.50 & 0.35 & 0.43 & 107 & 74 & 107 & 96 & 90 & 100 & & & & & & \\
\hline N92068L & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 126 & 126 & 126 & 126 & 126 & 126 & & & & & & \\
\hline N93003L & 0.31 & 0.52 & 0.28 & 0.49 & 0.41 & 0.43 & 115 & 43 & 116 & 98 & 68 & 99 & & & & & & \\
\hline N93007L & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 126 & 126 & 126 & 126 & 126 & 126 & & & & & & \\
\hline N94015L & 0.24 & 0.40 & 0.22 & 0.42 & 0.28 & 0.34 & 123 & 96 & 124 & 111 & 109 & 120 & & & & & & \\
\hline N96074L & 0.17 & 0.33 & 0.14 & 0.27 & 0.28 & 0.25 & 125 & 120 & 125 & 123 & 111 & 123 & & & & & & \\
\hline N96076L & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 126 & 126 & 126 & 126 & 126 & 126 & & & & & & \\
\hline N97104L & 0.47 & 0.55 & 0.46 & 0.57 & 0.48 & 0.52 & 85 & 35 & 93 & 68 & 36 & 50 & & & & & & \\
\hline
\end{tabular}

Appendix 5 (cont.).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{6}{|c|}{Index} & \multicolumn{6}{|c|}{Rank} & \multicolumn{6}{|c|}{Top 18 lines} \\
\hline Entry & I & II & III & IV & V & VI & I & II & III & IV & V & VI & I & II & III I & IV & V & VI \\
\hline N97106L & 0.42 & 0.46 & 0.41 & 0.46 & 0.43 & 0.44 & 98 & 67 & 103 & 104 & 53 & 96 & & & & & & \\
\hline N97109L & 0.50 & 0.53 & 0.50 & 0.57 & 0.48 & 0.53 & 75 & 38 & 87 & 69 & 37 & 49 & & & & & & \\
\hline N99027L & 0.58 & 0.66 & 0.57 & 0.66 & 0.61 & 0.63 & 16 & 2 & 61 & 8 & 2 & 3 & * & * & & * & * & * \\
\hline N99034L & 0.43 & 0.50 & 0.43 & 0.54 & 0.43 & 0.49 & 96 & 49 & 100 & 78 & 55 & 66 & & & & & & \\
\hline N00009L & 0.26 & 0.44 & 0.23 & 0.40 & 0.36 & 0.36 & 122 & 77 & 123 & 116 & 88 & 117 & & & & & & \\
\hline N00010L & 0.27 & 0.46 & 0.24 & 0.41 & 0.37 & 0.37 & 120 & 68 & 120 & 114 & 81 & 114 & & & & & & \\
\hline N00011L & 0.26 & 0.45 & 0.23 & 0.40 & 0.36 & 0.36 & 121 & 73 & 122 & 115 & 85 & 116 & & & & & & \\
\hline N00012L & 0.32 & 0.49 & 0.29 & 0.46 & 0.41 & 0.42 & 112 & 57 & 115 & 102 & 67 & 104 & & & & & & \\
\hline N00019L & 0.38 & 0.45 & 0.37 & 0.46 & 0.40 & 0.43 & 105 & 71 & 105 & 103 & 70 & 101 & & & & & & \\
\hline N00020L & 0.34 & 0.41 & 0.33 & 0.42 & 0.36 & 0.39 & 108 & 90 & 108 & 113 & 83 & 112 & & & & & & \\
\hline N00022L & 0.46 & 0.58 & 0.45 & 0.57 & 0.51 & 0.53 & 86 & 21 & 98 & 65 & 28 & 48 & & & & & & \\
\hline N00023L & 0.29 & 0.47 & 0.26 & 0.43 & 0.38 & 0.39 & 117 & 62 & 118 & 107 & 74 & 110 & & & & & & \\
\hline N00024L & 0.29 & 0.47 & 0.26 & 0.43 & 0.38 & 0.39 & 118 & 63 & 119 & 108 & 75 & 111 & & & & & & \\
\hline N97064NT & 0.41 & 0.56 & 0.38 & 0.52 & 0.49 & 0.49 & 103 & 33 & 104 & 86 & 34 & 63 & & & & & & \\
\hline N01001T & 0.57 & 0.60 & 0.58 & 0.64 & 0.55 & 0.60 & 23 & 7 & 58 & 19 & 7 & 10 & & * & & & * & * \\
\hline N01002T & 0.56 & 0.59 & 0.58 & 0.64 & 0.53 & 0.59 & 30 & 12 & 59 & 27 & 12 & 19 & & * & & & * & \\
\hline N01003T & 0.55 & 0.57 & 0.57 & 0.63 & 0.51 & 0.58 & 37 & 24 & 64 & 30 & 25 & 29 & & & & & & \\
\hline N01004T & 0.55 & 0.58 & 0.57 & 0.63 & 0.51 & 0.58 & 39 & 19 & 65 & 31 & 21 & 28 & & & & & & \\
\hline N01005T & 0.55 & 0.57 & 0.57 & 0.63 & 0.51 & 0.58 & 40 & 23 & 66 & 32 & 24 & 30 & & & & & & \\
\hline N01006T & 0.56 & 0.57 & 0.57 & 0.63 & 0.51 & 0.58 & 35 & 22 & 60 & 29 & 23 & 27 & & & & & & \\
\hline N01007T & 0.56 & 0.57 & 0.58 & 0.64 & 0.50 & 0.58 & 32 & 29 & 54 & 28 & 30 & 26 & & & & & & \\
\hline N01008T & 0.56 & 0.57 & 0.58 & 0.64 & 0.51 & 0.58 & 31 & 28 & 53 & 26 & 29 & 24 & & & & & & \\
\hline N01009T & 0.57 & 0.59 & 0.59 & 0.64 & 0.53 & 0.59 & 25 & 14 & 49 & 21 & 14 & 15 & & * & & & * & * \\
\hline N01010T & 0.57 & 0.59 & 0.59 & 0.64 & 0.53 & 0.59 & 24 & 13 & 47 & 20 & 13 & 14 & & * & & & * & * \\
\hline N01011T & 0.58 & 0.59 & 0.60 & 0.65 & 0.53 & 0.60 & 19 & 10 & 36 & 14 & 11 & 12 & & * & & * & * & * \\
\hline N01012T & 0.57 & 0.58 & 0.59 & 0.64 & 0.52 & 0.59 & 28 & 18 & 52 & 24 & 19 & 22 & & * & & & & \\
\hline N01013T & 0.57 & 0.58 & 0.59 & 0.64 & 0.52 & 0.59 & 27 & 17 & 51 & 23 & 18 & 21 & & * & & & * & \\
\hline N01014T & 0.58 & 0.62 & 0.59 & 0.65 & 0.56 & 0.61 & 17 & 4 & 43 & 11 & 4 & 7 & * & * & & * & * & * \\
\hline N01015T & 0.58 & 0.61 & 0.59 & 0.65 & 0.56 & 0.61 & 18 & 6 & 44 & 12 & 5 & 9 & * & * & & * & * & * \\
\hline N01016T & 0.57 & 0.57 & 0.59 & 0.64 & 0.51 & 0.59 & 22 & 25 & 39 & 18 & 26 & 20 & & & & * & & \\
\hline N01017T & 0.50 & 0.47 & 0.54 & 0.56 & 0.42 & 0.51 & 66 & 61 & 75 & 73 & 60 & 56 & & & & & & \\
\hline NC 7 & 0.61 & 0.55 & 0.64 & 0.62 & 0.52 & 0.59 & 6 & 34 & 12 & 37 & 15 & 23 & * & & * & & * & \\
\hline NC 9 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 126 & 126 & 126 & 126 & 126 & 126 & & & & & & \\
\hline NC 10C & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 126 & 126 & 126 & 126 & 126 & 126 & & & & & & \\
\hline NC-V 11 & 0.36 & 0.36 & 0.37 & 0.37 & 0.36 & 0.36 & 106 & 115 & 106 & 118 & 87 & 115 & & & & & & \\
\hline NC 12C & 0.51 & 0.42 & 0.61 & 0.60 & 0.32 & 0.49 & 56 & 85 & 32 & 50 & 102 & 64 & & & & & & \\
\hline Gregory & 0.63 & 0.61 & 0.66 & 0.71 & 0.54 & 0.64 & 1 & 5 & 4 & 1 & 8 & 1 & * & * & * & * & * & * \\
\hline Perry & 0.47 & 0.41 & 0.53 & 0.51 & 0.35 & 0.45 & 84 & 94 & 78 & 91 & 91 & 92 & & & & & & \\
\hline VA-C 92R & 0.44 & 0.40 & 0.46 & 0.42 & 0.41 & 0.42 & 94 & 97 & 94 & 112 & 62 & 103 & & & & & & \\
\hline VA 93B & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 126 & 126 & 126 & 126 & 126 & 126 & & & & & & \\
\hline VA 98R & 0.28 & 0.17 & 0.26 & 0.13 & 0.31 & 0.18 & 119 & 125 & 117 & 125 & 108 & 125 & & & & & & \\
\hline Wilson & 0.46 & 0.50 & 0.45 & 0.52 & 0.47 & 0.49 & 91 & 47 & 95 & 89 & 41 & 65 & & & & & & \\
\hline Georg. Green & 0.34 & 0.42 & 0.31 & 0.39 & 0.40 & 0.38 & 111 & 83 & 112 & 117 & 72 & 113 & & & & & & \\
\hline PI 576636 & 0.56 & 0.68 & 0.51 & 0.59 & 0.70 & 0.61 & 36 & 1 & 84 & 62 & 1 & 8 & & * & & & * & * \\
\hline
\end{tabular}

Appendix 6. Tests of independence for evaluating the null hypothesis that there were no significant differences in TSWV infection \((S, R)\) between the two genotypes \((0,1)\) at each marker locus.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Marker & \(\mathrm{n}_{00}\) & \(\mathrm{n}_{01}\) & \(\mathrm{n}_{10}\) & \(\mathrm{n}_{11}\) & \(\mathrm{n}_{0}\). & \(\mathrm{n}_{1}\) & n. 0 & n. 1 & n. & \(\mathrm{e}_{00}\) & \(\mathrm{e}_{01}\) & \(\mathrm{e}_{10}\) & \(\mathrm{e}_{11}\) & \(\mathrm{X}^{2}\) & Prob \\
\hline E32M61-1 & 22 & 38 & 46 & 70 & 60 & 116 & 68 & 108 & 176 & 23.2 & 36.8 & 44.8 & 71.2 & 0.05 & 0.82 \\
\hline E32M61-2 & 45 & 75 & 23 & 33 & 120 & 56 & 68 & 108 & 176 & 46.4 & 73.6 & 21.6 & 34.4 & 0.08 & 0.77 \\
\hline E32M61-3 & 23 & 36 & 45 & 72 & 59 & 117 & 68 & 108 & 176 & 22.8 & 36.2 & 45.2 & 71.8 & 0.01 & 0.92 \\
\hline E32M61-4 & 38 & 43 & 25 & 63 & 81 & 88 & 63 & 106 & 169 & 30.2 & 50.8 & 32.8 & 55.2 & 5.41 & 0.02 \\
\hline E32M61-5 & 46 & 44 & 22 & 64 & 90 & 86 & 68 & 108 & 176 & 34.8 & 55.2 & 33.2 & 52.8 & 11.04 & 0.00 \\
\hline E33M56-1 & 60 & 79 & 8 & 29 & 139 & 37 & 68 & 108 & 176 & 53.7 & 85.3 & 14.3 & 22.7 & 4.85 & 0.03 \\
\hline E33M56-2 & 15 & 23 & 53 & 85 & 38 & 138 & 68 & 108 & 176 & 14.7 & 23.3 & 53.3 & 84.7 & 0.00 & 0.95 \\
\hline E33M56-3 & 9 & 7 & 59 & 100 & 16 & 159 & 68 & 107 & 175 & 6.22 & 9.78 & 61.8 & 97.2 & 1.51 & 0.22 \\
\hline E33M56-4 & 17 & 28 & 50 & 80 & 45 & 130 & 67 & 108 & 175 & 17.2 & 27.8 & 49.8 & 80.2 & 0.01 & 0.92 \\
\hline E33M56-5 & 24 & 29 & 44 & 76 & 53 & 120 & 68 & 105 & 173 & 20.8 & 32.2 & 47.2 & 72.8 & 0.81 & 0.37 \\
\hline E33M56-6 & 19 & 44 & 49 & 64 & 63 & 113 & 68 & 108 & 176 & 24.3 & 38.7 & 43.7 & 69.3 & 2.44 & 0.12 \\
\hline E33M56-7 & 56 & 65 & 11 & 43 & 121 & 54 & 67 & 108 & 175 & 46.3 & 74.7 & 20.7 & 33.3 & 9.54 & 0.00 \\
\hline E33M56-8 & 35 & 39 & 33 & 69 & 74 & 102 & 68 & 108 & 176 & 28.6 & 45.4 & 39.4 & 62.6 & 3.43 & 0.06 \\
\hline E33M56-9 & 59 & 73 & 9 & 35 & 132 & 44 & 68 & 108 & 176 & 51 & 81 & 17 & 27 & 7.19 & 0.01 \\
\hline E33M56-10 & 33 & 44 & 35 & 64 & 77 & 99 & 68 & 108 & 176 & 29.8 & 47.3 & 38.3 & 60.8 & 0.74 & 0.39 \\
\hline E33M57-1 & 17 & 38 & 50 & 69 & 55 & 119 & 67 & 107 & 174 & 21.2 & 33.8 & 45.8 & 73.2 & 1.52 & 0.22 \\
\hline E33M57-2 & 30 & 44 & 38 & 64 & 74 & 102 & 68 & 108 & 176 & 28.6 & 45.4 & 39.4 & 62.6 & 0.08 & 0.78 \\
\hline E33M57-3 & 28 & 38 & 40 & 69 & 66 & 109 & 68 & 107 & 175 & 25.6 & 40.4 & 42.4 & 66.6 & 0.35 & 0.55 \\
\hline E33M57-4 & 26 & 34 & 41 & 73 & 60 & 114 & 67 & 107 & 174 & 23.1 & 36.9 & 43.9 & 70.1 & 0.62 & 0.43 \\
\hline E33M57-5 & 14 & 27 & 53 & 81 & 41 & 134 & 67 & 108 & 175 & 15.7 & 25.3 & 51.3 & 82.7 & 0.19 & 0.66 \\
\hline E33M57-6 & 27 & 40 & 41 & 68 & 67 & 109 & 68 & 108 & 176 & 25.9 & 41.1 & 42.1 & 66.9 & 0.04 & 0.84 \\
\hline E33M57-7 & 20 & 30 & 48 & 78 & 50 & 126 & 68 & 108 & 176 & 19.3 & 30.7 & 48.7 & 77.3 & 0.00 & 0.95 \\
\hline E33M57-8 & 29 & 39 & 37 & 69 & 68 & 106 & 66 & 108 & 174 & 25.8 & 42.2 & 40.2 & 65.8 & 0.75 & 0.39 \\
\hline E36M51-1 & 40 & 45 & 28 & 63 & 85 & 91 & 68 & 108 & 176 & 32.8 & 52.2 & 35.2 & 55.8 & 4.26 & 0.04 \\
\hline E36M51-2 & 38 & 41 & 30 & 67 & 79 & 97 & 68 & 108 & 176 & 30.5 & 48.5 & 37.5 & 59.5 & 4.72 & 0.03 \\
\hline E36M51-3 & 30 & 44 & 38 & 64 & 74 & 102 & 68 & 108 & 176 & 28.6 & 45.4 & 39.4 & 62.6 & 0.08 & 0.78 \\
\hline E36M51-4 & 40 & 62 & 28 & 46 & 102 & 74 & 68 & 108 & 176 & 39.4 & 62.6 & 28.6 & 45.4 & 0.00 & 0.98 \\
\hline E36M51-5 & 22 & 32 & 45 & 75 & 54 & 120 & 67 & 107 & 174 & 20.8 & 33.2 & 46.2 & 73.8 & 0.06 & 0.81 \\
\hline E36M51-6 & 22 & 23 & 46 & 85 & 45 & 131 & 68 & 108 & 176 & 17.4 & 27.6 & 50.6 & 80.4 & 2.13 & 0.14 \\
\hline E36M54-1 & 27 & 42 & 40 & 66 & 69 & 106 & 67 & 108 & 175 & 26.4 & 42.6 & 40.6 & 65.4 & 0.00 & 0.98 \\
\hline E36M54-2 & 28 & 39 & 40 & 69 & 67 & 109 & 68 & 108 & 176 & 25.9 & 41.1 & 42.1 & 66.9 & 0.26 & 0.61 \\
\hline E36M54-3 & 24 & 19 & 43 & 89 & 43 & 132 & 67 & 108 & 175 & 16.5 & 26.5 & 50.5 & 81.5 & 6.46 & 0.01 \\
\hline E36M54-4 & 26 & 42 & 39 & 66 & 68 & 105 & 65 & 108 & 173 & 25.5 & 42.5 & 39.5 & 65.5 & 0.00 & 0.99 \\
\hline E36M54-5 & 18 & 42 & 50 & 66 & 60 & 116 & 68 & 108 & 176 & 23.2 & 36.8 & 44.8 & 71.2 & 2.34 & 0.13 \\
\hline E36M54-6 & 18 & 40 & 50 & 68 & 58 & 118 & 68 & 108 & 176 & 22.4 & 35.6 & 45.6 & 72.4 & 1.66 & 0.20 \\
\hline E36M54-7 & 31 & 41 & 37 & 67 & 72 & 104 & 68 & 108 & 176 & 27.8 & 44.2 & 40.2 & 63.8 & 0.71 & 0.40 \\
\hline E36M54-8 & 64 & 108 & 4 & 0 & 172 & 4 & 68 & 108 & 176 & 66.5 & 106 & 1.55 & 2.45 & 4.12 & 0.04 \\
\hline E37M52-1 & 22 & 32 & 45 & 76 & 54 & 121 & 67 & 108 & 175 & 20.7 & 33.3 & 46.3 & 74.7 & 0.08 & 0.78 \\
\hline E37M52-2 & 19 & 29 & 49 & 79 & 48 & 128 & 68 & 108 & 176 & 18.5 & 29.5 & 49.5 & 78.5 & 0.00 & 0.99 \\
\hline E37M52-3 & 26 & 43 & 42 & 65 & 69 & 107 & 68 & 108 & 176 & 26.7 & 42.3 & 41.3 & 65.7 & 0.00 & 0.96 \\
\hline
\end{tabular}

Appendix 6 (cont.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Marker & \(\mathrm{n}_{00}\) & \(\mathrm{n}_{01}\) & \(\mathrm{n}_{10}\) & \(\mathrm{n}_{11}\) & \(\mathrm{n}_{0}\). & \(\mathrm{n}_{1}\). & \(\mathrm{n}^{0}\) & n. 1 & n.. & \(\mathrm{e}_{00}\) & \(\mathrm{e}_{01}\) & \(\mathrm{e}_{10}\) & \(\mathrm{e}_{11}\) & \(\mathrm{X}^{2}\) & Prob \\
\hline E37M52-4 & 15 & 30 & 51 & 77 & 45 & 128 & 66 & 107 & 173 & 17.2 & 27.8 & 48.8 & 79.2 & 0.35 & 0.55 \\
\hline E38M53-1 & 32 & 43 & 35 & 64 & 75 & 99 & 67 & 107 & 174 & 28.9 & 46.1 & 38.1 & 60.9 & 0.68 & 0.41 \\
\hline E38M53-2 & 21 & 45 & 47 & 63 & 66 & 110 & 68 & 108 & 176 & 25.5 & 40.5 & 42.5 & 67.5 & 1.64 & 0.20 \\
\hline E38M53-3 & 18 & 21 & 50 & 85 & 39 & 135 & 68 & 106 & 174 & 15.2 & 23.8 & 52.8 & 82.2 & 0.71 & 0.40 \\
\hline E38M53-4 & 19 & 26 & 49 & 82 & 45 & 131 & 68 & 108 & 176 & 17.4 & 27.6 & 50.6 & 80.4 & 0.16 & 0.69 \\
\hline E38M53-5 & 24 & 50 & 44 & 58 & 74 & 102 & 68 & 108 & 176 & 28.6 & 45.4 & 39.4 & 62.6 & 1.65 & 0.20 \\
\hline E38M59-1 & 30 & 46 & 38 & 62 & 76 & 100 & 68 & 108 & 176 & 29.4 & 46.6 & 38.6 & 61.4 & 0.00 & 0.97 \\
\hline E38M59-2 & 27 & 51 & 41 & 57 & 78 & 98 & 68 & 108 & 176 & 30.1 & 47.9 & 37.9 & 60.1 & 0.67 & 0.41 \\
\hline E38M59-3 & 20 & 35 & 48 & 72 & 55 & 120 & 68 & 107 & 175 & 21.4 & 33.6 & 46.6 & 73.4 & 0.08 & 0.77 \\
\hline E38M59-4 & 20 & 24 & 47 & 84 & 44 & 131 & 67 & 108 & 175 & 16.8 & 27.2 & 50.2 & 80.8 & 0.91 & 0.34 \\
\hline E38M59-5 & 13 & 21 & 55 & 84 & 34 & 139 & 68 & 105 & 173 & 13.4 & 20.6 & 54.6 & 84.4 & 0.00 & 0.96 \\
\hline E38M59-6 & 30 & 38 & 38 & 70 & 68 & 108 & 68 & 108 & 176 & 26.3 & 41.7 & 41.7 & 66.3 & 1.05 & 0.30 \\
\hline E38M59-7 & 21 & 16 & 47 & 92 & 37 & 139 & 68 & 108 & 176 & 14.3 & 22.7 & 53.7 & 85.3 & 5.56 & 0.02 \\
\hline E38M59-8 & 27 & 49 & 40 & 59 & 76 & 99 & 67 & 108 & 175 & 29.1 & 46.9 & 37.9 & 61.1 & 0.25 & 0.62 \\
\hline E38M59-9 & 22 & 39 & 45 & 65 & 61 & 110 & 67 & 104 & 171 & 23.9 & 37.1 & 43.1 & 66.9 & 0.21 & 0.65 \\
\hline E38M59-10 & 12 & 19 & 56 & 89 & 31 & 145 & 68 & 108 & 176 & 12 & 19 & 56 & 89 & 0.04 & 0.85 \\
\hline E41M49-1 & 26 & 33 & 39 & 70 & 59 & 109 & 65 & 103 & 168 & 22.8 & 36.2 & 42.2 & 66.8 & 0.79 & 0.38 \\
\hline E41M49-2 & 10 & 9 & 56 & 95 & 19 & 151 & 66 & 104 & 170 & 7.38 & 11.6 & 58.6 & 92.4 & 1.13 & 0.29 \\
\hline E41M49-3 & 11 & 16 & 55 & 85 & 27 & 140 & 66 & 101 & 167 & 10.7 & 16.3 & 55.3 & 84.7 & 0.01 & 0.94 \\
\hline E41M49-4 & 20 & 42 & 46 & 62 & 62 & 108 & 66 & 104 & 170 & 24.1 & 37.9 & 41.9 & 66.1 & 1.36 & 0.24 \\
\hline E41M52-1 & 27 & 39 & 41 & 68 & 66 & 109 & 68 & 107 & 175 & 25.6 & 40.4 & 42.4 & 66.6 & 0.07 & 0.78 \\
\hline E41M52-2 & 27 & 32 & 41 & 76 & 59 & 117 & 68 & 108 & 176 & 22.8 & 36.2 & 45.2 & 71.8 & 1.48 & 0.22 \\
\hline E41M52-3 & 28 & 45 & 40 & 63 & 73 & 103 & 68 & 108 & 176 & 28.2 & 44.8 & 39.8 & 63.2 & 0.01 & 0.93 \\
\hline E41M52-4 & 17 & 36 & 51 & 71 & 53 & 122 & 68 & 107 & 175 & 20.6 & 32.4 & 47.4 & 74.6 & 1.09 & 0.30 \\
\hline E41M52-5 & 17 & 40 & 50 & 68 & 57 & 118 & 67 & 108 & 175 & 21.8 & 35.2 & 45.2 & 72.8 & 2.06 & 0.15 \\
\hline E41M52-6 & 10 & 17 & 58 & 89 & 27 & 147 & 68 & 106 & 174 & 10.6 & 16.4 & 57.4 & 89.6 & 0.00 & 0.98 \\
\hline E45M48-1 & 23 & 30 & 45 & 75 & 53 & 120 & 68 & 105 & 173 & 20.8 & 32.2 & 47.2 & 72.8 & 0.32 & 0.57 \\
\hline E45M48-2 & 20 & 23 & 48 & 85 & 43 & 133 & 68 & 108 & 176 & 16.6 & 26.4 & 51.4 & 81.6 & 1.08 & 0.30 \\
\hline E45M48-3 & 10 & 13 & 58 & 94 & 23 & 152 & 68 & 107 & 175 & 8.94 & 14.1 & 59.1 & 92.9 & 0.07 & 0.80 \\
\hline E45M48-4 & 12 & 14 & 56 & 94 & 26 & 150 & 68 & 108 & 176 & 10 & 16 & 58 & 92 & 0.40 & 0.53 \\
\hline E45M48-5 & 20 & 21 & 46 & 87 & 41 & 133 & 66 & 108 & 174 & 15.6 & 25.4 & 50.4 & 82.6 & 2.11 & 0.15 \\
\hline E45M48-6 & 27 & 32 & 41 & 76 & 59 & 117 & 68 & 108 & 176 & 22.8 & 36.2 & 45.2 & 71.8 & 1.48 & 0.22 \\
\hline E45M48-7 & 11 & 10 & 57 & 98 & 21 & 155 & 68 & 108 & 176 & 8.11 & 12.9 & 59.9 & 95.1 & 1.30 & 0.25 \\
\hline E45M48-8 & 19 & 45 & 49 & 63 & 64 & 112 & 68 & 108 & 176 & 24.7 & 39.3 & 43.3 & 68.7 & 2.83 & \(0.09 \dagger\) \\
\hline E45M48-9 & 19 & 29 & 48 & 77 & 48 & 125 & 67 & 106 & 173 & 18.6 & 29.4 & 48.4 & 76.6 & 0.00 & 0.98 \\
\hline E45M48-10 & 24 & 24 & 43 & 84 & 48 & 127 & 67 & 108 & 175 & 18.4 & 29.6 & 48.6 & 78.4 & 3.19 & \(0.07 \dagger\) \\
\hline E45M48-11 & 10 & 6 & 58 & 101 & 16 & 159 & 68 & 107 & 175 & 6.22 & 9.78 & 61.8 & 97.2 & 3.12 & \(0.08 \dagger\) \\
\hline E45M48-12 & 16 & 23 & 52 & 85 & 39 & 137 & 68 & 108 & 176 & 15.1 & 23.9 & 52.9 & 84.1 & 0.03 & 0.87 \\
\hline E45M48-13 & 13 & 19 & 55 & 89 & 32 & 144 & 68 & 108 & 176 & 12.4 & 19.6 & 55.6 & 88.4 & 0.00 & 0.96 \\
\hline E45M48-14 & 16 & 31 & 52 & 75 & 47 & 127 & 68 & 106 & 174 & 18.4 & 28.6 & 49.6 & 77.4 & 0.43 & 0.51 \\
\hline E45M48-15 & 25 & 29 & 43 & 79 & 54 & 122 & 68 & 108 & 176 & 20.9 & 33.1 & 47.1 & 74.9 & 1.49 & 0.22 \\
\hline
\end{tabular}

\section*{Appendix 6 (cont.)}
\begin{tabular}{lcccccccccccccccc}
\hline Marker & \(\mathrm{n}_{00}\) & \(\mathrm{n}_{01}\) & \(\mathrm{n}_{10}\) & \(\mathrm{n}_{11}\) & \(\mathrm{n}_{0}\). & \(\mathrm{n}_{1}\). & \(\mathrm{n}_{0}\) & \(\mathrm{n}_{\cdot 1}\) & \(\mathrm{n} .\). & \(\mathrm{e}_{00}\) & \(\mathrm{e}_{01}\) & \(\mathrm{e}_{10}\) & \(\mathrm{e}_{11}\) & \(\mathrm{X}^{2}\) & Prob \\
\hline E45M48-16 & 14 & 20 & 54 & 88 & 34 & 142 & 68 & 108 & 176 & 13.1 & 20.9 & 54.9 & 87.1 & 0.02 & 0.89 \\
E46M47-1 & 18 & 22 & 46 & 80 & 40 & 126 & 64 & 102 & 166 & 15.4 & 24.6 & 48.6 & 77.4 & 0.60 & 0.44 \\
E46M47-2 & 19 & 28 & 46 & 77 & 47 & 123 & 65 & 105 & 170 & 18 & 29 & 47 & 76 & 0.03 & 0.85 \\
E46M47-3 & 40 & 45 & 25 & 60 & 85 & 85 & 65 & 105 & 170 & 32.5 & 52.5 & 32.5 & 52.5 & 4.88 & 0.03 & \(*\) \\
E46M47-4 & 22 & 47 & 43 & 58 & 69 & 101 & 65 & 105 & 170 & 26.4 & 42.6 & 38.6 & 62.4 & 1.56 & 0.21 \\
E46M47-5 & 26 & 25 & 39 & 80 & 51 & 119 & 65 & 105 & 170 & 19.5 & 31.5 & 45.5 & 73.5 & 4.27 & 0.04 & \(*\) \\
E46M49-1 & 19 & 30 & 40 & 76 & 49 & 116 & 59 & 106 & 165 & 17.5 & 31.5 & 41.5 & 74.5 & 0.12 & 0.73 \\
E46M49-2 & 12 & 26 & 48 & 80 & 38 & 128 & 60 & 106 & 166 & 13.7 & 24.3 & 46.3 & 81.7 & 0.23 & 0.63 \\
E46M49-3 & 60 & 97 & 0 & 9 & 157 & 9 & 60 & 106 & 166 & 56.7 & 100 & 3.25 & 5.75 & 3.86 & 0.05 & \(*\) \\
E46M49-4 & 21 & 28 & 39 & 78 & 49 & 117 & 60 & 106 & 166 & 17.7 & 31.3 & 42.3 & 74.7 & 0.98 & 0.32 \\
E46M49-5 & 20 & 45 & 40 & 61 & 65 & 101 & 60 & 106 & 166 & 23.5 & 41.5 & 36.5 & 64.5 & 0.98 & 0.32 \\
E46M49-6 & 21 & 41 & 38 & 63 & 62 & 101 & 59 & 104 & 163 & 22.4 & 39.6 & 36.6 & 64.4 & 0.10 & 0.75 \\
E46M49-7 & 12 & 32 & 48 & 74 & 44 & 122 & 60 & 106 & 166 & 15.9 & 28.1 & 44.1 & 77.9 & 1.55 & 0.21 \\
E46M49-8 & 49 & 56 & 14 & 50 & 105 & 64 & 63 & 106 & 169 & 39.1 & 65.9 & 23.9 & 40.1 & 9.42 & 0.00 & \(* *\) \\
E46M49-9 & 13 & 28 & 50 & 78 & 41 & 128 & 63 & 106 & 169 & 15.3 & 25.7 & 47.7 & 80.3 & 0.44 & 0.51 \\
E46M49-10 & 27 & 44 & 36 & 62 & 71 & 98 & 63 & 106 & 169 & 26.5 & 44.5 & 36.5 & 61.5 & 0.00 & 0.99 \\
E46M49-11 & 13 & 20 & 51 & 86 & 33 & 137 & 64 & 106 & 170 & 12.4 & 20.6 & 51.6 & 85.4 & 0.00 & 0.98 \\
E46M49-12 & 22 & 42 & 42 & 65 & 64 & 107 & 64 & 107 & 171 & 24 & 40 & 40 & 67 & 0.23 & 0.64 \\
E46M49-13 & 6 & 11 & 59 & 96 & 17 & 155 & 65 & 107 & 172 & 6.42 & 10.6 & 58.6 & 96.4 & 0.00 & 0.97 \\
E46M49-14 & 29 & 42 & 36 & 65 & 71 & 101 & 65 & 107 & 172 & 26.8 & 44.2 & 38.2 & 62.8 & 0.28 & 0.59 \\
E46M49-15 & 53 & 61 & 12 & 46 & 114 & 58 & 65 & 107 & 172 & 43.1 & 70.9 & 21.9 & 36.1 & 9.82 & 0.00 & \(* *\) \\
\hline
\end{tabular}
\(\dagger, *, * *\) significant at the \(0.10,0.05\), and 0.01 levels, respectively.```

